xref: /openbmc/linux/include/uapi/drm/i915_drm.h (revision f43e47c090dc7fe32d5410d8740c3a004eb2676f)
1 /*
2  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the
14  * next paragraph) shall be included in all copies or substantial portions
15  * of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
20  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
21  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24  *
25  */
26 
27 #ifndef _UAPI_I915_DRM_H_
28 #define _UAPI_I915_DRM_H_
29 
30 #include "drm.h"
31 
32 #if defined(__cplusplus)
33 extern "C" {
34 #endif
35 
36 /* Please note that modifications to all structs defined here are
37  * subject to backwards-compatibility constraints.
38  */
39 
40 /**
41  * DOC: uevents generated by i915 on it's device node
42  *
43  * I915_L3_PARITY_UEVENT - Generated when the driver receives a parity mismatch
44  *	event from the gpu l3 cache. Additional information supplied is ROW,
45  *	BANK, SUBBANK, SLICE of the affected cacheline. Userspace should keep
46  *	track of these events and if a specific cache-line seems to have a
47  *	persistent error remap it with the l3 remapping tool supplied in
48  *	intel-gpu-tools.  The value supplied with the event is always 1.
49  *
50  * I915_ERROR_UEVENT - Generated upon error detection, currently only via
51  *	hangcheck. The error detection event is a good indicator of when things
52  *	began to go badly. The value supplied with the event is a 1 upon error
53  *	detection, and a 0 upon reset completion, signifying no more error
54  *	exists. NOTE: Disabling hangcheck or reset via module parameter will
55  *	cause the related events to not be seen.
56  *
57  * I915_RESET_UEVENT - Event is generated just before an attempt to reset the
58  *	GPU. The value supplied with the event is always 1. NOTE: Disable
59  *	reset via module parameter will cause this event to not be seen.
60  */
61 #define I915_L3_PARITY_UEVENT		"L3_PARITY_ERROR"
62 #define I915_ERROR_UEVENT		"ERROR"
63 #define I915_RESET_UEVENT		"RESET"
64 
65 /**
66  * struct i915_user_extension - Base class for defining a chain of extensions
67  *
68  * Many interfaces need to grow over time. In most cases we can simply
69  * extend the struct and have userspace pass in more data. Another option,
70  * as demonstrated by Vulkan's approach to providing extensions for forward
71  * and backward compatibility, is to use a list of optional structs to
72  * provide those extra details.
73  *
74  * The key advantage to using an extension chain is that it allows us to
75  * redefine the interface more easily than an ever growing struct of
76  * increasing complexity, and for large parts of that interface to be
77  * entirely optional. The downside is more pointer chasing; chasing across
78  * the __user boundary with pointers encapsulated inside u64.
79  *
80  * Example chaining:
81  *
82  * .. code-block:: C
83  *
84  *	struct i915_user_extension ext3 {
85  *		.next_extension = 0, // end
86  *		.name = ...,
87  *	};
88  *	struct i915_user_extension ext2 {
89  *		.next_extension = (uintptr_t)&ext3,
90  *		.name = ...,
91  *	};
92  *	struct i915_user_extension ext1 {
93  *		.next_extension = (uintptr_t)&ext2,
94  *		.name = ...,
95  *	};
96  *
97  * Typically the struct i915_user_extension would be embedded in some uAPI
98  * struct, and in this case we would feed it the head of the chain(i.e ext1),
99  * which would then apply all of the above extensions.
100  *
101  */
102 struct i915_user_extension {
103 	/**
104 	 * @next_extension:
105 	 *
106 	 * Pointer to the next struct i915_user_extension, or zero if the end.
107 	 */
108 	__u64 next_extension;
109 	/**
110 	 * @name: Name of the extension.
111 	 *
112 	 * Note that the name here is just some integer.
113 	 *
114 	 * Also note that the name space for this is not global for the whole
115 	 * driver, but rather its scope/meaning is limited to the specific piece
116 	 * of uAPI which has embedded the struct i915_user_extension.
117 	 */
118 	__u32 name;
119 	/**
120 	 * @flags: MBZ
121 	 *
122 	 * All undefined bits must be zero.
123 	 */
124 	__u32 flags;
125 	/**
126 	 * @rsvd: MBZ
127 	 *
128 	 * Reserved for future use; must be zero.
129 	 */
130 	__u32 rsvd[4];
131 };
132 
133 /*
134  * MOCS indexes used for GPU surfaces, defining the cacheability of the
135  * surface data and the coherency for this data wrt. CPU vs. GPU accesses.
136  */
137 enum i915_mocs_table_index {
138 	/*
139 	 * Not cached anywhere, coherency between CPU and GPU accesses is
140 	 * guaranteed.
141 	 */
142 	I915_MOCS_UNCACHED,
143 	/*
144 	 * Cacheability and coherency controlled by the kernel automatically
145 	 * based on the DRM_I915_GEM_SET_CACHING IOCTL setting and the current
146 	 * usage of the surface (used for display scanout or not).
147 	 */
148 	I915_MOCS_PTE,
149 	/*
150 	 * Cached in all GPU caches available on the platform.
151 	 * Coherency between CPU and GPU accesses to the surface is not
152 	 * guaranteed without extra synchronization.
153 	 */
154 	I915_MOCS_CACHED,
155 };
156 
157 /**
158  * enum drm_i915_gem_engine_class - uapi engine type enumeration
159  *
160  * Different engines serve different roles, and there may be more than one
161  * engine serving each role.  This enum provides a classification of the role
162  * of the engine, which may be used when requesting operations to be performed
163  * on a certain subset of engines, or for providing information about that
164  * group.
165  */
166 enum drm_i915_gem_engine_class {
167 	/**
168 	 * @I915_ENGINE_CLASS_RENDER:
169 	 *
170 	 * Render engines support instructions used for 3D, Compute (GPGPU),
171 	 * and programmable media workloads.  These instructions fetch data and
172 	 * dispatch individual work items to threads that operate in parallel.
173 	 * The threads run small programs (called "kernels" or "shaders") on
174 	 * the GPU's execution units (EUs).
175 	 */
176 	I915_ENGINE_CLASS_RENDER	= 0,
177 
178 	/**
179 	 * @I915_ENGINE_CLASS_COPY:
180 	 *
181 	 * Copy engines (also referred to as "blitters") support instructions
182 	 * that move blocks of data from one location in memory to another,
183 	 * or that fill a specified location of memory with fixed data.
184 	 * Copy engines can perform pre-defined logical or bitwise operations
185 	 * on the source, destination, or pattern data.
186 	 */
187 	I915_ENGINE_CLASS_COPY		= 1,
188 
189 	/**
190 	 * @I915_ENGINE_CLASS_VIDEO:
191 	 *
192 	 * Video engines (also referred to as "bit stream decode" (BSD) or
193 	 * "vdbox") support instructions that perform fixed-function media
194 	 * decode and encode.
195 	 */
196 	I915_ENGINE_CLASS_VIDEO		= 2,
197 
198 	/**
199 	 * @I915_ENGINE_CLASS_VIDEO_ENHANCE:
200 	 *
201 	 * Video enhancement engines (also referred to as "vebox") support
202 	 * instructions related to image enhancement.
203 	 */
204 	I915_ENGINE_CLASS_VIDEO_ENHANCE	= 3,
205 
206 	/**
207 	 * @I915_ENGINE_CLASS_COMPUTE:
208 	 *
209 	 * Compute engines support a subset of the instructions available
210 	 * on render engines:  compute engines support Compute (GPGPU) and
211 	 * programmable media workloads, but do not support the 3D pipeline.
212 	 */
213 	I915_ENGINE_CLASS_COMPUTE	= 4,
214 
215 	/* Values in this enum should be kept compact. */
216 
217 	/**
218 	 * @I915_ENGINE_CLASS_INVALID:
219 	 *
220 	 * Placeholder value to represent an invalid engine class assignment.
221 	 */
222 	I915_ENGINE_CLASS_INVALID	= -1
223 };
224 
225 /**
226  * struct i915_engine_class_instance - Engine class/instance identifier
227  *
228  * There may be more than one engine fulfilling any role within the system.
229  * Each engine of a class is given a unique instance number and therefore
230  * any engine can be specified by its class:instance tuplet. APIs that allow
231  * access to any engine in the system will use struct i915_engine_class_instance
232  * for this identification.
233  */
234 struct i915_engine_class_instance {
235 	/**
236 	 * @engine_class:
237 	 *
238 	 * Engine class from enum drm_i915_gem_engine_class
239 	 */
240 	__u16 engine_class;
241 #define I915_ENGINE_CLASS_INVALID_NONE -1
242 #define I915_ENGINE_CLASS_INVALID_VIRTUAL -2
243 
244 	/**
245 	 * @engine_instance:
246 	 *
247 	 * Engine instance.
248 	 */
249 	__u16 engine_instance;
250 };
251 
252 /**
253  * DOC: perf_events exposed by i915 through /sys/bus/event_sources/drivers/i915
254  *
255  */
256 
257 enum drm_i915_pmu_engine_sample {
258 	I915_SAMPLE_BUSY = 0,
259 	I915_SAMPLE_WAIT = 1,
260 	I915_SAMPLE_SEMA = 2
261 };
262 
263 #define I915_PMU_SAMPLE_BITS (4)
264 #define I915_PMU_SAMPLE_MASK (0xf)
265 #define I915_PMU_SAMPLE_INSTANCE_BITS (8)
266 #define I915_PMU_CLASS_SHIFT \
267 	(I915_PMU_SAMPLE_BITS + I915_PMU_SAMPLE_INSTANCE_BITS)
268 
269 #define __I915_PMU_ENGINE(class, instance, sample) \
270 	((class) << I915_PMU_CLASS_SHIFT | \
271 	(instance) << I915_PMU_SAMPLE_BITS | \
272 	(sample))
273 
274 #define I915_PMU_ENGINE_BUSY(class, instance) \
275 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_BUSY)
276 
277 #define I915_PMU_ENGINE_WAIT(class, instance) \
278 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_WAIT)
279 
280 #define I915_PMU_ENGINE_SEMA(class, instance) \
281 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_SEMA)
282 
283 #define __I915_PMU_OTHER(x) (__I915_PMU_ENGINE(0xff, 0xff, 0xf) + 1 + (x))
284 
285 #define I915_PMU_ACTUAL_FREQUENCY	__I915_PMU_OTHER(0)
286 #define I915_PMU_REQUESTED_FREQUENCY	__I915_PMU_OTHER(1)
287 #define I915_PMU_INTERRUPTS		__I915_PMU_OTHER(2)
288 #define I915_PMU_RC6_RESIDENCY		__I915_PMU_OTHER(3)
289 #define I915_PMU_SOFTWARE_GT_AWAKE_TIME	__I915_PMU_OTHER(4)
290 
291 #define I915_PMU_LAST /* Deprecated - do not use */ I915_PMU_RC6_RESIDENCY
292 
293 /* Each region is a minimum of 16k, and there are at most 255 of them.
294  */
295 #define I915_NR_TEX_REGIONS 255	/* table size 2k - maximum due to use
296 				 * of chars for next/prev indices */
297 #define I915_LOG_MIN_TEX_REGION_SIZE 14
298 
299 typedef struct _drm_i915_init {
300 	enum {
301 		I915_INIT_DMA = 0x01,
302 		I915_CLEANUP_DMA = 0x02,
303 		I915_RESUME_DMA = 0x03
304 	} func;
305 	unsigned int mmio_offset;
306 	int sarea_priv_offset;
307 	unsigned int ring_start;
308 	unsigned int ring_end;
309 	unsigned int ring_size;
310 	unsigned int front_offset;
311 	unsigned int back_offset;
312 	unsigned int depth_offset;
313 	unsigned int w;
314 	unsigned int h;
315 	unsigned int pitch;
316 	unsigned int pitch_bits;
317 	unsigned int back_pitch;
318 	unsigned int depth_pitch;
319 	unsigned int cpp;
320 	unsigned int chipset;
321 } drm_i915_init_t;
322 
323 typedef struct _drm_i915_sarea {
324 	struct drm_tex_region texList[I915_NR_TEX_REGIONS + 1];
325 	int last_upload;	/* last time texture was uploaded */
326 	int last_enqueue;	/* last time a buffer was enqueued */
327 	int last_dispatch;	/* age of the most recently dispatched buffer */
328 	int ctxOwner;		/* last context to upload state */
329 	int texAge;
330 	int pf_enabled;		/* is pageflipping allowed? */
331 	int pf_active;
332 	int pf_current_page;	/* which buffer is being displayed? */
333 	int perf_boxes;		/* performance boxes to be displayed */
334 	int width, height;      /* screen size in pixels */
335 
336 	drm_handle_t front_handle;
337 	int front_offset;
338 	int front_size;
339 
340 	drm_handle_t back_handle;
341 	int back_offset;
342 	int back_size;
343 
344 	drm_handle_t depth_handle;
345 	int depth_offset;
346 	int depth_size;
347 
348 	drm_handle_t tex_handle;
349 	int tex_offset;
350 	int tex_size;
351 	int log_tex_granularity;
352 	int pitch;
353 	int rotation;           /* 0, 90, 180 or 270 */
354 	int rotated_offset;
355 	int rotated_size;
356 	int rotated_pitch;
357 	int virtualX, virtualY;
358 
359 	unsigned int front_tiled;
360 	unsigned int back_tiled;
361 	unsigned int depth_tiled;
362 	unsigned int rotated_tiled;
363 	unsigned int rotated2_tiled;
364 
365 	int pipeA_x;
366 	int pipeA_y;
367 	int pipeA_w;
368 	int pipeA_h;
369 	int pipeB_x;
370 	int pipeB_y;
371 	int pipeB_w;
372 	int pipeB_h;
373 
374 	/* fill out some space for old userspace triple buffer */
375 	drm_handle_t unused_handle;
376 	__u32 unused1, unused2, unused3;
377 
378 	/* buffer object handles for static buffers. May change
379 	 * over the lifetime of the client.
380 	 */
381 	__u32 front_bo_handle;
382 	__u32 back_bo_handle;
383 	__u32 unused_bo_handle;
384 	__u32 depth_bo_handle;
385 
386 } drm_i915_sarea_t;
387 
388 /* due to userspace building against these headers we need some compat here */
389 #define planeA_x pipeA_x
390 #define planeA_y pipeA_y
391 #define planeA_w pipeA_w
392 #define planeA_h pipeA_h
393 #define planeB_x pipeB_x
394 #define planeB_y pipeB_y
395 #define planeB_w pipeB_w
396 #define planeB_h pipeB_h
397 
398 /* Flags for perf_boxes
399  */
400 #define I915_BOX_RING_EMPTY    0x1
401 #define I915_BOX_FLIP          0x2
402 #define I915_BOX_WAIT          0x4
403 #define I915_BOX_TEXTURE_LOAD  0x8
404 #define I915_BOX_LOST_CONTEXT  0x10
405 
406 /*
407  * i915 specific ioctls.
408  *
409  * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie
410  * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset
411  * against DRM_COMMAND_BASE and should be between [0x0, 0x60).
412  */
413 #define DRM_I915_INIT		0x00
414 #define DRM_I915_FLUSH		0x01
415 #define DRM_I915_FLIP		0x02
416 #define DRM_I915_BATCHBUFFER	0x03
417 #define DRM_I915_IRQ_EMIT	0x04
418 #define DRM_I915_IRQ_WAIT	0x05
419 #define DRM_I915_GETPARAM	0x06
420 #define DRM_I915_SETPARAM	0x07
421 #define DRM_I915_ALLOC		0x08
422 #define DRM_I915_FREE		0x09
423 #define DRM_I915_INIT_HEAP	0x0a
424 #define DRM_I915_CMDBUFFER	0x0b
425 #define DRM_I915_DESTROY_HEAP	0x0c
426 #define DRM_I915_SET_VBLANK_PIPE	0x0d
427 #define DRM_I915_GET_VBLANK_PIPE	0x0e
428 #define DRM_I915_VBLANK_SWAP	0x0f
429 #define DRM_I915_HWS_ADDR	0x11
430 #define DRM_I915_GEM_INIT	0x13
431 #define DRM_I915_GEM_EXECBUFFER	0x14
432 #define DRM_I915_GEM_PIN	0x15
433 #define DRM_I915_GEM_UNPIN	0x16
434 #define DRM_I915_GEM_BUSY	0x17
435 #define DRM_I915_GEM_THROTTLE	0x18
436 #define DRM_I915_GEM_ENTERVT	0x19
437 #define DRM_I915_GEM_LEAVEVT	0x1a
438 #define DRM_I915_GEM_CREATE	0x1b
439 #define DRM_I915_GEM_PREAD	0x1c
440 #define DRM_I915_GEM_PWRITE	0x1d
441 #define DRM_I915_GEM_MMAP	0x1e
442 #define DRM_I915_GEM_SET_DOMAIN	0x1f
443 #define DRM_I915_GEM_SW_FINISH	0x20
444 #define DRM_I915_GEM_SET_TILING	0x21
445 #define DRM_I915_GEM_GET_TILING	0x22
446 #define DRM_I915_GEM_GET_APERTURE 0x23
447 #define DRM_I915_GEM_MMAP_GTT	0x24
448 #define DRM_I915_GET_PIPE_FROM_CRTC_ID	0x25
449 #define DRM_I915_GEM_MADVISE	0x26
450 #define DRM_I915_OVERLAY_PUT_IMAGE	0x27
451 #define DRM_I915_OVERLAY_ATTRS	0x28
452 #define DRM_I915_GEM_EXECBUFFER2	0x29
453 #define DRM_I915_GEM_EXECBUFFER2_WR	DRM_I915_GEM_EXECBUFFER2
454 #define DRM_I915_GET_SPRITE_COLORKEY	0x2a
455 #define DRM_I915_SET_SPRITE_COLORKEY	0x2b
456 #define DRM_I915_GEM_WAIT	0x2c
457 #define DRM_I915_GEM_CONTEXT_CREATE	0x2d
458 #define DRM_I915_GEM_CONTEXT_DESTROY	0x2e
459 #define DRM_I915_GEM_SET_CACHING	0x2f
460 #define DRM_I915_GEM_GET_CACHING	0x30
461 #define DRM_I915_REG_READ		0x31
462 #define DRM_I915_GET_RESET_STATS	0x32
463 #define DRM_I915_GEM_USERPTR		0x33
464 #define DRM_I915_GEM_CONTEXT_GETPARAM	0x34
465 #define DRM_I915_GEM_CONTEXT_SETPARAM	0x35
466 #define DRM_I915_PERF_OPEN		0x36
467 #define DRM_I915_PERF_ADD_CONFIG	0x37
468 #define DRM_I915_PERF_REMOVE_CONFIG	0x38
469 #define DRM_I915_QUERY			0x39
470 #define DRM_I915_GEM_VM_CREATE		0x3a
471 #define DRM_I915_GEM_VM_DESTROY		0x3b
472 #define DRM_I915_GEM_CREATE_EXT		0x3c
473 /* Must be kept compact -- no holes */
474 
475 #define DRM_IOCTL_I915_INIT		DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT, drm_i915_init_t)
476 #define DRM_IOCTL_I915_FLUSH		DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLUSH)
477 #define DRM_IOCTL_I915_FLIP		DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLIP)
478 #define DRM_IOCTL_I915_BATCHBUFFER	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_BATCHBUFFER, drm_i915_batchbuffer_t)
479 #define DRM_IOCTL_I915_IRQ_EMIT         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_IRQ_EMIT, drm_i915_irq_emit_t)
480 #define DRM_IOCTL_I915_IRQ_WAIT         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_IRQ_WAIT, drm_i915_irq_wait_t)
481 #define DRM_IOCTL_I915_GETPARAM         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GETPARAM, drm_i915_getparam_t)
482 #define DRM_IOCTL_I915_SETPARAM         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SETPARAM, drm_i915_setparam_t)
483 #define DRM_IOCTL_I915_ALLOC            DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_ALLOC, drm_i915_mem_alloc_t)
484 #define DRM_IOCTL_I915_FREE             DRM_IOW( DRM_COMMAND_BASE + DRM_I915_FREE, drm_i915_mem_free_t)
485 #define DRM_IOCTL_I915_INIT_HEAP        DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT_HEAP, drm_i915_mem_init_heap_t)
486 #define DRM_IOCTL_I915_CMDBUFFER	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_CMDBUFFER, drm_i915_cmdbuffer_t)
487 #define DRM_IOCTL_I915_DESTROY_HEAP	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_DESTROY_HEAP, drm_i915_mem_destroy_heap_t)
488 #define DRM_IOCTL_I915_SET_VBLANK_PIPE	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
489 #define DRM_IOCTL_I915_GET_VBLANK_PIPE	DRM_IOR( DRM_COMMAND_BASE + DRM_I915_GET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
490 #define DRM_IOCTL_I915_VBLANK_SWAP	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_VBLANK_SWAP, drm_i915_vblank_swap_t)
491 #define DRM_IOCTL_I915_HWS_ADDR		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_HWS_ADDR, struct drm_i915_gem_init)
492 #define DRM_IOCTL_I915_GEM_INIT		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_INIT, struct drm_i915_gem_init)
493 #define DRM_IOCTL_I915_GEM_EXECBUFFER	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER, struct drm_i915_gem_execbuffer)
494 #define DRM_IOCTL_I915_GEM_EXECBUFFER2	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2, struct drm_i915_gem_execbuffer2)
495 #define DRM_IOCTL_I915_GEM_EXECBUFFER2_WR	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2_WR, struct drm_i915_gem_execbuffer2)
496 #define DRM_IOCTL_I915_GEM_PIN		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_PIN, struct drm_i915_gem_pin)
497 #define DRM_IOCTL_I915_GEM_UNPIN	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_UNPIN, struct drm_i915_gem_unpin)
498 #define DRM_IOCTL_I915_GEM_BUSY		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_BUSY, struct drm_i915_gem_busy)
499 #define DRM_IOCTL_I915_GEM_SET_CACHING		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_SET_CACHING, struct drm_i915_gem_caching)
500 #define DRM_IOCTL_I915_GEM_GET_CACHING		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_GET_CACHING, struct drm_i915_gem_caching)
501 #define DRM_IOCTL_I915_GEM_THROTTLE	DRM_IO ( DRM_COMMAND_BASE + DRM_I915_GEM_THROTTLE)
502 #define DRM_IOCTL_I915_GEM_ENTERVT	DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_ENTERVT)
503 #define DRM_IOCTL_I915_GEM_LEAVEVT	DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_LEAVEVT)
504 #define DRM_IOCTL_I915_GEM_CREATE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE, struct drm_i915_gem_create)
505 #define DRM_IOCTL_I915_GEM_CREATE_EXT	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE_EXT, struct drm_i915_gem_create_ext)
506 #define DRM_IOCTL_I915_GEM_PREAD	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PREAD, struct drm_i915_gem_pread)
507 #define DRM_IOCTL_I915_GEM_PWRITE	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PWRITE, struct drm_i915_gem_pwrite)
508 #define DRM_IOCTL_I915_GEM_MMAP		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP, struct drm_i915_gem_mmap)
509 #define DRM_IOCTL_I915_GEM_MMAP_GTT	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_gtt)
510 #define DRM_IOCTL_I915_GEM_MMAP_OFFSET	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_offset)
511 #define DRM_IOCTL_I915_GEM_SET_DOMAIN	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SET_DOMAIN, struct drm_i915_gem_set_domain)
512 #define DRM_IOCTL_I915_GEM_SW_FINISH	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SW_FINISH, struct drm_i915_gem_sw_finish)
513 #define DRM_IOCTL_I915_GEM_SET_TILING	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_SET_TILING, struct drm_i915_gem_set_tiling)
514 #define DRM_IOCTL_I915_GEM_GET_TILING	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_TILING, struct drm_i915_gem_get_tiling)
515 #define DRM_IOCTL_I915_GEM_GET_APERTURE	DRM_IOR  (DRM_COMMAND_BASE + DRM_I915_GEM_GET_APERTURE, struct drm_i915_gem_get_aperture)
516 #define DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_PIPE_FROM_CRTC_ID, struct drm_i915_get_pipe_from_crtc_id)
517 #define DRM_IOCTL_I915_GEM_MADVISE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MADVISE, struct drm_i915_gem_madvise)
518 #define DRM_IOCTL_I915_OVERLAY_PUT_IMAGE	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_OVERLAY_PUT_IMAGE, struct drm_intel_overlay_put_image)
519 #define DRM_IOCTL_I915_OVERLAY_ATTRS	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_OVERLAY_ATTRS, struct drm_intel_overlay_attrs)
520 #define DRM_IOCTL_I915_SET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_SET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
521 #define DRM_IOCTL_I915_GET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
522 #define DRM_IOCTL_I915_GEM_WAIT		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_WAIT, struct drm_i915_gem_wait)
523 #define DRM_IOCTL_I915_GEM_CONTEXT_CREATE	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create)
524 #define DRM_IOCTL_I915_GEM_CONTEXT_CREATE_EXT	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create_ext)
525 #define DRM_IOCTL_I915_GEM_CONTEXT_DESTROY	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_DESTROY, struct drm_i915_gem_context_destroy)
526 #define DRM_IOCTL_I915_REG_READ			DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_REG_READ, struct drm_i915_reg_read)
527 #define DRM_IOCTL_I915_GET_RESET_STATS		DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GET_RESET_STATS, struct drm_i915_reset_stats)
528 #define DRM_IOCTL_I915_GEM_USERPTR			DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_USERPTR, struct drm_i915_gem_userptr)
529 #define DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_GETPARAM, struct drm_i915_gem_context_param)
530 #define DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_SETPARAM, struct drm_i915_gem_context_param)
531 #define DRM_IOCTL_I915_PERF_OPEN	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_OPEN, struct drm_i915_perf_open_param)
532 #define DRM_IOCTL_I915_PERF_ADD_CONFIG	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_ADD_CONFIG, struct drm_i915_perf_oa_config)
533 #define DRM_IOCTL_I915_PERF_REMOVE_CONFIG	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_REMOVE_CONFIG, __u64)
534 #define DRM_IOCTL_I915_QUERY			DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_QUERY, struct drm_i915_query)
535 #define DRM_IOCTL_I915_GEM_VM_CREATE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_VM_CREATE, struct drm_i915_gem_vm_control)
536 #define DRM_IOCTL_I915_GEM_VM_DESTROY	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_VM_DESTROY, struct drm_i915_gem_vm_control)
537 
538 /* Allow drivers to submit batchbuffers directly to hardware, relying
539  * on the security mechanisms provided by hardware.
540  */
541 typedef struct drm_i915_batchbuffer {
542 	int start;		/* agp offset */
543 	int used;		/* nr bytes in use */
544 	int DR1;		/* hw flags for GFX_OP_DRAWRECT_INFO */
545 	int DR4;		/* window origin for GFX_OP_DRAWRECT_INFO */
546 	int num_cliprects;	/* mulitpass with multiple cliprects? */
547 	struct drm_clip_rect __user *cliprects;	/* pointer to userspace cliprects */
548 } drm_i915_batchbuffer_t;
549 
550 /* As above, but pass a pointer to userspace buffer which can be
551  * validated by the kernel prior to sending to hardware.
552  */
553 typedef struct _drm_i915_cmdbuffer {
554 	char __user *buf;	/* pointer to userspace command buffer */
555 	int sz;			/* nr bytes in buf */
556 	int DR1;		/* hw flags for GFX_OP_DRAWRECT_INFO */
557 	int DR4;		/* window origin for GFX_OP_DRAWRECT_INFO */
558 	int num_cliprects;	/* mulitpass with multiple cliprects? */
559 	struct drm_clip_rect __user *cliprects;	/* pointer to userspace cliprects */
560 } drm_i915_cmdbuffer_t;
561 
562 /* Userspace can request & wait on irq's:
563  */
564 typedef struct drm_i915_irq_emit {
565 	int __user *irq_seq;
566 } drm_i915_irq_emit_t;
567 
568 typedef struct drm_i915_irq_wait {
569 	int irq_seq;
570 } drm_i915_irq_wait_t;
571 
572 /*
573  * Different modes of per-process Graphics Translation Table,
574  * see I915_PARAM_HAS_ALIASING_PPGTT
575  */
576 #define I915_GEM_PPGTT_NONE	0
577 #define I915_GEM_PPGTT_ALIASING	1
578 #define I915_GEM_PPGTT_FULL	2
579 
580 /* Ioctl to query kernel params:
581  */
582 #define I915_PARAM_IRQ_ACTIVE            1
583 #define I915_PARAM_ALLOW_BATCHBUFFER     2
584 #define I915_PARAM_LAST_DISPATCH         3
585 #define I915_PARAM_CHIPSET_ID            4
586 #define I915_PARAM_HAS_GEM               5
587 #define I915_PARAM_NUM_FENCES_AVAIL      6
588 #define I915_PARAM_HAS_OVERLAY           7
589 #define I915_PARAM_HAS_PAGEFLIPPING	 8
590 #define I915_PARAM_HAS_EXECBUF2          9
591 #define I915_PARAM_HAS_BSD		 10
592 #define I915_PARAM_HAS_BLT		 11
593 #define I915_PARAM_HAS_RELAXED_FENCING	 12
594 #define I915_PARAM_HAS_COHERENT_RINGS	 13
595 #define I915_PARAM_HAS_EXEC_CONSTANTS	 14
596 #define I915_PARAM_HAS_RELAXED_DELTA	 15
597 #define I915_PARAM_HAS_GEN7_SOL_RESET	 16
598 #define I915_PARAM_HAS_LLC     	 	 17
599 #define I915_PARAM_HAS_ALIASING_PPGTT	 18
600 #define I915_PARAM_HAS_WAIT_TIMEOUT	 19
601 #define I915_PARAM_HAS_SEMAPHORES	 20
602 #define I915_PARAM_HAS_PRIME_VMAP_FLUSH	 21
603 #define I915_PARAM_HAS_VEBOX		 22
604 #define I915_PARAM_HAS_SECURE_BATCHES	 23
605 #define I915_PARAM_HAS_PINNED_BATCHES	 24
606 #define I915_PARAM_HAS_EXEC_NO_RELOC	 25
607 #define I915_PARAM_HAS_EXEC_HANDLE_LUT   26
608 #define I915_PARAM_HAS_WT     	 	 27
609 #define I915_PARAM_CMD_PARSER_VERSION	 28
610 #define I915_PARAM_HAS_COHERENT_PHYS_GTT 29
611 #define I915_PARAM_MMAP_VERSION          30
612 #define I915_PARAM_HAS_BSD2		 31
613 #define I915_PARAM_REVISION              32
614 #define I915_PARAM_SUBSLICE_TOTAL	 33
615 #define I915_PARAM_EU_TOTAL		 34
616 #define I915_PARAM_HAS_GPU_RESET	 35
617 #define I915_PARAM_HAS_RESOURCE_STREAMER 36
618 #define I915_PARAM_HAS_EXEC_SOFTPIN	 37
619 #define I915_PARAM_HAS_POOLED_EU	 38
620 #define I915_PARAM_MIN_EU_IN_POOL	 39
621 #define I915_PARAM_MMAP_GTT_VERSION	 40
622 
623 /*
624  * Query whether DRM_I915_GEM_EXECBUFFER2 supports user defined execution
625  * priorities and the driver will attempt to execute batches in priority order.
626  * The param returns a capability bitmask, nonzero implies that the scheduler
627  * is enabled, with different features present according to the mask.
628  *
629  * The initial priority for each batch is supplied by the context and is
630  * controlled via I915_CONTEXT_PARAM_PRIORITY.
631  */
632 #define I915_PARAM_HAS_SCHEDULER	 41
633 #define   I915_SCHEDULER_CAP_ENABLED	(1ul << 0)
634 #define   I915_SCHEDULER_CAP_PRIORITY	(1ul << 1)
635 #define   I915_SCHEDULER_CAP_PREEMPTION	(1ul << 2)
636 #define   I915_SCHEDULER_CAP_SEMAPHORES	(1ul << 3)
637 #define   I915_SCHEDULER_CAP_ENGINE_BUSY_STATS	(1ul << 4)
638 /*
639  * Indicates the 2k user priority levels are statically mapped into 3 buckets as
640  * follows:
641  *
642  * -1k to -1	Low priority
643  * 0		Normal priority
644  * 1 to 1k	Highest priority
645  */
646 #define   I915_SCHEDULER_CAP_STATIC_PRIORITY_MAP	(1ul << 5)
647 
648 /*
649  * Query the status of HuC load.
650  *
651  * The query can fail in the following scenarios with the listed error codes:
652  *  -ENODEV if HuC is not present on this platform,
653  *  -EOPNOTSUPP if HuC firmware usage is disabled,
654  *  -ENOPKG if HuC firmware fetch failed,
655  *  -ENOEXEC if HuC firmware is invalid or mismatched,
656  *  -ENOMEM if i915 failed to prepare the FW objects for transfer to the uC,
657  *  -EIO if the FW transfer or the FW authentication failed.
658  *
659  * If the IOCTL is successful, the returned parameter will be set to one of the
660  * following values:
661  *  * 0 if HuC firmware load is not complete,
662  *  * 1 if HuC firmware is authenticated and running.
663  */
664 #define I915_PARAM_HUC_STATUS		 42
665 
666 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to opt-out of
667  * synchronisation with implicit fencing on individual objects.
668  * See EXEC_OBJECT_ASYNC.
669  */
670 #define I915_PARAM_HAS_EXEC_ASYNC	 43
671 
672 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports explicit fence support -
673  * both being able to pass in a sync_file fd to wait upon before executing,
674  * and being able to return a new sync_file fd that is signaled when the
675  * current request is complete. See I915_EXEC_FENCE_IN and I915_EXEC_FENCE_OUT.
676  */
677 #define I915_PARAM_HAS_EXEC_FENCE	 44
678 
679 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to capture
680  * user specified bufffers for post-mortem debugging of GPU hangs. See
681  * EXEC_OBJECT_CAPTURE.
682  */
683 #define I915_PARAM_HAS_EXEC_CAPTURE	 45
684 
685 #define I915_PARAM_SLICE_MASK		 46
686 
687 /* Assuming it's uniform for each slice, this queries the mask of subslices
688  * per-slice for this system.
689  */
690 #define I915_PARAM_SUBSLICE_MASK	 47
691 
692 /*
693  * Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying the batch buffer
694  * as the first execobject as opposed to the last. See I915_EXEC_BATCH_FIRST.
695  */
696 #define I915_PARAM_HAS_EXEC_BATCH_FIRST	 48
697 
698 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
699  * drm_i915_gem_exec_fence structures.  See I915_EXEC_FENCE_ARRAY.
700  */
701 #define I915_PARAM_HAS_EXEC_FENCE_ARRAY  49
702 
703 /*
704  * Query whether every context (both per-file default and user created) is
705  * isolated (insofar as HW supports). If this parameter is not true, then
706  * freshly created contexts may inherit values from an existing context,
707  * rather than default HW values. If true, it also ensures (insofar as HW
708  * supports) that all state set by this context will not leak to any other
709  * context.
710  *
711  * As not every engine across every gen support contexts, the returned
712  * value reports the support of context isolation for individual engines by
713  * returning a bitmask of each engine class set to true if that class supports
714  * isolation.
715  */
716 #define I915_PARAM_HAS_CONTEXT_ISOLATION 50
717 
718 /* Frequency of the command streamer timestamps given by the *_TIMESTAMP
719  * registers. This used to be fixed per platform but from CNL onwards, this
720  * might vary depending on the parts.
721  */
722 #define I915_PARAM_CS_TIMESTAMP_FREQUENCY 51
723 
724 /*
725  * Once upon a time we supposed that writes through the GGTT would be
726  * immediately in physical memory (once flushed out of the CPU path). However,
727  * on a few different processors and chipsets, this is not necessarily the case
728  * as the writes appear to be buffered internally. Thus a read of the backing
729  * storage (physical memory) via a different path (with different physical tags
730  * to the indirect write via the GGTT) will see stale values from before
731  * the GGTT write. Inside the kernel, we can for the most part keep track of
732  * the different read/write domains in use (e.g. set-domain), but the assumption
733  * of coherency is baked into the ABI, hence reporting its true state in this
734  * parameter.
735  *
736  * Reports true when writes via mmap_gtt are immediately visible following an
737  * lfence to flush the WCB.
738  *
739  * Reports false when writes via mmap_gtt are indeterminately delayed in an in
740  * internal buffer and are _not_ immediately visible to third parties accessing
741  * directly via mmap_cpu/mmap_wc. Use of mmap_gtt as part of an IPC
742  * communications channel when reporting false is strongly disadvised.
743  */
744 #define I915_PARAM_MMAP_GTT_COHERENT	52
745 
746 /*
747  * Query whether DRM_I915_GEM_EXECBUFFER2 supports coordination of parallel
748  * execution through use of explicit fence support.
749  * See I915_EXEC_FENCE_OUT and I915_EXEC_FENCE_SUBMIT.
750  */
751 #define I915_PARAM_HAS_EXEC_SUBMIT_FENCE 53
752 
753 /*
754  * Revision of the i915-perf uAPI. The value returned helps determine what
755  * i915-perf features are available. See drm_i915_perf_property_id.
756  */
757 #define I915_PARAM_PERF_REVISION	54
758 
759 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
760  * timeline syncobj through drm_i915_gem_execbuffer_ext_timeline_fences. See
761  * I915_EXEC_USE_EXTENSIONS.
762  */
763 #define I915_PARAM_HAS_EXEC_TIMELINE_FENCES 55
764 
765 /* Query if the kernel supports the I915_USERPTR_PROBE flag. */
766 #define I915_PARAM_HAS_USERPTR_PROBE 56
767 
768 /*
769  * Frequency of the timestamps in OA reports. This used to be the same as the CS
770  * timestamp frequency, but differs on some platforms.
771  */
772 #define I915_PARAM_OA_TIMESTAMP_FREQUENCY 57
773 
774 /* Must be kept compact -- no holes and well documented */
775 
776 /**
777  * struct drm_i915_getparam - Driver parameter query structure.
778  */
779 struct drm_i915_getparam {
780 	/** @param: Driver parameter to query. */
781 	__s32 param;
782 
783 	/**
784 	 * @value: Address of memory where queried value should be put.
785 	 *
786 	 * WARNING: Using pointers instead of fixed-size u64 means we need to write
787 	 * compat32 code. Don't repeat this mistake.
788 	 */
789 	int __user *value;
790 };
791 
792 /**
793  * typedef drm_i915_getparam_t - Driver parameter query structure.
794  * See struct drm_i915_getparam.
795  */
796 typedef struct drm_i915_getparam drm_i915_getparam_t;
797 
798 /* Ioctl to set kernel params:
799  */
800 #define I915_SETPARAM_USE_MI_BATCHBUFFER_START            1
801 #define I915_SETPARAM_TEX_LRU_LOG_GRANULARITY             2
802 #define I915_SETPARAM_ALLOW_BATCHBUFFER                   3
803 #define I915_SETPARAM_NUM_USED_FENCES                     4
804 /* Must be kept compact -- no holes */
805 
806 typedef struct drm_i915_setparam {
807 	int param;
808 	int value;
809 } drm_i915_setparam_t;
810 
811 /* A memory manager for regions of shared memory:
812  */
813 #define I915_MEM_REGION_AGP 1
814 
815 typedef struct drm_i915_mem_alloc {
816 	int region;
817 	int alignment;
818 	int size;
819 	int __user *region_offset;	/* offset from start of fb or agp */
820 } drm_i915_mem_alloc_t;
821 
822 typedef struct drm_i915_mem_free {
823 	int region;
824 	int region_offset;
825 } drm_i915_mem_free_t;
826 
827 typedef struct drm_i915_mem_init_heap {
828 	int region;
829 	int size;
830 	int start;
831 } drm_i915_mem_init_heap_t;
832 
833 /* Allow memory manager to be torn down and re-initialized (eg on
834  * rotate):
835  */
836 typedef struct drm_i915_mem_destroy_heap {
837 	int region;
838 } drm_i915_mem_destroy_heap_t;
839 
840 /* Allow X server to configure which pipes to monitor for vblank signals
841  */
842 #define	DRM_I915_VBLANK_PIPE_A	1
843 #define	DRM_I915_VBLANK_PIPE_B	2
844 
845 typedef struct drm_i915_vblank_pipe {
846 	int pipe;
847 } drm_i915_vblank_pipe_t;
848 
849 /* Schedule buffer swap at given vertical blank:
850  */
851 typedef struct drm_i915_vblank_swap {
852 	drm_drawable_t drawable;
853 	enum drm_vblank_seq_type seqtype;
854 	unsigned int sequence;
855 } drm_i915_vblank_swap_t;
856 
857 typedef struct drm_i915_hws_addr {
858 	__u64 addr;
859 } drm_i915_hws_addr_t;
860 
861 struct drm_i915_gem_init {
862 	/**
863 	 * Beginning offset in the GTT to be managed by the DRM memory
864 	 * manager.
865 	 */
866 	__u64 gtt_start;
867 	/**
868 	 * Ending offset in the GTT to be managed by the DRM memory
869 	 * manager.
870 	 */
871 	__u64 gtt_end;
872 };
873 
874 struct drm_i915_gem_create {
875 	/**
876 	 * Requested size for the object.
877 	 *
878 	 * The (page-aligned) allocated size for the object will be returned.
879 	 */
880 	__u64 size;
881 	/**
882 	 * Returned handle for the object.
883 	 *
884 	 * Object handles are nonzero.
885 	 */
886 	__u32 handle;
887 	__u32 pad;
888 };
889 
890 struct drm_i915_gem_pread {
891 	/** Handle for the object being read. */
892 	__u32 handle;
893 	__u32 pad;
894 	/** Offset into the object to read from */
895 	__u64 offset;
896 	/** Length of data to read */
897 	__u64 size;
898 	/**
899 	 * Pointer to write the data into.
900 	 *
901 	 * This is a fixed-size type for 32/64 compatibility.
902 	 */
903 	__u64 data_ptr;
904 };
905 
906 struct drm_i915_gem_pwrite {
907 	/** Handle for the object being written to. */
908 	__u32 handle;
909 	__u32 pad;
910 	/** Offset into the object to write to */
911 	__u64 offset;
912 	/** Length of data to write */
913 	__u64 size;
914 	/**
915 	 * Pointer to read the data from.
916 	 *
917 	 * This is a fixed-size type for 32/64 compatibility.
918 	 */
919 	__u64 data_ptr;
920 };
921 
922 struct drm_i915_gem_mmap {
923 	/** Handle for the object being mapped. */
924 	__u32 handle;
925 	__u32 pad;
926 	/** Offset in the object to map. */
927 	__u64 offset;
928 	/**
929 	 * Length of data to map.
930 	 *
931 	 * The value will be page-aligned.
932 	 */
933 	__u64 size;
934 	/**
935 	 * Returned pointer the data was mapped at.
936 	 *
937 	 * This is a fixed-size type for 32/64 compatibility.
938 	 */
939 	__u64 addr_ptr;
940 
941 	/**
942 	 * Flags for extended behaviour.
943 	 *
944 	 * Added in version 2.
945 	 */
946 	__u64 flags;
947 #define I915_MMAP_WC 0x1
948 };
949 
950 struct drm_i915_gem_mmap_gtt {
951 	/** Handle for the object being mapped. */
952 	__u32 handle;
953 	__u32 pad;
954 	/**
955 	 * Fake offset to use for subsequent mmap call
956 	 *
957 	 * This is a fixed-size type for 32/64 compatibility.
958 	 */
959 	__u64 offset;
960 };
961 
962 /**
963  * struct drm_i915_gem_mmap_offset - Retrieve an offset so we can mmap this buffer object.
964  *
965  * This struct is passed as argument to the `DRM_IOCTL_I915_GEM_MMAP_OFFSET` ioctl,
966  * and is used to retrieve the fake offset to mmap an object specified by &handle.
967  *
968  * The legacy way of using `DRM_IOCTL_I915_GEM_MMAP` is removed on gen12+.
969  * `DRM_IOCTL_I915_GEM_MMAP_GTT` is an older supported alias to this struct, but will behave
970  * as setting the &extensions to 0, and &flags to `I915_MMAP_OFFSET_GTT`.
971  */
972 struct drm_i915_gem_mmap_offset {
973 	/** @handle: Handle for the object being mapped. */
974 	__u32 handle;
975 	/** @pad: Must be zero */
976 	__u32 pad;
977 	/**
978 	 * @offset: The fake offset to use for subsequent mmap call
979 	 *
980 	 * This is a fixed-size type for 32/64 compatibility.
981 	 */
982 	__u64 offset;
983 
984 	/**
985 	 * @flags: Flags for extended behaviour.
986 	 *
987 	 * It is mandatory that one of the `MMAP_OFFSET` types
988 	 * should be included:
989 	 *
990 	 * - `I915_MMAP_OFFSET_GTT`: Use mmap with the object bound to GTT. (Write-Combined)
991 	 * - `I915_MMAP_OFFSET_WC`: Use Write-Combined caching.
992 	 * - `I915_MMAP_OFFSET_WB`: Use Write-Back caching.
993 	 * - `I915_MMAP_OFFSET_FIXED`: Use object placement to determine caching.
994 	 *
995 	 * On devices with local memory `I915_MMAP_OFFSET_FIXED` is the only valid
996 	 * type. On devices without local memory, this caching mode is invalid.
997 	 *
998 	 * As caching mode when specifying `I915_MMAP_OFFSET_FIXED`, WC or WB will
999 	 * be used, depending on the object placement on creation. WB will be used
1000 	 * when the object can only exist in system memory, WC otherwise.
1001 	 */
1002 	__u64 flags;
1003 
1004 #define I915_MMAP_OFFSET_GTT	0
1005 #define I915_MMAP_OFFSET_WC	1
1006 #define I915_MMAP_OFFSET_WB	2
1007 #define I915_MMAP_OFFSET_UC	3
1008 #define I915_MMAP_OFFSET_FIXED	4
1009 
1010 	/**
1011 	 * @extensions: Zero-terminated chain of extensions.
1012 	 *
1013 	 * No current extensions defined; mbz.
1014 	 */
1015 	__u64 extensions;
1016 };
1017 
1018 /**
1019  * struct drm_i915_gem_set_domain - Adjust the objects write or read domain, in
1020  * preparation for accessing the pages via some CPU domain.
1021  *
1022  * Specifying a new write or read domain will flush the object out of the
1023  * previous domain(if required), before then updating the objects domain
1024  * tracking with the new domain.
1025  *
1026  * Note this might involve waiting for the object first if it is still active on
1027  * the GPU.
1028  *
1029  * Supported values for @read_domains and @write_domain:
1030  *
1031  *	- I915_GEM_DOMAIN_WC: Uncached write-combined domain
1032  *	- I915_GEM_DOMAIN_CPU: CPU cache domain
1033  *	- I915_GEM_DOMAIN_GTT: Mappable aperture domain
1034  *
1035  * All other domains are rejected.
1036  *
1037  * Note that for discrete, starting from DG1, this is no longer supported, and
1038  * is instead rejected. On such platforms the CPU domain is effectively static,
1039  * where we also only support a single &drm_i915_gem_mmap_offset cache mode,
1040  * which can't be set explicitly and instead depends on the object placements,
1041  * as per the below.
1042  *
1043  * Implicit caching rules, starting from DG1:
1044  *
1045  *	- If any of the object placements (see &drm_i915_gem_create_ext_memory_regions)
1046  *	  contain I915_MEMORY_CLASS_DEVICE then the object will be allocated and
1047  *	  mapped as write-combined only.
1048  *
1049  *	- Everything else is always allocated and mapped as write-back, with the
1050  *	  guarantee that everything is also coherent with the GPU.
1051  *
1052  * Note that this is likely to change in the future again, where we might need
1053  * more flexibility on future devices, so making this all explicit as part of a
1054  * new &drm_i915_gem_create_ext extension is probable.
1055  */
1056 struct drm_i915_gem_set_domain {
1057 	/** @handle: Handle for the object. */
1058 	__u32 handle;
1059 
1060 	/** @read_domains: New read domains. */
1061 	__u32 read_domains;
1062 
1063 	/**
1064 	 * @write_domain: New write domain.
1065 	 *
1066 	 * Note that having something in the write domain implies it's in the
1067 	 * read domain, and only that read domain.
1068 	 */
1069 	__u32 write_domain;
1070 };
1071 
1072 struct drm_i915_gem_sw_finish {
1073 	/** Handle for the object */
1074 	__u32 handle;
1075 };
1076 
1077 struct drm_i915_gem_relocation_entry {
1078 	/**
1079 	 * Handle of the buffer being pointed to by this relocation entry.
1080 	 *
1081 	 * It's appealing to make this be an index into the mm_validate_entry
1082 	 * list to refer to the buffer, but this allows the driver to create
1083 	 * a relocation list for state buffers and not re-write it per
1084 	 * exec using the buffer.
1085 	 */
1086 	__u32 target_handle;
1087 
1088 	/**
1089 	 * Value to be added to the offset of the target buffer to make up
1090 	 * the relocation entry.
1091 	 */
1092 	__u32 delta;
1093 
1094 	/** Offset in the buffer the relocation entry will be written into */
1095 	__u64 offset;
1096 
1097 	/**
1098 	 * Offset value of the target buffer that the relocation entry was last
1099 	 * written as.
1100 	 *
1101 	 * If the buffer has the same offset as last time, we can skip syncing
1102 	 * and writing the relocation.  This value is written back out by
1103 	 * the execbuffer ioctl when the relocation is written.
1104 	 */
1105 	__u64 presumed_offset;
1106 
1107 	/**
1108 	 * Target memory domains read by this operation.
1109 	 */
1110 	__u32 read_domains;
1111 
1112 	/**
1113 	 * Target memory domains written by this operation.
1114 	 *
1115 	 * Note that only one domain may be written by the whole
1116 	 * execbuffer operation, so that where there are conflicts,
1117 	 * the application will get -EINVAL back.
1118 	 */
1119 	__u32 write_domain;
1120 };
1121 
1122 /** @{
1123  * Intel memory domains
1124  *
1125  * Most of these just align with the various caches in
1126  * the system and are used to flush and invalidate as
1127  * objects end up cached in different domains.
1128  */
1129 /** CPU cache */
1130 #define I915_GEM_DOMAIN_CPU		0x00000001
1131 /** Render cache, used by 2D and 3D drawing */
1132 #define I915_GEM_DOMAIN_RENDER		0x00000002
1133 /** Sampler cache, used by texture engine */
1134 #define I915_GEM_DOMAIN_SAMPLER		0x00000004
1135 /** Command queue, used to load batch buffers */
1136 #define I915_GEM_DOMAIN_COMMAND		0x00000008
1137 /** Instruction cache, used by shader programs */
1138 #define I915_GEM_DOMAIN_INSTRUCTION	0x00000010
1139 /** Vertex address cache */
1140 #define I915_GEM_DOMAIN_VERTEX		0x00000020
1141 /** GTT domain - aperture and scanout */
1142 #define I915_GEM_DOMAIN_GTT		0x00000040
1143 /** WC domain - uncached access */
1144 #define I915_GEM_DOMAIN_WC		0x00000080
1145 /** @} */
1146 
1147 struct drm_i915_gem_exec_object {
1148 	/**
1149 	 * User's handle for a buffer to be bound into the GTT for this
1150 	 * operation.
1151 	 */
1152 	__u32 handle;
1153 
1154 	/** Number of relocations to be performed on this buffer */
1155 	__u32 relocation_count;
1156 	/**
1157 	 * Pointer to array of struct drm_i915_gem_relocation_entry containing
1158 	 * the relocations to be performed in this buffer.
1159 	 */
1160 	__u64 relocs_ptr;
1161 
1162 	/** Required alignment in graphics aperture */
1163 	__u64 alignment;
1164 
1165 	/**
1166 	 * Returned value of the updated offset of the object, for future
1167 	 * presumed_offset writes.
1168 	 */
1169 	__u64 offset;
1170 };
1171 
1172 /* DRM_IOCTL_I915_GEM_EXECBUFFER was removed in Linux 5.13 */
1173 struct drm_i915_gem_execbuffer {
1174 	/**
1175 	 * List of buffers to be validated with their relocations to be
1176 	 * performend on them.
1177 	 *
1178 	 * This is a pointer to an array of struct drm_i915_gem_validate_entry.
1179 	 *
1180 	 * These buffers must be listed in an order such that all relocations
1181 	 * a buffer is performing refer to buffers that have already appeared
1182 	 * in the validate list.
1183 	 */
1184 	__u64 buffers_ptr;
1185 	__u32 buffer_count;
1186 
1187 	/** Offset in the batchbuffer to start execution from. */
1188 	__u32 batch_start_offset;
1189 	/** Bytes used in batchbuffer from batch_start_offset */
1190 	__u32 batch_len;
1191 	__u32 DR1;
1192 	__u32 DR4;
1193 	__u32 num_cliprects;
1194 	/** This is a struct drm_clip_rect *cliprects */
1195 	__u64 cliprects_ptr;
1196 };
1197 
1198 struct drm_i915_gem_exec_object2 {
1199 	/**
1200 	 * User's handle for a buffer to be bound into the GTT for this
1201 	 * operation.
1202 	 */
1203 	__u32 handle;
1204 
1205 	/** Number of relocations to be performed on this buffer */
1206 	__u32 relocation_count;
1207 	/**
1208 	 * Pointer to array of struct drm_i915_gem_relocation_entry containing
1209 	 * the relocations to be performed in this buffer.
1210 	 */
1211 	__u64 relocs_ptr;
1212 
1213 	/** Required alignment in graphics aperture */
1214 	__u64 alignment;
1215 
1216 	/**
1217 	 * When the EXEC_OBJECT_PINNED flag is specified this is populated by
1218 	 * the user with the GTT offset at which this object will be pinned.
1219 	 *
1220 	 * When the I915_EXEC_NO_RELOC flag is specified this must contain the
1221 	 * presumed_offset of the object.
1222 	 *
1223 	 * During execbuffer2 the kernel populates it with the value of the
1224 	 * current GTT offset of the object, for future presumed_offset writes.
1225 	 *
1226 	 * See struct drm_i915_gem_create_ext for the rules when dealing with
1227 	 * alignment restrictions with I915_MEMORY_CLASS_DEVICE, on devices with
1228 	 * minimum page sizes, like DG2.
1229 	 */
1230 	__u64 offset;
1231 
1232 #define EXEC_OBJECT_NEEDS_FENCE		 (1<<0)
1233 #define EXEC_OBJECT_NEEDS_GTT		 (1<<1)
1234 #define EXEC_OBJECT_WRITE		 (1<<2)
1235 #define EXEC_OBJECT_SUPPORTS_48B_ADDRESS (1<<3)
1236 #define EXEC_OBJECT_PINNED		 (1<<4)
1237 #define EXEC_OBJECT_PAD_TO_SIZE		 (1<<5)
1238 /* The kernel implicitly tracks GPU activity on all GEM objects, and
1239  * synchronises operations with outstanding rendering. This includes
1240  * rendering on other devices if exported via dma-buf. However, sometimes
1241  * this tracking is too coarse and the user knows better. For example,
1242  * if the object is split into non-overlapping ranges shared between different
1243  * clients or engines (i.e. suballocating objects), the implicit tracking
1244  * by kernel assumes that each operation affects the whole object rather
1245  * than an individual range, causing needless synchronisation between clients.
1246  * The kernel will also forgo any CPU cache flushes prior to rendering from
1247  * the object as the client is expected to be also handling such domain
1248  * tracking.
1249  *
1250  * The kernel maintains the implicit tracking in order to manage resources
1251  * used by the GPU - this flag only disables the synchronisation prior to
1252  * rendering with this object in this execbuf.
1253  *
1254  * Opting out of implicit synhronisation requires the user to do its own
1255  * explicit tracking to avoid rendering corruption. See, for example,
1256  * I915_PARAM_HAS_EXEC_FENCE to order execbufs and execute them asynchronously.
1257  */
1258 #define EXEC_OBJECT_ASYNC		(1<<6)
1259 /* Request that the contents of this execobject be copied into the error
1260  * state upon a GPU hang involving this batch for post-mortem debugging.
1261  * These buffers are recorded in no particular order as "user" in
1262  * /sys/class/drm/cardN/error. Query I915_PARAM_HAS_EXEC_CAPTURE to see
1263  * if the kernel supports this flag.
1264  */
1265 #define EXEC_OBJECT_CAPTURE		(1<<7)
1266 /* All remaining bits are MBZ and RESERVED FOR FUTURE USE */
1267 #define __EXEC_OBJECT_UNKNOWN_FLAGS -(EXEC_OBJECT_CAPTURE<<1)
1268 	__u64 flags;
1269 
1270 	union {
1271 		__u64 rsvd1;
1272 		__u64 pad_to_size;
1273 	};
1274 	__u64 rsvd2;
1275 };
1276 
1277 /**
1278  * struct drm_i915_gem_exec_fence - An input or output fence for the execbuf
1279  * ioctl.
1280  *
1281  * The request will wait for input fence to signal before submission.
1282  *
1283  * The returned output fence will be signaled after the completion of the
1284  * request.
1285  */
1286 struct drm_i915_gem_exec_fence {
1287 	/** @handle: User's handle for a drm_syncobj to wait on or signal. */
1288 	__u32 handle;
1289 
1290 	/**
1291 	 * @flags: Supported flags are:
1292 	 *
1293 	 * I915_EXEC_FENCE_WAIT:
1294 	 * Wait for the input fence before request submission.
1295 	 *
1296 	 * I915_EXEC_FENCE_SIGNAL:
1297 	 * Return request completion fence as output
1298 	 */
1299 	__u32 flags;
1300 #define I915_EXEC_FENCE_WAIT            (1<<0)
1301 #define I915_EXEC_FENCE_SIGNAL          (1<<1)
1302 #define __I915_EXEC_FENCE_UNKNOWN_FLAGS (-(I915_EXEC_FENCE_SIGNAL << 1))
1303 };
1304 
1305 /**
1306  * struct drm_i915_gem_execbuffer_ext_timeline_fences - Timeline fences
1307  * for execbuf ioctl.
1308  *
1309  * This structure describes an array of drm_syncobj and associated points for
1310  * timeline variants of drm_syncobj. It is invalid to append this structure to
1311  * the execbuf if I915_EXEC_FENCE_ARRAY is set.
1312  */
1313 struct drm_i915_gem_execbuffer_ext_timeline_fences {
1314 #define DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES 0
1315 	/** @base: Extension link. See struct i915_user_extension. */
1316 	struct i915_user_extension base;
1317 
1318 	/**
1319 	 * @fence_count: Number of elements in the @handles_ptr & @value_ptr
1320 	 * arrays.
1321 	 */
1322 	__u64 fence_count;
1323 
1324 	/**
1325 	 * @handles_ptr: Pointer to an array of struct drm_i915_gem_exec_fence
1326 	 * of length @fence_count.
1327 	 */
1328 	__u64 handles_ptr;
1329 
1330 	/**
1331 	 * @values_ptr: Pointer to an array of u64 values of length
1332 	 * @fence_count.
1333 	 * Values must be 0 for a binary drm_syncobj. A Value of 0 for a
1334 	 * timeline drm_syncobj is invalid as it turns a drm_syncobj into a
1335 	 * binary one.
1336 	 */
1337 	__u64 values_ptr;
1338 };
1339 
1340 /**
1341  * struct drm_i915_gem_execbuffer2 - Structure for DRM_I915_GEM_EXECBUFFER2
1342  * ioctl.
1343  */
1344 struct drm_i915_gem_execbuffer2 {
1345 	/** @buffers_ptr: Pointer to a list of gem_exec_object2 structs */
1346 	__u64 buffers_ptr;
1347 
1348 	/** @buffer_count: Number of elements in @buffers_ptr array */
1349 	__u32 buffer_count;
1350 
1351 	/**
1352 	 * @batch_start_offset: Offset in the batchbuffer to start execution
1353 	 * from.
1354 	 */
1355 	__u32 batch_start_offset;
1356 
1357 	/**
1358 	 * @batch_len: Length in bytes of the batch buffer, starting from the
1359 	 * @batch_start_offset. If 0, length is assumed to be the batch buffer
1360 	 * object size.
1361 	 */
1362 	__u32 batch_len;
1363 
1364 	/** @DR1: deprecated */
1365 	__u32 DR1;
1366 
1367 	/** @DR4: deprecated */
1368 	__u32 DR4;
1369 
1370 	/** @num_cliprects: See @cliprects_ptr */
1371 	__u32 num_cliprects;
1372 
1373 	/**
1374 	 * @cliprects_ptr: Kernel clipping was a DRI1 misfeature.
1375 	 *
1376 	 * It is invalid to use this field if I915_EXEC_FENCE_ARRAY or
1377 	 * I915_EXEC_USE_EXTENSIONS flags are not set.
1378 	 *
1379 	 * If I915_EXEC_FENCE_ARRAY is set, then this is a pointer to an array
1380 	 * of &drm_i915_gem_exec_fence and @num_cliprects is the length of the
1381 	 * array.
1382 	 *
1383 	 * If I915_EXEC_USE_EXTENSIONS is set, then this is a pointer to a
1384 	 * single &i915_user_extension and num_cliprects is 0.
1385 	 */
1386 	__u64 cliprects_ptr;
1387 
1388 	/** @flags: Execbuf flags */
1389 	__u64 flags;
1390 #define I915_EXEC_RING_MASK              (0x3f)
1391 #define I915_EXEC_DEFAULT                (0<<0)
1392 #define I915_EXEC_RENDER                 (1<<0)
1393 #define I915_EXEC_BSD                    (2<<0)
1394 #define I915_EXEC_BLT                    (3<<0)
1395 #define I915_EXEC_VEBOX                  (4<<0)
1396 
1397 /* Used for switching the constants addressing mode on gen4+ RENDER ring.
1398  * Gen6+ only supports relative addressing to dynamic state (default) and
1399  * absolute addressing.
1400  *
1401  * These flags are ignored for the BSD and BLT rings.
1402  */
1403 #define I915_EXEC_CONSTANTS_MASK 	(3<<6)
1404 #define I915_EXEC_CONSTANTS_REL_GENERAL (0<<6) /* default */
1405 #define I915_EXEC_CONSTANTS_ABSOLUTE 	(1<<6)
1406 #define I915_EXEC_CONSTANTS_REL_SURFACE (2<<6) /* gen4/5 only */
1407 
1408 /** Resets the SO write offset registers for transform feedback on gen7. */
1409 #define I915_EXEC_GEN7_SOL_RESET	(1<<8)
1410 
1411 /** Request a privileged ("secure") batch buffer. Note only available for
1412  * DRM_ROOT_ONLY | DRM_MASTER processes.
1413  */
1414 #define I915_EXEC_SECURE		(1<<9)
1415 
1416 /** Inform the kernel that the batch is and will always be pinned. This
1417  * negates the requirement for a workaround to be performed to avoid
1418  * an incoherent CS (such as can be found on 830/845). If this flag is
1419  * not passed, the kernel will endeavour to make sure the batch is
1420  * coherent with the CS before execution. If this flag is passed,
1421  * userspace assumes the responsibility for ensuring the same.
1422  */
1423 #define I915_EXEC_IS_PINNED		(1<<10)
1424 
1425 /** Provide a hint to the kernel that the command stream and auxiliary
1426  * state buffers already holds the correct presumed addresses and so the
1427  * relocation process may be skipped if no buffers need to be moved in
1428  * preparation for the execbuffer.
1429  */
1430 #define I915_EXEC_NO_RELOC		(1<<11)
1431 
1432 /** Use the reloc.handle as an index into the exec object array rather
1433  * than as the per-file handle.
1434  */
1435 #define I915_EXEC_HANDLE_LUT		(1<<12)
1436 
1437 /** Used for switching BSD rings on the platforms with two BSD rings */
1438 #define I915_EXEC_BSD_SHIFT	 (13)
1439 #define I915_EXEC_BSD_MASK	 (3 << I915_EXEC_BSD_SHIFT)
1440 /* default ping-pong mode */
1441 #define I915_EXEC_BSD_DEFAULT	 (0 << I915_EXEC_BSD_SHIFT)
1442 #define I915_EXEC_BSD_RING1	 (1 << I915_EXEC_BSD_SHIFT)
1443 #define I915_EXEC_BSD_RING2	 (2 << I915_EXEC_BSD_SHIFT)
1444 
1445 /** Tell the kernel that the batchbuffer is processed by
1446  *  the resource streamer.
1447  */
1448 #define I915_EXEC_RESOURCE_STREAMER     (1<<15)
1449 
1450 /* Setting I915_EXEC_FENCE_IN implies that lower_32_bits(rsvd2) represent
1451  * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1452  * the batch.
1453  *
1454  * Returns -EINVAL if the sync_file fd cannot be found.
1455  */
1456 #define I915_EXEC_FENCE_IN		(1<<16)
1457 
1458 /* Setting I915_EXEC_FENCE_OUT causes the ioctl to return a sync_file fd
1459  * in the upper_32_bits(rsvd2) upon success. Ownership of the fd is given
1460  * to the caller, and it should be close() after use. (The fd is a regular
1461  * file descriptor and will be cleaned up on process termination. It holds
1462  * a reference to the request, but nothing else.)
1463  *
1464  * The sync_file fd can be combined with other sync_file and passed either
1465  * to execbuf using I915_EXEC_FENCE_IN, to atomic KMS ioctls (so that a flip
1466  * will only occur after this request completes), or to other devices.
1467  *
1468  * Using I915_EXEC_FENCE_OUT requires use of
1469  * DRM_IOCTL_I915_GEM_EXECBUFFER2_WR ioctl so that the result is written
1470  * back to userspace. Failure to do so will cause the out-fence to always
1471  * be reported as zero, and the real fence fd to be leaked.
1472  */
1473 #define I915_EXEC_FENCE_OUT		(1<<17)
1474 
1475 /*
1476  * Traditionally the execbuf ioctl has only considered the final element in
1477  * the execobject[] to be the executable batch. Often though, the client
1478  * will known the batch object prior to construction and being able to place
1479  * it into the execobject[] array first can simplify the relocation tracking.
1480  * Setting I915_EXEC_BATCH_FIRST tells execbuf to use element 0 of the
1481  * execobject[] as the * batch instead (the default is to use the last
1482  * element).
1483  */
1484 #define I915_EXEC_BATCH_FIRST		(1<<18)
1485 
1486 /* Setting I915_FENCE_ARRAY implies that num_cliprects and cliprects_ptr
1487  * define an array of i915_gem_exec_fence structures which specify a set of
1488  * dma fences to wait upon or signal.
1489  */
1490 #define I915_EXEC_FENCE_ARRAY   (1<<19)
1491 
1492 /*
1493  * Setting I915_EXEC_FENCE_SUBMIT implies that lower_32_bits(rsvd2) represent
1494  * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1495  * the batch.
1496  *
1497  * Returns -EINVAL if the sync_file fd cannot be found.
1498  */
1499 #define I915_EXEC_FENCE_SUBMIT		(1 << 20)
1500 
1501 /*
1502  * Setting I915_EXEC_USE_EXTENSIONS implies that
1503  * drm_i915_gem_execbuffer2.cliprects_ptr is treated as a pointer to an linked
1504  * list of i915_user_extension. Each i915_user_extension node is the base of a
1505  * larger structure. The list of supported structures are listed in the
1506  * drm_i915_gem_execbuffer_ext enum.
1507  */
1508 #define I915_EXEC_USE_EXTENSIONS	(1 << 21)
1509 #define __I915_EXEC_UNKNOWN_FLAGS (-(I915_EXEC_USE_EXTENSIONS << 1))
1510 
1511 	/** @rsvd1: Context id */
1512 	__u64 rsvd1;
1513 
1514 	/**
1515 	 * @rsvd2: in and out sync_file file descriptors.
1516 	 *
1517 	 * When I915_EXEC_FENCE_IN or I915_EXEC_FENCE_SUBMIT flag is set, the
1518 	 * lower 32 bits of this field will have the in sync_file fd (input).
1519 	 *
1520 	 * When I915_EXEC_FENCE_OUT flag is set, the upper 32 bits of this
1521 	 * field will have the out sync_file fd (output).
1522 	 */
1523 	__u64 rsvd2;
1524 };
1525 
1526 #define I915_EXEC_CONTEXT_ID_MASK	(0xffffffff)
1527 #define i915_execbuffer2_set_context_id(eb2, context) \
1528 	(eb2).rsvd1 = context & I915_EXEC_CONTEXT_ID_MASK
1529 #define i915_execbuffer2_get_context_id(eb2) \
1530 	((eb2).rsvd1 & I915_EXEC_CONTEXT_ID_MASK)
1531 
1532 struct drm_i915_gem_pin {
1533 	/** Handle of the buffer to be pinned. */
1534 	__u32 handle;
1535 	__u32 pad;
1536 
1537 	/** alignment required within the aperture */
1538 	__u64 alignment;
1539 
1540 	/** Returned GTT offset of the buffer. */
1541 	__u64 offset;
1542 };
1543 
1544 struct drm_i915_gem_unpin {
1545 	/** Handle of the buffer to be unpinned. */
1546 	__u32 handle;
1547 	__u32 pad;
1548 };
1549 
1550 struct drm_i915_gem_busy {
1551 	/** Handle of the buffer to check for busy */
1552 	__u32 handle;
1553 
1554 	/** Return busy status
1555 	 *
1556 	 * A return of 0 implies that the object is idle (after
1557 	 * having flushed any pending activity), and a non-zero return that
1558 	 * the object is still in-flight on the GPU. (The GPU has not yet
1559 	 * signaled completion for all pending requests that reference the
1560 	 * object.) An object is guaranteed to become idle eventually (so
1561 	 * long as no new GPU commands are executed upon it). Due to the
1562 	 * asynchronous nature of the hardware, an object reported
1563 	 * as busy may become idle before the ioctl is completed.
1564 	 *
1565 	 * Furthermore, if the object is busy, which engine is busy is only
1566 	 * provided as a guide and only indirectly by reporting its class
1567 	 * (there may be more than one engine in each class). There are race
1568 	 * conditions which prevent the report of which engines are busy from
1569 	 * being always accurate.  However, the converse is not true. If the
1570 	 * object is idle, the result of the ioctl, that all engines are idle,
1571 	 * is accurate.
1572 	 *
1573 	 * The returned dword is split into two fields to indicate both
1574 	 * the engine classess on which the object is being read, and the
1575 	 * engine class on which it is currently being written (if any).
1576 	 *
1577 	 * The low word (bits 0:15) indicate if the object is being written
1578 	 * to by any engine (there can only be one, as the GEM implicit
1579 	 * synchronisation rules force writes to be serialised). Only the
1580 	 * engine class (offset by 1, I915_ENGINE_CLASS_RENDER is reported as
1581 	 * 1 not 0 etc) for the last write is reported.
1582 	 *
1583 	 * The high word (bits 16:31) are a bitmask of which engines classes
1584 	 * are currently reading from the object. Multiple engines may be
1585 	 * reading from the object simultaneously.
1586 	 *
1587 	 * The value of each engine class is the same as specified in the
1588 	 * I915_CONTEXT_PARAM_ENGINES context parameter and via perf, i.e.
1589 	 * I915_ENGINE_CLASS_RENDER, I915_ENGINE_CLASS_COPY, etc.
1590 	 * Some hardware may have parallel execution engines, e.g. multiple
1591 	 * media engines, which are mapped to the same class identifier and so
1592 	 * are not separately reported for busyness.
1593 	 *
1594 	 * Caveat emptor:
1595 	 * Only the boolean result of this query is reliable; that is whether
1596 	 * the object is idle or busy. The report of which engines are busy
1597 	 * should be only used as a heuristic.
1598 	 */
1599 	__u32 busy;
1600 };
1601 
1602 /**
1603  * struct drm_i915_gem_caching - Set or get the caching for given object
1604  * handle.
1605  *
1606  * Allow userspace to control the GTT caching bits for a given object when the
1607  * object is later mapped through the ppGTT(or GGTT on older platforms lacking
1608  * ppGTT support, or if the object is used for scanout). Note that this might
1609  * require unbinding the object from the GTT first, if its current caching value
1610  * doesn't match.
1611  *
1612  * Note that this all changes on discrete platforms, starting from DG1, the
1613  * set/get caching is no longer supported, and is now rejected.  Instead the CPU
1614  * caching attributes(WB vs WC) will become an immutable creation time property
1615  * for the object, along with the GTT caching level. For now we don't expose any
1616  * new uAPI for this, instead on DG1 this is all implicit, although this largely
1617  * shouldn't matter since DG1 is coherent by default(without any way of
1618  * controlling it).
1619  *
1620  * Implicit caching rules, starting from DG1:
1621  *
1622  *     - If any of the object placements (see &drm_i915_gem_create_ext_memory_regions)
1623  *       contain I915_MEMORY_CLASS_DEVICE then the object will be allocated and
1624  *       mapped as write-combined only.
1625  *
1626  *     - Everything else is always allocated and mapped as write-back, with the
1627  *       guarantee that everything is also coherent with the GPU.
1628  *
1629  * Note that this is likely to change in the future again, where we might need
1630  * more flexibility on future devices, so making this all explicit as part of a
1631  * new &drm_i915_gem_create_ext extension is probable.
1632  *
1633  * Side note: Part of the reason for this is that changing the at-allocation-time CPU
1634  * caching attributes for the pages might be required(and is expensive) if we
1635  * need to then CPU map the pages later with different caching attributes. This
1636  * inconsistent caching behaviour, while supported on x86, is not universally
1637  * supported on other architectures. So for simplicity we opt for setting
1638  * everything at creation time, whilst also making it immutable, on discrete
1639  * platforms.
1640  */
1641 struct drm_i915_gem_caching {
1642 	/**
1643 	 * @handle: Handle of the buffer to set/get the caching level.
1644 	 */
1645 	__u32 handle;
1646 
1647 	/**
1648 	 * @caching: The GTT caching level to apply or possible return value.
1649 	 *
1650 	 * The supported @caching values:
1651 	 *
1652 	 * I915_CACHING_NONE:
1653 	 *
1654 	 * GPU access is not coherent with CPU caches.  Default for machines
1655 	 * without an LLC. This means manual flushing might be needed, if we
1656 	 * want GPU access to be coherent.
1657 	 *
1658 	 * I915_CACHING_CACHED:
1659 	 *
1660 	 * GPU access is coherent with CPU caches and furthermore the data is
1661 	 * cached in last-level caches shared between CPU cores and the GPU GT.
1662 	 *
1663 	 * I915_CACHING_DISPLAY:
1664 	 *
1665 	 * Special GPU caching mode which is coherent with the scanout engines.
1666 	 * Transparently falls back to I915_CACHING_NONE on platforms where no
1667 	 * special cache mode (like write-through or gfdt flushing) is
1668 	 * available. The kernel automatically sets this mode when using a
1669 	 * buffer as a scanout target.  Userspace can manually set this mode to
1670 	 * avoid a costly stall and clflush in the hotpath of drawing the first
1671 	 * frame.
1672 	 */
1673 #define I915_CACHING_NONE		0
1674 #define I915_CACHING_CACHED		1
1675 #define I915_CACHING_DISPLAY		2
1676 	__u32 caching;
1677 };
1678 
1679 #define I915_TILING_NONE	0
1680 #define I915_TILING_X		1
1681 #define I915_TILING_Y		2
1682 /*
1683  * Do not add new tiling types here.  The I915_TILING_* values are for
1684  * de-tiling fence registers that no longer exist on modern platforms.  Although
1685  * the hardware may support new types of tiling in general (e.g., Tile4), we
1686  * do not need to add them to the uapi that is specific to now-defunct ioctls.
1687  */
1688 #define I915_TILING_LAST	I915_TILING_Y
1689 
1690 #define I915_BIT_6_SWIZZLE_NONE		0
1691 #define I915_BIT_6_SWIZZLE_9		1
1692 #define I915_BIT_6_SWIZZLE_9_10		2
1693 #define I915_BIT_6_SWIZZLE_9_11		3
1694 #define I915_BIT_6_SWIZZLE_9_10_11	4
1695 /* Not seen by userland */
1696 #define I915_BIT_6_SWIZZLE_UNKNOWN	5
1697 /* Seen by userland. */
1698 #define I915_BIT_6_SWIZZLE_9_17		6
1699 #define I915_BIT_6_SWIZZLE_9_10_17	7
1700 
1701 struct drm_i915_gem_set_tiling {
1702 	/** Handle of the buffer to have its tiling state updated */
1703 	__u32 handle;
1704 
1705 	/**
1706 	 * Tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1707 	 * I915_TILING_Y).
1708 	 *
1709 	 * This value is to be set on request, and will be updated by the
1710 	 * kernel on successful return with the actual chosen tiling layout.
1711 	 *
1712 	 * The tiling mode may be demoted to I915_TILING_NONE when the system
1713 	 * has bit 6 swizzling that can't be managed correctly by GEM.
1714 	 *
1715 	 * Buffer contents become undefined when changing tiling_mode.
1716 	 */
1717 	__u32 tiling_mode;
1718 
1719 	/**
1720 	 * Stride in bytes for the object when in I915_TILING_X or
1721 	 * I915_TILING_Y.
1722 	 */
1723 	__u32 stride;
1724 
1725 	/**
1726 	 * Returned address bit 6 swizzling required for CPU access through
1727 	 * mmap mapping.
1728 	 */
1729 	__u32 swizzle_mode;
1730 };
1731 
1732 struct drm_i915_gem_get_tiling {
1733 	/** Handle of the buffer to get tiling state for. */
1734 	__u32 handle;
1735 
1736 	/**
1737 	 * Current tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1738 	 * I915_TILING_Y).
1739 	 */
1740 	__u32 tiling_mode;
1741 
1742 	/**
1743 	 * Returned address bit 6 swizzling required for CPU access through
1744 	 * mmap mapping.
1745 	 */
1746 	__u32 swizzle_mode;
1747 
1748 	/**
1749 	 * Returned address bit 6 swizzling required for CPU access through
1750 	 * mmap mapping whilst bound.
1751 	 */
1752 	__u32 phys_swizzle_mode;
1753 };
1754 
1755 struct drm_i915_gem_get_aperture {
1756 	/** Total size of the aperture used by i915_gem_execbuffer, in bytes */
1757 	__u64 aper_size;
1758 
1759 	/**
1760 	 * Available space in the aperture used by i915_gem_execbuffer, in
1761 	 * bytes
1762 	 */
1763 	__u64 aper_available_size;
1764 };
1765 
1766 struct drm_i915_get_pipe_from_crtc_id {
1767 	/** ID of CRTC being requested **/
1768 	__u32 crtc_id;
1769 
1770 	/** pipe of requested CRTC **/
1771 	__u32 pipe;
1772 };
1773 
1774 #define I915_MADV_WILLNEED 0
1775 #define I915_MADV_DONTNEED 1
1776 #define __I915_MADV_PURGED 2 /* internal state */
1777 
1778 struct drm_i915_gem_madvise {
1779 	/** Handle of the buffer to change the backing store advice */
1780 	__u32 handle;
1781 
1782 	/* Advice: either the buffer will be needed again in the near future,
1783 	 *         or wont be and could be discarded under memory pressure.
1784 	 */
1785 	__u32 madv;
1786 
1787 	/** Whether the backing store still exists. */
1788 	__u32 retained;
1789 };
1790 
1791 /* flags */
1792 #define I915_OVERLAY_TYPE_MASK 		0xff
1793 #define I915_OVERLAY_YUV_PLANAR 	0x01
1794 #define I915_OVERLAY_YUV_PACKED 	0x02
1795 #define I915_OVERLAY_RGB		0x03
1796 
1797 #define I915_OVERLAY_DEPTH_MASK		0xff00
1798 #define I915_OVERLAY_RGB24		0x1000
1799 #define I915_OVERLAY_RGB16		0x2000
1800 #define I915_OVERLAY_RGB15		0x3000
1801 #define I915_OVERLAY_YUV422		0x0100
1802 #define I915_OVERLAY_YUV411		0x0200
1803 #define I915_OVERLAY_YUV420		0x0300
1804 #define I915_OVERLAY_YUV410		0x0400
1805 
1806 #define I915_OVERLAY_SWAP_MASK		0xff0000
1807 #define I915_OVERLAY_NO_SWAP		0x000000
1808 #define I915_OVERLAY_UV_SWAP		0x010000
1809 #define I915_OVERLAY_Y_SWAP		0x020000
1810 #define I915_OVERLAY_Y_AND_UV_SWAP	0x030000
1811 
1812 #define I915_OVERLAY_FLAGS_MASK		0xff000000
1813 #define I915_OVERLAY_ENABLE		0x01000000
1814 
1815 struct drm_intel_overlay_put_image {
1816 	/* various flags and src format description */
1817 	__u32 flags;
1818 	/* source picture description */
1819 	__u32 bo_handle;
1820 	/* stride values and offsets are in bytes, buffer relative */
1821 	__u16 stride_Y; /* stride for packed formats */
1822 	__u16 stride_UV;
1823 	__u32 offset_Y; /* offset for packet formats */
1824 	__u32 offset_U;
1825 	__u32 offset_V;
1826 	/* in pixels */
1827 	__u16 src_width;
1828 	__u16 src_height;
1829 	/* to compensate the scaling factors for partially covered surfaces */
1830 	__u16 src_scan_width;
1831 	__u16 src_scan_height;
1832 	/* output crtc description */
1833 	__u32 crtc_id;
1834 	__u16 dst_x;
1835 	__u16 dst_y;
1836 	__u16 dst_width;
1837 	__u16 dst_height;
1838 };
1839 
1840 /* flags */
1841 #define I915_OVERLAY_UPDATE_ATTRS	(1<<0)
1842 #define I915_OVERLAY_UPDATE_GAMMA	(1<<1)
1843 #define I915_OVERLAY_DISABLE_DEST_COLORKEY	(1<<2)
1844 struct drm_intel_overlay_attrs {
1845 	__u32 flags;
1846 	__u32 color_key;
1847 	__s32 brightness;
1848 	__u32 contrast;
1849 	__u32 saturation;
1850 	__u32 gamma0;
1851 	__u32 gamma1;
1852 	__u32 gamma2;
1853 	__u32 gamma3;
1854 	__u32 gamma4;
1855 	__u32 gamma5;
1856 };
1857 
1858 /*
1859  * Intel sprite handling
1860  *
1861  * Color keying works with a min/mask/max tuple.  Both source and destination
1862  * color keying is allowed.
1863  *
1864  * Source keying:
1865  * Sprite pixels within the min & max values, masked against the color channels
1866  * specified in the mask field, will be transparent.  All other pixels will
1867  * be displayed on top of the primary plane.  For RGB surfaces, only the min
1868  * and mask fields will be used; ranged compares are not allowed.
1869  *
1870  * Destination keying:
1871  * Primary plane pixels that match the min value, masked against the color
1872  * channels specified in the mask field, will be replaced by corresponding
1873  * pixels from the sprite plane.
1874  *
1875  * Note that source & destination keying are exclusive; only one can be
1876  * active on a given plane.
1877  */
1878 
1879 #define I915_SET_COLORKEY_NONE		(1<<0) /* Deprecated. Instead set
1880 						* flags==0 to disable colorkeying.
1881 						*/
1882 #define I915_SET_COLORKEY_DESTINATION	(1<<1)
1883 #define I915_SET_COLORKEY_SOURCE	(1<<2)
1884 struct drm_intel_sprite_colorkey {
1885 	__u32 plane_id;
1886 	__u32 min_value;
1887 	__u32 channel_mask;
1888 	__u32 max_value;
1889 	__u32 flags;
1890 };
1891 
1892 struct drm_i915_gem_wait {
1893 	/** Handle of BO we shall wait on */
1894 	__u32 bo_handle;
1895 	__u32 flags;
1896 	/** Number of nanoseconds to wait, Returns time remaining. */
1897 	__s64 timeout_ns;
1898 };
1899 
1900 struct drm_i915_gem_context_create {
1901 	__u32 ctx_id; /* output: id of new context*/
1902 	__u32 pad;
1903 };
1904 
1905 /**
1906  * struct drm_i915_gem_context_create_ext - Structure for creating contexts.
1907  */
1908 struct drm_i915_gem_context_create_ext {
1909 	/** @ctx_id: Id of the created context (output) */
1910 	__u32 ctx_id;
1911 
1912 	/**
1913 	 * @flags: Supported flags are:
1914 	 *
1915 	 * I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS:
1916 	 *
1917 	 * Extensions may be appended to this structure and driver must check
1918 	 * for those. See @extensions.
1919 	 *
1920 	 * I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE
1921 	 *
1922 	 * Created context will have single timeline.
1923 	 */
1924 	__u32 flags;
1925 #define I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS	(1u << 0)
1926 #define I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE	(1u << 1)
1927 #define I915_CONTEXT_CREATE_FLAGS_UNKNOWN \
1928 	(-(I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE << 1))
1929 
1930 	/**
1931 	 * @extensions: Zero-terminated chain of extensions.
1932 	 *
1933 	 * I915_CONTEXT_CREATE_EXT_SETPARAM:
1934 	 * Context parameter to set or query during context creation.
1935 	 * See struct drm_i915_gem_context_create_ext_setparam.
1936 	 *
1937 	 * I915_CONTEXT_CREATE_EXT_CLONE:
1938 	 * This extension has been removed. On the off chance someone somewhere
1939 	 * has attempted to use it, never re-use this extension number.
1940 	 */
1941 	__u64 extensions;
1942 #define I915_CONTEXT_CREATE_EXT_SETPARAM 0
1943 #define I915_CONTEXT_CREATE_EXT_CLONE 1
1944 };
1945 
1946 /**
1947  * struct drm_i915_gem_context_param - Context parameter to set or query.
1948  */
1949 struct drm_i915_gem_context_param {
1950 	/** @ctx_id: Context id */
1951 	__u32 ctx_id;
1952 
1953 	/** @size: Size of the parameter @value */
1954 	__u32 size;
1955 
1956 	/** @param: Parameter to set or query */
1957 	__u64 param;
1958 #define I915_CONTEXT_PARAM_BAN_PERIOD	0x1
1959 /* I915_CONTEXT_PARAM_NO_ZEROMAP has been removed.  On the off chance
1960  * someone somewhere has attempted to use it, never re-use this context
1961  * param number.
1962  */
1963 #define I915_CONTEXT_PARAM_NO_ZEROMAP	0x2
1964 #define I915_CONTEXT_PARAM_GTT_SIZE	0x3
1965 #define I915_CONTEXT_PARAM_NO_ERROR_CAPTURE	0x4
1966 #define I915_CONTEXT_PARAM_BANNABLE	0x5
1967 #define I915_CONTEXT_PARAM_PRIORITY	0x6
1968 #define   I915_CONTEXT_MAX_USER_PRIORITY	1023 /* inclusive */
1969 #define   I915_CONTEXT_DEFAULT_PRIORITY		0
1970 #define   I915_CONTEXT_MIN_USER_PRIORITY	-1023 /* inclusive */
1971 	/*
1972 	 * When using the following param, value should be a pointer to
1973 	 * drm_i915_gem_context_param_sseu.
1974 	 */
1975 #define I915_CONTEXT_PARAM_SSEU		0x7
1976 
1977 /*
1978  * Not all clients may want to attempt automatic recover of a context after
1979  * a hang (for example, some clients may only submit very small incremental
1980  * batches relying on known logical state of previous batches which will never
1981  * recover correctly and each attempt will hang), and so would prefer that
1982  * the context is forever banned instead.
1983  *
1984  * If set to false (0), after a reset, subsequent (and in flight) rendering
1985  * from this context is discarded, and the client will need to create a new
1986  * context to use instead.
1987  *
1988  * If set to true (1), the kernel will automatically attempt to recover the
1989  * context by skipping the hanging batch and executing the next batch starting
1990  * from the default context state (discarding the incomplete logical context
1991  * state lost due to the reset).
1992  *
1993  * On creation, all new contexts are marked as recoverable.
1994  */
1995 #define I915_CONTEXT_PARAM_RECOVERABLE	0x8
1996 
1997 	/*
1998 	 * The id of the associated virtual memory address space (ppGTT) of
1999 	 * this context. Can be retrieved and passed to another context
2000 	 * (on the same fd) for both to use the same ppGTT and so share
2001 	 * address layouts, and avoid reloading the page tables on context
2002 	 * switches between themselves.
2003 	 *
2004 	 * See DRM_I915_GEM_VM_CREATE and DRM_I915_GEM_VM_DESTROY.
2005 	 */
2006 #define I915_CONTEXT_PARAM_VM		0x9
2007 
2008 /*
2009  * I915_CONTEXT_PARAM_ENGINES:
2010  *
2011  * Bind this context to operate on this subset of available engines. Henceforth,
2012  * the I915_EXEC_RING selector for DRM_IOCTL_I915_GEM_EXECBUFFER2 operates as
2013  * an index into this array of engines; I915_EXEC_DEFAULT selecting engine[0]
2014  * and upwards. Slots 0...N are filled in using the specified (class, instance).
2015  * Use
2016  *	engine_class: I915_ENGINE_CLASS_INVALID,
2017  *	engine_instance: I915_ENGINE_CLASS_INVALID_NONE
2018  * to specify a gap in the array that can be filled in later, e.g. by a
2019  * virtual engine used for load balancing.
2020  *
2021  * Setting the number of engines bound to the context to 0, by passing a zero
2022  * sized argument, will revert back to default settings.
2023  *
2024  * See struct i915_context_param_engines.
2025  *
2026  * Extensions:
2027  *   i915_context_engines_load_balance (I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE)
2028  *   i915_context_engines_bond (I915_CONTEXT_ENGINES_EXT_BOND)
2029  *   i915_context_engines_parallel_submit (I915_CONTEXT_ENGINES_EXT_PARALLEL_SUBMIT)
2030  */
2031 #define I915_CONTEXT_PARAM_ENGINES	0xa
2032 
2033 /*
2034  * I915_CONTEXT_PARAM_PERSISTENCE:
2035  *
2036  * Allow the context and active rendering to survive the process until
2037  * completion. Persistence allows fire-and-forget clients to queue up a
2038  * bunch of work, hand the output over to a display server and then quit.
2039  * If the context is marked as not persistent, upon closing (either via
2040  * an explicit DRM_I915_GEM_CONTEXT_DESTROY or implicitly from file closure
2041  * or process termination), the context and any outstanding requests will be
2042  * cancelled (and exported fences for cancelled requests marked as -EIO).
2043  *
2044  * By default, new contexts allow persistence.
2045  */
2046 #define I915_CONTEXT_PARAM_PERSISTENCE	0xb
2047 
2048 /* This API has been removed.  On the off chance someone somewhere has
2049  * attempted to use it, never re-use this context param number.
2050  */
2051 #define I915_CONTEXT_PARAM_RINGSIZE	0xc
2052 
2053 /*
2054  * I915_CONTEXT_PARAM_PROTECTED_CONTENT:
2055  *
2056  * Mark that the context makes use of protected content, which will result
2057  * in the context being invalidated when the protected content session is.
2058  * Given that the protected content session is killed on suspend, the device
2059  * is kept awake for the lifetime of a protected context, so the user should
2060  * make sure to dispose of them once done.
2061  * This flag can only be set at context creation time and, when set to true,
2062  * must be preceded by an explicit setting of I915_CONTEXT_PARAM_RECOVERABLE
2063  * to false. This flag can't be set to true in conjunction with setting the
2064  * I915_CONTEXT_PARAM_BANNABLE flag to false. Creation example:
2065  *
2066  * .. code-block:: C
2067  *
2068  *	struct drm_i915_gem_context_create_ext_setparam p_protected = {
2069  *		.base = {
2070  *			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2071  *		},
2072  *		.param = {
2073  *			.param = I915_CONTEXT_PARAM_PROTECTED_CONTENT,
2074  *			.value = 1,
2075  *		}
2076  *	};
2077  *	struct drm_i915_gem_context_create_ext_setparam p_norecover = {
2078  *		.base = {
2079  *			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2080  *			.next_extension = to_user_pointer(&p_protected),
2081  *		},
2082  *		.param = {
2083  *			.param = I915_CONTEXT_PARAM_RECOVERABLE,
2084  *			.value = 0,
2085  *		}
2086  *	};
2087  *	struct drm_i915_gem_context_create_ext create = {
2088  *		.flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
2089  *		.extensions = to_user_pointer(&p_norecover);
2090  *	};
2091  *
2092  *	ctx_id = gem_context_create_ext(drm_fd, &create);
2093  *
2094  * In addition to the normal failure cases, setting this flag during context
2095  * creation can result in the following errors:
2096  *
2097  * -ENODEV: feature not available
2098  * -EPERM: trying to mark a recoverable or not bannable context as protected
2099  */
2100 #define I915_CONTEXT_PARAM_PROTECTED_CONTENT    0xd
2101 /* Must be kept compact -- no holes and well documented */
2102 
2103 	/** @value: Context parameter value to be set or queried */
2104 	__u64 value;
2105 };
2106 
2107 /*
2108  * Context SSEU programming
2109  *
2110  * It may be necessary for either functional or performance reason to configure
2111  * a context to run with a reduced number of SSEU (where SSEU stands for Slice/
2112  * Sub-slice/EU).
2113  *
2114  * This is done by configuring SSEU configuration using the below
2115  * @struct drm_i915_gem_context_param_sseu for every supported engine which
2116  * userspace intends to use.
2117  *
2118  * Not all GPUs or engines support this functionality in which case an error
2119  * code -ENODEV will be returned.
2120  *
2121  * Also, flexibility of possible SSEU configuration permutations varies between
2122  * GPU generations and software imposed limitations. Requesting such a
2123  * combination will return an error code of -EINVAL.
2124  *
2125  * NOTE: When perf/OA is active the context's SSEU configuration is ignored in
2126  * favour of a single global setting.
2127  */
2128 struct drm_i915_gem_context_param_sseu {
2129 	/*
2130 	 * Engine class & instance to be configured or queried.
2131 	 */
2132 	struct i915_engine_class_instance engine;
2133 
2134 	/*
2135 	 * Unknown flags must be cleared to zero.
2136 	 */
2137 	__u32 flags;
2138 #define I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX (1u << 0)
2139 
2140 	/*
2141 	 * Mask of slices to enable for the context. Valid values are a subset
2142 	 * of the bitmask value returned for I915_PARAM_SLICE_MASK.
2143 	 */
2144 	__u64 slice_mask;
2145 
2146 	/*
2147 	 * Mask of subslices to enable for the context. Valid values are a
2148 	 * subset of the bitmask value return by I915_PARAM_SUBSLICE_MASK.
2149 	 */
2150 	__u64 subslice_mask;
2151 
2152 	/*
2153 	 * Minimum/Maximum number of EUs to enable per subslice for the
2154 	 * context. min_eus_per_subslice must be inferior or equal to
2155 	 * max_eus_per_subslice.
2156 	 */
2157 	__u16 min_eus_per_subslice;
2158 	__u16 max_eus_per_subslice;
2159 
2160 	/*
2161 	 * Unused for now. Must be cleared to zero.
2162 	 */
2163 	__u32 rsvd;
2164 };
2165 
2166 /**
2167  * DOC: Virtual Engine uAPI
2168  *
2169  * Virtual engine is a concept where userspace is able to configure a set of
2170  * physical engines, submit a batch buffer, and let the driver execute it on any
2171  * engine from the set as it sees fit.
2172  *
2173  * This is primarily useful on parts which have multiple instances of a same
2174  * class engine, like for example GT3+ Skylake parts with their two VCS engines.
2175  *
2176  * For instance userspace can enumerate all engines of a certain class using the
2177  * previously described `Engine Discovery uAPI`_. After that userspace can
2178  * create a GEM context with a placeholder slot for the virtual engine (using
2179  * `I915_ENGINE_CLASS_INVALID` and `I915_ENGINE_CLASS_INVALID_NONE` for class
2180  * and instance respectively) and finally using the
2181  * `I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE` extension place a virtual engine in
2182  * the same reserved slot.
2183  *
2184  * Example of creating a virtual engine and submitting a batch buffer to it:
2185  *
2186  * .. code-block:: C
2187  *
2188  * 	I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(virtual, 2) = {
2189  * 		.base.name = I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE,
2190  * 		.engine_index = 0, // Place this virtual engine into engine map slot 0
2191  * 		.num_siblings = 2,
2192  * 		.engines = { { I915_ENGINE_CLASS_VIDEO, 0 },
2193  * 			     { I915_ENGINE_CLASS_VIDEO, 1 }, },
2194  * 	};
2195  * 	I915_DEFINE_CONTEXT_PARAM_ENGINES(engines, 1) = {
2196  * 		.engines = { { I915_ENGINE_CLASS_INVALID,
2197  * 			       I915_ENGINE_CLASS_INVALID_NONE } },
2198  * 		.extensions = to_user_pointer(&virtual), // Chains after load_balance extension
2199  * 	};
2200  * 	struct drm_i915_gem_context_create_ext_setparam p_engines = {
2201  * 		.base = {
2202  * 			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2203  * 		},
2204  * 		.param = {
2205  * 			.param = I915_CONTEXT_PARAM_ENGINES,
2206  * 			.value = to_user_pointer(&engines),
2207  * 			.size = sizeof(engines),
2208  * 		},
2209  * 	};
2210  * 	struct drm_i915_gem_context_create_ext create = {
2211  * 		.flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
2212  * 		.extensions = to_user_pointer(&p_engines);
2213  * 	};
2214  *
2215  * 	ctx_id = gem_context_create_ext(drm_fd, &create);
2216  *
2217  * 	// Now we have created a GEM context with its engine map containing a
2218  * 	// single virtual engine. Submissions to this slot can go either to
2219  * 	// vcs0 or vcs1, depending on the load balancing algorithm used inside
2220  * 	// the driver. The load balancing is dynamic from one batch buffer to
2221  * 	// another and transparent to userspace.
2222  *
2223  * 	...
2224  * 	execbuf.rsvd1 = ctx_id;
2225  * 	execbuf.flags = 0; // Submits to index 0 which is the virtual engine
2226  * 	gem_execbuf(drm_fd, &execbuf);
2227  */
2228 
2229 /*
2230  * i915_context_engines_load_balance:
2231  *
2232  * Enable load balancing across this set of engines.
2233  *
2234  * Into the I915_EXEC_DEFAULT slot [0], a virtual engine is created that when
2235  * used will proxy the execbuffer request onto one of the set of engines
2236  * in such a way as to distribute the load evenly across the set.
2237  *
2238  * The set of engines must be compatible (e.g. the same HW class) as they
2239  * will share the same logical GPU context and ring.
2240  *
2241  * To intermix rendering with the virtual engine and direct rendering onto
2242  * the backing engines (bypassing the load balancing proxy), the context must
2243  * be defined to use a single timeline for all engines.
2244  */
2245 struct i915_context_engines_load_balance {
2246 	struct i915_user_extension base;
2247 
2248 	__u16 engine_index;
2249 	__u16 num_siblings;
2250 	__u32 flags; /* all undefined flags must be zero */
2251 
2252 	__u64 mbz64; /* reserved for future use; must be zero */
2253 
2254 	struct i915_engine_class_instance engines[];
2255 } __attribute__((packed));
2256 
2257 #define I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(name__, N__) struct { \
2258 	struct i915_user_extension base; \
2259 	__u16 engine_index; \
2260 	__u16 num_siblings; \
2261 	__u32 flags; \
2262 	__u64 mbz64; \
2263 	struct i915_engine_class_instance engines[N__]; \
2264 } __attribute__((packed)) name__
2265 
2266 /*
2267  * i915_context_engines_bond:
2268  *
2269  * Constructed bonded pairs for execution within a virtual engine.
2270  *
2271  * All engines are equal, but some are more equal than others. Given
2272  * the distribution of resources in the HW, it may be preferable to run
2273  * a request on a given subset of engines in parallel to a request on a
2274  * specific engine. We enable this selection of engines within a virtual
2275  * engine by specifying bonding pairs, for any given master engine we will
2276  * only execute on one of the corresponding siblings within the virtual engine.
2277  *
2278  * To execute a request in parallel on the master engine and a sibling requires
2279  * coordination with a I915_EXEC_FENCE_SUBMIT.
2280  */
2281 struct i915_context_engines_bond {
2282 	struct i915_user_extension base;
2283 
2284 	struct i915_engine_class_instance master;
2285 
2286 	__u16 virtual_index; /* index of virtual engine in ctx->engines[] */
2287 	__u16 num_bonds;
2288 
2289 	__u64 flags; /* all undefined flags must be zero */
2290 	__u64 mbz64[4]; /* reserved for future use; must be zero */
2291 
2292 	struct i915_engine_class_instance engines[];
2293 } __attribute__((packed));
2294 
2295 #define I915_DEFINE_CONTEXT_ENGINES_BOND(name__, N__) struct { \
2296 	struct i915_user_extension base; \
2297 	struct i915_engine_class_instance master; \
2298 	__u16 virtual_index; \
2299 	__u16 num_bonds; \
2300 	__u64 flags; \
2301 	__u64 mbz64[4]; \
2302 	struct i915_engine_class_instance engines[N__]; \
2303 } __attribute__((packed)) name__
2304 
2305 /**
2306  * struct i915_context_engines_parallel_submit - Configure engine for
2307  * parallel submission.
2308  *
2309  * Setup a slot in the context engine map to allow multiple BBs to be submitted
2310  * in a single execbuf IOCTL. Those BBs will then be scheduled to run on the GPU
2311  * in parallel. Multiple hardware contexts are created internally in the i915 to
2312  * run these BBs. Once a slot is configured for N BBs only N BBs can be
2313  * submitted in each execbuf IOCTL and this is implicit behavior e.g. The user
2314  * doesn't tell the execbuf IOCTL there are N BBs, the execbuf IOCTL knows how
2315  * many BBs there are based on the slot's configuration. The N BBs are the last
2316  * N buffer objects or first N if I915_EXEC_BATCH_FIRST is set.
2317  *
2318  * The default placement behavior is to create implicit bonds between each
2319  * context if each context maps to more than 1 physical engine (e.g. context is
2320  * a virtual engine). Also we only allow contexts of same engine class and these
2321  * contexts must be in logically contiguous order. Examples of the placement
2322  * behavior are described below. Lastly, the default is to not allow BBs to be
2323  * preempted mid-batch. Rather insert coordinated preemption points on all
2324  * hardware contexts between each set of BBs. Flags could be added in the future
2325  * to change both of these default behaviors.
2326  *
2327  * Returns -EINVAL if hardware context placement configuration is invalid or if
2328  * the placement configuration isn't supported on the platform / submission
2329  * interface.
2330  * Returns -ENODEV if extension isn't supported on the platform / submission
2331  * interface.
2332  *
2333  * .. code-block:: none
2334  *
2335  *	Examples syntax:
2336  *	CS[X] = generic engine of same class, logical instance X
2337  *	INVALID = I915_ENGINE_CLASS_INVALID, I915_ENGINE_CLASS_INVALID_NONE
2338  *
2339  *	Example 1 pseudo code:
2340  *	set_engines(INVALID)
2341  *	set_parallel(engine_index=0, width=2, num_siblings=1,
2342  *		     engines=CS[0],CS[1])
2343  *
2344  *	Results in the following valid placement:
2345  *	CS[0], CS[1]
2346  *
2347  *	Example 2 pseudo code:
2348  *	set_engines(INVALID)
2349  *	set_parallel(engine_index=0, width=2, num_siblings=2,
2350  *		     engines=CS[0],CS[2],CS[1],CS[3])
2351  *
2352  *	Results in the following valid placements:
2353  *	CS[0], CS[1]
2354  *	CS[2], CS[3]
2355  *
2356  *	This can be thought of as two virtual engines, each containing two
2357  *	engines thereby making a 2D array. However, there are bonds tying the
2358  *	entries together and placing restrictions on how they can be scheduled.
2359  *	Specifically, the scheduler can choose only vertical columns from the 2D
2360  *	array. That is, CS[0] is bonded to CS[1] and CS[2] to CS[3]. So if the
2361  *	scheduler wants to submit to CS[0], it must also choose CS[1] and vice
2362  *	versa. Same for CS[2] requires also using CS[3].
2363  *	VE[0] = CS[0], CS[2]
2364  *	VE[1] = CS[1], CS[3]
2365  *
2366  *	Example 3 pseudo code:
2367  *	set_engines(INVALID)
2368  *	set_parallel(engine_index=0, width=2, num_siblings=2,
2369  *		     engines=CS[0],CS[1],CS[1],CS[3])
2370  *
2371  *	Results in the following valid and invalid placements:
2372  *	CS[0], CS[1]
2373  *	CS[1], CS[3] - Not logically contiguous, return -EINVAL
2374  */
2375 struct i915_context_engines_parallel_submit {
2376 	/**
2377 	 * @base: base user extension.
2378 	 */
2379 	struct i915_user_extension base;
2380 
2381 	/**
2382 	 * @engine_index: slot for parallel engine
2383 	 */
2384 	__u16 engine_index;
2385 
2386 	/**
2387 	 * @width: number of contexts per parallel engine or in other words the
2388 	 * number of batches in each submission
2389 	 */
2390 	__u16 width;
2391 
2392 	/**
2393 	 * @num_siblings: number of siblings per context or in other words the
2394 	 * number of possible placements for each submission
2395 	 */
2396 	__u16 num_siblings;
2397 
2398 	/**
2399 	 * @mbz16: reserved for future use; must be zero
2400 	 */
2401 	__u16 mbz16;
2402 
2403 	/**
2404 	 * @flags: all undefined flags must be zero, currently not defined flags
2405 	 */
2406 	__u64 flags;
2407 
2408 	/**
2409 	 * @mbz64: reserved for future use; must be zero
2410 	 */
2411 	__u64 mbz64[3];
2412 
2413 	/**
2414 	 * @engines: 2-d array of engine instances to configure parallel engine
2415 	 *
2416 	 * length = width (i) * num_siblings (j)
2417 	 * index = j + i * num_siblings
2418 	 */
2419 	struct i915_engine_class_instance engines[];
2420 
2421 } __packed;
2422 
2423 #define I915_DEFINE_CONTEXT_ENGINES_PARALLEL_SUBMIT(name__, N__) struct { \
2424 	struct i915_user_extension base; \
2425 	__u16 engine_index; \
2426 	__u16 width; \
2427 	__u16 num_siblings; \
2428 	__u16 mbz16; \
2429 	__u64 flags; \
2430 	__u64 mbz64[3]; \
2431 	struct i915_engine_class_instance engines[N__]; \
2432 } __attribute__((packed)) name__
2433 
2434 /**
2435  * DOC: Context Engine Map uAPI
2436  *
2437  * Context engine map is a new way of addressing engines when submitting batch-
2438  * buffers, replacing the existing way of using identifiers like `I915_EXEC_BLT`
2439  * inside the flags field of `struct drm_i915_gem_execbuffer2`.
2440  *
2441  * To use it created GEM contexts need to be configured with a list of engines
2442  * the user is intending to submit to. This is accomplished using the
2443  * `I915_CONTEXT_PARAM_ENGINES` parameter and `struct
2444  * i915_context_param_engines`.
2445  *
2446  * For such contexts the `I915_EXEC_RING_MASK` field becomes an index into the
2447  * configured map.
2448  *
2449  * Example of creating such context and submitting against it:
2450  *
2451  * .. code-block:: C
2452  *
2453  * 	I915_DEFINE_CONTEXT_PARAM_ENGINES(engines, 2) = {
2454  * 		.engines = { { I915_ENGINE_CLASS_RENDER, 0 },
2455  * 			     { I915_ENGINE_CLASS_COPY, 0 } }
2456  * 	};
2457  * 	struct drm_i915_gem_context_create_ext_setparam p_engines = {
2458  * 		.base = {
2459  * 			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2460  * 		},
2461  * 		.param = {
2462  * 			.param = I915_CONTEXT_PARAM_ENGINES,
2463  * 			.value = to_user_pointer(&engines),
2464  * 			.size = sizeof(engines),
2465  * 		},
2466  * 	};
2467  * 	struct drm_i915_gem_context_create_ext create = {
2468  * 		.flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
2469  * 		.extensions = to_user_pointer(&p_engines);
2470  * 	};
2471  *
2472  * 	ctx_id = gem_context_create_ext(drm_fd, &create);
2473  *
2474  * 	// We have now created a GEM context with two engines in the map:
2475  * 	// Index 0 points to rcs0 while index 1 points to bcs0. Other engines
2476  * 	// will not be accessible from this context.
2477  *
2478  * 	...
2479  * 	execbuf.rsvd1 = ctx_id;
2480  * 	execbuf.flags = 0; // Submits to index 0, which is rcs0 for this context
2481  * 	gem_execbuf(drm_fd, &execbuf);
2482  *
2483  * 	...
2484  * 	execbuf.rsvd1 = ctx_id;
2485  * 	execbuf.flags = 1; // Submits to index 0, which is bcs0 for this context
2486  * 	gem_execbuf(drm_fd, &execbuf);
2487  */
2488 
2489 struct i915_context_param_engines {
2490 	__u64 extensions; /* linked chain of extension blocks, 0 terminates */
2491 #define I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE 0 /* see i915_context_engines_load_balance */
2492 #define I915_CONTEXT_ENGINES_EXT_BOND 1 /* see i915_context_engines_bond */
2493 #define I915_CONTEXT_ENGINES_EXT_PARALLEL_SUBMIT 2 /* see i915_context_engines_parallel_submit */
2494 	struct i915_engine_class_instance engines[0];
2495 } __attribute__((packed));
2496 
2497 #define I915_DEFINE_CONTEXT_PARAM_ENGINES(name__, N__) struct { \
2498 	__u64 extensions; \
2499 	struct i915_engine_class_instance engines[N__]; \
2500 } __attribute__((packed)) name__
2501 
2502 /**
2503  * struct drm_i915_gem_context_create_ext_setparam - Context parameter
2504  * to set or query during context creation.
2505  */
2506 struct drm_i915_gem_context_create_ext_setparam {
2507 	/** @base: Extension link. See struct i915_user_extension. */
2508 	struct i915_user_extension base;
2509 
2510 	/**
2511 	 * @param: Context parameter to set or query.
2512 	 * See struct drm_i915_gem_context_param.
2513 	 */
2514 	struct drm_i915_gem_context_param param;
2515 };
2516 
2517 struct drm_i915_gem_context_destroy {
2518 	__u32 ctx_id;
2519 	__u32 pad;
2520 };
2521 
2522 /**
2523  * struct drm_i915_gem_vm_control - Structure to create or destroy VM.
2524  *
2525  * DRM_I915_GEM_VM_CREATE -
2526  *
2527  * Create a new virtual memory address space (ppGTT) for use within a context
2528  * on the same file. Extensions can be provided to configure exactly how the
2529  * address space is setup upon creation.
2530  *
2531  * The id of new VM (bound to the fd) for use with I915_CONTEXT_PARAM_VM is
2532  * returned in the outparam @id.
2533  *
2534  * An extension chain maybe provided, starting with @extensions, and terminated
2535  * by the @next_extension being 0. Currently, no extensions are defined.
2536  *
2537  * DRM_I915_GEM_VM_DESTROY -
2538  *
2539  * Destroys a previously created VM id, specified in @vm_id.
2540  *
2541  * No extensions or flags are allowed currently, and so must be zero.
2542  */
2543 struct drm_i915_gem_vm_control {
2544 	/** @extensions: Zero-terminated chain of extensions. */
2545 	__u64 extensions;
2546 
2547 	/** @flags: reserved for future usage, currently MBZ */
2548 	__u32 flags;
2549 
2550 	/** @vm_id: Id of the VM created or to be destroyed */
2551 	__u32 vm_id;
2552 };
2553 
2554 struct drm_i915_reg_read {
2555 	/*
2556 	 * Register offset.
2557 	 * For 64bit wide registers where the upper 32bits don't immediately
2558 	 * follow the lower 32bits, the offset of the lower 32bits must
2559 	 * be specified
2560 	 */
2561 	__u64 offset;
2562 #define I915_REG_READ_8B_WA (1ul << 0)
2563 
2564 	__u64 val; /* Return value */
2565 };
2566 
2567 /* Known registers:
2568  *
2569  * Render engine timestamp - 0x2358 + 64bit - gen7+
2570  * - Note this register returns an invalid value if using the default
2571  *   single instruction 8byte read, in order to workaround that pass
2572  *   flag I915_REG_READ_8B_WA in offset field.
2573  *
2574  */
2575 
2576 struct drm_i915_reset_stats {
2577 	__u32 ctx_id;
2578 	__u32 flags;
2579 
2580 	/* All resets since boot/module reload, for all contexts */
2581 	__u32 reset_count;
2582 
2583 	/* Number of batches lost when active in GPU, for this context */
2584 	__u32 batch_active;
2585 
2586 	/* Number of batches lost pending for execution, for this context */
2587 	__u32 batch_pending;
2588 
2589 	__u32 pad;
2590 };
2591 
2592 /**
2593  * struct drm_i915_gem_userptr - Create GEM object from user allocated memory.
2594  *
2595  * Userptr objects have several restrictions on what ioctls can be used with the
2596  * object handle.
2597  */
2598 struct drm_i915_gem_userptr {
2599 	/**
2600 	 * @user_ptr: The pointer to the allocated memory.
2601 	 *
2602 	 * Needs to be aligned to PAGE_SIZE.
2603 	 */
2604 	__u64 user_ptr;
2605 
2606 	/**
2607 	 * @user_size:
2608 	 *
2609 	 * The size in bytes for the allocated memory. This will also become the
2610 	 * object size.
2611 	 *
2612 	 * Needs to be aligned to PAGE_SIZE, and should be at least PAGE_SIZE,
2613 	 * or larger.
2614 	 */
2615 	__u64 user_size;
2616 
2617 	/**
2618 	 * @flags:
2619 	 *
2620 	 * Supported flags:
2621 	 *
2622 	 * I915_USERPTR_READ_ONLY:
2623 	 *
2624 	 * Mark the object as readonly, this also means GPU access can only be
2625 	 * readonly. This is only supported on HW which supports readonly access
2626 	 * through the GTT. If the HW can't support readonly access, an error is
2627 	 * returned.
2628 	 *
2629 	 * I915_USERPTR_PROBE:
2630 	 *
2631 	 * Probe the provided @user_ptr range and validate that the @user_ptr is
2632 	 * indeed pointing to normal memory and that the range is also valid.
2633 	 * For example if some garbage address is given to the kernel, then this
2634 	 * should complain.
2635 	 *
2636 	 * Returns -EFAULT if the probe failed.
2637 	 *
2638 	 * Note that this doesn't populate the backing pages, and also doesn't
2639 	 * guarantee that the object will remain valid when the object is
2640 	 * eventually used.
2641 	 *
2642 	 * The kernel supports this feature if I915_PARAM_HAS_USERPTR_PROBE
2643 	 * returns a non-zero value.
2644 	 *
2645 	 * I915_USERPTR_UNSYNCHRONIZED:
2646 	 *
2647 	 * NOT USED. Setting this flag will result in an error.
2648 	 */
2649 	__u32 flags;
2650 #define I915_USERPTR_READ_ONLY 0x1
2651 #define I915_USERPTR_PROBE 0x2
2652 #define I915_USERPTR_UNSYNCHRONIZED 0x80000000
2653 	/**
2654 	 * @handle: Returned handle for the object.
2655 	 *
2656 	 * Object handles are nonzero.
2657 	 */
2658 	__u32 handle;
2659 };
2660 
2661 enum drm_i915_oa_format {
2662 	I915_OA_FORMAT_A13 = 1,	    /* HSW only */
2663 	I915_OA_FORMAT_A29,	    /* HSW only */
2664 	I915_OA_FORMAT_A13_B8_C8,   /* HSW only */
2665 	I915_OA_FORMAT_B4_C8,	    /* HSW only */
2666 	I915_OA_FORMAT_A45_B8_C8,   /* HSW only */
2667 	I915_OA_FORMAT_B4_C8_A16,   /* HSW only */
2668 	I915_OA_FORMAT_C4_B8,	    /* HSW+ */
2669 
2670 	/* Gen8+ */
2671 	I915_OA_FORMAT_A12,
2672 	I915_OA_FORMAT_A12_B8_C8,
2673 	I915_OA_FORMAT_A32u40_A4u32_B8_C8,
2674 
2675 	/* DG2 */
2676 	I915_OAR_FORMAT_A32u40_A4u32_B8_C8,
2677 	I915_OA_FORMAT_A24u40_A14u32_B8_C8,
2678 
2679 	I915_OA_FORMAT_MAX	    /* non-ABI */
2680 };
2681 
2682 enum drm_i915_perf_property_id {
2683 	/**
2684 	 * Open the stream for a specific context handle (as used with
2685 	 * execbuffer2). A stream opened for a specific context this way
2686 	 * won't typically require root privileges.
2687 	 *
2688 	 * This property is available in perf revision 1.
2689 	 */
2690 	DRM_I915_PERF_PROP_CTX_HANDLE = 1,
2691 
2692 	/**
2693 	 * A value of 1 requests the inclusion of raw OA unit reports as
2694 	 * part of stream samples.
2695 	 *
2696 	 * This property is available in perf revision 1.
2697 	 */
2698 	DRM_I915_PERF_PROP_SAMPLE_OA,
2699 
2700 	/**
2701 	 * The value specifies which set of OA unit metrics should be
2702 	 * configured, defining the contents of any OA unit reports.
2703 	 *
2704 	 * This property is available in perf revision 1.
2705 	 */
2706 	DRM_I915_PERF_PROP_OA_METRICS_SET,
2707 
2708 	/**
2709 	 * The value specifies the size and layout of OA unit reports.
2710 	 *
2711 	 * This property is available in perf revision 1.
2712 	 */
2713 	DRM_I915_PERF_PROP_OA_FORMAT,
2714 
2715 	/**
2716 	 * Specifying this property implicitly requests periodic OA unit
2717 	 * sampling and (at least on Haswell) the sampling frequency is derived
2718 	 * from this exponent as follows:
2719 	 *
2720 	 *   80ns * 2^(period_exponent + 1)
2721 	 *
2722 	 * This property is available in perf revision 1.
2723 	 */
2724 	DRM_I915_PERF_PROP_OA_EXPONENT,
2725 
2726 	/**
2727 	 * Specifying this property is only valid when specify a context to
2728 	 * filter with DRM_I915_PERF_PROP_CTX_HANDLE. Specifying this property
2729 	 * will hold preemption of the particular context we want to gather
2730 	 * performance data about. The execbuf2 submissions must include a
2731 	 * drm_i915_gem_execbuffer_ext_perf parameter for this to apply.
2732 	 *
2733 	 * This property is available in perf revision 3.
2734 	 */
2735 	DRM_I915_PERF_PROP_HOLD_PREEMPTION,
2736 
2737 	/**
2738 	 * Specifying this pins all contexts to the specified SSEU power
2739 	 * configuration for the duration of the recording.
2740 	 *
2741 	 * This parameter's value is a pointer to a struct
2742 	 * drm_i915_gem_context_param_sseu.
2743 	 *
2744 	 * This property is available in perf revision 4.
2745 	 */
2746 	DRM_I915_PERF_PROP_GLOBAL_SSEU,
2747 
2748 	/**
2749 	 * This optional parameter specifies the timer interval in nanoseconds
2750 	 * at which the i915 driver will check the OA buffer for available data.
2751 	 * Minimum allowed value is 100 microseconds. A default value is used by
2752 	 * the driver if this parameter is not specified. Note that larger timer
2753 	 * values will reduce cpu consumption during OA perf captures. However,
2754 	 * excessively large values would potentially result in OA buffer
2755 	 * overwrites as captures reach end of the OA buffer.
2756 	 *
2757 	 * This property is available in perf revision 5.
2758 	 */
2759 	DRM_I915_PERF_PROP_POLL_OA_PERIOD,
2760 
2761 	DRM_I915_PERF_PROP_MAX /* non-ABI */
2762 };
2763 
2764 struct drm_i915_perf_open_param {
2765 	__u32 flags;
2766 #define I915_PERF_FLAG_FD_CLOEXEC	(1<<0)
2767 #define I915_PERF_FLAG_FD_NONBLOCK	(1<<1)
2768 #define I915_PERF_FLAG_DISABLED		(1<<2)
2769 
2770 	/** The number of u64 (id, value) pairs */
2771 	__u32 num_properties;
2772 
2773 	/**
2774 	 * Pointer to array of u64 (id, value) pairs configuring the stream
2775 	 * to open.
2776 	 */
2777 	__u64 properties_ptr;
2778 };
2779 
2780 /*
2781  * Enable data capture for a stream that was either opened in a disabled state
2782  * via I915_PERF_FLAG_DISABLED or was later disabled via
2783  * I915_PERF_IOCTL_DISABLE.
2784  *
2785  * It is intended to be cheaper to disable and enable a stream than it may be
2786  * to close and re-open a stream with the same configuration.
2787  *
2788  * It's undefined whether any pending data for the stream will be lost.
2789  *
2790  * This ioctl is available in perf revision 1.
2791  */
2792 #define I915_PERF_IOCTL_ENABLE	_IO('i', 0x0)
2793 
2794 /*
2795  * Disable data capture for a stream.
2796  *
2797  * It is an error to try and read a stream that is disabled.
2798  *
2799  * This ioctl is available in perf revision 1.
2800  */
2801 #define I915_PERF_IOCTL_DISABLE	_IO('i', 0x1)
2802 
2803 /*
2804  * Change metrics_set captured by a stream.
2805  *
2806  * If the stream is bound to a specific context, the configuration change
2807  * will performed inline with that context such that it takes effect before
2808  * the next execbuf submission.
2809  *
2810  * Returns the previously bound metrics set id, or a negative error code.
2811  *
2812  * This ioctl is available in perf revision 2.
2813  */
2814 #define I915_PERF_IOCTL_CONFIG	_IO('i', 0x2)
2815 
2816 /*
2817  * Common to all i915 perf records
2818  */
2819 struct drm_i915_perf_record_header {
2820 	__u32 type;
2821 	__u16 pad;
2822 	__u16 size;
2823 };
2824 
2825 enum drm_i915_perf_record_type {
2826 
2827 	/**
2828 	 * Samples are the work horse record type whose contents are extensible
2829 	 * and defined when opening an i915 perf stream based on the given
2830 	 * properties.
2831 	 *
2832 	 * Boolean properties following the naming convention
2833 	 * DRM_I915_PERF_SAMPLE_xyz_PROP request the inclusion of 'xyz' data in
2834 	 * every sample.
2835 	 *
2836 	 * The order of these sample properties given by userspace has no
2837 	 * affect on the ordering of data within a sample. The order is
2838 	 * documented here.
2839 	 *
2840 	 * struct {
2841 	 *     struct drm_i915_perf_record_header header;
2842 	 *
2843 	 *     { u32 oa_report[]; } && DRM_I915_PERF_PROP_SAMPLE_OA
2844 	 * };
2845 	 */
2846 	DRM_I915_PERF_RECORD_SAMPLE = 1,
2847 
2848 	/*
2849 	 * Indicates that one or more OA reports were not written by the
2850 	 * hardware. This can happen for example if an MI_REPORT_PERF_COUNT
2851 	 * command collides with periodic sampling - which would be more likely
2852 	 * at higher sampling frequencies.
2853 	 */
2854 	DRM_I915_PERF_RECORD_OA_REPORT_LOST = 2,
2855 
2856 	/**
2857 	 * An error occurred that resulted in all pending OA reports being lost.
2858 	 */
2859 	DRM_I915_PERF_RECORD_OA_BUFFER_LOST = 3,
2860 
2861 	DRM_I915_PERF_RECORD_MAX /* non-ABI */
2862 };
2863 
2864 /**
2865  * struct drm_i915_perf_oa_config
2866  *
2867  * Structure to upload perf dynamic configuration into the kernel.
2868  */
2869 struct drm_i915_perf_oa_config {
2870 	/**
2871 	 * @uuid:
2872 	 *
2873 	 * String formatted like "%\08x-%\04x-%\04x-%\04x-%\012x"
2874 	 */
2875 	char uuid[36];
2876 
2877 	/**
2878 	 * @n_mux_regs:
2879 	 *
2880 	 * Number of mux regs in &mux_regs_ptr.
2881 	 */
2882 	__u32 n_mux_regs;
2883 
2884 	/**
2885 	 * @n_boolean_regs:
2886 	 *
2887 	 * Number of boolean regs in &boolean_regs_ptr.
2888 	 */
2889 	__u32 n_boolean_regs;
2890 
2891 	/**
2892 	 * @n_flex_regs:
2893 	 *
2894 	 * Number of flex regs in &flex_regs_ptr.
2895 	 */
2896 	__u32 n_flex_regs;
2897 
2898 	/**
2899 	 * @mux_regs_ptr:
2900 	 *
2901 	 * Pointer to tuples of u32 values (register address, value) for mux
2902 	 * registers.  Expected length of buffer is (2 * sizeof(u32) *
2903 	 * &n_mux_regs).
2904 	 */
2905 	__u64 mux_regs_ptr;
2906 
2907 	/**
2908 	 * @boolean_regs_ptr:
2909 	 *
2910 	 * Pointer to tuples of u32 values (register address, value) for mux
2911 	 * registers.  Expected length of buffer is (2 * sizeof(u32) *
2912 	 * &n_boolean_regs).
2913 	 */
2914 	__u64 boolean_regs_ptr;
2915 
2916 	/**
2917 	 * @flex_regs_ptr:
2918 	 *
2919 	 * Pointer to tuples of u32 values (register address, value) for mux
2920 	 * registers.  Expected length of buffer is (2 * sizeof(u32) *
2921 	 * &n_flex_regs).
2922 	 */
2923 	__u64 flex_regs_ptr;
2924 };
2925 
2926 /**
2927  * struct drm_i915_query_item - An individual query for the kernel to process.
2928  *
2929  * The behaviour is determined by the @query_id. Note that exactly what
2930  * @data_ptr is also depends on the specific @query_id.
2931  */
2932 struct drm_i915_query_item {
2933 	/**
2934 	 * @query_id:
2935 	 *
2936 	 * The id for this query.  Currently accepted query IDs are:
2937 	 *  - %DRM_I915_QUERY_TOPOLOGY_INFO (see struct drm_i915_query_topology_info)
2938 	 *  - %DRM_I915_QUERY_ENGINE_INFO (see struct drm_i915_engine_info)
2939 	 *  - %DRM_I915_QUERY_PERF_CONFIG (see struct drm_i915_query_perf_config)
2940 	 *  - %DRM_I915_QUERY_MEMORY_REGIONS (see struct drm_i915_query_memory_regions)
2941 	 *  - %DRM_I915_QUERY_HWCONFIG_BLOB (see `GuC HWCONFIG blob uAPI`)
2942 	 *  - %DRM_I915_QUERY_GEOMETRY_SUBSLICES (see struct drm_i915_query_topology_info)
2943 	 */
2944 	__u64 query_id;
2945 #define DRM_I915_QUERY_TOPOLOGY_INFO		1
2946 #define DRM_I915_QUERY_ENGINE_INFO		2
2947 #define DRM_I915_QUERY_PERF_CONFIG		3
2948 #define DRM_I915_QUERY_MEMORY_REGIONS		4
2949 #define DRM_I915_QUERY_HWCONFIG_BLOB		5
2950 #define DRM_I915_QUERY_GEOMETRY_SUBSLICES	6
2951 /* Must be kept compact -- no holes and well documented */
2952 
2953 	/**
2954 	 * @length:
2955 	 *
2956 	 * When set to zero by userspace, this is filled with the size of the
2957 	 * data to be written at the @data_ptr pointer. The kernel sets this
2958 	 * value to a negative value to signal an error on a particular query
2959 	 * item.
2960 	 */
2961 	__s32 length;
2962 
2963 	/**
2964 	 * @flags:
2965 	 *
2966 	 * When &query_id == %DRM_I915_QUERY_TOPOLOGY_INFO, must be 0.
2967 	 *
2968 	 * When &query_id == %DRM_I915_QUERY_PERF_CONFIG, must be one of the
2969 	 * following:
2970 	 *
2971 	 *	- %DRM_I915_QUERY_PERF_CONFIG_LIST
2972 	 *      - %DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID
2973 	 *      - %DRM_I915_QUERY_PERF_CONFIG_FOR_UUID
2974 	 *
2975 	 * When &query_id == %DRM_I915_QUERY_GEOMETRY_SUBSLICES must contain
2976 	 * a struct i915_engine_class_instance that references a render engine.
2977 	 */
2978 	__u32 flags;
2979 #define DRM_I915_QUERY_PERF_CONFIG_LIST          1
2980 #define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID 2
2981 #define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID   3
2982 
2983 	/**
2984 	 * @data_ptr:
2985 	 *
2986 	 * Data will be written at the location pointed by @data_ptr when the
2987 	 * value of @length matches the length of the data to be written by the
2988 	 * kernel.
2989 	 */
2990 	__u64 data_ptr;
2991 };
2992 
2993 /**
2994  * struct drm_i915_query - Supply an array of struct drm_i915_query_item for the
2995  * kernel to fill out.
2996  *
2997  * Note that this is generally a two step process for each struct
2998  * drm_i915_query_item in the array:
2999  *
3000  * 1. Call the DRM_IOCTL_I915_QUERY, giving it our array of struct
3001  *    drm_i915_query_item, with &drm_i915_query_item.length set to zero. The
3002  *    kernel will then fill in the size, in bytes, which tells userspace how
3003  *    memory it needs to allocate for the blob(say for an array of properties).
3004  *
3005  * 2. Next we call DRM_IOCTL_I915_QUERY again, this time with the
3006  *    &drm_i915_query_item.data_ptr equal to our newly allocated blob. Note that
3007  *    the &drm_i915_query_item.length should still be the same as what the
3008  *    kernel previously set. At this point the kernel can fill in the blob.
3009  *
3010  * Note that for some query items it can make sense for userspace to just pass
3011  * in a buffer/blob equal to or larger than the required size. In this case only
3012  * a single ioctl call is needed. For some smaller query items this can work
3013  * quite well.
3014  *
3015  */
3016 struct drm_i915_query {
3017 	/** @num_items: The number of elements in the @items_ptr array */
3018 	__u32 num_items;
3019 
3020 	/**
3021 	 * @flags: Unused for now. Must be cleared to zero.
3022 	 */
3023 	__u32 flags;
3024 
3025 	/**
3026 	 * @items_ptr:
3027 	 *
3028 	 * Pointer to an array of struct drm_i915_query_item. The number of
3029 	 * array elements is @num_items.
3030 	 */
3031 	__u64 items_ptr;
3032 };
3033 
3034 /**
3035  * struct drm_i915_query_topology_info
3036  *
3037  * Describes slice/subslice/EU information queried by
3038  * %DRM_I915_QUERY_TOPOLOGY_INFO
3039  */
3040 struct drm_i915_query_topology_info {
3041 	/**
3042 	 * @flags:
3043 	 *
3044 	 * Unused for now. Must be cleared to zero.
3045 	 */
3046 	__u16 flags;
3047 
3048 	/**
3049 	 * @max_slices:
3050 	 *
3051 	 * The number of bits used to express the slice mask.
3052 	 */
3053 	__u16 max_slices;
3054 
3055 	/**
3056 	 * @max_subslices:
3057 	 *
3058 	 * The number of bits used to express the subslice mask.
3059 	 */
3060 	__u16 max_subslices;
3061 
3062 	/**
3063 	 * @max_eus_per_subslice:
3064 	 *
3065 	 * The number of bits in the EU mask that correspond to a single
3066 	 * subslice's EUs.
3067 	 */
3068 	__u16 max_eus_per_subslice;
3069 
3070 	/**
3071 	 * @subslice_offset:
3072 	 *
3073 	 * Offset in data[] at which the subslice masks are stored.
3074 	 */
3075 	__u16 subslice_offset;
3076 
3077 	/**
3078 	 * @subslice_stride:
3079 	 *
3080 	 * Stride at which each of the subslice masks for each slice are
3081 	 * stored.
3082 	 */
3083 	__u16 subslice_stride;
3084 
3085 	/**
3086 	 * @eu_offset:
3087 	 *
3088 	 * Offset in data[] at which the EU masks are stored.
3089 	 */
3090 	__u16 eu_offset;
3091 
3092 	/**
3093 	 * @eu_stride:
3094 	 *
3095 	 * Stride at which each of the EU masks for each subslice are stored.
3096 	 */
3097 	__u16 eu_stride;
3098 
3099 	/**
3100 	 * @data:
3101 	 *
3102 	 * Contains 3 pieces of information :
3103 	 *
3104 	 * - The slice mask with one bit per slice telling whether a slice is
3105 	 *   available. The availability of slice X can be queried with the
3106 	 *   following formula :
3107 	 *
3108 	 *   .. code:: c
3109 	 *
3110 	 *      (data[X / 8] >> (X % 8)) & 1
3111 	 *
3112 	 *   Starting with Xe_HP platforms, Intel hardware no longer has
3113 	 *   traditional slices so i915 will always report a single slice
3114 	 *   (hardcoded slicemask = 0x1) which contains all of the platform's
3115 	 *   subslices.  I.e., the mask here does not reflect any of the newer
3116 	 *   hardware concepts such as "gslices" or "cslices" since userspace
3117 	 *   is capable of inferring those from the subslice mask.
3118 	 *
3119 	 * - The subslice mask for each slice with one bit per subslice telling
3120 	 *   whether a subslice is available.  Starting with Gen12 we use the
3121 	 *   term "subslice" to refer to what the hardware documentation
3122 	 *   describes as a "dual-subslices."  The availability of subslice Y
3123 	 *   in slice X can be queried with the following formula :
3124 	 *
3125 	 *   .. code:: c
3126 	 *
3127 	 *      (data[subslice_offset + X * subslice_stride + Y / 8] >> (Y % 8)) & 1
3128 	 *
3129 	 * - The EU mask for each subslice in each slice, with one bit per EU
3130 	 *   telling whether an EU is available. The availability of EU Z in
3131 	 *   subslice Y in slice X can be queried with the following formula :
3132 	 *
3133 	 *   .. code:: c
3134 	 *
3135 	 *      (data[eu_offset +
3136 	 *            (X * max_subslices + Y) * eu_stride +
3137 	 *            Z / 8
3138 	 *       ] >> (Z % 8)) & 1
3139 	 */
3140 	__u8 data[];
3141 };
3142 
3143 /**
3144  * DOC: Engine Discovery uAPI
3145  *
3146  * Engine discovery uAPI is a way of enumerating physical engines present in a
3147  * GPU associated with an open i915 DRM file descriptor. This supersedes the old
3148  * way of using `DRM_IOCTL_I915_GETPARAM` and engine identifiers like
3149  * `I915_PARAM_HAS_BLT`.
3150  *
3151  * The need for this interface came starting with Icelake and newer GPUs, which
3152  * started to establish a pattern of having multiple engines of a same class,
3153  * where not all instances were always completely functionally equivalent.
3154  *
3155  * Entry point for this uapi is `DRM_IOCTL_I915_QUERY` with the
3156  * `DRM_I915_QUERY_ENGINE_INFO` as the queried item id.
3157  *
3158  * Example for getting the list of engines:
3159  *
3160  * .. code-block:: C
3161  *
3162  * 	struct drm_i915_query_engine_info *info;
3163  * 	struct drm_i915_query_item item = {
3164  * 		.query_id = DRM_I915_QUERY_ENGINE_INFO;
3165  * 	};
3166  * 	struct drm_i915_query query = {
3167  * 		.num_items = 1,
3168  * 		.items_ptr = (uintptr_t)&item,
3169  * 	};
3170  * 	int err, i;
3171  *
3172  * 	// First query the size of the blob we need, this needs to be large
3173  * 	// enough to hold our array of engines. The kernel will fill out the
3174  * 	// item.length for us, which is the number of bytes we need.
3175  * 	//
3176  * 	// Alternatively a large buffer can be allocated straight away enabling
3177  * 	// querying in one pass, in which case item.length should contain the
3178  * 	// length of the provided buffer.
3179  * 	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3180  * 	if (err) ...
3181  *
3182  * 	info = calloc(1, item.length);
3183  * 	// Now that we allocated the required number of bytes, we call the ioctl
3184  * 	// again, this time with the data_ptr pointing to our newly allocated
3185  * 	// blob, which the kernel can then populate with info on all engines.
3186  * 	item.data_ptr = (uintptr_t)&info,
3187  *
3188  * 	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3189  * 	if (err) ...
3190  *
3191  * 	// We can now access each engine in the array
3192  * 	for (i = 0; i < info->num_engines; i++) {
3193  * 		struct drm_i915_engine_info einfo = info->engines[i];
3194  * 		u16 class = einfo.engine.class;
3195  * 		u16 instance = einfo.engine.instance;
3196  * 		....
3197  * 	}
3198  *
3199  * 	free(info);
3200  *
3201  * Each of the enumerated engines, apart from being defined by its class and
3202  * instance (see `struct i915_engine_class_instance`), also can have flags and
3203  * capabilities defined as documented in i915_drm.h.
3204  *
3205  * For instance video engines which support HEVC encoding will have the
3206  * `I915_VIDEO_CLASS_CAPABILITY_HEVC` capability bit set.
3207  *
3208  * Engine discovery only fully comes to its own when combined with the new way
3209  * of addressing engines when submitting batch buffers using contexts with
3210  * engine maps configured.
3211  */
3212 
3213 /**
3214  * struct drm_i915_engine_info
3215  *
3216  * Describes one engine and it's capabilities as known to the driver.
3217  */
3218 struct drm_i915_engine_info {
3219 	/** @engine: Engine class and instance. */
3220 	struct i915_engine_class_instance engine;
3221 
3222 	/** @rsvd0: Reserved field. */
3223 	__u32 rsvd0;
3224 
3225 	/** @flags: Engine flags. */
3226 	__u64 flags;
3227 #define I915_ENGINE_INFO_HAS_LOGICAL_INSTANCE		(1 << 0)
3228 
3229 	/** @capabilities: Capabilities of this engine. */
3230 	__u64 capabilities;
3231 #define I915_VIDEO_CLASS_CAPABILITY_HEVC		(1 << 0)
3232 #define I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC	(1 << 1)
3233 
3234 	/** @logical_instance: Logical instance of engine */
3235 	__u16 logical_instance;
3236 
3237 	/** @rsvd1: Reserved fields. */
3238 	__u16 rsvd1[3];
3239 	/** @rsvd2: Reserved fields. */
3240 	__u64 rsvd2[3];
3241 };
3242 
3243 /**
3244  * struct drm_i915_query_engine_info
3245  *
3246  * Engine info query enumerates all engines known to the driver by filling in
3247  * an array of struct drm_i915_engine_info structures.
3248  */
3249 struct drm_i915_query_engine_info {
3250 	/** @num_engines: Number of struct drm_i915_engine_info structs following. */
3251 	__u32 num_engines;
3252 
3253 	/** @rsvd: MBZ */
3254 	__u32 rsvd[3];
3255 
3256 	/** @engines: Marker for drm_i915_engine_info structures. */
3257 	struct drm_i915_engine_info engines[];
3258 };
3259 
3260 /**
3261  * struct drm_i915_query_perf_config
3262  *
3263  * Data written by the kernel with query %DRM_I915_QUERY_PERF_CONFIG and
3264  * %DRM_I915_QUERY_GEOMETRY_SUBSLICES.
3265  */
3266 struct drm_i915_query_perf_config {
3267 	union {
3268 		/**
3269 		 * @n_configs:
3270 		 *
3271 		 * When &drm_i915_query_item.flags ==
3272 		 * %DRM_I915_QUERY_PERF_CONFIG_LIST, i915 sets this fields to
3273 		 * the number of configurations available.
3274 		 */
3275 		__u64 n_configs;
3276 
3277 		/**
3278 		 * @config:
3279 		 *
3280 		 * When &drm_i915_query_item.flags ==
3281 		 * %DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID, i915 will use the
3282 		 * value in this field as configuration identifier to decide
3283 		 * what data to write into config_ptr.
3284 		 */
3285 		__u64 config;
3286 
3287 		/**
3288 		 * @uuid:
3289 		 *
3290 		 * When &drm_i915_query_item.flags ==
3291 		 * %DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID, i915 will use the
3292 		 * value in this field as configuration identifier to decide
3293 		 * what data to write into config_ptr.
3294 		 *
3295 		 * String formatted like "%08x-%04x-%04x-%04x-%012x"
3296 		 */
3297 		char uuid[36];
3298 	};
3299 
3300 	/**
3301 	 * @flags:
3302 	 *
3303 	 * Unused for now. Must be cleared to zero.
3304 	 */
3305 	__u32 flags;
3306 
3307 	/**
3308 	 * @data:
3309 	 *
3310 	 * When &drm_i915_query_item.flags == %DRM_I915_QUERY_PERF_CONFIG_LIST,
3311 	 * i915 will write an array of __u64 of configuration identifiers.
3312 	 *
3313 	 * When &drm_i915_query_item.flags == %DRM_I915_QUERY_PERF_CONFIG_DATA,
3314 	 * i915 will write a struct drm_i915_perf_oa_config. If the following
3315 	 * fields of struct drm_i915_perf_oa_config are not set to 0, i915 will
3316 	 * write into the associated pointers the values of submitted when the
3317 	 * configuration was created :
3318 	 *
3319 	 *  - &drm_i915_perf_oa_config.n_mux_regs
3320 	 *  - &drm_i915_perf_oa_config.n_boolean_regs
3321 	 *  - &drm_i915_perf_oa_config.n_flex_regs
3322 	 */
3323 	__u8 data[];
3324 };
3325 
3326 /**
3327  * enum drm_i915_gem_memory_class - Supported memory classes
3328  */
3329 enum drm_i915_gem_memory_class {
3330 	/** @I915_MEMORY_CLASS_SYSTEM: System memory */
3331 	I915_MEMORY_CLASS_SYSTEM = 0,
3332 	/** @I915_MEMORY_CLASS_DEVICE: Device local-memory */
3333 	I915_MEMORY_CLASS_DEVICE,
3334 };
3335 
3336 /**
3337  * struct drm_i915_gem_memory_class_instance - Identify particular memory region
3338  */
3339 struct drm_i915_gem_memory_class_instance {
3340 	/** @memory_class: See enum drm_i915_gem_memory_class */
3341 	__u16 memory_class;
3342 
3343 	/** @memory_instance: Which instance */
3344 	__u16 memory_instance;
3345 };
3346 
3347 /**
3348  * struct drm_i915_memory_region_info - Describes one region as known to the
3349  * driver.
3350  *
3351  * Note this is using both struct drm_i915_query_item and struct drm_i915_query.
3352  * For this new query we are adding the new query id DRM_I915_QUERY_MEMORY_REGIONS
3353  * at &drm_i915_query_item.query_id.
3354  */
3355 struct drm_i915_memory_region_info {
3356 	/** @region: The class:instance pair encoding */
3357 	struct drm_i915_gem_memory_class_instance region;
3358 
3359 	/** @rsvd0: MBZ */
3360 	__u32 rsvd0;
3361 
3362 	/**
3363 	 * @probed_size: Memory probed by the driver
3364 	 *
3365 	 * Note that it should not be possible to ever encounter a zero value
3366 	 * here, also note that no current region type will ever return -1 here.
3367 	 * Although for future region types, this might be a possibility. The
3368 	 * same applies to the other size fields.
3369 	 */
3370 	__u64 probed_size;
3371 
3372 	/**
3373 	 * @unallocated_size: Estimate of memory remaining
3374 	 *
3375 	 * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable accounting.
3376 	 * Without this (or if this is an older kernel) the value here will
3377 	 * always equal the @probed_size. Note this is only currently tracked
3378 	 * for I915_MEMORY_CLASS_DEVICE regions (for other types the value here
3379 	 * will always equal the @probed_size).
3380 	 */
3381 	__u64 unallocated_size;
3382 
3383 	union {
3384 		/** @rsvd1: MBZ */
3385 		__u64 rsvd1[8];
3386 		struct {
3387 			/**
3388 			 * @probed_cpu_visible_size: Memory probed by the driver
3389 			 * that is CPU accessible.
3390 			 *
3391 			 * This will be always be <= @probed_size, and the
3392 			 * remainder (if there is any) will not be CPU
3393 			 * accessible.
3394 			 *
3395 			 * On systems without small BAR, the @probed_size will
3396 			 * always equal the @probed_cpu_visible_size, since all
3397 			 * of it will be CPU accessible.
3398 			 *
3399 			 * Note this is only tracked for
3400 			 * I915_MEMORY_CLASS_DEVICE regions (for other types the
3401 			 * value here will always equal the @probed_size).
3402 			 *
3403 			 * Note that if the value returned here is zero, then
3404 			 * this must be an old kernel which lacks the relevant
3405 			 * small-bar uAPI support (including
3406 			 * I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS), but on
3407 			 * such systems we should never actually end up with a
3408 			 * small BAR configuration, assuming we are able to load
3409 			 * the kernel module. Hence it should be safe to treat
3410 			 * this the same as when @probed_cpu_visible_size ==
3411 			 * @probed_size.
3412 			 */
3413 			__u64 probed_cpu_visible_size;
3414 
3415 			/**
3416 			 * @unallocated_cpu_visible_size: Estimate of CPU
3417 			 * visible memory remaining.
3418 			 *
3419 			 * Note this is only tracked for
3420 			 * I915_MEMORY_CLASS_DEVICE regions (for other types the
3421 			 * value here will always equal the
3422 			 * @probed_cpu_visible_size).
3423 			 *
3424 			 * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable
3425 			 * accounting.  Without this the value here will always
3426 			 * equal the @probed_cpu_visible_size. Note this is only
3427 			 * currently tracked for I915_MEMORY_CLASS_DEVICE
3428 			 * regions (for other types the value here will also
3429 			 * always equal the @probed_cpu_visible_size).
3430 			 *
3431 			 * If this is an older kernel the value here will be
3432 			 * zero, see also @probed_cpu_visible_size.
3433 			 */
3434 			__u64 unallocated_cpu_visible_size;
3435 		};
3436 	};
3437 };
3438 
3439 /**
3440  * struct drm_i915_query_memory_regions
3441  *
3442  * The region info query enumerates all regions known to the driver by filling
3443  * in an array of struct drm_i915_memory_region_info structures.
3444  *
3445  * Example for getting the list of supported regions:
3446  *
3447  * .. code-block:: C
3448  *
3449  *	struct drm_i915_query_memory_regions *info;
3450  *	struct drm_i915_query_item item = {
3451  *		.query_id = DRM_I915_QUERY_MEMORY_REGIONS;
3452  *	};
3453  *	struct drm_i915_query query = {
3454  *		.num_items = 1,
3455  *		.items_ptr = (uintptr_t)&item,
3456  *	};
3457  *	int err, i;
3458  *
3459  *	// First query the size of the blob we need, this needs to be large
3460  *	// enough to hold our array of regions. The kernel will fill out the
3461  *	// item.length for us, which is the number of bytes we need.
3462  *	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3463  *	if (err) ...
3464  *
3465  *	info = calloc(1, item.length);
3466  *	// Now that we allocated the required number of bytes, we call the ioctl
3467  *	// again, this time with the data_ptr pointing to our newly allocated
3468  *	// blob, which the kernel can then populate with the all the region info.
3469  *	item.data_ptr = (uintptr_t)&info,
3470  *
3471  *	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3472  *	if (err) ...
3473  *
3474  *	// We can now access each region in the array
3475  *	for (i = 0; i < info->num_regions; i++) {
3476  *		struct drm_i915_memory_region_info mr = info->regions[i];
3477  *		u16 class = mr.region.class;
3478  *		u16 instance = mr.region.instance;
3479  *
3480  *		....
3481  *	}
3482  *
3483  *	free(info);
3484  */
3485 struct drm_i915_query_memory_regions {
3486 	/** @num_regions: Number of supported regions */
3487 	__u32 num_regions;
3488 
3489 	/** @rsvd: MBZ */
3490 	__u32 rsvd[3];
3491 
3492 	/** @regions: Info about each supported region */
3493 	struct drm_i915_memory_region_info regions[];
3494 };
3495 
3496 /**
3497  * DOC: GuC HWCONFIG blob uAPI
3498  *
3499  * The GuC produces a blob with information about the current device.
3500  * i915 reads this blob from GuC and makes it available via this uAPI.
3501  *
3502  * The format and meaning of the blob content are documented in the
3503  * Programmer's Reference Manual.
3504  */
3505 
3506 /**
3507  * struct drm_i915_gem_create_ext - Existing gem_create behaviour, with added
3508  * extension support using struct i915_user_extension.
3509  *
3510  * Note that new buffer flags should be added here, at least for the stuff that
3511  * is immutable. Previously we would have two ioctls, one to create the object
3512  * with gem_create, and another to apply various parameters, however this
3513  * creates some ambiguity for the params which are considered immutable. Also in
3514  * general we're phasing out the various SET/GET ioctls.
3515  */
3516 struct drm_i915_gem_create_ext {
3517 	/**
3518 	 * @size: Requested size for the object.
3519 	 *
3520 	 * The (page-aligned) allocated size for the object will be returned.
3521 	 *
3522 	 * On platforms like DG2/ATS the kernel will always use 64K or larger
3523 	 * pages for I915_MEMORY_CLASS_DEVICE. The kernel also requires a
3524 	 * minimum of 64K GTT alignment for such objects.
3525 	 *
3526 	 * NOTE: Previously the ABI here required a minimum GTT alignment of 2M
3527 	 * on DG2/ATS, due to how the hardware implemented 64K GTT page support,
3528 	 * where we had the following complications:
3529 	 *
3530 	 *   1) The entire PDE (which covers a 2MB virtual address range), must
3531 	 *   contain only 64K PTEs, i.e mixing 4K and 64K PTEs in the same
3532 	 *   PDE is forbidden by the hardware.
3533 	 *
3534 	 *   2) We still need to support 4K PTEs for I915_MEMORY_CLASS_SYSTEM
3535 	 *   objects.
3536 	 *
3537 	 * However on actual production HW this was completely changed to now
3538 	 * allow setting a TLB hint at the PTE level (see PS64), which is a lot
3539 	 * more flexible than the above. With this the 2M restriction was
3540 	 * dropped where we now only require 64K.
3541 	 */
3542 	__u64 size;
3543 
3544 	/**
3545 	 * @handle: Returned handle for the object.
3546 	 *
3547 	 * Object handles are nonzero.
3548 	 */
3549 	__u32 handle;
3550 
3551 	/**
3552 	 * @flags: Optional flags.
3553 	 *
3554 	 * Supported values:
3555 	 *
3556 	 * I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS - Signal to the kernel that
3557 	 * the object will need to be accessed via the CPU.
3558 	 *
3559 	 * Only valid when placing objects in I915_MEMORY_CLASS_DEVICE, and only
3560 	 * strictly required on configurations where some subset of the device
3561 	 * memory is directly visible/mappable through the CPU (which we also
3562 	 * call small BAR), like on some DG2+ systems. Note that this is quite
3563 	 * undesirable, but due to various factors like the client CPU, BIOS etc
3564 	 * it's something we can expect to see in the wild. See
3565 	 * &drm_i915_memory_region_info.probed_cpu_visible_size for how to
3566 	 * determine if this system applies.
3567 	 *
3568 	 * Note that one of the placements MUST be I915_MEMORY_CLASS_SYSTEM, to
3569 	 * ensure the kernel can always spill the allocation to system memory,
3570 	 * if the object can't be allocated in the mappable part of
3571 	 * I915_MEMORY_CLASS_DEVICE.
3572 	 *
3573 	 * Also note that since the kernel only supports flat-CCS on objects
3574 	 * that can *only* be placed in I915_MEMORY_CLASS_DEVICE, we therefore
3575 	 * don't support I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS together with
3576 	 * flat-CCS.
3577 	 *
3578 	 * Without this hint, the kernel will assume that non-mappable
3579 	 * I915_MEMORY_CLASS_DEVICE is preferred for this object. Note that the
3580 	 * kernel can still migrate the object to the mappable part, as a last
3581 	 * resort, if userspace ever CPU faults this object, but this might be
3582 	 * expensive, and so ideally should be avoided.
3583 	 *
3584 	 * On older kernels which lack the relevant small-bar uAPI support (see
3585 	 * also &drm_i915_memory_region_info.probed_cpu_visible_size),
3586 	 * usage of the flag will result in an error, but it should NEVER be
3587 	 * possible to end up with a small BAR configuration, assuming we can
3588 	 * also successfully load the i915 kernel module. In such cases the
3589 	 * entire I915_MEMORY_CLASS_DEVICE region will be CPU accessible, and as
3590 	 * such there are zero restrictions on where the object can be placed.
3591 	 */
3592 #define I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS (1 << 0)
3593 	__u32 flags;
3594 
3595 	/**
3596 	 * @extensions: The chain of extensions to apply to this object.
3597 	 *
3598 	 * This will be useful in the future when we need to support several
3599 	 * different extensions, and we need to apply more than one when
3600 	 * creating the object. See struct i915_user_extension.
3601 	 *
3602 	 * If we don't supply any extensions then we get the same old gem_create
3603 	 * behaviour.
3604 	 *
3605 	 * For I915_GEM_CREATE_EXT_MEMORY_REGIONS usage see
3606 	 * struct drm_i915_gem_create_ext_memory_regions.
3607 	 *
3608 	 * For I915_GEM_CREATE_EXT_PROTECTED_CONTENT usage see
3609 	 * struct drm_i915_gem_create_ext_protected_content.
3610 	 */
3611 #define I915_GEM_CREATE_EXT_MEMORY_REGIONS 0
3612 #define I915_GEM_CREATE_EXT_PROTECTED_CONTENT 1
3613 	__u64 extensions;
3614 };
3615 
3616 /**
3617  * struct drm_i915_gem_create_ext_memory_regions - The
3618  * I915_GEM_CREATE_EXT_MEMORY_REGIONS extension.
3619  *
3620  * Set the object with the desired set of placements/regions in priority
3621  * order. Each entry must be unique and supported by the device.
3622  *
3623  * This is provided as an array of struct drm_i915_gem_memory_class_instance, or
3624  * an equivalent layout of class:instance pair encodings. See struct
3625  * drm_i915_query_memory_regions and DRM_I915_QUERY_MEMORY_REGIONS for how to
3626  * query the supported regions for a device.
3627  *
3628  * As an example, on discrete devices, if we wish to set the placement as
3629  * device local-memory we can do something like:
3630  *
3631  * .. code-block:: C
3632  *
3633  *	struct drm_i915_gem_memory_class_instance region_lmem = {
3634  *              .memory_class = I915_MEMORY_CLASS_DEVICE,
3635  *              .memory_instance = 0,
3636  *      };
3637  *      struct drm_i915_gem_create_ext_memory_regions regions = {
3638  *              .base = { .name = I915_GEM_CREATE_EXT_MEMORY_REGIONS },
3639  *              .regions = (uintptr_t)&region_lmem,
3640  *              .num_regions = 1,
3641  *      };
3642  *      struct drm_i915_gem_create_ext create_ext = {
3643  *              .size = 16 * PAGE_SIZE,
3644  *              .extensions = (uintptr_t)&regions,
3645  *      };
3646  *
3647  *      int err = ioctl(fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create_ext);
3648  *      if (err) ...
3649  *
3650  * At which point we get the object handle in &drm_i915_gem_create_ext.handle,
3651  * along with the final object size in &drm_i915_gem_create_ext.size, which
3652  * should account for any rounding up, if required.
3653  *
3654  * Note that userspace has no means of knowing the current backing region
3655  * for objects where @num_regions is larger than one. The kernel will only
3656  * ensure that the priority order of the @regions array is honoured, either
3657  * when initially placing the object, or when moving memory around due to
3658  * memory pressure
3659  *
3660  * On Flat-CCS capable HW, compression is supported for the objects residing
3661  * in I915_MEMORY_CLASS_DEVICE. When such objects (compressed) have other
3662  * memory class in @regions and migrated (by i915, due to memory
3663  * constraints) to the non I915_MEMORY_CLASS_DEVICE region, then i915 needs to
3664  * decompress the content. But i915 doesn't have the required information to
3665  * decompress the userspace compressed objects.
3666  *
3667  * So i915 supports Flat-CCS, on the objects which can reside only on
3668  * I915_MEMORY_CLASS_DEVICE regions.
3669  */
3670 struct drm_i915_gem_create_ext_memory_regions {
3671 	/** @base: Extension link. See struct i915_user_extension. */
3672 	struct i915_user_extension base;
3673 
3674 	/** @pad: MBZ */
3675 	__u32 pad;
3676 	/** @num_regions: Number of elements in the @regions array. */
3677 	__u32 num_regions;
3678 	/**
3679 	 * @regions: The regions/placements array.
3680 	 *
3681 	 * An array of struct drm_i915_gem_memory_class_instance.
3682 	 */
3683 	__u64 regions;
3684 };
3685 
3686 /**
3687  * struct drm_i915_gem_create_ext_protected_content - The
3688  * I915_OBJECT_PARAM_PROTECTED_CONTENT extension.
3689  *
3690  * If this extension is provided, buffer contents are expected to be protected
3691  * by PXP encryption and require decryption for scan out and processing. This
3692  * is only possible on platforms that have PXP enabled, on all other scenarios
3693  * using this extension will cause the ioctl to fail and return -ENODEV. The
3694  * flags parameter is reserved for future expansion and must currently be set
3695  * to zero.
3696  *
3697  * The buffer contents are considered invalid after a PXP session teardown.
3698  *
3699  * The encryption is guaranteed to be processed correctly only if the object
3700  * is submitted with a context created using the
3701  * I915_CONTEXT_PARAM_PROTECTED_CONTENT flag. This will also enable extra checks
3702  * at submission time on the validity of the objects involved.
3703  *
3704  * Below is an example on how to create a protected object:
3705  *
3706  * .. code-block:: C
3707  *
3708  *      struct drm_i915_gem_create_ext_protected_content protected_ext = {
3709  *              .base = { .name = I915_GEM_CREATE_EXT_PROTECTED_CONTENT },
3710  *              .flags = 0,
3711  *      };
3712  *      struct drm_i915_gem_create_ext create_ext = {
3713  *              .size = PAGE_SIZE,
3714  *              .extensions = (uintptr_t)&protected_ext,
3715  *      };
3716  *
3717  *      int err = ioctl(fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create_ext);
3718  *      if (err) ...
3719  */
3720 struct drm_i915_gem_create_ext_protected_content {
3721 	/** @base: Extension link. See struct i915_user_extension. */
3722 	struct i915_user_extension base;
3723 	/** @flags: reserved for future usage, currently MBZ */
3724 	__u32 flags;
3725 };
3726 
3727 /* ID of the protected content session managed by i915 when PXP is active */
3728 #define I915_PROTECTED_CONTENT_DEFAULT_SESSION 0xf
3729 
3730 #if defined(__cplusplus)
3731 }
3732 #endif
3733 
3734 #endif /* _UAPI_I915_DRM_H_ */
3735