xref: /openbmc/linux/include/uapi/linux/btrfs_tree.h (revision 6b5fc336)
1 #ifndef _BTRFS_CTREE_H_
2 #define _BTRFS_CTREE_H_
3 
4 #include <linux/btrfs.h>
5 #include <linux/types.h>
6 
7 /*
8  * This header contains the structure definitions and constants used
9  * by file system objects that can be retrieved using
10  * the BTRFS_IOC_SEARCH_TREE ioctl.  That means basically anything that
11  * is needed to describe a leaf node's key or item contents.
12  */
13 
14 /* holds pointers to all of the tree roots */
15 #define BTRFS_ROOT_TREE_OBJECTID 1ULL
16 
17 /* stores information about which extents are in use, and reference counts */
18 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL
19 
20 /*
21  * chunk tree stores translations from logical -> physical block numbering
22  * the super block points to the chunk tree
23  */
24 #define BTRFS_CHUNK_TREE_OBJECTID 3ULL
25 
26 /*
27  * stores information about which areas of a given device are in use.
28  * one per device.  The tree of tree roots points to the device tree
29  */
30 #define BTRFS_DEV_TREE_OBJECTID 4ULL
31 
32 /* one per subvolume, storing files and directories */
33 #define BTRFS_FS_TREE_OBJECTID 5ULL
34 
35 /* directory objectid inside the root tree */
36 #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
37 
38 /* holds checksums of all the data extents */
39 #define BTRFS_CSUM_TREE_OBJECTID 7ULL
40 
41 /* holds quota configuration and tracking */
42 #define BTRFS_QUOTA_TREE_OBJECTID 8ULL
43 
44 /* for storing items that use the BTRFS_UUID_KEY* types */
45 #define BTRFS_UUID_TREE_OBJECTID 9ULL
46 
47 /* tracks free space in block groups. */
48 #define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
49 
50 /* device stats in the device tree */
51 #define BTRFS_DEV_STATS_OBJECTID 0ULL
52 
53 /* for storing balance parameters in the root tree */
54 #define BTRFS_BALANCE_OBJECTID -4ULL
55 
56 /* orhpan objectid for tracking unlinked/truncated files */
57 #define BTRFS_ORPHAN_OBJECTID -5ULL
58 
59 /* does write ahead logging to speed up fsyncs */
60 #define BTRFS_TREE_LOG_OBJECTID -6ULL
61 #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
62 
63 /* for space balancing */
64 #define BTRFS_TREE_RELOC_OBJECTID -8ULL
65 #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
66 
67 /*
68  * extent checksums all have this objectid
69  * this allows them to share the logging tree
70  * for fsyncs
71  */
72 #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
73 
74 /* For storing free space cache */
75 #define BTRFS_FREE_SPACE_OBJECTID -11ULL
76 
77 /*
78  * The inode number assigned to the special inode for storing
79  * free ino cache
80  */
81 #define BTRFS_FREE_INO_OBJECTID -12ULL
82 
83 /* dummy objectid represents multiple objectids */
84 #define BTRFS_MULTIPLE_OBJECTIDS -255ULL
85 
86 /*
87  * All files have objectids in this range.
88  */
89 #define BTRFS_FIRST_FREE_OBJECTID 256ULL
90 #define BTRFS_LAST_FREE_OBJECTID -256ULL
91 #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
92 
93 
94 /*
95  * the device items go into the chunk tree.  The key is in the form
96  * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
97  */
98 #define BTRFS_DEV_ITEMS_OBJECTID 1ULL
99 
100 #define BTRFS_BTREE_INODE_OBJECTID 1
101 
102 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
103 
104 #define BTRFS_DEV_REPLACE_DEVID 0ULL
105 
106 /*
107  * inode items have the data typically returned from stat and store other
108  * info about object characteristics.  There is one for every file and dir in
109  * the FS
110  */
111 #define BTRFS_INODE_ITEM_KEY		1
112 #define BTRFS_INODE_REF_KEY		12
113 #define BTRFS_INODE_EXTREF_KEY		13
114 #define BTRFS_XATTR_ITEM_KEY		24
115 #define BTRFS_ORPHAN_ITEM_KEY		48
116 /* reserve 2-15 close to the inode for later flexibility */
117 
118 /*
119  * dir items are the name -> inode pointers in a directory.  There is one
120  * for every name in a directory.
121  */
122 #define BTRFS_DIR_LOG_ITEM_KEY  60
123 #define BTRFS_DIR_LOG_INDEX_KEY 72
124 #define BTRFS_DIR_ITEM_KEY	84
125 #define BTRFS_DIR_INDEX_KEY	96
126 /*
127  * extent data is for file data
128  */
129 #define BTRFS_EXTENT_DATA_KEY	108
130 
131 /*
132  * extent csums are stored in a separate tree and hold csums for
133  * an entire extent on disk.
134  */
135 #define BTRFS_EXTENT_CSUM_KEY	128
136 
137 /*
138  * root items point to tree roots.  They are typically in the root
139  * tree used by the super block to find all the other trees
140  */
141 #define BTRFS_ROOT_ITEM_KEY	132
142 
143 /*
144  * root backrefs tie subvols and snapshots to the directory entries that
145  * reference them
146  */
147 #define BTRFS_ROOT_BACKREF_KEY	144
148 
149 /*
150  * root refs make a fast index for listing all of the snapshots and
151  * subvolumes referenced by a given root.  They point directly to the
152  * directory item in the root that references the subvol
153  */
154 #define BTRFS_ROOT_REF_KEY	156
155 
156 /*
157  * extent items are in the extent map tree.  These record which blocks
158  * are used, and how many references there are to each block
159  */
160 #define BTRFS_EXTENT_ITEM_KEY	168
161 
162 /*
163  * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
164  * the length, so we save the level in key->offset instead of the length.
165  */
166 #define BTRFS_METADATA_ITEM_KEY	169
167 
168 #define BTRFS_TREE_BLOCK_REF_KEY	176
169 
170 #define BTRFS_EXTENT_DATA_REF_KEY	178
171 
172 #define BTRFS_EXTENT_REF_V0_KEY		180
173 
174 #define BTRFS_SHARED_BLOCK_REF_KEY	182
175 
176 #define BTRFS_SHARED_DATA_REF_KEY	184
177 
178 /*
179  * block groups give us hints into the extent allocation trees.  Which
180  * blocks are free etc etc
181  */
182 #define BTRFS_BLOCK_GROUP_ITEM_KEY 192
183 
184 /*
185  * Every block group is represented in the free space tree by a free space info
186  * item, which stores some accounting information. It is keyed on
187  * (block_group_start, FREE_SPACE_INFO, block_group_length).
188  */
189 #define BTRFS_FREE_SPACE_INFO_KEY 198
190 
191 /*
192  * A free space extent tracks an extent of space that is free in a block group.
193  * It is keyed on (start, FREE_SPACE_EXTENT, length).
194  */
195 #define BTRFS_FREE_SPACE_EXTENT_KEY 199
196 
197 /*
198  * When a block group becomes very fragmented, we convert it to use bitmaps
199  * instead of extents. A free space bitmap is keyed on
200  * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
201  * (length / sectorsize) bits.
202  */
203 #define BTRFS_FREE_SPACE_BITMAP_KEY 200
204 
205 #define BTRFS_DEV_EXTENT_KEY	204
206 #define BTRFS_DEV_ITEM_KEY	216
207 #define BTRFS_CHUNK_ITEM_KEY	228
208 
209 /*
210  * Records the overall state of the qgroups.
211  * There's only one instance of this key present,
212  * (0, BTRFS_QGROUP_STATUS_KEY, 0)
213  */
214 #define BTRFS_QGROUP_STATUS_KEY         240
215 /*
216  * Records the currently used space of the qgroup.
217  * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
218  */
219 #define BTRFS_QGROUP_INFO_KEY           242
220 /*
221  * Contains the user configured limits for the qgroup.
222  * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
223  */
224 #define BTRFS_QGROUP_LIMIT_KEY          244
225 /*
226  * Records the child-parent relationship of qgroups. For
227  * each relation, 2 keys are present:
228  * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
229  * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
230  */
231 #define BTRFS_QGROUP_RELATION_KEY       246
232 
233 /*
234  * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
235  */
236 #define BTRFS_BALANCE_ITEM_KEY	248
237 
238 /*
239  * The key type for tree items that are stored persistently, but do not need to
240  * exist for extended period of time. The items can exist in any tree.
241  *
242  * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
243  *
244  * Existing items:
245  *
246  * - balance status item
247  *   (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
248  */
249 #define BTRFS_TEMPORARY_ITEM_KEY	248
250 
251 /*
252  * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
253  */
254 #define BTRFS_DEV_STATS_KEY		249
255 
256 /*
257  * The key type for tree items that are stored persistently and usually exist
258  * for a long period, eg. filesystem lifetime. The item kinds can be status
259  * information, stats or preference values. The item can exist in any tree.
260  *
261  * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
262  *
263  * Existing items:
264  *
265  * - device statistics, store IO stats in the device tree, one key for all
266  *   stats
267  *   (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
268  */
269 #define BTRFS_PERSISTENT_ITEM_KEY	249
270 
271 /*
272  * Persistantly stores the device replace state in the device tree.
273  * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
274  */
275 #define BTRFS_DEV_REPLACE_KEY	250
276 
277 /*
278  * Stores items that allow to quickly map UUIDs to something else.
279  * These items are part of the filesystem UUID tree.
280  * The key is built like this:
281  * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
282  */
283 #if BTRFS_UUID_SIZE != 16
284 #error "UUID items require BTRFS_UUID_SIZE == 16!"
285 #endif
286 #define BTRFS_UUID_KEY_SUBVOL	251	/* for UUIDs assigned to subvols */
287 #define BTRFS_UUID_KEY_RECEIVED_SUBVOL	252	/* for UUIDs assigned to
288 						 * received subvols */
289 
290 /*
291  * string items are for debugging.  They just store a short string of
292  * data in the FS
293  */
294 #define BTRFS_STRING_ITEM_KEY	253
295 
296 
297 
298 /* 32 bytes in various csum fields */
299 #define BTRFS_CSUM_SIZE 32
300 
301 /* csum types */
302 #define BTRFS_CSUM_TYPE_CRC32	0
303 
304 /*
305  * flags definitions for directory entry item type
306  *
307  * Used by:
308  * struct btrfs_dir_item.type
309  */
310 #define BTRFS_FT_UNKNOWN	0
311 #define BTRFS_FT_REG_FILE	1
312 #define BTRFS_FT_DIR		2
313 #define BTRFS_FT_CHRDEV		3
314 #define BTRFS_FT_BLKDEV		4
315 #define BTRFS_FT_FIFO		5
316 #define BTRFS_FT_SOCK		6
317 #define BTRFS_FT_SYMLINK	7
318 #define BTRFS_FT_XATTR		8
319 #define BTRFS_FT_MAX		9
320 
321 /*
322  * The key defines the order in the tree, and so it also defines (optimal)
323  * block layout.
324  *
325  * objectid corresponds to the inode number.
326  *
327  * type tells us things about the object, and is a kind of stream selector.
328  * so for a given inode, keys with type of 1 might refer to the inode data,
329  * type of 2 may point to file data in the btree and type == 3 may point to
330  * extents.
331  *
332  * offset is the starting byte offset for this key in the stream.
333  *
334  * btrfs_disk_key is in disk byte order.  struct btrfs_key is always
335  * in cpu native order.  Otherwise they are identical and their sizes
336  * should be the same (ie both packed)
337  */
338 struct btrfs_disk_key {
339 	__le64 objectid;
340 	__u8 type;
341 	__le64 offset;
342 } __attribute__ ((__packed__));
343 
344 struct btrfs_key {
345 	__u64 objectid;
346 	__u8 type;
347 	__u64 offset;
348 } __attribute__ ((__packed__));
349 
350 struct btrfs_dev_item {
351 	/* the internal btrfs device id */
352 	__le64 devid;
353 
354 	/* size of the device */
355 	__le64 total_bytes;
356 
357 	/* bytes used */
358 	__le64 bytes_used;
359 
360 	/* optimal io alignment for this device */
361 	__le32 io_align;
362 
363 	/* optimal io width for this device */
364 	__le32 io_width;
365 
366 	/* minimal io size for this device */
367 	__le32 sector_size;
368 
369 	/* type and info about this device */
370 	__le64 type;
371 
372 	/* expected generation for this device */
373 	__le64 generation;
374 
375 	/*
376 	 * starting byte of this partition on the device,
377 	 * to allow for stripe alignment in the future
378 	 */
379 	__le64 start_offset;
380 
381 	/* grouping information for allocation decisions */
382 	__le32 dev_group;
383 
384 	/* seek speed 0-100 where 100 is fastest */
385 	__u8 seek_speed;
386 
387 	/* bandwidth 0-100 where 100 is fastest */
388 	__u8 bandwidth;
389 
390 	/* btrfs generated uuid for this device */
391 	__u8 uuid[BTRFS_UUID_SIZE];
392 
393 	/* uuid of FS who owns this device */
394 	__u8 fsid[BTRFS_UUID_SIZE];
395 } __attribute__ ((__packed__));
396 
397 struct btrfs_stripe {
398 	__le64 devid;
399 	__le64 offset;
400 	__u8 dev_uuid[BTRFS_UUID_SIZE];
401 } __attribute__ ((__packed__));
402 
403 struct btrfs_chunk {
404 	/* size of this chunk in bytes */
405 	__le64 length;
406 
407 	/* objectid of the root referencing this chunk */
408 	__le64 owner;
409 
410 	__le64 stripe_len;
411 	__le64 type;
412 
413 	/* optimal io alignment for this chunk */
414 	__le32 io_align;
415 
416 	/* optimal io width for this chunk */
417 	__le32 io_width;
418 
419 	/* minimal io size for this chunk */
420 	__le32 sector_size;
421 
422 	/* 2^16 stripes is quite a lot, a second limit is the size of a single
423 	 * item in the btree
424 	 */
425 	__le16 num_stripes;
426 
427 	/* sub stripes only matter for raid10 */
428 	__le16 sub_stripes;
429 	struct btrfs_stripe stripe;
430 	/* additional stripes go here */
431 } __attribute__ ((__packed__));
432 
433 #define BTRFS_FREE_SPACE_EXTENT	1
434 #define BTRFS_FREE_SPACE_BITMAP	2
435 
436 struct btrfs_free_space_entry {
437 	__le64 offset;
438 	__le64 bytes;
439 	__u8 type;
440 } __attribute__ ((__packed__));
441 
442 struct btrfs_free_space_header {
443 	struct btrfs_disk_key location;
444 	__le64 generation;
445 	__le64 num_entries;
446 	__le64 num_bitmaps;
447 } __attribute__ ((__packed__));
448 
449 #define BTRFS_HEADER_FLAG_WRITTEN	(1ULL << 0)
450 #define BTRFS_HEADER_FLAG_RELOC		(1ULL << 1)
451 
452 /* Super block flags */
453 /* Errors detected */
454 #define BTRFS_SUPER_FLAG_ERROR		(1ULL << 2)
455 
456 #define BTRFS_SUPER_FLAG_SEEDING	(1ULL << 32)
457 #define BTRFS_SUPER_FLAG_METADUMP	(1ULL << 33)
458 
459 
460 /*
461  * items in the extent btree are used to record the objectid of the
462  * owner of the block and the number of references
463  */
464 
465 struct btrfs_extent_item {
466 	__le64 refs;
467 	__le64 generation;
468 	__le64 flags;
469 } __attribute__ ((__packed__));
470 
471 struct btrfs_extent_item_v0 {
472 	__le32 refs;
473 } __attribute__ ((__packed__));
474 
475 
476 #define BTRFS_EXTENT_FLAG_DATA		(1ULL << 0)
477 #define BTRFS_EXTENT_FLAG_TREE_BLOCK	(1ULL << 1)
478 
479 /* following flags only apply to tree blocks */
480 
481 /* use full backrefs for extent pointers in the block */
482 #define BTRFS_BLOCK_FLAG_FULL_BACKREF	(1ULL << 8)
483 
484 /*
485  * this flag is only used internally by scrub and may be changed at any time
486  * it is only declared here to avoid collisions
487  */
488 #define BTRFS_EXTENT_FLAG_SUPER		(1ULL << 48)
489 
490 struct btrfs_tree_block_info {
491 	struct btrfs_disk_key key;
492 	__u8 level;
493 } __attribute__ ((__packed__));
494 
495 struct btrfs_extent_data_ref {
496 	__le64 root;
497 	__le64 objectid;
498 	__le64 offset;
499 	__le32 count;
500 } __attribute__ ((__packed__));
501 
502 struct btrfs_shared_data_ref {
503 	__le32 count;
504 } __attribute__ ((__packed__));
505 
506 struct btrfs_extent_inline_ref {
507 	__u8 type;
508 	__le64 offset;
509 } __attribute__ ((__packed__));
510 
511 /* old style backrefs item */
512 struct btrfs_extent_ref_v0 {
513 	__le64 root;
514 	__le64 generation;
515 	__le64 objectid;
516 	__le32 count;
517 } __attribute__ ((__packed__));
518 
519 
520 /* dev extents record free space on individual devices.  The owner
521  * field points back to the chunk allocation mapping tree that allocated
522  * the extent.  The chunk tree uuid field is a way to double check the owner
523  */
524 struct btrfs_dev_extent {
525 	__le64 chunk_tree;
526 	__le64 chunk_objectid;
527 	__le64 chunk_offset;
528 	__le64 length;
529 	__u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
530 } __attribute__ ((__packed__));
531 
532 struct btrfs_inode_ref {
533 	__le64 index;
534 	__le16 name_len;
535 	/* name goes here */
536 } __attribute__ ((__packed__));
537 
538 struct btrfs_inode_extref {
539 	__le64 parent_objectid;
540 	__le64 index;
541 	__le16 name_len;
542 	__u8   name[0];
543 	/* name goes here */
544 } __attribute__ ((__packed__));
545 
546 struct btrfs_timespec {
547 	__le64 sec;
548 	__le32 nsec;
549 } __attribute__ ((__packed__));
550 
551 struct btrfs_inode_item {
552 	/* nfs style generation number */
553 	__le64 generation;
554 	/* transid that last touched this inode */
555 	__le64 transid;
556 	__le64 size;
557 	__le64 nbytes;
558 	__le64 block_group;
559 	__le32 nlink;
560 	__le32 uid;
561 	__le32 gid;
562 	__le32 mode;
563 	__le64 rdev;
564 	__le64 flags;
565 
566 	/* modification sequence number for NFS */
567 	__le64 sequence;
568 
569 	/*
570 	 * a little future expansion, for more than this we can
571 	 * just grow the inode item and version it
572 	 */
573 	__le64 reserved[4];
574 	struct btrfs_timespec atime;
575 	struct btrfs_timespec ctime;
576 	struct btrfs_timespec mtime;
577 	struct btrfs_timespec otime;
578 } __attribute__ ((__packed__));
579 
580 struct btrfs_dir_log_item {
581 	__le64 end;
582 } __attribute__ ((__packed__));
583 
584 struct btrfs_dir_item {
585 	struct btrfs_disk_key location;
586 	__le64 transid;
587 	__le16 data_len;
588 	__le16 name_len;
589 	__u8 type;
590 } __attribute__ ((__packed__));
591 
592 #define BTRFS_ROOT_SUBVOL_RDONLY	(1ULL << 0)
593 
594 /*
595  * Internal in-memory flag that a subvolume has been marked for deletion but
596  * still visible as a directory
597  */
598 #define BTRFS_ROOT_SUBVOL_DEAD		(1ULL << 48)
599 
600 struct btrfs_root_item {
601 	struct btrfs_inode_item inode;
602 	__le64 generation;
603 	__le64 root_dirid;
604 	__le64 bytenr;
605 	__le64 byte_limit;
606 	__le64 bytes_used;
607 	__le64 last_snapshot;
608 	__le64 flags;
609 	__le32 refs;
610 	struct btrfs_disk_key drop_progress;
611 	__u8 drop_level;
612 	__u8 level;
613 
614 	/*
615 	 * The following fields appear after subvol_uuids+subvol_times
616 	 * were introduced.
617 	 */
618 
619 	/*
620 	 * This generation number is used to test if the new fields are valid
621 	 * and up to date while reading the root item. Every time the root item
622 	 * is written out, the "generation" field is copied into this field. If
623 	 * anyone ever mounted the fs with an older kernel, we will have
624 	 * mismatching generation values here and thus must invalidate the
625 	 * new fields. See btrfs_update_root and btrfs_find_last_root for
626 	 * details.
627 	 * the offset of generation_v2 is also used as the start for the memset
628 	 * when invalidating the fields.
629 	 */
630 	__le64 generation_v2;
631 	__u8 uuid[BTRFS_UUID_SIZE];
632 	__u8 parent_uuid[BTRFS_UUID_SIZE];
633 	__u8 received_uuid[BTRFS_UUID_SIZE];
634 	__le64 ctransid; /* updated when an inode changes */
635 	__le64 otransid; /* trans when created */
636 	__le64 stransid; /* trans when sent. non-zero for received subvol */
637 	__le64 rtransid; /* trans when received. non-zero for received subvol */
638 	struct btrfs_timespec ctime;
639 	struct btrfs_timespec otime;
640 	struct btrfs_timespec stime;
641 	struct btrfs_timespec rtime;
642 	__le64 reserved[8]; /* for future */
643 } __attribute__ ((__packed__));
644 
645 /*
646  * this is used for both forward and backward root refs
647  */
648 struct btrfs_root_ref {
649 	__le64 dirid;
650 	__le64 sequence;
651 	__le16 name_len;
652 } __attribute__ ((__packed__));
653 
654 struct btrfs_disk_balance_args {
655 	/*
656 	 * profiles to operate on, single is denoted by
657 	 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
658 	 */
659 	__le64 profiles;
660 
661 	/*
662 	 * usage filter
663 	 * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
664 	 * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
665 	 */
666 	union {
667 		__le64 usage;
668 		struct {
669 			__le32 usage_min;
670 			__le32 usage_max;
671 		};
672 	};
673 
674 	/* devid filter */
675 	__le64 devid;
676 
677 	/* devid subset filter [pstart..pend) */
678 	__le64 pstart;
679 	__le64 pend;
680 
681 	/* btrfs virtual address space subset filter [vstart..vend) */
682 	__le64 vstart;
683 	__le64 vend;
684 
685 	/*
686 	 * profile to convert to, single is denoted by
687 	 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
688 	 */
689 	__le64 target;
690 
691 	/* BTRFS_BALANCE_ARGS_* */
692 	__le64 flags;
693 
694 	/*
695 	 * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'
696 	 * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
697 	 * and maximum
698 	 */
699 	union {
700 		__le64 limit;
701 		struct {
702 			__le32 limit_min;
703 			__le32 limit_max;
704 		};
705 	};
706 
707 	/*
708 	 * Process chunks that cross stripes_min..stripes_max devices,
709 	 * BTRFS_BALANCE_ARGS_STRIPES_RANGE
710 	 */
711 	__le32 stripes_min;
712 	__le32 stripes_max;
713 
714 	__le64 unused[6];
715 } __attribute__ ((__packed__));
716 
717 /*
718  * store balance parameters to disk so that balance can be properly
719  * resumed after crash or unmount
720  */
721 struct btrfs_balance_item {
722 	/* BTRFS_BALANCE_* */
723 	__le64 flags;
724 
725 	struct btrfs_disk_balance_args data;
726 	struct btrfs_disk_balance_args meta;
727 	struct btrfs_disk_balance_args sys;
728 
729 	__le64 unused[4];
730 } __attribute__ ((__packed__));
731 
732 #define BTRFS_FILE_EXTENT_INLINE 0
733 #define BTRFS_FILE_EXTENT_REG 1
734 #define BTRFS_FILE_EXTENT_PREALLOC 2
735 
736 struct btrfs_file_extent_item {
737 	/*
738 	 * transaction id that created this extent
739 	 */
740 	__le64 generation;
741 	/*
742 	 * max number of bytes to hold this extent in ram
743 	 * when we split a compressed extent we can't know how big
744 	 * each of the resulting pieces will be.  So, this is
745 	 * an upper limit on the size of the extent in ram instead of
746 	 * an exact limit.
747 	 */
748 	__le64 ram_bytes;
749 
750 	/*
751 	 * 32 bits for the various ways we might encode the data,
752 	 * including compression and encryption.  If any of these
753 	 * are set to something a given disk format doesn't understand
754 	 * it is treated like an incompat flag for reading and writing,
755 	 * but not for stat.
756 	 */
757 	__u8 compression;
758 	__u8 encryption;
759 	__le16 other_encoding; /* spare for later use */
760 
761 	/* are we inline data or a real extent? */
762 	__u8 type;
763 
764 	/*
765 	 * disk space consumed by the extent, checksum blocks are included
766 	 * in these numbers
767 	 *
768 	 * At this offset in the structure, the inline extent data start.
769 	 */
770 	__le64 disk_bytenr;
771 	__le64 disk_num_bytes;
772 	/*
773 	 * the logical offset in file blocks (no csums)
774 	 * this extent record is for.  This allows a file extent to point
775 	 * into the middle of an existing extent on disk, sharing it
776 	 * between two snapshots (useful if some bytes in the middle of the
777 	 * extent have changed
778 	 */
779 	__le64 offset;
780 	/*
781 	 * the logical number of file blocks (no csums included).  This
782 	 * always reflects the size uncompressed and without encoding.
783 	 */
784 	__le64 num_bytes;
785 
786 } __attribute__ ((__packed__));
787 
788 struct btrfs_csum_item {
789 	__u8 csum;
790 } __attribute__ ((__packed__));
791 
792 struct btrfs_dev_stats_item {
793 	/*
794 	 * grow this item struct at the end for future enhancements and keep
795 	 * the existing values unchanged
796 	 */
797 	__le64 values[BTRFS_DEV_STAT_VALUES_MAX];
798 } __attribute__ ((__packed__));
799 
800 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS	0
801 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID	1
802 #define BTRFS_DEV_REPLACE_ITEM_STATE_NEVER_STARTED	0
803 #define BTRFS_DEV_REPLACE_ITEM_STATE_STARTED		1
804 #define BTRFS_DEV_REPLACE_ITEM_STATE_SUSPENDED		2
805 #define BTRFS_DEV_REPLACE_ITEM_STATE_FINISHED		3
806 #define BTRFS_DEV_REPLACE_ITEM_STATE_CANCELED		4
807 
808 struct btrfs_dev_replace_item {
809 	/*
810 	 * grow this item struct at the end for future enhancements and keep
811 	 * the existing values unchanged
812 	 */
813 	__le64 src_devid;
814 	__le64 cursor_left;
815 	__le64 cursor_right;
816 	__le64 cont_reading_from_srcdev_mode;
817 
818 	__le64 replace_state;
819 	__le64 time_started;
820 	__le64 time_stopped;
821 	__le64 num_write_errors;
822 	__le64 num_uncorrectable_read_errors;
823 } __attribute__ ((__packed__));
824 
825 /* different types of block groups (and chunks) */
826 #define BTRFS_BLOCK_GROUP_DATA		(1ULL << 0)
827 #define BTRFS_BLOCK_GROUP_SYSTEM	(1ULL << 1)
828 #define BTRFS_BLOCK_GROUP_METADATA	(1ULL << 2)
829 #define BTRFS_BLOCK_GROUP_RAID0		(1ULL << 3)
830 #define BTRFS_BLOCK_GROUP_RAID1		(1ULL << 4)
831 #define BTRFS_BLOCK_GROUP_DUP		(1ULL << 5)
832 #define BTRFS_BLOCK_GROUP_RAID10	(1ULL << 6)
833 #define BTRFS_BLOCK_GROUP_RAID5         (1ULL << 7)
834 #define BTRFS_BLOCK_GROUP_RAID6         (1ULL << 8)
835 #define BTRFS_BLOCK_GROUP_RESERVED	(BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
836 					 BTRFS_SPACE_INFO_GLOBAL_RSV)
837 
838 enum btrfs_raid_types {
839 	BTRFS_RAID_RAID10,
840 	BTRFS_RAID_RAID1,
841 	BTRFS_RAID_DUP,
842 	BTRFS_RAID_RAID0,
843 	BTRFS_RAID_SINGLE,
844 	BTRFS_RAID_RAID5,
845 	BTRFS_RAID_RAID6,
846 	BTRFS_NR_RAID_TYPES
847 };
848 
849 #define BTRFS_BLOCK_GROUP_TYPE_MASK	(BTRFS_BLOCK_GROUP_DATA |    \
850 					 BTRFS_BLOCK_GROUP_SYSTEM |  \
851 					 BTRFS_BLOCK_GROUP_METADATA)
852 
853 #define BTRFS_BLOCK_GROUP_PROFILE_MASK	(BTRFS_BLOCK_GROUP_RAID0 |   \
854 					 BTRFS_BLOCK_GROUP_RAID1 |   \
855 					 BTRFS_BLOCK_GROUP_RAID5 |   \
856 					 BTRFS_BLOCK_GROUP_RAID6 |   \
857 					 BTRFS_BLOCK_GROUP_DUP |     \
858 					 BTRFS_BLOCK_GROUP_RAID10)
859 #define BTRFS_BLOCK_GROUP_RAID56_MASK	(BTRFS_BLOCK_GROUP_RAID5 |   \
860 					 BTRFS_BLOCK_GROUP_RAID6)
861 
862 /*
863  * We need a bit for restriper to be able to tell when chunks of type
864  * SINGLE are available.  This "extended" profile format is used in
865  * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
866  * (on-disk).  The corresponding on-disk bit in chunk.type is reserved
867  * to avoid remappings between two formats in future.
868  */
869 #define BTRFS_AVAIL_ALLOC_BIT_SINGLE	(1ULL << 48)
870 
871 /*
872  * A fake block group type that is used to communicate global block reserve
873  * size to userspace via the SPACE_INFO ioctl.
874  */
875 #define BTRFS_SPACE_INFO_GLOBAL_RSV	(1ULL << 49)
876 
877 #define BTRFS_EXTENDED_PROFILE_MASK	(BTRFS_BLOCK_GROUP_PROFILE_MASK | \
878 					 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
879 
880 static inline __u64 chunk_to_extended(__u64 flags)
881 {
882 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
883 		flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
884 
885 	return flags;
886 }
887 static inline __u64 extended_to_chunk(__u64 flags)
888 {
889 	return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
890 }
891 
892 struct btrfs_block_group_item {
893 	__le64 used;
894 	__le64 chunk_objectid;
895 	__le64 flags;
896 } __attribute__ ((__packed__));
897 
898 struct btrfs_free_space_info {
899 	__le32 extent_count;
900 	__le32 flags;
901 } __attribute__ ((__packed__));
902 
903 #define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
904 
905 #define BTRFS_QGROUP_LEVEL_SHIFT		48
906 static inline __u64 btrfs_qgroup_level(__u64 qgroupid)
907 {
908 	return qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT;
909 }
910 
911 /*
912  * is subvolume quota turned on?
913  */
914 #define BTRFS_QGROUP_STATUS_FLAG_ON		(1ULL << 0)
915 /*
916  * RESCAN is set during the initialization phase
917  */
918 #define BTRFS_QGROUP_STATUS_FLAG_RESCAN		(1ULL << 1)
919 /*
920  * Some qgroup entries are known to be out of date,
921  * either because the configuration has changed in a way that
922  * makes a rescan necessary, or because the fs has been mounted
923  * with a non-qgroup-aware version.
924  * Turning qouta off and on again makes it inconsistent, too.
925  */
926 #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT	(1ULL << 2)
927 
928 #define BTRFS_QGROUP_STATUS_VERSION        1
929 
930 struct btrfs_qgroup_status_item {
931 	__le64 version;
932 	/*
933 	 * the generation is updated during every commit. As older
934 	 * versions of btrfs are not aware of qgroups, it will be
935 	 * possible to detect inconsistencies by checking the
936 	 * generation on mount time
937 	 */
938 	__le64 generation;
939 
940 	/* flag definitions see above */
941 	__le64 flags;
942 
943 	/*
944 	 * only used during scanning to record the progress
945 	 * of the scan. It contains a logical address
946 	 */
947 	__le64 rescan;
948 } __attribute__ ((__packed__));
949 
950 struct btrfs_qgroup_info_item {
951 	__le64 generation;
952 	__le64 rfer;
953 	__le64 rfer_cmpr;
954 	__le64 excl;
955 	__le64 excl_cmpr;
956 } __attribute__ ((__packed__));
957 
958 struct btrfs_qgroup_limit_item {
959 	/*
960 	 * only updated when any of the other values change
961 	 */
962 	__le64 flags;
963 	__le64 max_rfer;
964 	__le64 max_excl;
965 	__le64 rsv_rfer;
966 	__le64 rsv_excl;
967 } __attribute__ ((__packed__));
968 
969 #endif /* _BTRFS_CTREE_H_ */
970