1 /* 2 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * The above copyright notice and this permission notice (including the 14 * next paragraph) shall be included in all copies or substantial portions 15 * of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 20 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR 21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 24 * 25 */ 26 27 #ifndef _UAPI_I915_DRM_H_ 28 #define _UAPI_I915_DRM_H_ 29 30 #include "drm.h" 31 32 #if defined(__cplusplus) 33 extern "C" { 34 #endif 35 36 /* Please note that modifications to all structs defined here are 37 * subject to backwards-compatibility constraints. 38 */ 39 40 /** 41 * DOC: uevents generated by i915 on it's device node 42 * 43 * I915_L3_PARITY_UEVENT - Generated when the driver receives a parity mismatch 44 * event from the gpu l3 cache. Additional information supplied is ROW, 45 * BANK, SUBBANK, SLICE of the affected cacheline. Userspace should keep 46 * track of these events and if a specific cache-line seems to have a 47 * persistent error remap it with the l3 remapping tool supplied in 48 * intel-gpu-tools. The value supplied with the event is always 1. 49 * 50 * I915_ERROR_UEVENT - Generated upon error detection, currently only via 51 * hangcheck. The error detection event is a good indicator of when things 52 * began to go badly. The value supplied with the event is a 1 upon error 53 * detection, and a 0 upon reset completion, signifying no more error 54 * exists. NOTE: Disabling hangcheck or reset via module parameter will 55 * cause the related events to not be seen. 56 * 57 * I915_RESET_UEVENT - Event is generated just before an attempt to reset the 58 * GPU. The value supplied with the event is always 1. NOTE: Disable 59 * reset via module parameter will cause this event to not be seen. 60 */ 61 #define I915_L3_PARITY_UEVENT "L3_PARITY_ERROR" 62 #define I915_ERROR_UEVENT "ERROR" 63 #define I915_RESET_UEVENT "RESET" 64 65 /** 66 * struct i915_user_extension - Base class for defining a chain of extensions 67 * 68 * Many interfaces need to grow over time. In most cases we can simply 69 * extend the struct and have userspace pass in more data. Another option, 70 * as demonstrated by Vulkan's approach to providing extensions for forward 71 * and backward compatibility, is to use a list of optional structs to 72 * provide those extra details. 73 * 74 * The key advantage to using an extension chain is that it allows us to 75 * redefine the interface more easily than an ever growing struct of 76 * increasing complexity, and for large parts of that interface to be 77 * entirely optional. The downside is more pointer chasing; chasing across 78 * the __user boundary with pointers encapsulated inside u64. 79 * 80 * Example chaining: 81 * 82 * .. code-block:: C 83 * 84 * struct i915_user_extension ext3 { 85 * .next_extension = 0, // end 86 * .name = ..., 87 * }; 88 * struct i915_user_extension ext2 { 89 * .next_extension = (uintptr_t)&ext3, 90 * .name = ..., 91 * }; 92 * struct i915_user_extension ext1 { 93 * .next_extension = (uintptr_t)&ext2, 94 * .name = ..., 95 * }; 96 * 97 * Typically the struct i915_user_extension would be embedded in some uAPI 98 * struct, and in this case we would feed it the head of the chain(i.e ext1), 99 * which would then apply all of the above extensions. 100 * 101 */ 102 struct i915_user_extension { 103 /** 104 * @next_extension: 105 * 106 * Pointer to the next struct i915_user_extension, or zero if the end. 107 */ 108 __u64 next_extension; 109 /** 110 * @name: Name of the extension. 111 * 112 * Note that the name here is just some integer. 113 * 114 * Also note that the name space for this is not global for the whole 115 * driver, but rather its scope/meaning is limited to the specific piece 116 * of uAPI which has embedded the struct i915_user_extension. 117 */ 118 __u32 name; 119 /** 120 * @flags: MBZ 121 * 122 * All undefined bits must be zero. 123 */ 124 __u32 flags; 125 /** 126 * @rsvd: MBZ 127 * 128 * Reserved for future use; must be zero. 129 */ 130 __u32 rsvd[4]; 131 }; 132 133 /* 134 * MOCS indexes used for GPU surfaces, defining the cacheability of the 135 * surface data and the coherency for this data wrt. CPU vs. GPU accesses. 136 */ 137 enum i915_mocs_table_index { 138 /* 139 * Not cached anywhere, coherency between CPU and GPU accesses is 140 * guaranteed. 141 */ 142 I915_MOCS_UNCACHED, 143 /* 144 * Cacheability and coherency controlled by the kernel automatically 145 * based on the DRM_I915_GEM_SET_CACHING IOCTL setting and the current 146 * usage of the surface (used for display scanout or not). 147 */ 148 I915_MOCS_PTE, 149 /* 150 * Cached in all GPU caches available on the platform. 151 * Coherency between CPU and GPU accesses to the surface is not 152 * guaranteed without extra synchronization. 153 */ 154 I915_MOCS_CACHED, 155 }; 156 157 /** 158 * enum drm_i915_gem_engine_class - uapi engine type enumeration 159 * 160 * Different engines serve different roles, and there may be more than one 161 * engine serving each role. This enum provides a classification of the role 162 * of the engine, which may be used when requesting operations to be performed 163 * on a certain subset of engines, or for providing information about that 164 * group. 165 */ 166 enum drm_i915_gem_engine_class { 167 /** 168 * @I915_ENGINE_CLASS_RENDER: 169 * 170 * Render engines support instructions used for 3D, Compute (GPGPU), 171 * and programmable media workloads. These instructions fetch data and 172 * dispatch individual work items to threads that operate in parallel. 173 * The threads run small programs (called "kernels" or "shaders") on 174 * the GPU's execution units (EUs). 175 */ 176 I915_ENGINE_CLASS_RENDER = 0, 177 178 /** 179 * @I915_ENGINE_CLASS_COPY: 180 * 181 * Copy engines (also referred to as "blitters") support instructions 182 * that move blocks of data from one location in memory to another, 183 * or that fill a specified location of memory with fixed data. 184 * Copy engines can perform pre-defined logical or bitwise operations 185 * on the source, destination, or pattern data. 186 */ 187 I915_ENGINE_CLASS_COPY = 1, 188 189 /** 190 * @I915_ENGINE_CLASS_VIDEO: 191 * 192 * Video engines (also referred to as "bit stream decode" (BSD) or 193 * "vdbox") support instructions that perform fixed-function media 194 * decode and encode. 195 */ 196 I915_ENGINE_CLASS_VIDEO = 2, 197 198 /** 199 * @I915_ENGINE_CLASS_VIDEO_ENHANCE: 200 * 201 * Video enhancement engines (also referred to as "vebox") support 202 * instructions related to image enhancement. 203 */ 204 I915_ENGINE_CLASS_VIDEO_ENHANCE = 3, 205 206 /** 207 * @I915_ENGINE_CLASS_COMPUTE: 208 * 209 * Compute engines support a subset of the instructions available 210 * on render engines: compute engines support Compute (GPGPU) and 211 * programmable media workloads, but do not support the 3D pipeline. 212 */ 213 I915_ENGINE_CLASS_COMPUTE = 4, 214 215 /* Values in this enum should be kept compact. */ 216 217 /** 218 * @I915_ENGINE_CLASS_INVALID: 219 * 220 * Placeholder value to represent an invalid engine class assignment. 221 */ 222 I915_ENGINE_CLASS_INVALID = -1 223 }; 224 225 /** 226 * struct i915_engine_class_instance - Engine class/instance identifier 227 * 228 * There may be more than one engine fulfilling any role within the system. 229 * Each engine of a class is given a unique instance number and therefore 230 * any engine can be specified by its class:instance tuplet. APIs that allow 231 * access to any engine in the system will use struct i915_engine_class_instance 232 * for this identification. 233 */ 234 struct i915_engine_class_instance { 235 /** 236 * @engine_class: 237 * 238 * Engine class from enum drm_i915_gem_engine_class 239 */ 240 __u16 engine_class; 241 #define I915_ENGINE_CLASS_INVALID_NONE -1 242 #define I915_ENGINE_CLASS_INVALID_VIRTUAL -2 243 244 /** 245 * @engine_instance: 246 * 247 * Engine instance. 248 */ 249 __u16 engine_instance; 250 }; 251 252 /** 253 * DOC: perf_events exposed by i915 through /sys/bus/event_sources/drivers/i915 254 * 255 */ 256 257 enum drm_i915_pmu_engine_sample { 258 I915_SAMPLE_BUSY = 0, 259 I915_SAMPLE_WAIT = 1, 260 I915_SAMPLE_SEMA = 2 261 }; 262 263 #define I915_PMU_SAMPLE_BITS (4) 264 #define I915_PMU_SAMPLE_MASK (0xf) 265 #define I915_PMU_SAMPLE_INSTANCE_BITS (8) 266 #define I915_PMU_CLASS_SHIFT \ 267 (I915_PMU_SAMPLE_BITS + I915_PMU_SAMPLE_INSTANCE_BITS) 268 269 #define __I915_PMU_ENGINE(class, instance, sample) \ 270 ((class) << I915_PMU_CLASS_SHIFT | \ 271 (instance) << I915_PMU_SAMPLE_BITS | \ 272 (sample)) 273 274 #define I915_PMU_ENGINE_BUSY(class, instance) \ 275 __I915_PMU_ENGINE(class, instance, I915_SAMPLE_BUSY) 276 277 #define I915_PMU_ENGINE_WAIT(class, instance) \ 278 __I915_PMU_ENGINE(class, instance, I915_SAMPLE_WAIT) 279 280 #define I915_PMU_ENGINE_SEMA(class, instance) \ 281 __I915_PMU_ENGINE(class, instance, I915_SAMPLE_SEMA) 282 283 #define __I915_PMU_OTHER(x) (__I915_PMU_ENGINE(0xff, 0xff, 0xf) + 1 + (x)) 284 285 #define I915_PMU_ACTUAL_FREQUENCY __I915_PMU_OTHER(0) 286 #define I915_PMU_REQUESTED_FREQUENCY __I915_PMU_OTHER(1) 287 #define I915_PMU_INTERRUPTS __I915_PMU_OTHER(2) 288 #define I915_PMU_RC6_RESIDENCY __I915_PMU_OTHER(3) 289 #define I915_PMU_SOFTWARE_GT_AWAKE_TIME __I915_PMU_OTHER(4) 290 291 #define I915_PMU_LAST /* Deprecated - do not use */ I915_PMU_RC6_RESIDENCY 292 293 /* Each region is a minimum of 16k, and there are at most 255 of them. 294 */ 295 #define I915_NR_TEX_REGIONS 255 /* table size 2k - maximum due to use 296 * of chars for next/prev indices */ 297 #define I915_LOG_MIN_TEX_REGION_SIZE 14 298 299 typedef struct _drm_i915_init { 300 enum { 301 I915_INIT_DMA = 0x01, 302 I915_CLEANUP_DMA = 0x02, 303 I915_RESUME_DMA = 0x03 304 } func; 305 unsigned int mmio_offset; 306 int sarea_priv_offset; 307 unsigned int ring_start; 308 unsigned int ring_end; 309 unsigned int ring_size; 310 unsigned int front_offset; 311 unsigned int back_offset; 312 unsigned int depth_offset; 313 unsigned int w; 314 unsigned int h; 315 unsigned int pitch; 316 unsigned int pitch_bits; 317 unsigned int back_pitch; 318 unsigned int depth_pitch; 319 unsigned int cpp; 320 unsigned int chipset; 321 } drm_i915_init_t; 322 323 typedef struct _drm_i915_sarea { 324 struct drm_tex_region texList[I915_NR_TEX_REGIONS + 1]; 325 int last_upload; /* last time texture was uploaded */ 326 int last_enqueue; /* last time a buffer was enqueued */ 327 int last_dispatch; /* age of the most recently dispatched buffer */ 328 int ctxOwner; /* last context to upload state */ 329 int texAge; 330 int pf_enabled; /* is pageflipping allowed? */ 331 int pf_active; 332 int pf_current_page; /* which buffer is being displayed? */ 333 int perf_boxes; /* performance boxes to be displayed */ 334 int width, height; /* screen size in pixels */ 335 336 drm_handle_t front_handle; 337 int front_offset; 338 int front_size; 339 340 drm_handle_t back_handle; 341 int back_offset; 342 int back_size; 343 344 drm_handle_t depth_handle; 345 int depth_offset; 346 int depth_size; 347 348 drm_handle_t tex_handle; 349 int tex_offset; 350 int tex_size; 351 int log_tex_granularity; 352 int pitch; 353 int rotation; /* 0, 90, 180 or 270 */ 354 int rotated_offset; 355 int rotated_size; 356 int rotated_pitch; 357 int virtualX, virtualY; 358 359 unsigned int front_tiled; 360 unsigned int back_tiled; 361 unsigned int depth_tiled; 362 unsigned int rotated_tiled; 363 unsigned int rotated2_tiled; 364 365 int pipeA_x; 366 int pipeA_y; 367 int pipeA_w; 368 int pipeA_h; 369 int pipeB_x; 370 int pipeB_y; 371 int pipeB_w; 372 int pipeB_h; 373 374 /* fill out some space for old userspace triple buffer */ 375 drm_handle_t unused_handle; 376 __u32 unused1, unused2, unused3; 377 378 /* buffer object handles for static buffers. May change 379 * over the lifetime of the client. 380 */ 381 __u32 front_bo_handle; 382 __u32 back_bo_handle; 383 __u32 unused_bo_handle; 384 __u32 depth_bo_handle; 385 386 } drm_i915_sarea_t; 387 388 /* due to userspace building against these headers we need some compat here */ 389 #define planeA_x pipeA_x 390 #define planeA_y pipeA_y 391 #define planeA_w pipeA_w 392 #define planeA_h pipeA_h 393 #define planeB_x pipeB_x 394 #define planeB_y pipeB_y 395 #define planeB_w pipeB_w 396 #define planeB_h pipeB_h 397 398 /* Flags for perf_boxes 399 */ 400 #define I915_BOX_RING_EMPTY 0x1 401 #define I915_BOX_FLIP 0x2 402 #define I915_BOX_WAIT 0x4 403 #define I915_BOX_TEXTURE_LOAD 0x8 404 #define I915_BOX_LOST_CONTEXT 0x10 405 406 /* 407 * i915 specific ioctls. 408 * 409 * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie 410 * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset 411 * against DRM_COMMAND_BASE and should be between [0x0, 0x60). 412 */ 413 #define DRM_I915_INIT 0x00 414 #define DRM_I915_FLUSH 0x01 415 #define DRM_I915_FLIP 0x02 416 #define DRM_I915_BATCHBUFFER 0x03 417 #define DRM_I915_IRQ_EMIT 0x04 418 #define DRM_I915_IRQ_WAIT 0x05 419 #define DRM_I915_GETPARAM 0x06 420 #define DRM_I915_SETPARAM 0x07 421 #define DRM_I915_ALLOC 0x08 422 #define DRM_I915_FREE 0x09 423 #define DRM_I915_INIT_HEAP 0x0a 424 #define DRM_I915_CMDBUFFER 0x0b 425 #define DRM_I915_DESTROY_HEAP 0x0c 426 #define DRM_I915_SET_VBLANK_PIPE 0x0d 427 #define DRM_I915_GET_VBLANK_PIPE 0x0e 428 #define DRM_I915_VBLANK_SWAP 0x0f 429 #define DRM_I915_HWS_ADDR 0x11 430 #define DRM_I915_GEM_INIT 0x13 431 #define DRM_I915_GEM_EXECBUFFER 0x14 432 #define DRM_I915_GEM_PIN 0x15 433 #define DRM_I915_GEM_UNPIN 0x16 434 #define DRM_I915_GEM_BUSY 0x17 435 #define DRM_I915_GEM_THROTTLE 0x18 436 #define DRM_I915_GEM_ENTERVT 0x19 437 #define DRM_I915_GEM_LEAVEVT 0x1a 438 #define DRM_I915_GEM_CREATE 0x1b 439 #define DRM_I915_GEM_PREAD 0x1c 440 #define DRM_I915_GEM_PWRITE 0x1d 441 #define DRM_I915_GEM_MMAP 0x1e 442 #define DRM_I915_GEM_SET_DOMAIN 0x1f 443 #define DRM_I915_GEM_SW_FINISH 0x20 444 #define DRM_I915_GEM_SET_TILING 0x21 445 #define DRM_I915_GEM_GET_TILING 0x22 446 #define DRM_I915_GEM_GET_APERTURE 0x23 447 #define DRM_I915_GEM_MMAP_GTT 0x24 448 #define DRM_I915_GET_PIPE_FROM_CRTC_ID 0x25 449 #define DRM_I915_GEM_MADVISE 0x26 450 #define DRM_I915_OVERLAY_PUT_IMAGE 0x27 451 #define DRM_I915_OVERLAY_ATTRS 0x28 452 #define DRM_I915_GEM_EXECBUFFER2 0x29 453 #define DRM_I915_GEM_EXECBUFFER2_WR DRM_I915_GEM_EXECBUFFER2 454 #define DRM_I915_GET_SPRITE_COLORKEY 0x2a 455 #define DRM_I915_SET_SPRITE_COLORKEY 0x2b 456 #define DRM_I915_GEM_WAIT 0x2c 457 #define DRM_I915_GEM_CONTEXT_CREATE 0x2d 458 #define DRM_I915_GEM_CONTEXT_DESTROY 0x2e 459 #define DRM_I915_GEM_SET_CACHING 0x2f 460 #define DRM_I915_GEM_GET_CACHING 0x30 461 #define DRM_I915_REG_READ 0x31 462 #define DRM_I915_GET_RESET_STATS 0x32 463 #define DRM_I915_GEM_USERPTR 0x33 464 #define DRM_I915_GEM_CONTEXT_GETPARAM 0x34 465 #define DRM_I915_GEM_CONTEXT_SETPARAM 0x35 466 #define DRM_I915_PERF_OPEN 0x36 467 #define DRM_I915_PERF_ADD_CONFIG 0x37 468 #define DRM_I915_PERF_REMOVE_CONFIG 0x38 469 #define DRM_I915_QUERY 0x39 470 #define DRM_I915_GEM_VM_CREATE 0x3a 471 #define DRM_I915_GEM_VM_DESTROY 0x3b 472 #define DRM_I915_GEM_CREATE_EXT 0x3c 473 /* Must be kept compact -- no holes */ 474 475 #define DRM_IOCTL_I915_INIT DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT, drm_i915_init_t) 476 #define DRM_IOCTL_I915_FLUSH DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLUSH) 477 #define DRM_IOCTL_I915_FLIP DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLIP) 478 #define DRM_IOCTL_I915_BATCHBUFFER DRM_IOW( DRM_COMMAND_BASE + DRM_I915_BATCHBUFFER, drm_i915_batchbuffer_t) 479 #define DRM_IOCTL_I915_IRQ_EMIT DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_IRQ_EMIT, drm_i915_irq_emit_t) 480 #define DRM_IOCTL_I915_IRQ_WAIT DRM_IOW( DRM_COMMAND_BASE + DRM_I915_IRQ_WAIT, drm_i915_irq_wait_t) 481 #define DRM_IOCTL_I915_GETPARAM DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GETPARAM, drm_i915_getparam_t) 482 #define DRM_IOCTL_I915_SETPARAM DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SETPARAM, drm_i915_setparam_t) 483 #define DRM_IOCTL_I915_ALLOC DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_ALLOC, drm_i915_mem_alloc_t) 484 #define DRM_IOCTL_I915_FREE DRM_IOW( DRM_COMMAND_BASE + DRM_I915_FREE, drm_i915_mem_free_t) 485 #define DRM_IOCTL_I915_INIT_HEAP DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT_HEAP, drm_i915_mem_init_heap_t) 486 #define DRM_IOCTL_I915_CMDBUFFER DRM_IOW( DRM_COMMAND_BASE + DRM_I915_CMDBUFFER, drm_i915_cmdbuffer_t) 487 #define DRM_IOCTL_I915_DESTROY_HEAP DRM_IOW( DRM_COMMAND_BASE + DRM_I915_DESTROY_HEAP, drm_i915_mem_destroy_heap_t) 488 #define DRM_IOCTL_I915_SET_VBLANK_PIPE DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SET_VBLANK_PIPE, drm_i915_vblank_pipe_t) 489 #define DRM_IOCTL_I915_GET_VBLANK_PIPE DRM_IOR( DRM_COMMAND_BASE + DRM_I915_GET_VBLANK_PIPE, drm_i915_vblank_pipe_t) 490 #define DRM_IOCTL_I915_VBLANK_SWAP DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_VBLANK_SWAP, drm_i915_vblank_swap_t) 491 #define DRM_IOCTL_I915_HWS_ADDR DRM_IOW(DRM_COMMAND_BASE + DRM_I915_HWS_ADDR, struct drm_i915_gem_init) 492 #define DRM_IOCTL_I915_GEM_INIT DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_INIT, struct drm_i915_gem_init) 493 #define DRM_IOCTL_I915_GEM_EXECBUFFER DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER, struct drm_i915_gem_execbuffer) 494 #define DRM_IOCTL_I915_GEM_EXECBUFFER2 DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2, struct drm_i915_gem_execbuffer2) 495 #define DRM_IOCTL_I915_GEM_EXECBUFFER2_WR DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2_WR, struct drm_i915_gem_execbuffer2) 496 #define DRM_IOCTL_I915_GEM_PIN DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_PIN, struct drm_i915_gem_pin) 497 #define DRM_IOCTL_I915_GEM_UNPIN DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_UNPIN, struct drm_i915_gem_unpin) 498 #define DRM_IOCTL_I915_GEM_BUSY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_BUSY, struct drm_i915_gem_busy) 499 #define DRM_IOCTL_I915_GEM_SET_CACHING DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_SET_CACHING, struct drm_i915_gem_caching) 500 #define DRM_IOCTL_I915_GEM_GET_CACHING DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_GET_CACHING, struct drm_i915_gem_caching) 501 #define DRM_IOCTL_I915_GEM_THROTTLE DRM_IO ( DRM_COMMAND_BASE + DRM_I915_GEM_THROTTLE) 502 #define DRM_IOCTL_I915_GEM_ENTERVT DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_ENTERVT) 503 #define DRM_IOCTL_I915_GEM_LEAVEVT DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_LEAVEVT) 504 #define DRM_IOCTL_I915_GEM_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE, struct drm_i915_gem_create) 505 #define DRM_IOCTL_I915_GEM_CREATE_EXT DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE_EXT, struct drm_i915_gem_create_ext) 506 #define DRM_IOCTL_I915_GEM_PREAD DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PREAD, struct drm_i915_gem_pread) 507 #define DRM_IOCTL_I915_GEM_PWRITE DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PWRITE, struct drm_i915_gem_pwrite) 508 #define DRM_IOCTL_I915_GEM_MMAP DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP, struct drm_i915_gem_mmap) 509 #define DRM_IOCTL_I915_GEM_MMAP_GTT DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_gtt) 510 #define DRM_IOCTL_I915_GEM_MMAP_OFFSET DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_offset) 511 #define DRM_IOCTL_I915_GEM_SET_DOMAIN DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SET_DOMAIN, struct drm_i915_gem_set_domain) 512 #define DRM_IOCTL_I915_GEM_SW_FINISH DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SW_FINISH, struct drm_i915_gem_sw_finish) 513 #define DRM_IOCTL_I915_GEM_SET_TILING DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_SET_TILING, struct drm_i915_gem_set_tiling) 514 #define DRM_IOCTL_I915_GEM_GET_TILING DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_TILING, struct drm_i915_gem_get_tiling) 515 #define DRM_IOCTL_I915_GEM_GET_APERTURE DRM_IOR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_APERTURE, struct drm_i915_gem_get_aperture) 516 #define DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_PIPE_FROM_CRTC_ID, struct drm_i915_get_pipe_from_crtc_id) 517 #define DRM_IOCTL_I915_GEM_MADVISE DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MADVISE, struct drm_i915_gem_madvise) 518 #define DRM_IOCTL_I915_OVERLAY_PUT_IMAGE DRM_IOW(DRM_COMMAND_BASE + DRM_I915_OVERLAY_PUT_IMAGE, struct drm_intel_overlay_put_image) 519 #define DRM_IOCTL_I915_OVERLAY_ATTRS DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_OVERLAY_ATTRS, struct drm_intel_overlay_attrs) 520 #define DRM_IOCTL_I915_SET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_SET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey) 521 #define DRM_IOCTL_I915_GET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey) 522 #define DRM_IOCTL_I915_GEM_WAIT DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_WAIT, struct drm_i915_gem_wait) 523 #define DRM_IOCTL_I915_GEM_CONTEXT_CREATE DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create) 524 #define DRM_IOCTL_I915_GEM_CONTEXT_CREATE_EXT DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create_ext) 525 #define DRM_IOCTL_I915_GEM_CONTEXT_DESTROY DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_DESTROY, struct drm_i915_gem_context_destroy) 526 #define DRM_IOCTL_I915_REG_READ DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_REG_READ, struct drm_i915_reg_read) 527 #define DRM_IOCTL_I915_GET_RESET_STATS DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GET_RESET_STATS, struct drm_i915_reset_stats) 528 #define DRM_IOCTL_I915_GEM_USERPTR DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_USERPTR, struct drm_i915_gem_userptr) 529 #define DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_GETPARAM, struct drm_i915_gem_context_param) 530 #define DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_SETPARAM, struct drm_i915_gem_context_param) 531 #define DRM_IOCTL_I915_PERF_OPEN DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_OPEN, struct drm_i915_perf_open_param) 532 #define DRM_IOCTL_I915_PERF_ADD_CONFIG DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_ADD_CONFIG, struct drm_i915_perf_oa_config) 533 #define DRM_IOCTL_I915_PERF_REMOVE_CONFIG DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_REMOVE_CONFIG, __u64) 534 #define DRM_IOCTL_I915_QUERY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_QUERY, struct drm_i915_query) 535 #define DRM_IOCTL_I915_GEM_VM_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_VM_CREATE, struct drm_i915_gem_vm_control) 536 #define DRM_IOCTL_I915_GEM_VM_DESTROY DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_VM_DESTROY, struct drm_i915_gem_vm_control) 537 538 /* Allow drivers to submit batchbuffers directly to hardware, relying 539 * on the security mechanisms provided by hardware. 540 */ 541 typedef struct drm_i915_batchbuffer { 542 int start; /* agp offset */ 543 int used; /* nr bytes in use */ 544 int DR1; /* hw flags for GFX_OP_DRAWRECT_INFO */ 545 int DR4; /* window origin for GFX_OP_DRAWRECT_INFO */ 546 int num_cliprects; /* mulitpass with multiple cliprects? */ 547 struct drm_clip_rect __user *cliprects; /* pointer to userspace cliprects */ 548 } drm_i915_batchbuffer_t; 549 550 /* As above, but pass a pointer to userspace buffer which can be 551 * validated by the kernel prior to sending to hardware. 552 */ 553 typedef struct _drm_i915_cmdbuffer { 554 char __user *buf; /* pointer to userspace command buffer */ 555 int sz; /* nr bytes in buf */ 556 int DR1; /* hw flags for GFX_OP_DRAWRECT_INFO */ 557 int DR4; /* window origin for GFX_OP_DRAWRECT_INFO */ 558 int num_cliprects; /* mulitpass with multiple cliprects? */ 559 struct drm_clip_rect __user *cliprects; /* pointer to userspace cliprects */ 560 } drm_i915_cmdbuffer_t; 561 562 /* Userspace can request & wait on irq's: 563 */ 564 typedef struct drm_i915_irq_emit { 565 int __user *irq_seq; 566 } drm_i915_irq_emit_t; 567 568 typedef struct drm_i915_irq_wait { 569 int irq_seq; 570 } drm_i915_irq_wait_t; 571 572 /* 573 * Different modes of per-process Graphics Translation Table, 574 * see I915_PARAM_HAS_ALIASING_PPGTT 575 */ 576 #define I915_GEM_PPGTT_NONE 0 577 #define I915_GEM_PPGTT_ALIASING 1 578 #define I915_GEM_PPGTT_FULL 2 579 580 /* Ioctl to query kernel params: 581 */ 582 #define I915_PARAM_IRQ_ACTIVE 1 583 #define I915_PARAM_ALLOW_BATCHBUFFER 2 584 #define I915_PARAM_LAST_DISPATCH 3 585 #define I915_PARAM_CHIPSET_ID 4 586 #define I915_PARAM_HAS_GEM 5 587 #define I915_PARAM_NUM_FENCES_AVAIL 6 588 #define I915_PARAM_HAS_OVERLAY 7 589 #define I915_PARAM_HAS_PAGEFLIPPING 8 590 #define I915_PARAM_HAS_EXECBUF2 9 591 #define I915_PARAM_HAS_BSD 10 592 #define I915_PARAM_HAS_BLT 11 593 #define I915_PARAM_HAS_RELAXED_FENCING 12 594 #define I915_PARAM_HAS_COHERENT_RINGS 13 595 #define I915_PARAM_HAS_EXEC_CONSTANTS 14 596 #define I915_PARAM_HAS_RELAXED_DELTA 15 597 #define I915_PARAM_HAS_GEN7_SOL_RESET 16 598 #define I915_PARAM_HAS_LLC 17 599 #define I915_PARAM_HAS_ALIASING_PPGTT 18 600 #define I915_PARAM_HAS_WAIT_TIMEOUT 19 601 #define I915_PARAM_HAS_SEMAPHORES 20 602 #define I915_PARAM_HAS_PRIME_VMAP_FLUSH 21 603 #define I915_PARAM_HAS_VEBOX 22 604 #define I915_PARAM_HAS_SECURE_BATCHES 23 605 #define I915_PARAM_HAS_PINNED_BATCHES 24 606 #define I915_PARAM_HAS_EXEC_NO_RELOC 25 607 #define I915_PARAM_HAS_EXEC_HANDLE_LUT 26 608 #define I915_PARAM_HAS_WT 27 609 #define I915_PARAM_CMD_PARSER_VERSION 28 610 #define I915_PARAM_HAS_COHERENT_PHYS_GTT 29 611 #define I915_PARAM_MMAP_VERSION 30 612 #define I915_PARAM_HAS_BSD2 31 613 #define I915_PARAM_REVISION 32 614 #define I915_PARAM_SUBSLICE_TOTAL 33 615 #define I915_PARAM_EU_TOTAL 34 616 #define I915_PARAM_HAS_GPU_RESET 35 617 #define I915_PARAM_HAS_RESOURCE_STREAMER 36 618 #define I915_PARAM_HAS_EXEC_SOFTPIN 37 619 #define I915_PARAM_HAS_POOLED_EU 38 620 #define I915_PARAM_MIN_EU_IN_POOL 39 621 #define I915_PARAM_MMAP_GTT_VERSION 40 622 623 /* 624 * Query whether DRM_I915_GEM_EXECBUFFER2 supports user defined execution 625 * priorities and the driver will attempt to execute batches in priority order. 626 * The param returns a capability bitmask, nonzero implies that the scheduler 627 * is enabled, with different features present according to the mask. 628 * 629 * The initial priority for each batch is supplied by the context and is 630 * controlled via I915_CONTEXT_PARAM_PRIORITY. 631 */ 632 #define I915_PARAM_HAS_SCHEDULER 41 633 #define I915_SCHEDULER_CAP_ENABLED (1ul << 0) 634 #define I915_SCHEDULER_CAP_PRIORITY (1ul << 1) 635 #define I915_SCHEDULER_CAP_PREEMPTION (1ul << 2) 636 #define I915_SCHEDULER_CAP_SEMAPHORES (1ul << 3) 637 #define I915_SCHEDULER_CAP_ENGINE_BUSY_STATS (1ul << 4) 638 /* 639 * Indicates the 2k user priority levels are statically mapped into 3 buckets as 640 * follows: 641 * 642 * -1k to -1 Low priority 643 * 0 Normal priority 644 * 1 to 1k Highest priority 645 */ 646 #define I915_SCHEDULER_CAP_STATIC_PRIORITY_MAP (1ul << 5) 647 648 /* 649 * Query the status of HuC load. 650 * 651 * The query can fail in the following scenarios with the listed error codes: 652 * -ENODEV if HuC is not present on this platform, 653 * -EOPNOTSUPP if HuC firmware usage is disabled, 654 * -ENOPKG if HuC firmware fetch failed, 655 * -ENOEXEC if HuC firmware is invalid or mismatched, 656 * -ENOMEM if i915 failed to prepare the FW objects for transfer to the uC, 657 * -EIO if the FW transfer or the FW authentication failed. 658 * 659 * If the IOCTL is successful, the returned parameter will be set to one of the 660 * following values: 661 * * 0 if HuC firmware load is not complete, 662 * * 1 if HuC firmware is authenticated and running. 663 */ 664 #define I915_PARAM_HUC_STATUS 42 665 666 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to opt-out of 667 * synchronisation with implicit fencing on individual objects. 668 * See EXEC_OBJECT_ASYNC. 669 */ 670 #define I915_PARAM_HAS_EXEC_ASYNC 43 671 672 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports explicit fence support - 673 * both being able to pass in a sync_file fd to wait upon before executing, 674 * and being able to return a new sync_file fd that is signaled when the 675 * current request is complete. See I915_EXEC_FENCE_IN and I915_EXEC_FENCE_OUT. 676 */ 677 #define I915_PARAM_HAS_EXEC_FENCE 44 678 679 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to capture 680 * user specified bufffers for post-mortem debugging of GPU hangs. See 681 * EXEC_OBJECT_CAPTURE. 682 */ 683 #define I915_PARAM_HAS_EXEC_CAPTURE 45 684 685 #define I915_PARAM_SLICE_MASK 46 686 687 /* Assuming it's uniform for each slice, this queries the mask of subslices 688 * per-slice for this system. 689 */ 690 #define I915_PARAM_SUBSLICE_MASK 47 691 692 /* 693 * Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying the batch buffer 694 * as the first execobject as opposed to the last. See I915_EXEC_BATCH_FIRST. 695 */ 696 #define I915_PARAM_HAS_EXEC_BATCH_FIRST 48 697 698 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of 699 * drm_i915_gem_exec_fence structures. See I915_EXEC_FENCE_ARRAY. 700 */ 701 #define I915_PARAM_HAS_EXEC_FENCE_ARRAY 49 702 703 /* 704 * Query whether every context (both per-file default and user created) is 705 * isolated (insofar as HW supports). If this parameter is not true, then 706 * freshly created contexts may inherit values from an existing context, 707 * rather than default HW values. If true, it also ensures (insofar as HW 708 * supports) that all state set by this context will not leak to any other 709 * context. 710 * 711 * As not every engine across every gen support contexts, the returned 712 * value reports the support of context isolation for individual engines by 713 * returning a bitmask of each engine class set to true if that class supports 714 * isolation. 715 */ 716 #define I915_PARAM_HAS_CONTEXT_ISOLATION 50 717 718 /* Frequency of the command streamer timestamps given by the *_TIMESTAMP 719 * registers. This used to be fixed per platform but from CNL onwards, this 720 * might vary depending on the parts. 721 */ 722 #define I915_PARAM_CS_TIMESTAMP_FREQUENCY 51 723 724 /* 725 * Once upon a time we supposed that writes through the GGTT would be 726 * immediately in physical memory (once flushed out of the CPU path). However, 727 * on a few different processors and chipsets, this is not necessarily the case 728 * as the writes appear to be buffered internally. Thus a read of the backing 729 * storage (physical memory) via a different path (with different physical tags 730 * to the indirect write via the GGTT) will see stale values from before 731 * the GGTT write. Inside the kernel, we can for the most part keep track of 732 * the different read/write domains in use (e.g. set-domain), but the assumption 733 * of coherency is baked into the ABI, hence reporting its true state in this 734 * parameter. 735 * 736 * Reports true when writes via mmap_gtt are immediately visible following an 737 * lfence to flush the WCB. 738 * 739 * Reports false when writes via mmap_gtt are indeterminately delayed in an in 740 * internal buffer and are _not_ immediately visible to third parties accessing 741 * directly via mmap_cpu/mmap_wc. Use of mmap_gtt as part of an IPC 742 * communications channel when reporting false is strongly disadvised. 743 */ 744 #define I915_PARAM_MMAP_GTT_COHERENT 52 745 746 /* 747 * Query whether DRM_I915_GEM_EXECBUFFER2 supports coordination of parallel 748 * execution through use of explicit fence support. 749 * See I915_EXEC_FENCE_OUT and I915_EXEC_FENCE_SUBMIT. 750 */ 751 #define I915_PARAM_HAS_EXEC_SUBMIT_FENCE 53 752 753 /* 754 * Revision of the i915-perf uAPI. The value returned helps determine what 755 * i915-perf features are available. See drm_i915_perf_property_id. 756 */ 757 #define I915_PARAM_PERF_REVISION 54 758 759 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of 760 * timeline syncobj through drm_i915_gem_execbuffer_ext_timeline_fences. See 761 * I915_EXEC_USE_EXTENSIONS. 762 */ 763 #define I915_PARAM_HAS_EXEC_TIMELINE_FENCES 55 764 765 /* Query if the kernel supports the I915_USERPTR_PROBE flag. */ 766 #define I915_PARAM_HAS_USERPTR_PROBE 56 767 768 /* Must be kept compact -- no holes and well documented */ 769 770 /** 771 * struct drm_i915_getparam - Driver parameter query structure. 772 */ 773 struct drm_i915_getparam { 774 /** @param: Driver parameter to query. */ 775 __s32 param; 776 777 /** 778 * @value: Address of memory where queried value should be put. 779 * 780 * WARNING: Using pointers instead of fixed-size u64 means we need to write 781 * compat32 code. Don't repeat this mistake. 782 */ 783 int __user *value; 784 }; 785 786 /** 787 * typedef drm_i915_getparam_t - Driver parameter query structure. 788 * See struct drm_i915_getparam. 789 */ 790 typedef struct drm_i915_getparam drm_i915_getparam_t; 791 792 /* Ioctl to set kernel params: 793 */ 794 #define I915_SETPARAM_USE_MI_BATCHBUFFER_START 1 795 #define I915_SETPARAM_TEX_LRU_LOG_GRANULARITY 2 796 #define I915_SETPARAM_ALLOW_BATCHBUFFER 3 797 #define I915_SETPARAM_NUM_USED_FENCES 4 798 /* Must be kept compact -- no holes */ 799 800 typedef struct drm_i915_setparam { 801 int param; 802 int value; 803 } drm_i915_setparam_t; 804 805 /* A memory manager for regions of shared memory: 806 */ 807 #define I915_MEM_REGION_AGP 1 808 809 typedef struct drm_i915_mem_alloc { 810 int region; 811 int alignment; 812 int size; 813 int __user *region_offset; /* offset from start of fb or agp */ 814 } drm_i915_mem_alloc_t; 815 816 typedef struct drm_i915_mem_free { 817 int region; 818 int region_offset; 819 } drm_i915_mem_free_t; 820 821 typedef struct drm_i915_mem_init_heap { 822 int region; 823 int size; 824 int start; 825 } drm_i915_mem_init_heap_t; 826 827 /* Allow memory manager to be torn down and re-initialized (eg on 828 * rotate): 829 */ 830 typedef struct drm_i915_mem_destroy_heap { 831 int region; 832 } drm_i915_mem_destroy_heap_t; 833 834 /* Allow X server to configure which pipes to monitor for vblank signals 835 */ 836 #define DRM_I915_VBLANK_PIPE_A 1 837 #define DRM_I915_VBLANK_PIPE_B 2 838 839 typedef struct drm_i915_vblank_pipe { 840 int pipe; 841 } drm_i915_vblank_pipe_t; 842 843 /* Schedule buffer swap at given vertical blank: 844 */ 845 typedef struct drm_i915_vblank_swap { 846 drm_drawable_t drawable; 847 enum drm_vblank_seq_type seqtype; 848 unsigned int sequence; 849 } drm_i915_vblank_swap_t; 850 851 typedef struct drm_i915_hws_addr { 852 __u64 addr; 853 } drm_i915_hws_addr_t; 854 855 struct drm_i915_gem_init { 856 /** 857 * Beginning offset in the GTT to be managed by the DRM memory 858 * manager. 859 */ 860 __u64 gtt_start; 861 /** 862 * Ending offset in the GTT to be managed by the DRM memory 863 * manager. 864 */ 865 __u64 gtt_end; 866 }; 867 868 struct drm_i915_gem_create { 869 /** 870 * Requested size for the object. 871 * 872 * The (page-aligned) allocated size for the object will be returned. 873 */ 874 __u64 size; 875 /** 876 * Returned handle for the object. 877 * 878 * Object handles are nonzero. 879 */ 880 __u32 handle; 881 __u32 pad; 882 }; 883 884 struct drm_i915_gem_pread { 885 /** Handle for the object being read. */ 886 __u32 handle; 887 __u32 pad; 888 /** Offset into the object to read from */ 889 __u64 offset; 890 /** Length of data to read */ 891 __u64 size; 892 /** 893 * Pointer to write the data into. 894 * 895 * This is a fixed-size type for 32/64 compatibility. 896 */ 897 __u64 data_ptr; 898 }; 899 900 struct drm_i915_gem_pwrite { 901 /** Handle for the object being written to. */ 902 __u32 handle; 903 __u32 pad; 904 /** Offset into the object to write to */ 905 __u64 offset; 906 /** Length of data to write */ 907 __u64 size; 908 /** 909 * Pointer to read the data from. 910 * 911 * This is a fixed-size type for 32/64 compatibility. 912 */ 913 __u64 data_ptr; 914 }; 915 916 struct drm_i915_gem_mmap { 917 /** Handle for the object being mapped. */ 918 __u32 handle; 919 __u32 pad; 920 /** Offset in the object to map. */ 921 __u64 offset; 922 /** 923 * Length of data to map. 924 * 925 * The value will be page-aligned. 926 */ 927 __u64 size; 928 /** 929 * Returned pointer the data was mapped at. 930 * 931 * This is a fixed-size type for 32/64 compatibility. 932 */ 933 __u64 addr_ptr; 934 935 /** 936 * Flags for extended behaviour. 937 * 938 * Added in version 2. 939 */ 940 __u64 flags; 941 #define I915_MMAP_WC 0x1 942 }; 943 944 struct drm_i915_gem_mmap_gtt { 945 /** Handle for the object being mapped. */ 946 __u32 handle; 947 __u32 pad; 948 /** 949 * Fake offset to use for subsequent mmap call 950 * 951 * This is a fixed-size type for 32/64 compatibility. 952 */ 953 __u64 offset; 954 }; 955 956 /** 957 * struct drm_i915_gem_mmap_offset - Retrieve an offset so we can mmap this buffer object. 958 * 959 * This struct is passed as argument to the `DRM_IOCTL_I915_GEM_MMAP_OFFSET` ioctl, 960 * and is used to retrieve the fake offset to mmap an object specified by &handle. 961 * 962 * The legacy way of using `DRM_IOCTL_I915_GEM_MMAP` is removed on gen12+. 963 * `DRM_IOCTL_I915_GEM_MMAP_GTT` is an older supported alias to this struct, but will behave 964 * as setting the &extensions to 0, and &flags to `I915_MMAP_OFFSET_GTT`. 965 */ 966 struct drm_i915_gem_mmap_offset { 967 /** @handle: Handle for the object being mapped. */ 968 __u32 handle; 969 /** @pad: Must be zero */ 970 __u32 pad; 971 /** 972 * @offset: The fake offset to use for subsequent mmap call 973 * 974 * This is a fixed-size type for 32/64 compatibility. 975 */ 976 __u64 offset; 977 978 /** 979 * @flags: Flags for extended behaviour. 980 * 981 * It is mandatory that one of the `MMAP_OFFSET` types 982 * should be included: 983 * 984 * - `I915_MMAP_OFFSET_GTT`: Use mmap with the object bound to GTT. (Write-Combined) 985 * - `I915_MMAP_OFFSET_WC`: Use Write-Combined caching. 986 * - `I915_MMAP_OFFSET_WB`: Use Write-Back caching. 987 * - `I915_MMAP_OFFSET_FIXED`: Use object placement to determine caching. 988 * 989 * On devices with local memory `I915_MMAP_OFFSET_FIXED` is the only valid 990 * type. On devices without local memory, this caching mode is invalid. 991 * 992 * As caching mode when specifying `I915_MMAP_OFFSET_FIXED`, WC or WB will 993 * be used, depending on the object placement on creation. WB will be used 994 * when the object can only exist in system memory, WC otherwise. 995 */ 996 __u64 flags; 997 998 #define I915_MMAP_OFFSET_GTT 0 999 #define I915_MMAP_OFFSET_WC 1 1000 #define I915_MMAP_OFFSET_WB 2 1001 #define I915_MMAP_OFFSET_UC 3 1002 #define I915_MMAP_OFFSET_FIXED 4 1003 1004 /** 1005 * @extensions: Zero-terminated chain of extensions. 1006 * 1007 * No current extensions defined; mbz. 1008 */ 1009 __u64 extensions; 1010 }; 1011 1012 /** 1013 * struct drm_i915_gem_set_domain - Adjust the objects write or read domain, in 1014 * preparation for accessing the pages via some CPU domain. 1015 * 1016 * Specifying a new write or read domain will flush the object out of the 1017 * previous domain(if required), before then updating the objects domain 1018 * tracking with the new domain. 1019 * 1020 * Note this might involve waiting for the object first if it is still active on 1021 * the GPU. 1022 * 1023 * Supported values for @read_domains and @write_domain: 1024 * 1025 * - I915_GEM_DOMAIN_WC: Uncached write-combined domain 1026 * - I915_GEM_DOMAIN_CPU: CPU cache domain 1027 * - I915_GEM_DOMAIN_GTT: Mappable aperture domain 1028 * 1029 * All other domains are rejected. 1030 * 1031 * Note that for discrete, starting from DG1, this is no longer supported, and 1032 * is instead rejected. On such platforms the CPU domain is effectively static, 1033 * where we also only support a single &drm_i915_gem_mmap_offset cache mode, 1034 * which can't be set explicitly and instead depends on the object placements, 1035 * as per the below. 1036 * 1037 * Implicit caching rules, starting from DG1: 1038 * 1039 * - If any of the object placements (see &drm_i915_gem_create_ext_memory_regions) 1040 * contain I915_MEMORY_CLASS_DEVICE then the object will be allocated and 1041 * mapped as write-combined only. 1042 * 1043 * - Everything else is always allocated and mapped as write-back, with the 1044 * guarantee that everything is also coherent with the GPU. 1045 * 1046 * Note that this is likely to change in the future again, where we might need 1047 * more flexibility on future devices, so making this all explicit as part of a 1048 * new &drm_i915_gem_create_ext extension is probable. 1049 */ 1050 struct drm_i915_gem_set_domain { 1051 /** @handle: Handle for the object. */ 1052 __u32 handle; 1053 1054 /** @read_domains: New read domains. */ 1055 __u32 read_domains; 1056 1057 /** 1058 * @write_domain: New write domain. 1059 * 1060 * Note that having something in the write domain implies it's in the 1061 * read domain, and only that read domain. 1062 */ 1063 __u32 write_domain; 1064 }; 1065 1066 struct drm_i915_gem_sw_finish { 1067 /** Handle for the object */ 1068 __u32 handle; 1069 }; 1070 1071 struct drm_i915_gem_relocation_entry { 1072 /** 1073 * Handle of the buffer being pointed to by this relocation entry. 1074 * 1075 * It's appealing to make this be an index into the mm_validate_entry 1076 * list to refer to the buffer, but this allows the driver to create 1077 * a relocation list for state buffers and not re-write it per 1078 * exec using the buffer. 1079 */ 1080 __u32 target_handle; 1081 1082 /** 1083 * Value to be added to the offset of the target buffer to make up 1084 * the relocation entry. 1085 */ 1086 __u32 delta; 1087 1088 /** Offset in the buffer the relocation entry will be written into */ 1089 __u64 offset; 1090 1091 /** 1092 * Offset value of the target buffer that the relocation entry was last 1093 * written as. 1094 * 1095 * If the buffer has the same offset as last time, we can skip syncing 1096 * and writing the relocation. This value is written back out by 1097 * the execbuffer ioctl when the relocation is written. 1098 */ 1099 __u64 presumed_offset; 1100 1101 /** 1102 * Target memory domains read by this operation. 1103 */ 1104 __u32 read_domains; 1105 1106 /** 1107 * Target memory domains written by this operation. 1108 * 1109 * Note that only one domain may be written by the whole 1110 * execbuffer operation, so that where there are conflicts, 1111 * the application will get -EINVAL back. 1112 */ 1113 __u32 write_domain; 1114 }; 1115 1116 /** @{ 1117 * Intel memory domains 1118 * 1119 * Most of these just align with the various caches in 1120 * the system and are used to flush and invalidate as 1121 * objects end up cached in different domains. 1122 */ 1123 /** CPU cache */ 1124 #define I915_GEM_DOMAIN_CPU 0x00000001 1125 /** Render cache, used by 2D and 3D drawing */ 1126 #define I915_GEM_DOMAIN_RENDER 0x00000002 1127 /** Sampler cache, used by texture engine */ 1128 #define I915_GEM_DOMAIN_SAMPLER 0x00000004 1129 /** Command queue, used to load batch buffers */ 1130 #define I915_GEM_DOMAIN_COMMAND 0x00000008 1131 /** Instruction cache, used by shader programs */ 1132 #define I915_GEM_DOMAIN_INSTRUCTION 0x00000010 1133 /** Vertex address cache */ 1134 #define I915_GEM_DOMAIN_VERTEX 0x00000020 1135 /** GTT domain - aperture and scanout */ 1136 #define I915_GEM_DOMAIN_GTT 0x00000040 1137 /** WC domain - uncached access */ 1138 #define I915_GEM_DOMAIN_WC 0x00000080 1139 /** @} */ 1140 1141 struct drm_i915_gem_exec_object { 1142 /** 1143 * User's handle for a buffer to be bound into the GTT for this 1144 * operation. 1145 */ 1146 __u32 handle; 1147 1148 /** Number of relocations to be performed on this buffer */ 1149 __u32 relocation_count; 1150 /** 1151 * Pointer to array of struct drm_i915_gem_relocation_entry containing 1152 * the relocations to be performed in this buffer. 1153 */ 1154 __u64 relocs_ptr; 1155 1156 /** Required alignment in graphics aperture */ 1157 __u64 alignment; 1158 1159 /** 1160 * Returned value of the updated offset of the object, for future 1161 * presumed_offset writes. 1162 */ 1163 __u64 offset; 1164 }; 1165 1166 /* DRM_IOCTL_I915_GEM_EXECBUFFER was removed in Linux 5.13 */ 1167 struct drm_i915_gem_execbuffer { 1168 /** 1169 * List of buffers to be validated with their relocations to be 1170 * performend on them. 1171 * 1172 * This is a pointer to an array of struct drm_i915_gem_validate_entry. 1173 * 1174 * These buffers must be listed in an order such that all relocations 1175 * a buffer is performing refer to buffers that have already appeared 1176 * in the validate list. 1177 */ 1178 __u64 buffers_ptr; 1179 __u32 buffer_count; 1180 1181 /** Offset in the batchbuffer to start execution from. */ 1182 __u32 batch_start_offset; 1183 /** Bytes used in batchbuffer from batch_start_offset */ 1184 __u32 batch_len; 1185 __u32 DR1; 1186 __u32 DR4; 1187 __u32 num_cliprects; 1188 /** This is a struct drm_clip_rect *cliprects */ 1189 __u64 cliprects_ptr; 1190 }; 1191 1192 struct drm_i915_gem_exec_object2 { 1193 /** 1194 * User's handle for a buffer to be bound into the GTT for this 1195 * operation. 1196 */ 1197 __u32 handle; 1198 1199 /** Number of relocations to be performed on this buffer */ 1200 __u32 relocation_count; 1201 /** 1202 * Pointer to array of struct drm_i915_gem_relocation_entry containing 1203 * the relocations to be performed in this buffer. 1204 */ 1205 __u64 relocs_ptr; 1206 1207 /** Required alignment in graphics aperture */ 1208 __u64 alignment; 1209 1210 /** 1211 * When the EXEC_OBJECT_PINNED flag is specified this is populated by 1212 * the user with the GTT offset at which this object will be pinned. 1213 * 1214 * When the I915_EXEC_NO_RELOC flag is specified this must contain the 1215 * presumed_offset of the object. 1216 * 1217 * During execbuffer2 the kernel populates it with the value of the 1218 * current GTT offset of the object, for future presumed_offset writes. 1219 * 1220 * See struct drm_i915_gem_create_ext for the rules when dealing with 1221 * alignment restrictions with I915_MEMORY_CLASS_DEVICE, on devices with 1222 * minimum page sizes, like DG2. 1223 */ 1224 __u64 offset; 1225 1226 #define EXEC_OBJECT_NEEDS_FENCE (1<<0) 1227 #define EXEC_OBJECT_NEEDS_GTT (1<<1) 1228 #define EXEC_OBJECT_WRITE (1<<2) 1229 #define EXEC_OBJECT_SUPPORTS_48B_ADDRESS (1<<3) 1230 #define EXEC_OBJECT_PINNED (1<<4) 1231 #define EXEC_OBJECT_PAD_TO_SIZE (1<<5) 1232 /* The kernel implicitly tracks GPU activity on all GEM objects, and 1233 * synchronises operations with outstanding rendering. This includes 1234 * rendering on other devices if exported via dma-buf. However, sometimes 1235 * this tracking is too coarse and the user knows better. For example, 1236 * if the object is split into non-overlapping ranges shared between different 1237 * clients or engines (i.e. suballocating objects), the implicit tracking 1238 * by kernel assumes that each operation affects the whole object rather 1239 * than an individual range, causing needless synchronisation between clients. 1240 * The kernel will also forgo any CPU cache flushes prior to rendering from 1241 * the object as the client is expected to be also handling such domain 1242 * tracking. 1243 * 1244 * The kernel maintains the implicit tracking in order to manage resources 1245 * used by the GPU - this flag only disables the synchronisation prior to 1246 * rendering with this object in this execbuf. 1247 * 1248 * Opting out of implicit synhronisation requires the user to do its own 1249 * explicit tracking to avoid rendering corruption. See, for example, 1250 * I915_PARAM_HAS_EXEC_FENCE to order execbufs and execute them asynchronously. 1251 */ 1252 #define EXEC_OBJECT_ASYNC (1<<6) 1253 /* Request that the contents of this execobject be copied into the error 1254 * state upon a GPU hang involving this batch for post-mortem debugging. 1255 * These buffers are recorded in no particular order as "user" in 1256 * /sys/class/drm/cardN/error. Query I915_PARAM_HAS_EXEC_CAPTURE to see 1257 * if the kernel supports this flag. 1258 */ 1259 #define EXEC_OBJECT_CAPTURE (1<<7) 1260 /* All remaining bits are MBZ and RESERVED FOR FUTURE USE */ 1261 #define __EXEC_OBJECT_UNKNOWN_FLAGS -(EXEC_OBJECT_CAPTURE<<1) 1262 __u64 flags; 1263 1264 union { 1265 __u64 rsvd1; 1266 __u64 pad_to_size; 1267 }; 1268 __u64 rsvd2; 1269 }; 1270 1271 /** 1272 * struct drm_i915_gem_exec_fence - An input or output fence for the execbuf 1273 * ioctl. 1274 * 1275 * The request will wait for input fence to signal before submission. 1276 * 1277 * The returned output fence will be signaled after the completion of the 1278 * request. 1279 */ 1280 struct drm_i915_gem_exec_fence { 1281 /** @handle: User's handle for a drm_syncobj to wait on or signal. */ 1282 __u32 handle; 1283 1284 /** 1285 * @flags: Supported flags are: 1286 * 1287 * I915_EXEC_FENCE_WAIT: 1288 * Wait for the input fence before request submission. 1289 * 1290 * I915_EXEC_FENCE_SIGNAL: 1291 * Return request completion fence as output 1292 */ 1293 __u32 flags; 1294 #define I915_EXEC_FENCE_WAIT (1<<0) 1295 #define I915_EXEC_FENCE_SIGNAL (1<<1) 1296 #define __I915_EXEC_FENCE_UNKNOWN_FLAGS (-(I915_EXEC_FENCE_SIGNAL << 1)) 1297 }; 1298 1299 /** 1300 * struct drm_i915_gem_execbuffer_ext_timeline_fences - Timeline fences 1301 * for execbuf ioctl. 1302 * 1303 * This structure describes an array of drm_syncobj and associated points for 1304 * timeline variants of drm_syncobj. It is invalid to append this structure to 1305 * the execbuf if I915_EXEC_FENCE_ARRAY is set. 1306 */ 1307 struct drm_i915_gem_execbuffer_ext_timeline_fences { 1308 #define DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES 0 1309 /** @base: Extension link. See struct i915_user_extension. */ 1310 struct i915_user_extension base; 1311 1312 /** 1313 * @fence_count: Number of elements in the @handles_ptr & @value_ptr 1314 * arrays. 1315 */ 1316 __u64 fence_count; 1317 1318 /** 1319 * @handles_ptr: Pointer to an array of struct drm_i915_gem_exec_fence 1320 * of length @fence_count. 1321 */ 1322 __u64 handles_ptr; 1323 1324 /** 1325 * @values_ptr: Pointer to an array of u64 values of length 1326 * @fence_count. 1327 * Values must be 0 for a binary drm_syncobj. A Value of 0 for a 1328 * timeline drm_syncobj is invalid as it turns a drm_syncobj into a 1329 * binary one. 1330 */ 1331 __u64 values_ptr; 1332 }; 1333 1334 /** 1335 * struct drm_i915_gem_execbuffer2 - Structure for DRM_I915_GEM_EXECBUFFER2 1336 * ioctl. 1337 */ 1338 struct drm_i915_gem_execbuffer2 { 1339 /** @buffers_ptr: Pointer to a list of gem_exec_object2 structs */ 1340 __u64 buffers_ptr; 1341 1342 /** @buffer_count: Number of elements in @buffers_ptr array */ 1343 __u32 buffer_count; 1344 1345 /** 1346 * @batch_start_offset: Offset in the batchbuffer to start execution 1347 * from. 1348 */ 1349 __u32 batch_start_offset; 1350 1351 /** 1352 * @batch_len: Length in bytes of the batch buffer, starting from the 1353 * @batch_start_offset. If 0, length is assumed to be the batch buffer 1354 * object size. 1355 */ 1356 __u32 batch_len; 1357 1358 /** @DR1: deprecated */ 1359 __u32 DR1; 1360 1361 /** @DR4: deprecated */ 1362 __u32 DR4; 1363 1364 /** @num_cliprects: See @cliprects_ptr */ 1365 __u32 num_cliprects; 1366 1367 /** 1368 * @cliprects_ptr: Kernel clipping was a DRI1 misfeature. 1369 * 1370 * It is invalid to use this field if I915_EXEC_FENCE_ARRAY or 1371 * I915_EXEC_USE_EXTENSIONS flags are not set. 1372 * 1373 * If I915_EXEC_FENCE_ARRAY is set, then this is a pointer to an array 1374 * of &drm_i915_gem_exec_fence and @num_cliprects is the length of the 1375 * array. 1376 * 1377 * If I915_EXEC_USE_EXTENSIONS is set, then this is a pointer to a 1378 * single &i915_user_extension and num_cliprects is 0. 1379 */ 1380 __u64 cliprects_ptr; 1381 1382 /** @flags: Execbuf flags */ 1383 __u64 flags; 1384 #define I915_EXEC_RING_MASK (0x3f) 1385 #define I915_EXEC_DEFAULT (0<<0) 1386 #define I915_EXEC_RENDER (1<<0) 1387 #define I915_EXEC_BSD (2<<0) 1388 #define I915_EXEC_BLT (3<<0) 1389 #define I915_EXEC_VEBOX (4<<0) 1390 1391 /* Used for switching the constants addressing mode on gen4+ RENDER ring. 1392 * Gen6+ only supports relative addressing to dynamic state (default) and 1393 * absolute addressing. 1394 * 1395 * These flags are ignored for the BSD and BLT rings. 1396 */ 1397 #define I915_EXEC_CONSTANTS_MASK (3<<6) 1398 #define I915_EXEC_CONSTANTS_REL_GENERAL (0<<6) /* default */ 1399 #define I915_EXEC_CONSTANTS_ABSOLUTE (1<<6) 1400 #define I915_EXEC_CONSTANTS_REL_SURFACE (2<<6) /* gen4/5 only */ 1401 1402 /** Resets the SO write offset registers for transform feedback on gen7. */ 1403 #define I915_EXEC_GEN7_SOL_RESET (1<<8) 1404 1405 /** Request a privileged ("secure") batch buffer. Note only available for 1406 * DRM_ROOT_ONLY | DRM_MASTER processes. 1407 */ 1408 #define I915_EXEC_SECURE (1<<9) 1409 1410 /** Inform the kernel that the batch is and will always be pinned. This 1411 * negates the requirement for a workaround to be performed to avoid 1412 * an incoherent CS (such as can be found on 830/845). If this flag is 1413 * not passed, the kernel will endeavour to make sure the batch is 1414 * coherent with the CS before execution. If this flag is passed, 1415 * userspace assumes the responsibility for ensuring the same. 1416 */ 1417 #define I915_EXEC_IS_PINNED (1<<10) 1418 1419 /** Provide a hint to the kernel that the command stream and auxiliary 1420 * state buffers already holds the correct presumed addresses and so the 1421 * relocation process may be skipped if no buffers need to be moved in 1422 * preparation for the execbuffer. 1423 */ 1424 #define I915_EXEC_NO_RELOC (1<<11) 1425 1426 /** Use the reloc.handle as an index into the exec object array rather 1427 * than as the per-file handle. 1428 */ 1429 #define I915_EXEC_HANDLE_LUT (1<<12) 1430 1431 /** Used for switching BSD rings on the platforms with two BSD rings */ 1432 #define I915_EXEC_BSD_SHIFT (13) 1433 #define I915_EXEC_BSD_MASK (3 << I915_EXEC_BSD_SHIFT) 1434 /* default ping-pong mode */ 1435 #define I915_EXEC_BSD_DEFAULT (0 << I915_EXEC_BSD_SHIFT) 1436 #define I915_EXEC_BSD_RING1 (1 << I915_EXEC_BSD_SHIFT) 1437 #define I915_EXEC_BSD_RING2 (2 << I915_EXEC_BSD_SHIFT) 1438 1439 /** Tell the kernel that the batchbuffer is processed by 1440 * the resource streamer. 1441 */ 1442 #define I915_EXEC_RESOURCE_STREAMER (1<<15) 1443 1444 /* Setting I915_EXEC_FENCE_IN implies that lower_32_bits(rsvd2) represent 1445 * a sync_file fd to wait upon (in a nonblocking manner) prior to executing 1446 * the batch. 1447 * 1448 * Returns -EINVAL if the sync_file fd cannot be found. 1449 */ 1450 #define I915_EXEC_FENCE_IN (1<<16) 1451 1452 /* Setting I915_EXEC_FENCE_OUT causes the ioctl to return a sync_file fd 1453 * in the upper_32_bits(rsvd2) upon success. Ownership of the fd is given 1454 * to the caller, and it should be close() after use. (The fd is a regular 1455 * file descriptor and will be cleaned up on process termination. It holds 1456 * a reference to the request, but nothing else.) 1457 * 1458 * The sync_file fd can be combined with other sync_file and passed either 1459 * to execbuf using I915_EXEC_FENCE_IN, to atomic KMS ioctls (so that a flip 1460 * will only occur after this request completes), or to other devices. 1461 * 1462 * Using I915_EXEC_FENCE_OUT requires use of 1463 * DRM_IOCTL_I915_GEM_EXECBUFFER2_WR ioctl so that the result is written 1464 * back to userspace. Failure to do so will cause the out-fence to always 1465 * be reported as zero, and the real fence fd to be leaked. 1466 */ 1467 #define I915_EXEC_FENCE_OUT (1<<17) 1468 1469 /* 1470 * Traditionally the execbuf ioctl has only considered the final element in 1471 * the execobject[] to be the executable batch. Often though, the client 1472 * will known the batch object prior to construction and being able to place 1473 * it into the execobject[] array first can simplify the relocation tracking. 1474 * Setting I915_EXEC_BATCH_FIRST tells execbuf to use element 0 of the 1475 * execobject[] as the * batch instead (the default is to use the last 1476 * element). 1477 */ 1478 #define I915_EXEC_BATCH_FIRST (1<<18) 1479 1480 /* Setting I915_FENCE_ARRAY implies that num_cliprects and cliprects_ptr 1481 * define an array of i915_gem_exec_fence structures which specify a set of 1482 * dma fences to wait upon or signal. 1483 */ 1484 #define I915_EXEC_FENCE_ARRAY (1<<19) 1485 1486 /* 1487 * Setting I915_EXEC_FENCE_SUBMIT implies that lower_32_bits(rsvd2) represent 1488 * a sync_file fd to wait upon (in a nonblocking manner) prior to executing 1489 * the batch. 1490 * 1491 * Returns -EINVAL if the sync_file fd cannot be found. 1492 */ 1493 #define I915_EXEC_FENCE_SUBMIT (1 << 20) 1494 1495 /* 1496 * Setting I915_EXEC_USE_EXTENSIONS implies that 1497 * drm_i915_gem_execbuffer2.cliprects_ptr is treated as a pointer to an linked 1498 * list of i915_user_extension. Each i915_user_extension node is the base of a 1499 * larger structure. The list of supported structures are listed in the 1500 * drm_i915_gem_execbuffer_ext enum. 1501 */ 1502 #define I915_EXEC_USE_EXTENSIONS (1 << 21) 1503 #define __I915_EXEC_UNKNOWN_FLAGS (-(I915_EXEC_USE_EXTENSIONS << 1)) 1504 1505 /** @rsvd1: Context id */ 1506 __u64 rsvd1; 1507 1508 /** 1509 * @rsvd2: in and out sync_file file descriptors. 1510 * 1511 * When I915_EXEC_FENCE_IN or I915_EXEC_FENCE_SUBMIT flag is set, the 1512 * lower 32 bits of this field will have the in sync_file fd (input). 1513 * 1514 * When I915_EXEC_FENCE_OUT flag is set, the upper 32 bits of this 1515 * field will have the out sync_file fd (output). 1516 */ 1517 __u64 rsvd2; 1518 }; 1519 1520 #define I915_EXEC_CONTEXT_ID_MASK (0xffffffff) 1521 #define i915_execbuffer2_set_context_id(eb2, context) \ 1522 (eb2).rsvd1 = context & I915_EXEC_CONTEXT_ID_MASK 1523 #define i915_execbuffer2_get_context_id(eb2) \ 1524 ((eb2).rsvd1 & I915_EXEC_CONTEXT_ID_MASK) 1525 1526 struct drm_i915_gem_pin { 1527 /** Handle of the buffer to be pinned. */ 1528 __u32 handle; 1529 __u32 pad; 1530 1531 /** alignment required within the aperture */ 1532 __u64 alignment; 1533 1534 /** Returned GTT offset of the buffer. */ 1535 __u64 offset; 1536 }; 1537 1538 struct drm_i915_gem_unpin { 1539 /** Handle of the buffer to be unpinned. */ 1540 __u32 handle; 1541 __u32 pad; 1542 }; 1543 1544 struct drm_i915_gem_busy { 1545 /** Handle of the buffer to check for busy */ 1546 __u32 handle; 1547 1548 /** Return busy status 1549 * 1550 * A return of 0 implies that the object is idle (after 1551 * having flushed any pending activity), and a non-zero return that 1552 * the object is still in-flight on the GPU. (The GPU has not yet 1553 * signaled completion for all pending requests that reference the 1554 * object.) An object is guaranteed to become idle eventually (so 1555 * long as no new GPU commands are executed upon it). Due to the 1556 * asynchronous nature of the hardware, an object reported 1557 * as busy may become idle before the ioctl is completed. 1558 * 1559 * Furthermore, if the object is busy, which engine is busy is only 1560 * provided as a guide and only indirectly by reporting its class 1561 * (there may be more than one engine in each class). There are race 1562 * conditions which prevent the report of which engines are busy from 1563 * being always accurate. However, the converse is not true. If the 1564 * object is idle, the result of the ioctl, that all engines are idle, 1565 * is accurate. 1566 * 1567 * The returned dword is split into two fields to indicate both 1568 * the engine classess on which the object is being read, and the 1569 * engine class on which it is currently being written (if any). 1570 * 1571 * The low word (bits 0:15) indicate if the object is being written 1572 * to by any engine (there can only be one, as the GEM implicit 1573 * synchronisation rules force writes to be serialised). Only the 1574 * engine class (offset by 1, I915_ENGINE_CLASS_RENDER is reported as 1575 * 1 not 0 etc) for the last write is reported. 1576 * 1577 * The high word (bits 16:31) are a bitmask of which engines classes 1578 * are currently reading from the object. Multiple engines may be 1579 * reading from the object simultaneously. 1580 * 1581 * The value of each engine class is the same as specified in the 1582 * I915_CONTEXT_PARAM_ENGINES context parameter and via perf, i.e. 1583 * I915_ENGINE_CLASS_RENDER, I915_ENGINE_CLASS_COPY, etc. 1584 * Some hardware may have parallel execution engines, e.g. multiple 1585 * media engines, which are mapped to the same class identifier and so 1586 * are not separately reported for busyness. 1587 * 1588 * Caveat emptor: 1589 * Only the boolean result of this query is reliable; that is whether 1590 * the object is idle or busy. The report of which engines are busy 1591 * should be only used as a heuristic. 1592 */ 1593 __u32 busy; 1594 }; 1595 1596 /** 1597 * struct drm_i915_gem_caching - Set or get the caching for given object 1598 * handle. 1599 * 1600 * Allow userspace to control the GTT caching bits for a given object when the 1601 * object is later mapped through the ppGTT(or GGTT on older platforms lacking 1602 * ppGTT support, or if the object is used for scanout). Note that this might 1603 * require unbinding the object from the GTT first, if its current caching value 1604 * doesn't match. 1605 * 1606 * Note that this all changes on discrete platforms, starting from DG1, the 1607 * set/get caching is no longer supported, and is now rejected. Instead the CPU 1608 * caching attributes(WB vs WC) will become an immutable creation time property 1609 * for the object, along with the GTT caching level. For now we don't expose any 1610 * new uAPI for this, instead on DG1 this is all implicit, although this largely 1611 * shouldn't matter since DG1 is coherent by default(without any way of 1612 * controlling it). 1613 * 1614 * Implicit caching rules, starting from DG1: 1615 * 1616 * - If any of the object placements (see &drm_i915_gem_create_ext_memory_regions) 1617 * contain I915_MEMORY_CLASS_DEVICE then the object will be allocated and 1618 * mapped as write-combined only. 1619 * 1620 * - Everything else is always allocated and mapped as write-back, with the 1621 * guarantee that everything is also coherent with the GPU. 1622 * 1623 * Note that this is likely to change in the future again, where we might need 1624 * more flexibility on future devices, so making this all explicit as part of a 1625 * new &drm_i915_gem_create_ext extension is probable. 1626 * 1627 * Side note: Part of the reason for this is that changing the at-allocation-time CPU 1628 * caching attributes for the pages might be required(and is expensive) if we 1629 * need to then CPU map the pages later with different caching attributes. This 1630 * inconsistent caching behaviour, while supported on x86, is not universally 1631 * supported on other architectures. So for simplicity we opt for setting 1632 * everything at creation time, whilst also making it immutable, on discrete 1633 * platforms. 1634 */ 1635 struct drm_i915_gem_caching { 1636 /** 1637 * @handle: Handle of the buffer to set/get the caching level. 1638 */ 1639 __u32 handle; 1640 1641 /** 1642 * @caching: The GTT caching level to apply or possible return value. 1643 * 1644 * The supported @caching values: 1645 * 1646 * I915_CACHING_NONE: 1647 * 1648 * GPU access is not coherent with CPU caches. Default for machines 1649 * without an LLC. This means manual flushing might be needed, if we 1650 * want GPU access to be coherent. 1651 * 1652 * I915_CACHING_CACHED: 1653 * 1654 * GPU access is coherent with CPU caches and furthermore the data is 1655 * cached in last-level caches shared between CPU cores and the GPU GT. 1656 * 1657 * I915_CACHING_DISPLAY: 1658 * 1659 * Special GPU caching mode which is coherent with the scanout engines. 1660 * Transparently falls back to I915_CACHING_NONE on platforms where no 1661 * special cache mode (like write-through or gfdt flushing) is 1662 * available. The kernel automatically sets this mode when using a 1663 * buffer as a scanout target. Userspace can manually set this mode to 1664 * avoid a costly stall and clflush in the hotpath of drawing the first 1665 * frame. 1666 */ 1667 #define I915_CACHING_NONE 0 1668 #define I915_CACHING_CACHED 1 1669 #define I915_CACHING_DISPLAY 2 1670 __u32 caching; 1671 }; 1672 1673 #define I915_TILING_NONE 0 1674 #define I915_TILING_X 1 1675 #define I915_TILING_Y 2 1676 /* 1677 * Do not add new tiling types here. The I915_TILING_* values are for 1678 * de-tiling fence registers that no longer exist on modern platforms. Although 1679 * the hardware may support new types of tiling in general (e.g., Tile4), we 1680 * do not need to add them to the uapi that is specific to now-defunct ioctls. 1681 */ 1682 #define I915_TILING_LAST I915_TILING_Y 1683 1684 #define I915_BIT_6_SWIZZLE_NONE 0 1685 #define I915_BIT_6_SWIZZLE_9 1 1686 #define I915_BIT_6_SWIZZLE_9_10 2 1687 #define I915_BIT_6_SWIZZLE_9_11 3 1688 #define I915_BIT_6_SWIZZLE_9_10_11 4 1689 /* Not seen by userland */ 1690 #define I915_BIT_6_SWIZZLE_UNKNOWN 5 1691 /* Seen by userland. */ 1692 #define I915_BIT_6_SWIZZLE_9_17 6 1693 #define I915_BIT_6_SWIZZLE_9_10_17 7 1694 1695 struct drm_i915_gem_set_tiling { 1696 /** Handle of the buffer to have its tiling state updated */ 1697 __u32 handle; 1698 1699 /** 1700 * Tiling mode for the object (I915_TILING_NONE, I915_TILING_X, 1701 * I915_TILING_Y). 1702 * 1703 * This value is to be set on request, and will be updated by the 1704 * kernel on successful return with the actual chosen tiling layout. 1705 * 1706 * The tiling mode may be demoted to I915_TILING_NONE when the system 1707 * has bit 6 swizzling that can't be managed correctly by GEM. 1708 * 1709 * Buffer contents become undefined when changing tiling_mode. 1710 */ 1711 __u32 tiling_mode; 1712 1713 /** 1714 * Stride in bytes for the object when in I915_TILING_X or 1715 * I915_TILING_Y. 1716 */ 1717 __u32 stride; 1718 1719 /** 1720 * Returned address bit 6 swizzling required for CPU access through 1721 * mmap mapping. 1722 */ 1723 __u32 swizzle_mode; 1724 }; 1725 1726 struct drm_i915_gem_get_tiling { 1727 /** Handle of the buffer to get tiling state for. */ 1728 __u32 handle; 1729 1730 /** 1731 * Current tiling mode for the object (I915_TILING_NONE, I915_TILING_X, 1732 * I915_TILING_Y). 1733 */ 1734 __u32 tiling_mode; 1735 1736 /** 1737 * Returned address bit 6 swizzling required for CPU access through 1738 * mmap mapping. 1739 */ 1740 __u32 swizzle_mode; 1741 1742 /** 1743 * Returned address bit 6 swizzling required for CPU access through 1744 * mmap mapping whilst bound. 1745 */ 1746 __u32 phys_swizzle_mode; 1747 }; 1748 1749 struct drm_i915_gem_get_aperture { 1750 /** Total size of the aperture used by i915_gem_execbuffer, in bytes */ 1751 __u64 aper_size; 1752 1753 /** 1754 * Available space in the aperture used by i915_gem_execbuffer, in 1755 * bytes 1756 */ 1757 __u64 aper_available_size; 1758 }; 1759 1760 struct drm_i915_get_pipe_from_crtc_id { 1761 /** ID of CRTC being requested **/ 1762 __u32 crtc_id; 1763 1764 /** pipe of requested CRTC **/ 1765 __u32 pipe; 1766 }; 1767 1768 #define I915_MADV_WILLNEED 0 1769 #define I915_MADV_DONTNEED 1 1770 #define __I915_MADV_PURGED 2 /* internal state */ 1771 1772 struct drm_i915_gem_madvise { 1773 /** Handle of the buffer to change the backing store advice */ 1774 __u32 handle; 1775 1776 /* Advice: either the buffer will be needed again in the near future, 1777 * or wont be and could be discarded under memory pressure. 1778 */ 1779 __u32 madv; 1780 1781 /** Whether the backing store still exists. */ 1782 __u32 retained; 1783 }; 1784 1785 /* flags */ 1786 #define I915_OVERLAY_TYPE_MASK 0xff 1787 #define I915_OVERLAY_YUV_PLANAR 0x01 1788 #define I915_OVERLAY_YUV_PACKED 0x02 1789 #define I915_OVERLAY_RGB 0x03 1790 1791 #define I915_OVERLAY_DEPTH_MASK 0xff00 1792 #define I915_OVERLAY_RGB24 0x1000 1793 #define I915_OVERLAY_RGB16 0x2000 1794 #define I915_OVERLAY_RGB15 0x3000 1795 #define I915_OVERLAY_YUV422 0x0100 1796 #define I915_OVERLAY_YUV411 0x0200 1797 #define I915_OVERLAY_YUV420 0x0300 1798 #define I915_OVERLAY_YUV410 0x0400 1799 1800 #define I915_OVERLAY_SWAP_MASK 0xff0000 1801 #define I915_OVERLAY_NO_SWAP 0x000000 1802 #define I915_OVERLAY_UV_SWAP 0x010000 1803 #define I915_OVERLAY_Y_SWAP 0x020000 1804 #define I915_OVERLAY_Y_AND_UV_SWAP 0x030000 1805 1806 #define I915_OVERLAY_FLAGS_MASK 0xff000000 1807 #define I915_OVERLAY_ENABLE 0x01000000 1808 1809 struct drm_intel_overlay_put_image { 1810 /* various flags and src format description */ 1811 __u32 flags; 1812 /* source picture description */ 1813 __u32 bo_handle; 1814 /* stride values and offsets are in bytes, buffer relative */ 1815 __u16 stride_Y; /* stride for packed formats */ 1816 __u16 stride_UV; 1817 __u32 offset_Y; /* offset for packet formats */ 1818 __u32 offset_U; 1819 __u32 offset_V; 1820 /* in pixels */ 1821 __u16 src_width; 1822 __u16 src_height; 1823 /* to compensate the scaling factors for partially covered surfaces */ 1824 __u16 src_scan_width; 1825 __u16 src_scan_height; 1826 /* output crtc description */ 1827 __u32 crtc_id; 1828 __u16 dst_x; 1829 __u16 dst_y; 1830 __u16 dst_width; 1831 __u16 dst_height; 1832 }; 1833 1834 /* flags */ 1835 #define I915_OVERLAY_UPDATE_ATTRS (1<<0) 1836 #define I915_OVERLAY_UPDATE_GAMMA (1<<1) 1837 #define I915_OVERLAY_DISABLE_DEST_COLORKEY (1<<2) 1838 struct drm_intel_overlay_attrs { 1839 __u32 flags; 1840 __u32 color_key; 1841 __s32 brightness; 1842 __u32 contrast; 1843 __u32 saturation; 1844 __u32 gamma0; 1845 __u32 gamma1; 1846 __u32 gamma2; 1847 __u32 gamma3; 1848 __u32 gamma4; 1849 __u32 gamma5; 1850 }; 1851 1852 /* 1853 * Intel sprite handling 1854 * 1855 * Color keying works with a min/mask/max tuple. Both source and destination 1856 * color keying is allowed. 1857 * 1858 * Source keying: 1859 * Sprite pixels within the min & max values, masked against the color channels 1860 * specified in the mask field, will be transparent. All other pixels will 1861 * be displayed on top of the primary plane. For RGB surfaces, only the min 1862 * and mask fields will be used; ranged compares are not allowed. 1863 * 1864 * Destination keying: 1865 * Primary plane pixels that match the min value, masked against the color 1866 * channels specified in the mask field, will be replaced by corresponding 1867 * pixels from the sprite plane. 1868 * 1869 * Note that source & destination keying are exclusive; only one can be 1870 * active on a given plane. 1871 */ 1872 1873 #define I915_SET_COLORKEY_NONE (1<<0) /* Deprecated. Instead set 1874 * flags==0 to disable colorkeying. 1875 */ 1876 #define I915_SET_COLORKEY_DESTINATION (1<<1) 1877 #define I915_SET_COLORKEY_SOURCE (1<<2) 1878 struct drm_intel_sprite_colorkey { 1879 __u32 plane_id; 1880 __u32 min_value; 1881 __u32 channel_mask; 1882 __u32 max_value; 1883 __u32 flags; 1884 }; 1885 1886 struct drm_i915_gem_wait { 1887 /** Handle of BO we shall wait on */ 1888 __u32 bo_handle; 1889 __u32 flags; 1890 /** Number of nanoseconds to wait, Returns time remaining. */ 1891 __s64 timeout_ns; 1892 }; 1893 1894 struct drm_i915_gem_context_create { 1895 __u32 ctx_id; /* output: id of new context*/ 1896 __u32 pad; 1897 }; 1898 1899 /** 1900 * struct drm_i915_gem_context_create_ext - Structure for creating contexts. 1901 */ 1902 struct drm_i915_gem_context_create_ext { 1903 /** @ctx_id: Id of the created context (output) */ 1904 __u32 ctx_id; 1905 1906 /** 1907 * @flags: Supported flags are: 1908 * 1909 * I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS: 1910 * 1911 * Extensions may be appended to this structure and driver must check 1912 * for those. See @extensions. 1913 * 1914 * I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE 1915 * 1916 * Created context will have single timeline. 1917 */ 1918 __u32 flags; 1919 #define I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS (1u << 0) 1920 #define I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE (1u << 1) 1921 #define I915_CONTEXT_CREATE_FLAGS_UNKNOWN \ 1922 (-(I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE << 1)) 1923 1924 /** 1925 * @extensions: Zero-terminated chain of extensions. 1926 * 1927 * I915_CONTEXT_CREATE_EXT_SETPARAM: 1928 * Context parameter to set or query during context creation. 1929 * See struct drm_i915_gem_context_create_ext_setparam. 1930 * 1931 * I915_CONTEXT_CREATE_EXT_CLONE: 1932 * This extension has been removed. On the off chance someone somewhere 1933 * has attempted to use it, never re-use this extension number. 1934 */ 1935 __u64 extensions; 1936 #define I915_CONTEXT_CREATE_EXT_SETPARAM 0 1937 #define I915_CONTEXT_CREATE_EXT_CLONE 1 1938 }; 1939 1940 /** 1941 * struct drm_i915_gem_context_param - Context parameter to set or query. 1942 */ 1943 struct drm_i915_gem_context_param { 1944 /** @ctx_id: Context id */ 1945 __u32 ctx_id; 1946 1947 /** @size: Size of the parameter @value */ 1948 __u32 size; 1949 1950 /** @param: Parameter to set or query */ 1951 __u64 param; 1952 #define I915_CONTEXT_PARAM_BAN_PERIOD 0x1 1953 /* I915_CONTEXT_PARAM_NO_ZEROMAP has been removed. On the off chance 1954 * someone somewhere has attempted to use it, never re-use this context 1955 * param number. 1956 */ 1957 #define I915_CONTEXT_PARAM_NO_ZEROMAP 0x2 1958 #define I915_CONTEXT_PARAM_GTT_SIZE 0x3 1959 #define I915_CONTEXT_PARAM_NO_ERROR_CAPTURE 0x4 1960 #define I915_CONTEXT_PARAM_BANNABLE 0x5 1961 #define I915_CONTEXT_PARAM_PRIORITY 0x6 1962 #define I915_CONTEXT_MAX_USER_PRIORITY 1023 /* inclusive */ 1963 #define I915_CONTEXT_DEFAULT_PRIORITY 0 1964 #define I915_CONTEXT_MIN_USER_PRIORITY -1023 /* inclusive */ 1965 /* 1966 * When using the following param, value should be a pointer to 1967 * drm_i915_gem_context_param_sseu. 1968 */ 1969 #define I915_CONTEXT_PARAM_SSEU 0x7 1970 1971 /* 1972 * Not all clients may want to attempt automatic recover of a context after 1973 * a hang (for example, some clients may only submit very small incremental 1974 * batches relying on known logical state of previous batches which will never 1975 * recover correctly and each attempt will hang), and so would prefer that 1976 * the context is forever banned instead. 1977 * 1978 * If set to false (0), after a reset, subsequent (and in flight) rendering 1979 * from this context is discarded, and the client will need to create a new 1980 * context to use instead. 1981 * 1982 * If set to true (1), the kernel will automatically attempt to recover the 1983 * context by skipping the hanging batch and executing the next batch starting 1984 * from the default context state (discarding the incomplete logical context 1985 * state lost due to the reset). 1986 * 1987 * On creation, all new contexts are marked as recoverable. 1988 */ 1989 #define I915_CONTEXT_PARAM_RECOVERABLE 0x8 1990 1991 /* 1992 * The id of the associated virtual memory address space (ppGTT) of 1993 * this context. Can be retrieved and passed to another context 1994 * (on the same fd) for both to use the same ppGTT and so share 1995 * address layouts, and avoid reloading the page tables on context 1996 * switches between themselves. 1997 * 1998 * See DRM_I915_GEM_VM_CREATE and DRM_I915_GEM_VM_DESTROY. 1999 */ 2000 #define I915_CONTEXT_PARAM_VM 0x9 2001 2002 /* 2003 * I915_CONTEXT_PARAM_ENGINES: 2004 * 2005 * Bind this context to operate on this subset of available engines. Henceforth, 2006 * the I915_EXEC_RING selector for DRM_IOCTL_I915_GEM_EXECBUFFER2 operates as 2007 * an index into this array of engines; I915_EXEC_DEFAULT selecting engine[0] 2008 * and upwards. Slots 0...N are filled in using the specified (class, instance). 2009 * Use 2010 * engine_class: I915_ENGINE_CLASS_INVALID, 2011 * engine_instance: I915_ENGINE_CLASS_INVALID_NONE 2012 * to specify a gap in the array that can be filled in later, e.g. by a 2013 * virtual engine used for load balancing. 2014 * 2015 * Setting the number of engines bound to the context to 0, by passing a zero 2016 * sized argument, will revert back to default settings. 2017 * 2018 * See struct i915_context_param_engines. 2019 * 2020 * Extensions: 2021 * i915_context_engines_load_balance (I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE) 2022 * i915_context_engines_bond (I915_CONTEXT_ENGINES_EXT_BOND) 2023 * i915_context_engines_parallel_submit (I915_CONTEXT_ENGINES_EXT_PARALLEL_SUBMIT) 2024 */ 2025 #define I915_CONTEXT_PARAM_ENGINES 0xa 2026 2027 /* 2028 * I915_CONTEXT_PARAM_PERSISTENCE: 2029 * 2030 * Allow the context and active rendering to survive the process until 2031 * completion. Persistence allows fire-and-forget clients to queue up a 2032 * bunch of work, hand the output over to a display server and then quit. 2033 * If the context is marked as not persistent, upon closing (either via 2034 * an explicit DRM_I915_GEM_CONTEXT_DESTROY or implicitly from file closure 2035 * or process termination), the context and any outstanding requests will be 2036 * cancelled (and exported fences for cancelled requests marked as -EIO). 2037 * 2038 * By default, new contexts allow persistence. 2039 */ 2040 #define I915_CONTEXT_PARAM_PERSISTENCE 0xb 2041 2042 /* This API has been removed. On the off chance someone somewhere has 2043 * attempted to use it, never re-use this context param number. 2044 */ 2045 #define I915_CONTEXT_PARAM_RINGSIZE 0xc 2046 2047 /* 2048 * I915_CONTEXT_PARAM_PROTECTED_CONTENT: 2049 * 2050 * Mark that the context makes use of protected content, which will result 2051 * in the context being invalidated when the protected content session is. 2052 * Given that the protected content session is killed on suspend, the device 2053 * is kept awake for the lifetime of a protected context, so the user should 2054 * make sure to dispose of them once done. 2055 * This flag can only be set at context creation time and, when set to true, 2056 * must be preceded by an explicit setting of I915_CONTEXT_PARAM_RECOVERABLE 2057 * to false. This flag can't be set to true in conjunction with setting the 2058 * I915_CONTEXT_PARAM_BANNABLE flag to false. Creation example: 2059 * 2060 * .. code-block:: C 2061 * 2062 * struct drm_i915_gem_context_create_ext_setparam p_protected = { 2063 * .base = { 2064 * .name = I915_CONTEXT_CREATE_EXT_SETPARAM, 2065 * }, 2066 * .param = { 2067 * .param = I915_CONTEXT_PARAM_PROTECTED_CONTENT, 2068 * .value = 1, 2069 * } 2070 * }; 2071 * struct drm_i915_gem_context_create_ext_setparam p_norecover = { 2072 * .base = { 2073 * .name = I915_CONTEXT_CREATE_EXT_SETPARAM, 2074 * .next_extension = to_user_pointer(&p_protected), 2075 * }, 2076 * .param = { 2077 * .param = I915_CONTEXT_PARAM_RECOVERABLE, 2078 * .value = 0, 2079 * } 2080 * }; 2081 * struct drm_i915_gem_context_create_ext create = { 2082 * .flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS, 2083 * .extensions = to_user_pointer(&p_norecover); 2084 * }; 2085 * 2086 * ctx_id = gem_context_create_ext(drm_fd, &create); 2087 * 2088 * In addition to the normal failure cases, setting this flag during context 2089 * creation can result in the following errors: 2090 * 2091 * -ENODEV: feature not available 2092 * -EPERM: trying to mark a recoverable or not bannable context as protected 2093 */ 2094 #define I915_CONTEXT_PARAM_PROTECTED_CONTENT 0xd 2095 /* Must be kept compact -- no holes and well documented */ 2096 2097 /** @value: Context parameter value to be set or queried */ 2098 __u64 value; 2099 }; 2100 2101 /* 2102 * Context SSEU programming 2103 * 2104 * It may be necessary for either functional or performance reason to configure 2105 * a context to run with a reduced number of SSEU (where SSEU stands for Slice/ 2106 * Sub-slice/EU). 2107 * 2108 * This is done by configuring SSEU configuration using the below 2109 * @struct drm_i915_gem_context_param_sseu for every supported engine which 2110 * userspace intends to use. 2111 * 2112 * Not all GPUs or engines support this functionality in which case an error 2113 * code -ENODEV will be returned. 2114 * 2115 * Also, flexibility of possible SSEU configuration permutations varies between 2116 * GPU generations and software imposed limitations. Requesting such a 2117 * combination will return an error code of -EINVAL. 2118 * 2119 * NOTE: When perf/OA is active the context's SSEU configuration is ignored in 2120 * favour of a single global setting. 2121 */ 2122 struct drm_i915_gem_context_param_sseu { 2123 /* 2124 * Engine class & instance to be configured or queried. 2125 */ 2126 struct i915_engine_class_instance engine; 2127 2128 /* 2129 * Unknown flags must be cleared to zero. 2130 */ 2131 __u32 flags; 2132 #define I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX (1u << 0) 2133 2134 /* 2135 * Mask of slices to enable for the context. Valid values are a subset 2136 * of the bitmask value returned for I915_PARAM_SLICE_MASK. 2137 */ 2138 __u64 slice_mask; 2139 2140 /* 2141 * Mask of subslices to enable for the context. Valid values are a 2142 * subset of the bitmask value return by I915_PARAM_SUBSLICE_MASK. 2143 */ 2144 __u64 subslice_mask; 2145 2146 /* 2147 * Minimum/Maximum number of EUs to enable per subslice for the 2148 * context. min_eus_per_subslice must be inferior or equal to 2149 * max_eus_per_subslice. 2150 */ 2151 __u16 min_eus_per_subslice; 2152 __u16 max_eus_per_subslice; 2153 2154 /* 2155 * Unused for now. Must be cleared to zero. 2156 */ 2157 __u32 rsvd; 2158 }; 2159 2160 /** 2161 * DOC: Virtual Engine uAPI 2162 * 2163 * Virtual engine is a concept where userspace is able to configure a set of 2164 * physical engines, submit a batch buffer, and let the driver execute it on any 2165 * engine from the set as it sees fit. 2166 * 2167 * This is primarily useful on parts which have multiple instances of a same 2168 * class engine, like for example GT3+ Skylake parts with their two VCS engines. 2169 * 2170 * For instance userspace can enumerate all engines of a certain class using the 2171 * previously described `Engine Discovery uAPI`_. After that userspace can 2172 * create a GEM context with a placeholder slot for the virtual engine (using 2173 * `I915_ENGINE_CLASS_INVALID` and `I915_ENGINE_CLASS_INVALID_NONE` for class 2174 * and instance respectively) and finally using the 2175 * `I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE` extension place a virtual engine in 2176 * the same reserved slot. 2177 * 2178 * Example of creating a virtual engine and submitting a batch buffer to it: 2179 * 2180 * .. code-block:: C 2181 * 2182 * I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(virtual, 2) = { 2183 * .base.name = I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE, 2184 * .engine_index = 0, // Place this virtual engine into engine map slot 0 2185 * .num_siblings = 2, 2186 * .engines = { { I915_ENGINE_CLASS_VIDEO, 0 }, 2187 * { I915_ENGINE_CLASS_VIDEO, 1 }, }, 2188 * }; 2189 * I915_DEFINE_CONTEXT_PARAM_ENGINES(engines, 1) = { 2190 * .engines = { { I915_ENGINE_CLASS_INVALID, 2191 * I915_ENGINE_CLASS_INVALID_NONE } }, 2192 * .extensions = to_user_pointer(&virtual), // Chains after load_balance extension 2193 * }; 2194 * struct drm_i915_gem_context_create_ext_setparam p_engines = { 2195 * .base = { 2196 * .name = I915_CONTEXT_CREATE_EXT_SETPARAM, 2197 * }, 2198 * .param = { 2199 * .param = I915_CONTEXT_PARAM_ENGINES, 2200 * .value = to_user_pointer(&engines), 2201 * .size = sizeof(engines), 2202 * }, 2203 * }; 2204 * struct drm_i915_gem_context_create_ext create = { 2205 * .flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS, 2206 * .extensions = to_user_pointer(&p_engines); 2207 * }; 2208 * 2209 * ctx_id = gem_context_create_ext(drm_fd, &create); 2210 * 2211 * // Now we have created a GEM context with its engine map containing a 2212 * // single virtual engine. Submissions to this slot can go either to 2213 * // vcs0 or vcs1, depending on the load balancing algorithm used inside 2214 * // the driver. The load balancing is dynamic from one batch buffer to 2215 * // another and transparent to userspace. 2216 * 2217 * ... 2218 * execbuf.rsvd1 = ctx_id; 2219 * execbuf.flags = 0; // Submits to index 0 which is the virtual engine 2220 * gem_execbuf(drm_fd, &execbuf); 2221 */ 2222 2223 /* 2224 * i915_context_engines_load_balance: 2225 * 2226 * Enable load balancing across this set of engines. 2227 * 2228 * Into the I915_EXEC_DEFAULT slot [0], a virtual engine is created that when 2229 * used will proxy the execbuffer request onto one of the set of engines 2230 * in such a way as to distribute the load evenly across the set. 2231 * 2232 * The set of engines must be compatible (e.g. the same HW class) as they 2233 * will share the same logical GPU context and ring. 2234 * 2235 * To intermix rendering with the virtual engine and direct rendering onto 2236 * the backing engines (bypassing the load balancing proxy), the context must 2237 * be defined to use a single timeline for all engines. 2238 */ 2239 struct i915_context_engines_load_balance { 2240 struct i915_user_extension base; 2241 2242 __u16 engine_index; 2243 __u16 num_siblings; 2244 __u32 flags; /* all undefined flags must be zero */ 2245 2246 __u64 mbz64; /* reserved for future use; must be zero */ 2247 2248 struct i915_engine_class_instance engines[]; 2249 } __attribute__((packed)); 2250 2251 #define I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(name__, N__) struct { \ 2252 struct i915_user_extension base; \ 2253 __u16 engine_index; \ 2254 __u16 num_siblings; \ 2255 __u32 flags; \ 2256 __u64 mbz64; \ 2257 struct i915_engine_class_instance engines[N__]; \ 2258 } __attribute__((packed)) name__ 2259 2260 /* 2261 * i915_context_engines_bond: 2262 * 2263 * Constructed bonded pairs for execution within a virtual engine. 2264 * 2265 * All engines are equal, but some are more equal than others. Given 2266 * the distribution of resources in the HW, it may be preferable to run 2267 * a request on a given subset of engines in parallel to a request on a 2268 * specific engine. We enable this selection of engines within a virtual 2269 * engine by specifying bonding pairs, for any given master engine we will 2270 * only execute on one of the corresponding siblings within the virtual engine. 2271 * 2272 * To execute a request in parallel on the master engine and a sibling requires 2273 * coordination with a I915_EXEC_FENCE_SUBMIT. 2274 */ 2275 struct i915_context_engines_bond { 2276 struct i915_user_extension base; 2277 2278 struct i915_engine_class_instance master; 2279 2280 __u16 virtual_index; /* index of virtual engine in ctx->engines[] */ 2281 __u16 num_bonds; 2282 2283 __u64 flags; /* all undefined flags must be zero */ 2284 __u64 mbz64[4]; /* reserved for future use; must be zero */ 2285 2286 struct i915_engine_class_instance engines[]; 2287 } __attribute__((packed)); 2288 2289 #define I915_DEFINE_CONTEXT_ENGINES_BOND(name__, N__) struct { \ 2290 struct i915_user_extension base; \ 2291 struct i915_engine_class_instance master; \ 2292 __u16 virtual_index; \ 2293 __u16 num_bonds; \ 2294 __u64 flags; \ 2295 __u64 mbz64[4]; \ 2296 struct i915_engine_class_instance engines[N__]; \ 2297 } __attribute__((packed)) name__ 2298 2299 /** 2300 * struct i915_context_engines_parallel_submit - Configure engine for 2301 * parallel submission. 2302 * 2303 * Setup a slot in the context engine map to allow multiple BBs to be submitted 2304 * in a single execbuf IOCTL. Those BBs will then be scheduled to run on the GPU 2305 * in parallel. Multiple hardware contexts are created internally in the i915 to 2306 * run these BBs. Once a slot is configured for N BBs only N BBs can be 2307 * submitted in each execbuf IOCTL and this is implicit behavior e.g. The user 2308 * doesn't tell the execbuf IOCTL there are N BBs, the execbuf IOCTL knows how 2309 * many BBs there are based on the slot's configuration. The N BBs are the last 2310 * N buffer objects or first N if I915_EXEC_BATCH_FIRST is set. 2311 * 2312 * The default placement behavior is to create implicit bonds between each 2313 * context if each context maps to more than 1 physical engine (e.g. context is 2314 * a virtual engine). Also we only allow contexts of same engine class and these 2315 * contexts must be in logically contiguous order. Examples of the placement 2316 * behavior are described below. Lastly, the default is to not allow BBs to be 2317 * preempted mid-batch. Rather insert coordinated preemption points on all 2318 * hardware contexts between each set of BBs. Flags could be added in the future 2319 * to change both of these default behaviors. 2320 * 2321 * Returns -EINVAL if hardware context placement configuration is invalid or if 2322 * the placement configuration isn't supported on the platform / submission 2323 * interface. 2324 * Returns -ENODEV if extension isn't supported on the platform / submission 2325 * interface. 2326 * 2327 * .. code-block:: none 2328 * 2329 * Examples syntax: 2330 * CS[X] = generic engine of same class, logical instance X 2331 * INVALID = I915_ENGINE_CLASS_INVALID, I915_ENGINE_CLASS_INVALID_NONE 2332 * 2333 * Example 1 pseudo code: 2334 * set_engines(INVALID) 2335 * set_parallel(engine_index=0, width=2, num_siblings=1, 2336 * engines=CS[0],CS[1]) 2337 * 2338 * Results in the following valid placement: 2339 * CS[0], CS[1] 2340 * 2341 * Example 2 pseudo code: 2342 * set_engines(INVALID) 2343 * set_parallel(engine_index=0, width=2, num_siblings=2, 2344 * engines=CS[0],CS[2],CS[1],CS[3]) 2345 * 2346 * Results in the following valid placements: 2347 * CS[0], CS[1] 2348 * CS[2], CS[3] 2349 * 2350 * This can be thought of as two virtual engines, each containing two 2351 * engines thereby making a 2D array. However, there are bonds tying the 2352 * entries together and placing restrictions on how they can be scheduled. 2353 * Specifically, the scheduler can choose only vertical columns from the 2D 2354 * array. That is, CS[0] is bonded to CS[1] and CS[2] to CS[3]. So if the 2355 * scheduler wants to submit to CS[0], it must also choose CS[1] and vice 2356 * versa. Same for CS[2] requires also using CS[3]. 2357 * VE[0] = CS[0], CS[2] 2358 * VE[1] = CS[1], CS[3] 2359 * 2360 * Example 3 pseudo code: 2361 * set_engines(INVALID) 2362 * set_parallel(engine_index=0, width=2, num_siblings=2, 2363 * engines=CS[0],CS[1],CS[1],CS[3]) 2364 * 2365 * Results in the following valid and invalid placements: 2366 * CS[0], CS[1] 2367 * CS[1], CS[3] - Not logically contiguous, return -EINVAL 2368 */ 2369 struct i915_context_engines_parallel_submit { 2370 /** 2371 * @base: base user extension. 2372 */ 2373 struct i915_user_extension base; 2374 2375 /** 2376 * @engine_index: slot for parallel engine 2377 */ 2378 __u16 engine_index; 2379 2380 /** 2381 * @width: number of contexts per parallel engine or in other words the 2382 * number of batches in each submission 2383 */ 2384 __u16 width; 2385 2386 /** 2387 * @num_siblings: number of siblings per context or in other words the 2388 * number of possible placements for each submission 2389 */ 2390 __u16 num_siblings; 2391 2392 /** 2393 * @mbz16: reserved for future use; must be zero 2394 */ 2395 __u16 mbz16; 2396 2397 /** 2398 * @flags: all undefined flags must be zero, currently not defined flags 2399 */ 2400 __u64 flags; 2401 2402 /** 2403 * @mbz64: reserved for future use; must be zero 2404 */ 2405 __u64 mbz64[3]; 2406 2407 /** 2408 * @engines: 2-d array of engine instances to configure parallel engine 2409 * 2410 * length = width (i) * num_siblings (j) 2411 * index = j + i * num_siblings 2412 */ 2413 struct i915_engine_class_instance engines[]; 2414 2415 } __packed; 2416 2417 #define I915_DEFINE_CONTEXT_ENGINES_PARALLEL_SUBMIT(name__, N__) struct { \ 2418 struct i915_user_extension base; \ 2419 __u16 engine_index; \ 2420 __u16 width; \ 2421 __u16 num_siblings; \ 2422 __u16 mbz16; \ 2423 __u64 flags; \ 2424 __u64 mbz64[3]; \ 2425 struct i915_engine_class_instance engines[N__]; \ 2426 } __attribute__((packed)) name__ 2427 2428 /** 2429 * DOC: Context Engine Map uAPI 2430 * 2431 * Context engine map is a new way of addressing engines when submitting batch- 2432 * buffers, replacing the existing way of using identifiers like `I915_EXEC_BLT` 2433 * inside the flags field of `struct drm_i915_gem_execbuffer2`. 2434 * 2435 * To use it created GEM contexts need to be configured with a list of engines 2436 * the user is intending to submit to. This is accomplished using the 2437 * `I915_CONTEXT_PARAM_ENGINES` parameter and `struct 2438 * i915_context_param_engines`. 2439 * 2440 * For such contexts the `I915_EXEC_RING_MASK` field becomes an index into the 2441 * configured map. 2442 * 2443 * Example of creating such context and submitting against it: 2444 * 2445 * .. code-block:: C 2446 * 2447 * I915_DEFINE_CONTEXT_PARAM_ENGINES(engines, 2) = { 2448 * .engines = { { I915_ENGINE_CLASS_RENDER, 0 }, 2449 * { I915_ENGINE_CLASS_COPY, 0 } } 2450 * }; 2451 * struct drm_i915_gem_context_create_ext_setparam p_engines = { 2452 * .base = { 2453 * .name = I915_CONTEXT_CREATE_EXT_SETPARAM, 2454 * }, 2455 * .param = { 2456 * .param = I915_CONTEXT_PARAM_ENGINES, 2457 * .value = to_user_pointer(&engines), 2458 * .size = sizeof(engines), 2459 * }, 2460 * }; 2461 * struct drm_i915_gem_context_create_ext create = { 2462 * .flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS, 2463 * .extensions = to_user_pointer(&p_engines); 2464 * }; 2465 * 2466 * ctx_id = gem_context_create_ext(drm_fd, &create); 2467 * 2468 * // We have now created a GEM context with two engines in the map: 2469 * // Index 0 points to rcs0 while index 1 points to bcs0. Other engines 2470 * // will not be accessible from this context. 2471 * 2472 * ... 2473 * execbuf.rsvd1 = ctx_id; 2474 * execbuf.flags = 0; // Submits to index 0, which is rcs0 for this context 2475 * gem_execbuf(drm_fd, &execbuf); 2476 * 2477 * ... 2478 * execbuf.rsvd1 = ctx_id; 2479 * execbuf.flags = 1; // Submits to index 0, which is bcs0 for this context 2480 * gem_execbuf(drm_fd, &execbuf); 2481 */ 2482 2483 struct i915_context_param_engines { 2484 __u64 extensions; /* linked chain of extension blocks, 0 terminates */ 2485 #define I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE 0 /* see i915_context_engines_load_balance */ 2486 #define I915_CONTEXT_ENGINES_EXT_BOND 1 /* see i915_context_engines_bond */ 2487 #define I915_CONTEXT_ENGINES_EXT_PARALLEL_SUBMIT 2 /* see i915_context_engines_parallel_submit */ 2488 struct i915_engine_class_instance engines[0]; 2489 } __attribute__((packed)); 2490 2491 #define I915_DEFINE_CONTEXT_PARAM_ENGINES(name__, N__) struct { \ 2492 __u64 extensions; \ 2493 struct i915_engine_class_instance engines[N__]; \ 2494 } __attribute__((packed)) name__ 2495 2496 /** 2497 * struct drm_i915_gem_context_create_ext_setparam - Context parameter 2498 * to set or query during context creation. 2499 */ 2500 struct drm_i915_gem_context_create_ext_setparam { 2501 /** @base: Extension link. See struct i915_user_extension. */ 2502 struct i915_user_extension base; 2503 2504 /** 2505 * @param: Context parameter to set or query. 2506 * See struct drm_i915_gem_context_param. 2507 */ 2508 struct drm_i915_gem_context_param param; 2509 }; 2510 2511 struct drm_i915_gem_context_destroy { 2512 __u32 ctx_id; 2513 __u32 pad; 2514 }; 2515 2516 /** 2517 * struct drm_i915_gem_vm_control - Structure to create or destroy VM. 2518 * 2519 * DRM_I915_GEM_VM_CREATE - 2520 * 2521 * Create a new virtual memory address space (ppGTT) for use within a context 2522 * on the same file. Extensions can be provided to configure exactly how the 2523 * address space is setup upon creation. 2524 * 2525 * The id of new VM (bound to the fd) for use with I915_CONTEXT_PARAM_VM is 2526 * returned in the outparam @id. 2527 * 2528 * An extension chain maybe provided, starting with @extensions, and terminated 2529 * by the @next_extension being 0. Currently, no extensions are defined. 2530 * 2531 * DRM_I915_GEM_VM_DESTROY - 2532 * 2533 * Destroys a previously created VM id, specified in @vm_id. 2534 * 2535 * No extensions or flags are allowed currently, and so must be zero. 2536 */ 2537 struct drm_i915_gem_vm_control { 2538 /** @extensions: Zero-terminated chain of extensions. */ 2539 __u64 extensions; 2540 2541 /** @flags: reserved for future usage, currently MBZ */ 2542 __u32 flags; 2543 2544 /** @vm_id: Id of the VM created or to be destroyed */ 2545 __u32 vm_id; 2546 }; 2547 2548 struct drm_i915_reg_read { 2549 /* 2550 * Register offset. 2551 * For 64bit wide registers where the upper 32bits don't immediately 2552 * follow the lower 32bits, the offset of the lower 32bits must 2553 * be specified 2554 */ 2555 __u64 offset; 2556 #define I915_REG_READ_8B_WA (1ul << 0) 2557 2558 __u64 val; /* Return value */ 2559 }; 2560 2561 /* Known registers: 2562 * 2563 * Render engine timestamp - 0x2358 + 64bit - gen7+ 2564 * - Note this register returns an invalid value if using the default 2565 * single instruction 8byte read, in order to workaround that pass 2566 * flag I915_REG_READ_8B_WA in offset field. 2567 * 2568 */ 2569 2570 struct drm_i915_reset_stats { 2571 __u32 ctx_id; 2572 __u32 flags; 2573 2574 /* All resets since boot/module reload, for all contexts */ 2575 __u32 reset_count; 2576 2577 /* Number of batches lost when active in GPU, for this context */ 2578 __u32 batch_active; 2579 2580 /* Number of batches lost pending for execution, for this context */ 2581 __u32 batch_pending; 2582 2583 __u32 pad; 2584 }; 2585 2586 /** 2587 * struct drm_i915_gem_userptr - Create GEM object from user allocated memory. 2588 * 2589 * Userptr objects have several restrictions on what ioctls can be used with the 2590 * object handle. 2591 */ 2592 struct drm_i915_gem_userptr { 2593 /** 2594 * @user_ptr: The pointer to the allocated memory. 2595 * 2596 * Needs to be aligned to PAGE_SIZE. 2597 */ 2598 __u64 user_ptr; 2599 2600 /** 2601 * @user_size: 2602 * 2603 * The size in bytes for the allocated memory. This will also become the 2604 * object size. 2605 * 2606 * Needs to be aligned to PAGE_SIZE, and should be at least PAGE_SIZE, 2607 * or larger. 2608 */ 2609 __u64 user_size; 2610 2611 /** 2612 * @flags: 2613 * 2614 * Supported flags: 2615 * 2616 * I915_USERPTR_READ_ONLY: 2617 * 2618 * Mark the object as readonly, this also means GPU access can only be 2619 * readonly. This is only supported on HW which supports readonly access 2620 * through the GTT. If the HW can't support readonly access, an error is 2621 * returned. 2622 * 2623 * I915_USERPTR_PROBE: 2624 * 2625 * Probe the provided @user_ptr range and validate that the @user_ptr is 2626 * indeed pointing to normal memory and that the range is also valid. 2627 * For example if some garbage address is given to the kernel, then this 2628 * should complain. 2629 * 2630 * Returns -EFAULT if the probe failed. 2631 * 2632 * Note that this doesn't populate the backing pages, and also doesn't 2633 * guarantee that the object will remain valid when the object is 2634 * eventually used. 2635 * 2636 * The kernel supports this feature if I915_PARAM_HAS_USERPTR_PROBE 2637 * returns a non-zero value. 2638 * 2639 * I915_USERPTR_UNSYNCHRONIZED: 2640 * 2641 * NOT USED. Setting this flag will result in an error. 2642 */ 2643 __u32 flags; 2644 #define I915_USERPTR_READ_ONLY 0x1 2645 #define I915_USERPTR_PROBE 0x2 2646 #define I915_USERPTR_UNSYNCHRONIZED 0x80000000 2647 /** 2648 * @handle: Returned handle for the object. 2649 * 2650 * Object handles are nonzero. 2651 */ 2652 __u32 handle; 2653 }; 2654 2655 enum drm_i915_oa_format { 2656 I915_OA_FORMAT_A13 = 1, /* HSW only */ 2657 I915_OA_FORMAT_A29, /* HSW only */ 2658 I915_OA_FORMAT_A13_B8_C8, /* HSW only */ 2659 I915_OA_FORMAT_B4_C8, /* HSW only */ 2660 I915_OA_FORMAT_A45_B8_C8, /* HSW only */ 2661 I915_OA_FORMAT_B4_C8_A16, /* HSW only */ 2662 I915_OA_FORMAT_C4_B8, /* HSW+ */ 2663 2664 /* Gen8+ */ 2665 I915_OA_FORMAT_A12, 2666 I915_OA_FORMAT_A12_B8_C8, 2667 I915_OA_FORMAT_A32u40_A4u32_B8_C8, 2668 2669 /* DG2 */ 2670 I915_OAR_FORMAT_A32u40_A4u32_B8_C8, 2671 I915_OA_FORMAT_A24u40_A14u32_B8_C8, 2672 2673 I915_OA_FORMAT_MAX /* non-ABI */ 2674 }; 2675 2676 enum drm_i915_perf_property_id { 2677 /** 2678 * Open the stream for a specific context handle (as used with 2679 * execbuffer2). A stream opened for a specific context this way 2680 * won't typically require root privileges. 2681 * 2682 * This property is available in perf revision 1. 2683 */ 2684 DRM_I915_PERF_PROP_CTX_HANDLE = 1, 2685 2686 /** 2687 * A value of 1 requests the inclusion of raw OA unit reports as 2688 * part of stream samples. 2689 * 2690 * This property is available in perf revision 1. 2691 */ 2692 DRM_I915_PERF_PROP_SAMPLE_OA, 2693 2694 /** 2695 * The value specifies which set of OA unit metrics should be 2696 * configured, defining the contents of any OA unit reports. 2697 * 2698 * This property is available in perf revision 1. 2699 */ 2700 DRM_I915_PERF_PROP_OA_METRICS_SET, 2701 2702 /** 2703 * The value specifies the size and layout of OA unit reports. 2704 * 2705 * This property is available in perf revision 1. 2706 */ 2707 DRM_I915_PERF_PROP_OA_FORMAT, 2708 2709 /** 2710 * Specifying this property implicitly requests periodic OA unit 2711 * sampling and (at least on Haswell) the sampling frequency is derived 2712 * from this exponent as follows: 2713 * 2714 * 80ns * 2^(period_exponent + 1) 2715 * 2716 * This property is available in perf revision 1. 2717 */ 2718 DRM_I915_PERF_PROP_OA_EXPONENT, 2719 2720 /** 2721 * Specifying this property is only valid when specify a context to 2722 * filter with DRM_I915_PERF_PROP_CTX_HANDLE. Specifying this property 2723 * will hold preemption of the particular context we want to gather 2724 * performance data about. The execbuf2 submissions must include a 2725 * drm_i915_gem_execbuffer_ext_perf parameter for this to apply. 2726 * 2727 * This property is available in perf revision 3. 2728 */ 2729 DRM_I915_PERF_PROP_HOLD_PREEMPTION, 2730 2731 /** 2732 * Specifying this pins all contexts to the specified SSEU power 2733 * configuration for the duration of the recording. 2734 * 2735 * This parameter's value is a pointer to a struct 2736 * drm_i915_gem_context_param_sseu. 2737 * 2738 * This property is available in perf revision 4. 2739 */ 2740 DRM_I915_PERF_PROP_GLOBAL_SSEU, 2741 2742 /** 2743 * This optional parameter specifies the timer interval in nanoseconds 2744 * at which the i915 driver will check the OA buffer for available data. 2745 * Minimum allowed value is 100 microseconds. A default value is used by 2746 * the driver if this parameter is not specified. Note that larger timer 2747 * values will reduce cpu consumption during OA perf captures. However, 2748 * excessively large values would potentially result in OA buffer 2749 * overwrites as captures reach end of the OA buffer. 2750 * 2751 * This property is available in perf revision 5. 2752 */ 2753 DRM_I915_PERF_PROP_POLL_OA_PERIOD, 2754 2755 DRM_I915_PERF_PROP_MAX /* non-ABI */ 2756 }; 2757 2758 struct drm_i915_perf_open_param { 2759 __u32 flags; 2760 #define I915_PERF_FLAG_FD_CLOEXEC (1<<0) 2761 #define I915_PERF_FLAG_FD_NONBLOCK (1<<1) 2762 #define I915_PERF_FLAG_DISABLED (1<<2) 2763 2764 /** The number of u64 (id, value) pairs */ 2765 __u32 num_properties; 2766 2767 /** 2768 * Pointer to array of u64 (id, value) pairs configuring the stream 2769 * to open. 2770 */ 2771 __u64 properties_ptr; 2772 }; 2773 2774 /* 2775 * Enable data capture for a stream that was either opened in a disabled state 2776 * via I915_PERF_FLAG_DISABLED or was later disabled via 2777 * I915_PERF_IOCTL_DISABLE. 2778 * 2779 * It is intended to be cheaper to disable and enable a stream than it may be 2780 * to close and re-open a stream with the same configuration. 2781 * 2782 * It's undefined whether any pending data for the stream will be lost. 2783 * 2784 * This ioctl is available in perf revision 1. 2785 */ 2786 #define I915_PERF_IOCTL_ENABLE _IO('i', 0x0) 2787 2788 /* 2789 * Disable data capture for a stream. 2790 * 2791 * It is an error to try and read a stream that is disabled. 2792 * 2793 * This ioctl is available in perf revision 1. 2794 */ 2795 #define I915_PERF_IOCTL_DISABLE _IO('i', 0x1) 2796 2797 /* 2798 * Change metrics_set captured by a stream. 2799 * 2800 * If the stream is bound to a specific context, the configuration change 2801 * will performed inline with that context such that it takes effect before 2802 * the next execbuf submission. 2803 * 2804 * Returns the previously bound metrics set id, or a negative error code. 2805 * 2806 * This ioctl is available in perf revision 2. 2807 */ 2808 #define I915_PERF_IOCTL_CONFIG _IO('i', 0x2) 2809 2810 /* 2811 * Common to all i915 perf records 2812 */ 2813 struct drm_i915_perf_record_header { 2814 __u32 type; 2815 __u16 pad; 2816 __u16 size; 2817 }; 2818 2819 enum drm_i915_perf_record_type { 2820 2821 /** 2822 * Samples are the work horse record type whose contents are extensible 2823 * and defined when opening an i915 perf stream based on the given 2824 * properties. 2825 * 2826 * Boolean properties following the naming convention 2827 * DRM_I915_PERF_SAMPLE_xyz_PROP request the inclusion of 'xyz' data in 2828 * every sample. 2829 * 2830 * The order of these sample properties given by userspace has no 2831 * affect on the ordering of data within a sample. The order is 2832 * documented here. 2833 * 2834 * struct { 2835 * struct drm_i915_perf_record_header header; 2836 * 2837 * { u32 oa_report[]; } && DRM_I915_PERF_PROP_SAMPLE_OA 2838 * }; 2839 */ 2840 DRM_I915_PERF_RECORD_SAMPLE = 1, 2841 2842 /* 2843 * Indicates that one or more OA reports were not written by the 2844 * hardware. This can happen for example if an MI_REPORT_PERF_COUNT 2845 * command collides with periodic sampling - which would be more likely 2846 * at higher sampling frequencies. 2847 */ 2848 DRM_I915_PERF_RECORD_OA_REPORT_LOST = 2, 2849 2850 /** 2851 * An error occurred that resulted in all pending OA reports being lost. 2852 */ 2853 DRM_I915_PERF_RECORD_OA_BUFFER_LOST = 3, 2854 2855 DRM_I915_PERF_RECORD_MAX /* non-ABI */ 2856 }; 2857 2858 /** 2859 * struct drm_i915_perf_oa_config 2860 * 2861 * Structure to upload perf dynamic configuration into the kernel. 2862 */ 2863 struct drm_i915_perf_oa_config { 2864 /** 2865 * @uuid: 2866 * 2867 * String formatted like "%\08x-%\04x-%\04x-%\04x-%\012x" 2868 */ 2869 char uuid[36]; 2870 2871 /** 2872 * @n_mux_regs: 2873 * 2874 * Number of mux regs in &mux_regs_ptr. 2875 */ 2876 __u32 n_mux_regs; 2877 2878 /** 2879 * @n_boolean_regs: 2880 * 2881 * Number of boolean regs in &boolean_regs_ptr. 2882 */ 2883 __u32 n_boolean_regs; 2884 2885 /** 2886 * @n_flex_regs: 2887 * 2888 * Number of flex regs in &flex_regs_ptr. 2889 */ 2890 __u32 n_flex_regs; 2891 2892 /** 2893 * @mux_regs_ptr: 2894 * 2895 * Pointer to tuples of u32 values (register address, value) for mux 2896 * registers. Expected length of buffer is (2 * sizeof(u32) * 2897 * &n_mux_regs). 2898 */ 2899 __u64 mux_regs_ptr; 2900 2901 /** 2902 * @boolean_regs_ptr: 2903 * 2904 * Pointer to tuples of u32 values (register address, value) for mux 2905 * registers. Expected length of buffer is (2 * sizeof(u32) * 2906 * &n_boolean_regs). 2907 */ 2908 __u64 boolean_regs_ptr; 2909 2910 /** 2911 * @flex_regs_ptr: 2912 * 2913 * Pointer to tuples of u32 values (register address, value) for mux 2914 * registers. Expected length of buffer is (2 * sizeof(u32) * 2915 * &n_flex_regs). 2916 */ 2917 __u64 flex_regs_ptr; 2918 }; 2919 2920 /** 2921 * struct drm_i915_query_item - An individual query for the kernel to process. 2922 * 2923 * The behaviour is determined by the @query_id. Note that exactly what 2924 * @data_ptr is also depends on the specific @query_id. 2925 */ 2926 struct drm_i915_query_item { 2927 /** 2928 * @query_id: 2929 * 2930 * The id for this query. Currently accepted query IDs are: 2931 * - %DRM_I915_QUERY_TOPOLOGY_INFO (see struct drm_i915_query_topology_info) 2932 * - %DRM_I915_QUERY_ENGINE_INFO (see struct drm_i915_engine_info) 2933 * - %DRM_I915_QUERY_PERF_CONFIG (see struct drm_i915_query_perf_config) 2934 * - %DRM_I915_QUERY_MEMORY_REGIONS (see struct drm_i915_query_memory_regions) 2935 * - %DRM_I915_QUERY_HWCONFIG_BLOB (see `GuC HWCONFIG blob uAPI`) 2936 * - %DRM_I915_QUERY_GEOMETRY_SUBSLICES (see struct drm_i915_query_topology_info) 2937 */ 2938 __u64 query_id; 2939 #define DRM_I915_QUERY_TOPOLOGY_INFO 1 2940 #define DRM_I915_QUERY_ENGINE_INFO 2 2941 #define DRM_I915_QUERY_PERF_CONFIG 3 2942 #define DRM_I915_QUERY_MEMORY_REGIONS 4 2943 #define DRM_I915_QUERY_HWCONFIG_BLOB 5 2944 #define DRM_I915_QUERY_GEOMETRY_SUBSLICES 6 2945 /* Must be kept compact -- no holes and well documented */ 2946 2947 /** 2948 * @length: 2949 * 2950 * When set to zero by userspace, this is filled with the size of the 2951 * data to be written at the @data_ptr pointer. The kernel sets this 2952 * value to a negative value to signal an error on a particular query 2953 * item. 2954 */ 2955 __s32 length; 2956 2957 /** 2958 * @flags: 2959 * 2960 * When &query_id == %DRM_I915_QUERY_TOPOLOGY_INFO, must be 0. 2961 * 2962 * When &query_id == %DRM_I915_QUERY_PERF_CONFIG, must be one of the 2963 * following: 2964 * 2965 * - %DRM_I915_QUERY_PERF_CONFIG_LIST 2966 * - %DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID 2967 * - %DRM_I915_QUERY_PERF_CONFIG_FOR_UUID 2968 * 2969 * When &query_id == %DRM_I915_QUERY_GEOMETRY_SUBSLICES must contain 2970 * a struct i915_engine_class_instance that references a render engine. 2971 */ 2972 __u32 flags; 2973 #define DRM_I915_QUERY_PERF_CONFIG_LIST 1 2974 #define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID 2 2975 #define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID 3 2976 2977 /** 2978 * @data_ptr: 2979 * 2980 * Data will be written at the location pointed by @data_ptr when the 2981 * value of @length matches the length of the data to be written by the 2982 * kernel. 2983 */ 2984 __u64 data_ptr; 2985 }; 2986 2987 /** 2988 * struct drm_i915_query - Supply an array of struct drm_i915_query_item for the 2989 * kernel to fill out. 2990 * 2991 * Note that this is generally a two step process for each struct 2992 * drm_i915_query_item in the array: 2993 * 2994 * 1. Call the DRM_IOCTL_I915_QUERY, giving it our array of struct 2995 * drm_i915_query_item, with &drm_i915_query_item.length set to zero. The 2996 * kernel will then fill in the size, in bytes, which tells userspace how 2997 * memory it needs to allocate for the blob(say for an array of properties). 2998 * 2999 * 2. Next we call DRM_IOCTL_I915_QUERY again, this time with the 3000 * &drm_i915_query_item.data_ptr equal to our newly allocated blob. Note that 3001 * the &drm_i915_query_item.length should still be the same as what the 3002 * kernel previously set. At this point the kernel can fill in the blob. 3003 * 3004 * Note that for some query items it can make sense for userspace to just pass 3005 * in a buffer/blob equal to or larger than the required size. In this case only 3006 * a single ioctl call is needed. For some smaller query items this can work 3007 * quite well. 3008 * 3009 */ 3010 struct drm_i915_query { 3011 /** @num_items: The number of elements in the @items_ptr array */ 3012 __u32 num_items; 3013 3014 /** 3015 * @flags: Unused for now. Must be cleared to zero. 3016 */ 3017 __u32 flags; 3018 3019 /** 3020 * @items_ptr: 3021 * 3022 * Pointer to an array of struct drm_i915_query_item. The number of 3023 * array elements is @num_items. 3024 */ 3025 __u64 items_ptr; 3026 }; 3027 3028 /** 3029 * struct drm_i915_query_topology_info 3030 * 3031 * Describes slice/subslice/EU information queried by 3032 * %DRM_I915_QUERY_TOPOLOGY_INFO 3033 */ 3034 struct drm_i915_query_topology_info { 3035 /** 3036 * @flags: 3037 * 3038 * Unused for now. Must be cleared to zero. 3039 */ 3040 __u16 flags; 3041 3042 /** 3043 * @max_slices: 3044 * 3045 * The number of bits used to express the slice mask. 3046 */ 3047 __u16 max_slices; 3048 3049 /** 3050 * @max_subslices: 3051 * 3052 * The number of bits used to express the subslice mask. 3053 */ 3054 __u16 max_subslices; 3055 3056 /** 3057 * @max_eus_per_subslice: 3058 * 3059 * The number of bits in the EU mask that correspond to a single 3060 * subslice's EUs. 3061 */ 3062 __u16 max_eus_per_subslice; 3063 3064 /** 3065 * @subslice_offset: 3066 * 3067 * Offset in data[] at which the subslice masks are stored. 3068 */ 3069 __u16 subslice_offset; 3070 3071 /** 3072 * @subslice_stride: 3073 * 3074 * Stride at which each of the subslice masks for each slice are 3075 * stored. 3076 */ 3077 __u16 subslice_stride; 3078 3079 /** 3080 * @eu_offset: 3081 * 3082 * Offset in data[] at which the EU masks are stored. 3083 */ 3084 __u16 eu_offset; 3085 3086 /** 3087 * @eu_stride: 3088 * 3089 * Stride at which each of the EU masks for each subslice are stored. 3090 */ 3091 __u16 eu_stride; 3092 3093 /** 3094 * @data: 3095 * 3096 * Contains 3 pieces of information : 3097 * 3098 * - The slice mask with one bit per slice telling whether a slice is 3099 * available. The availability of slice X can be queried with the 3100 * following formula : 3101 * 3102 * .. code:: c 3103 * 3104 * (data[X / 8] >> (X % 8)) & 1 3105 * 3106 * Starting with Xe_HP platforms, Intel hardware no longer has 3107 * traditional slices so i915 will always report a single slice 3108 * (hardcoded slicemask = 0x1) which contains all of the platform's 3109 * subslices. I.e., the mask here does not reflect any of the newer 3110 * hardware concepts such as "gslices" or "cslices" since userspace 3111 * is capable of inferring those from the subslice mask. 3112 * 3113 * - The subslice mask for each slice with one bit per subslice telling 3114 * whether a subslice is available. Starting with Gen12 we use the 3115 * term "subslice" to refer to what the hardware documentation 3116 * describes as a "dual-subslices." The availability of subslice Y 3117 * in slice X can be queried with the following formula : 3118 * 3119 * .. code:: c 3120 * 3121 * (data[subslice_offset + X * subslice_stride + Y / 8] >> (Y % 8)) & 1 3122 * 3123 * - The EU mask for each subslice in each slice, with one bit per EU 3124 * telling whether an EU is available. The availability of EU Z in 3125 * subslice Y in slice X can be queried with the following formula : 3126 * 3127 * .. code:: c 3128 * 3129 * (data[eu_offset + 3130 * (X * max_subslices + Y) * eu_stride + 3131 * Z / 8 3132 * ] >> (Z % 8)) & 1 3133 */ 3134 __u8 data[]; 3135 }; 3136 3137 /** 3138 * DOC: Engine Discovery uAPI 3139 * 3140 * Engine discovery uAPI is a way of enumerating physical engines present in a 3141 * GPU associated with an open i915 DRM file descriptor. This supersedes the old 3142 * way of using `DRM_IOCTL_I915_GETPARAM` and engine identifiers like 3143 * `I915_PARAM_HAS_BLT`. 3144 * 3145 * The need for this interface came starting with Icelake and newer GPUs, which 3146 * started to establish a pattern of having multiple engines of a same class, 3147 * where not all instances were always completely functionally equivalent. 3148 * 3149 * Entry point for this uapi is `DRM_IOCTL_I915_QUERY` with the 3150 * `DRM_I915_QUERY_ENGINE_INFO` as the queried item id. 3151 * 3152 * Example for getting the list of engines: 3153 * 3154 * .. code-block:: C 3155 * 3156 * struct drm_i915_query_engine_info *info; 3157 * struct drm_i915_query_item item = { 3158 * .query_id = DRM_I915_QUERY_ENGINE_INFO; 3159 * }; 3160 * struct drm_i915_query query = { 3161 * .num_items = 1, 3162 * .items_ptr = (uintptr_t)&item, 3163 * }; 3164 * int err, i; 3165 * 3166 * // First query the size of the blob we need, this needs to be large 3167 * // enough to hold our array of engines. The kernel will fill out the 3168 * // item.length for us, which is the number of bytes we need. 3169 * // 3170 * // Alternatively a large buffer can be allocated straight away enabling 3171 * // querying in one pass, in which case item.length should contain the 3172 * // length of the provided buffer. 3173 * err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query); 3174 * if (err) ... 3175 * 3176 * info = calloc(1, item.length); 3177 * // Now that we allocated the required number of bytes, we call the ioctl 3178 * // again, this time with the data_ptr pointing to our newly allocated 3179 * // blob, which the kernel can then populate with info on all engines. 3180 * item.data_ptr = (uintptr_t)&info, 3181 * 3182 * err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query); 3183 * if (err) ... 3184 * 3185 * // We can now access each engine in the array 3186 * for (i = 0; i < info->num_engines; i++) { 3187 * struct drm_i915_engine_info einfo = info->engines[i]; 3188 * u16 class = einfo.engine.class; 3189 * u16 instance = einfo.engine.instance; 3190 * .... 3191 * } 3192 * 3193 * free(info); 3194 * 3195 * Each of the enumerated engines, apart from being defined by its class and 3196 * instance (see `struct i915_engine_class_instance`), also can have flags and 3197 * capabilities defined as documented in i915_drm.h. 3198 * 3199 * For instance video engines which support HEVC encoding will have the 3200 * `I915_VIDEO_CLASS_CAPABILITY_HEVC` capability bit set. 3201 * 3202 * Engine discovery only fully comes to its own when combined with the new way 3203 * of addressing engines when submitting batch buffers using contexts with 3204 * engine maps configured. 3205 */ 3206 3207 /** 3208 * struct drm_i915_engine_info 3209 * 3210 * Describes one engine and it's capabilities as known to the driver. 3211 */ 3212 struct drm_i915_engine_info { 3213 /** @engine: Engine class and instance. */ 3214 struct i915_engine_class_instance engine; 3215 3216 /** @rsvd0: Reserved field. */ 3217 __u32 rsvd0; 3218 3219 /** @flags: Engine flags. */ 3220 __u64 flags; 3221 #define I915_ENGINE_INFO_HAS_LOGICAL_INSTANCE (1 << 0) 3222 3223 /** @capabilities: Capabilities of this engine. */ 3224 __u64 capabilities; 3225 #define I915_VIDEO_CLASS_CAPABILITY_HEVC (1 << 0) 3226 #define I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC (1 << 1) 3227 3228 /** @logical_instance: Logical instance of engine */ 3229 __u16 logical_instance; 3230 3231 /** @rsvd1: Reserved fields. */ 3232 __u16 rsvd1[3]; 3233 /** @rsvd2: Reserved fields. */ 3234 __u64 rsvd2[3]; 3235 }; 3236 3237 /** 3238 * struct drm_i915_query_engine_info 3239 * 3240 * Engine info query enumerates all engines known to the driver by filling in 3241 * an array of struct drm_i915_engine_info structures. 3242 */ 3243 struct drm_i915_query_engine_info { 3244 /** @num_engines: Number of struct drm_i915_engine_info structs following. */ 3245 __u32 num_engines; 3246 3247 /** @rsvd: MBZ */ 3248 __u32 rsvd[3]; 3249 3250 /** @engines: Marker for drm_i915_engine_info structures. */ 3251 struct drm_i915_engine_info engines[]; 3252 }; 3253 3254 /** 3255 * struct drm_i915_query_perf_config 3256 * 3257 * Data written by the kernel with query %DRM_I915_QUERY_PERF_CONFIG and 3258 * %DRM_I915_QUERY_GEOMETRY_SUBSLICES. 3259 */ 3260 struct drm_i915_query_perf_config { 3261 union { 3262 /** 3263 * @n_configs: 3264 * 3265 * When &drm_i915_query_item.flags == 3266 * %DRM_I915_QUERY_PERF_CONFIG_LIST, i915 sets this fields to 3267 * the number of configurations available. 3268 */ 3269 __u64 n_configs; 3270 3271 /** 3272 * @config: 3273 * 3274 * When &drm_i915_query_item.flags == 3275 * %DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID, i915 will use the 3276 * value in this field as configuration identifier to decide 3277 * what data to write into config_ptr. 3278 */ 3279 __u64 config; 3280 3281 /** 3282 * @uuid: 3283 * 3284 * When &drm_i915_query_item.flags == 3285 * %DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID, i915 will use the 3286 * value in this field as configuration identifier to decide 3287 * what data to write into config_ptr. 3288 * 3289 * String formatted like "%08x-%04x-%04x-%04x-%012x" 3290 */ 3291 char uuid[36]; 3292 }; 3293 3294 /** 3295 * @flags: 3296 * 3297 * Unused for now. Must be cleared to zero. 3298 */ 3299 __u32 flags; 3300 3301 /** 3302 * @data: 3303 * 3304 * When &drm_i915_query_item.flags == %DRM_I915_QUERY_PERF_CONFIG_LIST, 3305 * i915 will write an array of __u64 of configuration identifiers. 3306 * 3307 * When &drm_i915_query_item.flags == %DRM_I915_QUERY_PERF_CONFIG_DATA, 3308 * i915 will write a struct drm_i915_perf_oa_config. If the following 3309 * fields of struct drm_i915_perf_oa_config are not set to 0, i915 will 3310 * write into the associated pointers the values of submitted when the 3311 * configuration was created : 3312 * 3313 * - &drm_i915_perf_oa_config.n_mux_regs 3314 * - &drm_i915_perf_oa_config.n_boolean_regs 3315 * - &drm_i915_perf_oa_config.n_flex_regs 3316 */ 3317 __u8 data[]; 3318 }; 3319 3320 /** 3321 * enum drm_i915_gem_memory_class - Supported memory classes 3322 */ 3323 enum drm_i915_gem_memory_class { 3324 /** @I915_MEMORY_CLASS_SYSTEM: System memory */ 3325 I915_MEMORY_CLASS_SYSTEM = 0, 3326 /** @I915_MEMORY_CLASS_DEVICE: Device local-memory */ 3327 I915_MEMORY_CLASS_DEVICE, 3328 }; 3329 3330 /** 3331 * struct drm_i915_gem_memory_class_instance - Identify particular memory region 3332 */ 3333 struct drm_i915_gem_memory_class_instance { 3334 /** @memory_class: See enum drm_i915_gem_memory_class */ 3335 __u16 memory_class; 3336 3337 /** @memory_instance: Which instance */ 3338 __u16 memory_instance; 3339 }; 3340 3341 /** 3342 * struct drm_i915_memory_region_info - Describes one region as known to the 3343 * driver. 3344 * 3345 * Note this is using both struct drm_i915_query_item and struct drm_i915_query. 3346 * For this new query we are adding the new query id DRM_I915_QUERY_MEMORY_REGIONS 3347 * at &drm_i915_query_item.query_id. 3348 */ 3349 struct drm_i915_memory_region_info { 3350 /** @region: The class:instance pair encoding */ 3351 struct drm_i915_gem_memory_class_instance region; 3352 3353 /** @rsvd0: MBZ */ 3354 __u32 rsvd0; 3355 3356 /** 3357 * @probed_size: Memory probed by the driver 3358 * 3359 * Note that it should not be possible to ever encounter a zero value 3360 * here, also note that no current region type will ever return -1 here. 3361 * Although for future region types, this might be a possibility. The 3362 * same applies to the other size fields. 3363 */ 3364 __u64 probed_size; 3365 3366 /** 3367 * @unallocated_size: Estimate of memory remaining 3368 * 3369 * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable accounting. 3370 * Without this (or if this is an older kernel) the value here will 3371 * always equal the @probed_size. Note this is only currently tracked 3372 * for I915_MEMORY_CLASS_DEVICE regions (for other types the value here 3373 * will always equal the @probed_size). 3374 */ 3375 __u64 unallocated_size; 3376 3377 union { 3378 /** @rsvd1: MBZ */ 3379 __u64 rsvd1[8]; 3380 struct { 3381 /** 3382 * @probed_cpu_visible_size: Memory probed by the driver 3383 * that is CPU accessible. 3384 * 3385 * This will be always be <= @probed_size, and the 3386 * remainder (if there is any) will not be CPU 3387 * accessible. 3388 * 3389 * On systems without small BAR, the @probed_size will 3390 * always equal the @probed_cpu_visible_size, since all 3391 * of it will be CPU accessible. 3392 * 3393 * Note this is only tracked for 3394 * I915_MEMORY_CLASS_DEVICE regions (for other types the 3395 * value here will always equal the @probed_size). 3396 * 3397 * Note that if the value returned here is zero, then 3398 * this must be an old kernel which lacks the relevant 3399 * small-bar uAPI support (including 3400 * I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS), but on 3401 * such systems we should never actually end up with a 3402 * small BAR configuration, assuming we are able to load 3403 * the kernel module. Hence it should be safe to treat 3404 * this the same as when @probed_cpu_visible_size == 3405 * @probed_size. 3406 */ 3407 __u64 probed_cpu_visible_size; 3408 3409 /** 3410 * @unallocated_cpu_visible_size: Estimate of CPU 3411 * visible memory remaining. 3412 * 3413 * Note this is only tracked for 3414 * I915_MEMORY_CLASS_DEVICE regions (for other types the 3415 * value here will always equal the 3416 * @probed_cpu_visible_size). 3417 * 3418 * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable 3419 * accounting. Without this the value here will always 3420 * equal the @probed_cpu_visible_size. Note this is only 3421 * currently tracked for I915_MEMORY_CLASS_DEVICE 3422 * regions (for other types the value here will also 3423 * always equal the @probed_cpu_visible_size). 3424 * 3425 * If this is an older kernel the value here will be 3426 * zero, see also @probed_cpu_visible_size. 3427 */ 3428 __u64 unallocated_cpu_visible_size; 3429 }; 3430 }; 3431 }; 3432 3433 /** 3434 * struct drm_i915_query_memory_regions 3435 * 3436 * The region info query enumerates all regions known to the driver by filling 3437 * in an array of struct drm_i915_memory_region_info structures. 3438 * 3439 * Example for getting the list of supported regions: 3440 * 3441 * .. code-block:: C 3442 * 3443 * struct drm_i915_query_memory_regions *info; 3444 * struct drm_i915_query_item item = { 3445 * .query_id = DRM_I915_QUERY_MEMORY_REGIONS; 3446 * }; 3447 * struct drm_i915_query query = { 3448 * .num_items = 1, 3449 * .items_ptr = (uintptr_t)&item, 3450 * }; 3451 * int err, i; 3452 * 3453 * // First query the size of the blob we need, this needs to be large 3454 * // enough to hold our array of regions. The kernel will fill out the 3455 * // item.length for us, which is the number of bytes we need. 3456 * err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query); 3457 * if (err) ... 3458 * 3459 * info = calloc(1, item.length); 3460 * // Now that we allocated the required number of bytes, we call the ioctl 3461 * // again, this time with the data_ptr pointing to our newly allocated 3462 * // blob, which the kernel can then populate with the all the region info. 3463 * item.data_ptr = (uintptr_t)&info, 3464 * 3465 * err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query); 3466 * if (err) ... 3467 * 3468 * // We can now access each region in the array 3469 * for (i = 0; i < info->num_regions; i++) { 3470 * struct drm_i915_memory_region_info mr = info->regions[i]; 3471 * u16 class = mr.region.class; 3472 * u16 instance = mr.region.instance; 3473 * 3474 * .... 3475 * } 3476 * 3477 * free(info); 3478 */ 3479 struct drm_i915_query_memory_regions { 3480 /** @num_regions: Number of supported regions */ 3481 __u32 num_regions; 3482 3483 /** @rsvd: MBZ */ 3484 __u32 rsvd[3]; 3485 3486 /** @regions: Info about each supported region */ 3487 struct drm_i915_memory_region_info regions[]; 3488 }; 3489 3490 /** 3491 * DOC: GuC HWCONFIG blob uAPI 3492 * 3493 * The GuC produces a blob with information about the current device. 3494 * i915 reads this blob from GuC and makes it available via this uAPI. 3495 * 3496 * The format and meaning of the blob content are documented in the 3497 * Programmer's Reference Manual. 3498 */ 3499 3500 /** 3501 * struct drm_i915_gem_create_ext - Existing gem_create behaviour, with added 3502 * extension support using struct i915_user_extension. 3503 * 3504 * Note that new buffer flags should be added here, at least for the stuff that 3505 * is immutable. Previously we would have two ioctls, one to create the object 3506 * with gem_create, and another to apply various parameters, however this 3507 * creates some ambiguity for the params which are considered immutable. Also in 3508 * general we're phasing out the various SET/GET ioctls. 3509 */ 3510 struct drm_i915_gem_create_ext { 3511 /** 3512 * @size: Requested size for the object. 3513 * 3514 * The (page-aligned) allocated size for the object will be returned. 3515 * 3516 * On platforms like DG2/ATS the kernel will always use 64K or larger 3517 * pages for I915_MEMORY_CLASS_DEVICE. The kernel also requires a 3518 * minimum of 64K GTT alignment for such objects. 3519 * 3520 * NOTE: Previously the ABI here required a minimum GTT alignment of 2M 3521 * on DG2/ATS, due to how the hardware implemented 64K GTT page support, 3522 * where we had the following complications: 3523 * 3524 * 1) The entire PDE (which covers a 2MB virtual address range), must 3525 * contain only 64K PTEs, i.e mixing 4K and 64K PTEs in the same 3526 * PDE is forbidden by the hardware. 3527 * 3528 * 2) We still need to support 4K PTEs for I915_MEMORY_CLASS_SYSTEM 3529 * objects. 3530 * 3531 * However on actual production HW this was completely changed to now 3532 * allow setting a TLB hint at the PTE level (see PS64), which is a lot 3533 * more flexible than the above. With this the 2M restriction was 3534 * dropped where we now only require 64K. 3535 */ 3536 __u64 size; 3537 3538 /** 3539 * @handle: Returned handle for the object. 3540 * 3541 * Object handles are nonzero. 3542 */ 3543 __u32 handle; 3544 3545 /** 3546 * @flags: Optional flags. 3547 * 3548 * Supported values: 3549 * 3550 * I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS - Signal to the kernel that 3551 * the object will need to be accessed via the CPU. 3552 * 3553 * Only valid when placing objects in I915_MEMORY_CLASS_DEVICE, and only 3554 * strictly required on configurations where some subset of the device 3555 * memory is directly visible/mappable through the CPU (which we also 3556 * call small BAR), like on some DG2+ systems. Note that this is quite 3557 * undesirable, but due to various factors like the client CPU, BIOS etc 3558 * it's something we can expect to see in the wild. See 3559 * &drm_i915_memory_region_info.probed_cpu_visible_size for how to 3560 * determine if this system applies. 3561 * 3562 * Note that one of the placements MUST be I915_MEMORY_CLASS_SYSTEM, to 3563 * ensure the kernel can always spill the allocation to system memory, 3564 * if the object can't be allocated in the mappable part of 3565 * I915_MEMORY_CLASS_DEVICE. 3566 * 3567 * Also note that since the kernel only supports flat-CCS on objects 3568 * that can *only* be placed in I915_MEMORY_CLASS_DEVICE, we therefore 3569 * don't support I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS together with 3570 * flat-CCS. 3571 * 3572 * Without this hint, the kernel will assume that non-mappable 3573 * I915_MEMORY_CLASS_DEVICE is preferred for this object. Note that the 3574 * kernel can still migrate the object to the mappable part, as a last 3575 * resort, if userspace ever CPU faults this object, but this might be 3576 * expensive, and so ideally should be avoided. 3577 * 3578 * On older kernels which lack the relevant small-bar uAPI support (see 3579 * also &drm_i915_memory_region_info.probed_cpu_visible_size), 3580 * usage of the flag will result in an error, but it should NEVER be 3581 * possible to end up with a small BAR configuration, assuming we can 3582 * also successfully load the i915 kernel module. In such cases the 3583 * entire I915_MEMORY_CLASS_DEVICE region will be CPU accessible, and as 3584 * such there are zero restrictions on where the object can be placed. 3585 */ 3586 #define I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS (1 << 0) 3587 __u32 flags; 3588 3589 /** 3590 * @extensions: The chain of extensions to apply to this object. 3591 * 3592 * This will be useful in the future when we need to support several 3593 * different extensions, and we need to apply more than one when 3594 * creating the object. See struct i915_user_extension. 3595 * 3596 * If we don't supply any extensions then we get the same old gem_create 3597 * behaviour. 3598 * 3599 * For I915_GEM_CREATE_EXT_MEMORY_REGIONS usage see 3600 * struct drm_i915_gem_create_ext_memory_regions. 3601 * 3602 * For I915_GEM_CREATE_EXT_PROTECTED_CONTENT usage see 3603 * struct drm_i915_gem_create_ext_protected_content. 3604 */ 3605 #define I915_GEM_CREATE_EXT_MEMORY_REGIONS 0 3606 #define I915_GEM_CREATE_EXT_PROTECTED_CONTENT 1 3607 __u64 extensions; 3608 }; 3609 3610 /** 3611 * struct drm_i915_gem_create_ext_memory_regions - The 3612 * I915_GEM_CREATE_EXT_MEMORY_REGIONS extension. 3613 * 3614 * Set the object with the desired set of placements/regions in priority 3615 * order. Each entry must be unique and supported by the device. 3616 * 3617 * This is provided as an array of struct drm_i915_gem_memory_class_instance, or 3618 * an equivalent layout of class:instance pair encodings. See struct 3619 * drm_i915_query_memory_regions and DRM_I915_QUERY_MEMORY_REGIONS for how to 3620 * query the supported regions for a device. 3621 * 3622 * As an example, on discrete devices, if we wish to set the placement as 3623 * device local-memory we can do something like: 3624 * 3625 * .. code-block:: C 3626 * 3627 * struct drm_i915_gem_memory_class_instance region_lmem = { 3628 * .memory_class = I915_MEMORY_CLASS_DEVICE, 3629 * .memory_instance = 0, 3630 * }; 3631 * struct drm_i915_gem_create_ext_memory_regions regions = { 3632 * .base = { .name = I915_GEM_CREATE_EXT_MEMORY_REGIONS }, 3633 * .regions = (uintptr_t)®ion_lmem, 3634 * .num_regions = 1, 3635 * }; 3636 * struct drm_i915_gem_create_ext create_ext = { 3637 * .size = 16 * PAGE_SIZE, 3638 * .extensions = (uintptr_t)®ions, 3639 * }; 3640 * 3641 * int err = ioctl(fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create_ext); 3642 * if (err) ... 3643 * 3644 * At which point we get the object handle in &drm_i915_gem_create_ext.handle, 3645 * along with the final object size in &drm_i915_gem_create_ext.size, which 3646 * should account for any rounding up, if required. 3647 * 3648 * Note that userspace has no means of knowing the current backing region 3649 * for objects where @num_regions is larger than one. The kernel will only 3650 * ensure that the priority order of the @regions array is honoured, either 3651 * when initially placing the object, or when moving memory around due to 3652 * memory pressure 3653 * 3654 * On Flat-CCS capable HW, compression is supported for the objects residing 3655 * in I915_MEMORY_CLASS_DEVICE. When such objects (compressed) have other 3656 * memory class in @regions and migrated (by i915, due to memory 3657 * constraints) to the non I915_MEMORY_CLASS_DEVICE region, then i915 needs to 3658 * decompress the content. But i915 doesn't have the required information to 3659 * decompress the userspace compressed objects. 3660 * 3661 * So i915 supports Flat-CCS, on the objects which can reside only on 3662 * I915_MEMORY_CLASS_DEVICE regions. 3663 */ 3664 struct drm_i915_gem_create_ext_memory_regions { 3665 /** @base: Extension link. See struct i915_user_extension. */ 3666 struct i915_user_extension base; 3667 3668 /** @pad: MBZ */ 3669 __u32 pad; 3670 /** @num_regions: Number of elements in the @regions array. */ 3671 __u32 num_regions; 3672 /** 3673 * @regions: The regions/placements array. 3674 * 3675 * An array of struct drm_i915_gem_memory_class_instance. 3676 */ 3677 __u64 regions; 3678 }; 3679 3680 /** 3681 * struct drm_i915_gem_create_ext_protected_content - The 3682 * I915_OBJECT_PARAM_PROTECTED_CONTENT extension. 3683 * 3684 * If this extension is provided, buffer contents are expected to be protected 3685 * by PXP encryption and require decryption for scan out and processing. This 3686 * is only possible on platforms that have PXP enabled, on all other scenarios 3687 * using this extension will cause the ioctl to fail and return -ENODEV. The 3688 * flags parameter is reserved for future expansion and must currently be set 3689 * to zero. 3690 * 3691 * The buffer contents are considered invalid after a PXP session teardown. 3692 * 3693 * The encryption is guaranteed to be processed correctly only if the object 3694 * is submitted with a context created using the 3695 * I915_CONTEXT_PARAM_PROTECTED_CONTENT flag. This will also enable extra checks 3696 * at submission time on the validity of the objects involved. 3697 * 3698 * Below is an example on how to create a protected object: 3699 * 3700 * .. code-block:: C 3701 * 3702 * struct drm_i915_gem_create_ext_protected_content protected_ext = { 3703 * .base = { .name = I915_GEM_CREATE_EXT_PROTECTED_CONTENT }, 3704 * .flags = 0, 3705 * }; 3706 * struct drm_i915_gem_create_ext create_ext = { 3707 * .size = PAGE_SIZE, 3708 * .extensions = (uintptr_t)&protected_ext, 3709 * }; 3710 * 3711 * int err = ioctl(fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create_ext); 3712 * if (err) ... 3713 */ 3714 struct drm_i915_gem_create_ext_protected_content { 3715 /** @base: Extension link. See struct i915_user_extension. */ 3716 struct i915_user_extension base; 3717 /** @flags: reserved for future usage, currently MBZ */ 3718 __u32 flags; 3719 }; 3720 3721 /* ID of the protected content session managed by i915 when PXP is active */ 3722 #define I915_PROTECTED_CONTENT_DEFAULT_SESSION 0xf 3723 3724 #if defined(__cplusplus) 3725 } 3726 #endif 3727 3728 #endif /* _UAPI_I915_DRM_H_ */ 3729