xref: /openbmc/linux/include/uapi/drm/i915_drm.h (revision fbb6b31a)
1 /*
2  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the
14  * next paragraph) shall be included in all copies or substantial portions
15  * of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
20  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
21  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24  *
25  */
26 
27 #ifndef _UAPI_I915_DRM_H_
28 #define _UAPI_I915_DRM_H_
29 
30 #include "drm.h"
31 
32 #if defined(__cplusplus)
33 extern "C" {
34 #endif
35 
36 /* Please note that modifications to all structs defined here are
37  * subject to backwards-compatibility constraints.
38  */
39 
40 /**
41  * DOC: uevents generated by i915 on it's device node
42  *
43  * I915_L3_PARITY_UEVENT - Generated when the driver receives a parity mismatch
44  *	event from the gpu l3 cache. Additional information supplied is ROW,
45  *	BANK, SUBBANK, SLICE of the affected cacheline. Userspace should keep
46  *	track of these events and if a specific cache-line seems to have a
47  *	persistent error remap it with the l3 remapping tool supplied in
48  *	intel-gpu-tools.  The value supplied with the event is always 1.
49  *
50  * I915_ERROR_UEVENT - Generated upon error detection, currently only via
51  *	hangcheck. The error detection event is a good indicator of when things
52  *	began to go badly. The value supplied with the event is a 1 upon error
53  *	detection, and a 0 upon reset completion, signifying no more error
54  *	exists. NOTE: Disabling hangcheck or reset via module parameter will
55  *	cause the related events to not be seen.
56  *
57  * I915_RESET_UEVENT - Event is generated just before an attempt to reset the
58  *	GPU. The value supplied with the event is always 1. NOTE: Disable
59  *	reset via module parameter will cause this event to not be seen.
60  */
61 #define I915_L3_PARITY_UEVENT		"L3_PARITY_ERROR"
62 #define I915_ERROR_UEVENT		"ERROR"
63 #define I915_RESET_UEVENT		"RESET"
64 
65 /**
66  * struct i915_user_extension - Base class for defining a chain of extensions
67  *
68  * Many interfaces need to grow over time. In most cases we can simply
69  * extend the struct and have userspace pass in more data. Another option,
70  * as demonstrated by Vulkan's approach to providing extensions for forward
71  * and backward compatibility, is to use a list of optional structs to
72  * provide those extra details.
73  *
74  * The key advantage to using an extension chain is that it allows us to
75  * redefine the interface more easily than an ever growing struct of
76  * increasing complexity, and for large parts of that interface to be
77  * entirely optional. The downside is more pointer chasing; chasing across
78  * the __user boundary with pointers encapsulated inside u64.
79  *
80  * Example chaining:
81  *
82  * .. code-block:: C
83  *
84  *	struct i915_user_extension ext3 {
85  *		.next_extension = 0, // end
86  *		.name = ...,
87  *	};
88  *	struct i915_user_extension ext2 {
89  *		.next_extension = (uintptr_t)&ext3,
90  *		.name = ...,
91  *	};
92  *	struct i915_user_extension ext1 {
93  *		.next_extension = (uintptr_t)&ext2,
94  *		.name = ...,
95  *	};
96  *
97  * Typically the struct i915_user_extension would be embedded in some uAPI
98  * struct, and in this case we would feed it the head of the chain(i.e ext1),
99  * which would then apply all of the above extensions.
100  *
101  */
102 struct i915_user_extension {
103 	/**
104 	 * @next_extension:
105 	 *
106 	 * Pointer to the next struct i915_user_extension, or zero if the end.
107 	 */
108 	__u64 next_extension;
109 	/**
110 	 * @name: Name of the extension.
111 	 *
112 	 * Note that the name here is just some integer.
113 	 *
114 	 * Also note that the name space for this is not global for the whole
115 	 * driver, but rather its scope/meaning is limited to the specific piece
116 	 * of uAPI which has embedded the struct i915_user_extension.
117 	 */
118 	__u32 name;
119 	/**
120 	 * @flags: MBZ
121 	 *
122 	 * All undefined bits must be zero.
123 	 */
124 	__u32 flags;
125 	/**
126 	 * @rsvd: MBZ
127 	 *
128 	 * Reserved for future use; must be zero.
129 	 */
130 	__u32 rsvd[4];
131 };
132 
133 /*
134  * MOCS indexes used for GPU surfaces, defining the cacheability of the
135  * surface data and the coherency for this data wrt. CPU vs. GPU accesses.
136  */
137 enum i915_mocs_table_index {
138 	/*
139 	 * Not cached anywhere, coherency between CPU and GPU accesses is
140 	 * guaranteed.
141 	 */
142 	I915_MOCS_UNCACHED,
143 	/*
144 	 * Cacheability and coherency controlled by the kernel automatically
145 	 * based on the DRM_I915_GEM_SET_CACHING IOCTL setting and the current
146 	 * usage of the surface (used for display scanout or not).
147 	 */
148 	I915_MOCS_PTE,
149 	/*
150 	 * Cached in all GPU caches available on the platform.
151 	 * Coherency between CPU and GPU accesses to the surface is not
152 	 * guaranteed without extra synchronization.
153 	 */
154 	I915_MOCS_CACHED,
155 };
156 
157 /*
158  * Different engines serve different roles, and there may be more than one
159  * engine serving each role. enum drm_i915_gem_engine_class provides a
160  * classification of the role of the engine, which may be used when requesting
161  * operations to be performed on a certain subset of engines, or for providing
162  * information about that group.
163  */
164 enum drm_i915_gem_engine_class {
165 	I915_ENGINE_CLASS_RENDER	= 0,
166 	I915_ENGINE_CLASS_COPY		= 1,
167 	I915_ENGINE_CLASS_VIDEO		= 2,
168 	I915_ENGINE_CLASS_VIDEO_ENHANCE	= 3,
169 
170 	/* should be kept compact */
171 
172 	I915_ENGINE_CLASS_INVALID	= -1
173 };
174 
175 /*
176  * There may be more than one engine fulfilling any role within the system.
177  * Each engine of a class is given a unique instance number and therefore
178  * any engine can be specified by its class:instance tuplet. APIs that allow
179  * access to any engine in the system will use struct i915_engine_class_instance
180  * for this identification.
181  */
182 struct i915_engine_class_instance {
183 	__u16 engine_class; /* see enum drm_i915_gem_engine_class */
184 	__u16 engine_instance;
185 #define I915_ENGINE_CLASS_INVALID_NONE -1
186 #define I915_ENGINE_CLASS_INVALID_VIRTUAL -2
187 };
188 
189 /**
190  * DOC: perf_events exposed by i915 through /sys/bus/event_sources/drivers/i915
191  *
192  */
193 
194 enum drm_i915_pmu_engine_sample {
195 	I915_SAMPLE_BUSY = 0,
196 	I915_SAMPLE_WAIT = 1,
197 	I915_SAMPLE_SEMA = 2
198 };
199 
200 #define I915_PMU_SAMPLE_BITS (4)
201 #define I915_PMU_SAMPLE_MASK (0xf)
202 #define I915_PMU_SAMPLE_INSTANCE_BITS (8)
203 #define I915_PMU_CLASS_SHIFT \
204 	(I915_PMU_SAMPLE_BITS + I915_PMU_SAMPLE_INSTANCE_BITS)
205 
206 #define __I915_PMU_ENGINE(class, instance, sample) \
207 	((class) << I915_PMU_CLASS_SHIFT | \
208 	(instance) << I915_PMU_SAMPLE_BITS | \
209 	(sample))
210 
211 #define I915_PMU_ENGINE_BUSY(class, instance) \
212 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_BUSY)
213 
214 #define I915_PMU_ENGINE_WAIT(class, instance) \
215 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_WAIT)
216 
217 #define I915_PMU_ENGINE_SEMA(class, instance) \
218 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_SEMA)
219 
220 #define __I915_PMU_OTHER(x) (__I915_PMU_ENGINE(0xff, 0xff, 0xf) + 1 + (x))
221 
222 #define I915_PMU_ACTUAL_FREQUENCY	__I915_PMU_OTHER(0)
223 #define I915_PMU_REQUESTED_FREQUENCY	__I915_PMU_OTHER(1)
224 #define I915_PMU_INTERRUPTS		__I915_PMU_OTHER(2)
225 #define I915_PMU_RC6_RESIDENCY		__I915_PMU_OTHER(3)
226 #define I915_PMU_SOFTWARE_GT_AWAKE_TIME	__I915_PMU_OTHER(4)
227 
228 #define I915_PMU_LAST /* Deprecated - do not use */ I915_PMU_RC6_RESIDENCY
229 
230 /* Each region is a minimum of 16k, and there are at most 255 of them.
231  */
232 #define I915_NR_TEX_REGIONS 255	/* table size 2k - maximum due to use
233 				 * of chars for next/prev indices */
234 #define I915_LOG_MIN_TEX_REGION_SIZE 14
235 
236 typedef struct _drm_i915_init {
237 	enum {
238 		I915_INIT_DMA = 0x01,
239 		I915_CLEANUP_DMA = 0x02,
240 		I915_RESUME_DMA = 0x03
241 	} func;
242 	unsigned int mmio_offset;
243 	int sarea_priv_offset;
244 	unsigned int ring_start;
245 	unsigned int ring_end;
246 	unsigned int ring_size;
247 	unsigned int front_offset;
248 	unsigned int back_offset;
249 	unsigned int depth_offset;
250 	unsigned int w;
251 	unsigned int h;
252 	unsigned int pitch;
253 	unsigned int pitch_bits;
254 	unsigned int back_pitch;
255 	unsigned int depth_pitch;
256 	unsigned int cpp;
257 	unsigned int chipset;
258 } drm_i915_init_t;
259 
260 typedef struct _drm_i915_sarea {
261 	struct drm_tex_region texList[I915_NR_TEX_REGIONS + 1];
262 	int last_upload;	/* last time texture was uploaded */
263 	int last_enqueue;	/* last time a buffer was enqueued */
264 	int last_dispatch;	/* age of the most recently dispatched buffer */
265 	int ctxOwner;		/* last context to upload state */
266 	int texAge;
267 	int pf_enabled;		/* is pageflipping allowed? */
268 	int pf_active;
269 	int pf_current_page;	/* which buffer is being displayed? */
270 	int perf_boxes;		/* performance boxes to be displayed */
271 	int width, height;      /* screen size in pixels */
272 
273 	drm_handle_t front_handle;
274 	int front_offset;
275 	int front_size;
276 
277 	drm_handle_t back_handle;
278 	int back_offset;
279 	int back_size;
280 
281 	drm_handle_t depth_handle;
282 	int depth_offset;
283 	int depth_size;
284 
285 	drm_handle_t tex_handle;
286 	int tex_offset;
287 	int tex_size;
288 	int log_tex_granularity;
289 	int pitch;
290 	int rotation;           /* 0, 90, 180 or 270 */
291 	int rotated_offset;
292 	int rotated_size;
293 	int rotated_pitch;
294 	int virtualX, virtualY;
295 
296 	unsigned int front_tiled;
297 	unsigned int back_tiled;
298 	unsigned int depth_tiled;
299 	unsigned int rotated_tiled;
300 	unsigned int rotated2_tiled;
301 
302 	int pipeA_x;
303 	int pipeA_y;
304 	int pipeA_w;
305 	int pipeA_h;
306 	int pipeB_x;
307 	int pipeB_y;
308 	int pipeB_w;
309 	int pipeB_h;
310 
311 	/* fill out some space for old userspace triple buffer */
312 	drm_handle_t unused_handle;
313 	__u32 unused1, unused2, unused3;
314 
315 	/* buffer object handles for static buffers. May change
316 	 * over the lifetime of the client.
317 	 */
318 	__u32 front_bo_handle;
319 	__u32 back_bo_handle;
320 	__u32 unused_bo_handle;
321 	__u32 depth_bo_handle;
322 
323 } drm_i915_sarea_t;
324 
325 /* due to userspace building against these headers we need some compat here */
326 #define planeA_x pipeA_x
327 #define planeA_y pipeA_y
328 #define planeA_w pipeA_w
329 #define planeA_h pipeA_h
330 #define planeB_x pipeB_x
331 #define planeB_y pipeB_y
332 #define planeB_w pipeB_w
333 #define planeB_h pipeB_h
334 
335 /* Flags for perf_boxes
336  */
337 #define I915_BOX_RING_EMPTY    0x1
338 #define I915_BOX_FLIP          0x2
339 #define I915_BOX_WAIT          0x4
340 #define I915_BOX_TEXTURE_LOAD  0x8
341 #define I915_BOX_LOST_CONTEXT  0x10
342 
343 /*
344  * i915 specific ioctls.
345  *
346  * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie
347  * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset
348  * against DRM_COMMAND_BASE and should be between [0x0, 0x60).
349  */
350 #define DRM_I915_INIT		0x00
351 #define DRM_I915_FLUSH		0x01
352 #define DRM_I915_FLIP		0x02
353 #define DRM_I915_BATCHBUFFER	0x03
354 #define DRM_I915_IRQ_EMIT	0x04
355 #define DRM_I915_IRQ_WAIT	0x05
356 #define DRM_I915_GETPARAM	0x06
357 #define DRM_I915_SETPARAM	0x07
358 #define DRM_I915_ALLOC		0x08
359 #define DRM_I915_FREE		0x09
360 #define DRM_I915_INIT_HEAP	0x0a
361 #define DRM_I915_CMDBUFFER	0x0b
362 #define DRM_I915_DESTROY_HEAP	0x0c
363 #define DRM_I915_SET_VBLANK_PIPE	0x0d
364 #define DRM_I915_GET_VBLANK_PIPE	0x0e
365 #define DRM_I915_VBLANK_SWAP	0x0f
366 #define DRM_I915_HWS_ADDR	0x11
367 #define DRM_I915_GEM_INIT	0x13
368 #define DRM_I915_GEM_EXECBUFFER	0x14
369 #define DRM_I915_GEM_PIN	0x15
370 #define DRM_I915_GEM_UNPIN	0x16
371 #define DRM_I915_GEM_BUSY	0x17
372 #define DRM_I915_GEM_THROTTLE	0x18
373 #define DRM_I915_GEM_ENTERVT	0x19
374 #define DRM_I915_GEM_LEAVEVT	0x1a
375 #define DRM_I915_GEM_CREATE	0x1b
376 #define DRM_I915_GEM_PREAD	0x1c
377 #define DRM_I915_GEM_PWRITE	0x1d
378 #define DRM_I915_GEM_MMAP	0x1e
379 #define DRM_I915_GEM_SET_DOMAIN	0x1f
380 #define DRM_I915_GEM_SW_FINISH	0x20
381 #define DRM_I915_GEM_SET_TILING	0x21
382 #define DRM_I915_GEM_GET_TILING	0x22
383 #define DRM_I915_GEM_GET_APERTURE 0x23
384 #define DRM_I915_GEM_MMAP_GTT	0x24
385 #define DRM_I915_GET_PIPE_FROM_CRTC_ID	0x25
386 #define DRM_I915_GEM_MADVISE	0x26
387 #define DRM_I915_OVERLAY_PUT_IMAGE	0x27
388 #define DRM_I915_OVERLAY_ATTRS	0x28
389 #define DRM_I915_GEM_EXECBUFFER2	0x29
390 #define DRM_I915_GEM_EXECBUFFER2_WR	DRM_I915_GEM_EXECBUFFER2
391 #define DRM_I915_GET_SPRITE_COLORKEY	0x2a
392 #define DRM_I915_SET_SPRITE_COLORKEY	0x2b
393 #define DRM_I915_GEM_WAIT	0x2c
394 #define DRM_I915_GEM_CONTEXT_CREATE	0x2d
395 #define DRM_I915_GEM_CONTEXT_DESTROY	0x2e
396 #define DRM_I915_GEM_SET_CACHING	0x2f
397 #define DRM_I915_GEM_GET_CACHING	0x30
398 #define DRM_I915_REG_READ		0x31
399 #define DRM_I915_GET_RESET_STATS	0x32
400 #define DRM_I915_GEM_USERPTR		0x33
401 #define DRM_I915_GEM_CONTEXT_GETPARAM	0x34
402 #define DRM_I915_GEM_CONTEXT_SETPARAM	0x35
403 #define DRM_I915_PERF_OPEN		0x36
404 #define DRM_I915_PERF_ADD_CONFIG	0x37
405 #define DRM_I915_PERF_REMOVE_CONFIG	0x38
406 #define DRM_I915_QUERY			0x39
407 #define DRM_I915_GEM_VM_CREATE		0x3a
408 #define DRM_I915_GEM_VM_DESTROY		0x3b
409 #define DRM_I915_GEM_CREATE_EXT		0x3c
410 /* Must be kept compact -- no holes */
411 
412 #define DRM_IOCTL_I915_INIT		DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT, drm_i915_init_t)
413 #define DRM_IOCTL_I915_FLUSH		DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLUSH)
414 #define DRM_IOCTL_I915_FLIP		DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLIP)
415 #define DRM_IOCTL_I915_BATCHBUFFER	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_BATCHBUFFER, drm_i915_batchbuffer_t)
416 #define DRM_IOCTL_I915_IRQ_EMIT         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_IRQ_EMIT, drm_i915_irq_emit_t)
417 #define DRM_IOCTL_I915_IRQ_WAIT         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_IRQ_WAIT, drm_i915_irq_wait_t)
418 #define DRM_IOCTL_I915_GETPARAM         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GETPARAM, drm_i915_getparam_t)
419 #define DRM_IOCTL_I915_SETPARAM         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SETPARAM, drm_i915_setparam_t)
420 #define DRM_IOCTL_I915_ALLOC            DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_ALLOC, drm_i915_mem_alloc_t)
421 #define DRM_IOCTL_I915_FREE             DRM_IOW( DRM_COMMAND_BASE + DRM_I915_FREE, drm_i915_mem_free_t)
422 #define DRM_IOCTL_I915_INIT_HEAP        DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT_HEAP, drm_i915_mem_init_heap_t)
423 #define DRM_IOCTL_I915_CMDBUFFER	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_CMDBUFFER, drm_i915_cmdbuffer_t)
424 #define DRM_IOCTL_I915_DESTROY_HEAP	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_DESTROY_HEAP, drm_i915_mem_destroy_heap_t)
425 #define DRM_IOCTL_I915_SET_VBLANK_PIPE	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
426 #define DRM_IOCTL_I915_GET_VBLANK_PIPE	DRM_IOR( DRM_COMMAND_BASE + DRM_I915_GET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
427 #define DRM_IOCTL_I915_VBLANK_SWAP	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_VBLANK_SWAP, drm_i915_vblank_swap_t)
428 #define DRM_IOCTL_I915_HWS_ADDR		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_HWS_ADDR, struct drm_i915_gem_init)
429 #define DRM_IOCTL_I915_GEM_INIT		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_INIT, struct drm_i915_gem_init)
430 #define DRM_IOCTL_I915_GEM_EXECBUFFER	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER, struct drm_i915_gem_execbuffer)
431 #define DRM_IOCTL_I915_GEM_EXECBUFFER2	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2, struct drm_i915_gem_execbuffer2)
432 #define DRM_IOCTL_I915_GEM_EXECBUFFER2_WR	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2_WR, struct drm_i915_gem_execbuffer2)
433 #define DRM_IOCTL_I915_GEM_PIN		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_PIN, struct drm_i915_gem_pin)
434 #define DRM_IOCTL_I915_GEM_UNPIN	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_UNPIN, struct drm_i915_gem_unpin)
435 #define DRM_IOCTL_I915_GEM_BUSY		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_BUSY, struct drm_i915_gem_busy)
436 #define DRM_IOCTL_I915_GEM_SET_CACHING		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_SET_CACHING, struct drm_i915_gem_caching)
437 #define DRM_IOCTL_I915_GEM_GET_CACHING		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_GET_CACHING, struct drm_i915_gem_caching)
438 #define DRM_IOCTL_I915_GEM_THROTTLE	DRM_IO ( DRM_COMMAND_BASE + DRM_I915_GEM_THROTTLE)
439 #define DRM_IOCTL_I915_GEM_ENTERVT	DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_ENTERVT)
440 #define DRM_IOCTL_I915_GEM_LEAVEVT	DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_LEAVEVT)
441 #define DRM_IOCTL_I915_GEM_CREATE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE, struct drm_i915_gem_create)
442 #define DRM_IOCTL_I915_GEM_CREATE_EXT	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE_EXT, struct drm_i915_gem_create_ext)
443 #define DRM_IOCTL_I915_GEM_PREAD	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PREAD, struct drm_i915_gem_pread)
444 #define DRM_IOCTL_I915_GEM_PWRITE	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PWRITE, struct drm_i915_gem_pwrite)
445 #define DRM_IOCTL_I915_GEM_MMAP		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP, struct drm_i915_gem_mmap)
446 #define DRM_IOCTL_I915_GEM_MMAP_GTT	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_gtt)
447 #define DRM_IOCTL_I915_GEM_MMAP_OFFSET	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_offset)
448 #define DRM_IOCTL_I915_GEM_SET_DOMAIN	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SET_DOMAIN, struct drm_i915_gem_set_domain)
449 #define DRM_IOCTL_I915_GEM_SW_FINISH	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SW_FINISH, struct drm_i915_gem_sw_finish)
450 #define DRM_IOCTL_I915_GEM_SET_TILING	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_SET_TILING, struct drm_i915_gem_set_tiling)
451 #define DRM_IOCTL_I915_GEM_GET_TILING	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_TILING, struct drm_i915_gem_get_tiling)
452 #define DRM_IOCTL_I915_GEM_GET_APERTURE	DRM_IOR  (DRM_COMMAND_BASE + DRM_I915_GEM_GET_APERTURE, struct drm_i915_gem_get_aperture)
453 #define DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_PIPE_FROM_CRTC_ID, struct drm_i915_get_pipe_from_crtc_id)
454 #define DRM_IOCTL_I915_GEM_MADVISE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MADVISE, struct drm_i915_gem_madvise)
455 #define DRM_IOCTL_I915_OVERLAY_PUT_IMAGE	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_OVERLAY_PUT_IMAGE, struct drm_intel_overlay_put_image)
456 #define DRM_IOCTL_I915_OVERLAY_ATTRS	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_OVERLAY_ATTRS, struct drm_intel_overlay_attrs)
457 #define DRM_IOCTL_I915_SET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_SET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
458 #define DRM_IOCTL_I915_GET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
459 #define DRM_IOCTL_I915_GEM_WAIT		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_WAIT, struct drm_i915_gem_wait)
460 #define DRM_IOCTL_I915_GEM_CONTEXT_CREATE	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create)
461 #define DRM_IOCTL_I915_GEM_CONTEXT_CREATE_EXT	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create_ext)
462 #define DRM_IOCTL_I915_GEM_CONTEXT_DESTROY	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_DESTROY, struct drm_i915_gem_context_destroy)
463 #define DRM_IOCTL_I915_REG_READ			DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_REG_READ, struct drm_i915_reg_read)
464 #define DRM_IOCTL_I915_GET_RESET_STATS		DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GET_RESET_STATS, struct drm_i915_reset_stats)
465 #define DRM_IOCTL_I915_GEM_USERPTR			DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_USERPTR, struct drm_i915_gem_userptr)
466 #define DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_GETPARAM, struct drm_i915_gem_context_param)
467 #define DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_SETPARAM, struct drm_i915_gem_context_param)
468 #define DRM_IOCTL_I915_PERF_OPEN	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_OPEN, struct drm_i915_perf_open_param)
469 #define DRM_IOCTL_I915_PERF_ADD_CONFIG	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_ADD_CONFIG, struct drm_i915_perf_oa_config)
470 #define DRM_IOCTL_I915_PERF_REMOVE_CONFIG	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_REMOVE_CONFIG, __u64)
471 #define DRM_IOCTL_I915_QUERY			DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_QUERY, struct drm_i915_query)
472 #define DRM_IOCTL_I915_GEM_VM_CREATE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_VM_CREATE, struct drm_i915_gem_vm_control)
473 #define DRM_IOCTL_I915_GEM_VM_DESTROY	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_VM_DESTROY, struct drm_i915_gem_vm_control)
474 
475 /* Allow drivers to submit batchbuffers directly to hardware, relying
476  * on the security mechanisms provided by hardware.
477  */
478 typedef struct drm_i915_batchbuffer {
479 	int start;		/* agp offset */
480 	int used;		/* nr bytes in use */
481 	int DR1;		/* hw flags for GFX_OP_DRAWRECT_INFO */
482 	int DR4;		/* window origin for GFX_OP_DRAWRECT_INFO */
483 	int num_cliprects;	/* mulitpass with multiple cliprects? */
484 	struct drm_clip_rect __user *cliprects;	/* pointer to userspace cliprects */
485 } drm_i915_batchbuffer_t;
486 
487 /* As above, but pass a pointer to userspace buffer which can be
488  * validated by the kernel prior to sending to hardware.
489  */
490 typedef struct _drm_i915_cmdbuffer {
491 	char __user *buf;	/* pointer to userspace command buffer */
492 	int sz;			/* nr bytes in buf */
493 	int DR1;		/* hw flags for GFX_OP_DRAWRECT_INFO */
494 	int DR4;		/* window origin for GFX_OP_DRAWRECT_INFO */
495 	int num_cliprects;	/* mulitpass with multiple cliprects? */
496 	struct drm_clip_rect __user *cliprects;	/* pointer to userspace cliprects */
497 } drm_i915_cmdbuffer_t;
498 
499 /* Userspace can request & wait on irq's:
500  */
501 typedef struct drm_i915_irq_emit {
502 	int __user *irq_seq;
503 } drm_i915_irq_emit_t;
504 
505 typedef struct drm_i915_irq_wait {
506 	int irq_seq;
507 } drm_i915_irq_wait_t;
508 
509 /*
510  * Different modes of per-process Graphics Translation Table,
511  * see I915_PARAM_HAS_ALIASING_PPGTT
512  */
513 #define I915_GEM_PPGTT_NONE	0
514 #define I915_GEM_PPGTT_ALIASING	1
515 #define I915_GEM_PPGTT_FULL	2
516 
517 /* Ioctl to query kernel params:
518  */
519 #define I915_PARAM_IRQ_ACTIVE            1
520 #define I915_PARAM_ALLOW_BATCHBUFFER     2
521 #define I915_PARAM_LAST_DISPATCH         3
522 #define I915_PARAM_CHIPSET_ID            4
523 #define I915_PARAM_HAS_GEM               5
524 #define I915_PARAM_NUM_FENCES_AVAIL      6
525 #define I915_PARAM_HAS_OVERLAY           7
526 #define I915_PARAM_HAS_PAGEFLIPPING	 8
527 #define I915_PARAM_HAS_EXECBUF2          9
528 #define I915_PARAM_HAS_BSD		 10
529 #define I915_PARAM_HAS_BLT		 11
530 #define I915_PARAM_HAS_RELAXED_FENCING	 12
531 #define I915_PARAM_HAS_COHERENT_RINGS	 13
532 #define I915_PARAM_HAS_EXEC_CONSTANTS	 14
533 #define I915_PARAM_HAS_RELAXED_DELTA	 15
534 #define I915_PARAM_HAS_GEN7_SOL_RESET	 16
535 #define I915_PARAM_HAS_LLC     	 	 17
536 #define I915_PARAM_HAS_ALIASING_PPGTT	 18
537 #define I915_PARAM_HAS_WAIT_TIMEOUT	 19
538 #define I915_PARAM_HAS_SEMAPHORES	 20
539 #define I915_PARAM_HAS_PRIME_VMAP_FLUSH	 21
540 #define I915_PARAM_HAS_VEBOX		 22
541 #define I915_PARAM_HAS_SECURE_BATCHES	 23
542 #define I915_PARAM_HAS_PINNED_BATCHES	 24
543 #define I915_PARAM_HAS_EXEC_NO_RELOC	 25
544 #define I915_PARAM_HAS_EXEC_HANDLE_LUT   26
545 #define I915_PARAM_HAS_WT     	 	 27
546 #define I915_PARAM_CMD_PARSER_VERSION	 28
547 #define I915_PARAM_HAS_COHERENT_PHYS_GTT 29
548 #define I915_PARAM_MMAP_VERSION          30
549 #define I915_PARAM_HAS_BSD2		 31
550 #define I915_PARAM_REVISION              32
551 #define I915_PARAM_SUBSLICE_TOTAL	 33
552 #define I915_PARAM_EU_TOTAL		 34
553 #define I915_PARAM_HAS_GPU_RESET	 35
554 #define I915_PARAM_HAS_RESOURCE_STREAMER 36
555 #define I915_PARAM_HAS_EXEC_SOFTPIN	 37
556 #define I915_PARAM_HAS_POOLED_EU	 38
557 #define I915_PARAM_MIN_EU_IN_POOL	 39
558 #define I915_PARAM_MMAP_GTT_VERSION	 40
559 
560 /*
561  * Query whether DRM_I915_GEM_EXECBUFFER2 supports user defined execution
562  * priorities and the driver will attempt to execute batches in priority order.
563  * The param returns a capability bitmask, nonzero implies that the scheduler
564  * is enabled, with different features present according to the mask.
565  *
566  * The initial priority for each batch is supplied by the context and is
567  * controlled via I915_CONTEXT_PARAM_PRIORITY.
568  */
569 #define I915_PARAM_HAS_SCHEDULER	 41
570 #define   I915_SCHEDULER_CAP_ENABLED	(1ul << 0)
571 #define   I915_SCHEDULER_CAP_PRIORITY	(1ul << 1)
572 #define   I915_SCHEDULER_CAP_PREEMPTION	(1ul << 2)
573 #define   I915_SCHEDULER_CAP_SEMAPHORES	(1ul << 3)
574 #define   I915_SCHEDULER_CAP_ENGINE_BUSY_STATS	(1ul << 4)
575 /*
576  * Indicates the 2k user priority levels are statically mapped into 3 buckets as
577  * follows:
578  *
579  * -1k to -1	Low priority
580  * 0		Normal priority
581  * 1 to 1k	Highest priority
582  */
583 #define   I915_SCHEDULER_CAP_STATIC_PRIORITY_MAP	(1ul << 5)
584 
585 #define I915_PARAM_HUC_STATUS		 42
586 
587 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to opt-out of
588  * synchronisation with implicit fencing on individual objects.
589  * See EXEC_OBJECT_ASYNC.
590  */
591 #define I915_PARAM_HAS_EXEC_ASYNC	 43
592 
593 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports explicit fence support -
594  * both being able to pass in a sync_file fd to wait upon before executing,
595  * and being able to return a new sync_file fd that is signaled when the
596  * current request is complete. See I915_EXEC_FENCE_IN and I915_EXEC_FENCE_OUT.
597  */
598 #define I915_PARAM_HAS_EXEC_FENCE	 44
599 
600 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to capture
601  * user specified bufffers for post-mortem debugging of GPU hangs. See
602  * EXEC_OBJECT_CAPTURE.
603  */
604 #define I915_PARAM_HAS_EXEC_CAPTURE	 45
605 
606 #define I915_PARAM_SLICE_MASK		 46
607 
608 /* Assuming it's uniform for each slice, this queries the mask of subslices
609  * per-slice for this system.
610  */
611 #define I915_PARAM_SUBSLICE_MASK	 47
612 
613 /*
614  * Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying the batch buffer
615  * as the first execobject as opposed to the last. See I915_EXEC_BATCH_FIRST.
616  */
617 #define I915_PARAM_HAS_EXEC_BATCH_FIRST	 48
618 
619 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
620  * drm_i915_gem_exec_fence structures.  See I915_EXEC_FENCE_ARRAY.
621  */
622 #define I915_PARAM_HAS_EXEC_FENCE_ARRAY  49
623 
624 /*
625  * Query whether every context (both per-file default and user created) is
626  * isolated (insofar as HW supports). If this parameter is not true, then
627  * freshly created contexts may inherit values from an existing context,
628  * rather than default HW values. If true, it also ensures (insofar as HW
629  * supports) that all state set by this context will not leak to any other
630  * context.
631  *
632  * As not every engine across every gen support contexts, the returned
633  * value reports the support of context isolation for individual engines by
634  * returning a bitmask of each engine class set to true if that class supports
635  * isolation.
636  */
637 #define I915_PARAM_HAS_CONTEXT_ISOLATION 50
638 
639 /* Frequency of the command streamer timestamps given by the *_TIMESTAMP
640  * registers. This used to be fixed per platform but from CNL onwards, this
641  * might vary depending on the parts.
642  */
643 #define I915_PARAM_CS_TIMESTAMP_FREQUENCY 51
644 
645 /*
646  * Once upon a time we supposed that writes through the GGTT would be
647  * immediately in physical memory (once flushed out of the CPU path). However,
648  * on a few different processors and chipsets, this is not necessarily the case
649  * as the writes appear to be buffered internally. Thus a read of the backing
650  * storage (physical memory) via a different path (with different physical tags
651  * to the indirect write via the GGTT) will see stale values from before
652  * the GGTT write. Inside the kernel, we can for the most part keep track of
653  * the different read/write domains in use (e.g. set-domain), but the assumption
654  * of coherency is baked into the ABI, hence reporting its true state in this
655  * parameter.
656  *
657  * Reports true when writes via mmap_gtt are immediately visible following an
658  * lfence to flush the WCB.
659  *
660  * Reports false when writes via mmap_gtt are indeterminately delayed in an in
661  * internal buffer and are _not_ immediately visible to third parties accessing
662  * directly via mmap_cpu/mmap_wc. Use of mmap_gtt as part of an IPC
663  * communications channel when reporting false is strongly disadvised.
664  */
665 #define I915_PARAM_MMAP_GTT_COHERENT	52
666 
667 /*
668  * Query whether DRM_I915_GEM_EXECBUFFER2 supports coordination of parallel
669  * execution through use of explicit fence support.
670  * See I915_EXEC_FENCE_OUT and I915_EXEC_FENCE_SUBMIT.
671  */
672 #define I915_PARAM_HAS_EXEC_SUBMIT_FENCE 53
673 
674 /*
675  * Revision of the i915-perf uAPI. The value returned helps determine what
676  * i915-perf features are available. See drm_i915_perf_property_id.
677  */
678 #define I915_PARAM_PERF_REVISION	54
679 
680 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
681  * timeline syncobj through drm_i915_gem_execbuffer_ext_timeline_fences. See
682  * I915_EXEC_USE_EXTENSIONS.
683  */
684 #define I915_PARAM_HAS_EXEC_TIMELINE_FENCES 55
685 
686 /* Query if the kernel supports the I915_USERPTR_PROBE flag. */
687 #define I915_PARAM_HAS_USERPTR_PROBE 56
688 
689 /* Must be kept compact -- no holes and well documented */
690 
691 typedef struct drm_i915_getparam {
692 	__s32 param;
693 	/*
694 	 * WARNING: Using pointers instead of fixed-size u64 means we need to write
695 	 * compat32 code. Don't repeat this mistake.
696 	 */
697 	int __user *value;
698 } drm_i915_getparam_t;
699 
700 /* Ioctl to set kernel params:
701  */
702 #define I915_SETPARAM_USE_MI_BATCHBUFFER_START            1
703 #define I915_SETPARAM_TEX_LRU_LOG_GRANULARITY             2
704 #define I915_SETPARAM_ALLOW_BATCHBUFFER                   3
705 #define I915_SETPARAM_NUM_USED_FENCES                     4
706 /* Must be kept compact -- no holes */
707 
708 typedef struct drm_i915_setparam {
709 	int param;
710 	int value;
711 } drm_i915_setparam_t;
712 
713 /* A memory manager for regions of shared memory:
714  */
715 #define I915_MEM_REGION_AGP 1
716 
717 typedef struct drm_i915_mem_alloc {
718 	int region;
719 	int alignment;
720 	int size;
721 	int __user *region_offset;	/* offset from start of fb or agp */
722 } drm_i915_mem_alloc_t;
723 
724 typedef struct drm_i915_mem_free {
725 	int region;
726 	int region_offset;
727 } drm_i915_mem_free_t;
728 
729 typedef struct drm_i915_mem_init_heap {
730 	int region;
731 	int size;
732 	int start;
733 } drm_i915_mem_init_heap_t;
734 
735 /* Allow memory manager to be torn down and re-initialized (eg on
736  * rotate):
737  */
738 typedef struct drm_i915_mem_destroy_heap {
739 	int region;
740 } drm_i915_mem_destroy_heap_t;
741 
742 /* Allow X server to configure which pipes to monitor for vblank signals
743  */
744 #define	DRM_I915_VBLANK_PIPE_A	1
745 #define	DRM_I915_VBLANK_PIPE_B	2
746 
747 typedef struct drm_i915_vblank_pipe {
748 	int pipe;
749 } drm_i915_vblank_pipe_t;
750 
751 /* Schedule buffer swap at given vertical blank:
752  */
753 typedef struct drm_i915_vblank_swap {
754 	drm_drawable_t drawable;
755 	enum drm_vblank_seq_type seqtype;
756 	unsigned int sequence;
757 } drm_i915_vblank_swap_t;
758 
759 typedef struct drm_i915_hws_addr {
760 	__u64 addr;
761 } drm_i915_hws_addr_t;
762 
763 struct drm_i915_gem_init {
764 	/**
765 	 * Beginning offset in the GTT to be managed by the DRM memory
766 	 * manager.
767 	 */
768 	__u64 gtt_start;
769 	/**
770 	 * Ending offset in the GTT to be managed by the DRM memory
771 	 * manager.
772 	 */
773 	__u64 gtt_end;
774 };
775 
776 struct drm_i915_gem_create {
777 	/**
778 	 * Requested size for the object.
779 	 *
780 	 * The (page-aligned) allocated size for the object will be returned.
781 	 */
782 	__u64 size;
783 	/**
784 	 * Returned handle for the object.
785 	 *
786 	 * Object handles are nonzero.
787 	 */
788 	__u32 handle;
789 	__u32 pad;
790 };
791 
792 struct drm_i915_gem_pread {
793 	/** Handle for the object being read. */
794 	__u32 handle;
795 	__u32 pad;
796 	/** Offset into the object to read from */
797 	__u64 offset;
798 	/** Length of data to read */
799 	__u64 size;
800 	/**
801 	 * Pointer to write the data into.
802 	 *
803 	 * This is a fixed-size type for 32/64 compatibility.
804 	 */
805 	__u64 data_ptr;
806 };
807 
808 struct drm_i915_gem_pwrite {
809 	/** Handle for the object being written to. */
810 	__u32 handle;
811 	__u32 pad;
812 	/** Offset into the object to write to */
813 	__u64 offset;
814 	/** Length of data to write */
815 	__u64 size;
816 	/**
817 	 * Pointer to read the data from.
818 	 *
819 	 * This is a fixed-size type for 32/64 compatibility.
820 	 */
821 	__u64 data_ptr;
822 };
823 
824 struct drm_i915_gem_mmap {
825 	/** Handle for the object being mapped. */
826 	__u32 handle;
827 	__u32 pad;
828 	/** Offset in the object to map. */
829 	__u64 offset;
830 	/**
831 	 * Length of data to map.
832 	 *
833 	 * The value will be page-aligned.
834 	 */
835 	__u64 size;
836 	/**
837 	 * Returned pointer the data was mapped at.
838 	 *
839 	 * This is a fixed-size type for 32/64 compatibility.
840 	 */
841 	__u64 addr_ptr;
842 
843 	/**
844 	 * Flags for extended behaviour.
845 	 *
846 	 * Added in version 2.
847 	 */
848 	__u64 flags;
849 #define I915_MMAP_WC 0x1
850 };
851 
852 struct drm_i915_gem_mmap_gtt {
853 	/** Handle for the object being mapped. */
854 	__u32 handle;
855 	__u32 pad;
856 	/**
857 	 * Fake offset to use for subsequent mmap call
858 	 *
859 	 * This is a fixed-size type for 32/64 compatibility.
860 	 */
861 	__u64 offset;
862 };
863 
864 /**
865  * struct drm_i915_gem_mmap_offset - Retrieve an offset so we can mmap this buffer object.
866  *
867  * This struct is passed as argument to the `DRM_IOCTL_I915_GEM_MMAP_OFFSET` ioctl,
868  * and is used to retrieve the fake offset to mmap an object specified by &handle.
869  *
870  * The legacy way of using `DRM_IOCTL_I915_GEM_MMAP` is removed on gen12+.
871  * `DRM_IOCTL_I915_GEM_MMAP_GTT` is an older supported alias to this struct, but will behave
872  * as setting the &extensions to 0, and &flags to `I915_MMAP_OFFSET_GTT`.
873  */
874 struct drm_i915_gem_mmap_offset {
875 	/** @handle: Handle for the object being mapped. */
876 	__u32 handle;
877 	/** @pad: Must be zero */
878 	__u32 pad;
879 	/**
880 	 * @offset: The fake offset to use for subsequent mmap call
881 	 *
882 	 * This is a fixed-size type for 32/64 compatibility.
883 	 */
884 	__u64 offset;
885 
886 	/**
887 	 * @flags: Flags for extended behaviour.
888 	 *
889 	 * It is mandatory that one of the `MMAP_OFFSET` types
890 	 * should be included:
891 	 *
892 	 * - `I915_MMAP_OFFSET_GTT`: Use mmap with the object bound to GTT. (Write-Combined)
893 	 * - `I915_MMAP_OFFSET_WC`: Use Write-Combined caching.
894 	 * - `I915_MMAP_OFFSET_WB`: Use Write-Back caching.
895 	 * - `I915_MMAP_OFFSET_FIXED`: Use object placement to determine caching.
896 	 *
897 	 * On devices with local memory `I915_MMAP_OFFSET_FIXED` is the only valid
898 	 * type. On devices without local memory, this caching mode is invalid.
899 	 *
900 	 * As caching mode when specifying `I915_MMAP_OFFSET_FIXED`, WC or WB will
901 	 * be used, depending on the object placement on creation. WB will be used
902 	 * when the object can only exist in system memory, WC otherwise.
903 	 */
904 	__u64 flags;
905 
906 #define I915_MMAP_OFFSET_GTT	0
907 #define I915_MMAP_OFFSET_WC	1
908 #define I915_MMAP_OFFSET_WB	2
909 #define I915_MMAP_OFFSET_UC	3
910 #define I915_MMAP_OFFSET_FIXED	4
911 
912 	/**
913 	 * @extensions: Zero-terminated chain of extensions.
914 	 *
915 	 * No current extensions defined; mbz.
916 	 */
917 	__u64 extensions;
918 };
919 
920 /**
921  * struct drm_i915_gem_set_domain - Adjust the objects write or read domain, in
922  * preparation for accessing the pages via some CPU domain.
923  *
924  * Specifying a new write or read domain will flush the object out of the
925  * previous domain(if required), before then updating the objects domain
926  * tracking with the new domain.
927  *
928  * Note this might involve waiting for the object first if it is still active on
929  * the GPU.
930  *
931  * Supported values for @read_domains and @write_domain:
932  *
933  *	- I915_GEM_DOMAIN_WC: Uncached write-combined domain
934  *	- I915_GEM_DOMAIN_CPU: CPU cache domain
935  *	- I915_GEM_DOMAIN_GTT: Mappable aperture domain
936  *
937  * All other domains are rejected.
938  *
939  * Note that for discrete, starting from DG1, this is no longer supported, and
940  * is instead rejected. On such platforms the CPU domain is effectively static,
941  * where we also only support a single &drm_i915_gem_mmap_offset cache mode,
942  * which can't be set explicitly and instead depends on the object placements,
943  * as per the below.
944  *
945  * Implicit caching rules, starting from DG1:
946  *
947  *	- If any of the object placements (see &drm_i915_gem_create_ext_memory_regions)
948  *	  contain I915_MEMORY_CLASS_DEVICE then the object will be allocated and
949  *	  mapped as write-combined only.
950  *
951  *	- Everything else is always allocated and mapped as write-back, with the
952  *	  guarantee that everything is also coherent with the GPU.
953  *
954  * Note that this is likely to change in the future again, where we might need
955  * more flexibility on future devices, so making this all explicit as part of a
956  * new &drm_i915_gem_create_ext extension is probable.
957  */
958 struct drm_i915_gem_set_domain {
959 	/** @handle: Handle for the object. */
960 	__u32 handle;
961 
962 	/** @read_domains: New read domains. */
963 	__u32 read_domains;
964 
965 	/**
966 	 * @write_domain: New write domain.
967 	 *
968 	 * Note that having something in the write domain implies it's in the
969 	 * read domain, and only that read domain.
970 	 */
971 	__u32 write_domain;
972 };
973 
974 struct drm_i915_gem_sw_finish {
975 	/** Handle for the object */
976 	__u32 handle;
977 };
978 
979 struct drm_i915_gem_relocation_entry {
980 	/**
981 	 * Handle of the buffer being pointed to by this relocation entry.
982 	 *
983 	 * It's appealing to make this be an index into the mm_validate_entry
984 	 * list to refer to the buffer, but this allows the driver to create
985 	 * a relocation list for state buffers and not re-write it per
986 	 * exec using the buffer.
987 	 */
988 	__u32 target_handle;
989 
990 	/**
991 	 * Value to be added to the offset of the target buffer to make up
992 	 * the relocation entry.
993 	 */
994 	__u32 delta;
995 
996 	/** Offset in the buffer the relocation entry will be written into */
997 	__u64 offset;
998 
999 	/**
1000 	 * Offset value of the target buffer that the relocation entry was last
1001 	 * written as.
1002 	 *
1003 	 * If the buffer has the same offset as last time, we can skip syncing
1004 	 * and writing the relocation.  This value is written back out by
1005 	 * the execbuffer ioctl when the relocation is written.
1006 	 */
1007 	__u64 presumed_offset;
1008 
1009 	/**
1010 	 * Target memory domains read by this operation.
1011 	 */
1012 	__u32 read_domains;
1013 
1014 	/**
1015 	 * Target memory domains written by this operation.
1016 	 *
1017 	 * Note that only one domain may be written by the whole
1018 	 * execbuffer operation, so that where there are conflicts,
1019 	 * the application will get -EINVAL back.
1020 	 */
1021 	__u32 write_domain;
1022 };
1023 
1024 /** @{
1025  * Intel memory domains
1026  *
1027  * Most of these just align with the various caches in
1028  * the system and are used to flush and invalidate as
1029  * objects end up cached in different domains.
1030  */
1031 /** CPU cache */
1032 #define I915_GEM_DOMAIN_CPU		0x00000001
1033 /** Render cache, used by 2D and 3D drawing */
1034 #define I915_GEM_DOMAIN_RENDER		0x00000002
1035 /** Sampler cache, used by texture engine */
1036 #define I915_GEM_DOMAIN_SAMPLER		0x00000004
1037 /** Command queue, used to load batch buffers */
1038 #define I915_GEM_DOMAIN_COMMAND		0x00000008
1039 /** Instruction cache, used by shader programs */
1040 #define I915_GEM_DOMAIN_INSTRUCTION	0x00000010
1041 /** Vertex address cache */
1042 #define I915_GEM_DOMAIN_VERTEX		0x00000020
1043 /** GTT domain - aperture and scanout */
1044 #define I915_GEM_DOMAIN_GTT		0x00000040
1045 /** WC domain - uncached access */
1046 #define I915_GEM_DOMAIN_WC		0x00000080
1047 /** @} */
1048 
1049 struct drm_i915_gem_exec_object {
1050 	/**
1051 	 * User's handle for a buffer to be bound into the GTT for this
1052 	 * operation.
1053 	 */
1054 	__u32 handle;
1055 
1056 	/** Number of relocations to be performed on this buffer */
1057 	__u32 relocation_count;
1058 	/**
1059 	 * Pointer to array of struct drm_i915_gem_relocation_entry containing
1060 	 * the relocations to be performed in this buffer.
1061 	 */
1062 	__u64 relocs_ptr;
1063 
1064 	/** Required alignment in graphics aperture */
1065 	__u64 alignment;
1066 
1067 	/**
1068 	 * Returned value of the updated offset of the object, for future
1069 	 * presumed_offset writes.
1070 	 */
1071 	__u64 offset;
1072 };
1073 
1074 /* DRM_IOCTL_I915_GEM_EXECBUFFER was removed in Linux 5.13 */
1075 struct drm_i915_gem_execbuffer {
1076 	/**
1077 	 * List of buffers to be validated with their relocations to be
1078 	 * performend on them.
1079 	 *
1080 	 * This is a pointer to an array of struct drm_i915_gem_validate_entry.
1081 	 *
1082 	 * These buffers must be listed in an order such that all relocations
1083 	 * a buffer is performing refer to buffers that have already appeared
1084 	 * in the validate list.
1085 	 */
1086 	__u64 buffers_ptr;
1087 	__u32 buffer_count;
1088 
1089 	/** Offset in the batchbuffer to start execution from. */
1090 	__u32 batch_start_offset;
1091 	/** Bytes used in batchbuffer from batch_start_offset */
1092 	__u32 batch_len;
1093 	__u32 DR1;
1094 	__u32 DR4;
1095 	__u32 num_cliprects;
1096 	/** This is a struct drm_clip_rect *cliprects */
1097 	__u64 cliprects_ptr;
1098 };
1099 
1100 struct drm_i915_gem_exec_object2 {
1101 	/**
1102 	 * User's handle for a buffer to be bound into the GTT for this
1103 	 * operation.
1104 	 */
1105 	__u32 handle;
1106 
1107 	/** Number of relocations to be performed on this buffer */
1108 	__u32 relocation_count;
1109 	/**
1110 	 * Pointer to array of struct drm_i915_gem_relocation_entry containing
1111 	 * the relocations to be performed in this buffer.
1112 	 */
1113 	__u64 relocs_ptr;
1114 
1115 	/** Required alignment in graphics aperture */
1116 	__u64 alignment;
1117 
1118 	/**
1119 	 * When the EXEC_OBJECT_PINNED flag is specified this is populated by
1120 	 * the user with the GTT offset at which this object will be pinned.
1121 	 *
1122 	 * When the I915_EXEC_NO_RELOC flag is specified this must contain the
1123 	 * presumed_offset of the object.
1124 	 *
1125 	 * During execbuffer2 the kernel populates it with the value of the
1126 	 * current GTT offset of the object, for future presumed_offset writes.
1127 	 *
1128 	 * See struct drm_i915_gem_create_ext for the rules when dealing with
1129 	 * alignment restrictions with I915_MEMORY_CLASS_DEVICE, on devices with
1130 	 * minimum page sizes, like DG2.
1131 	 */
1132 	__u64 offset;
1133 
1134 #define EXEC_OBJECT_NEEDS_FENCE		 (1<<0)
1135 #define EXEC_OBJECT_NEEDS_GTT		 (1<<1)
1136 #define EXEC_OBJECT_WRITE		 (1<<2)
1137 #define EXEC_OBJECT_SUPPORTS_48B_ADDRESS (1<<3)
1138 #define EXEC_OBJECT_PINNED		 (1<<4)
1139 #define EXEC_OBJECT_PAD_TO_SIZE		 (1<<5)
1140 /* The kernel implicitly tracks GPU activity on all GEM objects, and
1141  * synchronises operations with outstanding rendering. This includes
1142  * rendering on other devices if exported via dma-buf. However, sometimes
1143  * this tracking is too coarse and the user knows better. For example,
1144  * if the object is split into non-overlapping ranges shared between different
1145  * clients or engines (i.e. suballocating objects), the implicit tracking
1146  * by kernel assumes that each operation affects the whole object rather
1147  * than an individual range, causing needless synchronisation between clients.
1148  * The kernel will also forgo any CPU cache flushes prior to rendering from
1149  * the object as the client is expected to be also handling such domain
1150  * tracking.
1151  *
1152  * The kernel maintains the implicit tracking in order to manage resources
1153  * used by the GPU - this flag only disables the synchronisation prior to
1154  * rendering with this object in this execbuf.
1155  *
1156  * Opting out of implicit synhronisation requires the user to do its own
1157  * explicit tracking to avoid rendering corruption. See, for example,
1158  * I915_PARAM_HAS_EXEC_FENCE to order execbufs and execute them asynchronously.
1159  */
1160 #define EXEC_OBJECT_ASYNC		(1<<6)
1161 /* Request that the contents of this execobject be copied into the error
1162  * state upon a GPU hang involving this batch for post-mortem debugging.
1163  * These buffers are recorded in no particular order as "user" in
1164  * /sys/class/drm/cardN/error. Query I915_PARAM_HAS_EXEC_CAPTURE to see
1165  * if the kernel supports this flag.
1166  */
1167 #define EXEC_OBJECT_CAPTURE		(1<<7)
1168 /* All remaining bits are MBZ and RESERVED FOR FUTURE USE */
1169 #define __EXEC_OBJECT_UNKNOWN_FLAGS -(EXEC_OBJECT_CAPTURE<<1)
1170 	__u64 flags;
1171 
1172 	union {
1173 		__u64 rsvd1;
1174 		__u64 pad_to_size;
1175 	};
1176 	__u64 rsvd2;
1177 };
1178 
1179 struct drm_i915_gem_exec_fence {
1180 	/**
1181 	 * User's handle for a drm_syncobj to wait on or signal.
1182 	 */
1183 	__u32 handle;
1184 
1185 #define I915_EXEC_FENCE_WAIT            (1<<0)
1186 #define I915_EXEC_FENCE_SIGNAL          (1<<1)
1187 #define __I915_EXEC_FENCE_UNKNOWN_FLAGS (-(I915_EXEC_FENCE_SIGNAL << 1))
1188 	__u32 flags;
1189 };
1190 
1191 /*
1192  * See drm_i915_gem_execbuffer_ext_timeline_fences.
1193  */
1194 #define DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES 0
1195 
1196 /*
1197  * This structure describes an array of drm_syncobj and associated points for
1198  * timeline variants of drm_syncobj. It is invalid to append this structure to
1199  * the execbuf if I915_EXEC_FENCE_ARRAY is set.
1200  */
1201 struct drm_i915_gem_execbuffer_ext_timeline_fences {
1202 	struct i915_user_extension base;
1203 
1204 	/**
1205 	 * Number of element in the handles_ptr & value_ptr arrays.
1206 	 */
1207 	__u64 fence_count;
1208 
1209 	/**
1210 	 * Pointer to an array of struct drm_i915_gem_exec_fence of length
1211 	 * fence_count.
1212 	 */
1213 	__u64 handles_ptr;
1214 
1215 	/**
1216 	 * Pointer to an array of u64 values of length fence_count. Values
1217 	 * must be 0 for a binary drm_syncobj. A Value of 0 for a timeline
1218 	 * drm_syncobj is invalid as it turns a drm_syncobj into a binary one.
1219 	 */
1220 	__u64 values_ptr;
1221 };
1222 
1223 struct drm_i915_gem_execbuffer2 {
1224 	/**
1225 	 * List of gem_exec_object2 structs
1226 	 */
1227 	__u64 buffers_ptr;
1228 	__u32 buffer_count;
1229 
1230 	/** Offset in the batchbuffer to start execution from. */
1231 	__u32 batch_start_offset;
1232 	/** Bytes used in batchbuffer from batch_start_offset */
1233 	__u32 batch_len;
1234 	__u32 DR1;
1235 	__u32 DR4;
1236 	__u32 num_cliprects;
1237 	/**
1238 	 * This is a struct drm_clip_rect *cliprects if I915_EXEC_FENCE_ARRAY
1239 	 * & I915_EXEC_USE_EXTENSIONS are not set.
1240 	 *
1241 	 * If I915_EXEC_FENCE_ARRAY is set, then this is a pointer to an array
1242 	 * of struct drm_i915_gem_exec_fence and num_cliprects is the length
1243 	 * of the array.
1244 	 *
1245 	 * If I915_EXEC_USE_EXTENSIONS is set, then this is a pointer to a
1246 	 * single struct i915_user_extension and num_cliprects is 0.
1247 	 */
1248 	__u64 cliprects_ptr;
1249 #define I915_EXEC_RING_MASK              (0x3f)
1250 #define I915_EXEC_DEFAULT                (0<<0)
1251 #define I915_EXEC_RENDER                 (1<<0)
1252 #define I915_EXEC_BSD                    (2<<0)
1253 #define I915_EXEC_BLT                    (3<<0)
1254 #define I915_EXEC_VEBOX                  (4<<0)
1255 
1256 /* Used for switching the constants addressing mode on gen4+ RENDER ring.
1257  * Gen6+ only supports relative addressing to dynamic state (default) and
1258  * absolute addressing.
1259  *
1260  * These flags are ignored for the BSD and BLT rings.
1261  */
1262 #define I915_EXEC_CONSTANTS_MASK 	(3<<6)
1263 #define I915_EXEC_CONSTANTS_REL_GENERAL (0<<6) /* default */
1264 #define I915_EXEC_CONSTANTS_ABSOLUTE 	(1<<6)
1265 #define I915_EXEC_CONSTANTS_REL_SURFACE (2<<6) /* gen4/5 only */
1266 	__u64 flags;
1267 	__u64 rsvd1; /* now used for context info */
1268 	__u64 rsvd2;
1269 };
1270 
1271 /** Resets the SO write offset registers for transform feedback on gen7. */
1272 #define I915_EXEC_GEN7_SOL_RESET	(1<<8)
1273 
1274 /** Request a privileged ("secure") batch buffer. Note only available for
1275  * DRM_ROOT_ONLY | DRM_MASTER processes.
1276  */
1277 #define I915_EXEC_SECURE		(1<<9)
1278 
1279 /** Inform the kernel that the batch is and will always be pinned. This
1280  * negates the requirement for a workaround to be performed to avoid
1281  * an incoherent CS (such as can be found on 830/845). If this flag is
1282  * not passed, the kernel will endeavour to make sure the batch is
1283  * coherent with the CS before execution. If this flag is passed,
1284  * userspace assumes the responsibility for ensuring the same.
1285  */
1286 #define I915_EXEC_IS_PINNED		(1<<10)
1287 
1288 /** Provide a hint to the kernel that the command stream and auxiliary
1289  * state buffers already holds the correct presumed addresses and so the
1290  * relocation process may be skipped if no buffers need to be moved in
1291  * preparation for the execbuffer.
1292  */
1293 #define I915_EXEC_NO_RELOC		(1<<11)
1294 
1295 /** Use the reloc.handle as an index into the exec object array rather
1296  * than as the per-file handle.
1297  */
1298 #define I915_EXEC_HANDLE_LUT		(1<<12)
1299 
1300 /** Used for switching BSD rings on the platforms with two BSD rings */
1301 #define I915_EXEC_BSD_SHIFT	 (13)
1302 #define I915_EXEC_BSD_MASK	 (3 << I915_EXEC_BSD_SHIFT)
1303 /* default ping-pong mode */
1304 #define I915_EXEC_BSD_DEFAULT	 (0 << I915_EXEC_BSD_SHIFT)
1305 #define I915_EXEC_BSD_RING1	 (1 << I915_EXEC_BSD_SHIFT)
1306 #define I915_EXEC_BSD_RING2	 (2 << I915_EXEC_BSD_SHIFT)
1307 
1308 /** Tell the kernel that the batchbuffer is processed by
1309  *  the resource streamer.
1310  */
1311 #define I915_EXEC_RESOURCE_STREAMER     (1<<15)
1312 
1313 /* Setting I915_EXEC_FENCE_IN implies that lower_32_bits(rsvd2) represent
1314  * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1315  * the batch.
1316  *
1317  * Returns -EINVAL if the sync_file fd cannot be found.
1318  */
1319 #define I915_EXEC_FENCE_IN		(1<<16)
1320 
1321 /* Setting I915_EXEC_FENCE_OUT causes the ioctl to return a sync_file fd
1322  * in the upper_32_bits(rsvd2) upon success. Ownership of the fd is given
1323  * to the caller, and it should be close() after use. (The fd is a regular
1324  * file descriptor and will be cleaned up on process termination. It holds
1325  * a reference to the request, but nothing else.)
1326  *
1327  * The sync_file fd can be combined with other sync_file and passed either
1328  * to execbuf using I915_EXEC_FENCE_IN, to atomic KMS ioctls (so that a flip
1329  * will only occur after this request completes), or to other devices.
1330  *
1331  * Using I915_EXEC_FENCE_OUT requires use of
1332  * DRM_IOCTL_I915_GEM_EXECBUFFER2_WR ioctl so that the result is written
1333  * back to userspace. Failure to do so will cause the out-fence to always
1334  * be reported as zero, and the real fence fd to be leaked.
1335  */
1336 #define I915_EXEC_FENCE_OUT		(1<<17)
1337 
1338 /*
1339  * Traditionally the execbuf ioctl has only considered the final element in
1340  * the execobject[] to be the executable batch. Often though, the client
1341  * will known the batch object prior to construction and being able to place
1342  * it into the execobject[] array first can simplify the relocation tracking.
1343  * Setting I915_EXEC_BATCH_FIRST tells execbuf to use element 0 of the
1344  * execobject[] as the * batch instead (the default is to use the last
1345  * element).
1346  */
1347 #define I915_EXEC_BATCH_FIRST		(1<<18)
1348 
1349 /* Setting I915_FENCE_ARRAY implies that num_cliprects and cliprects_ptr
1350  * define an array of i915_gem_exec_fence structures which specify a set of
1351  * dma fences to wait upon or signal.
1352  */
1353 #define I915_EXEC_FENCE_ARRAY   (1<<19)
1354 
1355 /*
1356  * Setting I915_EXEC_FENCE_SUBMIT implies that lower_32_bits(rsvd2) represent
1357  * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1358  * the batch.
1359  *
1360  * Returns -EINVAL if the sync_file fd cannot be found.
1361  */
1362 #define I915_EXEC_FENCE_SUBMIT		(1 << 20)
1363 
1364 /*
1365  * Setting I915_EXEC_USE_EXTENSIONS implies that
1366  * drm_i915_gem_execbuffer2.cliprects_ptr is treated as a pointer to an linked
1367  * list of i915_user_extension. Each i915_user_extension node is the base of a
1368  * larger structure. The list of supported structures are listed in the
1369  * drm_i915_gem_execbuffer_ext enum.
1370  */
1371 #define I915_EXEC_USE_EXTENSIONS	(1 << 21)
1372 
1373 #define __I915_EXEC_UNKNOWN_FLAGS (-(I915_EXEC_USE_EXTENSIONS << 1))
1374 
1375 #define I915_EXEC_CONTEXT_ID_MASK	(0xffffffff)
1376 #define i915_execbuffer2_set_context_id(eb2, context) \
1377 	(eb2).rsvd1 = context & I915_EXEC_CONTEXT_ID_MASK
1378 #define i915_execbuffer2_get_context_id(eb2) \
1379 	((eb2).rsvd1 & I915_EXEC_CONTEXT_ID_MASK)
1380 
1381 struct drm_i915_gem_pin {
1382 	/** Handle of the buffer to be pinned. */
1383 	__u32 handle;
1384 	__u32 pad;
1385 
1386 	/** alignment required within the aperture */
1387 	__u64 alignment;
1388 
1389 	/** Returned GTT offset of the buffer. */
1390 	__u64 offset;
1391 };
1392 
1393 struct drm_i915_gem_unpin {
1394 	/** Handle of the buffer to be unpinned. */
1395 	__u32 handle;
1396 	__u32 pad;
1397 };
1398 
1399 struct drm_i915_gem_busy {
1400 	/** Handle of the buffer to check for busy */
1401 	__u32 handle;
1402 
1403 	/** Return busy status
1404 	 *
1405 	 * A return of 0 implies that the object is idle (after
1406 	 * having flushed any pending activity), and a non-zero return that
1407 	 * the object is still in-flight on the GPU. (The GPU has not yet
1408 	 * signaled completion for all pending requests that reference the
1409 	 * object.) An object is guaranteed to become idle eventually (so
1410 	 * long as no new GPU commands are executed upon it). Due to the
1411 	 * asynchronous nature of the hardware, an object reported
1412 	 * as busy may become idle before the ioctl is completed.
1413 	 *
1414 	 * Furthermore, if the object is busy, which engine is busy is only
1415 	 * provided as a guide and only indirectly by reporting its class
1416 	 * (there may be more than one engine in each class). There are race
1417 	 * conditions which prevent the report of which engines are busy from
1418 	 * being always accurate.  However, the converse is not true. If the
1419 	 * object is idle, the result of the ioctl, that all engines are idle,
1420 	 * is accurate.
1421 	 *
1422 	 * The returned dword is split into two fields to indicate both
1423 	 * the engine classess on which the object is being read, and the
1424 	 * engine class on which it is currently being written (if any).
1425 	 *
1426 	 * The low word (bits 0:15) indicate if the object is being written
1427 	 * to by any engine (there can only be one, as the GEM implicit
1428 	 * synchronisation rules force writes to be serialised). Only the
1429 	 * engine class (offset by 1, I915_ENGINE_CLASS_RENDER is reported as
1430 	 * 1 not 0 etc) for the last write is reported.
1431 	 *
1432 	 * The high word (bits 16:31) are a bitmask of which engines classes
1433 	 * are currently reading from the object. Multiple engines may be
1434 	 * reading from the object simultaneously.
1435 	 *
1436 	 * The value of each engine class is the same as specified in the
1437 	 * I915_CONTEXT_PARAM_ENGINES context parameter and via perf, i.e.
1438 	 * I915_ENGINE_CLASS_RENDER, I915_ENGINE_CLASS_COPY, etc.
1439 	 * Some hardware may have parallel execution engines, e.g. multiple
1440 	 * media engines, which are mapped to the same class identifier and so
1441 	 * are not separately reported for busyness.
1442 	 *
1443 	 * Caveat emptor:
1444 	 * Only the boolean result of this query is reliable; that is whether
1445 	 * the object is idle or busy. The report of which engines are busy
1446 	 * should be only used as a heuristic.
1447 	 */
1448 	__u32 busy;
1449 };
1450 
1451 /**
1452  * struct drm_i915_gem_caching - Set or get the caching for given object
1453  * handle.
1454  *
1455  * Allow userspace to control the GTT caching bits for a given object when the
1456  * object is later mapped through the ppGTT(or GGTT on older platforms lacking
1457  * ppGTT support, or if the object is used for scanout). Note that this might
1458  * require unbinding the object from the GTT first, if its current caching value
1459  * doesn't match.
1460  *
1461  * Note that this all changes on discrete platforms, starting from DG1, the
1462  * set/get caching is no longer supported, and is now rejected.  Instead the CPU
1463  * caching attributes(WB vs WC) will become an immutable creation time property
1464  * for the object, along with the GTT caching level. For now we don't expose any
1465  * new uAPI for this, instead on DG1 this is all implicit, although this largely
1466  * shouldn't matter since DG1 is coherent by default(without any way of
1467  * controlling it).
1468  *
1469  * Implicit caching rules, starting from DG1:
1470  *
1471  *     - If any of the object placements (see &drm_i915_gem_create_ext_memory_regions)
1472  *       contain I915_MEMORY_CLASS_DEVICE then the object will be allocated and
1473  *       mapped as write-combined only.
1474  *
1475  *     - Everything else is always allocated and mapped as write-back, with the
1476  *       guarantee that everything is also coherent with the GPU.
1477  *
1478  * Note that this is likely to change in the future again, where we might need
1479  * more flexibility on future devices, so making this all explicit as part of a
1480  * new &drm_i915_gem_create_ext extension is probable.
1481  *
1482  * Side note: Part of the reason for this is that changing the at-allocation-time CPU
1483  * caching attributes for the pages might be required(and is expensive) if we
1484  * need to then CPU map the pages later with different caching attributes. This
1485  * inconsistent caching behaviour, while supported on x86, is not universally
1486  * supported on other architectures. So for simplicity we opt for setting
1487  * everything at creation time, whilst also making it immutable, on discrete
1488  * platforms.
1489  */
1490 struct drm_i915_gem_caching {
1491 	/**
1492 	 * @handle: Handle of the buffer to set/get the caching level.
1493 	 */
1494 	__u32 handle;
1495 
1496 	/**
1497 	 * @caching: The GTT caching level to apply or possible return value.
1498 	 *
1499 	 * The supported @caching values:
1500 	 *
1501 	 * I915_CACHING_NONE:
1502 	 *
1503 	 * GPU access is not coherent with CPU caches.  Default for machines
1504 	 * without an LLC. This means manual flushing might be needed, if we
1505 	 * want GPU access to be coherent.
1506 	 *
1507 	 * I915_CACHING_CACHED:
1508 	 *
1509 	 * GPU access is coherent with CPU caches and furthermore the data is
1510 	 * cached in last-level caches shared between CPU cores and the GPU GT.
1511 	 *
1512 	 * I915_CACHING_DISPLAY:
1513 	 *
1514 	 * Special GPU caching mode which is coherent with the scanout engines.
1515 	 * Transparently falls back to I915_CACHING_NONE on platforms where no
1516 	 * special cache mode (like write-through or gfdt flushing) is
1517 	 * available. The kernel automatically sets this mode when using a
1518 	 * buffer as a scanout target.  Userspace can manually set this mode to
1519 	 * avoid a costly stall and clflush in the hotpath of drawing the first
1520 	 * frame.
1521 	 */
1522 #define I915_CACHING_NONE		0
1523 #define I915_CACHING_CACHED		1
1524 #define I915_CACHING_DISPLAY		2
1525 	__u32 caching;
1526 };
1527 
1528 #define I915_TILING_NONE	0
1529 #define I915_TILING_X		1
1530 #define I915_TILING_Y		2
1531 /*
1532  * Do not add new tiling types here.  The I915_TILING_* values are for
1533  * de-tiling fence registers that no longer exist on modern platforms.  Although
1534  * the hardware may support new types of tiling in general (e.g., Tile4), we
1535  * do not need to add them to the uapi that is specific to now-defunct ioctls.
1536  */
1537 #define I915_TILING_LAST	I915_TILING_Y
1538 
1539 #define I915_BIT_6_SWIZZLE_NONE		0
1540 #define I915_BIT_6_SWIZZLE_9		1
1541 #define I915_BIT_6_SWIZZLE_9_10		2
1542 #define I915_BIT_6_SWIZZLE_9_11		3
1543 #define I915_BIT_6_SWIZZLE_9_10_11	4
1544 /* Not seen by userland */
1545 #define I915_BIT_6_SWIZZLE_UNKNOWN	5
1546 /* Seen by userland. */
1547 #define I915_BIT_6_SWIZZLE_9_17		6
1548 #define I915_BIT_6_SWIZZLE_9_10_17	7
1549 
1550 struct drm_i915_gem_set_tiling {
1551 	/** Handle of the buffer to have its tiling state updated */
1552 	__u32 handle;
1553 
1554 	/**
1555 	 * Tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1556 	 * I915_TILING_Y).
1557 	 *
1558 	 * This value is to be set on request, and will be updated by the
1559 	 * kernel on successful return with the actual chosen tiling layout.
1560 	 *
1561 	 * The tiling mode may be demoted to I915_TILING_NONE when the system
1562 	 * has bit 6 swizzling that can't be managed correctly by GEM.
1563 	 *
1564 	 * Buffer contents become undefined when changing tiling_mode.
1565 	 */
1566 	__u32 tiling_mode;
1567 
1568 	/**
1569 	 * Stride in bytes for the object when in I915_TILING_X or
1570 	 * I915_TILING_Y.
1571 	 */
1572 	__u32 stride;
1573 
1574 	/**
1575 	 * Returned address bit 6 swizzling required for CPU access through
1576 	 * mmap mapping.
1577 	 */
1578 	__u32 swizzle_mode;
1579 };
1580 
1581 struct drm_i915_gem_get_tiling {
1582 	/** Handle of the buffer to get tiling state for. */
1583 	__u32 handle;
1584 
1585 	/**
1586 	 * Current tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1587 	 * I915_TILING_Y).
1588 	 */
1589 	__u32 tiling_mode;
1590 
1591 	/**
1592 	 * Returned address bit 6 swizzling required for CPU access through
1593 	 * mmap mapping.
1594 	 */
1595 	__u32 swizzle_mode;
1596 
1597 	/**
1598 	 * Returned address bit 6 swizzling required for CPU access through
1599 	 * mmap mapping whilst bound.
1600 	 */
1601 	__u32 phys_swizzle_mode;
1602 };
1603 
1604 struct drm_i915_gem_get_aperture {
1605 	/** Total size of the aperture used by i915_gem_execbuffer, in bytes */
1606 	__u64 aper_size;
1607 
1608 	/**
1609 	 * Available space in the aperture used by i915_gem_execbuffer, in
1610 	 * bytes
1611 	 */
1612 	__u64 aper_available_size;
1613 };
1614 
1615 struct drm_i915_get_pipe_from_crtc_id {
1616 	/** ID of CRTC being requested **/
1617 	__u32 crtc_id;
1618 
1619 	/** pipe of requested CRTC **/
1620 	__u32 pipe;
1621 };
1622 
1623 #define I915_MADV_WILLNEED 0
1624 #define I915_MADV_DONTNEED 1
1625 #define __I915_MADV_PURGED 2 /* internal state */
1626 
1627 struct drm_i915_gem_madvise {
1628 	/** Handle of the buffer to change the backing store advice */
1629 	__u32 handle;
1630 
1631 	/* Advice: either the buffer will be needed again in the near future,
1632 	 *         or wont be and could be discarded under memory pressure.
1633 	 */
1634 	__u32 madv;
1635 
1636 	/** Whether the backing store still exists. */
1637 	__u32 retained;
1638 };
1639 
1640 /* flags */
1641 #define I915_OVERLAY_TYPE_MASK 		0xff
1642 #define I915_OVERLAY_YUV_PLANAR 	0x01
1643 #define I915_OVERLAY_YUV_PACKED 	0x02
1644 #define I915_OVERLAY_RGB		0x03
1645 
1646 #define I915_OVERLAY_DEPTH_MASK		0xff00
1647 #define I915_OVERLAY_RGB24		0x1000
1648 #define I915_OVERLAY_RGB16		0x2000
1649 #define I915_OVERLAY_RGB15		0x3000
1650 #define I915_OVERLAY_YUV422		0x0100
1651 #define I915_OVERLAY_YUV411		0x0200
1652 #define I915_OVERLAY_YUV420		0x0300
1653 #define I915_OVERLAY_YUV410		0x0400
1654 
1655 #define I915_OVERLAY_SWAP_MASK		0xff0000
1656 #define I915_OVERLAY_NO_SWAP		0x000000
1657 #define I915_OVERLAY_UV_SWAP		0x010000
1658 #define I915_OVERLAY_Y_SWAP		0x020000
1659 #define I915_OVERLAY_Y_AND_UV_SWAP	0x030000
1660 
1661 #define I915_OVERLAY_FLAGS_MASK		0xff000000
1662 #define I915_OVERLAY_ENABLE		0x01000000
1663 
1664 struct drm_intel_overlay_put_image {
1665 	/* various flags and src format description */
1666 	__u32 flags;
1667 	/* source picture description */
1668 	__u32 bo_handle;
1669 	/* stride values and offsets are in bytes, buffer relative */
1670 	__u16 stride_Y; /* stride for packed formats */
1671 	__u16 stride_UV;
1672 	__u32 offset_Y; /* offset for packet formats */
1673 	__u32 offset_U;
1674 	__u32 offset_V;
1675 	/* in pixels */
1676 	__u16 src_width;
1677 	__u16 src_height;
1678 	/* to compensate the scaling factors for partially covered surfaces */
1679 	__u16 src_scan_width;
1680 	__u16 src_scan_height;
1681 	/* output crtc description */
1682 	__u32 crtc_id;
1683 	__u16 dst_x;
1684 	__u16 dst_y;
1685 	__u16 dst_width;
1686 	__u16 dst_height;
1687 };
1688 
1689 /* flags */
1690 #define I915_OVERLAY_UPDATE_ATTRS	(1<<0)
1691 #define I915_OVERLAY_UPDATE_GAMMA	(1<<1)
1692 #define I915_OVERLAY_DISABLE_DEST_COLORKEY	(1<<2)
1693 struct drm_intel_overlay_attrs {
1694 	__u32 flags;
1695 	__u32 color_key;
1696 	__s32 brightness;
1697 	__u32 contrast;
1698 	__u32 saturation;
1699 	__u32 gamma0;
1700 	__u32 gamma1;
1701 	__u32 gamma2;
1702 	__u32 gamma3;
1703 	__u32 gamma4;
1704 	__u32 gamma5;
1705 };
1706 
1707 /*
1708  * Intel sprite handling
1709  *
1710  * Color keying works with a min/mask/max tuple.  Both source and destination
1711  * color keying is allowed.
1712  *
1713  * Source keying:
1714  * Sprite pixels within the min & max values, masked against the color channels
1715  * specified in the mask field, will be transparent.  All other pixels will
1716  * be displayed on top of the primary plane.  For RGB surfaces, only the min
1717  * and mask fields will be used; ranged compares are not allowed.
1718  *
1719  * Destination keying:
1720  * Primary plane pixels that match the min value, masked against the color
1721  * channels specified in the mask field, will be replaced by corresponding
1722  * pixels from the sprite plane.
1723  *
1724  * Note that source & destination keying are exclusive; only one can be
1725  * active on a given plane.
1726  */
1727 
1728 #define I915_SET_COLORKEY_NONE		(1<<0) /* Deprecated. Instead set
1729 						* flags==0 to disable colorkeying.
1730 						*/
1731 #define I915_SET_COLORKEY_DESTINATION	(1<<1)
1732 #define I915_SET_COLORKEY_SOURCE	(1<<2)
1733 struct drm_intel_sprite_colorkey {
1734 	__u32 plane_id;
1735 	__u32 min_value;
1736 	__u32 channel_mask;
1737 	__u32 max_value;
1738 	__u32 flags;
1739 };
1740 
1741 struct drm_i915_gem_wait {
1742 	/** Handle of BO we shall wait on */
1743 	__u32 bo_handle;
1744 	__u32 flags;
1745 	/** Number of nanoseconds to wait, Returns time remaining. */
1746 	__s64 timeout_ns;
1747 };
1748 
1749 struct drm_i915_gem_context_create {
1750 	__u32 ctx_id; /* output: id of new context*/
1751 	__u32 pad;
1752 };
1753 
1754 struct drm_i915_gem_context_create_ext {
1755 	__u32 ctx_id; /* output: id of new context*/
1756 	__u32 flags;
1757 #define I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS	(1u << 0)
1758 #define I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE	(1u << 1)
1759 #define I915_CONTEXT_CREATE_FLAGS_UNKNOWN \
1760 	(-(I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE << 1))
1761 	__u64 extensions;
1762 };
1763 
1764 struct drm_i915_gem_context_param {
1765 	__u32 ctx_id;
1766 	__u32 size;
1767 	__u64 param;
1768 #define I915_CONTEXT_PARAM_BAN_PERIOD	0x1
1769 /* I915_CONTEXT_PARAM_NO_ZEROMAP has been removed.  On the off chance
1770  * someone somewhere has attempted to use it, never re-use this context
1771  * param number.
1772  */
1773 #define I915_CONTEXT_PARAM_NO_ZEROMAP	0x2
1774 #define I915_CONTEXT_PARAM_GTT_SIZE	0x3
1775 #define I915_CONTEXT_PARAM_NO_ERROR_CAPTURE	0x4
1776 #define I915_CONTEXT_PARAM_BANNABLE	0x5
1777 #define I915_CONTEXT_PARAM_PRIORITY	0x6
1778 #define   I915_CONTEXT_MAX_USER_PRIORITY	1023 /* inclusive */
1779 #define   I915_CONTEXT_DEFAULT_PRIORITY		0
1780 #define   I915_CONTEXT_MIN_USER_PRIORITY	-1023 /* inclusive */
1781 	/*
1782 	 * When using the following param, value should be a pointer to
1783 	 * drm_i915_gem_context_param_sseu.
1784 	 */
1785 #define I915_CONTEXT_PARAM_SSEU		0x7
1786 
1787 /*
1788  * Not all clients may want to attempt automatic recover of a context after
1789  * a hang (for example, some clients may only submit very small incremental
1790  * batches relying on known logical state of previous batches which will never
1791  * recover correctly and each attempt will hang), and so would prefer that
1792  * the context is forever banned instead.
1793  *
1794  * If set to false (0), after a reset, subsequent (and in flight) rendering
1795  * from this context is discarded, and the client will need to create a new
1796  * context to use instead.
1797  *
1798  * If set to true (1), the kernel will automatically attempt to recover the
1799  * context by skipping the hanging batch and executing the next batch starting
1800  * from the default context state (discarding the incomplete logical context
1801  * state lost due to the reset).
1802  *
1803  * On creation, all new contexts are marked as recoverable.
1804  */
1805 #define I915_CONTEXT_PARAM_RECOVERABLE	0x8
1806 
1807 	/*
1808 	 * The id of the associated virtual memory address space (ppGTT) of
1809 	 * this context. Can be retrieved and passed to another context
1810 	 * (on the same fd) for both to use the same ppGTT and so share
1811 	 * address layouts, and avoid reloading the page tables on context
1812 	 * switches between themselves.
1813 	 *
1814 	 * See DRM_I915_GEM_VM_CREATE and DRM_I915_GEM_VM_DESTROY.
1815 	 */
1816 #define I915_CONTEXT_PARAM_VM		0x9
1817 
1818 /*
1819  * I915_CONTEXT_PARAM_ENGINES:
1820  *
1821  * Bind this context to operate on this subset of available engines. Henceforth,
1822  * the I915_EXEC_RING selector for DRM_IOCTL_I915_GEM_EXECBUFFER2 operates as
1823  * an index into this array of engines; I915_EXEC_DEFAULT selecting engine[0]
1824  * and upwards. Slots 0...N are filled in using the specified (class, instance).
1825  * Use
1826  *	engine_class: I915_ENGINE_CLASS_INVALID,
1827  *	engine_instance: I915_ENGINE_CLASS_INVALID_NONE
1828  * to specify a gap in the array that can be filled in later, e.g. by a
1829  * virtual engine used for load balancing.
1830  *
1831  * Setting the number of engines bound to the context to 0, by passing a zero
1832  * sized argument, will revert back to default settings.
1833  *
1834  * See struct i915_context_param_engines.
1835  *
1836  * Extensions:
1837  *   i915_context_engines_load_balance (I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE)
1838  *   i915_context_engines_bond (I915_CONTEXT_ENGINES_EXT_BOND)
1839  *   i915_context_engines_parallel_submit (I915_CONTEXT_ENGINES_EXT_PARALLEL_SUBMIT)
1840  */
1841 #define I915_CONTEXT_PARAM_ENGINES	0xa
1842 
1843 /*
1844  * I915_CONTEXT_PARAM_PERSISTENCE:
1845  *
1846  * Allow the context and active rendering to survive the process until
1847  * completion. Persistence allows fire-and-forget clients to queue up a
1848  * bunch of work, hand the output over to a display server and then quit.
1849  * If the context is marked as not persistent, upon closing (either via
1850  * an explicit DRM_I915_GEM_CONTEXT_DESTROY or implicitly from file closure
1851  * or process termination), the context and any outstanding requests will be
1852  * cancelled (and exported fences for cancelled requests marked as -EIO).
1853  *
1854  * By default, new contexts allow persistence.
1855  */
1856 #define I915_CONTEXT_PARAM_PERSISTENCE	0xb
1857 
1858 /* This API has been removed.  On the off chance someone somewhere has
1859  * attempted to use it, never re-use this context param number.
1860  */
1861 #define I915_CONTEXT_PARAM_RINGSIZE	0xc
1862 
1863 /*
1864  * I915_CONTEXT_PARAM_PROTECTED_CONTENT:
1865  *
1866  * Mark that the context makes use of protected content, which will result
1867  * in the context being invalidated when the protected content session is.
1868  * Given that the protected content session is killed on suspend, the device
1869  * is kept awake for the lifetime of a protected context, so the user should
1870  * make sure to dispose of them once done.
1871  * This flag can only be set at context creation time and, when set to true,
1872  * must be preceded by an explicit setting of I915_CONTEXT_PARAM_RECOVERABLE
1873  * to false. This flag can't be set to true in conjunction with setting the
1874  * I915_CONTEXT_PARAM_BANNABLE flag to false. Creation example:
1875  *
1876  * .. code-block:: C
1877  *
1878  *	struct drm_i915_gem_context_create_ext_setparam p_protected = {
1879  *		.base = {
1880  *			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
1881  *		},
1882  *		.param = {
1883  *			.param = I915_CONTEXT_PARAM_PROTECTED_CONTENT,
1884  *			.value = 1,
1885  *		}
1886  *	};
1887  *	struct drm_i915_gem_context_create_ext_setparam p_norecover = {
1888  *		.base = {
1889  *			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
1890  *			.next_extension = to_user_pointer(&p_protected),
1891  *		},
1892  *		.param = {
1893  *			.param = I915_CONTEXT_PARAM_RECOVERABLE,
1894  *			.value = 0,
1895  *		}
1896  *	};
1897  *	struct drm_i915_gem_context_create_ext create = {
1898  *		.flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
1899  *		.extensions = to_user_pointer(&p_norecover);
1900  *	};
1901  *
1902  *	ctx_id = gem_context_create_ext(drm_fd, &create);
1903  *
1904  * In addition to the normal failure cases, setting this flag during context
1905  * creation can result in the following errors:
1906  *
1907  * -ENODEV: feature not available
1908  * -EPERM: trying to mark a recoverable or not bannable context as protected
1909  */
1910 #define I915_CONTEXT_PARAM_PROTECTED_CONTENT    0xd
1911 /* Must be kept compact -- no holes and well documented */
1912 
1913 	__u64 value;
1914 };
1915 
1916 /*
1917  * Context SSEU programming
1918  *
1919  * It may be necessary for either functional or performance reason to configure
1920  * a context to run with a reduced number of SSEU (where SSEU stands for Slice/
1921  * Sub-slice/EU).
1922  *
1923  * This is done by configuring SSEU configuration using the below
1924  * @struct drm_i915_gem_context_param_sseu for every supported engine which
1925  * userspace intends to use.
1926  *
1927  * Not all GPUs or engines support this functionality in which case an error
1928  * code -ENODEV will be returned.
1929  *
1930  * Also, flexibility of possible SSEU configuration permutations varies between
1931  * GPU generations and software imposed limitations. Requesting such a
1932  * combination will return an error code of -EINVAL.
1933  *
1934  * NOTE: When perf/OA is active the context's SSEU configuration is ignored in
1935  * favour of a single global setting.
1936  */
1937 struct drm_i915_gem_context_param_sseu {
1938 	/*
1939 	 * Engine class & instance to be configured or queried.
1940 	 */
1941 	struct i915_engine_class_instance engine;
1942 
1943 	/*
1944 	 * Unknown flags must be cleared to zero.
1945 	 */
1946 	__u32 flags;
1947 #define I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX (1u << 0)
1948 
1949 	/*
1950 	 * Mask of slices to enable for the context. Valid values are a subset
1951 	 * of the bitmask value returned for I915_PARAM_SLICE_MASK.
1952 	 */
1953 	__u64 slice_mask;
1954 
1955 	/*
1956 	 * Mask of subslices to enable for the context. Valid values are a
1957 	 * subset of the bitmask value return by I915_PARAM_SUBSLICE_MASK.
1958 	 */
1959 	__u64 subslice_mask;
1960 
1961 	/*
1962 	 * Minimum/Maximum number of EUs to enable per subslice for the
1963 	 * context. min_eus_per_subslice must be inferior or equal to
1964 	 * max_eus_per_subslice.
1965 	 */
1966 	__u16 min_eus_per_subslice;
1967 	__u16 max_eus_per_subslice;
1968 
1969 	/*
1970 	 * Unused for now. Must be cleared to zero.
1971 	 */
1972 	__u32 rsvd;
1973 };
1974 
1975 /**
1976  * DOC: Virtual Engine uAPI
1977  *
1978  * Virtual engine is a concept where userspace is able to configure a set of
1979  * physical engines, submit a batch buffer, and let the driver execute it on any
1980  * engine from the set as it sees fit.
1981  *
1982  * This is primarily useful on parts which have multiple instances of a same
1983  * class engine, like for example GT3+ Skylake parts with their two VCS engines.
1984  *
1985  * For instance userspace can enumerate all engines of a certain class using the
1986  * previously described `Engine Discovery uAPI`_. After that userspace can
1987  * create a GEM context with a placeholder slot for the virtual engine (using
1988  * `I915_ENGINE_CLASS_INVALID` and `I915_ENGINE_CLASS_INVALID_NONE` for class
1989  * and instance respectively) and finally using the
1990  * `I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE` extension place a virtual engine in
1991  * the same reserved slot.
1992  *
1993  * Example of creating a virtual engine and submitting a batch buffer to it:
1994  *
1995  * .. code-block:: C
1996  *
1997  * 	I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(virtual, 2) = {
1998  * 		.base.name = I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE,
1999  * 		.engine_index = 0, // Place this virtual engine into engine map slot 0
2000  * 		.num_siblings = 2,
2001  * 		.engines = { { I915_ENGINE_CLASS_VIDEO, 0 },
2002  * 			     { I915_ENGINE_CLASS_VIDEO, 1 }, },
2003  * 	};
2004  * 	I915_DEFINE_CONTEXT_PARAM_ENGINES(engines, 1) = {
2005  * 		.engines = { { I915_ENGINE_CLASS_INVALID,
2006  * 			       I915_ENGINE_CLASS_INVALID_NONE } },
2007  * 		.extensions = to_user_pointer(&virtual), // Chains after load_balance extension
2008  * 	};
2009  * 	struct drm_i915_gem_context_create_ext_setparam p_engines = {
2010  * 		.base = {
2011  * 			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2012  * 		},
2013  * 		.param = {
2014  * 			.param = I915_CONTEXT_PARAM_ENGINES,
2015  * 			.value = to_user_pointer(&engines),
2016  * 			.size = sizeof(engines),
2017  * 		},
2018  * 	};
2019  * 	struct drm_i915_gem_context_create_ext create = {
2020  * 		.flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
2021  * 		.extensions = to_user_pointer(&p_engines);
2022  * 	};
2023  *
2024  * 	ctx_id = gem_context_create_ext(drm_fd, &create);
2025  *
2026  * 	// Now we have created a GEM context with its engine map containing a
2027  * 	// single virtual engine. Submissions to this slot can go either to
2028  * 	// vcs0 or vcs1, depending on the load balancing algorithm used inside
2029  * 	// the driver. The load balancing is dynamic from one batch buffer to
2030  * 	// another and transparent to userspace.
2031  *
2032  * 	...
2033  * 	execbuf.rsvd1 = ctx_id;
2034  * 	execbuf.flags = 0; // Submits to index 0 which is the virtual engine
2035  * 	gem_execbuf(drm_fd, &execbuf);
2036  */
2037 
2038 /*
2039  * i915_context_engines_load_balance:
2040  *
2041  * Enable load balancing across this set of engines.
2042  *
2043  * Into the I915_EXEC_DEFAULT slot [0], a virtual engine is created that when
2044  * used will proxy the execbuffer request onto one of the set of engines
2045  * in such a way as to distribute the load evenly across the set.
2046  *
2047  * The set of engines must be compatible (e.g. the same HW class) as they
2048  * will share the same logical GPU context and ring.
2049  *
2050  * To intermix rendering with the virtual engine and direct rendering onto
2051  * the backing engines (bypassing the load balancing proxy), the context must
2052  * be defined to use a single timeline for all engines.
2053  */
2054 struct i915_context_engines_load_balance {
2055 	struct i915_user_extension base;
2056 
2057 	__u16 engine_index;
2058 	__u16 num_siblings;
2059 	__u32 flags; /* all undefined flags must be zero */
2060 
2061 	__u64 mbz64; /* reserved for future use; must be zero */
2062 
2063 	struct i915_engine_class_instance engines[0];
2064 } __attribute__((packed));
2065 
2066 #define I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(name__, N__) struct { \
2067 	struct i915_user_extension base; \
2068 	__u16 engine_index; \
2069 	__u16 num_siblings; \
2070 	__u32 flags; \
2071 	__u64 mbz64; \
2072 	struct i915_engine_class_instance engines[N__]; \
2073 } __attribute__((packed)) name__
2074 
2075 /*
2076  * i915_context_engines_bond:
2077  *
2078  * Constructed bonded pairs for execution within a virtual engine.
2079  *
2080  * All engines are equal, but some are more equal than others. Given
2081  * the distribution of resources in the HW, it may be preferable to run
2082  * a request on a given subset of engines in parallel to a request on a
2083  * specific engine. We enable this selection of engines within a virtual
2084  * engine by specifying bonding pairs, for any given master engine we will
2085  * only execute on one of the corresponding siblings within the virtual engine.
2086  *
2087  * To execute a request in parallel on the master engine and a sibling requires
2088  * coordination with a I915_EXEC_FENCE_SUBMIT.
2089  */
2090 struct i915_context_engines_bond {
2091 	struct i915_user_extension base;
2092 
2093 	struct i915_engine_class_instance master;
2094 
2095 	__u16 virtual_index; /* index of virtual engine in ctx->engines[] */
2096 	__u16 num_bonds;
2097 
2098 	__u64 flags; /* all undefined flags must be zero */
2099 	__u64 mbz64[4]; /* reserved for future use; must be zero */
2100 
2101 	struct i915_engine_class_instance engines[0];
2102 } __attribute__((packed));
2103 
2104 #define I915_DEFINE_CONTEXT_ENGINES_BOND(name__, N__) struct { \
2105 	struct i915_user_extension base; \
2106 	struct i915_engine_class_instance master; \
2107 	__u16 virtual_index; \
2108 	__u16 num_bonds; \
2109 	__u64 flags; \
2110 	__u64 mbz64[4]; \
2111 	struct i915_engine_class_instance engines[N__]; \
2112 } __attribute__((packed)) name__
2113 
2114 /**
2115  * struct i915_context_engines_parallel_submit - Configure engine for
2116  * parallel submission.
2117  *
2118  * Setup a slot in the context engine map to allow multiple BBs to be submitted
2119  * in a single execbuf IOCTL. Those BBs will then be scheduled to run on the GPU
2120  * in parallel. Multiple hardware contexts are created internally in the i915 to
2121  * run these BBs. Once a slot is configured for N BBs only N BBs can be
2122  * submitted in each execbuf IOCTL and this is implicit behavior e.g. The user
2123  * doesn't tell the execbuf IOCTL there are N BBs, the execbuf IOCTL knows how
2124  * many BBs there are based on the slot's configuration. The N BBs are the last
2125  * N buffer objects or first N if I915_EXEC_BATCH_FIRST is set.
2126  *
2127  * The default placement behavior is to create implicit bonds between each
2128  * context if each context maps to more than 1 physical engine (e.g. context is
2129  * a virtual engine). Also we only allow contexts of same engine class and these
2130  * contexts must be in logically contiguous order. Examples of the placement
2131  * behavior are described below. Lastly, the default is to not allow BBs to be
2132  * preempted mid-batch. Rather insert coordinated preemption points on all
2133  * hardware contexts between each set of BBs. Flags could be added in the future
2134  * to change both of these default behaviors.
2135  *
2136  * Returns -EINVAL if hardware context placement configuration is invalid or if
2137  * the placement configuration isn't supported on the platform / submission
2138  * interface.
2139  * Returns -ENODEV if extension isn't supported on the platform / submission
2140  * interface.
2141  *
2142  * .. code-block:: none
2143  *
2144  *	Examples syntax:
2145  *	CS[X] = generic engine of same class, logical instance X
2146  *	INVALID = I915_ENGINE_CLASS_INVALID, I915_ENGINE_CLASS_INVALID_NONE
2147  *
2148  *	Example 1 pseudo code:
2149  *	set_engines(INVALID)
2150  *	set_parallel(engine_index=0, width=2, num_siblings=1,
2151  *		     engines=CS[0],CS[1])
2152  *
2153  *	Results in the following valid placement:
2154  *	CS[0], CS[1]
2155  *
2156  *	Example 2 pseudo code:
2157  *	set_engines(INVALID)
2158  *	set_parallel(engine_index=0, width=2, num_siblings=2,
2159  *		     engines=CS[0],CS[2],CS[1],CS[3])
2160  *
2161  *	Results in the following valid placements:
2162  *	CS[0], CS[1]
2163  *	CS[2], CS[3]
2164  *
2165  *	This can be thought of as two virtual engines, each containing two
2166  *	engines thereby making a 2D array. However, there are bonds tying the
2167  *	entries together and placing restrictions on how they can be scheduled.
2168  *	Specifically, the scheduler can choose only vertical columns from the 2D
2169  *	array. That is, CS[0] is bonded to CS[1] and CS[2] to CS[3]. So if the
2170  *	scheduler wants to submit to CS[0], it must also choose CS[1] and vice
2171  *	versa. Same for CS[2] requires also using CS[3].
2172  *	VE[0] = CS[0], CS[2]
2173  *	VE[1] = CS[1], CS[3]
2174  *
2175  *	Example 3 pseudo code:
2176  *	set_engines(INVALID)
2177  *	set_parallel(engine_index=0, width=2, num_siblings=2,
2178  *		     engines=CS[0],CS[1],CS[1],CS[3])
2179  *
2180  *	Results in the following valid and invalid placements:
2181  *	CS[0], CS[1]
2182  *	CS[1], CS[3] - Not logically contiguous, return -EINVAL
2183  */
2184 struct i915_context_engines_parallel_submit {
2185 	/**
2186 	 * @base: base user extension.
2187 	 */
2188 	struct i915_user_extension base;
2189 
2190 	/**
2191 	 * @engine_index: slot for parallel engine
2192 	 */
2193 	__u16 engine_index;
2194 
2195 	/**
2196 	 * @width: number of contexts per parallel engine or in other words the
2197 	 * number of batches in each submission
2198 	 */
2199 	__u16 width;
2200 
2201 	/**
2202 	 * @num_siblings: number of siblings per context or in other words the
2203 	 * number of possible placements for each submission
2204 	 */
2205 	__u16 num_siblings;
2206 
2207 	/**
2208 	 * @mbz16: reserved for future use; must be zero
2209 	 */
2210 	__u16 mbz16;
2211 
2212 	/**
2213 	 * @flags: all undefined flags must be zero, currently not defined flags
2214 	 */
2215 	__u64 flags;
2216 
2217 	/**
2218 	 * @mbz64: reserved for future use; must be zero
2219 	 */
2220 	__u64 mbz64[3];
2221 
2222 	/**
2223 	 * @engines: 2-d array of engine instances to configure parallel engine
2224 	 *
2225 	 * length = width (i) * num_siblings (j)
2226 	 * index = j + i * num_siblings
2227 	 */
2228 	struct i915_engine_class_instance engines[0];
2229 
2230 } __packed;
2231 
2232 #define I915_DEFINE_CONTEXT_ENGINES_PARALLEL_SUBMIT(name__, N__) struct { \
2233 	struct i915_user_extension base; \
2234 	__u16 engine_index; \
2235 	__u16 width; \
2236 	__u16 num_siblings; \
2237 	__u16 mbz16; \
2238 	__u64 flags; \
2239 	__u64 mbz64[3]; \
2240 	struct i915_engine_class_instance engines[N__]; \
2241 } __attribute__((packed)) name__
2242 
2243 /**
2244  * DOC: Context Engine Map uAPI
2245  *
2246  * Context engine map is a new way of addressing engines when submitting batch-
2247  * buffers, replacing the existing way of using identifiers like `I915_EXEC_BLT`
2248  * inside the flags field of `struct drm_i915_gem_execbuffer2`.
2249  *
2250  * To use it created GEM contexts need to be configured with a list of engines
2251  * the user is intending to submit to. This is accomplished using the
2252  * `I915_CONTEXT_PARAM_ENGINES` parameter and `struct
2253  * i915_context_param_engines`.
2254  *
2255  * For such contexts the `I915_EXEC_RING_MASK` field becomes an index into the
2256  * configured map.
2257  *
2258  * Example of creating such context and submitting against it:
2259  *
2260  * .. code-block:: C
2261  *
2262  * 	I915_DEFINE_CONTEXT_PARAM_ENGINES(engines, 2) = {
2263  * 		.engines = { { I915_ENGINE_CLASS_RENDER, 0 },
2264  * 			     { I915_ENGINE_CLASS_COPY, 0 } }
2265  * 	};
2266  * 	struct drm_i915_gem_context_create_ext_setparam p_engines = {
2267  * 		.base = {
2268  * 			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2269  * 		},
2270  * 		.param = {
2271  * 			.param = I915_CONTEXT_PARAM_ENGINES,
2272  * 			.value = to_user_pointer(&engines),
2273  * 			.size = sizeof(engines),
2274  * 		},
2275  * 	};
2276  * 	struct drm_i915_gem_context_create_ext create = {
2277  * 		.flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
2278  * 		.extensions = to_user_pointer(&p_engines);
2279  * 	};
2280  *
2281  * 	ctx_id = gem_context_create_ext(drm_fd, &create);
2282  *
2283  * 	// We have now created a GEM context with two engines in the map:
2284  * 	// Index 0 points to rcs0 while index 1 points to bcs0. Other engines
2285  * 	// will not be accessible from this context.
2286  *
2287  * 	...
2288  * 	execbuf.rsvd1 = ctx_id;
2289  * 	execbuf.flags = 0; // Submits to index 0, which is rcs0 for this context
2290  * 	gem_execbuf(drm_fd, &execbuf);
2291  *
2292  * 	...
2293  * 	execbuf.rsvd1 = ctx_id;
2294  * 	execbuf.flags = 1; // Submits to index 0, which is bcs0 for this context
2295  * 	gem_execbuf(drm_fd, &execbuf);
2296  */
2297 
2298 struct i915_context_param_engines {
2299 	__u64 extensions; /* linked chain of extension blocks, 0 terminates */
2300 #define I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE 0 /* see i915_context_engines_load_balance */
2301 #define I915_CONTEXT_ENGINES_EXT_BOND 1 /* see i915_context_engines_bond */
2302 #define I915_CONTEXT_ENGINES_EXT_PARALLEL_SUBMIT 2 /* see i915_context_engines_parallel_submit */
2303 	struct i915_engine_class_instance engines[0];
2304 } __attribute__((packed));
2305 
2306 #define I915_DEFINE_CONTEXT_PARAM_ENGINES(name__, N__) struct { \
2307 	__u64 extensions; \
2308 	struct i915_engine_class_instance engines[N__]; \
2309 } __attribute__((packed)) name__
2310 
2311 struct drm_i915_gem_context_create_ext_setparam {
2312 #define I915_CONTEXT_CREATE_EXT_SETPARAM 0
2313 	struct i915_user_extension base;
2314 	struct drm_i915_gem_context_param param;
2315 };
2316 
2317 /* This API has been removed.  On the off chance someone somewhere has
2318  * attempted to use it, never re-use this extension number.
2319  */
2320 #define I915_CONTEXT_CREATE_EXT_CLONE 1
2321 
2322 struct drm_i915_gem_context_destroy {
2323 	__u32 ctx_id;
2324 	__u32 pad;
2325 };
2326 
2327 /*
2328  * DRM_I915_GEM_VM_CREATE -
2329  *
2330  * Create a new virtual memory address space (ppGTT) for use within a context
2331  * on the same file. Extensions can be provided to configure exactly how the
2332  * address space is setup upon creation.
2333  *
2334  * The id of new VM (bound to the fd) for use with I915_CONTEXT_PARAM_VM is
2335  * returned in the outparam @id.
2336  *
2337  * No flags are defined, with all bits reserved and must be zero.
2338  *
2339  * An extension chain maybe provided, starting with @extensions, and terminated
2340  * by the @next_extension being 0. Currently, no extensions are defined.
2341  *
2342  * DRM_I915_GEM_VM_DESTROY -
2343  *
2344  * Destroys a previously created VM id, specified in @id.
2345  *
2346  * No extensions or flags are allowed currently, and so must be zero.
2347  */
2348 struct drm_i915_gem_vm_control {
2349 	__u64 extensions;
2350 	__u32 flags;
2351 	__u32 vm_id;
2352 };
2353 
2354 struct drm_i915_reg_read {
2355 	/*
2356 	 * Register offset.
2357 	 * For 64bit wide registers where the upper 32bits don't immediately
2358 	 * follow the lower 32bits, the offset of the lower 32bits must
2359 	 * be specified
2360 	 */
2361 	__u64 offset;
2362 #define I915_REG_READ_8B_WA (1ul << 0)
2363 
2364 	__u64 val; /* Return value */
2365 };
2366 
2367 /* Known registers:
2368  *
2369  * Render engine timestamp - 0x2358 + 64bit - gen7+
2370  * - Note this register returns an invalid value if using the default
2371  *   single instruction 8byte read, in order to workaround that pass
2372  *   flag I915_REG_READ_8B_WA in offset field.
2373  *
2374  */
2375 
2376 struct drm_i915_reset_stats {
2377 	__u32 ctx_id;
2378 	__u32 flags;
2379 
2380 	/* All resets since boot/module reload, for all contexts */
2381 	__u32 reset_count;
2382 
2383 	/* Number of batches lost when active in GPU, for this context */
2384 	__u32 batch_active;
2385 
2386 	/* Number of batches lost pending for execution, for this context */
2387 	__u32 batch_pending;
2388 
2389 	__u32 pad;
2390 };
2391 
2392 /**
2393  * struct drm_i915_gem_userptr - Create GEM object from user allocated memory.
2394  *
2395  * Userptr objects have several restrictions on what ioctls can be used with the
2396  * object handle.
2397  */
2398 struct drm_i915_gem_userptr {
2399 	/**
2400 	 * @user_ptr: The pointer to the allocated memory.
2401 	 *
2402 	 * Needs to be aligned to PAGE_SIZE.
2403 	 */
2404 	__u64 user_ptr;
2405 
2406 	/**
2407 	 * @user_size:
2408 	 *
2409 	 * The size in bytes for the allocated memory. This will also become the
2410 	 * object size.
2411 	 *
2412 	 * Needs to be aligned to PAGE_SIZE, and should be at least PAGE_SIZE,
2413 	 * or larger.
2414 	 */
2415 	__u64 user_size;
2416 
2417 	/**
2418 	 * @flags:
2419 	 *
2420 	 * Supported flags:
2421 	 *
2422 	 * I915_USERPTR_READ_ONLY:
2423 	 *
2424 	 * Mark the object as readonly, this also means GPU access can only be
2425 	 * readonly. This is only supported on HW which supports readonly access
2426 	 * through the GTT. If the HW can't support readonly access, an error is
2427 	 * returned.
2428 	 *
2429 	 * I915_USERPTR_PROBE:
2430 	 *
2431 	 * Probe the provided @user_ptr range and validate that the @user_ptr is
2432 	 * indeed pointing to normal memory and that the range is also valid.
2433 	 * For example if some garbage address is given to the kernel, then this
2434 	 * should complain.
2435 	 *
2436 	 * Returns -EFAULT if the probe failed.
2437 	 *
2438 	 * Note that this doesn't populate the backing pages, and also doesn't
2439 	 * guarantee that the object will remain valid when the object is
2440 	 * eventually used.
2441 	 *
2442 	 * The kernel supports this feature if I915_PARAM_HAS_USERPTR_PROBE
2443 	 * returns a non-zero value.
2444 	 *
2445 	 * I915_USERPTR_UNSYNCHRONIZED:
2446 	 *
2447 	 * NOT USED. Setting this flag will result in an error.
2448 	 */
2449 	__u32 flags;
2450 #define I915_USERPTR_READ_ONLY 0x1
2451 #define I915_USERPTR_PROBE 0x2
2452 #define I915_USERPTR_UNSYNCHRONIZED 0x80000000
2453 	/**
2454 	 * @handle: Returned handle for the object.
2455 	 *
2456 	 * Object handles are nonzero.
2457 	 */
2458 	__u32 handle;
2459 };
2460 
2461 enum drm_i915_oa_format {
2462 	I915_OA_FORMAT_A13 = 1,	    /* HSW only */
2463 	I915_OA_FORMAT_A29,	    /* HSW only */
2464 	I915_OA_FORMAT_A13_B8_C8,   /* HSW only */
2465 	I915_OA_FORMAT_B4_C8,	    /* HSW only */
2466 	I915_OA_FORMAT_A45_B8_C8,   /* HSW only */
2467 	I915_OA_FORMAT_B4_C8_A16,   /* HSW only */
2468 	I915_OA_FORMAT_C4_B8,	    /* HSW+ */
2469 
2470 	/* Gen8+ */
2471 	I915_OA_FORMAT_A12,
2472 	I915_OA_FORMAT_A12_B8_C8,
2473 	I915_OA_FORMAT_A32u40_A4u32_B8_C8,
2474 
2475 	I915_OA_FORMAT_MAX	    /* non-ABI */
2476 };
2477 
2478 enum drm_i915_perf_property_id {
2479 	/**
2480 	 * Open the stream for a specific context handle (as used with
2481 	 * execbuffer2). A stream opened for a specific context this way
2482 	 * won't typically require root privileges.
2483 	 *
2484 	 * This property is available in perf revision 1.
2485 	 */
2486 	DRM_I915_PERF_PROP_CTX_HANDLE = 1,
2487 
2488 	/**
2489 	 * A value of 1 requests the inclusion of raw OA unit reports as
2490 	 * part of stream samples.
2491 	 *
2492 	 * This property is available in perf revision 1.
2493 	 */
2494 	DRM_I915_PERF_PROP_SAMPLE_OA,
2495 
2496 	/**
2497 	 * The value specifies which set of OA unit metrics should be
2498 	 * configured, defining the contents of any OA unit reports.
2499 	 *
2500 	 * This property is available in perf revision 1.
2501 	 */
2502 	DRM_I915_PERF_PROP_OA_METRICS_SET,
2503 
2504 	/**
2505 	 * The value specifies the size and layout of OA unit reports.
2506 	 *
2507 	 * This property is available in perf revision 1.
2508 	 */
2509 	DRM_I915_PERF_PROP_OA_FORMAT,
2510 
2511 	/**
2512 	 * Specifying this property implicitly requests periodic OA unit
2513 	 * sampling and (at least on Haswell) the sampling frequency is derived
2514 	 * from this exponent as follows:
2515 	 *
2516 	 *   80ns * 2^(period_exponent + 1)
2517 	 *
2518 	 * This property is available in perf revision 1.
2519 	 */
2520 	DRM_I915_PERF_PROP_OA_EXPONENT,
2521 
2522 	/**
2523 	 * Specifying this property is only valid when specify a context to
2524 	 * filter with DRM_I915_PERF_PROP_CTX_HANDLE. Specifying this property
2525 	 * will hold preemption of the particular context we want to gather
2526 	 * performance data about. The execbuf2 submissions must include a
2527 	 * drm_i915_gem_execbuffer_ext_perf parameter for this to apply.
2528 	 *
2529 	 * This property is available in perf revision 3.
2530 	 */
2531 	DRM_I915_PERF_PROP_HOLD_PREEMPTION,
2532 
2533 	/**
2534 	 * Specifying this pins all contexts to the specified SSEU power
2535 	 * configuration for the duration of the recording.
2536 	 *
2537 	 * This parameter's value is a pointer to a struct
2538 	 * drm_i915_gem_context_param_sseu.
2539 	 *
2540 	 * This property is available in perf revision 4.
2541 	 */
2542 	DRM_I915_PERF_PROP_GLOBAL_SSEU,
2543 
2544 	/**
2545 	 * This optional parameter specifies the timer interval in nanoseconds
2546 	 * at which the i915 driver will check the OA buffer for available data.
2547 	 * Minimum allowed value is 100 microseconds. A default value is used by
2548 	 * the driver if this parameter is not specified. Note that larger timer
2549 	 * values will reduce cpu consumption during OA perf captures. However,
2550 	 * excessively large values would potentially result in OA buffer
2551 	 * overwrites as captures reach end of the OA buffer.
2552 	 *
2553 	 * This property is available in perf revision 5.
2554 	 */
2555 	DRM_I915_PERF_PROP_POLL_OA_PERIOD,
2556 
2557 	DRM_I915_PERF_PROP_MAX /* non-ABI */
2558 };
2559 
2560 struct drm_i915_perf_open_param {
2561 	__u32 flags;
2562 #define I915_PERF_FLAG_FD_CLOEXEC	(1<<0)
2563 #define I915_PERF_FLAG_FD_NONBLOCK	(1<<1)
2564 #define I915_PERF_FLAG_DISABLED		(1<<2)
2565 
2566 	/** The number of u64 (id, value) pairs */
2567 	__u32 num_properties;
2568 
2569 	/**
2570 	 * Pointer to array of u64 (id, value) pairs configuring the stream
2571 	 * to open.
2572 	 */
2573 	__u64 properties_ptr;
2574 };
2575 
2576 /*
2577  * Enable data capture for a stream that was either opened in a disabled state
2578  * via I915_PERF_FLAG_DISABLED or was later disabled via
2579  * I915_PERF_IOCTL_DISABLE.
2580  *
2581  * It is intended to be cheaper to disable and enable a stream than it may be
2582  * to close and re-open a stream with the same configuration.
2583  *
2584  * It's undefined whether any pending data for the stream will be lost.
2585  *
2586  * This ioctl is available in perf revision 1.
2587  */
2588 #define I915_PERF_IOCTL_ENABLE	_IO('i', 0x0)
2589 
2590 /*
2591  * Disable data capture for a stream.
2592  *
2593  * It is an error to try and read a stream that is disabled.
2594  *
2595  * This ioctl is available in perf revision 1.
2596  */
2597 #define I915_PERF_IOCTL_DISABLE	_IO('i', 0x1)
2598 
2599 /*
2600  * Change metrics_set captured by a stream.
2601  *
2602  * If the stream is bound to a specific context, the configuration change
2603  * will performed inline with that context such that it takes effect before
2604  * the next execbuf submission.
2605  *
2606  * Returns the previously bound metrics set id, or a negative error code.
2607  *
2608  * This ioctl is available in perf revision 2.
2609  */
2610 #define I915_PERF_IOCTL_CONFIG	_IO('i', 0x2)
2611 
2612 /*
2613  * Common to all i915 perf records
2614  */
2615 struct drm_i915_perf_record_header {
2616 	__u32 type;
2617 	__u16 pad;
2618 	__u16 size;
2619 };
2620 
2621 enum drm_i915_perf_record_type {
2622 
2623 	/**
2624 	 * Samples are the work horse record type whose contents are extensible
2625 	 * and defined when opening an i915 perf stream based on the given
2626 	 * properties.
2627 	 *
2628 	 * Boolean properties following the naming convention
2629 	 * DRM_I915_PERF_SAMPLE_xyz_PROP request the inclusion of 'xyz' data in
2630 	 * every sample.
2631 	 *
2632 	 * The order of these sample properties given by userspace has no
2633 	 * affect on the ordering of data within a sample. The order is
2634 	 * documented here.
2635 	 *
2636 	 * struct {
2637 	 *     struct drm_i915_perf_record_header header;
2638 	 *
2639 	 *     { u32 oa_report[]; } && DRM_I915_PERF_PROP_SAMPLE_OA
2640 	 * };
2641 	 */
2642 	DRM_I915_PERF_RECORD_SAMPLE = 1,
2643 
2644 	/*
2645 	 * Indicates that one or more OA reports were not written by the
2646 	 * hardware. This can happen for example if an MI_REPORT_PERF_COUNT
2647 	 * command collides with periodic sampling - which would be more likely
2648 	 * at higher sampling frequencies.
2649 	 */
2650 	DRM_I915_PERF_RECORD_OA_REPORT_LOST = 2,
2651 
2652 	/**
2653 	 * An error occurred that resulted in all pending OA reports being lost.
2654 	 */
2655 	DRM_I915_PERF_RECORD_OA_BUFFER_LOST = 3,
2656 
2657 	DRM_I915_PERF_RECORD_MAX /* non-ABI */
2658 };
2659 
2660 /*
2661  * Structure to upload perf dynamic configuration into the kernel.
2662  */
2663 struct drm_i915_perf_oa_config {
2664 	/** String formatted like "%08x-%04x-%04x-%04x-%012x" */
2665 	char uuid[36];
2666 
2667 	__u32 n_mux_regs;
2668 	__u32 n_boolean_regs;
2669 	__u32 n_flex_regs;
2670 
2671 	/*
2672 	 * These fields are pointers to tuples of u32 values (register address,
2673 	 * value). For example the expected length of the buffer pointed by
2674 	 * mux_regs_ptr is (2 * sizeof(u32) * n_mux_regs).
2675 	 */
2676 	__u64 mux_regs_ptr;
2677 	__u64 boolean_regs_ptr;
2678 	__u64 flex_regs_ptr;
2679 };
2680 
2681 /**
2682  * struct drm_i915_query_item - An individual query for the kernel to process.
2683  *
2684  * The behaviour is determined by the @query_id. Note that exactly what
2685  * @data_ptr is also depends on the specific @query_id.
2686  */
2687 struct drm_i915_query_item {
2688 	/** @query_id: The id for this query */
2689 	__u64 query_id;
2690 #define DRM_I915_QUERY_TOPOLOGY_INFO    1
2691 #define DRM_I915_QUERY_ENGINE_INFO	2
2692 #define DRM_I915_QUERY_PERF_CONFIG      3
2693 #define DRM_I915_QUERY_MEMORY_REGIONS   4
2694 /* Must be kept compact -- no holes and well documented */
2695 
2696 	/**
2697 	 * @length:
2698 	 *
2699 	 * When set to zero by userspace, this is filled with the size of the
2700 	 * data to be written at the @data_ptr pointer. The kernel sets this
2701 	 * value to a negative value to signal an error on a particular query
2702 	 * item.
2703 	 */
2704 	__s32 length;
2705 
2706 	/**
2707 	 * @flags:
2708 	 *
2709 	 * When query_id == DRM_I915_QUERY_TOPOLOGY_INFO, must be 0.
2710 	 *
2711 	 * When query_id == DRM_I915_QUERY_PERF_CONFIG, must be one of the
2712 	 * following:
2713 	 *
2714 	 *	- DRM_I915_QUERY_PERF_CONFIG_LIST
2715 	 *      - DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID
2716 	 *      - DRM_I915_QUERY_PERF_CONFIG_FOR_UUID
2717 	 */
2718 	__u32 flags;
2719 #define DRM_I915_QUERY_PERF_CONFIG_LIST          1
2720 #define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID 2
2721 #define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID   3
2722 
2723 	/**
2724 	 * @data_ptr:
2725 	 *
2726 	 * Data will be written at the location pointed by @data_ptr when the
2727 	 * value of @length matches the length of the data to be written by the
2728 	 * kernel.
2729 	 */
2730 	__u64 data_ptr;
2731 };
2732 
2733 /**
2734  * struct drm_i915_query - Supply an array of struct drm_i915_query_item for the
2735  * kernel to fill out.
2736  *
2737  * Note that this is generally a two step process for each struct
2738  * drm_i915_query_item in the array:
2739  *
2740  * 1. Call the DRM_IOCTL_I915_QUERY, giving it our array of struct
2741  *    drm_i915_query_item, with &drm_i915_query_item.length set to zero. The
2742  *    kernel will then fill in the size, in bytes, which tells userspace how
2743  *    memory it needs to allocate for the blob(say for an array of properties).
2744  *
2745  * 2. Next we call DRM_IOCTL_I915_QUERY again, this time with the
2746  *    &drm_i915_query_item.data_ptr equal to our newly allocated blob. Note that
2747  *    the &drm_i915_query_item.length should still be the same as what the
2748  *    kernel previously set. At this point the kernel can fill in the blob.
2749  *
2750  * Note that for some query items it can make sense for userspace to just pass
2751  * in a buffer/blob equal to or larger than the required size. In this case only
2752  * a single ioctl call is needed. For some smaller query items this can work
2753  * quite well.
2754  *
2755  */
2756 struct drm_i915_query {
2757 	/** @num_items: The number of elements in the @items_ptr array */
2758 	__u32 num_items;
2759 
2760 	/**
2761 	 * @flags: Unused for now. Must be cleared to zero.
2762 	 */
2763 	__u32 flags;
2764 
2765 	/**
2766 	 * @items_ptr:
2767 	 *
2768 	 * Pointer to an array of struct drm_i915_query_item. The number of
2769 	 * array elements is @num_items.
2770 	 */
2771 	__u64 items_ptr;
2772 };
2773 
2774 /*
2775  * Data written by the kernel with query DRM_I915_QUERY_TOPOLOGY_INFO :
2776  *
2777  * data: contains the 3 pieces of information :
2778  *
2779  * - the slice mask with one bit per slice telling whether a slice is
2780  *   available. The availability of slice X can be queried with the following
2781  *   formula :
2782  *
2783  *           (data[X / 8] >> (X % 8)) & 1
2784  *
2785  * - the subslice mask for each slice with one bit per subslice telling
2786  *   whether a subslice is available. Gen12 has dual-subslices, which are
2787  *   similar to two gen11 subslices. For gen12, this array represents dual-
2788  *   subslices. The availability of subslice Y in slice X can be queried
2789  *   with the following formula :
2790  *
2791  *           (data[subslice_offset +
2792  *                 X * subslice_stride +
2793  *                 Y / 8] >> (Y % 8)) & 1
2794  *
2795  * - the EU mask for each subslice in each slice with one bit per EU telling
2796  *   whether an EU is available. The availability of EU Z in subslice Y in
2797  *   slice X can be queried with the following formula :
2798  *
2799  *           (data[eu_offset +
2800  *                 (X * max_subslices + Y) * eu_stride +
2801  *                 Z / 8] >> (Z % 8)) & 1
2802  */
2803 struct drm_i915_query_topology_info {
2804 	/*
2805 	 * Unused for now. Must be cleared to zero.
2806 	 */
2807 	__u16 flags;
2808 
2809 	__u16 max_slices;
2810 	__u16 max_subslices;
2811 	__u16 max_eus_per_subslice;
2812 
2813 	/*
2814 	 * Offset in data[] at which the subslice masks are stored.
2815 	 */
2816 	__u16 subslice_offset;
2817 
2818 	/*
2819 	 * Stride at which each of the subslice masks for each slice are
2820 	 * stored.
2821 	 */
2822 	__u16 subslice_stride;
2823 
2824 	/*
2825 	 * Offset in data[] at which the EU masks are stored.
2826 	 */
2827 	__u16 eu_offset;
2828 
2829 	/*
2830 	 * Stride at which each of the EU masks for each subslice are stored.
2831 	 */
2832 	__u16 eu_stride;
2833 
2834 	__u8 data[];
2835 };
2836 
2837 /**
2838  * DOC: Engine Discovery uAPI
2839  *
2840  * Engine discovery uAPI is a way of enumerating physical engines present in a
2841  * GPU associated with an open i915 DRM file descriptor. This supersedes the old
2842  * way of using `DRM_IOCTL_I915_GETPARAM` and engine identifiers like
2843  * `I915_PARAM_HAS_BLT`.
2844  *
2845  * The need for this interface came starting with Icelake and newer GPUs, which
2846  * started to establish a pattern of having multiple engines of a same class,
2847  * where not all instances were always completely functionally equivalent.
2848  *
2849  * Entry point for this uapi is `DRM_IOCTL_I915_QUERY` with the
2850  * `DRM_I915_QUERY_ENGINE_INFO` as the queried item id.
2851  *
2852  * Example for getting the list of engines:
2853  *
2854  * .. code-block:: C
2855  *
2856  * 	struct drm_i915_query_engine_info *info;
2857  * 	struct drm_i915_query_item item = {
2858  * 		.query_id = DRM_I915_QUERY_ENGINE_INFO;
2859  * 	};
2860  * 	struct drm_i915_query query = {
2861  * 		.num_items = 1,
2862  * 		.items_ptr = (uintptr_t)&item,
2863  * 	};
2864  * 	int err, i;
2865  *
2866  * 	// First query the size of the blob we need, this needs to be large
2867  * 	// enough to hold our array of engines. The kernel will fill out the
2868  * 	// item.length for us, which is the number of bytes we need.
2869  * 	//
2870  * 	// Alternatively a large buffer can be allocated straight away enabling
2871  * 	// querying in one pass, in which case item.length should contain the
2872  * 	// length of the provided buffer.
2873  * 	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
2874  * 	if (err) ...
2875  *
2876  * 	info = calloc(1, item.length);
2877  * 	// Now that we allocated the required number of bytes, we call the ioctl
2878  * 	// again, this time with the data_ptr pointing to our newly allocated
2879  * 	// blob, which the kernel can then populate with info on all engines.
2880  * 	item.data_ptr = (uintptr_t)&info,
2881  *
2882  * 	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
2883  * 	if (err) ...
2884  *
2885  * 	// We can now access each engine in the array
2886  * 	for (i = 0; i < info->num_engines; i++) {
2887  * 		struct drm_i915_engine_info einfo = info->engines[i];
2888  * 		u16 class = einfo.engine.class;
2889  * 		u16 instance = einfo.engine.instance;
2890  * 		....
2891  * 	}
2892  *
2893  * 	free(info);
2894  *
2895  * Each of the enumerated engines, apart from being defined by its class and
2896  * instance (see `struct i915_engine_class_instance`), also can have flags and
2897  * capabilities defined as documented in i915_drm.h.
2898  *
2899  * For instance video engines which support HEVC encoding will have the
2900  * `I915_VIDEO_CLASS_CAPABILITY_HEVC` capability bit set.
2901  *
2902  * Engine discovery only fully comes to its own when combined with the new way
2903  * of addressing engines when submitting batch buffers using contexts with
2904  * engine maps configured.
2905  */
2906 
2907 /**
2908  * struct drm_i915_engine_info
2909  *
2910  * Describes one engine and it's capabilities as known to the driver.
2911  */
2912 struct drm_i915_engine_info {
2913 	/** @engine: Engine class and instance. */
2914 	struct i915_engine_class_instance engine;
2915 
2916 	/** @rsvd0: Reserved field. */
2917 	__u32 rsvd0;
2918 
2919 	/** @flags: Engine flags. */
2920 	__u64 flags;
2921 #define I915_ENGINE_INFO_HAS_LOGICAL_INSTANCE		(1 << 0)
2922 
2923 	/** @capabilities: Capabilities of this engine. */
2924 	__u64 capabilities;
2925 #define I915_VIDEO_CLASS_CAPABILITY_HEVC		(1 << 0)
2926 #define I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC	(1 << 1)
2927 
2928 	/** @logical_instance: Logical instance of engine */
2929 	__u16 logical_instance;
2930 
2931 	/** @rsvd1: Reserved fields. */
2932 	__u16 rsvd1[3];
2933 	/** @rsvd2: Reserved fields. */
2934 	__u64 rsvd2[3];
2935 };
2936 
2937 /**
2938  * struct drm_i915_query_engine_info
2939  *
2940  * Engine info query enumerates all engines known to the driver by filling in
2941  * an array of struct drm_i915_engine_info structures.
2942  */
2943 struct drm_i915_query_engine_info {
2944 	/** @num_engines: Number of struct drm_i915_engine_info structs following. */
2945 	__u32 num_engines;
2946 
2947 	/** @rsvd: MBZ */
2948 	__u32 rsvd[3];
2949 
2950 	/** @engines: Marker for drm_i915_engine_info structures. */
2951 	struct drm_i915_engine_info engines[];
2952 };
2953 
2954 /*
2955  * Data written by the kernel with query DRM_I915_QUERY_PERF_CONFIG.
2956  */
2957 struct drm_i915_query_perf_config {
2958 	union {
2959 		/*
2960 		 * When query_item.flags == DRM_I915_QUERY_PERF_CONFIG_LIST, i915 sets
2961 		 * this fields to the number of configurations available.
2962 		 */
2963 		__u64 n_configs;
2964 
2965 		/*
2966 		 * When query_id == DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID,
2967 		 * i915 will use the value in this field as configuration
2968 		 * identifier to decide what data to write into config_ptr.
2969 		 */
2970 		__u64 config;
2971 
2972 		/*
2973 		 * When query_id == DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID,
2974 		 * i915 will use the value in this field as configuration
2975 		 * identifier to decide what data to write into config_ptr.
2976 		 *
2977 		 * String formatted like "%08x-%04x-%04x-%04x-%012x"
2978 		 */
2979 		char uuid[36];
2980 	};
2981 
2982 	/*
2983 	 * Unused for now. Must be cleared to zero.
2984 	 */
2985 	__u32 flags;
2986 
2987 	/*
2988 	 * When query_item.flags == DRM_I915_QUERY_PERF_CONFIG_LIST, i915 will
2989 	 * write an array of __u64 of configuration identifiers.
2990 	 *
2991 	 * When query_item.flags == DRM_I915_QUERY_PERF_CONFIG_DATA, i915 will
2992 	 * write a struct drm_i915_perf_oa_config. If the following fields of
2993 	 * drm_i915_perf_oa_config are set not set to 0, i915 will write into
2994 	 * the associated pointers the values of submitted when the
2995 	 * configuration was created :
2996 	 *
2997 	 *         - n_mux_regs
2998 	 *         - n_boolean_regs
2999 	 *         - n_flex_regs
3000 	 */
3001 	__u8 data[];
3002 };
3003 
3004 /**
3005  * enum drm_i915_gem_memory_class - Supported memory classes
3006  */
3007 enum drm_i915_gem_memory_class {
3008 	/** @I915_MEMORY_CLASS_SYSTEM: System memory */
3009 	I915_MEMORY_CLASS_SYSTEM = 0,
3010 	/** @I915_MEMORY_CLASS_DEVICE: Device local-memory */
3011 	I915_MEMORY_CLASS_DEVICE,
3012 };
3013 
3014 /**
3015  * struct drm_i915_gem_memory_class_instance - Identify particular memory region
3016  */
3017 struct drm_i915_gem_memory_class_instance {
3018 	/** @memory_class: See enum drm_i915_gem_memory_class */
3019 	__u16 memory_class;
3020 
3021 	/** @memory_instance: Which instance */
3022 	__u16 memory_instance;
3023 };
3024 
3025 /**
3026  * struct drm_i915_memory_region_info - Describes one region as known to the
3027  * driver.
3028  *
3029  * Note that we reserve some stuff here for potential future work. As an example
3030  * we might want expose the capabilities for a given region, which could include
3031  * things like if the region is CPU mappable/accessible, what are the supported
3032  * mapping types etc.
3033  *
3034  * Note that to extend struct drm_i915_memory_region_info and struct
3035  * drm_i915_query_memory_regions in the future the plan is to do the following:
3036  *
3037  * .. code-block:: C
3038  *
3039  *	struct drm_i915_memory_region_info {
3040  *		struct drm_i915_gem_memory_class_instance region;
3041  *		union {
3042  *			__u32 rsvd0;
3043  *			__u32 new_thing1;
3044  *		};
3045  *		...
3046  *		union {
3047  *			__u64 rsvd1[8];
3048  *			struct {
3049  *				__u64 new_thing2;
3050  *				__u64 new_thing3;
3051  *				...
3052  *			};
3053  *		};
3054  *	};
3055  *
3056  * With this things should remain source compatible between versions for
3057  * userspace, even as we add new fields.
3058  *
3059  * Note this is using both struct drm_i915_query_item and struct drm_i915_query.
3060  * For this new query we are adding the new query id DRM_I915_QUERY_MEMORY_REGIONS
3061  * at &drm_i915_query_item.query_id.
3062  */
3063 struct drm_i915_memory_region_info {
3064 	/** @region: The class:instance pair encoding */
3065 	struct drm_i915_gem_memory_class_instance region;
3066 
3067 	/** @rsvd0: MBZ */
3068 	__u32 rsvd0;
3069 
3070 	/** @probed_size: Memory probed by the driver (-1 = unknown) */
3071 	__u64 probed_size;
3072 
3073 	/** @unallocated_size: Estimate of memory remaining (-1 = unknown) */
3074 	__u64 unallocated_size;
3075 
3076 	/** @rsvd1: MBZ */
3077 	__u64 rsvd1[8];
3078 };
3079 
3080 /**
3081  * struct drm_i915_query_memory_regions
3082  *
3083  * The region info query enumerates all regions known to the driver by filling
3084  * in an array of struct drm_i915_memory_region_info structures.
3085  *
3086  * Example for getting the list of supported regions:
3087  *
3088  * .. code-block:: C
3089  *
3090  *	struct drm_i915_query_memory_regions *info;
3091  *	struct drm_i915_query_item item = {
3092  *		.query_id = DRM_I915_QUERY_MEMORY_REGIONS;
3093  *	};
3094  *	struct drm_i915_query query = {
3095  *		.num_items = 1,
3096  *		.items_ptr = (uintptr_t)&item,
3097  *	};
3098  *	int err, i;
3099  *
3100  *	// First query the size of the blob we need, this needs to be large
3101  *	// enough to hold our array of regions. The kernel will fill out the
3102  *	// item.length for us, which is the number of bytes we need.
3103  *	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3104  *	if (err) ...
3105  *
3106  *	info = calloc(1, item.length);
3107  *	// Now that we allocated the required number of bytes, we call the ioctl
3108  *	// again, this time with the data_ptr pointing to our newly allocated
3109  *	// blob, which the kernel can then populate with the all the region info.
3110  *	item.data_ptr = (uintptr_t)&info,
3111  *
3112  *	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3113  *	if (err) ...
3114  *
3115  *	// We can now access each region in the array
3116  *	for (i = 0; i < info->num_regions; i++) {
3117  *		struct drm_i915_memory_region_info mr = info->regions[i];
3118  *		u16 class = mr.region.class;
3119  *		u16 instance = mr.region.instance;
3120  *
3121  *		....
3122  *	}
3123  *
3124  *	free(info);
3125  */
3126 struct drm_i915_query_memory_regions {
3127 	/** @num_regions: Number of supported regions */
3128 	__u32 num_regions;
3129 
3130 	/** @rsvd: MBZ */
3131 	__u32 rsvd[3];
3132 
3133 	/** @regions: Info about each supported region */
3134 	struct drm_i915_memory_region_info regions[];
3135 };
3136 
3137 /**
3138  * struct drm_i915_gem_create_ext - Existing gem_create behaviour, with added
3139  * extension support using struct i915_user_extension.
3140  *
3141  * Note that in the future we want to have our buffer flags here, at least for
3142  * the stuff that is immutable. Previously we would have two ioctls, one to
3143  * create the object with gem_create, and another to apply various parameters,
3144  * however this creates some ambiguity for the params which are considered
3145  * immutable. Also in general we're phasing out the various SET/GET ioctls.
3146  */
3147 struct drm_i915_gem_create_ext {
3148 	/**
3149 	 * @size: Requested size for the object.
3150 	 *
3151 	 * The (page-aligned) allocated size for the object will be returned.
3152 	 *
3153 	 *
3154 	 * DG2 64K min page size implications:
3155 	 *
3156 	 * On discrete platforms, starting from DG2, we have to contend with GTT
3157 	 * page size restrictions when dealing with I915_MEMORY_CLASS_DEVICE
3158 	 * objects.  Specifically the hardware only supports 64K or larger GTT
3159 	 * page sizes for such memory. The kernel will already ensure that all
3160 	 * I915_MEMORY_CLASS_DEVICE memory is allocated using 64K or larger page
3161 	 * sizes underneath.
3162 	 *
3163 	 * Note that the returned size here will always reflect any required
3164 	 * rounding up done by the kernel, i.e 4K will now become 64K on devices
3165 	 * such as DG2.
3166 	 *
3167 	 * Special DG2 GTT address alignment requirement:
3168 	 *
3169 	 * The GTT alignment will also need to be at least 2M for such objects.
3170 	 *
3171 	 * Note that due to how the hardware implements 64K GTT page support, we
3172 	 * have some further complications:
3173 	 *
3174 	 *   1) The entire PDE (which covers a 2MB virtual address range), must
3175 	 *   contain only 64K PTEs, i.e mixing 4K and 64K PTEs in the same
3176 	 *   PDE is forbidden by the hardware.
3177 	 *
3178 	 *   2) We still need to support 4K PTEs for I915_MEMORY_CLASS_SYSTEM
3179 	 *   objects.
3180 	 *
3181 	 * To keep things simple for userland, we mandate that any GTT mappings
3182 	 * must be aligned to and rounded up to 2MB. The kernel will internally
3183 	 * pad them out to the next 2MB boundary. As this only wastes virtual
3184 	 * address space and avoids userland having to copy any needlessly
3185 	 * complicated PDE sharing scheme (coloring) and only affects DG2, this
3186 	 * is deemed to be a good compromise.
3187 	 */
3188 	__u64 size;
3189 	/**
3190 	 * @handle: Returned handle for the object.
3191 	 *
3192 	 * Object handles are nonzero.
3193 	 */
3194 	__u32 handle;
3195 	/** @flags: MBZ */
3196 	__u32 flags;
3197 	/**
3198 	 * @extensions: The chain of extensions to apply to this object.
3199 	 *
3200 	 * This will be useful in the future when we need to support several
3201 	 * different extensions, and we need to apply more than one when
3202 	 * creating the object. See struct i915_user_extension.
3203 	 *
3204 	 * If we don't supply any extensions then we get the same old gem_create
3205 	 * behaviour.
3206 	 *
3207 	 * For I915_GEM_CREATE_EXT_MEMORY_REGIONS usage see
3208 	 * struct drm_i915_gem_create_ext_memory_regions.
3209 	 *
3210 	 * For I915_GEM_CREATE_EXT_PROTECTED_CONTENT usage see
3211 	 * struct drm_i915_gem_create_ext_protected_content.
3212 	 */
3213 #define I915_GEM_CREATE_EXT_MEMORY_REGIONS 0
3214 #define I915_GEM_CREATE_EXT_PROTECTED_CONTENT 1
3215 	__u64 extensions;
3216 };
3217 
3218 /**
3219  * struct drm_i915_gem_create_ext_memory_regions - The
3220  * I915_GEM_CREATE_EXT_MEMORY_REGIONS extension.
3221  *
3222  * Set the object with the desired set of placements/regions in priority
3223  * order. Each entry must be unique and supported by the device.
3224  *
3225  * This is provided as an array of struct drm_i915_gem_memory_class_instance, or
3226  * an equivalent layout of class:instance pair encodings. See struct
3227  * drm_i915_query_memory_regions and DRM_I915_QUERY_MEMORY_REGIONS for how to
3228  * query the supported regions for a device.
3229  *
3230  * As an example, on discrete devices, if we wish to set the placement as
3231  * device local-memory we can do something like:
3232  *
3233  * .. code-block:: C
3234  *
3235  *	struct drm_i915_gem_memory_class_instance region_lmem = {
3236  *              .memory_class = I915_MEMORY_CLASS_DEVICE,
3237  *              .memory_instance = 0,
3238  *      };
3239  *      struct drm_i915_gem_create_ext_memory_regions regions = {
3240  *              .base = { .name = I915_GEM_CREATE_EXT_MEMORY_REGIONS },
3241  *              .regions = (uintptr_t)&region_lmem,
3242  *              .num_regions = 1,
3243  *      };
3244  *      struct drm_i915_gem_create_ext create_ext = {
3245  *              .size = 16 * PAGE_SIZE,
3246  *              .extensions = (uintptr_t)&regions,
3247  *      };
3248  *
3249  *      int err = ioctl(fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create_ext);
3250  *      if (err) ...
3251  *
3252  * At which point we get the object handle in &drm_i915_gem_create_ext.handle,
3253  * along with the final object size in &drm_i915_gem_create_ext.size, which
3254  * should account for any rounding up, if required.
3255  */
3256 struct drm_i915_gem_create_ext_memory_regions {
3257 	/** @base: Extension link. See struct i915_user_extension. */
3258 	struct i915_user_extension base;
3259 
3260 	/** @pad: MBZ */
3261 	__u32 pad;
3262 	/** @num_regions: Number of elements in the @regions array. */
3263 	__u32 num_regions;
3264 	/**
3265 	 * @regions: The regions/placements array.
3266 	 *
3267 	 * An array of struct drm_i915_gem_memory_class_instance.
3268 	 */
3269 	__u64 regions;
3270 };
3271 
3272 /**
3273  * struct drm_i915_gem_create_ext_protected_content - The
3274  * I915_OBJECT_PARAM_PROTECTED_CONTENT extension.
3275  *
3276  * If this extension is provided, buffer contents are expected to be protected
3277  * by PXP encryption and require decryption for scan out and processing. This
3278  * is only possible on platforms that have PXP enabled, on all other scenarios
3279  * using this extension will cause the ioctl to fail and return -ENODEV. The
3280  * flags parameter is reserved for future expansion and must currently be set
3281  * to zero.
3282  *
3283  * The buffer contents are considered invalid after a PXP session teardown.
3284  *
3285  * The encryption is guaranteed to be processed correctly only if the object
3286  * is submitted with a context created using the
3287  * I915_CONTEXT_PARAM_PROTECTED_CONTENT flag. This will also enable extra checks
3288  * at submission time on the validity of the objects involved.
3289  *
3290  * Below is an example on how to create a protected object:
3291  *
3292  * .. code-block:: C
3293  *
3294  *      struct drm_i915_gem_create_ext_protected_content protected_ext = {
3295  *              .base = { .name = I915_GEM_CREATE_EXT_PROTECTED_CONTENT },
3296  *              .flags = 0,
3297  *      };
3298  *      struct drm_i915_gem_create_ext create_ext = {
3299  *              .size = PAGE_SIZE,
3300  *              .extensions = (uintptr_t)&protected_ext,
3301  *      };
3302  *
3303  *      int err = ioctl(fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create_ext);
3304  *      if (err) ...
3305  */
3306 struct drm_i915_gem_create_ext_protected_content {
3307 	/** @base: Extension link. See struct i915_user_extension. */
3308 	struct i915_user_extension base;
3309 	/** @flags: reserved for future usage, currently MBZ */
3310 	__u32 flags;
3311 };
3312 
3313 /* ID of the protected content session managed by i915 when PXP is active */
3314 #define I915_PROTECTED_CONTENT_DEFAULT_SESSION 0xf
3315 
3316 #if defined(__cplusplus)
3317 }
3318 #endif
3319 
3320 #endif /* _UAPI_I915_DRM_H_ */
3321