xref: /openbmc/linux/include/uapi/drm/i915_drm.h (revision 81d5f7d9)
1 /*
2  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the
14  * next paragraph) shall be included in all copies or substantial portions
15  * of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
20  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
21  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24  *
25  */
26 
27 #ifndef _UAPI_I915_DRM_H_
28 #define _UAPI_I915_DRM_H_
29 
30 #include "drm.h"
31 
32 #if defined(__cplusplus)
33 extern "C" {
34 #endif
35 
36 /* Please note that modifications to all structs defined here are
37  * subject to backwards-compatibility constraints.
38  */
39 
40 /**
41  * DOC: uevents generated by i915 on it's device node
42  *
43  * I915_L3_PARITY_UEVENT - Generated when the driver receives a parity mismatch
44  *	event from the gpu l3 cache. Additional information supplied is ROW,
45  *	BANK, SUBBANK, SLICE of the affected cacheline. Userspace should keep
46  *	track of these events and if a specific cache-line seems to have a
47  *	persistent error remap it with the l3 remapping tool supplied in
48  *	intel-gpu-tools.  The value supplied with the event is always 1.
49  *
50  * I915_ERROR_UEVENT - Generated upon error detection, currently only via
51  *	hangcheck. The error detection event is a good indicator of when things
52  *	began to go badly. The value supplied with the event is a 1 upon error
53  *	detection, and a 0 upon reset completion, signifying no more error
54  *	exists. NOTE: Disabling hangcheck or reset via module parameter will
55  *	cause the related events to not be seen.
56  *
57  * I915_RESET_UEVENT - Event is generated just before an attempt to reset the
58  *	GPU. The value supplied with the event is always 1. NOTE: Disable
59  *	reset via module parameter will cause this event to not be seen.
60  */
61 #define I915_L3_PARITY_UEVENT		"L3_PARITY_ERROR"
62 #define I915_ERROR_UEVENT		"ERROR"
63 #define I915_RESET_UEVENT		"RESET"
64 
65 /**
66  * struct i915_user_extension - Base class for defining a chain of extensions
67  *
68  * Many interfaces need to grow over time. In most cases we can simply
69  * extend the struct and have userspace pass in more data. Another option,
70  * as demonstrated by Vulkan's approach to providing extensions for forward
71  * and backward compatibility, is to use a list of optional structs to
72  * provide those extra details.
73  *
74  * The key advantage to using an extension chain is that it allows us to
75  * redefine the interface more easily than an ever growing struct of
76  * increasing complexity, and for large parts of that interface to be
77  * entirely optional. The downside is more pointer chasing; chasing across
78  * the __user boundary with pointers encapsulated inside u64.
79  *
80  * Example chaining:
81  *
82  * .. code-block:: C
83  *
84  *	struct i915_user_extension ext3 {
85  *		.next_extension = 0, // end
86  *		.name = ...,
87  *	};
88  *	struct i915_user_extension ext2 {
89  *		.next_extension = (uintptr_t)&ext3,
90  *		.name = ...,
91  *	};
92  *	struct i915_user_extension ext1 {
93  *		.next_extension = (uintptr_t)&ext2,
94  *		.name = ...,
95  *	};
96  *
97  * Typically the struct i915_user_extension would be embedded in some uAPI
98  * struct, and in this case we would feed it the head of the chain(i.e ext1),
99  * which would then apply all of the above extensions.
100  *
101  */
102 struct i915_user_extension {
103 	/**
104 	 * @next_extension:
105 	 *
106 	 * Pointer to the next struct i915_user_extension, or zero if the end.
107 	 */
108 	__u64 next_extension;
109 	/**
110 	 * @name: Name of the extension.
111 	 *
112 	 * Note that the name here is just some integer.
113 	 *
114 	 * Also note that the name space for this is not global for the whole
115 	 * driver, but rather its scope/meaning is limited to the specific piece
116 	 * of uAPI which has embedded the struct i915_user_extension.
117 	 */
118 	__u32 name;
119 	/**
120 	 * @flags: MBZ
121 	 *
122 	 * All undefined bits must be zero.
123 	 */
124 	__u32 flags;
125 	/**
126 	 * @rsvd: MBZ
127 	 *
128 	 * Reserved for future use; must be zero.
129 	 */
130 	__u32 rsvd[4];
131 };
132 
133 /*
134  * MOCS indexes used for GPU surfaces, defining the cacheability of the
135  * surface data and the coherency for this data wrt. CPU vs. GPU accesses.
136  */
137 enum i915_mocs_table_index {
138 	/*
139 	 * Not cached anywhere, coherency between CPU and GPU accesses is
140 	 * guaranteed.
141 	 */
142 	I915_MOCS_UNCACHED,
143 	/*
144 	 * Cacheability and coherency controlled by the kernel automatically
145 	 * based on the DRM_I915_GEM_SET_CACHING IOCTL setting and the current
146 	 * usage of the surface (used for display scanout or not).
147 	 */
148 	I915_MOCS_PTE,
149 	/*
150 	 * Cached in all GPU caches available on the platform.
151 	 * Coherency between CPU and GPU accesses to the surface is not
152 	 * guaranteed without extra synchronization.
153 	 */
154 	I915_MOCS_CACHED,
155 };
156 
157 /**
158  * enum drm_i915_gem_engine_class - uapi engine type enumeration
159  *
160  * Different engines serve different roles, and there may be more than one
161  * engine serving each role.  This enum provides a classification of the role
162  * of the engine, which may be used when requesting operations to be performed
163  * on a certain subset of engines, or for providing information about that
164  * group.
165  */
166 enum drm_i915_gem_engine_class {
167 	/**
168 	 * @I915_ENGINE_CLASS_RENDER:
169 	 *
170 	 * Render engines support instructions used for 3D, Compute (GPGPU),
171 	 * and programmable media workloads.  These instructions fetch data and
172 	 * dispatch individual work items to threads that operate in parallel.
173 	 * The threads run small programs (called "kernels" or "shaders") on
174 	 * the GPU's execution units (EUs).
175 	 */
176 	I915_ENGINE_CLASS_RENDER	= 0,
177 
178 	/**
179 	 * @I915_ENGINE_CLASS_COPY:
180 	 *
181 	 * Copy engines (also referred to as "blitters") support instructions
182 	 * that move blocks of data from one location in memory to another,
183 	 * or that fill a specified location of memory with fixed data.
184 	 * Copy engines can perform pre-defined logical or bitwise operations
185 	 * on the source, destination, or pattern data.
186 	 */
187 	I915_ENGINE_CLASS_COPY		= 1,
188 
189 	/**
190 	 * @I915_ENGINE_CLASS_VIDEO:
191 	 *
192 	 * Video engines (also referred to as "bit stream decode" (BSD) or
193 	 * "vdbox") support instructions that perform fixed-function media
194 	 * decode and encode.
195 	 */
196 	I915_ENGINE_CLASS_VIDEO		= 2,
197 
198 	/**
199 	 * @I915_ENGINE_CLASS_VIDEO_ENHANCE:
200 	 *
201 	 * Video enhancement engines (also referred to as "vebox") support
202 	 * instructions related to image enhancement.
203 	 */
204 	I915_ENGINE_CLASS_VIDEO_ENHANCE	= 3,
205 
206 	/**
207 	 * @I915_ENGINE_CLASS_COMPUTE:
208 	 *
209 	 * Compute engines support a subset of the instructions available
210 	 * on render engines:  compute engines support Compute (GPGPU) and
211 	 * programmable media workloads, but do not support the 3D pipeline.
212 	 */
213 	I915_ENGINE_CLASS_COMPUTE	= 4,
214 
215 	/* Values in this enum should be kept compact. */
216 
217 	/**
218 	 * @I915_ENGINE_CLASS_INVALID:
219 	 *
220 	 * Placeholder value to represent an invalid engine class assignment.
221 	 */
222 	I915_ENGINE_CLASS_INVALID	= -1
223 };
224 
225 /**
226  * struct i915_engine_class_instance - Engine class/instance identifier
227  *
228  * There may be more than one engine fulfilling any role within the system.
229  * Each engine of a class is given a unique instance number and therefore
230  * any engine can be specified by its class:instance tuplet. APIs that allow
231  * access to any engine in the system will use struct i915_engine_class_instance
232  * for this identification.
233  */
234 struct i915_engine_class_instance {
235 	/**
236 	 * @engine_class:
237 	 *
238 	 * Engine class from enum drm_i915_gem_engine_class
239 	 */
240 	__u16 engine_class;
241 #define I915_ENGINE_CLASS_INVALID_NONE -1
242 #define I915_ENGINE_CLASS_INVALID_VIRTUAL -2
243 
244 	/**
245 	 * @engine_instance:
246 	 *
247 	 * Engine instance.
248 	 */
249 	__u16 engine_instance;
250 };
251 
252 /**
253  * DOC: perf_events exposed by i915 through /sys/bus/event_sources/drivers/i915
254  *
255  */
256 
257 enum drm_i915_pmu_engine_sample {
258 	I915_SAMPLE_BUSY = 0,
259 	I915_SAMPLE_WAIT = 1,
260 	I915_SAMPLE_SEMA = 2
261 };
262 
263 #define I915_PMU_SAMPLE_BITS (4)
264 #define I915_PMU_SAMPLE_MASK (0xf)
265 #define I915_PMU_SAMPLE_INSTANCE_BITS (8)
266 #define I915_PMU_CLASS_SHIFT \
267 	(I915_PMU_SAMPLE_BITS + I915_PMU_SAMPLE_INSTANCE_BITS)
268 
269 #define __I915_PMU_ENGINE(class, instance, sample) \
270 	((class) << I915_PMU_CLASS_SHIFT | \
271 	(instance) << I915_PMU_SAMPLE_BITS | \
272 	(sample))
273 
274 #define I915_PMU_ENGINE_BUSY(class, instance) \
275 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_BUSY)
276 
277 #define I915_PMU_ENGINE_WAIT(class, instance) \
278 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_WAIT)
279 
280 #define I915_PMU_ENGINE_SEMA(class, instance) \
281 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_SEMA)
282 
283 #define __I915_PMU_OTHER(x) (__I915_PMU_ENGINE(0xff, 0xff, 0xf) + 1 + (x))
284 
285 #define I915_PMU_ACTUAL_FREQUENCY	__I915_PMU_OTHER(0)
286 #define I915_PMU_REQUESTED_FREQUENCY	__I915_PMU_OTHER(1)
287 #define I915_PMU_INTERRUPTS		__I915_PMU_OTHER(2)
288 #define I915_PMU_RC6_RESIDENCY		__I915_PMU_OTHER(3)
289 #define I915_PMU_SOFTWARE_GT_AWAKE_TIME	__I915_PMU_OTHER(4)
290 
291 #define I915_PMU_LAST /* Deprecated - do not use */ I915_PMU_RC6_RESIDENCY
292 
293 /* Each region is a minimum of 16k, and there are at most 255 of them.
294  */
295 #define I915_NR_TEX_REGIONS 255	/* table size 2k - maximum due to use
296 				 * of chars for next/prev indices */
297 #define I915_LOG_MIN_TEX_REGION_SIZE 14
298 
299 typedef struct _drm_i915_init {
300 	enum {
301 		I915_INIT_DMA = 0x01,
302 		I915_CLEANUP_DMA = 0x02,
303 		I915_RESUME_DMA = 0x03
304 	} func;
305 	unsigned int mmio_offset;
306 	int sarea_priv_offset;
307 	unsigned int ring_start;
308 	unsigned int ring_end;
309 	unsigned int ring_size;
310 	unsigned int front_offset;
311 	unsigned int back_offset;
312 	unsigned int depth_offset;
313 	unsigned int w;
314 	unsigned int h;
315 	unsigned int pitch;
316 	unsigned int pitch_bits;
317 	unsigned int back_pitch;
318 	unsigned int depth_pitch;
319 	unsigned int cpp;
320 	unsigned int chipset;
321 } drm_i915_init_t;
322 
323 typedef struct _drm_i915_sarea {
324 	struct drm_tex_region texList[I915_NR_TEX_REGIONS + 1];
325 	int last_upload;	/* last time texture was uploaded */
326 	int last_enqueue;	/* last time a buffer was enqueued */
327 	int last_dispatch;	/* age of the most recently dispatched buffer */
328 	int ctxOwner;		/* last context to upload state */
329 	int texAge;
330 	int pf_enabled;		/* is pageflipping allowed? */
331 	int pf_active;
332 	int pf_current_page;	/* which buffer is being displayed? */
333 	int perf_boxes;		/* performance boxes to be displayed */
334 	int width, height;      /* screen size in pixels */
335 
336 	drm_handle_t front_handle;
337 	int front_offset;
338 	int front_size;
339 
340 	drm_handle_t back_handle;
341 	int back_offset;
342 	int back_size;
343 
344 	drm_handle_t depth_handle;
345 	int depth_offset;
346 	int depth_size;
347 
348 	drm_handle_t tex_handle;
349 	int tex_offset;
350 	int tex_size;
351 	int log_tex_granularity;
352 	int pitch;
353 	int rotation;           /* 0, 90, 180 or 270 */
354 	int rotated_offset;
355 	int rotated_size;
356 	int rotated_pitch;
357 	int virtualX, virtualY;
358 
359 	unsigned int front_tiled;
360 	unsigned int back_tiled;
361 	unsigned int depth_tiled;
362 	unsigned int rotated_tiled;
363 	unsigned int rotated2_tiled;
364 
365 	int pipeA_x;
366 	int pipeA_y;
367 	int pipeA_w;
368 	int pipeA_h;
369 	int pipeB_x;
370 	int pipeB_y;
371 	int pipeB_w;
372 	int pipeB_h;
373 
374 	/* fill out some space for old userspace triple buffer */
375 	drm_handle_t unused_handle;
376 	__u32 unused1, unused2, unused3;
377 
378 	/* buffer object handles for static buffers. May change
379 	 * over the lifetime of the client.
380 	 */
381 	__u32 front_bo_handle;
382 	__u32 back_bo_handle;
383 	__u32 unused_bo_handle;
384 	__u32 depth_bo_handle;
385 
386 } drm_i915_sarea_t;
387 
388 /* due to userspace building against these headers we need some compat here */
389 #define planeA_x pipeA_x
390 #define planeA_y pipeA_y
391 #define planeA_w pipeA_w
392 #define planeA_h pipeA_h
393 #define planeB_x pipeB_x
394 #define planeB_y pipeB_y
395 #define planeB_w pipeB_w
396 #define planeB_h pipeB_h
397 
398 /* Flags for perf_boxes
399  */
400 #define I915_BOX_RING_EMPTY    0x1
401 #define I915_BOX_FLIP          0x2
402 #define I915_BOX_WAIT          0x4
403 #define I915_BOX_TEXTURE_LOAD  0x8
404 #define I915_BOX_LOST_CONTEXT  0x10
405 
406 /*
407  * i915 specific ioctls.
408  *
409  * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie
410  * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset
411  * against DRM_COMMAND_BASE and should be between [0x0, 0x60).
412  */
413 #define DRM_I915_INIT		0x00
414 #define DRM_I915_FLUSH		0x01
415 #define DRM_I915_FLIP		0x02
416 #define DRM_I915_BATCHBUFFER	0x03
417 #define DRM_I915_IRQ_EMIT	0x04
418 #define DRM_I915_IRQ_WAIT	0x05
419 #define DRM_I915_GETPARAM	0x06
420 #define DRM_I915_SETPARAM	0x07
421 #define DRM_I915_ALLOC		0x08
422 #define DRM_I915_FREE		0x09
423 #define DRM_I915_INIT_HEAP	0x0a
424 #define DRM_I915_CMDBUFFER	0x0b
425 #define DRM_I915_DESTROY_HEAP	0x0c
426 #define DRM_I915_SET_VBLANK_PIPE	0x0d
427 #define DRM_I915_GET_VBLANK_PIPE	0x0e
428 #define DRM_I915_VBLANK_SWAP	0x0f
429 #define DRM_I915_HWS_ADDR	0x11
430 #define DRM_I915_GEM_INIT	0x13
431 #define DRM_I915_GEM_EXECBUFFER	0x14
432 #define DRM_I915_GEM_PIN	0x15
433 #define DRM_I915_GEM_UNPIN	0x16
434 #define DRM_I915_GEM_BUSY	0x17
435 #define DRM_I915_GEM_THROTTLE	0x18
436 #define DRM_I915_GEM_ENTERVT	0x19
437 #define DRM_I915_GEM_LEAVEVT	0x1a
438 #define DRM_I915_GEM_CREATE	0x1b
439 #define DRM_I915_GEM_PREAD	0x1c
440 #define DRM_I915_GEM_PWRITE	0x1d
441 #define DRM_I915_GEM_MMAP	0x1e
442 #define DRM_I915_GEM_SET_DOMAIN	0x1f
443 #define DRM_I915_GEM_SW_FINISH	0x20
444 #define DRM_I915_GEM_SET_TILING	0x21
445 #define DRM_I915_GEM_GET_TILING	0x22
446 #define DRM_I915_GEM_GET_APERTURE 0x23
447 #define DRM_I915_GEM_MMAP_GTT	0x24
448 #define DRM_I915_GET_PIPE_FROM_CRTC_ID	0x25
449 #define DRM_I915_GEM_MADVISE	0x26
450 #define DRM_I915_OVERLAY_PUT_IMAGE	0x27
451 #define DRM_I915_OVERLAY_ATTRS	0x28
452 #define DRM_I915_GEM_EXECBUFFER2	0x29
453 #define DRM_I915_GEM_EXECBUFFER2_WR	DRM_I915_GEM_EXECBUFFER2
454 #define DRM_I915_GET_SPRITE_COLORKEY	0x2a
455 #define DRM_I915_SET_SPRITE_COLORKEY	0x2b
456 #define DRM_I915_GEM_WAIT	0x2c
457 #define DRM_I915_GEM_CONTEXT_CREATE	0x2d
458 #define DRM_I915_GEM_CONTEXT_DESTROY	0x2e
459 #define DRM_I915_GEM_SET_CACHING	0x2f
460 #define DRM_I915_GEM_GET_CACHING	0x30
461 #define DRM_I915_REG_READ		0x31
462 #define DRM_I915_GET_RESET_STATS	0x32
463 #define DRM_I915_GEM_USERPTR		0x33
464 #define DRM_I915_GEM_CONTEXT_GETPARAM	0x34
465 #define DRM_I915_GEM_CONTEXT_SETPARAM	0x35
466 #define DRM_I915_PERF_OPEN		0x36
467 #define DRM_I915_PERF_ADD_CONFIG	0x37
468 #define DRM_I915_PERF_REMOVE_CONFIG	0x38
469 #define DRM_I915_QUERY			0x39
470 #define DRM_I915_GEM_VM_CREATE		0x3a
471 #define DRM_I915_GEM_VM_DESTROY		0x3b
472 #define DRM_I915_GEM_CREATE_EXT		0x3c
473 /* Must be kept compact -- no holes */
474 
475 #define DRM_IOCTL_I915_INIT		DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT, drm_i915_init_t)
476 #define DRM_IOCTL_I915_FLUSH		DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLUSH)
477 #define DRM_IOCTL_I915_FLIP		DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLIP)
478 #define DRM_IOCTL_I915_BATCHBUFFER	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_BATCHBUFFER, drm_i915_batchbuffer_t)
479 #define DRM_IOCTL_I915_IRQ_EMIT         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_IRQ_EMIT, drm_i915_irq_emit_t)
480 #define DRM_IOCTL_I915_IRQ_WAIT         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_IRQ_WAIT, drm_i915_irq_wait_t)
481 #define DRM_IOCTL_I915_GETPARAM         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GETPARAM, drm_i915_getparam_t)
482 #define DRM_IOCTL_I915_SETPARAM         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SETPARAM, drm_i915_setparam_t)
483 #define DRM_IOCTL_I915_ALLOC            DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_ALLOC, drm_i915_mem_alloc_t)
484 #define DRM_IOCTL_I915_FREE             DRM_IOW( DRM_COMMAND_BASE + DRM_I915_FREE, drm_i915_mem_free_t)
485 #define DRM_IOCTL_I915_INIT_HEAP        DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT_HEAP, drm_i915_mem_init_heap_t)
486 #define DRM_IOCTL_I915_CMDBUFFER	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_CMDBUFFER, drm_i915_cmdbuffer_t)
487 #define DRM_IOCTL_I915_DESTROY_HEAP	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_DESTROY_HEAP, drm_i915_mem_destroy_heap_t)
488 #define DRM_IOCTL_I915_SET_VBLANK_PIPE	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
489 #define DRM_IOCTL_I915_GET_VBLANK_PIPE	DRM_IOR( DRM_COMMAND_BASE + DRM_I915_GET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
490 #define DRM_IOCTL_I915_VBLANK_SWAP	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_VBLANK_SWAP, drm_i915_vblank_swap_t)
491 #define DRM_IOCTL_I915_HWS_ADDR		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_HWS_ADDR, struct drm_i915_gem_init)
492 #define DRM_IOCTL_I915_GEM_INIT		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_INIT, struct drm_i915_gem_init)
493 #define DRM_IOCTL_I915_GEM_EXECBUFFER	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER, struct drm_i915_gem_execbuffer)
494 #define DRM_IOCTL_I915_GEM_EXECBUFFER2	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2, struct drm_i915_gem_execbuffer2)
495 #define DRM_IOCTL_I915_GEM_EXECBUFFER2_WR	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2_WR, struct drm_i915_gem_execbuffer2)
496 #define DRM_IOCTL_I915_GEM_PIN		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_PIN, struct drm_i915_gem_pin)
497 #define DRM_IOCTL_I915_GEM_UNPIN	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_UNPIN, struct drm_i915_gem_unpin)
498 #define DRM_IOCTL_I915_GEM_BUSY		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_BUSY, struct drm_i915_gem_busy)
499 #define DRM_IOCTL_I915_GEM_SET_CACHING		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_SET_CACHING, struct drm_i915_gem_caching)
500 #define DRM_IOCTL_I915_GEM_GET_CACHING		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_GET_CACHING, struct drm_i915_gem_caching)
501 #define DRM_IOCTL_I915_GEM_THROTTLE	DRM_IO ( DRM_COMMAND_BASE + DRM_I915_GEM_THROTTLE)
502 #define DRM_IOCTL_I915_GEM_ENTERVT	DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_ENTERVT)
503 #define DRM_IOCTL_I915_GEM_LEAVEVT	DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_LEAVEVT)
504 #define DRM_IOCTL_I915_GEM_CREATE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE, struct drm_i915_gem_create)
505 #define DRM_IOCTL_I915_GEM_CREATE_EXT	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE_EXT, struct drm_i915_gem_create_ext)
506 #define DRM_IOCTL_I915_GEM_PREAD	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PREAD, struct drm_i915_gem_pread)
507 #define DRM_IOCTL_I915_GEM_PWRITE	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PWRITE, struct drm_i915_gem_pwrite)
508 #define DRM_IOCTL_I915_GEM_MMAP		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP, struct drm_i915_gem_mmap)
509 #define DRM_IOCTL_I915_GEM_MMAP_GTT	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_gtt)
510 #define DRM_IOCTL_I915_GEM_MMAP_OFFSET	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_offset)
511 #define DRM_IOCTL_I915_GEM_SET_DOMAIN	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SET_DOMAIN, struct drm_i915_gem_set_domain)
512 #define DRM_IOCTL_I915_GEM_SW_FINISH	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SW_FINISH, struct drm_i915_gem_sw_finish)
513 #define DRM_IOCTL_I915_GEM_SET_TILING	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_SET_TILING, struct drm_i915_gem_set_tiling)
514 #define DRM_IOCTL_I915_GEM_GET_TILING	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_TILING, struct drm_i915_gem_get_tiling)
515 #define DRM_IOCTL_I915_GEM_GET_APERTURE	DRM_IOR  (DRM_COMMAND_BASE + DRM_I915_GEM_GET_APERTURE, struct drm_i915_gem_get_aperture)
516 #define DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_PIPE_FROM_CRTC_ID, struct drm_i915_get_pipe_from_crtc_id)
517 #define DRM_IOCTL_I915_GEM_MADVISE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MADVISE, struct drm_i915_gem_madvise)
518 #define DRM_IOCTL_I915_OVERLAY_PUT_IMAGE	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_OVERLAY_PUT_IMAGE, struct drm_intel_overlay_put_image)
519 #define DRM_IOCTL_I915_OVERLAY_ATTRS	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_OVERLAY_ATTRS, struct drm_intel_overlay_attrs)
520 #define DRM_IOCTL_I915_SET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_SET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
521 #define DRM_IOCTL_I915_GET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
522 #define DRM_IOCTL_I915_GEM_WAIT		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_WAIT, struct drm_i915_gem_wait)
523 #define DRM_IOCTL_I915_GEM_CONTEXT_CREATE	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create)
524 #define DRM_IOCTL_I915_GEM_CONTEXT_CREATE_EXT	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create_ext)
525 #define DRM_IOCTL_I915_GEM_CONTEXT_DESTROY	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_DESTROY, struct drm_i915_gem_context_destroy)
526 #define DRM_IOCTL_I915_REG_READ			DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_REG_READ, struct drm_i915_reg_read)
527 #define DRM_IOCTL_I915_GET_RESET_STATS		DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GET_RESET_STATS, struct drm_i915_reset_stats)
528 #define DRM_IOCTL_I915_GEM_USERPTR			DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_USERPTR, struct drm_i915_gem_userptr)
529 #define DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_GETPARAM, struct drm_i915_gem_context_param)
530 #define DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_SETPARAM, struct drm_i915_gem_context_param)
531 #define DRM_IOCTL_I915_PERF_OPEN	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_OPEN, struct drm_i915_perf_open_param)
532 #define DRM_IOCTL_I915_PERF_ADD_CONFIG	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_ADD_CONFIG, struct drm_i915_perf_oa_config)
533 #define DRM_IOCTL_I915_PERF_REMOVE_CONFIG	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_REMOVE_CONFIG, __u64)
534 #define DRM_IOCTL_I915_QUERY			DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_QUERY, struct drm_i915_query)
535 #define DRM_IOCTL_I915_GEM_VM_CREATE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_VM_CREATE, struct drm_i915_gem_vm_control)
536 #define DRM_IOCTL_I915_GEM_VM_DESTROY	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_VM_DESTROY, struct drm_i915_gem_vm_control)
537 
538 /* Allow drivers to submit batchbuffers directly to hardware, relying
539  * on the security mechanisms provided by hardware.
540  */
541 typedef struct drm_i915_batchbuffer {
542 	int start;		/* agp offset */
543 	int used;		/* nr bytes in use */
544 	int DR1;		/* hw flags for GFX_OP_DRAWRECT_INFO */
545 	int DR4;		/* window origin for GFX_OP_DRAWRECT_INFO */
546 	int num_cliprects;	/* mulitpass with multiple cliprects? */
547 	struct drm_clip_rect __user *cliprects;	/* pointer to userspace cliprects */
548 } drm_i915_batchbuffer_t;
549 
550 /* As above, but pass a pointer to userspace buffer which can be
551  * validated by the kernel prior to sending to hardware.
552  */
553 typedef struct _drm_i915_cmdbuffer {
554 	char __user *buf;	/* pointer to userspace command buffer */
555 	int sz;			/* nr bytes in buf */
556 	int DR1;		/* hw flags for GFX_OP_DRAWRECT_INFO */
557 	int DR4;		/* window origin for GFX_OP_DRAWRECT_INFO */
558 	int num_cliprects;	/* mulitpass with multiple cliprects? */
559 	struct drm_clip_rect __user *cliprects;	/* pointer to userspace cliprects */
560 } drm_i915_cmdbuffer_t;
561 
562 /* Userspace can request & wait on irq's:
563  */
564 typedef struct drm_i915_irq_emit {
565 	int __user *irq_seq;
566 } drm_i915_irq_emit_t;
567 
568 typedef struct drm_i915_irq_wait {
569 	int irq_seq;
570 } drm_i915_irq_wait_t;
571 
572 /*
573  * Different modes of per-process Graphics Translation Table,
574  * see I915_PARAM_HAS_ALIASING_PPGTT
575  */
576 #define I915_GEM_PPGTT_NONE	0
577 #define I915_GEM_PPGTT_ALIASING	1
578 #define I915_GEM_PPGTT_FULL	2
579 
580 /* Ioctl to query kernel params:
581  */
582 #define I915_PARAM_IRQ_ACTIVE            1
583 #define I915_PARAM_ALLOW_BATCHBUFFER     2
584 #define I915_PARAM_LAST_DISPATCH         3
585 #define I915_PARAM_CHIPSET_ID            4
586 #define I915_PARAM_HAS_GEM               5
587 #define I915_PARAM_NUM_FENCES_AVAIL      6
588 #define I915_PARAM_HAS_OVERLAY           7
589 #define I915_PARAM_HAS_PAGEFLIPPING	 8
590 #define I915_PARAM_HAS_EXECBUF2          9
591 #define I915_PARAM_HAS_BSD		 10
592 #define I915_PARAM_HAS_BLT		 11
593 #define I915_PARAM_HAS_RELAXED_FENCING	 12
594 #define I915_PARAM_HAS_COHERENT_RINGS	 13
595 #define I915_PARAM_HAS_EXEC_CONSTANTS	 14
596 #define I915_PARAM_HAS_RELAXED_DELTA	 15
597 #define I915_PARAM_HAS_GEN7_SOL_RESET	 16
598 #define I915_PARAM_HAS_LLC     	 	 17
599 #define I915_PARAM_HAS_ALIASING_PPGTT	 18
600 #define I915_PARAM_HAS_WAIT_TIMEOUT	 19
601 #define I915_PARAM_HAS_SEMAPHORES	 20
602 #define I915_PARAM_HAS_PRIME_VMAP_FLUSH	 21
603 #define I915_PARAM_HAS_VEBOX		 22
604 #define I915_PARAM_HAS_SECURE_BATCHES	 23
605 #define I915_PARAM_HAS_PINNED_BATCHES	 24
606 #define I915_PARAM_HAS_EXEC_NO_RELOC	 25
607 #define I915_PARAM_HAS_EXEC_HANDLE_LUT   26
608 #define I915_PARAM_HAS_WT     	 	 27
609 #define I915_PARAM_CMD_PARSER_VERSION	 28
610 #define I915_PARAM_HAS_COHERENT_PHYS_GTT 29
611 #define I915_PARAM_MMAP_VERSION          30
612 #define I915_PARAM_HAS_BSD2		 31
613 #define I915_PARAM_REVISION              32
614 #define I915_PARAM_SUBSLICE_TOTAL	 33
615 #define I915_PARAM_EU_TOTAL		 34
616 #define I915_PARAM_HAS_GPU_RESET	 35
617 #define I915_PARAM_HAS_RESOURCE_STREAMER 36
618 #define I915_PARAM_HAS_EXEC_SOFTPIN	 37
619 #define I915_PARAM_HAS_POOLED_EU	 38
620 #define I915_PARAM_MIN_EU_IN_POOL	 39
621 #define I915_PARAM_MMAP_GTT_VERSION	 40
622 
623 /*
624  * Query whether DRM_I915_GEM_EXECBUFFER2 supports user defined execution
625  * priorities and the driver will attempt to execute batches in priority order.
626  * The param returns a capability bitmask, nonzero implies that the scheduler
627  * is enabled, with different features present according to the mask.
628  *
629  * The initial priority for each batch is supplied by the context and is
630  * controlled via I915_CONTEXT_PARAM_PRIORITY.
631  */
632 #define I915_PARAM_HAS_SCHEDULER	 41
633 #define   I915_SCHEDULER_CAP_ENABLED	(1ul << 0)
634 #define   I915_SCHEDULER_CAP_PRIORITY	(1ul << 1)
635 #define   I915_SCHEDULER_CAP_PREEMPTION	(1ul << 2)
636 #define   I915_SCHEDULER_CAP_SEMAPHORES	(1ul << 3)
637 #define   I915_SCHEDULER_CAP_ENGINE_BUSY_STATS	(1ul << 4)
638 /*
639  * Indicates the 2k user priority levels are statically mapped into 3 buckets as
640  * follows:
641  *
642  * -1k to -1	Low priority
643  * 0		Normal priority
644  * 1 to 1k	Highest priority
645  */
646 #define   I915_SCHEDULER_CAP_STATIC_PRIORITY_MAP	(1ul << 5)
647 
648 /*
649  * Query the status of HuC load.
650  *
651  * The query can fail in the following scenarios with the listed error codes:
652  *  -ENODEV if HuC is not present on this platform,
653  *  -EOPNOTSUPP if HuC firmware usage is disabled,
654  *  -ENOPKG if HuC firmware fetch failed,
655  *  -ENOEXEC if HuC firmware is invalid or mismatched,
656  *  -ENOMEM if i915 failed to prepare the FW objects for transfer to the uC,
657  *  -EIO if the FW transfer or the FW authentication failed.
658  *
659  * If the IOCTL is successful, the returned parameter will be set to one of the
660  * following values:
661  *  * 0 if HuC firmware load is not complete,
662  *  * 1 if HuC firmware is authenticated and running.
663  */
664 #define I915_PARAM_HUC_STATUS		 42
665 
666 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to opt-out of
667  * synchronisation with implicit fencing on individual objects.
668  * See EXEC_OBJECT_ASYNC.
669  */
670 #define I915_PARAM_HAS_EXEC_ASYNC	 43
671 
672 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports explicit fence support -
673  * both being able to pass in a sync_file fd to wait upon before executing,
674  * and being able to return a new sync_file fd that is signaled when the
675  * current request is complete. See I915_EXEC_FENCE_IN and I915_EXEC_FENCE_OUT.
676  */
677 #define I915_PARAM_HAS_EXEC_FENCE	 44
678 
679 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to capture
680  * user specified bufffers for post-mortem debugging of GPU hangs. See
681  * EXEC_OBJECT_CAPTURE.
682  */
683 #define I915_PARAM_HAS_EXEC_CAPTURE	 45
684 
685 #define I915_PARAM_SLICE_MASK		 46
686 
687 /* Assuming it's uniform for each slice, this queries the mask of subslices
688  * per-slice for this system.
689  */
690 #define I915_PARAM_SUBSLICE_MASK	 47
691 
692 /*
693  * Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying the batch buffer
694  * as the first execobject as opposed to the last. See I915_EXEC_BATCH_FIRST.
695  */
696 #define I915_PARAM_HAS_EXEC_BATCH_FIRST	 48
697 
698 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
699  * drm_i915_gem_exec_fence structures.  See I915_EXEC_FENCE_ARRAY.
700  */
701 #define I915_PARAM_HAS_EXEC_FENCE_ARRAY  49
702 
703 /*
704  * Query whether every context (both per-file default and user created) is
705  * isolated (insofar as HW supports). If this parameter is not true, then
706  * freshly created contexts may inherit values from an existing context,
707  * rather than default HW values. If true, it also ensures (insofar as HW
708  * supports) that all state set by this context will not leak to any other
709  * context.
710  *
711  * As not every engine across every gen support contexts, the returned
712  * value reports the support of context isolation for individual engines by
713  * returning a bitmask of each engine class set to true if that class supports
714  * isolation.
715  */
716 #define I915_PARAM_HAS_CONTEXT_ISOLATION 50
717 
718 /* Frequency of the command streamer timestamps given by the *_TIMESTAMP
719  * registers. This used to be fixed per platform but from CNL onwards, this
720  * might vary depending on the parts.
721  */
722 #define I915_PARAM_CS_TIMESTAMP_FREQUENCY 51
723 
724 /*
725  * Once upon a time we supposed that writes through the GGTT would be
726  * immediately in physical memory (once flushed out of the CPU path). However,
727  * on a few different processors and chipsets, this is not necessarily the case
728  * as the writes appear to be buffered internally. Thus a read of the backing
729  * storage (physical memory) via a different path (with different physical tags
730  * to the indirect write via the GGTT) will see stale values from before
731  * the GGTT write. Inside the kernel, we can for the most part keep track of
732  * the different read/write domains in use (e.g. set-domain), but the assumption
733  * of coherency is baked into the ABI, hence reporting its true state in this
734  * parameter.
735  *
736  * Reports true when writes via mmap_gtt are immediately visible following an
737  * lfence to flush the WCB.
738  *
739  * Reports false when writes via mmap_gtt are indeterminately delayed in an in
740  * internal buffer and are _not_ immediately visible to third parties accessing
741  * directly via mmap_cpu/mmap_wc. Use of mmap_gtt as part of an IPC
742  * communications channel when reporting false is strongly disadvised.
743  */
744 #define I915_PARAM_MMAP_GTT_COHERENT	52
745 
746 /*
747  * Query whether DRM_I915_GEM_EXECBUFFER2 supports coordination of parallel
748  * execution through use of explicit fence support.
749  * See I915_EXEC_FENCE_OUT and I915_EXEC_FENCE_SUBMIT.
750  */
751 #define I915_PARAM_HAS_EXEC_SUBMIT_FENCE 53
752 
753 /*
754  * Revision of the i915-perf uAPI. The value returned helps determine what
755  * i915-perf features are available. See drm_i915_perf_property_id.
756  */
757 #define I915_PARAM_PERF_REVISION	54
758 
759 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
760  * timeline syncobj through drm_i915_gem_execbuffer_ext_timeline_fences. See
761  * I915_EXEC_USE_EXTENSIONS.
762  */
763 #define I915_PARAM_HAS_EXEC_TIMELINE_FENCES 55
764 
765 /* Query if the kernel supports the I915_USERPTR_PROBE flag. */
766 #define I915_PARAM_HAS_USERPTR_PROBE 56
767 
768 /* Must be kept compact -- no holes and well documented */
769 
770 /**
771  * struct drm_i915_getparam - Driver parameter query structure.
772  */
773 struct drm_i915_getparam {
774 	/** @param: Driver parameter to query. */
775 	__s32 param;
776 
777 	/**
778 	 * @value: Address of memory where queried value should be put.
779 	 *
780 	 * WARNING: Using pointers instead of fixed-size u64 means we need to write
781 	 * compat32 code. Don't repeat this mistake.
782 	 */
783 	int __user *value;
784 };
785 
786 /**
787  * typedef drm_i915_getparam_t - Driver parameter query structure.
788  * See struct drm_i915_getparam.
789  */
790 typedef struct drm_i915_getparam drm_i915_getparam_t;
791 
792 /* Ioctl to set kernel params:
793  */
794 #define I915_SETPARAM_USE_MI_BATCHBUFFER_START            1
795 #define I915_SETPARAM_TEX_LRU_LOG_GRANULARITY             2
796 #define I915_SETPARAM_ALLOW_BATCHBUFFER                   3
797 #define I915_SETPARAM_NUM_USED_FENCES                     4
798 /* Must be kept compact -- no holes */
799 
800 typedef struct drm_i915_setparam {
801 	int param;
802 	int value;
803 } drm_i915_setparam_t;
804 
805 /* A memory manager for regions of shared memory:
806  */
807 #define I915_MEM_REGION_AGP 1
808 
809 typedef struct drm_i915_mem_alloc {
810 	int region;
811 	int alignment;
812 	int size;
813 	int __user *region_offset;	/* offset from start of fb or agp */
814 } drm_i915_mem_alloc_t;
815 
816 typedef struct drm_i915_mem_free {
817 	int region;
818 	int region_offset;
819 } drm_i915_mem_free_t;
820 
821 typedef struct drm_i915_mem_init_heap {
822 	int region;
823 	int size;
824 	int start;
825 } drm_i915_mem_init_heap_t;
826 
827 /* Allow memory manager to be torn down and re-initialized (eg on
828  * rotate):
829  */
830 typedef struct drm_i915_mem_destroy_heap {
831 	int region;
832 } drm_i915_mem_destroy_heap_t;
833 
834 /* Allow X server to configure which pipes to monitor for vblank signals
835  */
836 #define	DRM_I915_VBLANK_PIPE_A	1
837 #define	DRM_I915_VBLANK_PIPE_B	2
838 
839 typedef struct drm_i915_vblank_pipe {
840 	int pipe;
841 } drm_i915_vblank_pipe_t;
842 
843 /* Schedule buffer swap at given vertical blank:
844  */
845 typedef struct drm_i915_vblank_swap {
846 	drm_drawable_t drawable;
847 	enum drm_vblank_seq_type seqtype;
848 	unsigned int sequence;
849 } drm_i915_vblank_swap_t;
850 
851 typedef struct drm_i915_hws_addr {
852 	__u64 addr;
853 } drm_i915_hws_addr_t;
854 
855 struct drm_i915_gem_init {
856 	/**
857 	 * Beginning offset in the GTT to be managed by the DRM memory
858 	 * manager.
859 	 */
860 	__u64 gtt_start;
861 	/**
862 	 * Ending offset in the GTT to be managed by the DRM memory
863 	 * manager.
864 	 */
865 	__u64 gtt_end;
866 };
867 
868 struct drm_i915_gem_create {
869 	/**
870 	 * Requested size for the object.
871 	 *
872 	 * The (page-aligned) allocated size for the object will be returned.
873 	 */
874 	__u64 size;
875 	/**
876 	 * Returned handle for the object.
877 	 *
878 	 * Object handles are nonzero.
879 	 */
880 	__u32 handle;
881 	__u32 pad;
882 };
883 
884 struct drm_i915_gem_pread {
885 	/** Handle for the object being read. */
886 	__u32 handle;
887 	__u32 pad;
888 	/** Offset into the object to read from */
889 	__u64 offset;
890 	/** Length of data to read */
891 	__u64 size;
892 	/**
893 	 * Pointer to write the data into.
894 	 *
895 	 * This is a fixed-size type for 32/64 compatibility.
896 	 */
897 	__u64 data_ptr;
898 };
899 
900 struct drm_i915_gem_pwrite {
901 	/** Handle for the object being written to. */
902 	__u32 handle;
903 	__u32 pad;
904 	/** Offset into the object to write to */
905 	__u64 offset;
906 	/** Length of data to write */
907 	__u64 size;
908 	/**
909 	 * Pointer to read the data from.
910 	 *
911 	 * This is a fixed-size type for 32/64 compatibility.
912 	 */
913 	__u64 data_ptr;
914 };
915 
916 struct drm_i915_gem_mmap {
917 	/** Handle for the object being mapped. */
918 	__u32 handle;
919 	__u32 pad;
920 	/** Offset in the object to map. */
921 	__u64 offset;
922 	/**
923 	 * Length of data to map.
924 	 *
925 	 * The value will be page-aligned.
926 	 */
927 	__u64 size;
928 	/**
929 	 * Returned pointer the data was mapped at.
930 	 *
931 	 * This is a fixed-size type for 32/64 compatibility.
932 	 */
933 	__u64 addr_ptr;
934 
935 	/**
936 	 * Flags for extended behaviour.
937 	 *
938 	 * Added in version 2.
939 	 */
940 	__u64 flags;
941 #define I915_MMAP_WC 0x1
942 };
943 
944 struct drm_i915_gem_mmap_gtt {
945 	/** Handle for the object being mapped. */
946 	__u32 handle;
947 	__u32 pad;
948 	/**
949 	 * Fake offset to use for subsequent mmap call
950 	 *
951 	 * This is a fixed-size type for 32/64 compatibility.
952 	 */
953 	__u64 offset;
954 };
955 
956 /**
957  * struct drm_i915_gem_mmap_offset - Retrieve an offset so we can mmap this buffer object.
958  *
959  * This struct is passed as argument to the `DRM_IOCTL_I915_GEM_MMAP_OFFSET` ioctl,
960  * and is used to retrieve the fake offset to mmap an object specified by &handle.
961  *
962  * The legacy way of using `DRM_IOCTL_I915_GEM_MMAP` is removed on gen12+.
963  * `DRM_IOCTL_I915_GEM_MMAP_GTT` is an older supported alias to this struct, but will behave
964  * as setting the &extensions to 0, and &flags to `I915_MMAP_OFFSET_GTT`.
965  */
966 struct drm_i915_gem_mmap_offset {
967 	/** @handle: Handle for the object being mapped. */
968 	__u32 handle;
969 	/** @pad: Must be zero */
970 	__u32 pad;
971 	/**
972 	 * @offset: The fake offset to use for subsequent mmap call
973 	 *
974 	 * This is a fixed-size type for 32/64 compatibility.
975 	 */
976 	__u64 offset;
977 
978 	/**
979 	 * @flags: Flags for extended behaviour.
980 	 *
981 	 * It is mandatory that one of the `MMAP_OFFSET` types
982 	 * should be included:
983 	 *
984 	 * - `I915_MMAP_OFFSET_GTT`: Use mmap with the object bound to GTT. (Write-Combined)
985 	 * - `I915_MMAP_OFFSET_WC`: Use Write-Combined caching.
986 	 * - `I915_MMAP_OFFSET_WB`: Use Write-Back caching.
987 	 * - `I915_MMAP_OFFSET_FIXED`: Use object placement to determine caching.
988 	 *
989 	 * On devices with local memory `I915_MMAP_OFFSET_FIXED` is the only valid
990 	 * type. On devices without local memory, this caching mode is invalid.
991 	 *
992 	 * As caching mode when specifying `I915_MMAP_OFFSET_FIXED`, WC or WB will
993 	 * be used, depending on the object placement on creation. WB will be used
994 	 * when the object can only exist in system memory, WC otherwise.
995 	 */
996 	__u64 flags;
997 
998 #define I915_MMAP_OFFSET_GTT	0
999 #define I915_MMAP_OFFSET_WC	1
1000 #define I915_MMAP_OFFSET_WB	2
1001 #define I915_MMAP_OFFSET_UC	3
1002 #define I915_MMAP_OFFSET_FIXED	4
1003 
1004 	/**
1005 	 * @extensions: Zero-terminated chain of extensions.
1006 	 *
1007 	 * No current extensions defined; mbz.
1008 	 */
1009 	__u64 extensions;
1010 };
1011 
1012 /**
1013  * struct drm_i915_gem_set_domain - Adjust the objects write or read domain, in
1014  * preparation for accessing the pages via some CPU domain.
1015  *
1016  * Specifying a new write or read domain will flush the object out of the
1017  * previous domain(if required), before then updating the objects domain
1018  * tracking with the new domain.
1019  *
1020  * Note this might involve waiting for the object first if it is still active on
1021  * the GPU.
1022  *
1023  * Supported values for @read_domains and @write_domain:
1024  *
1025  *	- I915_GEM_DOMAIN_WC: Uncached write-combined domain
1026  *	- I915_GEM_DOMAIN_CPU: CPU cache domain
1027  *	- I915_GEM_DOMAIN_GTT: Mappable aperture domain
1028  *
1029  * All other domains are rejected.
1030  *
1031  * Note that for discrete, starting from DG1, this is no longer supported, and
1032  * is instead rejected. On such platforms the CPU domain is effectively static,
1033  * where we also only support a single &drm_i915_gem_mmap_offset cache mode,
1034  * which can't be set explicitly and instead depends on the object placements,
1035  * as per the below.
1036  *
1037  * Implicit caching rules, starting from DG1:
1038  *
1039  *	- If any of the object placements (see &drm_i915_gem_create_ext_memory_regions)
1040  *	  contain I915_MEMORY_CLASS_DEVICE then the object will be allocated and
1041  *	  mapped as write-combined only.
1042  *
1043  *	- Everything else is always allocated and mapped as write-back, with the
1044  *	  guarantee that everything is also coherent with the GPU.
1045  *
1046  * Note that this is likely to change in the future again, where we might need
1047  * more flexibility on future devices, so making this all explicit as part of a
1048  * new &drm_i915_gem_create_ext extension is probable.
1049  */
1050 struct drm_i915_gem_set_domain {
1051 	/** @handle: Handle for the object. */
1052 	__u32 handle;
1053 
1054 	/** @read_domains: New read domains. */
1055 	__u32 read_domains;
1056 
1057 	/**
1058 	 * @write_domain: New write domain.
1059 	 *
1060 	 * Note that having something in the write domain implies it's in the
1061 	 * read domain, and only that read domain.
1062 	 */
1063 	__u32 write_domain;
1064 };
1065 
1066 struct drm_i915_gem_sw_finish {
1067 	/** Handle for the object */
1068 	__u32 handle;
1069 };
1070 
1071 struct drm_i915_gem_relocation_entry {
1072 	/**
1073 	 * Handle of the buffer being pointed to by this relocation entry.
1074 	 *
1075 	 * It's appealing to make this be an index into the mm_validate_entry
1076 	 * list to refer to the buffer, but this allows the driver to create
1077 	 * a relocation list for state buffers and not re-write it per
1078 	 * exec using the buffer.
1079 	 */
1080 	__u32 target_handle;
1081 
1082 	/**
1083 	 * Value to be added to the offset of the target buffer to make up
1084 	 * the relocation entry.
1085 	 */
1086 	__u32 delta;
1087 
1088 	/** Offset in the buffer the relocation entry will be written into */
1089 	__u64 offset;
1090 
1091 	/**
1092 	 * Offset value of the target buffer that the relocation entry was last
1093 	 * written as.
1094 	 *
1095 	 * If the buffer has the same offset as last time, we can skip syncing
1096 	 * and writing the relocation.  This value is written back out by
1097 	 * the execbuffer ioctl when the relocation is written.
1098 	 */
1099 	__u64 presumed_offset;
1100 
1101 	/**
1102 	 * Target memory domains read by this operation.
1103 	 */
1104 	__u32 read_domains;
1105 
1106 	/**
1107 	 * Target memory domains written by this operation.
1108 	 *
1109 	 * Note that only one domain may be written by the whole
1110 	 * execbuffer operation, so that where there are conflicts,
1111 	 * the application will get -EINVAL back.
1112 	 */
1113 	__u32 write_domain;
1114 };
1115 
1116 /** @{
1117  * Intel memory domains
1118  *
1119  * Most of these just align with the various caches in
1120  * the system and are used to flush and invalidate as
1121  * objects end up cached in different domains.
1122  */
1123 /** CPU cache */
1124 #define I915_GEM_DOMAIN_CPU		0x00000001
1125 /** Render cache, used by 2D and 3D drawing */
1126 #define I915_GEM_DOMAIN_RENDER		0x00000002
1127 /** Sampler cache, used by texture engine */
1128 #define I915_GEM_DOMAIN_SAMPLER		0x00000004
1129 /** Command queue, used to load batch buffers */
1130 #define I915_GEM_DOMAIN_COMMAND		0x00000008
1131 /** Instruction cache, used by shader programs */
1132 #define I915_GEM_DOMAIN_INSTRUCTION	0x00000010
1133 /** Vertex address cache */
1134 #define I915_GEM_DOMAIN_VERTEX		0x00000020
1135 /** GTT domain - aperture and scanout */
1136 #define I915_GEM_DOMAIN_GTT		0x00000040
1137 /** WC domain - uncached access */
1138 #define I915_GEM_DOMAIN_WC		0x00000080
1139 /** @} */
1140 
1141 struct drm_i915_gem_exec_object {
1142 	/**
1143 	 * User's handle for a buffer to be bound into the GTT for this
1144 	 * operation.
1145 	 */
1146 	__u32 handle;
1147 
1148 	/** Number of relocations to be performed on this buffer */
1149 	__u32 relocation_count;
1150 	/**
1151 	 * Pointer to array of struct drm_i915_gem_relocation_entry containing
1152 	 * the relocations to be performed in this buffer.
1153 	 */
1154 	__u64 relocs_ptr;
1155 
1156 	/** Required alignment in graphics aperture */
1157 	__u64 alignment;
1158 
1159 	/**
1160 	 * Returned value of the updated offset of the object, for future
1161 	 * presumed_offset writes.
1162 	 */
1163 	__u64 offset;
1164 };
1165 
1166 /* DRM_IOCTL_I915_GEM_EXECBUFFER was removed in Linux 5.13 */
1167 struct drm_i915_gem_execbuffer {
1168 	/**
1169 	 * List of buffers to be validated with their relocations to be
1170 	 * performend on them.
1171 	 *
1172 	 * This is a pointer to an array of struct drm_i915_gem_validate_entry.
1173 	 *
1174 	 * These buffers must be listed in an order such that all relocations
1175 	 * a buffer is performing refer to buffers that have already appeared
1176 	 * in the validate list.
1177 	 */
1178 	__u64 buffers_ptr;
1179 	__u32 buffer_count;
1180 
1181 	/** Offset in the batchbuffer to start execution from. */
1182 	__u32 batch_start_offset;
1183 	/** Bytes used in batchbuffer from batch_start_offset */
1184 	__u32 batch_len;
1185 	__u32 DR1;
1186 	__u32 DR4;
1187 	__u32 num_cliprects;
1188 	/** This is a struct drm_clip_rect *cliprects */
1189 	__u64 cliprects_ptr;
1190 };
1191 
1192 struct drm_i915_gem_exec_object2 {
1193 	/**
1194 	 * User's handle for a buffer to be bound into the GTT for this
1195 	 * operation.
1196 	 */
1197 	__u32 handle;
1198 
1199 	/** Number of relocations to be performed on this buffer */
1200 	__u32 relocation_count;
1201 	/**
1202 	 * Pointer to array of struct drm_i915_gem_relocation_entry containing
1203 	 * the relocations to be performed in this buffer.
1204 	 */
1205 	__u64 relocs_ptr;
1206 
1207 	/** Required alignment in graphics aperture */
1208 	__u64 alignment;
1209 
1210 	/**
1211 	 * When the EXEC_OBJECT_PINNED flag is specified this is populated by
1212 	 * the user with the GTT offset at which this object will be pinned.
1213 	 *
1214 	 * When the I915_EXEC_NO_RELOC flag is specified this must contain the
1215 	 * presumed_offset of the object.
1216 	 *
1217 	 * During execbuffer2 the kernel populates it with the value of the
1218 	 * current GTT offset of the object, for future presumed_offset writes.
1219 	 *
1220 	 * See struct drm_i915_gem_create_ext for the rules when dealing with
1221 	 * alignment restrictions with I915_MEMORY_CLASS_DEVICE, on devices with
1222 	 * minimum page sizes, like DG2.
1223 	 */
1224 	__u64 offset;
1225 
1226 #define EXEC_OBJECT_NEEDS_FENCE		 (1<<0)
1227 #define EXEC_OBJECT_NEEDS_GTT		 (1<<1)
1228 #define EXEC_OBJECT_WRITE		 (1<<2)
1229 #define EXEC_OBJECT_SUPPORTS_48B_ADDRESS (1<<3)
1230 #define EXEC_OBJECT_PINNED		 (1<<4)
1231 #define EXEC_OBJECT_PAD_TO_SIZE		 (1<<5)
1232 /* The kernel implicitly tracks GPU activity on all GEM objects, and
1233  * synchronises operations with outstanding rendering. This includes
1234  * rendering on other devices if exported via dma-buf. However, sometimes
1235  * this tracking is too coarse and the user knows better. For example,
1236  * if the object is split into non-overlapping ranges shared between different
1237  * clients or engines (i.e. suballocating objects), the implicit tracking
1238  * by kernel assumes that each operation affects the whole object rather
1239  * than an individual range, causing needless synchronisation between clients.
1240  * The kernel will also forgo any CPU cache flushes prior to rendering from
1241  * the object as the client is expected to be also handling such domain
1242  * tracking.
1243  *
1244  * The kernel maintains the implicit tracking in order to manage resources
1245  * used by the GPU - this flag only disables the synchronisation prior to
1246  * rendering with this object in this execbuf.
1247  *
1248  * Opting out of implicit synhronisation requires the user to do its own
1249  * explicit tracking to avoid rendering corruption. See, for example,
1250  * I915_PARAM_HAS_EXEC_FENCE to order execbufs and execute them asynchronously.
1251  */
1252 #define EXEC_OBJECT_ASYNC		(1<<6)
1253 /* Request that the contents of this execobject be copied into the error
1254  * state upon a GPU hang involving this batch for post-mortem debugging.
1255  * These buffers are recorded in no particular order as "user" in
1256  * /sys/class/drm/cardN/error. Query I915_PARAM_HAS_EXEC_CAPTURE to see
1257  * if the kernel supports this flag.
1258  */
1259 #define EXEC_OBJECT_CAPTURE		(1<<7)
1260 /* All remaining bits are MBZ and RESERVED FOR FUTURE USE */
1261 #define __EXEC_OBJECT_UNKNOWN_FLAGS -(EXEC_OBJECT_CAPTURE<<1)
1262 	__u64 flags;
1263 
1264 	union {
1265 		__u64 rsvd1;
1266 		__u64 pad_to_size;
1267 	};
1268 	__u64 rsvd2;
1269 };
1270 
1271 /**
1272  * struct drm_i915_gem_exec_fence - An input or output fence for the execbuf
1273  * ioctl.
1274  *
1275  * The request will wait for input fence to signal before submission.
1276  *
1277  * The returned output fence will be signaled after the completion of the
1278  * request.
1279  */
1280 struct drm_i915_gem_exec_fence {
1281 	/** @handle: User's handle for a drm_syncobj to wait on or signal. */
1282 	__u32 handle;
1283 
1284 	/**
1285 	 * @flags: Supported flags are:
1286 	 *
1287 	 * I915_EXEC_FENCE_WAIT:
1288 	 * Wait for the input fence before request submission.
1289 	 *
1290 	 * I915_EXEC_FENCE_SIGNAL:
1291 	 * Return request completion fence as output
1292 	 */
1293 	__u32 flags;
1294 #define I915_EXEC_FENCE_WAIT            (1<<0)
1295 #define I915_EXEC_FENCE_SIGNAL          (1<<1)
1296 #define __I915_EXEC_FENCE_UNKNOWN_FLAGS (-(I915_EXEC_FENCE_SIGNAL << 1))
1297 };
1298 
1299 /**
1300  * struct drm_i915_gem_execbuffer_ext_timeline_fences - Timeline fences
1301  * for execbuf ioctl.
1302  *
1303  * This structure describes an array of drm_syncobj and associated points for
1304  * timeline variants of drm_syncobj. It is invalid to append this structure to
1305  * the execbuf if I915_EXEC_FENCE_ARRAY is set.
1306  */
1307 struct drm_i915_gem_execbuffer_ext_timeline_fences {
1308 #define DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES 0
1309 	/** @base: Extension link. See struct i915_user_extension. */
1310 	struct i915_user_extension base;
1311 
1312 	/**
1313 	 * @fence_count: Number of elements in the @handles_ptr & @value_ptr
1314 	 * arrays.
1315 	 */
1316 	__u64 fence_count;
1317 
1318 	/**
1319 	 * @handles_ptr: Pointer to an array of struct drm_i915_gem_exec_fence
1320 	 * of length @fence_count.
1321 	 */
1322 	__u64 handles_ptr;
1323 
1324 	/**
1325 	 * @values_ptr: Pointer to an array of u64 values of length
1326 	 * @fence_count.
1327 	 * Values must be 0 for a binary drm_syncobj. A Value of 0 for a
1328 	 * timeline drm_syncobj is invalid as it turns a drm_syncobj into a
1329 	 * binary one.
1330 	 */
1331 	__u64 values_ptr;
1332 };
1333 
1334 /**
1335  * struct drm_i915_gem_execbuffer2 - Structure for DRM_I915_GEM_EXECBUFFER2
1336  * ioctl.
1337  */
1338 struct drm_i915_gem_execbuffer2 {
1339 	/** @buffers_ptr: Pointer to a list of gem_exec_object2 structs */
1340 	__u64 buffers_ptr;
1341 
1342 	/** @buffer_count: Number of elements in @buffers_ptr array */
1343 	__u32 buffer_count;
1344 
1345 	/**
1346 	 * @batch_start_offset: Offset in the batchbuffer to start execution
1347 	 * from.
1348 	 */
1349 	__u32 batch_start_offset;
1350 
1351 	/**
1352 	 * @batch_len: Length in bytes of the batch buffer, starting from the
1353 	 * @batch_start_offset. If 0, length is assumed to be the batch buffer
1354 	 * object size.
1355 	 */
1356 	__u32 batch_len;
1357 
1358 	/** @DR1: deprecated */
1359 	__u32 DR1;
1360 
1361 	/** @DR4: deprecated */
1362 	__u32 DR4;
1363 
1364 	/** @num_cliprects: See @cliprects_ptr */
1365 	__u32 num_cliprects;
1366 
1367 	/**
1368 	 * @cliprects_ptr: Kernel clipping was a DRI1 misfeature.
1369 	 *
1370 	 * It is invalid to use this field if I915_EXEC_FENCE_ARRAY or
1371 	 * I915_EXEC_USE_EXTENSIONS flags are not set.
1372 	 *
1373 	 * If I915_EXEC_FENCE_ARRAY is set, then this is a pointer to an array
1374 	 * of &drm_i915_gem_exec_fence and @num_cliprects is the length of the
1375 	 * array.
1376 	 *
1377 	 * If I915_EXEC_USE_EXTENSIONS is set, then this is a pointer to a
1378 	 * single &i915_user_extension and num_cliprects is 0.
1379 	 */
1380 	__u64 cliprects_ptr;
1381 
1382 	/** @flags: Execbuf flags */
1383 	__u64 flags;
1384 #define I915_EXEC_RING_MASK              (0x3f)
1385 #define I915_EXEC_DEFAULT                (0<<0)
1386 #define I915_EXEC_RENDER                 (1<<0)
1387 #define I915_EXEC_BSD                    (2<<0)
1388 #define I915_EXEC_BLT                    (3<<0)
1389 #define I915_EXEC_VEBOX                  (4<<0)
1390 
1391 /* Used for switching the constants addressing mode on gen4+ RENDER ring.
1392  * Gen6+ only supports relative addressing to dynamic state (default) and
1393  * absolute addressing.
1394  *
1395  * These flags are ignored for the BSD and BLT rings.
1396  */
1397 #define I915_EXEC_CONSTANTS_MASK 	(3<<6)
1398 #define I915_EXEC_CONSTANTS_REL_GENERAL (0<<6) /* default */
1399 #define I915_EXEC_CONSTANTS_ABSOLUTE 	(1<<6)
1400 #define I915_EXEC_CONSTANTS_REL_SURFACE (2<<6) /* gen4/5 only */
1401 
1402 /** Resets the SO write offset registers for transform feedback on gen7. */
1403 #define I915_EXEC_GEN7_SOL_RESET	(1<<8)
1404 
1405 /** Request a privileged ("secure") batch buffer. Note only available for
1406  * DRM_ROOT_ONLY | DRM_MASTER processes.
1407  */
1408 #define I915_EXEC_SECURE		(1<<9)
1409 
1410 /** Inform the kernel that the batch is and will always be pinned. This
1411  * negates the requirement for a workaround to be performed to avoid
1412  * an incoherent CS (such as can be found on 830/845). If this flag is
1413  * not passed, the kernel will endeavour to make sure the batch is
1414  * coherent with the CS before execution. If this flag is passed,
1415  * userspace assumes the responsibility for ensuring the same.
1416  */
1417 #define I915_EXEC_IS_PINNED		(1<<10)
1418 
1419 /** Provide a hint to the kernel that the command stream and auxiliary
1420  * state buffers already holds the correct presumed addresses and so the
1421  * relocation process may be skipped if no buffers need to be moved in
1422  * preparation for the execbuffer.
1423  */
1424 #define I915_EXEC_NO_RELOC		(1<<11)
1425 
1426 /** Use the reloc.handle as an index into the exec object array rather
1427  * than as the per-file handle.
1428  */
1429 #define I915_EXEC_HANDLE_LUT		(1<<12)
1430 
1431 /** Used for switching BSD rings on the platforms with two BSD rings */
1432 #define I915_EXEC_BSD_SHIFT	 (13)
1433 #define I915_EXEC_BSD_MASK	 (3 << I915_EXEC_BSD_SHIFT)
1434 /* default ping-pong mode */
1435 #define I915_EXEC_BSD_DEFAULT	 (0 << I915_EXEC_BSD_SHIFT)
1436 #define I915_EXEC_BSD_RING1	 (1 << I915_EXEC_BSD_SHIFT)
1437 #define I915_EXEC_BSD_RING2	 (2 << I915_EXEC_BSD_SHIFT)
1438 
1439 /** Tell the kernel that the batchbuffer is processed by
1440  *  the resource streamer.
1441  */
1442 #define I915_EXEC_RESOURCE_STREAMER     (1<<15)
1443 
1444 /* Setting I915_EXEC_FENCE_IN implies that lower_32_bits(rsvd2) represent
1445  * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1446  * the batch.
1447  *
1448  * Returns -EINVAL if the sync_file fd cannot be found.
1449  */
1450 #define I915_EXEC_FENCE_IN		(1<<16)
1451 
1452 /* Setting I915_EXEC_FENCE_OUT causes the ioctl to return a sync_file fd
1453  * in the upper_32_bits(rsvd2) upon success. Ownership of the fd is given
1454  * to the caller, and it should be close() after use. (The fd is a regular
1455  * file descriptor and will be cleaned up on process termination. It holds
1456  * a reference to the request, but nothing else.)
1457  *
1458  * The sync_file fd can be combined with other sync_file and passed either
1459  * to execbuf using I915_EXEC_FENCE_IN, to atomic KMS ioctls (so that a flip
1460  * will only occur after this request completes), or to other devices.
1461  *
1462  * Using I915_EXEC_FENCE_OUT requires use of
1463  * DRM_IOCTL_I915_GEM_EXECBUFFER2_WR ioctl so that the result is written
1464  * back to userspace. Failure to do so will cause the out-fence to always
1465  * be reported as zero, and the real fence fd to be leaked.
1466  */
1467 #define I915_EXEC_FENCE_OUT		(1<<17)
1468 
1469 /*
1470  * Traditionally the execbuf ioctl has only considered the final element in
1471  * the execobject[] to be the executable batch. Often though, the client
1472  * will known the batch object prior to construction and being able to place
1473  * it into the execobject[] array first can simplify the relocation tracking.
1474  * Setting I915_EXEC_BATCH_FIRST tells execbuf to use element 0 of the
1475  * execobject[] as the * batch instead (the default is to use the last
1476  * element).
1477  */
1478 #define I915_EXEC_BATCH_FIRST		(1<<18)
1479 
1480 /* Setting I915_FENCE_ARRAY implies that num_cliprects and cliprects_ptr
1481  * define an array of i915_gem_exec_fence structures which specify a set of
1482  * dma fences to wait upon or signal.
1483  */
1484 #define I915_EXEC_FENCE_ARRAY   (1<<19)
1485 
1486 /*
1487  * Setting I915_EXEC_FENCE_SUBMIT implies that lower_32_bits(rsvd2) represent
1488  * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1489  * the batch.
1490  *
1491  * Returns -EINVAL if the sync_file fd cannot be found.
1492  */
1493 #define I915_EXEC_FENCE_SUBMIT		(1 << 20)
1494 
1495 /*
1496  * Setting I915_EXEC_USE_EXTENSIONS implies that
1497  * drm_i915_gem_execbuffer2.cliprects_ptr is treated as a pointer to an linked
1498  * list of i915_user_extension. Each i915_user_extension node is the base of a
1499  * larger structure. The list of supported structures are listed in the
1500  * drm_i915_gem_execbuffer_ext enum.
1501  */
1502 #define I915_EXEC_USE_EXTENSIONS	(1 << 21)
1503 #define __I915_EXEC_UNKNOWN_FLAGS (-(I915_EXEC_USE_EXTENSIONS << 1))
1504 
1505 	/** @rsvd1: Context id */
1506 	__u64 rsvd1;
1507 
1508 	/**
1509 	 * @rsvd2: in and out sync_file file descriptors.
1510 	 *
1511 	 * When I915_EXEC_FENCE_IN or I915_EXEC_FENCE_SUBMIT flag is set, the
1512 	 * lower 32 bits of this field will have the in sync_file fd (input).
1513 	 *
1514 	 * When I915_EXEC_FENCE_OUT flag is set, the upper 32 bits of this
1515 	 * field will have the out sync_file fd (output).
1516 	 */
1517 	__u64 rsvd2;
1518 };
1519 
1520 #define I915_EXEC_CONTEXT_ID_MASK	(0xffffffff)
1521 #define i915_execbuffer2_set_context_id(eb2, context) \
1522 	(eb2).rsvd1 = context & I915_EXEC_CONTEXT_ID_MASK
1523 #define i915_execbuffer2_get_context_id(eb2) \
1524 	((eb2).rsvd1 & I915_EXEC_CONTEXT_ID_MASK)
1525 
1526 struct drm_i915_gem_pin {
1527 	/** Handle of the buffer to be pinned. */
1528 	__u32 handle;
1529 	__u32 pad;
1530 
1531 	/** alignment required within the aperture */
1532 	__u64 alignment;
1533 
1534 	/** Returned GTT offset of the buffer. */
1535 	__u64 offset;
1536 };
1537 
1538 struct drm_i915_gem_unpin {
1539 	/** Handle of the buffer to be unpinned. */
1540 	__u32 handle;
1541 	__u32 pad;
1542 };
1543 
1544 struct drm_i915_gem_busy {
1545 	/** Handle of the buffer to check for busy */
1546 	__u32 handle;
1547 
1548 	/** Return busy status
1549 	 *
1550 	 * A return of 0 implies that the object is idle (after
1551 	 * having flushed any pending activity), and a non-zero return that
1552 	 * the object is still in-flight on the GPU. (The GPU has not yet
1553 	 * signaled completion for all pending requests that reference the
1554 	 * object.) An object is guaranteed to become idle eventually (so
1555 	 * long as no new GPU commands are executed upon it). Due to the
1556 	 * asynchronous nature of the hardware, an object reported
1557 	 * as busy may become idle before the ioctl is completed.
1558 	 *
1559 	 * Furthermore, if the object is busy, which engine is busy is only
1560 	 * provided as a guide and only indirectly by reporting its class
1561 	 * (there may be more than one engine in each class). There are race
1562 	 * conditions which prevent the report of which engines are busy from
1563 	 * being always accurate.  However, the converse is not true. If the
1564 	 * object is idle, the result of the ioctl, that all engines are idle,
1565 	 * is accurate.
1566 	 *
1567 	 * The returned dword is split into two fields to indicate both
1568 	 * the engine classess on which the object is being read, and the
1569 	 * engine class on which it is currently being written (if any).
1570 	 *
1571 	 * The low word (bits 0:15) indicate if the object is being written
1572 	 * to by any engine (there can only be one, as the GEM implicit
1573 	 * synchronisation rules force writes to be serialised). Only the
1574 	 * engine class (offset by 1, I915_ENGINE_CLASS_RENDER is reported as
1575 	 * 1 not 0 etc) for the last write is reported.
1576 	 *
1577 	 * The high word (bits 16:31) are a bitmask of which engines classes
1578 	 * are currently reading from the object. Multiple engines may be
1579 	 * reading from the object simultaneously.
1580 	 *
1581 	 * The value of each engine class is the same as specified in the
1582 	 * I915_CONTEXT_PARAM_ENGINES context parameter and via perf, i.e.
1583 	 * I915_ENGINE_CLASS_RENDER, I915_ENGINE_CLASS_COPY, etc.
1584 	 * Some hardware may have parallel execution engines, e.g. multiple
1585 	 * media engines, which are mapped to the same class identifier and so
1586 	 * are not separately reported for busyness.
1587 	 *
1588 	 * Caveat emptor:
1589 	 * Only the boolean result of this query is reliable; that is whether
1590 	 * the object is idle or busy. The report of which engines are busy
1591 	 * should be only used as a heuristic.
1592 	 */
1593 	__u32 busy;
1594 };
1595 
1596 /**
1597  * struct drm_i915_gem_caching - Set or get the caching for given object
1598  * handle.
1599  *
1600  * Allow userspace to control the GTT caching bits for a given object when the
1601  * object is later mapped through the ppGTT(or GGTT on older platforms lacking
1602  * ppGTT support, or if the object is used for scanout). Note that this might
1603  * require unbinding the object from the GTT first, if its current caching value
1604  * doesn't match.
1605  *
1606  * Note that this all changes on discrete platforms, starting from DG1, the
1607  * set/get caching is no longer supported, and is now rejected.  Instead the CPU
1608  * caching attributes(WB vs WC) will become an immutable creation time property
1609  * for the object, along with the GTT caching level. For now we don't expose any
1610  * new uAPI for this, instead on DG1 this is all implicit, although this largely
1611  * shouldn't matter since DG1 is coherent by default(without any way of
1612  * controlling it).
1613  *
1614  * Implicit caching rules, starting from DG1:
1615  *
1616  *     - If any of the object placements (see &drm_i915_gem_create_ext_memory_regions)
1617  *       contain I915_MEMORY_CLASS_DEVICE then the object will be allocated and
1618  *       mapped as write-combined only.
1619  *
1620  *     - Everything else is always allocated and mapped as write-back, with the
1621  *       guarantee that everything is also coherent with the GPU.
1622  *
1623  * Note that this is likely to change in the future again, where we might need
1624  * more flexibility on future devices, so making this all explicit as part of a
1625  * new &drm_i915_gem_create_ext extension is probable.
1626  *
1627  * Side note: Part of the reason for this is that changing the at-allocation-time CPU
1628  * caching attributes for the pages might be required(and is expensive) if we
1629  * need to then CPU map the pages later with different caching attributes. This
1630  * inconsistent caching behaviour, while supported on x86, is not universally
1631  * supported on other architectures. So for simplicity we opt for setting
1632  * everything at creation time, whilst also making it immutable, on discrete
1633  * platforms.
1634  */
1635 struct drm_i915_gem_caching {
1636 	/**
1637 	 * @handle: Handle of the buffer to set/get the caching level.
1638 	 */
1639 	__u32 handle;
1640 
1641 	/**
1642 	 * @caching: The GTT caching level to apply or possible return value.
1643 	 *
1644 	 * The supported @caching values:
1645 	 *
1646 	 * I915_CACHING_NONE:
1647 	 *
1648 	 * GPU access is not coherent with CPU caches.  Default for machines
1649 	 * without an LLC. This means manual flushing might be needed, if we
1650 	 * want GPU access to be coherent.
1651 	 *
1652 	 * I915_CACHING_CACHED:
1653 	 *
1654 	 * GPU access is coherent with CPU caches and furthermore the data is
1655 	 * cached in last-level caches shared between CPU cores and the GPU GT.
1656 	 *
1657 	 * I915_CACHING_DISPLAY:
1658 	 *
1659 	 * Special GPU caching mode which is coherent with the scanout engines.
1660 	 * Transparently falls back to I915_CACHING_NONE on platforms where no
1661 	 * special cache mode (like write-through or gfdt flushing) is
1662 	 * available. The kernel automatically sets this mode when using a
1663 	 * buffer as a scanout target.  Userspace can manually set this mode to
1664 	 * avoid a costly stall and clflush in the hotpath of drawing the first
1665 	 * frame.
1666 	 */
1667 #define I915_CACHING_NONE		0
1668 #define I915_CACHING_CACHED		1
1669 #define I915_CACHING_DISPLAY		2
1670 	__u32 caching;
1671 };
1672 
1673 #define I915_TILING_NONE	0
1674 #define I915_TILING_X		1
1675 #define I915_TILING_Y		2
1676 /*
1677  * Do not add new tiling types here.  The I915_TILING_* values are for
1678  * de-tiling fence registers that no longer exist on modern platforms.  Although
1679  * the hardware may support new types of tiling in general (e.g., Tile4), we
1680  * do not need to add them to the uapi that is specific to now-defunct ioctls.
1681  */
1682 #define I915_TILING_LAST	I915_TILING_Y
1683 
1684 #define I915_BIT_6_SWIZZLE_NONE		0
1685 #define I915_BIT_6_SWIZZLE_9		1
1686 #define I915_BIT_6_SWIZZLE_9_10		2
1687 #define I915_BIT_6_SWIZZLE_9_11		3
1688 #define I915_BIT_6_SWIZZLE_9_10_11	4
1689 /* Not seen by userland */
1690 #define I915_BIT_6_SWIZZLE_UNKNOWN	5
1691 /* Seen by userland. */
1692 #define I915_BIT_6_SWIZZLE_9_17		6
1693 #define I915_BIT_6_SWIZZLE_9_10_17	7
1694 
1695 struct drm_i915_gem_set_tiling {
1696 	/** Handle of the buffer to have its tiling state updated */
1697 	__u32 handle;
1698 
1699 	/**
1700 	 * Tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1701 	 * I915_TILING_Y).
1702 	 *
1703 	 * This value is to be set on request, and will be updated by the
1704 	 * kernel on successful return with the actual chosen tiling layout.
1705 	 *
1706 	 * The tiling mode may be demoted to I915_TILING_NONE when the system
1707 	 * has bit 6 swizzling that can't be managed correctly by GEM.
1708 	 *
1709 	 * Buffer contents become undefined when changing tiling_mode.
1710 	 */
1711 	__u32 tiling_mode;
1712 
1713 	/**
1714 	 * Stride in bytes for the object when in I915_TILING_X or
1715 	 * I915_TILING_Y.
1716 	 */
1717 	__u32 stride;
1718 
1719 	/**
1720 	 * Returned address bit 6 swizzling required for CPU access through
1721 	 * mmap mapping.
1722 	 */
1723 	__u32 swizzle_mode;
1724 };
1725 
1726 struct drm_i915_gem_get_tiling {
1727 	/** Handle of the buffer to get tiling state for. */
1728 	__u32 handle;
1729 
1730 	/**
1731 	 * Current tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1732 	 * I915_TILING_Y).
1733 	 */
1734 	__u32 tiling_mode;
1735 
1736 	/**
1737 	 * Returned address bit 6 swizzling required for CPU access through
1738 	 * mmap mapping.
1739 	 */
1740 	__u32 swizzle_mode;
1741 
1742 	/**
1743 	 * Returned address bit 6 swizzling required for CPU access through
1744 	 * mmap mapping whilst bound.
1745 	 */
1746 	__u32 phys_swizzle_mode;
1747 };
1748 
1749 struct drm_i915_gem_get_aperture {
1750 	/** Total size of the aperture used by i915_gem_execbuffer, in bytes */
1751 	__u64 aper_size;
1752 
1753 	/**
1754 	 * Available space in the aperture used by i915_gem_execbuffer, in
1755 	 * bytes
1756 	 */
1757 	__u64 aper_available_size;
1758 };
1759 
1760 struct drm_i915_get_pipe_from_crtc_id {
1761 	/** ID of CRTC being requested **/
1762 	__u32 crtc_id;
1763 
1764 	/** pipe of requested CRTC **/
1765 	__u32 pipe;
1766 };
1767 
1768 #define I915_MADV_WILLNEED 0
1769 #define I915_MADV_DONTNEED 1
1770 #define __I915_MADV_PURGED 2 /* internal state */
1771 
1772 struct drm_i915_gem_madvise {
1773 	/** Handle of the buffer to change the backing store advice */
1774 	__u32 handle;
1775 
1776 	/* Advice: either the buffer will be needed again in the near future,
1777 	 *         or wont be and could be discarded under memory pressure.
1778 	 */
1779 	__u32 madv;
1780 
1781 	/** Whether the backing store still exists. */
1782 	__u32 retained;
1783 };
1784 
1785 /* flags */
1786 #define I915_OVERLAY_TYPE_MASK 		0xff
1787 #define I915_OVERLAY_YUV_PLANAR 	0x01
1788 #define I915_OVERLAY_YUV_PACKED 	0x02
1789 #define I915_OVERLAY_RGB		0x03
1790 
1791 #define I915_OVERLAY_DEPTH_MASK		0xff00
1792 #define I915_OVERLAY_RGB24		0x1000
1793 #define I915_OVERLAY_RGB16		0x2000
1794 #define I915_OVERLAY_RGB15		0x3000
1795 #define I915_OVERLAY_YUV422		0x0100
1796 #define I915_OVERLAY_YUV411		0x0200
1797 #define I915_OVERLAY_YUV420		0x0300
1798 #define I915_OVERLAY_YUV410		0x0400
1799 
1800 #define I915_OVERLAY_SWAP_MASK		0xff0000
1801 #define I915_OVERLAY_NO_SWAP		0x000000
1802 #define I915_OVERLAY_UV_SWAP		0x010000
1803 #define I915_OVERLAY_Y_SWAP		0x020000
1804 #define I915_OVERLAY_Y_AND_UV_SWAP	0x030000
1805 
1806 #define I915_OVERLAY_FLAGS_MASK		0xff000000
1807 #define I915_OVERLAY_ENABLE		0x01000000
1808 
1809 struct drm_intel_overlay_put_image {
1810 	/* various flags and src format description */
1811 	__u32 flags;
1812 	/* source picture description */
1813 	__u32 bo_handle;
1814 	/* stride values and offsets are in bytes, buffer relative */
1815 	__u16 stride_Y; /* stride for packed formats */
1816 	__u16 stride_UV;
1817 	__u32 offset_Y; /* offset for packet formats */
1818 	__u32 offset_U;
1819 	__u32 offset_V;
1820 	/* in pixels */
1821 	__u16 src_width;
1822 	__u16 src_height;
1823 	/* to compensate the scaling factors for partially covered surfaces */
1824 	__u16 src_scan_width;
1825 	__u16 src_scan_height;
1826 	/* output crtc description */
1827 	__u32 crtc_id;
1828 	__u16 dst_x;
1829 	__u16 dst_y;
1830 	__u16 dst_width;
1831 	__u16 dst_height;
1832 };
1833 
1834 /* flags */
1835 #define I915_OVERLAY_UPDATE_ATTRS	(1<<0)
1836 #define I915_OVERLAY_UPDATE_GAMMA	(1<<1)
1837 #define I915_OVERLAY_DISABLE_DEST_COLORKEY	(1<<2)
1838 struct drm_intel_overlay_attrs {
1839 	__u32 flags;
1840 	__u32 color_key;
1841 	__s32 brightness;
1842 	__u32 contrast;
1843 	__u32 saturation;
1844 	__u32 gamma0;
1845 	__u32 gamma1;
1846 	__u32 gamma2;
1847 	__u32 gamma3;
1848 	__u32 gamma4;
1849 	__u32 gamma5;
1850 };
1851 
1852 /*
1853  * Intel sprite handling
1854  *
1855  * Color keying works with a min/mask/max tuple.  Both source and destination
1856  * color keying is allowed.
1857  *
1858  * Source keying:
1859  * Sprite pixels within the min & max values, masked against the color channels
1860  * specified in the mask field, will be transparent.  All other pixels will
1861  * be displayed on top of the primary plane.  For RGB surfaces, only the min
1862  * and mask fields will be used; ranged compares are not allowed.
1863  *
1864  * Destination keying:
1865  * Primary plane pixels that match the min value, masked against the color
1866  * channels specified in the mask field, will be replaced by corresponding
1867  * pixels from the sprite plane.
1868  *
1869  * Note that source & destination keying are exclusive; only one can be
1870  * active on a given plane.
1871  */
1872 
1873 #define I915_SET_COLORKEY_NONE		(1<<0) /* Deprecated. Instead set
1874 						* flags==0 to disable colorkeying.
1875 						*/
1876 #define I915_SET_COLORKEY_DESTINATION	(1<<1)
1877 #define I915_SET_COLORKEY_SOURCE	(1<<2)
1878 struct drm_intel_sprite_colorkey {
1879 	__u32 plane_id;
1880 	__u32 min_value;
1881 	__u32 channel_mask;
1882 	__u32 max_value;
1883 	__u32 flags;
1884 };
1885 
1886 struct drm_i915_gem_wait {
1887 	/** Handle of BO we shall wait on */
1888 	__u32 bo_handle;
1889 	__u32 flags;
1890 	/** Number of nanoseconds to wait, Returns time remaining. */
1891 	__s64 timeout_ns;
1892 };
1893 
1894 struct drm_i915_gem_context_create {
1895 	__u32 ctx_id; /* output: id of new context*/
1896 	__u32 pad;
1897 };
1898 
1899 /**
1900  * struct drm_i915_gem_context_create_ext - Structure for creating contexts.
1901  */
1902 struct drm_i915_gem_context_create_ext {
1903 	/** @ctx_id: Id of the created context (output) */
1904 	__u32 ctx_id;
1905 
1906 	/**
1907 	 * @flags: Supported flags are:
1908 	 *
1909 	 * I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS:
1910 	 *
1911 	 * Extensions may be appended to this structure and driver must check
1912 	 * for those. See @extensions.
1913 	 *
1914 	 * I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE
1915 	 *
1916 	 * Created context will have single timeline.
1917 	 */
1918 	__u32 flags;
1919 #define I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS	(1u << 0)
1920 #define I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE	(1u << 1)
1921 #define I915_CONTEXT_CREATE_FLAGS_UNKNOWN \
1922 	(-(I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE << 1))
1923 
1924 	/**
1925 	 * @extensions: Zero-terminated chain of extensions.
1926 	 *
1927 	 * I915_CONTEXT_CREATE_EXT_SETPARAM:
1928 	 * Context parameter to set or query during context creation.
1929 	 * See struct drm_i915_gem_context_create_ext_setparam.
1930 	 *
1931 	 * I915_CONTEXT_CREATE_EXT_CLONE:
1932 	 * This extension has been removed. On the off chance someone somewhere
1933 	 * has attempted to use it, never re-use this extension number.
1934 	 */
1935 	__u64 extensions;
1936 #define I915_CONTEXT_CREATE_EXT_SETPARAM 0
1937 #define I915_CONTEXT_CREATE_EXT_CLONE 1
1938 };
1939 
1940 /**
1941  * struct drm_i915_gem_context_param - Context parameter to set or query.
1942  */
1943 struct drm_i915_gem_context_param {
1944 	/** @ctx_id: Context id */
1945 	__u32 ctx_id;
1946 
1947 	/** @size: Size of the parameter @value */
1948 	__u32 size;
1949 
1950 	/** @param: Parameter to set or query */
1951 	__u64 param;
1952 #define I915_CONTEXT_PARAM_BAN_PERIOD	0x1
1953 /* I915_CONTEXT_PARAM_NO_ZEROMAP has been removed.  On the off chance
1954  * someone somewhere has attempted to use it, never re-use this context
1955  * param number.
1956  */
1957 #define I915_CONTEXT_PARAM_NO_ZEROMAP	0x2
1958 #define I915_CONTEXT_PARAM_GTT_SIZE	0x3
1959 #define I915_CONTEXT_PARAM_NO_ERROR_CAPTURE	0x4
1960 #define I915_CONTEXT_PARAM_BANNABLE	0x5
1961 #define I915_CONTEXT_PARAM_PRIORITY	0x6
1962 #define   I915_CONTEXT_MAX_USER_PRIORITY	1023 /* inclusive */
1963 #define   I915_CONTEXT_DEFAULT_PRIORITY		0
1964 #define   I915_CONTEXT_MIN_USER_PRIORITY	-1023 /* inclusive */
1965 	/*
1966 	 * When using the following param, value should be a pointer to
1967 	 * drm_i915_gem_context_param_sseu.
1968 	 */
1969 #define I915_CONTEXT_PARAM_SSEU		0x7
1970 
1971 /*
1972  * Not all clients may want to attempt automatic recover of a context after
1973  * a hang (for example, some clients may only submit very small incremental
1974  * batches relying on known logical state of previous batches which will never
1975  * recover correctly and each attempt will hang), and so would prefer that
1976  * the context is forever banned instead.
1977  *
1978  * If set to false (0), after a reset, subsequent (and in flight) rendering
1979  * from this context is discarded, and the client will need to create a new
1980  * context to use instead.
1981  *
1982  * If set to true (1), the kernel will automatically attempt to recover the
1983  * context by skipping the hanging batch and executing the next batch starting
1984  * from the default context state (discarding the incomplete logical context
1985  * state lost due to the reset).
1986  *
1987  * On creation, all new contexts are marked as recoverable.
1988  */
1989 #define I915_CONTEXT_PARAM_RECOVERABLE	0x8
1990 
1991 	/*
1992 	 * The id of the associated virtual memory address space (ppGTT) of
1993 	 * this context. Can be retrieved and passed to another context
1994 	 * (on the same fd) for both to use the same ppGTT and so share
1995 	 * address layouts, and avoid reloading the page tables on context
1996 	 * switches between themselves.
1997 	 *
1998 	 * See DRM_I915_GEM_VM_CREATE and DRM_I915_GEM_VM_DESTROY.
1999 	 */
2000 #define I915_CONTEXT_PARAM_VM		0x9
2001 
2002 /*
2003  * I915_CONTEXT_PARAM_ENGINES:
2004  *
2005  * Bind this context to operate on this subset of available engines. Henceforth,
2006  * the I915_EXEC_RING selector for DRM_IOCTL_I915_GEM_EXECBUFFER2 operates as
2007  * an index into this array of engines; I915_EXEC_DEFAULT selecting engine[0]
2008  * and upwards. Slots 0...N are filled in using the specified (class, instance).
2009  * Use
2010  *	engine_class: I915_ENGINE_CLASS_INVALID,
2011  *	engine_instance: I915_ENGINE_CLASS_INVALID_NONE
2012  * to specify a gap in the array that can be filled in later, e.g. by a
2013  * virtual engine used for load balancing.
2014  *
2015  * Setting the number of engines bound to the context to 0, by passing a zero
2016  * sized argument, will revert back to default settings.
2017  *
2018  * See struct i915_context_param_engines.
2019  *
2020  * Extensions:
2021  *   i915_context_engines_load_balance (I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE)
2022  *   i915_context_engines_bond (I915_CONTEXT_ENGINES_EXT_BOND)
2023  *   i915_context_engines_parallel_submit (I915_CONTEXT_ENGINES_EXT_PARALLEL_SUBMIT)
2024  */
2025 #define I915_CONTEXT_PARAM_ENGINES	0xa
2026 
2027 /*
2028  * I915_CONTEXT_PARAM_PERSISTENCE:
2029  *
2030  * Allow the context and active rendering to survive the process until
2031  * completion. Persistence allows fire-and-forget clients to queue up a
2032  * bunch of work, hand the output over to a display server and then quit.
2033  * If the context is marked as not persistent, upon closing (either via
2034  * an explicit DRM_I915_GEM_CONTEXT_DESTROY or implicitly from file closure
2035  * or process termination), the context and any outstanding requests will be
2036  * cancelled (and exported fences for cancelled requests marked as -EIO).
2037  *
2038  * By default, new contexts allow persistence.
2039  */
2040 #define I915_CONTEXT_PARAM_PERSISTENCE	0xb
2041 
2042 /* This API has been removed.  On the off chance someone somewhere has
2043  * attempted to use it, never re-use this context param number.
2044  */
2045 #define I915_CONTEXT_PARAM_RINGSIZE	0xc
2046 
2047 /*
2048  * I915_CONTEXT_PARAM_PROTECTED_CONTENT:
2049  *
2050  * Mark that the context makes use of protected content, which will result
2051  * in the context being invalidated when the protected content session is.
2052  * Given that the protected content session is killed on suspend, the device
2053  * is kept awake for the lifetime of a protected context, so the user should
2054  * make sure to dispose of them once done.
2055  * This flag can only be set at context creation time and, when set to true,
2056  * must be preceded by an explicit setting of I915_CONTEXT_PARAM_RECOVERABLE
2057  * to false. This flag can't be set to true in conjunction with setting the
2058  * I915_CONTEXT_PARAM_BANNABLE flag to false. Creation example:
2059  *
2060  * .. code-block:: C
2061  *
2062  *	struct drm_i915_gem_context_create_ext_setparam p_protected = {
2063  *		.base = {
2064  *			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2065  *		},
2066  *		.param = {
2067  *			.param = I915_CONTEXT_PARAM_PROTECTED_CONTENT,
2068  *			.value = 1,
2069  *		}
2070  *	};
2071  *	struct drm_i915_gem_context_create_ext_setparam p_norecover = {
2072  *		.base = {
2073  *			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2074  *			.next_extension = to_user_pointer(&p_protected),
2075  *		},
2076  *		.param = {
2077  *			.param = I915_CONTEXT_PARAM_RECOVERABLE,
2078  *			.value = 0,
2079  *		}
2080  *	};
2081  *	struct drm_i915_gem_context_create_ext create = {
2082  *		.flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
2083  *		.extensions = to_user_pointer(&p_norecover);
2084  *	};
2085  *
2086  *	ctx_id = gem_context_create_ext(drm_fd, &create);
2087  *
2088  * In addition to the normal failure cases, setting this flag during context
2089  * creation can result in the following errors:
2090  *
2091  * -ENODEV: feature not available
2092  * -EPERM: trying to mark a recoverable or not bannable context as protected
2093  */
2094 #define I915_CONTEXT_PARAM_PROTECTED_CONTENT    0xd
2095 /* Must be kept compact -- no holes and well documented */
2096 
2097 	/** @value: Context parameter value to be set or queried */
2098 	__u64 value;
2099 };
2100 
2101 /*
2102  * Context SSEU programming
2103  *
2104  * It may be necessary for either functional or performance reason to configure
2105  * a context to run with a reduced number of SSEU (where SSEU stands for Slice/
2106  * Sub-slice/EU).
2107  *
2108  * This is done by configuring SSEU configuration using the below
2109  * @struct drm_i915_gem_context_param_sseu for every supported engine which
2110  * userspace intends to use.
2111  *
2112  * Not all GPUs or engines support this functionality in which case an error
2113  * code -ENODEV will be returned.
2114  *
2115  * Also, flexibility of possible SSEU configuration permutations varies between
2116  * GPU generations and software imposed limitations. Requesting such a
2117  * combination will return an error code of -EINVAL.
2118  *
2119  * NOTE: When perf/OA is active the context's SSEU configuration is ignored in
2120  * favour of a single global setting.
2121  */
2122 struct drm_i915_gem_context_param_sseu {
2123 	/*
2124 	 * Engine class & instance to be configured or queried.
2125 	 */
2126 	struct i915_engine_class_instance engine;
2127 
2128 	/*
2129 	 * Unknown flags must be cleared to zero.
2130 	 */
2131 	__u32 flags;
2132 #define I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX (1u << 0)
2133 
2134 	/*
2135 	 * Mask of slices to enable for the context. Valid values are a subset
2136 	 * of the bitmask value returned for I915_PARAM_SLICE_MASK.
2137 	 */
2138 	__u64 slice_mask;
2139 
2140 	/*
2141 	 * Mask of subslices to enable for the context. Valid values are a
2142 	 * subset of the bitmask value return by I915_PARAM_SUBSLICE_MASK.
2143 	 */
2144 	__u64 subslice_mask;
2145 
2146 	/*
2147 	 * Minimum/Maximum number of EUs to enable per subslice for the
2148 	 * context. min_eus_per_subslice must be inferior or equal to
2149 	 * max_eus_per_subslice.
2150 	 */
2151 	__u16 min_eus_per_subslice;
2152 	__u16 max_eus_per_subslice;
2153 
2154 	/*
2155 	 * Unused for now. Must be cleared to zero.
2156 	 */
2157 	__u32 rsvd;
2158 };
2159 
2160 /**
2161  * DOC: Virtual Engine uAPI
2162  *
2163  * Virtual engine is a concept where userspace is able to configure a set of
2164  * physical engines, submit a batch buffer, and let the driver execute it on any
2165  * engine from the set as it sees fit.
2166  *
2167  * This is primarily useful on parts which have multiple instances of a same
2168  * class engine, like for example GT3+ Skylake parts with their two VCS engines.
2169  *
2170  * For instance userspace can enumerate all engines of a certain class using the
2171  * previously described `Engine Discovery uAPI`_. After that userspace can
2172  * create a GEM context with a placeholder slot for the virtual engine (using
2173  * `I915_ENGINE_CLASS_INVALID` and `I915_ENGINE_CLASS_INVALID_NONE` for class
2174  * and instance respectively) and finally using the
2175  * `I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE` extension place a virtual engine in
2176  * the same reserved slot.
2177  *
2178  * Example of creating a virtual engine and submitting a batch buffer to it:
2179  *
2180  * .. code-block:: C
2181  *
2182  * 	I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(virtual, 2) = {
2183  * 		.base.name = I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE,
2184  * 		.engine_index = 0, // Place this virtual engine into engine map slot 0
2185  * 		.num_siblings = 2,
2186  * 		.engines = { { I915_ENGINE_CLASS_VIDEO, 0 },
2187  * 			     { I915_ENGINE_CLASS_VIDEO, 1 }, },
2188  * 	};
2189  * 	I915_DEFINE_CONTEXT_PARAM_ENGINES(engines, 1) = {
2190  * 		.engines = { { I915_ENGINE_CLASS_INVALID,
2191  * 			       I915_ENGINE_CLASS_INVALID_NONE } },
2192  * 		.extensions = to_user_pointer(&virtual), // Chains after load_balance extension
2193  * 	};
2194  * 	struct drm_i915_gem_context_create_ext_setparam p_engines = {
2195  * 		.base = {
2196  * 			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2197  * 		},
2198  * 		.param = {
2199  * 			.param = I915_CONTEXT_PARAM_ENGINES,
2200  * 			.value = to_user_pointer(&engines),
2201  * 			.size = sizeof(engines),
2202  * 		},
2203  * 	};
2204  * 	struct drm_i915_gem_context_create_ext create = {
2205  * 		.flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
2206  * 		.extensions = to_user_pointer(&p_engines);
2207  * 	};
2208  *
2209  * 	ctx_id = gem_context_create_ext(drm_fd, &create);
2210  *
2211  * 	// Now we have created a GEM context with its engine map containing a
2212  * 	// single virtual engine. Submissions to this slot can go either to
2213  * 	// vcs0 or vcs1, depending on the load balancing algorithm used inside
2214  * 	// the driver. The load balancing is dynamic from one batch buffer to
2215  * 	// another and transparent to userspace.
2216  *
2217  * 	...
2218  * 	execbuf.rsvd1 = ctx_id;
2219  * 	execbuf.flags = 0; // Submits to index 0 which is the virtual engine
2220  * 	gem_execbuf(drm_fd, &execbuf);
2221  */
2222 
2223 /*
2224  * i915_context_engines_load_balance:
2225  *
2226  * Enable load balancing across this set of engines.
2227  *
2228  * Into the I915_EXEC_DEFAULT slot [0], a virtual engine is created that when
2229  * used will proxy the execbuffer request onto one of the set of engines
2230  * in such a way as to distribute the load evenly across the set.
2231  *
2232  * The set of engines must be compatible (e.g. the same HW class) as they
2233  * will share the same logical GPU context and ring.
2234  *
2235  * To intermix rendering with the virtual engine and direct rendering onto
2236  * the backing engines (bypassing the load balancing proxy), the context must
2237  * be defined to use a single timeline for all engines.
2238  */
2239 struct i915_context_engines_load_balance {
2240 	struct i915_user_extension base;
2241 
2242 	__u16 engine_index;
2243 	__u16 num_siblings;
2244 	__u32 flags; /* all undefined flags must be zero */
2245 
2246 	__u64 mbz64; /* reserved for future use; must be zero */
2247 
2248 	struct i915_engine_class_instance engines[];
2249 } __attribute__((packed));
2250 
2251 #define I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(name__, N__) struct { \
2252 	struct i915_user_extension base; \
2253 	__u16 engine_index; \
2254 	__u16 num_siblings; \
2255 	__u32 flags; \
2256 	__u64 mbz64; \
2257 	struct i915_engine_class_instance engines[N__]; \
2258 } __attribute__((packed)) name__
2259 
2260 /*
2261  * i915_context_engines_bond:
2262  *
2263  * Constructed bonded pairs for execution within a virtual engine.
2264  *
2265  * All engines are equal, but some are more equal than others. Given
2266  * the distribution of resources in the HW, it may be preferable to run
2267  * a request on a given subset of engines in parallel to a request on a
2268  * specific engine. We enable this selection of engines within a virtual
2269  * engine by specifying bonding pairs, for any given master engine we will
2270  * only execute on one of the corresponding siblings within the virtual engine.
2271  *
2272  * To execute a request in parallel on the master engine and a sibling requires
2273  * coordination with a I915_EXEC_FENCE_SUBMIT.
2274  */
2275 struct i915_context_engines_bond {
2276 	struct i915_user_extension base;
2277 
2278 	struct i915_engine_class_instance master;
2279 
2280 	__u16 virtual_index; /* index of virtual engine in ctx->engines[] */
2281 	__u16 num_bonds;
2282 
2283 	__u64 flags; /* all undefined flags must be zero */
2284 	__u64 mbz64[4]; /* reserved for future use; must be zero */
2285 
2286 	struct i915_engine_class_instance engines[];
2287 } __attribute__((packed));
2288 
2289 #define I915_DEFINE_CONTEXT_ENGINES_BOND(name__, N__) struct { \
2290 	struct i915_user_extension base; \
2291 	struct i915_engine_class_instance master; \
2292 	__u16 virtual_index; \
2293 	__u16 num_bonds; \
2294 	__u64 flags; \
2295 	__u64 mbz64[4]; \
2296 	struct i915_engine_class_instance engines[N__]; \
2297 } __attribute__((packed)) name__
2298 
2299 /**
2300  * struct i915_context_engines_parallel_submit - Configure engine for
2301  * parallel submission.
2302  *
2303  * Setup a slot in the context engine map to allow multiple BBs to be submitted
2304  * in a single execbuf IOCTL. Those BBs will then be scheduled to run on the GPU
2305  * in parallel. Multiple hardware contexts are created internally in the i915 to
2306  * run these BBs. Once a slot is configured for N BBs only N BBs can be
2307  * submitted in each execbuf IOCTL and this is implicit behavior e.g. The user
2308  * doesn't tell the execbuf IOCTL there are N BBs, the execbuf IOCTL knows how
2309  * many BBs there are based on the slot's configuration. The N BBs are the last
2310  * N buffer objects or first N if I915_EXEC_BATCH_FIRST is set.
2311  *
2312  * The default placement behavior is to create implicit bonds between each
2313  * context if each context maps to more than 1 physical engine (e.g. context is
2314  * a virtual engine). Also we only allow contexts of same engine class and these
2315  * contexts must be in logically contiguous order. Examples of the placement
2316  * behavior are described below. Lastly, the default is to not allow BBs to be
2317  * preempted mid-batch. Rather insert coordinated preemption points on all
2318  * hardware contexts between each set of BBs. Flags could be added in the future
2319  * to change both of these default behaviors.
2320  *
2321  * Returns -EINVAL if hardware context placement configuration is invalid or if
2322  * the placement configuration isn't supported on the platform / submission
2323  * interface.
2324  * Returns -ENODEV if extension isn't supported on the platform / submission
2325  * interface.
2326  *
2327  * .. code-block:: none
2328  *
2329  *	Examples syntax:
2330  *	CS[X] = generic engine of same class, logical instance X
2331  *	INVALID = I915_ENGINE_CLASS_INVALID, I915_ENGINE_CLASS_INVALID_NONE
2332  *
2333  *	Example 1 pseudo code:
2334  *	set_engines(INVALID)
2335  *	set_parallel(engine_index=0, width=2, num_siblings=1,
2336  *		     engines=CS[0],CS[1])
2337  *
2338  *	Results in the following valid placement:
2339  *	CS[0], CS[1]
2340  *
2341  *	Example 2 pseudo code:
2342  *	set_engines(INVALID)
2343  *	set_parallel(engine_index=0, width=2, num_siblings=2,
2344  *		     engines=CS[0],CS[2],CS[1],CS[3])
2345  *
2346  *	Results in the following valid placements:
2347  *	CS[0], CS[1]
2348  *	CS[2], CS[3]
2349  *
2350  *	This can be thought of as two virtual engines, each containing two
2351  *	engines thereby making a 2D array. However, there are bonds tying the
2352  *	entries together and placing restrictions on how they can be scheduled.
2353  *	Specifically, the scheduler can choose only vertical columns from the 2D
2354  *	array. That is, CS[0] is bonded to CS[1] and CS[2] to CS[3]. So if the
2355  *	scheduler wants to submit to CS[0], it must also choose CS[1] and vice
2356  *	versa. Same for CS[2] requires also using CS[3].
2357  *	VE[0] = CS[0], CS[2]
2358  *	VE[1] = CS[1], CS[3]
2359  *
2360  *	Example 3 pseudo code:
2361  *	set_engines(INVALID)
2362  *	set_parallel(engine_index=0, width=2, num_siblings=2,
2363  *		     engines=CS[0],CS[1],CS[1],CS[3])
2364  *
2365  *	Results in the following valid and invalid placements:
2366  *	CS[0], CS[1]
2367  *	CS[1], CS[3] - Not logically contiguous, return -EINVAL
2368  */
2369 struct i915_context_engines_parallel_submit {
2370 	/**
2371 	 * @base: base user extension.
2372 	 */
2373 	struct i915_user_extension base;
2374 
2375 	/**
2376 	 * @engine_index: slot for parallel engine
2377 	 */
2378 	__u16 engine_index;
2379 
2380 	/**
2381 	 * @width: number of contexts per parallel engine or in other words the
2382 	 * number of batches in each submission
2383 	 */
2384 	__u16 width;
2385 
2386 	/**
2387 	 * @num_siblings: number of siblings per context or in other words the
2388 	 * number of possible placements for each submission
2389 	 */
2390 	__u16 num_siblings;
2391 
2392 	/**
2393 	 * @mbz16: reserved for future use; must be zero
2394 	 */
2395 	__u16 mbz16;
2396 
2397 	/**
2398 	 * @flags: all undefined flags must be zero, currently not defined flags
2399 	 */
2400 	__u64 flags;
2401 
2402 	/**
2403 	 * @mbz64: reserved for future use; must be zero
2404 	 */
2405 	__u64 mbz64[3];
2406 
2407 	/**
2408 	 * @engines: 2-d array of engine instances to configure parallel engine
2409 	 *
2410 	 * length = width (i) * num_siblings (j)
2411 	 * index = j + i * num_siblings
2412 	 */
2413 	struct i915_engine_class_instance engines[];
2414 
2415 } __packed;
2416 
2417 #define I915_DEFINE_CONTEXT_ENGINES_PARALLEL_SUBMIT(name__, N__) struct { \
2418 	struct i915_user_extension base; \
2419 	__u16 engine_index; \
2420 	__u16 width; \
2421 	__u16 num_siblings; \
2422 	__u16 mbz16; \
2423 	__u64 flags; \
2424 	__u64 mbz64[3]; \
2425 	struct i915_engine_class_instance engines[N__]; \
2426 } __attribute__((packed)) name__
2427 
2428 /**
2429  * DOC: Context Engine Map uAPI
2430  *
2431  * Context engine map is a new way of addressing engines when submitting batch-
2432  * buffers, replacing the existing way of using identifiers like `I915_EXEC_BLT`
2433  * inside the flags field of `struct drm_i915_gem_execbuffer2`.
2434  *
2435  * To use it created GEM contexts need to be configured with a list of engines
2436  * the user is intending to submit to. This is accomplished using the
2437  * `I915_CONTEXT_PARAM_ENGINES` parameter and `struct
2438  * i915_context_param_engines`.
2439  *
2440  * For such contexts the `I915_EXEC_RING_MASK` field becomes an index into the
2441  * configured map.
2442  *
2443  * Example of creating such context and submitting against it:
2444  *
2445  * .. code-block:: C
2446  *
2447  * 	I915_DEFINE_CONTEXT_PARAM_ENGINES(engines, 2) = {
2448  * 		.engines = { { I915_ENGINE_CLASS_RENDER, 0 },
2449  * 			     { I915_ENGINE_CLASS_COPY, 0 } }
2450  * 	};
2451  * 	struct drm_i915_gem_context_create_ext_setparam p_engines = {
2452  * 		.base = {
2453  * 			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2454  * 		},
2455  * 		.param = {
2456  * 			.param = I915_CONTEXT_PARAM_ENGINES,
2457  * 			.value = to_user_pointer(&engines),
2458  * 			.size = sizeof(engines),
2459  * 		},
2460  * 	};
2461  * 	struct drm_i915_gem_context_create_ext create = {
2462  * 		.flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
2463  * 		.extensions = to_user_pointer(&p_engines);
2464  * 	};
2465  *
2466  * 	ctx_id = gem_context_create_ext(drm_fd, &create);
2467  *
2468  * 	// We have now created a GEM context with two engines in the map:
2469  * 	// Index 0 points to rcs0 while index 1 points to bcs0. Other engines
2470  * 	// will not be accessible from this context.
2471  *
2472  * 	...
2473  * 	execbuf.rsvd1 = ctx_id;
2474  * 	execbuf.flags = 0; // Submits to index 0, which is rcs0 for this context
2475  * 	gem_execbuf(drm_fd, &execbuf);
2476  *
2477  * 	...
2478  * 	execbuf.rsvd1 = ctx_id;
2479  * 	execbuf.flags = 1; // Submits to index 0, which is bcs0 for this context
2480  * 	gem_execbuf(drm_fd, &execbuf);
2481  */
2482 
2483 struct i915_context_param_engines {
2484 	__u64 extensions; /* linked chain of extension blocks, 0 terminates */
2485 #define I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE 0 /* see i915_context_engines_load_balance */
2486 #define I915_CONTEXT_ENGINES_EXT_BOND 1 /* see i915_context_engines_bond */
2487 #define I915_CONTEXT_ENGINES_EXT_PARALLEL_SUBMIT 2 /* see i915_context_engines_parallel_submit */
2488 	struct i915_engine_class_instance engines[0];
2489 } __attribute__((packed));
2490 
2491 #define I915_DEFINE_CONTEXT_PARAM_ENGINES(name__, N__) struct { \
2492 	__u64 extensions; \
2493 	struct i915_engine_class_instance engines[N__]; \
2494 } __attribute__((packed)) name__
2495 
2496 /**
2497  * struct drm_i915_gem_context_create_ext_setparam - Context parameter
2498  * to set or query during context creation.
2499  */
2500 struct drm_i915_gem_context_create_ext_setparam {
2501 	/** @base: Extension link. See struct i915_user_extension. */
2502 	struct i915_user_extension base;
2503 
2504 	/**
2505 	 * @param: Context parameter to set or query.
2506 	 * See struct drm_i915_gem_context_param.
2507 	 */
2508 	struct drm_i915_gem_context_param param;
2509 };
2510 
2511 struct drm_i915_gem_context_destroy {
2512 	__u32 ctx_id;
2513 	__u32 pad;
2514 };
2515 
2516 /**
2517  * struct drm_i915_gem_vm_control - Structure to create or destroy VM.
2518  *
2519  * DRM_I915_GEM_VM_CREATE -
2520  *
2521  * Create a new virtual memory address space (ppGTT) for use within a context
2522  * on the same file. Extensions can be provided to configure exactly how the
2523  * address space is setup upon creation.
2524  *
2525  * The id of new VM (bound to the fd) for use with I915_CONTEXT_PARAM_VM is
2526  * returned in the outparam @id.
2527  *
2528  * An extension chain maybe provided, starting with @extensions, and terminated
2529  * by the @next_extension being 0. Currently, no extensions are defined.
2530  *
2531  * DRM_I915_GEM_VM_DESTROY -
2532  *
2533  * Destroys a previously created VM id, specified in @vm_id.
2534  *
2535  * No extensions or flags are allowed currently, and so must be zero.
2536  */
2537 struct drm_i915_gem_vm_control {
2538 	/** @extensions: Zero-terminated chain of extensions. */
2539 	__u64 extensions;
2540 
2541 	/** @flags: reserved for future usage, currently MBZ */
2542 	__u32 flags;
2543 
2544 	/** @vm_id: Id of the VM created or to be destroyed */
2545 	__u32 vm_id;
2546 };
2547 
2548 struct drm_i915_reg_read {
2549 	/*
2550 	 * Register offset.
2551 	 * For 64bit wide registers where the upper 32bits don't immediately
2552 	 * follow the lower 32bits, the offset of the lower 32bits must
2553 	 * be specified
2554 	 */
2555 	__u64 offset;
2556 #define I915_REG_READ_8B_WA (1ul << 0)
2557 
2558 	__u64 val; /* Return value */
2559 };
2560 
2561 /* Known registers:
2562  *
2563  * Render engine timestamp - 0x2358 + 64bit - gen7+
2564  * - Note this register returns an invalid value if using the default
2565  *   single instruction 8byte read, in order to workaround that pass
2566  *   flag I915_REG_READ_8B_WA in offset field.
2567  *
2568  */
2569 
2570 struct drm_i915_reset_stats {
2571 	__u32 ctx_id;
2572 	__u32 flags;
2573 
2574 	/* All resets since boot/module reload, for all contexts */
2575 	__u32 reset_count;
2576 
2577 	/* Number of batches lost when active in GPU, for this context */
2578 	__u32 batch_active;
2579 
2580 	/* Number of batches lost pending for execution, for this context */
2581 	__u32 batch_pending;
2582 
2583 	__u32 pad;
2584 };
2585 
2586 /**
2587  * struct drm_i915_gem_userptr - Create GEM object from user allocated memory.
2588  *
2589  * Userptr objects have several restrictions on what ioctls can be used with the
2590  * object handle.
2591  */
2592 struct drm_i915_gem_userptr {
2593 	/**
2594 	 * @user_ptr: The pointer to the allocated memory.
2595 	 *
2596 	 * Needs to be aligned to PAGE_SIZE.
2597 	 */
2598 	__u64 user_ptr;
2599 
2600 	/**
2601 	 * @user_size:
2602 	 *
2603 	 * The size in bytes for the allocated memory. This will also become the
2604 	 * object size.
2605 	 *
2606 	 * Needs to be aligned to PAGE_SIZE, and should be at least PAGE_SIZE,
2607 	 * or larger.
2608 	 */
2609 	__u64 user_size;
2610 
2611 	/**
2612 	 * @flags:
2613 	 *
2614 	 * Supported flags:
2615 	 *
2616 	 * I915_USERPTR_READ_ONLY:
2617 	 *
2618 	 * Mark the object as readonly, this also means GPU access can only be
2619 	 * readonly. This is only supported on HW which supports readonly access
2620 	 * through the GTT. If the HW can't support readonly access, an error is
2621 	 * returned.
2622 	 *
2623 	 * I915_USERPTR_PROBE:
2624 	 *
2625 	 * Probe the provided @user_ptr range and validate that the @user_ptr is
2626 	 * indeed pointing to normal memory and that the range is also valid.
2627 	 * For example if some garbage address is given to the kernel, then this
2628 	 * should complain.
2629 	 *
2630 	 * Returns -EFAULT if the probe failed.
2631 	 *
2632 	 * Note that this doesn't populate the backing pages, and also doesn't
2633 	 * guarantee that the object will remain valid when the object is
2634 	 * eventually used.
2635 	 *
2636 	 * The kernel supports this feature if I915_PARAM_HAS_USERPTR_PROBE
2637 	 * returns a non-zero value.
2638 	 *
2639 	 * I915_USERPTR_UNSYNCHRONIZED:
2640 	 *
2641 	 * NOT USED. Setting this flag will result in an error.
2642 	 */
2643 	__u32 flags;
2644 #define I915_USERPTR_READ_ONLY 0x1
2645 #define I915_USERPTR_PROBE 0x2
2646 #define I915_USERPTR_UNSYNCHRONIZED 0x80000000
2647 	/**
2648 	 * @handle: Returned handle for the object.
2649 	 *
2650 	 * Object handles are nonzero.
2651 	 */
2652 	__u32 handle;
2653 };
2654 
2655 enum drm_i915_oa_format {
2656 	I915_OA_FORMAT_A13 = 1,	    /* HSW only */
2657 	I915_OA_FORMAT_A29,	    /* HSW only */
2658 	I915_OA_FORMAT_A13_B8_C8,   /* HSW only */
2659 	I915_OA_FORMAT_B4_C8,	    /* HSW only */
2660 	I915_OA_FORMAT_A45_B8_C8,   /* HSW only */
2661 	I915_OA_FORMAT_B4_C8_A16,   /* HSW only */
2662 	I915_OA_FORMAT_C4_B8,	    /* HSW+ */
2663 
2664 	/* Gen8+ */
2665 	I915_OA_FORMAT_A12,
2666 	I915_OA_FORMAT_A12_B8_C8,
2667 	I915_OA_FORMAT_A32u40_A4u32_B8_C8,
2668 
2669 	/* DG2 */
2670 	I915_OAR_FORMAT_A32u40_A4u32_B8_C8,
2671 	I915_OA_FORMAT_A24u40_A14u32_B8_C8,
2672 
2673 	I915_OA_FORMAT_MAX	    /* non-ABI */
2674 };
2675 
2676 enum drm_i915_perf_property_id {
2677 	/**
2678 	 * Open the stream for a specific context handle (as used with
2679 	 * execbuffer2). A stream opened for a specific context this way
2680 	 * won't typically require root privileges.
2681 	 *
2682 	 * This property is available in perf revision 1.
2683 	 */
2684 	DRM_I915_PERF_PROP_CTX_HANDLE = 1,
2685 
2686 	/**
2687 	 * A value of 1 requests the inclusion of raw OA unit reports as
2688 	 * part of stream samples.
2689 	 *
2690 	 * This property is available in perf revision 1.
2691 	 */
2692 	DRM_I915_PERF_PROP_SAMPLE_OA,
2693 
2694 	/**
2695 	 * The value specifies which set of OA unit metrics should be
2696 	 * configured, defining the contents of any OA unit reports.
2697 	 *
2698 	 * This property is available in perf revision 1.
2699 	 */
2700 	DRM_I915_PERF_PROP_OA_METRICS_SET,
2701 
2702 	/**
2703 	 * The value specifies the size and layout of OA unit reports.
2704 	 *
2705 	 * This property is available in perf revision 1.
2706 	 */
2707 	DRM_I915_PERF_PROP_OA_FORMAT,
2708 
2709 	/**
2710 	 * Specifying this property implicitly requests periodic OA unit
2711 	 * sampling and (at least on Haswell) the sampling frequency is derived
2712 	 * from this exponent as follows:
2713 	 *
2714 	 *   80ns * 2^(period_exponent + 1)
2715 	 *
2716 	 * This property is available in perf revision 1.
2717 	 */
2718 	DRM_I915_PERF_PROP_OA_EXPONENT,
2719 
2720 	/**
2721 	 * Specifying this property is only valid when specify a context to
2722 	 * filter with DRM_I915_PERF_PROP_CTX_HANDLE. Specifying this property
2723 	 * will hold preemption of the particular context we want to gather
2724 	 * performance data about. The execbuf2 submissions must include a
2725 	 * drm_i915_gem_execbuffer_ext_perf parameter for this to apply.
2726 	 *
2727 	 * This property is available in perf revision 3.
2728 	 */
2729 	DRM_I915_PERF_PROP_HOLD_PREEMPTION,
2730 
2731 	/**
2732 	 * Specifying this pins all contexts to the specified SSEU power
2733 	 * configuration for the duration of the recording.
2734 	 *
2735 	 * This parameter's value is a pointer to a struct
2736 	 * drm_i915_gem_context_param_sseu.
2737 	 *
2738 	 * This property is available in perf revision 4.
2739 	 */
2740 	DRM_I915_PERF_PROP_GLOBAL_SSEU,
2741 
2742 	/**
2743 	 * This optional parameter specifies the timer interval in nanoseconds
2744 	 * at which the i915 driver will check the OA buffer for available data.
2745 	 * Minimum allowed value is 100 microseconds. A default value is used by
2746 	 * the driver if this parameter is not specified. Note that larger timer
2747 	 * values will reduce cpu consumption during OA perf captures. However,
2748 	 * excessively large values would potentially result in OA buffer
2749 	 * overwrites as captures reach end of the OA buffer.
2750 	 *
2751 	 * This property is available in perf revision 5.
2752 	 */
2753 	DRM_I915_PERF_PROP_POLL_OA_PERIOD,
2754 
2755 	DRM_I915_PERF_PROP_MAX /* non-ABI */
2756 };
2757 
2758 struct drm_i915_perf_open_param {
2759 	__u32 flags;
2760 #define I915_PERF_FLAG_FD_CLOEXEC	(1<<0)
2761 #define I915_PERF_FLAG_FD_NONBLOCK	(1<<1)
2762 #define I915_PERF_FLAG_DISABLED		(1<<2)
2763 
2764 	/** The number of u64 (id, value) pairs */
2765 	__u32 num_properties;
2766 
2767 	/**
2768 	 * Pointer to array of u64 (id, value) pairs configuring the stream
2769 	 * to open.
2770 	 */
2771 	__u64 properties_ptr;
2772 };
2773 
2774 /*
2775  * Enable data capture for a stream that was either opened in a disabled state
2776  * via I915_PERF_FLAG_DISABLED or was later disabled via
2777  * I915_PERF_IOCTL_DISABLE.
2778  *
2779  * It is intended to be cheaper to disable and enable a stream than it may be
2780  * to close and re-open a stream with the same configuration.
2781  *
2782  * It's undefined whether any pending data for the stream will be lost.
2783  *
2784  * This ioctl is available in perf revision 1.
2785  */
2786 #define I915_PERF_IOCTL_ENABLE	_IO('i', 0x0)
2787 
2788 /*
2789  * Disable data capture for a stream.
2790  *
2791  * It is an error to try and read a stream that is disabled.
2792  *
2793  * This ioctl is available in perf revision 1.
2794  */
2795 #define I915_PERF_IOCTL_DISABLE	_IO('i', 0x1)
2796 
2797 /*
2798  * Change metrics_set captured by a stream.
2799  *
2800  * If the stream is bound to a specific context, the configuration change
2801  * will performed inline with that context such that it takes effect before
2802  * the next execbuf submission.
2803  *
2804  * Returns the previously bound metrics set id, or a negative error code.
2805  *
2806  * This ioctl is available in perf revision 2.
2807  */
2808 #define I915_PERF_IOCTL_CONFIG	_IO('i', 0x2)
2809 
2810 /*
2811  * Common to all i915 perf records
2812  */
2813 struct drm_i915_perf_record_header {
2814 	__u32 type;
2815 	__u16 pad;
2816 	__u16 size;
2817 };
2818 
2819 enum drm_i915_perf_record_type {
2820 
2821 	/**
2822 	 * Samples are the work horse record type whose contents are extensible
2823 	 * and defined when opening an i915 perf stream based on the given
2824 	 * properties.
2825 	 *
2826 	 * Boolean properties following the naming convention
2827 	 * DRM_I915_PERF_SAMPLE_xyz_PROP request the inclusion of 'xyz' data in
2828 	 * every sample.
2829 	 *
2830 	 * The order of these sample properties given by userspace has no
2831 	 * affect on the ordering of data within a sample. The order is
2832 	 * documented here.
2833 	 *
2834 	 * struct {
2835 	 *     struct drm_i915_perf_record_header header;
2836 	 *
2837 	 *     { u32 oa_report[]; } && DRM_I915_PERF_PROP_SAMPLE_OA
2838 	 * };
2839 	 */
2840 	DRM_I915_PERF_RECORD_SAMPLE = 1,
2841 
2842 	/*
2843 	 * Indicates that one or more OA reports were not written by the
2844 	 * hardware. This can happen for example if an MI_REPORT_PERF_COUNT
2845 	 * command collides with periodic sampling - which would be more likely
2846 	 * at higher sampling frequencies.
2847 	 */
2848 	DRM_I915_PERF_RECORD_OA_REPORT_LOST = 2,
2849 
2850 	/**
2851 	 * An error occurred that resulted in all pending OA reports being lost.
2852 	 */
2853 	DRM_I915_PERF_RECORD_OA_BUFFER_LOST = 3,
2854 
2855 	DRM_I915_PERF_RECORD_MAX /* non-ABI */
2856 };
2857 
2858 /**
2859  * struct drm_i915_perf_oa_config
2860  *
2861  * Structure to upload perf dynamic configuration into the kernel.
2862  */
2863 struct drm_i915_perf_oa_config {
2864 	/**
2865 	 * @uuid:
2866 	 *
2867 	 * String formatted like "%\08x-%\04x-%\04x-%\04x-%\012x"
2868 	 */
2869 	char uuid[36];
2870 
2871 	/**
2872 	 * @n_mux_regs:
2873 	 *
2874 	 * Number of mux regs in &mux_regs_ptr.
2875 	 */
2876 	__u32 n_mux_regs;
2877 
2878 	/**
2879 	 * @n_boolean_regs:
2880 	 *
2881 	 * Number of boolean regs in &boolean_regs_ptr.
2882 	 */
2883 	__u32 n_boolean_regs;
2884 
2885 	/**
2886 	 * @n_flex_regs:
2887 	 *
2888 	 * Number of flex regs in &flex_regs_ptr.
2889 	 */
2890 	__u32 n_flex_regs;
2891 
2892 	/**
2893 	 * @mux_regs_ptr:
2894 	 *
2895 	 * Pointer to tuples of u32 values (register address, value) for mux
2896 	 * registers.  Expected length of buffer is (2 * sizeof(u32) *
2897 	 * &n_mux_regs).
2898 	 */
2899 	__u64 mux_regs_ptr;
2900 
2901 	/**
2902 	 * @boolean_regs_ptr:
2903 	 *
2904 	 * Pointer to tuples of u32 values (register address, value) for mux
2905 	 * registers.  Expected length of buffer is (2 * sizeof(u32) *
2906 	 * &n_boolean_regs).
2907 	 */
2908 	__u64 boolean_regs_ptr;
2909 
2910 	/**
2911 	 * @flex_regs_ptr:
2912 	 *
2913 	 * Pointer to tuples of u32 values (register address, value) for mux
2914 	 * registers.  Expected length of buffer is (2 * sizeof(u32) *
2915 	 * &n_flex_regs).
2916 	 */
2917 	__u64 flex_regs_ptr;
2918 };
2919 
2920 /**
2921  * struct drm_i915_query_item - An individual query for the kernel to process.
2922  *
2923  * The behaviour is determined by the @query_id. Note that exactly what
2924  * @data_ptr is also depends on the specific @query_id.
2925  */
2926 struct drm_i915_query_item {
2927 	/**
2928 	 * @query_id:
2929 	 *
2930 	 * The id for this query.  Currently accepted query IDs are:
2931 	 *  - %DRM_I915_QUERY_TOPOLOGY_INFO (see struct drm_i915_query_topology_info)
2932 	 *  - %DRM_I915_QUERY_ENGINE_INFO (see struct drm_i915_engine_info)
2933 	 *  - %DRM_I915_QUERY_PERF_CONFIG (see struct drm_i915_query_perf_config)
2934 	 *  - %DRM_I915_QUERY_MEMORY_REGIONS (see struct drm_i915_query_memory_regions)
2935 	 *  - %DRM_I915_QUERY_HWCONFIG_BLOB (see `GuC HWCONFIG blob uAPI`)
2936 	 *  - %DRM_I915_QUERY_GEOMETRY_SUBSLICES (see struct drm_i915_query_topology_info)
2937 	 */
2938 	__u64 query_id;
2939 #define DRM_I915_QUERY_TOPOLOGY_INFO		1
2940 #define DRM_I915_QUERY_ENGINE_INFO		2
2941 #define DRM_I915_QUERY_PERF_CONFIG		3
2942 #define DRM_I915_QUERY_MEMORY_REGIONS		4
2943 #define DRM_I915_QUERY_HWCONFIG_BLOB		5
2944 #define DRM_I915_QUERY_GEOMETRY_SUBSLICES	6
2945 /* Must be kept compact -- no holes and well documented */
2946 
2947 	/**
2948 	 * @length:
2949 	 *
2950 	 * When set to zero by userspace, this is filled with the size of the
2951 	 * data to be written at the @data_ptr pointer. The kernel sets this
2952 	 * value to a negative value to signal an error on a particular query
2953 	 * item.
2954 	 */
2955 	__s32 length;
2956 
2957 	/**
2958 	 * @flags:
2959 	 *
2960 	 * When &query_id == %DRM_I915_QUERY_TOPOLOGY_INFO, must be 0.
2961 	 *
2962 	 * When &query_id == %DRM_I915_QUERY_PERF_CONFIG, must be one of the
2963 	 * following:
2964 	 *
2965 	 *	- %DRM_I915_QUERY_PERF_CONFIG_LIST
2966 	 *      - %DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID
2967 	 *      - %DRM_I915_QUERY_PERF_CONFIG_FOR_UUID
2968 	 *
2969 	 * When &query_id == %DRM_I915_QUERY_GEOMETRY_SUBSLICES must contain
2970 	 * a struct i915_engine_class_instance that references a render engine.
2971 	 */
2972 	__u32 flags;
2973 #define DRM_I915_QUERY_PERF_CONFIG_LIST          1
2974 #define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID 2
2975 #define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID   3
2976 
2977 	/**
2978 	 * @data_ptr:
2979 	 *
2980 	 * Data will be written at the location pointed by @data_ptr when the
2981 	 * value of @length matches the length of the data to be written by the
2982 	 * kernel.
2983 	 */
2984 	__u64 data_ptr;
2985 };
2986 
2987 /**
2988  * struct drm_i915_query - Supply an array of struct drm_i915_query_item for the
2989  * kernel to fill out.
2990  *
2991  * Note that this is generally a two step process for each struct
2992  * drm_i915_query_item in the array:
2993  *
2994  * 1. Call the DRM_IOCTL_I915_QUERY, giving it our array of struct
2995  *    drm_i915_query_item, with &drm_i915_query_item.length set to zero. The
2996  *    kernel will then fill in the size, in bytes, which tells userspace how
2997  *    memory it needs to allocate for the blob(say for an array of properties).
2998  *
2999  * 2. Next we call DRM_IOCTL_I915_QUERY again, this time with the
3000  *    &drm_i915_query_item.data_ptr equal to our newly allocated blob. Note that
3001  *    the &drm_i915_query_item.length should still be the same as what the
3002  *    kernel previously set. At this point the kernel can fill in the blob.
3003  *
3004  * Note that for some query items it can make sense for userspace to just pass
3005  * in a buffer/blob equal to or larger than the required size. In this case only
3006  * a single ioctl call is needed. For some smaller query items this can work
3007  * quite well.
3008  *
3009  */
3010 struct drm_i915_query {
3011 	/** @num_items: The number of elements in the @items_ptr array */
3012 	__u32 num_items;
3013 
3014 	/**
3015 	 * @flags: Unused for now. Must be cleared to zero.
3016 	 */
3017 	__u32 flags;
3018 
3019 	/**
3020 	 * @items_ptr:
3021 	 *
3022 	 * Pointer to an array of struct drm_i915_query_item. The number of
3023 	 * array elements is @num_items.
3024 	 */
3025 	__u64 items_ptr;
3026 };
3027 
3028 /**
3029  * struct drm_i915_query_topology_info
3030  *
3031  * Describes slice/subslice/EU information queried by
3032  * %DRM_I915_QUERY_TOPOLOGY_INFO
3033  */
3034 struct drm_i915_query_topology_info {
3035 	/**
3036 	 * @flags:
3037 	 *
3038 	 * Unused for now. Must be cleared to zero.
3039 	 */
3040 	__u16 flags;
3041 
3042 	/**
3043 	 * @max_slices:
3044 	 *
3045 	 * The number of bits used to express the slice mask.
3046 	 */
3047 	__u16 max_slices;
3048 
3049 	/**
3050 	 * @max_subslices:
3051 	 *
3052 	 * The number of bits used to express the subslice mask.
3053 	 */
3054 	__u16 max_subslices;
3055 
3056 	/**
3057 	 * @max_eus_per_subslice:
3058 	 *
3059 	 * The number of bits in the EU mask that correspond to a single
3060 	 * subslice's EUs.
3061 	 */
3062 	__u16 max_eus_per_subslice;
3063 
3064 	/**
3065 	 * @subslice_offset:
3066 	 *
3067 	 * Offset in data[] at which the subslice masks are stored.
3068 	 */
3069 	__u16 subslice_offset;
3070 
3071 	/**
3072 	 * @subslice_stride:
3073 	 *
3074 	 * Stride at which each of the subslice masks for each slice are
3075 	 * stored.
3076 	 */
3077 	__u16 subslice_stride;
3078 
3079 	/**
3080 	 * @eu_offset:
3081 	 *
3082 	 * Offset in data[] at which the EU masks are stored.
3083 	 */
3084 	__u16 eu_offset;
3085 
3086 	/**
3087 	 * @eu_stride:
3088 	 *
3089 	 * Stride at which each of the EU masks for each subslice are stored.
3090 	 */
3091 	__u16 eu_stride;
3092 
3093 	/**
3094 	 * @data:
3095 	 *
3096 	 * Contains 3 pieces of information :
3097 	 *
3098 	 * - The slice mask with one bit per slice telling whether a slice is
3099 	 *   available. The availability of slice X can be queried with the
3100 	 *   following formula :
3101 	 *
3102 	 *   .. code:: c
3103 	 *
3104 	 *      (data[X / 8] >> (X % 8)) & 1
3105 	 *
3106 	 *   Starting with Xe_HP platforms, Intel hardware no longer has
3107 	 *   traditional slices so i915 will always report a single slice
3108 	 *   (hardcoded slicemask = 0x1) which contains all of the platform's
3109 	 *   subslices.  I.e., the mask here does not reflect any of the newer
3110 	 *   hardware concepts such as "gslices" or "cslices" since userspace
3111 	 *   is capable of inferring those from the subslice mask.
3112 	 *
3113 	 * - The subslice mask for each slice with one bit per subslice telling
3114 	 *   whether a subslice is available.  Starting with Gen12 we use the
3115 	 *   term "subslice" to refer to what the hardware documentation
3116 	 *   describes as a "dual-subslices."  The availability of subslice Y
3117 	 *   in slice X can be queried with the following formula :
3118 	 *
3119 	 *   .. code:: c
3120 	 *
3121 	 *      (data[subslice_offset + X * subslice_stride + Y / 8] >> (Y % 8)) & 1
3122 	 *
3123 	 * - The EU mask for each subslice in each slice, with one bit per EU
3124 	 *   telling whether an EU is available. The availability of EU Z in
3125 	 *   subslice Y in slice X can be queried with the following formula :
3126 	 *
3127 	 *   .. code:: c
3128 	 *
3129 	 *      (data[eu_offset +
3130 	 *            (X * max_subslices + Y) * eu_stride +
3131 	 *            Z / 8
3132 	 *       ] >> (Z % 8)) & 1
3133 	 */
3134 	__u8 data[];
3135 };
3136 
3137 /**
3138  * DOC: Engine Discovery uAPI
3139  *
3140  * Engine discovery uAPI is a way of enumerating physical engines present in a
3141  * GPU associated with an open i915 DRM file descriptor. This supersedes the old
3142  * way of using `DRM_IOCTL_I915_GETPARAM` and engine identifiers like
3143  * `I915_PARAM_HAS_BLT`.
3144  *
3145  * The need for this interface came starting with Icelake and newer GPUs, which
3146  * started to establish a pattern of having multiple engines of a same class,
3147  * where not all instances were always completely functionally equivalent.
3148  *
3149  * Entry point for this uapi is `DRM_IOCTL_I915_QUERY` with the
3150  * `DRM_I915_QUERY_ENGINE_INFO` as the queried item id.
3151  *
3152  * Example for getting the list of engines:
3153  *
3154  * .. code-block:: C
3155  *
3156  * 	struct drm_i915_query_engine_info *info;
3157  * 	struct drm_i915_query_item item = {
3158  * 		.query_id = DRM_I915_QUERY_ENGINE_INFO;
3159  * 	};
3160  * 	struct drm_i915_query query = {
3161  * 		.num_items = 1,
3162  * 		.items_ptr = (uintptr_t)&item,
3163  * 	};
3164  * 	int err, i;
3165  *
3166  * 	// First query the size of the blob we need, this needs to be large
3167  * 	// enough to hold our array of engines. The kernel will fill out the
3168  * 	// item.length for us, which is the number of bytes we need.
3169  * 	//
3170  * 	// Alternatively a large buffer can be allocated straight away enabling
3171  * 	// querying in one pass, in which case item.length should contain the
3172  * 	// length of the provided buffer.
3173  * 	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3174  * 	if (err) ...
3175  *
3176  * 	info = calloc(1, item.length);
3177  * 	// Now that we allocated the required number of bytes, we call the ioctl
3178  * 	// again, this time with the data_ptr pointing to our newly allocated
3179  * 	// blob, which the kernel can then populate with info on all engines.
3180  * 	item.data_ptr = (uintptr_t)&info,
3181  *
3182  * 	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3183  * 	if (err) ...
3184  *
3185  * 	// We can now access each engine in the array
3186  * 	for (i = 0; i < info->num_engines; i++) {
3187  * 		struct drm_i915_engine_info einfo = info->engines[i];
3188  * 		u16 class = einfo.engine.class;
3189  * 		u16 instance = einfo.engine.instance;
3190  * 		....
3191  * 	}
3192  *
3193  * 	free(info);
3194  *
3195  * Each of the enumerated engines, apart from being defined by its class and
3196  * instance (see `struct i915_engine_class_instance`), also can have flags and
3197  * capabilities defined as documented in i915_drm.h.
3198  *
3199  * For instance video engines which support HEVC encoding will have the
3200  * `I915_VIDEO_CLASS_CAPABILITY_HEVC` capability bit set.
3201  *
3202  * Engine discovery only fully comes to its own when combined with the new way
3203  * of addressing engines when submitting batch buffers using contexts with
3204  * engine maps configured.
3205  */
3206 
3207 /**
3208  * struct drm_i915_engine_info
3209  *
3210  * Describes one engine and it's capabilities as known to the driver.
3211  */
3212 struct drm_i915_engine_info {
3213 	/** @engine: Engine class and instance. */
3214 	struct i915_engine_class_instance engine;
3215 
3216 	/** @rsvd0: Reserved field. */
3217 	__u32 rsvd0;
3218 
3219 	/** @flags: Engine flags. */
3220 	__u64 flags;
3221 #define I915_ENGINE_INFO_HAS_LOGICAL_INSTANCE		(1 << 0)
3222 
3223 	/** @capabilities: Capabilities of this engine. */
3224 	__u64 capabilities;
3225 #define I915_VIDEO_CLASS_CAPABILITY_HEVC		(1 << 0)
3226 #define I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC	(1 << 1)
3227 
3228 	/** @logical_instance: Logical instance of engine */
3229 	__u16 logical_instance;
3230 
3231 	/** @rsvd1: Reserved fields. */
3232 	__u16 rsvd1[3];
3233 	/** @rsvd2: Reserved fields. */
3234 	__u64 rsvd2[3];
3235 };
3236 
3237 /**
3238  * struct drm_i915_query_engine_info
3239  *
3240  * Engine info query enumerates all engines known to the driver by filling in
3241  * an array of struct drm_i915_engine_info structures.
3242  */
3243 struct drm_i915_query_engine_info {
3244 	/** @num_engines: Number of struct drm_i915_engine_info structs following. */
3245 	__u32 num_engines;
3246 
3247 	/** @rsvd: MBZ */
3248 	__u32 rsvd[3];
3249 
3250 	/** @engines: Marker for drm_i915_engine_info structures. */
3251 	struct drm_i915_engine_info engines[];
3252 };
3253 
3254 /**
3255  * struct drm_i915_query_perf_config
3256  *
3257  * Data written by the kernel with query %DRM_I915_QUERY_PERF_CONFIG and
3258  * %DRM_I915_QUERY_GEOMETRY_SUBSLICES.
3259  */
3260 struct drm_i915_query_perf_config {
3261 	union {
3262 		/**
3263 		 * @n_configs:
3264 		 *
3265 		 * When &drm_i915_query_item.flags ==
3266 		 * %DRM_I915_QUERY_PERF_CONFIG_LIST, i915 sets this fields to
3267 		 * the number of configurations available.
3268 		 */
3269 		__u64 n_configs;
3270 
3271 		/**
3272 		 * @config:
3273 		 *
3274 		 * When &drm_i915_query_item.flags ==
3275 		 * %DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID, i915 will use the
3276 		 * value in this field as configuration identifier to decide
3277 		 * what data to write into config_ptr.
3278 		 */
3279 		__u64 config;
3280 
3281 		/**
3282 		 * @uuid:
3283 		 *
3284 		 * When &drm_i915_query_item.flags ==
3285 		 * %DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID, i915 will use the
3286 		 * value in this field as configuration identifier to decide
3287 		 * what data to write into config_ptr.
3288 		 *
3289 		 * String formatted like "%08x-%04x-%04x-%04x-%012x"
3290 		 */
3291 		char uuid[36];
3292 	};
3293 
3294 	/**
3295 	 * @flags:
3296 	 *
3297 	 * Unused for now. Must be cleared to zero.
3298 	 */
3299 	__u32 flags;
3300 
3301 	/**
3302 	 * @data:
3303 	 *
3304 	 * When &drm_i915_query_item.flags == %DRM_I915_QUERY_PERF_CONFIG_LIST,
3305 	 * i915 will write an array of __u64 of configuration identifiers.
3306 	 *
3307 	 * When &drm_i915_query_item.flags == %DRM_I915_QUERY_PERF_CONFIG_DATA,
3308 	 * i915 will write a struct drm_i915_perf_oa_config. If the following
3309 	 * fields of struct drm_i915_perf_oa_config are not set to 0, i915 will
3310 	 * write into the associated pointers the values of submitted when the
3311 	 * configuration was created :
3312 	 *
3313 	 *  - &drm_i915_perf_oa_config.n_mux_regs
3314 	 *  - &drm_i915_perf_oa_config.n_boolean_regs
3315 	 *  - &drm_i915_perf_oa_config.n_flex_regs
3316 	 */
3317 	__u8 data[];
3318 };
3319 
3320 /**
3321  * enum drm_i915_gem_memory_class - Supported memory classes
3322  */
3323 enum drm_i915_gem_memory_class {
3324 	/** @I915_MEMORY_CLASS_SYSTEM: System memory */
3325 	I915_MEMORY_CLASS_SYSTEM = 0,
3326 	/** @I915_MEMORY_CLASS_DEVICE: Device local-memory */
3327 	I915_MEMORY_CLASS_DEVICE,
3328 };
3329 
3330 /**
3331  * struct drm_i915_gem_memory_class_instance - Identify particular memory region
3332  */
3333 struct drm_i915_gem_memory_class_instance {
3334 	/** @memory_class: See enum drm_i915_gem_memory_class */
3335 	__u16 memory_class;
3336 
3337 	/** @memory_instance: Which instance */
3338 	__u16 memory_instance;
3339 };
3340 
3341 /**
3342  * struct drm_i915_memory_region_info - Describes one region as known to the
3343  * driver.
3344  *
3345  * Note this is using both struct drm_i915_query_item and struct drm_i915_query.
3346  * For this new query we are adding the new query id DRM_I915_QUERY_MEMORY_REGIONS
3347  * at &drm_i915_query_item.query_id.
3348  */
3349 struct drm_i915_memory_region_info {
3350 	/** @region: The class:instance pair encoding */
3351 	struct drm_i915_gem_memory_class_instance region;
3352 
3353 	/** @rsvd0: MBZ */
3354 	__u32 rsvd0;
3355 
3356 	/**
3357 	 * @probed_size: Memory probed by the driver
3358 	 *
3359 	 * Note that it should not be possible to ever encounter a zero value
3360 	 * here, also note that no current region type will ever return -1 here.
3361 	 * Although for future region types, this might be a possibility. The
3362 	 * same applies to the other size fields.
3363 	 */
3364 	__u64 probed_size;
3365 
3366 	/**
3367 	 * @unallocated_size: Estimate of memory remaining
3368 	 *
3369 	 * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable accounting.
3370 	 * Without this (or if this is an older kernel) the value here will
3371 	 * always equal the @probed_size. Note this is only currently tracked
3372 	 * for I915_MEMORY_CLASS_DEVICE regions (for other types the value here
3373 	 * will always equal the @probed_size).
3374 	 */
3375 	__u64 unallocated_size;
3376 
3377 	union {
3378 		/** @rsvd1: MBZ */
3379 		__u64 rsvd1[8];
3380 		struct {
3381 			/**
3382 			 * @probed_cpu_visible_size: Memory probed by the driver
3383 			 * that is CPU accessible.
3384 			 *
3385 			 * This will be always be <= @probed_size, and the
3386 			 * remainder (if there is any) will not be CPU
3387 			 * accessible.
3388 			 *
3389 			 * On systems without small BAR, the @probed_size will
3390 			 * always equal the @probed_cpu_visible_size, since all
3391 			 * of it will be CPU accessible.
3392 			 *
3393 			 * Note this is only tracked for
3394 			 * I915_MEMORY_CLASS_DEVICE regions (for other types the
3395 			 * value here will always equal the @probed_size).
3396 			 *
3397 			 * Note that if the value returned here is zero, then
3398 			 * this must be an old kernel which lacks the relevant
3399 			 * small-bar uAPI support (including
3400 			 * I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS), but on
3401 			 * such systems we should never actually end up with a
3402 			 * small BAR configuration, assuming we are able to load
3403 			 * the kernel module. Hence it should be safe to treat
3404 			 * this the same as when @probed_cpu_visible_size ==
3405 			 * @probed_size.
3406 			 */
3407 			__u64 probed_cpu_visible_size;
3408 
3409 			/**
3410 			 * @unallocated_cpu_visible_size: Estimate of CPU
3411 			 * visible memory remaining.
3412 			 *
3413 			 * Note this is only tracked for
3414 			 * I915_MEMORY_CLASS_DEVICE regions (for other types the
3415 			 * value here will always equal the
3416 			 * @probed_cpu_visible_size).
3417 			 *
3418 			 * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable
3419 			 * accounting.  Without this the value here will always
3420 			 * equal the @probed_cpu_visible_size. Note this is only
3421 			 * currently tracked for I915_MEMORY_CLASS_DEVICE
3422 			 * regions (for other types the value here will also
3423 			 * always equal the @probed_cpu_visible_size).
3424 			 *
3425 			 * If this is an older kernel the value here will be
3426 			 * zero, see also @probed_cpu_visible_size.
3427 			 */
3428 			__u64 unallocated_cpu_visible_size;
3429 		};
3430 	};
3431 };
3432 
3433 /**
3434  * struct drm_i915_query_memory_regions
3435  *
3436  * The region info query enumerates all regions known to the driver by filling
3437  * in an array of struct drm_i915_memory_region_info structures.
3438  *
3439  * Example for getting the list of supported regions:
3440  *
3441  * .. code-block:: C
3442  *
3443  *	struct drm_i915_query_memory_regions *info;
3444  *	struct drm_i915_query_item item = {
3445  *		.query_id = DRM_I915_QUERY_MEMORY_REGIONS;
3446  *	};
3447  *	struct drm_i915_query query = {
3448  *		.num_items = 1,
3449  *		.items_ptr = (uintptr_t)&item,
3450  *	};
3451  *	int err, i;
3452  *
3453  *	// First query the size of the blob we need, this needs to be large
3454  *	// enough to hold our array of regions. The kernel will fill out the
3455  *	// item.length for us, which is the number of bytes we need.
3456  *	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3457  *	if (err) ...
3458  *
3459  *	info = calloc(1, item.length);
3460  *	// Now that we allocated the required number of bytes, we call the ioctl
3461  *	// again, this time with the data_ptr pointing to our newly allocated
3462  *	// blob, which the kernel can then populate with the all the region info.
3463  *	item.data_ptr = (uintptr_t)&info,
3464  *
3465  *	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3466  *	if (err) ...
3467  *
3468  *	// We can now access each region in the array
3469  *	for (i = 0; i < info->num_regions; i++) {
3470  *		struct drm_i915_memory_region_info mr = info->regions[i];
3471  *		u16 class = mr.region.class;
3472  *		u16 instance = mr.region.instance;
3473  *
3474  *		....
3475  *	}
3476  *
3477  *	free(info);
3478  */
3479 struct drm_i915_query_memory_regions {
3480 	/** @num_regions: Number of supported regions */
3481 	__u32 num_regions;
3482 
3483 	/** @rsvd: MBZ */
3484 	__u32 rsvd[3];
3485 
3486 	/** @regions: Info about each supported region */
3487 	struct drm_i915_memory_region_info regions[];
3488 };
3489 
3490 /**
3491  * DOC: GuC HWCONFIG blob uAPI
3492  *
3493  * The GuC produces a blob with information about the current device.
3494  * i915 reads this blob from GuC and makes it available via this uAPI.
3495  *
3496  * The format and meaning of the blob content are documented in the
3497  * Programmer's Reference Manual.
3498  */
3499 
3500 /**
3501  * struct drm_i915_gem_create_ext - Existing gem_create behaviour, with added
3502  * extension support using struct i915_user_extension.
3503  *
3504  * Note that new buffer flags should be added here, at least for the stuff that
3505  * is immutable. Previously we would have two ioctls, one to create the object
3506  * with gem_create, and another to apply various parameters, however this
3507  * creates some ambiguity for the params which are considered immutable. Also in
3508  * general we're phasing out the various SET/GET ioctls.
3509  */
3510 struct drm_i915_gem_create_ext {
3511 	/**
3512 	 * @size: Requested size for the object.
3513 	 *
3514 	 * The (page-aligned) allocated size for the object will be returned.
3515 	 *
3516 	 * On platforms like DG2/ATS the kernel will always use 64K or larger
3517 	 * pages for I915_MEMORY_CLASS_DEVICE. The kernel also requires a
3518 	 * minimum of 64K GTT alignment for such objects.
3519 	 *
3520 	 * NOTE: Previously the ABI here required a minimum GTT alignment of 2M
3521 	 * on DG2/ATS, due to how the hardware implemented 64K GTT page support,
3522 	 * where we had the following complications:
3523 	 *
3524 	 *   1) The entire PDE (which covers a 2MB virtual address range), must
3525 	 *   contain only 64K PTEs, i.e mixing 4K and 64K PTEs in the same
3526 	 *   PDE is forbidden by the hardware.
3527 	 *
3528 	 *   2) We still need to support 4K PTEs for I915_MEMORY_CLASS_SYSTEM
3529 	 *   objects.
3530 	 *
3531 	 * However on actual production HW this was completely changed to now
3532 	 * allow setting a TLB hint at the PTE level (see PS64), which is a lot
3533 	 * more flexible than the above. With this the 2M restriction was
3534 	 * dropped where we now only require 64K.
3535 	 */
3536 	__u64 size;
3537 
3538 	/**
3539 	 * @handle: Returned handle for the object.
3540 	 *
3541 	 * Object handles are nonzero.
3542 	 */
3543 	__u32 handle;
3544 
3545 	/**
3546 	 * @flags: Optional flags.
3547 	 *
3548 	 * Supported values:
3549 	 *
3550 	 * I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS - Signal to the kernel that
3551 	 * the object will need to be accessed via the CPU.
3552 	 *
3553 	 * Only valid when placing objects in I915_MEMORY_CLASS_DEVICE, and only
3554 	 * strictly required on configurations where some subset of the device
3555 	 * memory is directly visible/mappable through the CPU (which we also
3556 	 * call small BAR), like on some DG2+ systems. Note that this is quite
3557 	 * undesirable, but due to various factors like the client CPU, BIOS etc
3558 	 * it's something we can expect to see in the wild. See
3559 	 * &drm_i915_memory_region_info.probed_cpu_visible_size for how to
3560 	 * determine if this system applies.
3561 	 *
3562 	 * Note that one of the placements MUST be I915_MEMORY_CLASS_SYSTEM, to
3563 	 * ensure the kernel can always spill the allocation to system memory,
3564 	 * if the object can't be allocated in the mappable part of
3565 	 * I915_MEMORY_CLASS_DEVICE.
3566 	 *
3567 	 * Also note that since the kernel only supports flat-CCS on objects
3568 	 * that can *only* be placed in I915_MEMORY_CLASS_DEVICE, we therefore
3569 	 * don't support I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS together with
3570 	 * flat-CCS.
3571 	 *
3572 	 * Without this hint, the kernel will assume that non-mappable
3573 	 * I915_MEMORY_CLASS_DEVICE is preferred for this object. Note that the
3574 	 * kernel can still migrate the object to the mappable part, as a last
3575 	 * resort, if userspace ever CPU faults this object, but this might be
3576 	 * expensive, and so ideally should be avoided.
3577 	 *
3578 	 * On older kernels which lack the relevant small-bar uAPI support (see
3579 	 * also &drm_i915_memory_region_info.probed_cpu_visible_size),
3580 	 * usage of the flag will result in an error, but it should NEVER be
3581 	 * possible to end up with a small BAR configuration, assuming we can
3582 	 * also successfully load the i915 kernel module. In such cases the
3583 	 * entire I915_MEMORY_CLASS_DEVICE region will be CPU accessible, and as
3584 	 * such there are zero restrictions on where the object can be placed.
3585 	 */
3586 #define I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS (1 << 0)
3587 	__u32 flags;
3588 
3589 	/**
3590 	 * @extensions: The chain of extensions to apply to this object.
3591 	 *
3592 	 * This will be useful in the future when we need to support several
3593 	 * different extensions, and we need to apply more than one when
3594 	 * creating the object. See struct i915_user_extension.
3595 	 *
3596 	 * If we don't supply any extensions then we get the same old gem_create
3597 	 * behaviour.
3598 	 *
3599 	 * For I915_GEM_CREATE_EXT_MEMORY_REGIONS usage see
3600 	 * struct drm_i915_gem_create_ext_memory_regions.
3601 	 *
3602 	 * For I915_GEM_CREATE_EXT_PROTECTED_CONTENT usage see
3603 	 * struct drm_i915_gem_create_ext_protected_content.
3604 	 */
3605 #define I915_GEM_CREATE_EXT_MEMORY_REGIONS 0
3606 #define I915_GEM_CREATE_EXT_PROTECTED_CONTENT 1
3607 	__u64 extensions;
3608 };
3609 
3610 /**
3611  * struct drm_i915_gem_create_ext_memory_regions - The
3612  * I915_GEM_CREATE_EXT_MEMORY_REGIONS extension.
3613  *
3614  * Set the object with the desired set of placements/regions in priority
3615  * order. Each entry must be unique and supported by the device.
3616  *
3617  * This is provided as an array of struct drm_i915_gem_memory_class_instance, or
3618  * an equivalent layout of class:instance pair encodings. See struct
3619  * drm_i915_query_memory_regions and DRM_I915_QUERY_MEMORY_REGIONS for how to
3620  * query the supported regions for a device.
3621  *
3622  * As an example, on discrete devices, if we wish to set the placement as
3623  * device local-memory we can do something like:
3624  *
3625  * .. code-block:: C
3626  *
3627  *	struct drm_i915_gem_memory_class_instance region_lmem = {
3628  *              .memory_class = I915_MEMORY_CLASS_DEVICE,
3629  *              .memory_instance = 0,
3630  *      };
3631  *      struct drm_i915_gem_create_ext_memory_regions regions = {
3632  *              .base = { .name = I915_GEM_CREATE_EXT_MEMORY_REGIONS },
3633  *              .regions = (uintptr_t)&region_lmem,
3634  *              .num_regions = 1,
3635  *      };
3636  *      struct drm_i915_gem_create_ext create_ext = {
3637  *              .size = 16 * PAGE_SIZE,
3638  *              .extensions = (uintptr_t)&regions,
3639  *      };
3640  *
3641  *      int err = ioctl(fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create_ext);
3642  *      if (err) ...
3643  *
3644  * At which point we get the object handle in &drm_i915_gem_create_ext.handle,
3645  * along with the final object size in &drm_i915_gem_create_ext.size, which
3646  * should account for any rounding up, if required.
3647  *
3648  * Note that userspace has no means of knowing the current backing region
3649  * for objects where @num_regions is larger than one. The kernel will only
3650  * ensure that the priority order of the @regions array is honoured, either
3651  * when initially placing the object, or when moving memory around due to
3652  * memory pressure
3653  *
3654  * On Flat-CCS capable HW, compression is supported for the objects residing
3655  * in I915_MEMORY_CLASS_DEVICE. When such objects (compressed) have other
3656  * memory class in @regions and migrated (by i915, due to memory
3657  * constraints) to the non I915_MEMORY_CLASS_DEVICE region, then i915 needs to
3658  * decompress the content. But i915 doesn't have the required information to
3659  * decompress the userspace compressed objects.
3660  *
3661  * So i915 supports Flat-CCS, on the objects which can reside only on
3662  * I915_MEMORY_CLASS_DEVICE regions.
3663  */
3664 struct drm_i915_gem_create_ext_memory_regions {
3665 	/** @base: Extension link. See struct i915_user_extension. */
3666 	struct i915_user_extension base;
3667 
3668 	/** @pad: MBZ */
3669 	__u32 pad;
3670 	/** @num_regions: Number of elements in the @regions array. */
3671 	__u32 num_regions;
3672 	/**
3673 	 * @regions: The regions/placements array.
3674 	 *
3675 	 * An array of struct drm_i915_gem_memory_class_instance.
3676 	 */
3677 	__u64 regions;
3678 };
3679 
3680 /**
3681  * struct drm_i915_gem_create_ext_protected_content - The
3682  * I915_OBJECT_PARAM_PROTECTED_CONTENT extension.
3683  *
3684  * If this extension is provided, buffer contents are expected to be protected
3685  * by PXP encryption and require decryption for scan out and processing. This
3686  * is only possible on platforms that have PXP enabled, on all other scenarios
3687  * using this extension will cause the ioctl to fail and return -ENODEV. The
3688  * flags parameter is reserved for future expansion and must currently be set
3689  * to zero.
3690  *
3691  * The buffer contents are considered invalid after a PXP session teardown.
3692  *
3693  * The encryption is guaranteed to be processed correctly only if the object
3694  * is submitted with a context created using the
3695  * I915_CONTEXT_PARAM_PROTECTED_CONTENT flag. This will also enable extra checks
3696  * at submission time on the validity of the objects involved.
3697  *
3698  * Below is an example on how to create a protected object:
3699  *
3700  * .. code-block:: C
3701  *
3702  *      struct drm_i915_gem_create_ext_protected_content protected_ext = {
3703  *              .base = { .name = I915_GEM_CREATE_EXT_PROTECTED_CONTENT },
3704  *              .flags = 0,
3705  *      };
3706  *      struct drm_i915_gem_create_ext create_ext = {
3707  *              .size = PAGE_SIZE,
3708  *              .extensions = (uintptr_t)&protected_ext,
3709  *      };
3710  *
3711  *      int err = ioctl(fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create_ext);
3712  *      if (err) ...
3713  */
3714 struct drm_i915_gem_create_ext_protected_content {
3715 	/** @base: Extension link. See struct i915_user_extension. */
3716 	struct i915_user_extension base;
3717 	/** @flags: reserved for future usage, currently MBZ */
3718 	__u32 flags;
3719 };
3720 
3721 /* ID of the protected content session managed by i915 when PXP is active */
3722 #define I915_PROTECTED_CONTENT_DEFAULT_SESSION 0xf
3723 
3724 #if defined(__cplusplus)
3725 }
3726 #endif
3727 
3728 #endif /* _UAPI_I915_DRM_H_ */
3729