xref: /openbmc/linux/include/uapi/drm/i915_drm.h (revision 583f12a80dfb7997d59a42e8642019695f5aa15a)
1 /*
2  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the
14  * next paragraph) shall be included in all copies or substantial portions
15  * of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
20  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
21  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24  *
25  */
26 
27 #ifndef _UAPI_I915_DRM_H_
28 #define _UAPI_I915_DRM_H_
29 
30 #include "drm.h"
31 
32 #if defined(__cplusplus)
33 extern "C" {
34 #endif
35 
36 /* Please note that modifications to all structs defined here are
37  * subject to backwards-compatibility constraints.
38  */
39 
40 /**
41  * DOC: uevents generated by i915 on it's device node
42  *
43  * I915_L3_PARITY_UEVENT - Generated when the driver receives a parity mismatch
44  *	event from the gpu l3 cache. Additional information supplied is ROW,
45  *	BANK, SUBBANK, SLICE of the affected cacheline. Userspace should keep
46  *	track of these events and if a specific cache-line seems to have a
47  *	persistent error remap it with the l3 remapping tool supplied in
48  *	intel-gpu-tools.  The value supplied with the event is always 1.
49  *
50  * I915_ERROR_UEVENT - Generated upon error detection, currently only via
51  *	hangcheck. The error detection event is a good indicator of when things
52  *	began to go badly. The value supplied with the event is a 1 upon error
53  *	detection, and a 0 upon reset completion, signifying no more error
54  *	exists. NOTE: Disabling hangcheck or reset via module parameter will
55  *	cause the related events to not be seen.
56  *
57  * I915_RESET_UEVENT - Event is generated just before an attempt to reset the
58  *	GPU. The value supplied with the event is always 1. NOTE: Disable
59  *	reset via module parameter will cause this event to not be seen.
60  */
61 #define I915_L3_PARITY_UEVENT		"L3_PARITY_ERROR"
62 #define I915_ERROR_UEVENT		"ERROR"
63 #define I915_RESET_UEVENT		"RESET"
64 
65 /**
66  * struct i915_user_extension - Base class for defining a chain of extensions
67  *
68  * Many interfaces need to grow over time. In most cases we can simply
69  * extend the struct and have userspace pass in more data. Another option,
70  * as demonstrated by Vulkan's approach to providing extensions for forward
71  * and backward compatibility, is to use a list of optional structs to
72  * provide those extra details.
73  *
74  * The key advantage to using an extension chain is that it allows us to
75  * redefine the interface more easily than an ever growing struct of
76  * increasing complexity, and for large parts of that interface to be
77  * entirely optional. The downside is more pointer chasing; chasing across
78  * the __user boundary with pointers encapsulated inside u64.
79  *
80  * Example chaining:
81  *
82  * .. code-block:: C
83  *
84  *	struct i915_user_extension ext3 {
85  *		.next_extension = 0, // end
86  *		.name = ...,
87  *	};
88  *	struct i915_user_extension ext2 {
89  *		.next_extension = (uintptr_t)&ext3,
90  *		.name = ...,
91  *	};
92  *	struct i915_user_extension ext1 {
93  *		.next_extension = (uintptr_t)&ext2,
94  *		.name = ...,
95  *	};
96  *
97  * Typically the struct i915_user_extension would be embedded in some uAPI
98  * struct, and in this case we would feed it the head of the chain(i.e ext1),
99  * which would then apply all of the above extensions.
100  *
101  */
102 struct i915_user_extension {
103 	/**
104 	 * @next_extension:
105 	 *
106 	 * Pointer to the next struct i915_user_extension, or zero if the end.
107 	 */
108 	__u64 next_extension;
109 	/**
110 	 * @name: Name of the extension.
111 	 *
112 	 * Note that the name here is just some integer.
113 	 *
114 	 * Also note that the name space for this is not global for the whole
115 	 * driver, but rather its scope/meaning is limited to the specific piece
116 	 * of uAPI which has embedded the struct i915_user_extension.
117 	 */
118 	__u32 name;
119 	/**
120 	 * @flags: MBZ
121 	 *
122 	 * All undefined bits must be zero.
123 	 */
124 	__u32 flags;
125 	/**
126 	 * @rsvd: MBZ
127 	 *
128 	 * Reserved for future use; must be zero.
129 	 */
130 	__u32 rsvd[4];
131 };
132 
133 /*
134  * MOCS indexes used for GPU surfaces, defining the cacheability of the
135  * surface data and the coherency for this data wrt. CPU vs. GPU accesses.
136  */
137 enum i915_mocs_table_index {
138 	/*
139 	 * Not cached anywhere, coherency between CPU and GPU accesses is
140 	 * guaranteed.
141 	 */
142 	I915_MOCS_UNCACHED,
143 	/*
144 	 * Cacheability and coherency controlled by the kernel automatically
145 	 * based on the DRM_I915_GEM_SET_CACHING IOCTL setting and the current
146 	 * usage of the surface (used for display scanout or not).
147 	 */
148 	I915_MOCS_PTE,
149 	/*
150 	 * Cached in all GPU caches available on the platform.
151 	 * Coherency between CPU and GPU accesses to the surface is not
152 	 * guaranteed without extra synchronization.
153 	 */
154 	I915_MOCS_CACHED,
155 };
156 
157 /**
158  * enum drm_i915_gem_engine_class - uapi engine type enumeration
159  *
160  * Different engines serve different roles, and there may be more than one
161  * engine serving each role.  This enum provides a classification of the role
162  * of the engine, which may be used when requesting operations to be performed
163  * on a certain subset of engines, or for providing information about that
164  * group.
165  */
166 enum drm_i915_gem_engine_class {
167 	/**
168 	 * @I915_ENGINE_CLASS_RENDER:
169 	 *
170 	 * Render engines support instructions used for 3D, Compute (GPGPU),
171 	 * and programmable media workloads.  These instructions fetch data and
172 	 * dispatch individual work items to threads that operate in parallel.
173 	 * The threads run small programs (called "kernels" or "shaders") on
174 	 * the GPU's execution units (EUs).
175 	 */
176 	I915_ENGINE_CLASS_RENDER	= 0,
177 
178 	/**
179 	 * @I915_ENGINE_CLASS_COPY:
180 	 *
181 	 * Copy engines (also referred to as "blitters") support instructions
182 	 * that move blocks of data from one location in memory to another,
183 	 * or that fill a specified location of memory with fixed data.
184 	 * Copy engines can perform pre-defined logical or bitwise operations
185 	 * on the source, destination, or pattern data.
186 	 */
187 	I915_ENGINE_CLASS_COPY		= 1,
188 
189 	/**
190 	 * @I915_ENGINE_CLASS_VIDEO:
191 	 *
192 	 * Video engines (also referred to as "bit stream decode" (BSD) or
193 	 * "vdbox") support instructions that perform fixed-function media
194 	 * decode and encode.
195 	 */
196 	I915_ENGINE_CLASS_VIDEO		= 2,
197 
198 	/**
199 	 * @I915_ENGINE_CLASS_VIDEO_ENHANCE:
200 	 *
201 	 * Video enhancement engines (also referred to as "vebox") support
202 	 * instructions related to image enhancement.
203 	 */
204 	I915_ENGINE_CLASS_VIDEO_ENHANCE	= 3,
205 
206 	/**
207 	 * @I915_ENGINE_CLASS_COMPUTE:
208 	 *
209 	 * Compute engines support a subset of the instructions available
210 	 * on render engines:  compute engines support Compute (GPGPU) and
211 	 * programmable media workloads, but do not support the 3D pipeline.
212 	 */
213 	I915_ENGINE_CLASS_COMPUTE	= 4,
214 
215 	/* Values in this enum should be kept compact. */
216 
217 	/**
218 	 * @I915_ENGINE_CLASS_INVALID:
219 	 *
220 	 * Placeholder value to represent an invalid engine class assignment.
221 	 */
222 	I915_ENGINE_CLASS_INVALID	= -1
223 };
224 
225 /**
226  * struct i915_engine_class_instance - Engine class/instance identifier
227  *
228  * There may be more than one engine fulfilling any role within the system.
229  * Each engine of a class is given a unique instance number and therefore
230  * any engine can be specified by its class:instance tuplet. APIs that allow
231  * access to any engine in the system will use struct i915_engine_class_instance
232  * for this identification.
233  */
234 struct i915_engine_class_instance {
235 	/**
236 	 * @engine_class:
237 	 *
238 	 * Engine class from enum drm_i915_gem_engine_class
239 	 */
240 	__u16 engine_class;
241 #define I915_ENGINE_CLASS_INVALID_NONE -1
242 #define I915_ENGINE_CLASS_INVALID_VIRTUAL -2
243 
244 	/**
245 	 * @engine_instance:
246 	 *
247 	 * Engine instance.
248 	 */
249 	__u16 engine_instance;
250 };
251 
252 /**
253  * DOC: perf_events exposed by i915 through /sys/bus/event_sources/drivers/i915
254  *
255  */
256 
257 enum drm_i915_pmu_engine_sample {
258 	I915_SAMPLE_BUSY = 0,
259 	I915_SAMPLE_WAIT = 1,
260 	I915_SAMPLE_SEMA = 2
261 };
262 
263 #define I915_PMU_SAMPLE_BITS (4)
264 #define I915_PMU_SAMPLE_MASK (0xf)
265 #define I915_PMU_SAMPLE_INSTANCE_BITS (8)
266 #define I915_PMU_CLASS_SHIFT \
267 	(I915_PMU_SAMPLE_BITS + I915_PMU_SAMPLE_INSTANCE_BITS)
268 
269 #define __I915_PMU_ENGINE(class, instance, sample) \
270 	((class) << I915_PMU_CLASS_SHIFT | \
271 	(instance) << I915_PMU_SAMPLE_BITS | \
272 	(sample))
273 
274 #define I915_PMU_ENGINE_BUSY(class, instance) \
275 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_BUSY)
276 
277 #define I915_PMU_ENGINE_WAIT(class, instance) \
278 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_WAIT)
279 
280 #define I915_PMU_ENGINE_SEMA(class, instance) \
281 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_SEMA)
282 
283 /*
284  * Top 4 bits of every non-engine counter are GT id.
285  */
286 #define __I915_PMU_GT_SHIFT (60)
287 
288 #define ___I915_PMU_OTHER(gt, x) \
289 	(((__u64)__I915_PMU_ENGINE(0xff, 0xff, 0xf) + 1 + (x)) | \
290 	((__u64)(gt) << __I915_PMU_GT_SHIFT))
291 
292 #define __I915_PMU_OTHER(x) ___I915_PMU_OTHER(0, x)
293 
294 #define I915_PMU_ACTUAL_FREQUENCY	__I915_PMU_OTHER(0)
295 #define I915_PMU_REQUESTED_FREQUENCY	__I915_PMU_OTHER(1)
296 #define I915_PMU_INTERRUPTS		__I915_PMU_OTHER(2)
297 #define I915_PMU_RC6_RESIDENCY		__I915_PMU_OTHER(3)
298 #define I915_PMU_SOFTWARE_GT_AWAKE_TIME	__I915_PMU_OTHER(4)
299 
300 #define I915_PMU_LAST /* Deprecated - do not use */ I915_PMU_RC6_RESIDENCY
301 
302 #define __I915_PMU_ACTUAL_FREQUENCY(gt)		___I915_PMU_OTHER(gt, 0)
303 #define __I915_PMU_REQUESTED_FREQUENCY(gt)	___I915_PMU_OTHER(gt, 1)
304 #define __I915_PMU_INTERRUPTS(gt)		___I915_PMU_OTHER(gt, 2)
305 #define __I915_PMU_RC6_RESIDENCY(gt)		___I915_PMU_OTHER(gt, 3)
306 #define __I915_PMU_SOFTWARE_GT_AWAKE_TIME(gt)	___I915_PMU_OTHER(gt, 4)
307 
308 /* Each region is a minimum of 16k, and there are at most 255 of them.
309  */
310 #define I915_NR_TEX_REGIONS 255	/* table size 2k - maximum due to use
311 				 * of chars for next/prev indices */
312 #define I915_LOG_MIN_TEX_REGION_SIZE 14
313 
314 typedef struct _drm_i915_init {
315 	enum {
316 		I915_INIT_DMA = 0x01,
317 		I915_CLEANUP_DMA = 0x02,
318 		I915_RESUME_DMA = 0x03
319 	} func;
320 	unsigned int mmio_offset;
321 	int sarea_priv_offset;
322 	unsigned int ring_start;
323 	unsigned int ring_end;
324 	unsigned int ring_size;
325 	unsigned int front_offset;
326 	unsigned int back_offset;
327 	unsigned int depth_offset;
328 	unsigned int w;
329 	unsigned int h;
330 	unsigned int pitch;
331 	unsigned int pitch_bits;
332 	unsigned int back_pitch;
333 	unsigned int depth_pitch;
334 	unsigned int cpp;
335 	unsigned int chipset;
336 } drm_i915_init_t;
337 
338 typedef struct _drm_i915_sarea {
339 	struct drm_tex_region texList[I915_NR_TEX_REGIONS + 1];
340 	int last_upload;	/* last time texture was uploaded */
341 	int last_enqueue;	/* last time a buffer was enqueued */
342 	int last_dispatch;	/* age of the most recently dispatched buffer */
343 	int ctxOwner;		/* last context to upload state */
344 	int texAge;
345 	int pf_enabled;		/* is pageflipping allowed? */
346 	int pf_active;
347 	int pf_current_page;	/* which buffer is being displayed? */
348 	int perf_boxes;		/* performance boxes to be displayed */
349 	int width, height;      /* screen size in pixels */
350 
351 	drm_handle_t front_handle;
352 	int front_offset;
353 	int front_size;
354 
355 	drm_handle_t back_handle;
356 	int back_offset;
357 	int back_size;
358 
359 	drm_handle_t depth_handle;
360 	int depth_offset;
361 	int depth_size;
362 
363 	drm_handle_t tex_handle;
364 	int tex_offset;
365 	int tex_size;
366 	int log_tex_granularity;
367 	int pitch;
368 	int rotation;           /* 0, 90, 180 or 270 */
369 	int rotated_offset;
370 	int rotated_size;
371 	int rotated_pitch;
372 	int virtualX, virtualY;
373 
374 	unsigned int front_tiled;
375 	unsigned int back_tiled;
376 	unsigned int depth_tiled;
377 	unsigned int rotated_tiled;
378 	unsigned int rotated2_tiled;
379 
380 	int pipeA_x;
381 	int pipeA_y;
382 	int pipeA_w;
383 	int pipeA_h;
384 	int pipeB_x;
385 	int pipeB_y;
386 	int pipeB_w;
387 	int pipeB_h;
388 
389 	/* fill out some space for old userspace triple buffer */
390 	drm_handle_t unused_handle;
391 	__u32 unused1, unused2, unused3;
392 
393 	/* buffer object handles for static buffers. May change
394 	 * over the lifetime of the client.
395 	 */
396 	__u32 front_bo_handle;
397 	__u32 back_bo_handle;
398 	__u32 unused_bo_handle;
399 	__u32 depth_bo_handle;
400 
401 } drm_i915_sarea_t;
402 
403 /* due to userspace building against these headers we need some compat here */
404 #define planeA_x pipeA_x
405 #define planeA_y pipeA_y
406 #define planeA_w pipeA_w
407 #define planeA_h pipeA_h
408 #define planeB_x pipeB_x
409 #define planeB_y pipeB_y
410 #define planeB_w pipeB_w
411 #define planeB_h pipeB_h
412 
413 /* Flags for perf_boxes
414  */
415 #define I915_BOX_RING_EMPTY    0x1
416 #define I915_BOX_FLIP          0x2
417 #define I915_BOX_WAIT          0x4
418 #define I915_BOX_TEXTURE_LOAD  0x8
419 #define I915_BOX_LOST_CONTEXT  0x10
420 
421 /*
422  * i915 specific ioctls.
423  *
424  * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie
425  * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset
426  * against DRM_COMMAND_BASE and should be between [0x0, 0x60).
427  */
428 #define DRM_I915_INIT		0x00
429 #define DRM_I915_FLUSH		0x01
430 #define DRM_I915_FLIP		0x02
431 #define DRM_I915_BATCHBUFFER	0x03
432 #define DRM_I915_IRQ_EMIT	0x04
433 #define DRM_I915_IRQ_WAIT	0x05
434 #define DRM_I915_GETPARAM	0x06
435 #define DRM_I915_SETPARAM	0x07
436 #define DRM_I915_ALLOC		0x08
437 #define DRM_I915_FREE		0x09
438 #define DRM_I915_INIT_HEAP	0x0a
439 #define DRM_I915_CMDBUFFER	0x0b
440 #define DRM_I915_DESTROY_HEAP	0x0c
441 #define DRM_I915_SET_VBLANK_PIPE	0x0d
442 #define DRM_I915_GET_VBLANK_PIPE	0x0e
443 #define DRM_I915_VBLANK_SWAP	0x0f
444 #define DRM_I915_HWS_ADDR	0x11
445 #define DRM_I915_GEM_INIT	0x13
446 #define DRM_I915_GEM_EXECBUFFER	0x14
447 #define DRM_I915_GEM_PIN	0x15
448 #define DRM_I915_GEM_UNPIN	0x16
449 #define DRM_I915_GEM_BUSY	0x17
450 #define DRM_I915_GEM_THROTTLE	0x18
451 #define DRM_I915_GEM_ENTERVT	0x19
452 #define DRM_I915_GEM_LEAVEVT	0x1a
453 #define DRM_I915_GEM_CREATE	0x1b
454 #define DRM_I915_GEM_PREAD	0x1c
455 #define DRM_I915_GEM_PWRITE	0x1d
456 #define DRM_I915_GEM_MMAP	0x1e
457 #define DRM_I915_GEM_SET_DOMAIN	0x1f
458 #define DRM_I915_GEM_SW_FINISH	0x20
459 #define DRM_I915_GEM_SET_TILING	0x21
460 #define DRM_I915_GEM_GET_TILING	0x22
461 #define DRM_I915_GEM_GET_APERTURE 0x23
462 #define DRM_I915_GEM_MMAP_GTT	0x24
463 #define DRM_I915_GET_PIPE_FROM_CRTC_ID	0x25
464 #define DRM_I915_GEM_MADVISE	0x26
465 #define DRM_I915_OVERLAY_PUT_IMAGE	0x27
466 #define DRM_I915_OVERLAY_ATTRS	0x28
467 #define DRM_I915_GEM_EXECBUFFER2	0x29
468 #define DRM_I915_GEM_EXECBUFFER2_WR	DRM_I915_GEM_EXECBUFFER2
469 #define DRM_I915_GET_SPRITE_COLORKEY	0x2a
470 #define DRM_I915_SET_SPRITE_COLORKEY	0x2b
471 #define DRM_I915_GEM_WAIT	0x2c
472 #define DRM_I915_GEM_CONTEXT_CREATE	0x2d
473 #define DRM_I915_GEM_CONTEXT_DESTROY	0x2e
474 #define DRM_I915_GEM_SET_CACHING	0x2f
475 #define DRM_I915_GEM_GET_CACHING	0x30
476 #define DRM_I915_REG_READ		0x31
477 #define DRM_I915_GET_RESET_STATS	0x32
478 #define DRM_I915_GEM_USERPTR		0x33
479 #define DRM_I915_GEM_CONTEXT_GETPARAM	0x34
480 #define DRM_I915_GEM_CONTEXT_SETPARAM	0x35
481 #define DRM_I915_PERF_OPEN		0x36
482 #define DRM_I915_PERF_ADD_CONFIG	0x37
483 #define DRM_I915_PERF_REMOVE_CONFIG	0x38
484 #define DRM_I915_QUERY			0x39
485 #define DRM_I915_GEM_VM_CREATE		0x3a
486 #define DRM_I915_GEM_VM_DESTROY		0x3b
487 #define DRM_I915_GEM_CREATE_EXT		0x3c
488 /* Must be kept compact -- no holes */
489 
490 #define DRM_IOCTL_I915_INIT		DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT, drm_i915_init_t)
491 #define DRM_IOCTL_I915_FLUSH		DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLUSH)
492 #define DRM_IOCTL_I915_FLIP		DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLIP)
493 #define DRM_IOCTL_I915_BATCHBUFFER	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_BATCHBUFFER, drm_i915_batchbuffer_t)
494 #define DRM_IOCTL_I915_IRQ_EMIT         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_IRQ_EMIT, drm_i915_irq_emit_t)
495 #define DRM_IOCTL_I915_IRQ_WAIT         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_IRQ_WAIT, drm_i915_irq_wait_t)
496 #define DRM_IOCTL_I915_GETPARAM         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GETPARAM, drm_i915_getparam_t)
497 #define DRM_IOCTL_I915_SETPARAM         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SETPARAM, drm_i915_setparam_t)
498 #define DRM_IOCTL_I915_ALLOC            DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_ALLOC, drm_i915_mem_alloc_t)
499 #define DRM_IOCTL_I915_FREE             DRM_IOW( DRM_COMMAND_BASE + DRM_I915_FREE, drm_i915_mem_free_t)
500 #define DRM_IOCTL_I915_INIT_HEAP        DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT_HEAP, drm_i915_mem_init_heap_t)
501 #define DRM_IOCTL_I915_CMDBUFFER	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_CMDBUFFER, drm_i915_cmdbuffer_t)
502 #define DRM_IOCTL_I915_DESTROY_HEAP	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_DESTROY_HEAP, drm_i915_mem_destroy_heap_t)
503 #define DRM_IOCTL_I915_SET_VBLANK_PIPE	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
504 #define DRM_IOCTL_I915_GET_VBLANK_PIPE	DRM_IOR( DRM_COMMAND_BASE + DRM_I915_GET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
505 #define DRM_IOCTL_I915_VBLANK_SWAP	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_VBLANK_SWAP, drm_i915_vblank_swap_t)
506 #define DRM_IOCTL_I915_HWS_ADDR		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_HWS_ADDR, struct drm_i915_gem_init)
507 #define DRM_IOCTL_I915_GEM_INIT		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_INIT, struct drm_i915_gem_init)
508 #define DRM_IOCTL_I915_GEM_EXECBUFFER	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER, struct drm_i915_gem_execbuffer)
509 #define DRM_IOCTL_I915_GEM_EXECBUFFER2	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2, struct drm_i915_gem_execbuffer2)
510 #define DRM_IOCTL_I915_GEM_EXECBUFFER2_WR	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2_WR, struct drm_i915_gem_execbuffer2)
511 #define DRM_IOCTL_I915_GEM_PIN		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_PIN, struct drm_i915_gem_pin)
512 #define DRM_IOCTL_I915_GEM_UNPIN	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_UNPIN, struct drm_i915_gem_unpin)
513 #define DRM_IOCTL_I915_GEM_BUSY		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_BUSY, struct drm_i915_gem_busy)
514 #define DRM_IOCTL_I915_GEM_SET_CACHING		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_SET_CACHING, struct drm_i915_gem_caching)
515 #define DRM_IOCTL_I915_GEM_GET_CACHING		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_GET_CACHING, struct drm_i915_gem_caching)
516 #define DRM_IOCTL_I915_GEM_THROTTLE	DRM_IO ( DRM_COMMAND_BASE + DRM_I915_GEM_THROTTLE)
517 #define DRM_IOCTL_I915_GEM_ENTERVT	DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_ENTERVT)
518 #define DRM_IOCTL_I915_GEM_LEAVEVT	DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_LEAVEVT)
519 #define DRM_IOCTL_I915_GEM_CREATE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE, struct drm_i915_gem_create)
520 #define DRM_IOCTL_I915_GEM_CREATE_EXT	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE_EXT, struct drm_i915_gem_create_ext)
521 #define DRM_IOCTL_I915_GEM_PREAD	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PREAD, struct drm_i915_gem_pread)
522 #define DRM_IOCTL_I915_GEM_PWRITE	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PWRITE, struct drm_i915_gem_pwrite)
523 #define DRM_IOCTL_I915_GEM_MMAP		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP, struct drm_i915_gem_mmap)
524 #define DRM_IOCTL_I915_GEM_MMAP_GTT	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_gtt)
525 #define DRM_IOCTL_I915_GEM_MMAP_OFFSET	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_offset)
526 #define DRM_IOCTL_I915_GEM_SET_DOMAIN	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SET_DOMAIN, struct drm_i915_gem_set_domain)
527 #define DRM_IOCTL_I915_GEM_SW_FINISH	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SW_FINISH, struct drm_i915_gem_sw_finish)
528 #define DRM_IOCTL_I915_GEM_SET_TILING	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_SET_TILING, struct drm_i915_gem_set_tiling)
529 #define DRM_IOCTL_I915_GEM_GET_TILING	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_TILING, struct drm_i915_gem_get_tiling)
530 #define DRM_IOCTL_I915_GEM_GET_APERTURE	DRM_IOR  (DRM_COMMAND_BASE + DRM_I915_GEM_GET_APERTURE, struct drm_i915_gem_get_aperture)
531 #define DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_PIPE_FROM_CRTC_ID, struct drm_i915_get_pipe_from_crtc_id)
532 #define DRM_IOCTL_I915_GEM_MADVISE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MADVISE, struct drm_i915_gem_madvise)
533 #define DRM_IOCTL_I915_OVERLAY_PUT_IMAGE	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_OVERLAY_PUT_IMAGE, struct drm_intel_overlay_put_image)
534 #define DRM_IOCTL_I915_OVERLAY_ATTRS	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_OVERLAY_ATTRS, struct drm_intel_overlay_attrs)
535 #define DRM_IOCTL_I915_SET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_SET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
536 #define DRM_IOCTL_I915_GET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
537 #define DRM_IOCTL_I915_GEM_WAIT		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_WAIT, struct drm_i915_gem_wait)
538 #define DRM_IOCTL_I915_GEM_CONTEXT_CREATE	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create)
539 #define DRM_IOCTL_I915_GEM_CONTEXT_CREATE_EXT	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create_ext)
540 #define DRM_IOCTL_I915_GEM_CONTEXT_DESTROY	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_DESTROY, struct drm_i915_gem_context_destroy)
541 #define DRM_IOCTL_I915_REG_READ			DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_REG_READ, struct drm_i915_reg_read)
542 #define DRM_IOCTL_I915_GET_RESET_STATS		DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GET_RESET_STATS, struct drm_i915_reset_stats)
543 #define DRM_IOCTL_I915_GEM_USERPTR			DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_USERPTR, struct drm_i915_gem_userptr)
544 #define DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_GETPARAM, struct drm_i915_gem_context_param)
545 #define DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_SETPARAM, struct drm_i915_gem_context_param)
546 #define DRM_IOCTL_I915_PERF_OPEN	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_OPEN, struct drm_i915_perf_open_param)
547 #define DRM_IOCTL_I915_PERF_ADD_CONFIG	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_ADD_CONFIG, struct drm_i915_perf_oa_config)
548 #define DRM_IOCTL_I915_PERF_REMOVE_CONFIG	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_REMOVE_CONFIG, __u64)
549 #define DRM_IOCTL_I915_QUERY			DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_QUERY, struct drm_i915_query)
550 #define DRM_IOCTL_I915_GEM_VM_CREATE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_VM_CREATE, struct drm_i915_gem_vm_control)
551 #define DRM_IOCTL_I915_GEM_VM_DESTROY	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_VM_DESTROY, struct drm_i915_gem_vm_control)
552 
553 /* Allow drivers to submit batchbuffers directly to hardware, relying
554  * on the security mechanisms provided by hardware.
555  */
556 typedef struct drm_i915_batchbuffer {
557 	int start;		/* agp offset */
558 	int used;		/* nr bytes in use */
559 	int DR1;		/* hw flags for GFX_OP_DRAWRECT_INFO */
560 	int DR4;		/* window origin for GFX_OP_DRAWRECT_INFO */
561 	int num_cliprects;	/* mulitpass with multiple cliprects? */
562 	struct drm_clip_rect __user *cliprects;	/* pointer to userspace cliprects */
563 } drm_i915_batchbuffer_t;
564 
565 /* As above, but pass a pointer to userspace buffer which can be
566  * validated by the kernel prior to sending to hardware.
567  */
568 typedef struct _drm_i915_cmdbuffer {
569 	char __user *buf;	/* pointer to userspace command buffer */
570 	int sz;			/* nr bytes in buf */
571 	int DR1;		/* hw flags for GFX_OP_DRAWRECT_INFO */
572 	int DR4;		/* window origin for GFX_OP_DRAWRECT_INFO */
573 	int num_cliprects;	/* mulitpass with multiple cliprects? */
574 	struct drm_clip_rect __user *cliprects;	/* pointer to userspace cliprects */
575 } drm_i915_cmdbuffer_t;
576 
577 /* Userspace can request & wait on irq's:
578  */
579 typedef struct drm_i915_irq_emit {
580 	int __user *irq_seq;
581 } drm_i915_irq_emit_t;
582 
583 typedef struct drm_i915_irq_wait {
584 	int irq_seq;
585 } drm_i915_irq_wait_t;
586 
587 /*
588  * Different modes of per-process Graphics Translation Table,
589  * see I915_PARAM_HAS_ALIASING_PPGTT
590  */
591 #define I915_GEM_PPGTT_NONE	0
592 #define I915_GEM_PPGTT_ALIASING	1
593 #define I915_GEM_PPGTT_FULL	2
594 
595 /* Ioctl to query kernel params:
596  */
597 #define I915_PARAM_IRQ_ACTIVE            1
598 #define I915_PARAM_ALLOW_BATCHBUFFER     2
599 #define I915_PARAM_LAST_DISPATCH         3
600 #define I915_PARAM_CHIPSET_ID            4
601 #define I915_PARAM_HAS_GEM               5
602 #define I915_PARAM_NUM_FENCES_AVAIL      6
603 #define I915_PARAM_HAS_OVERLAY           7
604 #define I915_PARAM_HAS_PAGEFLIPPING	 8
605 #define I915_PARAM_HAS_EXECBUF2          9
606 #define I915_PARAM_HAS_BSD		 10
607 #define I915_PARAM_HAS_BLT		 11
608 #define I915_PARAM_HAS_RELAXED_FENCING	 12
609 #define I915_PARAM_HAS_COHERENT_RINGS	 13
610 #define I915_PARAM_HAS_EXEC_CONSTANTS	 14
611 #define I915_PARAM_HAS_RELAXED_DELTA	 15
612 #define I915_PARAM_HAS_GEN7_SOL_RESET	 16
613 #define I915_PARAM_HAS_LLC     	 	 17
614 #define I915_PARAM_HAS_ALIASING_PPGTT	 18
615 #define I915_PARAM_HAS_WAIT_TIMEOUT	 19
616 #define I915_PARAM_HAS_SEMAPHORES	 20
617 #define I915_PARAM_HAS_PRIME_VMAP_FLUSH	 21
618 #define I915_PARAM_HAS_VEBOX		 22
619 #define I915_PARAM_HAS_SECURE_BATCHES	 23
620 #define I915_PARAM_HAS_PINNED_BATCHES	 24
621 #define I915_PARAM_HAS_EXEC_NO_RELOC	 25
622 #define I915_PARAM_HAS_EXEC_HANDLE_LUT   26
623 #define I915_PARAM_HAS_WT     	 	 27
624 #define I915_PARAM_CMD_PARSER_VERSION	 28
625 #define I915_PARAM_HAS_COHERENT_PHYS_GTT 29
626 #define I915_PARAM_MMAP_VERSION          30
627 #define I915_PARAM_HAS_BSD2		 31
628 #define I915_PARAM_REVISION              32
629 #define I915_PARAM_SUBSLICE_TOTAL	 33
630 #define I915_PARAM_EU_TOTAL		 34
631 #define I915_PARAM_HAS_GPU_RESET	 35
632 #define I915_PARAM_HAS_RESOURCE_STREAMER 36
633 #define I915_PARAM_HAS_EXEC_SOFTPIN	 37
634 #define I915_PARAM_HAS_POOLED_EU	 38
635 #define I915_PARAM_MIN_EU_IN_POOL	 39
636 #define I915_PARAM_MMAP_GTT_VERSION	 40
637 
638 /*
639  * Query whether DRM_I915_GEM_EXECBUFFER2 supports user defined execution
640  * priorities and the driver will attempt to execute batches in priority order.
641  * The param returns a capability bitmask, nonzero implies that the scheduler
642  * is enabled, with different features present according to the mask.
643  *
644  * The initial priority for each batch is supplied by the context and is
645  * controlled via I915_CONTEXT_PARAM_PRIORITY.
646  */
647 #define I915_PARAM_HAS_SCHEDULER	 41
648 #define   I915_SCHEDULER_CAP_ENABLED	(1ul << 0)
649 #define   I915_SCHEDULER_CAP_PRIORITY	(1ul << 1)
650 #define   I915_SCHEDULER_CAP_PREEMPTION	(1ul << 2)
651 #define   I915_SCHEDULER_CAP_SEMAPHORES	(1ul << 3)
652 #define   I915_SCHEDULER_CAP_ENGINE_BUSY_STATS	(1ul << 4)
653 /*
654  * Indicates the 2k user priority levels are statically mapped into 3 buckets as
655  * follows:
656  *
657  * -1k to -1	Low priority
658  * 0		Normal priority
659  * 1 to 1k	Highest priority
660  */
661 #define   I915_SCHEDULER_CAP_STATIC_PRIORITY_MAP	(1ul << 5)
662 
663 /*
664  * Query the status of HuC load.
665  *
666  * The query can fail in the following scenarios with the listed error codes:
667  *  -ENODEV if HuC is not present on this platform,
668  *  -EOPNOTSUPP if HuC firmware usage is disabled,
669  *  -ENOPKG if HuC firmware fetch failed,
670  *  -ENOEXEC if HuC firmware is invalid or mismatched,
671  *  -ENOMEM if i915 failed to prepare the FW objects for transfer to the uC,
672  *  -EIO if the FW transfer or the FW authentication failed.
673  *
674  * If the IOCTL is successful, the returned parameter will be set to one of the
675  * following values:
676  *  * 0 if HuC firmware load is not complete,
677  *  * 1 if HuC firmware is authenticated and running.
678  */
679 #define I915_PARAM_HUC_STATUS		 42
680 
681 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to opt-out of
682  * synchronisation with implicit fencing on individual objects.
683  * See EXEC_OBJECT_ASYNC.
684  */
685 #define I915_PARAM_HAS_EXEC_ASYNC	 43
686 
687 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports explicit fence support -
688  * both being able to pass in a sync_file fd to wait upon before executing,
689  * and being able to return a new sync_file fd that is signaled when the
690  * current request is complete. See I915_EXEC_FENCE_IN and I915_EXEC_FENCE_OUT.
691  */
692 #define I915_PARAM_HAS_EXEC_FENCE	 44
693 
694 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to capture
695  * user specified bufffers for post-mortem debugging of GPU hangs. See
696  * EXEC_OBJECT_CAPTURE.
697  */
698 #define I915_PARAM_HAS_EXEC_CAPTURE	 45
699 
700 #define I915_PARAM_SLICE_MASK		 46
701 
702 /* Assuming it's uniform for each slice, this queries the mask of subslices
703  * per-slice for this system.
704  */
705 #define I915_PARAM_SUBSLICE_MASK	 47
706 
707 /*
708  * Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying the batch buffer
709  * as the first execobject as opposed to the last. See I915_EXEC_BATCH_FIRST.
710  */
711 #define I915_PARAM_HAS_EXEC_BATCH_FIRST	 48
712 
713 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
714  * drm_i915_gem_exec_fence structures.  See I915_EXEC_FENCE_ARRAY.
715  */
716 #define I915_PARAM_HAS_EXEC_FENCE_ARRAY  49
717 
718 /*
719  * Query whether every context (both per-file default and user created) is
720  * isolated (insofar as HW supports). If this parameter is not true, then
721  * freshly created contexts may inherit values from an existing context,
722  * rather than default HW values. If true, it also ensures (insofar as HW
723  * supports) that all state set by this context will not leak to any other
724  * context.
725  *
726  * As not every engine across every gen support contexts, the returned
727  * value reports the support of context isolation for individual engines by
728  * returning a bitmask of each engine class set to true if that class supports
729  * isolation.
730  */
731 #define I915_PARAM_HAS_CONTEXT_ISOLATION 50
732 
733 /* Frequency of the command streamer timestamps given by the *_TIMESTAMP
734  * registers. This used to be fixed per platform but from CNL onwards, this
735  * might vary depending on the parts.
736  */
737 #define I915_PARAM_CS_TIMESTAMP_FREQUENCY 51
738 
739 /*
740  * Once upon a time we supposed that writes through the GGTT would be
741  * immediately in physical memory (once flushed out of the CPU path). However,
742  * on a few different processors and chipsets, this is not necessarily the case
743  * as the writes appear to be buffered internally. Thus a read of the backing
744  * storage (physical memory) via a different path (with different physical tags
745  * to the indirect write via the GGTT) will see stale values from before
746  * the GGTT write. Inside the kernel, we can for the most part keep track of
747  * the different read/write domains in use (e.g. set-domain), but the assumption
748  * of coherency is baked into the ABI, hence reporting its true state in this
749  * parameter.
750  *
751  * Reports true when writes via mmap_gtt are immediately visible following an
752  * lfence to flush the WCB.
753  *
754  * Reports false when writes via mmap_gtt are indeterminately delayed in an in
755  * internal buffer and are _not_ immediately visible to third parties accessing
756  * directly via mmap_cpu/mmap_wc. Use of mmap_gtt as part of an IPC
757  * communications channel when reporting false is strongly disadvised.
758  */
759 #define I915_PARAM_MMAP_GTT_COHERENT	52
760 
761 /*
762  * Query whether DRM_I915_GEM_EXECBUFFER2 supports coordination of parallel
763  * execution through use of explicit fence support.
764  * See I915_EXEC_FENCE_OUT and I915_EXEC_FENCE_SUBMIT.
765  */
766 #define I915_PARAM_HAS_EXEC_SUBMIT_FENCE 53
767 
768 /*
769  * Revision of the i915-perf uAPI. The value returned helps determine what
770  * i915-perf features are available. See drm_i915_perf_property_id.
771  */
772 #define I915_PARAM_PERF_REVISION	54
773 
774 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
775  * timeline syncobj through drm_i915_gem_execbuffer_ext_timeline_fences. See
776  * I915_EXEC_USE_EXTENSIONS.
777  */
778 #define I915_PARAM_HAS_EXEC_TIMELINE_FENCES 55
779 
780 /* Query if the kernel supports the I915_USERPTR_PROBE flag. */
781 #define I915_PARAM_HAS_USERPTR_PROBE 56
782 
783 /*
784  * Frequency of the timestamps in OA reports. This used to be the same as the CS
785  * timestamp frequency, but differs on some platforms.
786  */
787 #define I915_PARAM_OA_TIMESTAMP_FREQUENCY 57
788 
789 /*
790  * Query the status of PXP support in i915.
791  *
792  * The query can fail in the following scenarios with the listed error codes:
793  *     -ENODEV = PXP support is not available on the GPU device or in the
794  *               kernel due to missing component drivers or kernel configs.
795  *
796  * If the IOCTL is successful, the returned parameter will be set to one of
797  * the following values:
798  *     1 = PXP feature is supported and is ready for use.
799  *     2 = PXP feature is supported but should be ready soon (pending
800  *         initialization of non-i915 system dependencies).
801  *
802  * NOTE: When param is supported (positive return values), user space should
803  *       still refer to the GEM PXP context-creation UAPI header specs to be
804  *       aware of possible failure due to system state machine at the time.
805  */
806 #define I915_PARAM_PXP_STATUS		 58
807 
808 /* Must be kept compact -- no holes and well documented */
809 
810 /**
811  * struct drm_i915_getparam - Driver parameter query structure.
812  */
813 struct drm_i915_getparam {
814 	/** @param: Driver parameter to query. */
815 	__s32 param;
816 
817 	/**
818 	 * @value: Address of memory where queried value should be put.
819 	 *
820 	 * WARNING: Using pointers instead of fixed-size u64 means we need to write
821 	 * compat32 code. Don't repeat this mistake.
822 	 */
823 	int __user *value;
824 };
825 
826 /**
827  * typedef drm_i915_getparam_t - Driver parameter query structure.
828  * See struct drm_i915_getparam.
829  */
830 typedef struct drm_i915_getparam drm_i915_getparam_t;
831 
832 /* Ioctl to set kernel params:
833  */
834 #define I915_SETPARAM_USE_MI_BATCHBUFFER_START            1
835 #define I915_SETPARAM_TEX_LRU_LOG_GRANULARITY             2
836 #define I915_SETPARAM_ALLOW_BATCHBUFFER                   3
837 #define I915_SETPARAM_NUM_USED_FENCES                     4
838 /* Must be kept compact -- no holes */
839 
840 typedef struct drm_i915_setparam {
841 	int param;
842 	int value;
843 } drm_i915_setparam_t;
844 
845 /* A memory manager for regions of shared memory:
846  */
847 #define I915_MEM_REGION_AGP 1
848 
849 typedef struct drm_i915_mem_alloc {
850 	int region;
851 	int alignment;
852 	int size;
853 	int __user *region_offset;	/* offset from start of fb or agp */
854 } drm_i915_mem_alloc_t;
855 
856 typedef struct drm_i915_mem_free {
857 	int region;
858 	int region_offset;
859 } drm_i915_mem_free_t;
860 
861 typedef struct drm_i915_mem_init_heap {
862 	int region;
863 	int size;
864 	int start;
865 } drm_i915_mem_init_heap_t;
866 
867 /* Allow memory manager to be torn down and re-initialized (eg on
868  * rotate):
869  */
870 typedef struct drm_i915_mem_destroy_heap {
871 	int region;
872 } drm_i915_mem_destroy_heap_t;
873 
874 /* Allow X server to configure which pipes to monitor for vblank signals
875  */
876 #define	DRM_I915_VBLANK_PIPE_A	1
877 #define	DRM_I915_VBLANK_PIPE_B	2
878 
879 typedef struct drm_i915_vblank_pipe {
880 	int pipe;
881 } drm_i915_vblank_pipe_t;
882 
883 /* Schedule buffer swap at given vertical blank:
884  */
885 typedef struct drm_i915_vblank_swap {
886 	drm_drawable_t drawable;
887 	enum drm_vblank_seq_type seqtype;
888 	unsigned int sequence;
889 } drm_i915_vblank_swap_t;
890 
891 typedef struct drm_i915_hws_addr {
892 	__u64 addr;
893 } drm_i915_hws_addr_t;
894 
895 struct drm_i915_gem_init {
896 	/**
897 	 * Beginning offset in the GTT to be managed by the DRM memory
898 	 * manager.
899 	 */
900 	__u64 gtt_start;
901 	/**
902 	 * Ending offset in the GTT to be managed by the DRM memory
903 	 * manager.
904 	 */
905 	__u64 gtt_end;
906 };
907 
908 struct drm_i915_gem_create {
909 	/**
910 	 * Requested size for the object.
911 	 *
912 	 * The (page-aligned) allocated size for the object will be returned.
913 	 */
914 	__u64 size;
915 	/**
916 	 * Returned handle for the object.
917 	 *
918 	 * Object handles are nonzero.
919 	 */
920 	__u32 handle;
921 	__u32 pad;
922 };
923 
924 struct drm_i915_gem_pread {
925 	/** Handle for the object being read. */
926 	__u32 handle;
927 	__u32 pad;
928 	/** Offset into the object to read from */
929 	__u64 offset;
930 	/** Length of data to read */
931 	__u64 size;
932 	/**
933 	 * Pointer to write the data into.
934 	 *
935 	 * This is a fixed-size type for 32/64 compatibility.
936 	 */
937 	__u64 data_ptr;
938 };
939 
940 struct drm_i915_gem_pwrite {
941 	/** Handle for the object being written to. */
942 	__u32 handle;
943 	__u32 pad;
944 	/** Offset into the object to write to */
945 	__u64 offset;
946 	/** Length of data to write */
947 	__u64 size;
948 	/**
949 	 * Pointer to read the data from.
950 	 *
951 	 * This is a fixed-size type for 32/64 compatibility.
952 	 */
953 	__u64 data_ptr;
954 };
955 
956 struct drm_i915_gem_mmap {
957 	/** Handle for the object being mapped. */
958 	__u32 handle;
959 	__u32 pad;
960 	/** Offset in the object to map. */
961 	__u64 offset;
962 	/**
963 	 * Length of data to map.
964 	 *
965 	 * The value will be page-aligned.
966 	 */
967 	__u64 size;
968 	/**
969 	 * Returned pointer the data was mapped at.
970 	 *
971 	 * This is a fixed-size type for 32/64 compatibility.
972 	 */
973 	__u64 addr_ptr;
974 
975 	/**
976 	 * Flags for extended behaviour.
977 	 *
978 	 * Added in version 2.
979 	 */
980 	__u64 flags;
981 #define I915_MMAP_WC 0x1
982 };
983 
984 struct drm_i915_gem_mmap_gtt {
985 	/** Handle for the object being mapped. */
986 	__u32 handle;
987 	__u32 pad;
988 	/**
989 	 * Fake offset to use for subsequent mmap call
990 	 *
991 	 * This is a fixed-size type for 32/64 compatibility.
992 	 */
993 	__u64 offset;
994 };
995 
996 /**
997  * struct drm_i915_gem_mmap_offset - Retrieve an offset so we can mmap this buffer object.
998  *
999  * This struct is passed as argument to the `DRM_IOCTL_I915_GEM_MMAP_OFFSET` ioctl,
1000  * and is used to retrieve the fake offset to mmap an object specified by &handle.
1001  *
1002  * The legacy way of using `DRM_IOCTL_I915_GEM_MMAP` is removed on gen12+.
1003  * `DRM_IOCTL_I915_GEM_MMAP_GTT` is an older supported alias to this struct, but will behave
1004  * as setting the &extensions to 0, and &flags to `I915_MMAP_OFFSET_GTT`.
1005  */
1006 struct drm_i915_gem_mmap_offset {
1007 	/** @handle: Handle for the object being mapped. */
1008 	__u32 handle;
1009 	/** @pad: Must be zero */
1010 	__u32 pad;
1011 	/**
1012 	 * @offset: The fake offset to use for subsequent mmap call
1013 	 *
1014 	 * This is a fixed-size type for 32/64 compatibility.
1015 	 */
1016 	__u64 offset;
1017 
1018 	/**
1019 	 * @flags: Flags for extended behaviour.
1020 	 *
1021 	 * It is mandatory that one of the `MMAP_OFFSET` types
1022 	 * should be included:
1023 	 *
1024 	 * - `I915_MMAP_OFFSET_GTT`: Use mmap with the object bound to GTT. (Write-Combined)
1025 	 * - `I915_MMAP_OFFSET_WC`: Use Write-Combined caching.
1026 	 * - `I915_MMAP_OFFSET_WB`: Use Write-Back caching.
1027 	 * - `I915_MMAP_OFFSET_FIXED`: Use object placement to determine caching.
1028 	 *
1029 	 * On devices with local memory `I915_MMAP_OFFSET_FIXED` is the only valid
1030 	 * type. On devices without local memory, this caching mode is invalid.
1031 	 *
1032 	 * As caching mode when specifying `I915_MMAP_OFFSET_FIXED`, WC or WB will
1033 	 * be used, depending on the object placement on creation. WB will be used
1034 	 * when the object can only exist in system memory, WC otherwise.
1035 	 */
1036 	__u64 flags;
1037 
1038 #define I915_MMAP_OFFSET_GTT	0
1039 #define I915_MMAP_OFFSET_WC	1
1040 #define I915_MMAP_OFFSET_WB	2
1041 #define I915_MMAP_OFFSET_UC	3
1042 #define I915_MMAP_OFFSET_FIXED	4
1043 
1044 	/**
1045 	 * @extensions: Zero-terminated chain of extensions.
1046 	 *
1047 	 * No current extensions defined; mbz.
1048 	 */
1049 	__u64 extensions;
1050 };
1051 
1052 /**
1053  * struct drm_i915_gem_set_domain - Adjust the objects write or read domain, in
1054  * preparation for accessing the pages via some CPU domain.
1055  *
1056  * Specifying a new write or read domain will flush the object out of the
1057  * previous domain(if required), before then updating the objects domain
1058  * tracking with the new domain.
1059  *
1060  * Note this might involve waiting for the object first if it is still active on
1061  * the GPU.
1062  *
1063  * Supported values for @read_domains and @write_domain:
1064  *
1065  *	- I915_GEM_DOMAIN_WC: Uncached write-combined domain
1066  *	- I915_GEM_DOMAIN_CPU: CPU cache domain
1067  *	- I915_GEM_DOMAIN_GTT: Mappable aperture domain
1068  *
1069  * All other domains are rejected.
1070  *
1071  * Note that for discrete, starting from DG1, this is no longer supported, and
1072  * is instead rejected. On such platforms the CPU domain is effectively static,
1073  * where we also only support a single &drm_i915_gem_mmap_offset cache mode,
1074  * which can't be set explicitly and instead depends on the object placements,
1075  * as per the below.
1076  *
1077  * Implicit caching rules, starting from DG1:
1078  *
1079  *	- If any of the object placements (see &drm_i915_gem_create_ext_memory_regions)
1080  *	  contain I915_MEMORY_CLASS_DEVICE then the object will be allocated and
1081  *	  mapped as write-combined only.
1082  *
1083  *	- Everything else is always allocated and mapped as write-back, with the
1084  *	  guarantee that everything is also coherent with the GPU.
1085  *
1086  * Note that this is likely to change in the future again, where we might need
1087  * more flexibility on future devices, so making this all explicit as part of a
1088  * new &drm_i915_gem_create_ext extension is probable.
1089  */
1090 struct drm_i915_gem_set_domain {
1091 	/** @handle: Handle for the object. */
1092 	__u32 handle;
1093 
1094 	/** @read_domains: New read domains. */
1095 	__u32 read_domains;
1096 
1097 	/**
1098 	 * @write_domain: New write domain.
1099 	 *
1100 	 * Note that having something in the write domain implies it's in the
1101 	 * read domain, and only that read domain.
1102 	 */
1103 	__u32 write_domain;
1104 };
1105 
1106 struct drm_i915_gem_sw_finish {
1107 	/** Handle for the object */
1108 	__u32 handle;
1109 };
1110 
1111 struct drm_i915_gem_relocation_entry {
1112 	/**
1113 	 * Handle of the buffer being pointed to by this relocation entry.
1114 	 *
1115 	 * It's appealing to make this be an index into the mm_validate_entry
1116 	 * list to refer to the buffer, but this allows the driver to create
1117 	 * a relocation list for state buffers and not re-write it per
1118 	 * exec using the buffer.
1119 	 */
1120 	__u32 target_handle;
1121 
1122 	/**
1123 	 * Value to be added to the offset of the target buffer to make up
1124 	 * the relocation entry.
1125 	 */
1126 	__u32 delta;
1127 
1128 	/** Offset in the buffer the relocation entry will be written into */
1129 	__u64 offset;
1130 
1131 	/**
1132 	 * Offset value of the target buffer that the relocation entry was last
1133 	 * written as.
1134 	 *
1135 	 * If the buffer has the same offset as last time, we can skip syncing
1136 	 * and writing the relocation.  This value is written back out by
1137 	 * the execbuffer ioctl when the relocation is written.
1138 	 */
1139 	__u64 presumed_offset;
1140 
1141 	/**
1142 	 * Target memory domains read by this operation.
1143 	 */
1144 	__u32 read_domains;
1145 
1146 	/**
1147 	 * Target memory domains written by this operation.
1148 	 *
1149 	 * Note that only one domain may be written by the whole
1150 	 * execbuffer operation, so that where there are conflicts,
1151 	 * the application will get -EINVAL back.
1152 	 */
1153 	__u32 write_domain;
1154 };
1155 
1156 /** @{
1157  * Intel memory domains
1158  *
1159  * Most of these just align with the various caches in
1160  * the system and are used to flush and invalidate as
1161  * objects end up cached in different domains.
1162  */
1163 /** CPU cache */
1164 #define I915_GEM_DOMAIN_CPU		0x00000001
1165 /** Render cache, used by 2D and 3D drawing */
1166 #define I915_GEM_DOMAIN_RENDER		0x00000002
1167 /** Sampler cache, used by texture engine */
1168 #define I915_GEM_DOMAIN_SAMPLER		0x00000004
1169 /** Command queue, used to load batch buffers */
1170 #define I915_GEM_DOMAIN_COMMAND		0x00000008
1171 /** Instruction cache, used by shader programs */
1172 #define I915_GEM_DOMAIN_INSTRUCTION	0x00000010
1173 /** Vertex address cache */
1174 #define I915_GEM_DOMAIN_VERTEX		0x00000020
1175 /** GTT domain - aperture and scanout */
1176 #define I915_GEM_DOMAIN_GTT		0x00000040
1177 /** WC domain - uncached access */
1178 #define I915_GEM_DOMAIN_WC		0x00000080
1179 /** @} */
1180 
1181 struct drm_i915_gem_exec_object {
1182 	/**
1183 	 * User's handle for a buffer to be bound into the GTT for this
1184 	 * operation.
1185 	 */
1186 	__u32 handle;
1187 
1188 	/** Number of relocations to be performed on this buffer */
1189 	__u32 relocation_count;
1190 	/**
1191 	 * Pointer to array of struct drm_i915_gem_relocation_entry containing
1192 	 * the relocations to be performed in this buffer.
1193 	 */
1194 	__u64 relocs_ptr;
1195 
1196 	/** Required alignment in graphics aperture */
1197 	__u64 alignment;
1198 
1199 	/**
1200 	 * Returned value of the updated offset of the object, for future
1201 	 * presumed_offset writes.
1202 	 */
1203 	__u64 offset;
1204 };
1205 
1206 /* DRM_IOCTL_I915_GEM_EXECBUFFER was removed in Linux 5.13 */
1207 struct drm_i915_gem_execbuffer {
1208 	/**
1209 	 * List of buffers to be validated with their relocations to be
1210 	 * performend on them.
1211 	 *
1212 	 * This is a pointer to an array of struct drm_i915_gem_validate_entry.
1213 	 *
1214 	 * These buffers must be listed in an order such that all relocations
1215 	 * a buffer is performing refer to buffers that have already appeared
1216 	 * in the validate list.
1217 	 */
1218 	__u64 buffers_ptr;
1219 	__u32 buffer_count;
1220 
1221 	/** Offset in the batchbuffer to start execution from. */
1222 	__u32 batch_start_offset;
1223 	/** Bytes used in batchbuffer from batch_start_offset */
1224 	__u32 batch_len;
1225 	__u32 DR1;
1226 	__u32 DR4;
1227 	__u32 num_cliprects;
1228 	/** This is a struct drm_clip_rect *cliprects */
1229 	__u64 cliprects_ptr;
1230 };
1231 
1232 struct drm_i915_gem_exec_object2 {
1233 	/**
1234 	 * User's handle for a buffer to be bound into the GTT for this
1235 	 * operation.
1236 	 */
1237 	__u32 handle;
1238 
1239 	/** Number of relocations to be performed on this buffer */
1240 	__u32 relocation_count;
1241 	/**
1242 	 * Pointer to array of struct drm_i915_gem_relocation_entry containing
1243 	 * the relocations to be performed in this buffer.
1244 	 */
1245 	__u64 relocs_ptr;
1246 
1247 	/** Required alignment in graphics aperture */
1248 	__u64 alignment;
1249 
1250 	/**
1251 	 * When the EXEC_OBJECT_PINNED flag is specified this is populated by
1252 	 * the user with the GTT offset at which this object will be pinned.
1253 	 *
1254 	 * When the I915_EXEC_NO_RELOC flag is specified this must contain the
1255 	 * presumed_offset of the object.
1256 	 *
1257 	 * During execbuffer2 the kernel populates it with the value of the
1258 	 * current GTT offset of the object, for future presumed_offset writes.
1259 	 *
1260 	 * See struct drm_i915_gem_create_ext for the rules when dealing with
1261 	 * alignment restrictions with I915_MEMORY_CLASS_DEVICE, on devices with
1262 	 * minimum page sizes, like DG2.
1263 	 */
1264 	__u64 offset;
1265 
1266 #define EXEC_OBJECT_NEEDS_FENCE		 (1<<0)
1267 #define EXEC_OBJECT_NEEDS_GTT		 (1<<1)
1268 #define EXEC_OBJECT_WRITE		 (1<<2)
1269 #define EXEC_OBJECT_SUPPORTS_48B_ADDRESS (1<<3)
1270 #define EXEC_OBJECT_PINNED		 (1<<4)
1271 #define EXEC_OBJECT_PAD_TO_SIZE		 (1<<5)
1272 /* The kernel implicitly tracks GPU activity on all GEM objects, and
1273  * synchronises operations with outstanding rendering. This includes
1274  * rendering on other devices if exported via dma-buf. However, sometimes
1275  * this tracking is too coarse and the user knows better. For example,
1276  * if the object is split into non-overlapping ranges shared between different
1277  * clients or engines (i.e. suballocating objects), the implicit tracking
1278  * by kernel assumes that each operation affects the whole object rather
1279  * than an individual range, causing needless synchronisation between clients.
1280  * The kernel will also forgo any CPU cache flushes prior to rendering from
1281  * the object as the client is expected to be also handling such domain
1282  * tracking.
1283  *
1284  * The kernel maintains the implicit tracking in order to manage resources
1285  * used by the GPU - this flag only disables the synchronisation prior to
1286  * rendering with this object in this execbuf.
1287  *
1288  * Opting out of implicit synhronisation requires the user to do its own
1289  * explicit tracking to avoid rendering corruption. See, for example,
1290  * I915_PARAM_HAS_EXEC_FENCE to order execbufs and execute them asynchronously.
1291  */
1292 #define EXEC_OBJECT_ASYNC		(1<<6)
1293 /* Request that the contents of this execobject be copied into the error
1294  * state upon a GPU hang involving this batch for post-mortem debugging.
1295  * These buffers are recorded in no particular order as "user" in
1296  * /sys/class/drm/cardN/error. Query I915_PARAM_HAS_EXEC_CAPTURE to see
1297  * if the kernel supports this flag.
1298  */
1299 #define EXEC_OBJECT_CAPTURE		(1<<7)
1300 /* All remaining bits are MBZ and RESERVED FOR FUTURE USE */
1301 #define __EXEC_OBJECT_UNKNOWN_FLAGS -(EXEC_OBJECT_CAPTURE<<1)
1302 	__u64 flags;
1303 
1304 	union {
1305 		__u64 rsvd1;
1306 		__u64 pad_to_size;
1307 	};
1308 	__u64 rsvd2;
1309 };
1310 
1311 /**
1312  * struct drm_i915_gem_exec_fence - An input or output fence for the execbuf
1313  * ioctl.
1314  *
1315  * The request will wait for input fence to signal before submission.
1316  *
1317  * The returned output fence will be signaled after the completion of the
1318  * request.
1319  */
1320 struct drm_i915_gem_exec_fence {
1321 	/** @handle: User's handle for a drm_syncobj to wait on or signal. */
1322 	__u32 handle;
1323 
1324 	/**
1325 	 * @flags: Supported flags are:
1326 	 *
1327 	 * I915_EXEC_FENCE_WAIT:
1328 	 * Wait for the input fence before request submission.
1329 	 *
1330 	 * I915_EXEC_FENCE_SIGNAL:
1331 	 * Return request completion fence as output
1332 	 */
1333 	__u32 flags;
1334 #define I915_EXEC_FENCE_WAIT            (1<<0)
1335 #define I915_EXEC_FENCE_SIGNAL          (1<<1)
1336 #define __I915_EXEC_FENCE_UNKNOWN_FLAGS (-(I915_EXEC_FENCE_SIGNAL << 1))
1337 };
1338 
1339 /**
1340  * struct drm_i915_gem_execbuffer_ext_timeline_fences - Timeline fences
1341  * for execbuf ioctl.
1342  *
1343  * This structure describes an array of drm_syncobj and associated points for
1344  * timeline variants of drm_syncobj. It is invalid to append this structure to
1345  * the execbuf if I915_EXEC_FENCE_ARRAY is set.
1346  */
1347 struct drm_i915_gem_execbuffer_ext_timeline_fences {
1348 #define DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES 0
1349 	/** @base: Extension link. See struct i915_user_extension. */
1350 	struct i915_user_extension base;
1351 
1352 	/**
1353 	 * @fence_count: Number of elements in the @handles_ptr & @value_ptr
1354 	 * arrays.
1355 	 */
1356 	__u64 fence_count;
1357 
1358 	/**
1359 	 * @handles_ptr: Pointer to an array of struct drm_i915_gem_exec_fence
1360 	 * of length @fence_count.
1361 	 */
1362 	__u64 handles_ptr;
1363 
1364 	/**
1365 	 * @values_ptr: Pointer to an array of u64 values of length
1366 	 * @fence_count.
1367 	 * Values must be 0 for a binary drm_syncobj. A Value of 0 for a
1368 	 * timeline drm_syncobj is invalid as it turns a drm_syncobj into a
1369 	 * binary one.
1370 	 */
1371 	__u64 values_ptr;
1372 };
1373 
1374 /**
1375  * struct drm_i915_gem_execbuffer2 - Structure for DRM_I915_GEM_EXECBUFFER2
1376  * ioctl.
1377  */
1378 struct drm_i915_gem_execbuffer2 {
1379 	/** @buffers_ptr: Pointer to a list of gem_exec_object2 structs */
1380 	__u64 buffers_ptr;
1381 
1382 	/** @buffer_count: Number of elements in @buffers_ptr array */
1383 	__u32 buffer_count;
1384 
1385 	/**
1386 	 * @batch_start_offset: Offset in the batchbuffer to start execution
1387 	 * from.
1388 	 */
1389 	__u32 batch_start_offset;
1390 
1391 	/**
1392 	 * @batch_len: Length in bytes of the batch buffer, starting from the
1393 	 * @batch_start_offset. If 0, length is assumed to be the batch buffer
1394 	 * object size.
1395 	 */
1396 	__u32 batch_len;
1397 
1398 	/** @DR1: deprecated */
1399 	__u32 DR1;
1400 
1401 	/** @DR4: deprecated */
1402 	__u32 DR4;
1403 
1404 	/** @num_cliprects: See @cliprects_ptr */
1405 	__u32 num_cliprects;
1406 
1407 	/**
1408 	 * @cliprects_ptr: Kernel clipping was a DRI1 misfeature.
1409 	 *
1410 	 * It is invalid to use this field if I915_EXEC_FENCE_ARRAY or
1411 	 * I915_EXEC_USE_EXTENSIONS flags are not set.
1412 	 *
1413 	 * If I915_EXEC_FENCE_ARRAY is set, then this is a pointer to an array
1414 	 * of &drm_i915_gem_exec_fence and @num_cliprects is the length of the
1415 	 * array.
1416 	 *
1417 	 * If I915_EXEC_USE_EXTENSIONS is set, then this is a pointer to a
1418 	 * single &i915_user_extension and num_cliprects is 0.
1419 	 */
1420 	__u64 cliprects_ptr;
1421 
1422 	/** @flags: Execbuf flags */
1423 	__u64 flags;
1424 #define I915_EXEC_RING_MASK              (0x3f)
1425 #define I915_EXEC_DEFAULT                (0<<0)
1426 #define I915_EXEC_RENDER                 (1<<0)
1427 #define I915_EXEC_BSD                    (2<<0)
1428 #define I915_EXEC_BLT                    (3<<0)
1429 #define I915_EXEC_VEBOX                  (4<<0)
1430 
1431 /* Used for switching the constants addressing mode on gen4+ RENDER ring.
1432  * Gen6+ only supports relative addressing to dynamic state (default) and
1433  * absolute addressing.
1434  *
1435  * These flags are ignored for the BSD and BLT rings.
1436  */
1437 #define I915_EXEC_CONSTANTS_MASK 	(3<<6)
1438 #define I915_EXEC_CONSTANTS_REL_GENERAL (0<<6) /* default */
1439 #define I915_EXEC_CONSTANTS_ABSOLUTE 	(1<<6)
1440 #define I915_EXEC_CONSTANTS_REL_SURFACE (2<<6) /* gen4/5 only */
1441 
1442 /** Resets the SO write offset registers for transform feedback on gen7. */
1443 #define I915_EXEC_GEN7_SOL_RESET	(1<<8)
1444 
1445 /** Request a privileged ("secure") batch buffer. Note only available for
1446  * DRM_ROOT_ONLY | DRM_MASTER processes.
1447  */
1448 #define I915_EXEC_SECURE		(1<<9)
1449 
1450 /** Inform the kernel that the batch is and will always be pinned. This
1451  * negates the requirement for a workaround to be performed to avoid
1452  * an incoherent CS (such as can be found on 830/845). If this flag is
1453  * not passed, the kernel will endeavour to make sure the batch is
1454  * coherent with the CS before execution. If this flag is passed,
1455  * userspace assumes the responsibility for ensuring the same.
1456  */
1457 #define I915_EXEC_IS_PINNED		(1<<10)
1458 
1459 /** Provide a hint to the kernel that the command stream and auxiliary
1460  * state buffers already holds the correct presumed addresses and so the
1461  * relocation process may be skipped if no buffers need to be moved in
1462  * preparation for the execbuffer.
1463  */
1464 #define I915_EXEC_NO_RELOC		(1<<11)
1465 
1466 /** Use the reloc.handle as an index into the exec object array rather
1467  * than as the per-file handle.
1468  */
1469 #define I915_EXEC_HANDLE_LUT		(1<<12)
1470 
1471 /** Used for switching BSD rings on the platforms with two BSD rings */
1472 #define I915_EXEC_BSD_SHIFT	 (13)
1473 #define I915_EXEC_BSD_MASK	 (3 << I915_EXEC_BSD_SHIFT)
1474 /* default ping-pong mode */
1475 #define I915_EXEC_BSD_DEFAULT	 (0 << I915_EXEC_BSD_SHIFT)
1476 #define I915_EXEC_BSD_RING1	 (1 << I915_EXEC_BSD_SHIFT)
1477 #define I915_EXEC_BSD_RING2	 (2 << I915_EXEC_BSD_SHIFT)
1478 
1479 /** Tell the kernel that the batchbuffer is processed by
1480  *  the resource streamer.
1481  */
1482 #define I915_EXEC_RESOURCE_STREAMER     (1<<15)
1483 
1484 /* Setting I915_EXEC_FENCE_IN implies that lower_32_bits(rsvd2) represent
1485  * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1486  * the batch.
1487  *
1488  * Returns -EINVAL if the sync_file fd cannot be found.
1489  */
1490 #define I915_EXEC_FENCE_IN		(1<<16)
1491 
1492 /* Setting I915_EXEC_FENCE_OUT causes the ioctl to return a sync_file fd
1493  * in the upper_32_bits(rsvd2) upon success. Ownership of the fd is given
1494  * to the caller, and it should be close() after use. (The fd is a regular
1495  * file descriptor and will be cleaned up on process termination. It holds
1496  * a reference to the request, but nothing else.)
1497  *
1498  * The sync_file fd can be combined with other sync_file and passed either
1499  * to execbuf using I915_EXEC_FENCE_IN, to atomic KMS ioctls (so that a flip
1500  * will only occur after this request completes), or to other devices.
1501  *
1502  * Using I915_EXEC_FENCE_OUT requires use of
1503  * DRM_IOCTL_I915_GEM_EXECBUFFER2_WR ioctl so that the result is written
1504  * back to userspace. Failure to do so will cause the out-fence to always
1505  * be reported as zero, and the real fence fd to be leaked.
1506  */
1507 #define I915_EXEC_FENCE_OUT		(1<<17)
1508 
1509 /*
1510  * Traditionally the execbuf ioctl has only considered the final element in
1511  * the execobject[] to be the executable batch. Often though, the client
1512  * will known the batch object prior to construction and being able to place
1513  * it into the execobject[] array first can simplify the relocation tracking.
1514  * Setting I915_EXEC_BATCH_FIRST tells execbuf to use element 0 of the
1515  * execobject[] as the * batch instead (the default is to use the last
1516  * element).
1517  */
1518 #define I915_EXEC_BATCH_FIRST		(1<<18)
1519 
1520 /* Setting I915_FENCE_ARRAY implies that num_cliprects and cliprects_ptr
1521  * define an array of i915_gem_exec_fence structures which specify a set of
1522  * dma fences to wait upon or signal.
1523  */
1524 #define I915_EXEC_FENCE_ARRAY   (1<<19)
1525 
1526 /*
1527  * Setting I915_EXEC_FENCE_SUBMIT implies that lower_32_bits(rsvd2) represent
1528  * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1529  * the batch.
1530  *
1531  * Returns -EINVAL if the sync_file fd cannot be found.
1532  */
1533 #define I915_EXEC_FENCE_SUBMIT		(1 << 20)
1534 
1535 /*
1536  * Setting I915_EXEC_USE_EXTENSIONS implies that
1537  * drm_i915_gem_execbuffer2.cliprects_ptr is treated as a pointer to an linked
1538  * list of i915_user_extension. Each i915_user_extension node is the base of a
1539  * larger structure. The list of supported structures are listed in the
1540  * drm_i915_gem_execbuffer_ext enum.
1541  */
1542 #define I915_EXEC_USE_EXTENSIONS	(1 << 21)
1543 #define __I915_EXEC_UNKNOWN_FLAGS (-(I915_EXEC_USE_EXTENSIONS << 1))
1544 
1545 	/** @rsvd1: Context id */
1546 	__u64 rsvd1;
1547 
1548 	/**
1549 	 * @rsvd2: in and out sync_file file descriptors.
1550 	 *
1551 	 * When I915_EXEC_FENCE_IN or I915_EXEC_FENCE_SUBMIT flag is set, the
1552 	 * lower 32 bits of this field will have the in sync_file fd (input).
1553 	 *
1554 	 * When I915_EXEC_FENCE_OUT flag is set, the upper 32 bits of this
1555 	 * field will have the out sync_file fd (output).
1556 	 */
1557 	__u64 rsvd2;
1558 };
1559 
1560 #define I915_EXEC_CONTEXT_ID_MASK	(0xffffffff)
1561 #define i915_execbuffer2_set_context_id(eb2, context) \
1562 	(eb2).rsvd1 = context & I915_EXEC_CONTEXT_ID_MASK
1563 #define i915_execbuffer2_get_context_id(eb2) \
1564 	((eb2).rsvd1 & I915_EXEC_CONTEXT_ID_MASK)
1565 
1566 struct drm_i915_gem_pin {
1567 	/** Handle of the buffer to be pinned. */
1568 	__u32 handle;
1569 	__u32 pad;
1570 
1571 	/** alignment required within the aperture */
1572 	__u64 alignment;
1573 
1574 	/** Returned GTT offset of the buffer. */
1575 	__u64 offset;
1576 };
1577 
1578 struct drm_i915_gem_unpin {
1579 	/** Handle of the buffer to be unpinned. */
1580 	__u32 handle;
1581 	__u32 pad;
1582 };
1583 
1584 struct drm_i915_gem_busy {
1585 	/** Handle of the buffer to check for busy */
1586 	__u32 handle;
1587 
1588 	/** Return busy status
1589 	 *
1590 	 * A return of 0 implies that the object is idle (after
1591 	 * having flushed any pending activity), and a non-zero return that
1592 	 * the object is still in-flight on the GPU. (The GPU has not yet
1593 	 * signaled completion for all pending requests that reference the
1594 	 * object.) An object is guaranteed to become idle eventually (so
1595 	 * long as no new GPU commands are executed upon it). Due to the
1596 	 * asynchronous nature of the hardware, an object reported
1597 	 * as busy may become idle before the ioctl is completed.
1598 	 *
1599 	 * Furthermore, if the object is busy, which engine is busy is only
1600 	 * provided as a guide and only indirectly by reporting its class
1601 	 * (there may be more than one engine in each class). There are race
1602 	 * conditions which prevent the report of which engines are busy from
1603 	 * being always accurate.  However, the converse is not true. If the
1604 	 * object is idle, the result of the ioctl, that all engines are idle,
1605 	 * is accurate.
1606 	 *
1607 	 * The returned dword is split into two fields to indicate both
1608 	 * the engine classess on which the object is being read, and the
1609 	 * engine class on which it is currently being written (if any).
1610 	 *
1611 	 * The low word (bits 0:15) indicate if the object is being written
1612 	 * to by any engine (there can only be one, as the GEM implicit
1613 	 * synchronisation rules force writes to be serialised). Only the
1614 	 * engine class (offset by 1, I915_ENGINE_CLASS_RENDER is reported as
1615 	 * 1 not 0 etc) for the last write is reported.
1616 	 *
1617 	 * The high word (bits 16:31) are a bitmask of which engines classes
1618 	 * are currently reading from the object. Multiple engines may be
1619 	 * reading from the object simultaneously.
1620 	 *
1621 	 * The value of each engine class is the same as specified in the
1622 	 * I915_CONTEXT_PARAM_ENGINES context parameter and via perf, i.e.
1623 	 * I915_ENGINE_CLASS_RENDER, I915_ENGINE_CLASS_COPY, etc.
1624 	 * Some hardware may have parallel execution engines, e.g. multiple
1625 	 * media engines, which are mapped to the same class identifier and so
1626 	 * are not separately reported for busyness.
1627 	 *
1628 	 * Caveat emptor:
1629 	 * Only the boolean result of this query is reliable; that is whether
1630 	 * the object is idle or busy. The report of which engines are busy
1631 	 * should be only used as a heuristic.
1632 	 */
1633 	__u32 busy;
1634 };
1635 
1636 /**
1637  * struct drm_i915_gem_caching - Set or get the caching for given object
1638  * handle.
1639  *
1640  * Allow userspace to control the GTT caching bits for a given object when the
1641  * object is later mapped through the ppGTT(or GGTT on older platforms lacking
1642  * ppGTT support, or if the object is used for scanout). Note that this might
1643  * require unbinding the object from the GTT first, if its current caching value
1644  * doesn't match.
1645  *
1646  * Note that this all changes on discrete platforms, starting from DG1, the
1647  * set/get caching is no longer supported, and is now rejected.  Instead the CPU
1648  * caching attributes(WB vs WC) will become an immutable creation time property
1649  * for the object, along with the GTT caching level. For now we don't expose any
1650  * new uAPI for this, instead on DG1 this is all implicit, although this largely
1651  * shouldn't matter since DG1 is coherent by default(without any way of
1652  * controlling it).
1653  *
1654  * Implicit caching rules, starting from DG1:
1655  *
1656  *     - If any of the object placements (see &drm_i915_gem_create_ext_memory_regions)
1657  *       contain I915_MEMORY_CLASS_DEVICE then the object will be allocated and
1658  *       mapped as write-combined only.
1659  *
1660  *     - Everything else is always allocated and mapped as write-back, with the
1661  *       guarantee that everything is also coherent with the GPU.
1662  *
1663  * Note that this is likely to change in the future again, where we might need
1664  * more flexibility on future devices, so making this all explicit as part of a
1665  * new &drm_i915_gem_create_ext extension is probable.
1666  *
1667  * Side note: Part of the reason for this is that changing the at-allocation-time CPU
1668  * caching attributes for the pages might be required(and is expensive) if we
1669  * need to then CPU map the pages later with different caching attributes. This
1670  * inconsistent caching behaviour, while supported on x86, is not universally
1671  * supported on other architectures. So for simplicity we opt for setting
1672  * everything at creation time, whilst also making it immutable, on discrete
1673  * platforms.
1674  */
1675 struct drm_i915_gem_caching {
1676 	/**
1677 	 * @handle: Handle of the buffer to set/get the caching level.
1678 	 */
1679 	__u32 handle;
1680 
1681 	/**
1682 	 * @caching: The GTT caching level to apply or possible return value.
1683 	 *
1684 	 * The supported @caching values:
1685 	 *
1686 	 * I915_CACHING_NONE:
1687 	 *
1688 	 * GPU access is not coherent with CPU caches.  Default for machines
1689 	 * without an LLC. This means manual flushing might be needed, if we
1690 	 * want GPU access to be coherent.
1691 	 *
1692 	 * I915_CACHING_CACHED:
1693 	 *
1694 	 * GPU access is coherent with CPU caches and furthermore the data is
1695 	 * cached in last-level caches shared between CPU cores and the GPU GT.
1696 	 *
1697 	 * I915_CACHING_DISPLAY:
1698 	 *
1699 	 * Special GPU caching mode which is coherent with the scanout engines.
1700 	 * Transparently falls back to I915_CACHING_NONE on platforms where no
1701 	 * special cache mode (like write-through or gfdt flushing) is
1702 	 * available. The kernel automatically sets this mode when using a
1703 	 * buffer as a scanout target.  Userspace can manually set this mode to
1704 	 * avoid a costly stall and clflush in the hotpath of drawing the first
1705 	 * frame.
1706 	 */
1707 #define I915_CACHING_NONE		0
1708 #define I915_CACHING_CACHED		1
1709 #define I915_CACHING_DISPLAY		2
1710 	__u32 caching;
1711 };
1712 
1713 #define I915_TILING_NONE	0
1714 #define I915_TILING_X		1
1715 #define I915_TILING_Y		2
1716 /*
1717  * Do not add new tiling types here.  The I915_TILING_* values are for
1718  * de-tiling fence registers that no longer exist on modern platforms.  Although
1719  * the hardware may support new types of tiling in general (e.g., Tile4), we
1720  * do not need to add them to the uapi that is specific to now-defunct ioctls.
1721  */
1722 #define I915_TILING_LAST	I915_TILING_Y
1723 
1724 #define I915_BIT_6_SWIZZLE_NONE		0
1725 #define I915_BIT_6_SWIZZLE_9		1
1726 #define I915_BIT_6_SWIZZLE_9_10		2
1727 #define I915_BIT_6_SWIZZLE_9_11		3
1728 #define I915_BIT_6_SWIZZLE_9_10_11	4
1729 /* Not seen by userland */
1730 #define I915_BIT_6_SWIZZLE_UNKNOWN	5
1731 /* Seen by userland. */
1732 #define I915_BIT_6_SWIZZLE_9_17		6
1733 #define I915_BIT_6_SWIZZLE_9_10_17	7
1734 
1735 struct drm_i915_gem_set_tiling {
1736 	/** Handle of the buffer to have its tiling state updated */
1737 	__u32 handle;
1738 
1739 	/**
1740 	 * Tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1741 	 * I915_TILING_Y).
1742 	 *
1743 	 * This value is to be set on request, and will be updated by the
1744 	 * kernel on successful return with the actual chosen tiling layout.
1745 	 *
1746 	 * The tiling mode may be demoted to I915_TILING_NONE when the system
1747 	 * has bit 6 swizzling that can't be managed correctly by GEM.
1748 	 *
1749 	 * Buffer contents become undefined when changing tiling_mode.
1750 	 */
1751 	__u32 tiling_mode;
1752 
1753 	/**
1754 	 * Stride in bytes for the object when in I915_TILING_X or
1755 	 * I915_TILING_Y.
1756 	 */
1757 	__u32 stride;
1758 
1759 	/**
1760 	 * Returned address bit 6 swizzling required for CPU access through
1761 	 * mmap mapping.
1762 	 */
1763 	__u32 swizzle_mode;
1764 };
1765 
1766 struct drm_i915_gem_get_tiling {
1767 	/** Handle of the buffer to get tiling state for. */
1768 	__u32 handle;
1769 
1770 	/**
1771 	 * Current tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1772 	 * I915_TILING_Y).
1773 	 */
1774 	__u32 tiling_mode;
1775 
1776 	/**
1777 	 * Returned address bit 6 swizzling required for CPU access through
1778 	 * mmap mapping.
1779 	 */
1780 	__u32 swizzle_mode;
1781 
1782 	/**
1783 	 * Returned address bit 6 swizzling required for CPU access through
1784 	 * mmap mapping whilst bound.
1785 	 */
1786 	__u32 phys_swizzle_mode;
1787 };
1788 
1789 struct drm_i915_gem_get_aperture {
1790 	/** Total size of the aperture used by i915_gem_execbuffer, in bytes */
1791 	__u64 aper_size;
1792 
1793 	/**
1794 	 * Available space in the aperture used by i915_gem_execbuffer, in
1795 	 * bytes
1796 	 */
1797 	__u64 aper_available_size;
1798 };
1799 
1800 struct drm_i915_get_pipe_from_crtc_id {
1801 	/** ID of CRTC being requested **/
1802 	__u32 crtc_id;
1803 
1804 	/** pipe of requested CRTC **/
1805 	__u32 pipe;
1806 };
1807 
1808 #define I915_MADV_WILLNEED 0
1809 #define I915_MADV_DONTNEED 1
1810 #define __I915_MADV_PURGED 2 /* internal state */
1811 
1812 struct drm_i915_gem_madvise {
1813 	/** Handle of the buffer to change the backing store advice */
1814 	__u32 handle;
1815 
1816 	/* Advice: either the buffer will be needed again in the near future,
1817 	 *         or wont be and could be discarded under memory pressure.
1818 	 */
1819 	__u32 madv;
1820 
1821 	/** Whether the backing store still exists. */
1822 	__u32 retained;
1823 };
1824 
1825 /* flags */
1826 #define I915_OVERLAY_TYPE_MASK 		0xff
1827 #define I915_OVERLAY_YUV_PLANAR 	0x01
1828 #define I915_OVERLAY_YUV_PACKED 	0x02
1829 #define I915_OVERLAY_RGB		0x03
1830 
1831 #define I915_OVERLAY_DEPTH_MASK		0xff00
1832 #define I915_OVERLAY_RGB24		0x1000
1833 #define I915_OVERLAY_RGB16		0x2000
1834 #define I915_OVERLAY_RGB15		0x3000
1835 #define I915_OVERLAY_YUV422		0x0100
1836 #define I915_OVERLAY_YUV411		0x0200
1837 #define I915_OVERLAY_YUV420		0x0300
1838 #define I915_OVERLAY_YUV410		0x0400
1839 
1840 #define I915_OVERLAY_SWAP_MASK		0xff0000
1841 #define I915_OVERLAY_NO_SWAP		0x000000
1842 #define I915_OVERLAY_UV_SWAP		0x010000
1843 #define I915_OVERLAY_Y_SWAP		0x020000
1844 #define I915_OVERLAY_Y_AND_UV_SWAP	0x030000
1845 
1846 #define I915_OVERLAY_FLAGS_MASK		0xff000000
1847 #define I915_OVERLAY_ENABLE		0x01000000
1848 
1849 struct drm_intel_overlay_put_image {
1850 	/* various flags and src format description */
1851 	__u32 flags;
1852 	/* source picture description */
1853 	__u32 bo_handle;
1854 	/* stride values and offsets are in bytes, buffer relative */
1855 	__u16 stride_Y; /* stride for packed formats */
1856 	__u16 stride_UV;
1857 	__u32 offset_Y; /* offset for packet formats */
1858 	__u32 offset_U;
1859 	__u32 offset_V;
1860 	/* in pixels */
1861 	__u16 src_width;
1862 	__u16 src_height;
1863 	/* to compensate the scaling factors for partially covered surfaces */
1864 	__u16 src_scan_width;
1865 	__u16 src_scan_height;
1866 	/* output crtc description */
1867 	__u32 crtc_id;
1868 	__u16 dst_x;
1869 	__u16 dst_y;
1870 	__u16 dst_width;
1871 	__u16 dst_height;
1872 };
1873 
1874 /* flags */
1875 #define I915_OVERLAY_UPDATE_ATTRS	(1<<0)
1876 #define I915_OVERLAY_UPDATE_GAMMA	(1<<1)
1877 #define I915_OVERLAY_DISABLE_DEST_COLORKEY	(1<<2)
1878 struct drm_intel_overlay_attrs {
1879 	__u32 flags;
1880 	__u32 color_key;
1881 	__s32 brightness;
1882 	__u32 contrast;
1883 	__u32 saturation;
1884 	__u32 gamma0;
1885 	__u32 gamma1;
1886 	__u32 gamma2;
1887 	__u32 gamma3;
1888 	__u32 gamma4;
1889 	__u32 gamma5;
1890 };
1891 
1892 /*
1893  * Intel sprite handling
1894  *
1895  * Color keying works with a min/mask/max tuple.  Both source and destination
1896  * color keying is allowed.
1897  *
1898  * Source keying:
1899  * Sprite pixels within the min & max values, masked against the color channels
1900  * specified in the mask field, will be transparent.  All other pixels will
1901  * be displayed on top of the primary plane.  For RGB surfaces, only the min
1902  * and mask fields will be used; ranged compares are not allowed.
1903  *
1904  * Destination keying:
1905  * Primary plane pixels that match the min value, masked against the color
1906  * channels specified in the mask field, will be replaced by corresponding
1907  * pixels from the sprite plane.
1908  *
1909  * Note that source & destination keying are exclusive; only one can be
1910  * active on a given plane.
1911  */
1912 
1913 #define I915_SET_COLORKEY_NONE		(1<<0) /* Deprecated. Instead set
1914 						* flags==0 to disable colorkeying.
1915 						*/
1916 #define I915_SET_COLORKEY_DESTINATION	(1<<1)
1917 #define I915_SET_COLORKEY_SOURCE	(1<<2)
1918 struct drm_intel_sprite_colorkey {
1919 	__u32 plane_id;
1920 	__u32 min_value;
1921 	__u32 channel_mask;
1922 	__u32 max_value;
1923 	__u32 flags;
1924 };
1925 
1926 struct drm_i915_gem_wait {
1927 	/** Handle of BO we shall wait on */
1928 	__u32 bo_handle;
1929 	__u32 flags;
1930 	/** Number of nanoseconds to wait, Returns time remaining. */
1931 	__s64 timeout_ns;
1932 };
1933 
1934 struct drm_i915_gem_context_create {
1935 	__u32 ctx_id; /* output: id of new context*/
1936 	__u32 pad;
1937 };
1938 
1939 /**
1940  * struct drm_i915_gem_context_create_ext - Structure for creating contexts.
1941  */
1942 struct drm_i915_gem_context_create_ext {
1943 	/** @ctx_id: Id of the created context (output) */
1944 	__u32 ctx_id;
1945 
1946 	/**
1947 	 * @flags: Supported flags are:
1948 	 *
1949 	 * I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS:
1950 	 *
1951 	 * Extensions may be appended to this structure and driver must check
1952 	 * for those. See @extensions.
1953 	 *
1954 	 * I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE
1955 	 *
1956 	 * Created context will have single timeline.
1957 	 */
1958 	__u32 flags;
1959 #define I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS	(1u << 0)
1960 #define I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE	(1u << 1)
1961 #define I915_CONTEXT_CREATE_FLAGS_UNKNOWN \
1962 	(-(I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE << 1))
1963 
1964 	/**
1965 	 * @extensions: Zero-terminated chain of extensions.
1966 	 *
1967 	 * I915_CONTEXT_CREATE_EXT_SETPARAM:
1968 	 * Context parameter to set or query during context creation.
1969 	 * See struct drm_i915_gem_context_create_ext_setparam.
1970 	 *
1971 	 * I915_CONTEXT_CREATE_EXT_CLONE:
1972 	 * This extension has been removed. On the off chance someone somewhere
1973 	 * has attempted to use it, never re-use this extension number.
1974 	 */
1975 	__u64 extensions;
1976 #define I915_CONTEXT_CREATE_EXT_SETPARAM 0
1977 #define I915_CONTEXT_CREATE_EXT_CLONE 1
1978 };
1979 
1980 /**
1981  * struct drm_i915_gem_context_param - Context parameter to set or query.
1982  */
1983 struct drm_i915_gem_context_param {
1984 	/** @ctx_id: Context id */
1985 	__u32 ctx_id;
1986 
1987 	/** @size: Size of the parameter @value */
1988 	__u32 size;
1989 
1990 	/** @param: Parameter to set or query */
1991 	__u64 param;
1992 #define I915_CONTEXT_PARAM_BAN_PERIOD	0x1
1993 /* I915_CONTEXT_PARAM_NO_ZEROMAP has been removed.  On the off chance
1994  * someone somewhere has attempted to use it, never re-use this context
1995  * param number.
1996  */
1997 #define I915_CONTEXT_PARAM_NO_ZEROMAP	0x2
1998 #define I915_CONTEXT_PARAM_GTT_SIZE	0x3
1999 #define I915_CONTEXT_PARAM_NO_ERROR_CAPTURE	0x4
2000 #define I915_CONTEXT_PARAM_BANNABLE	0x5
2001 #define I915_CONTEXT_PARAM_PRIORITY	0x6
2002 #define   I915_CONTEXT_MAX_USER_PRIORITY	1023 /* inclusive */
2003 #define   I915_CONTEXT_DEFAULT_PRIORITY		0
2004 #define   I915_CONTEXT_MIN_USER_PRIORITY	-1023 /* inclusive */
2005 	/*
2006 	 * When using the following param, value should be a pointer to
2007 	 * drm_i915_gem_context_param_sseu.
2008 	 */
2009 #define I915_CONTEXT_PARAM_SSEU		0x7
2010 
2011 /*
2012  * Not all clients may want to attempt automatic recover of a context after
2013  * a hang (for example, some clients may only submit very small incremental
2014  * batches relying on known logical state of previous batches which will never
2015  * recover correctly and each attempt will hang), and so would prefer that
2016  * the context is forever banned instead.
2017  *
2018  * If set to false (0), after a reset, subsequent (and in flight) rendering
2019  * from this context is discarded, and the client will need to create a new
2020  * context to use instead.
2021  *
2022  * If set to true (1), the kernel will automatically attempt to recover the
2023  * context by skipping the hanging batch and executing the next batch starting
2024  * from the default context state (discarding the incomplete logical context
2025  * state lost due to the reset).
2026  *
2027  * On creation, all new contexts are marked as recoverable.
2028  */
2029 #define I915_CONTEXT_PARAM_RECOVERABLE	0x8
2030 
2031 	/*
2032 	 * The id of the associated virtual memory address space (ppGTT) of
2033 	 * this context. Can be retrieved and passed to another context
2034 	 * (on the same fd) for both to use the same ppGTT and so share
2035 	 * address layouts, and avoid reloading the page tables on context
2036 	 * switches between themselves.
2037 	 *
2038 	 * See DRM_I915_GEM_VM_CREATE and DRM_I915_GEM_VM_DESTROY.
2039 	 */
2040 #define I915_CONTEXT_PARAM_VM		0x9
2041 
2042 /*
2043  * I915_CONTEXT_PARAM_ENGINES:
2044  *
2045  * Bind this context to operate on this subset of available engines. Henceforth,
2046  * the I915_EXEC_RING selector for DRM_IOCTL_I915_GEM_EXECBUFFER2 operates as
2047  * an index into this array of engines; I915_EXEC_DEFAULT selecting engine[0]
2048  * and upwards. Slots 0...N are filled in using the specified (class, instance).
2049  * Use
2050  *	engine_class: I915_ENGINE_CLASS_INVALID,
2051  *	engine_instance: I915_ENGINE_CLASS_INVALID_NONE
2052  * to specify a gap in the array that can be filled in later, e.g. by a
2053  * virtual engine used for load balancing.
2054  *
2055  * Setting the number of engines bound to the context to 0, by passing a zero
2056  * sized argument, will revert back to default settings.
2057  *
2058  * See struct i915_context_param_engines.
2059  *
2060  * Extensions:
2061  *   i915_context_engines_load_balance (I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE)
2062  *   i915_context_engines_bond (I915_CONTEXT_ENGINES_EXT_BOND)
2063  *   i915_context_engines_parallel_submit (I915_CONTEXT_ENGINES_EXT_PARALLEL_SUBMIT)
2064  */
2065 #define I915_CONTEXT_PARAM_ENGINES	0xa
2066 
2067 /*
2068  * I915_CONTEXT_PARAM_PERSISTENCE:
2069  *
2070  * Allow the context and active rendering to survive the process until
2071  * completion. Persistence allows fire-and-forget clients to queue up a
2072  * bunch of work, hand the output over to a display server and then quit.
2073  * If the context is marked as not persistent, upon closing (either via
2074  * an explicit DRM_I915_GEM_CONTEXT_DESTROY or implicitly from file closure
2075  * or process termination), the context and any outstanding requests will be
2076  * cancelled (and exported fences for cancelled requests marked as -EIO).
2077  *
2078  * By default, new contexts allow persistence.
2079  */
2080 #define I915_CONTEXT_PARAM_PERSISTENCE	0xb
2081 
2082 /* This API has been removed.  On the off chance someone somewhere has
2083  * attempted to use it, never re-use this context param number.
2084  */
2085 #define I915_CONTEXT_PARAM_RINGSIZE	0xc
2086 
2087 /*
2088  * I915_CONTEXT_PARAM_PROTECTED_CONTENT:
2089  *
2090  * Mark that the context makes use of protected content, which will result
2091  * in the context being invalidated when the protected content session is.
2092  * Given that the protected content session is killed on suspend, the device
2093  * is kept awake for the lifetime of a protected context, so the user should
2094  * make sure to dispose of them once done.
2095  * This flag can only be set at context creation time and, when set to true,
2096  * must be preceded by an explicit setting of I915_CONTEXT_PARAM_RECOVERABLE
2097  * to false. This flag can't be set to true in conjunction with setting the
2098  * I915_CONTEXT_PARAM_BANNABLE flag to false. Creation example:
2099  *
2100  * .. code-block:: C
2101  *
2102  *	struct drm_i915_gem_context_create_ext_setparam p_protected = {
2103  *		.base = {
2104  *			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2105  *		},
2106  *		.param = {
2107  *			.param = I915_CONTEXT_PARAM_PROTECTED_CONTENT,
2108  *			.value = 1,
2109  *		}
2110  *	};
2111  *	struct drm_i915_gem_context_create_ext_setparam p_norecover = {
2112  *		.base = {
2113  *			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2114  *			.next_extension = to_user_pointer(&p_protected),
2115  *		},
2116  *		.param = {
2117  *			.param = I915_CONTEXT_PARAM_RECOVERABLE,
2118  *			.value = 0,
2119  *		}
2120  *	};
2121  *	struct drm_i915_gem_context_create_ext create = {
2122  *		.flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
2123  *		.extensions = to_user_pointer(&p_norecover);
2124  *	};
2125  *
2126  *	ctx_id = gem_context_create_ext(drm_fd, &create);
2127  *
2128  * In addition to the normal failure cases, setting this flag during context
2129  * creation can result in the following errors:
2130  *
2131  * -ENODEV: feature not available
2132  * -EPERM: trying to mark a recoverable or not bannable context as protected
2133  * -ENXIO: A dependency such as a component driver or firmware is not yet
2134  *         loaded so user space may need to attempt again. Depending on the
2135  *         device, this error may be reported if protected context creation is
2136  *         attempted very early after kernel start because the internal timeout
2137  *         waiting for such dependencies is not guaranteed to be larger than
2138  *         required (numbers differ depending on system and kernel config):
2139  *            - ADL/RPL: dependencies may take up to 3 seconds from kernel start
2140  *                       while context creation internal timeout is 250 milisecs
2141  *            - MTL: dependencies may take up to 8 seconds from kernel start
2142  *                   while context creation internal timeout is 250 milisecs
2143  *         NOTE: such dependencies happen once, so a subsequent call to create a
2144  *         protected context after a prior successful call will not experience
2145  *         such timeouts and will not return -ENXIO (unless the driver is reloaded,
2146  *         or, depending on the device, resumes from a suspended state).
2147  * -EIO: The firmware did not succeed in creating the protected context.
2148  */
2149 #define I915_CONTEXT_PARAM_PROTECTED_CONTENT    0xd
2150 /* Must be kept compact -- no holes and well documented */
2151 
2152 	/** @value: Context parameter value to be set or queried */
2153 	__u64 value;
2154 };
2155 
2156 /*
2157  * Context SSEU programming
2158  *
2159  * It may be necessary for either functional or performance reason to configure
2160  * a context to run with a reduced number of SSEU (where SSEU stands for Slice/
2161  * Sub-slice/EU).
2162  *
2163  * This is done by configuring SSEU configuration using the below
2164  * @struct drm_i915_gem_context_param_sseu for every supported engine which
2165  * userspace intends to use.
2166  *
2167  * Not all GPUs or engines support this functionality in which case an error
2168  * code -ENODEV will be returned.
2169  *
2170  * Also, flexibility of possible SSEU configuration permutations varies between
2171  * GPU generations and software imposed limitations. Requesting such a
2172  * combination will return an error code of -EINVAL.
2173  *
2174  * NOTE: When perf/OA is active the context's SSEU configuration is ignored in
2175  * favour of a single global setting.
2176  */
2177 struct drm_i915_gem_context_param_sseu {
2178 	/*
2179 	 * Engine class & instance to be configured or queried.
2180 	 */
2181 	struct i915_engine_class_instance engine;
2182 
2183 	/*
2184 	 * Unknown flags must be cleared to zero.
2185 	 */
2186 	__u32 flags;
2187 #define I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX (1u << 0)
2188 
2189 	/*
2190 	 * Mask of slices to enable for the context. Valid values are a subset
2191 	 * of the bitmask value returned for I915_PARAM_SLICE_MASK.
2192 	 */
2193 	__u64 slice_mask;
2194 
2195 	/*
2196 	 * Mask of subslices to enable for the context. Valid values are a
2197 	 * subset of the bitmask value return by I915_PARAM_SUBSLICE_MASK.
2198 	 */
2199 	__u64 subslice_mask;
2200 
2201 	/*
2202 	 * Minimum/Maximum number of EUs to enable per subslice for the
2203 	 * context. min_eus_per_subslice must be inferior or equal to
2204 	 * max_eus_per_subslice.
2205 	 */
2206 	__u16 min_eus_per_subslice;
2207 	__u16 max_eus_per_subslice;
2208 
2209 	/*
2210 	 * Unused for now. Must be cleared to zero.
2211 	 */
2212 	__u32 rsvd;
2213 };
2214 
2215 /**
2216  * DOC: Virtual Engine uAPI
2217  *
2218  * Virtual engine is a concept where userspace is able to configure a set of
2219  * physical engines, submit a batch buffer, and let the driver execute it on any
2220  * engine from the set as it sees fit.
2221  *
2222  * This is primarily useful on parts which have multiple instances of a same
2223  * class engine, like for example GT3+ Skylake parts with their two VCS engines.
2224  *
2225  * For instance userspace can enumerate all engines of a certain class using the
2226  * previously described `Engine Discovery uAPI`_. After that userspace can
2227  * create a GEM context with a placeholder slot for the virtual engine (using
2228  * `I915_ENGINE_CLASS_INVALID` and `I915_ENGINE_CLASS_INVALID_NONE` for class
2229  * and instance respectively) and finally using the
2230  * `I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE` extension place a virtual engine in
2231  * the same reserved slot.
2232  *
2233  * Example of creating a virtual engine and submitting a batch buffer to it:
2234  *
2235  * .. code-block:: C
2236  *
2237  * 	I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(virtual, 2) = {
2238  * 		.base.name = I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE,
2239  * 		.engine_index = 0, // Place this virtual engine into engine map slot 0
2240  * 		.num_siblings = 2,
2241  * 		.engines = { { I915_ENGINE_CLASS_VIDEO, 0 },
2242  * 			     { I915_ENGINE_CLASS_VIDEO, 1 }, },
2243  * 	};
2244  * 	I915_DEFINE_CONTEXT_PARAM_ENGINES(engines, 1) = {
2245  * 		.engines = { { I915_ENGINE_CLASS_INVALID,
2246  * 			       I915_ENGINE_CLASS_INVALID_NONE } },
2247  * 		.extensions = to_user_pointer(&virtual), // Chains after load_balance extension
2248  * 	};
2249  * 	struct drm_i915_gem_context_create_ext_setparam p_engines = {
2250  * 		.base = {
2251  * 			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2252  * 		},
2253  * 		.param = {
2254  * 			.param = I915_CONTEXT_PARAM_ENGINES,
2255  * 			.value = to_user_pointer(&engines),
2256  * 			.size = sizeof(engines),
2257  * 		},
2258  * 	};
2259  * 	struct drm_i915_gem_context_create_ext create = {
2260  * 		.flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
2261  * 		.extensions = to_user_pointer(&p_engines);
2262  * 	};
2263  *
2264  * 	ctx_id = gem_context_create_ext(drm_fd, &create);
2265  *
2266  * 	// Now we have created a GEM context with its engine map containing a
2267  * 	// single virtual engine. Submissions to this slot can go either to
2268  * 	// vcs0 or vcs1, depending on the load balancing algorithm used inside
2269  * 	// the driver. The load balancing is dynamic from one batch buffer to
2270  * 	// another and transparent to userspace.
2271  *
2272  * 	...
2273  * 	execbuf.rsvd1 = ctx_id;
2274  * 	execbuf.flags = 0; // Submits to index 0 which is the virtual engine
2275  * 	gem_execbuf(drm_fd, &execbuf);
2276  */
2277 
2278 /*
2279  * i915_context_engines_load_balance:
2280  *
2281  * Enable load balancing across this set of engines.
2282  *
2283  * Into the I915_EXEC_DEFAULT slot [0], a virtual engine is created that when
2284  * used will proxy the execbuffer request onto one of the set of engines
2285  * in such a way as to distribute the load evenly across the set.
2286  *
2287  * The set of engines must be compatible (e.g. the same HW class) as they
2288  * will share the same logical GPU context and ring.
2289  *
2290  * To intermix rendering with the virtual engine and direct rendering onto
2291  * the backing engines (bypassing the load balancing proxy), the context must
2292  * be defined to use a single timeline for all engines.
2293  */
2294 struct i915_context_engines_load_balance {
2295 	struct i915_user_extension base;
2296 
2297 	__u16 engine_index;
2298 	__u16 num_siblings;
2299 	__u32 flags; /* all undefined flags must be zero */
2300 
2301 	__u64 mbz64; /* reserved for future use; must be zero */
2302 
2303 	struct i915_engine_class_instance engines[];
2304 } __attribute__((packed));
2305 
2306 #define I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(name__, N__) struct { \
2307 	struct i915_user_extension base; \
2308 	__u16 engine_index; \
2309 	__u16 num_siblings; \
2310 	__u32 flags; \
2311 	__u64 mbz64; \
2312 	struct i915_engine_class_instance engines[N__]; \
2313 } __attribute__((packed)) name__
2314 
2315 /*
2316  * i915_context_engines_bond:
2317  *
2318  * Constructed bonded pairs for execution within a virtual engine.
2319  *
2320  * All engines are equal, but some are more equal than others. Given
2321  * the distribution of resources in the HW, it may be preferable to run
2322  * a request on a given subset of engines in parallel to a request on a
2323  * specific engine. We enable this selection of engines within a virtual
2324  * engine by specifying bonding pairs, for any given master engine we will
2325  * only execute on one of the corresponding siblings within the virtual engine.
2326  *
2327  * To execute a request in parallel on the master engine and a sibling requires
2328  * coordination with a I915_EXEC_FENCE_SUBMIT.
2329  */
2330 struct i915_context_engines_bond {
2331 	struct i915_user_extension base;
2332 
2333 	struct i915_engine_class_instance master;
2334 
2335 	__u16 virtual_index; /* index of virtual engine in ctx->engines[] */
2336 	__u16 num_bonds;
2337 
2338 	__u64 flags; /* all undefined flags must be zero */
2339 	__u64 mbz64[4]; /* reserved for future use; must be zero */
2340 
2341 	struct i915_engine_class_instance engines[];
2342 } __attribute__((packed));
2343 
2344 #define I915_DEFINE_CONTEXT_ENGINES_BOND(name__, N__) struct { \
2345 	struct i915_user_extension base; \
2346 	struct i915_engine_class_instance master; \
2347 	__u16 virtual_index; \
2348 	__u16 num_bonds; \
2349 	__u64 flags; \
2350 	__u64 mbz64[4]; \
2351 	struct i915_engine_class_instance engines[N__]; \
2352 } __attribute__((packed)) name__
2353 
2354 /**
2355  * struct i915_context_engines_parallel_submit - Configure engine for
2356  * parallel submission.
2357  *
2358  * Setup a slot in the context engine map to allow multiple BBs to be submitted
2359  * in a single execbuf IOCTL. Those BBs will then be scheduled to run on the GPU
2360  * in parallel. Multiple hardware contexts are created internally in the i915 to
2361  * run these BBs. Once a slot is configured for N BBs only N BBs can be
2362  * submitted in each execbuf IOCTL and this is implicit behavior e.g. The user
2363  * doesn't tell the execbuf IOCTL there are N BBs, the execbuf IOCTL knows how
2364  * many BBs there are based on the slot's configuration. The N BBs are the last
2365  * N buffer objects or first N if I915_EXEC_BATCH_FIRST is set.
2366  *
2367  * The default placement behavior is to create implicit bonds between each
2368  * context if each context maps to more than 1 physical engine (e.g. context is
2369  * a virtual engine). Also we only allow contexts of same engine class and these
2370  * contexts must be in logically contiguous order. Examples of the placement
2371  * behavior are described below. Lastly, the default is to not allow BBs to be
2372  * preempted mid-batch. Rather insert coordinated preemption points on all
2373  * hardware contexts between each set of BBs. Flags could be added in the future
2374  * to change both of these default behaviors.
2375  *
2376  * Returns -EINVAL if hardware context placement configuration is invalid or if
2377  * the placement configuration isn't supported on the platform / submission
2378  * interface.
2379  * Returns -ENODEV if extension isn't supported on the platform / submission
2380  * interface.
2381  *
2382  * .. code-block:: none
2383  *
2384  *	Examples syntax:
2385  *	CS[X] = generic engine of same class, logical instance X
2386  *	INVALID = I915_ENGINE_CLASS_INVALID, I915_ENGINE_CLASS_INVALID_NONE
2387  *
2388  *	Example 1 pseudo code:
2389  *	set_engines(INVALID)
2390  *	set_parallel(engine_index=0, width=2, num_siblings=1,
2391  *		     engines=CS[0],CS[1])
2392  *
2393  *	Results in the following valid placement:
2394  *	CS[0], CS[1]
2395  *
2396  *	Example 2 pseudo code:
2397  *	set_engines(INVALID)
2398  *	set_parallel(engine_index=0, width=2, num_siblings=2,
2399  *		     engines=CS[0],CS[2],CS[1],CS[3])
2400  *
2401  *	Results in the following valid placements:
2402  *	CS[0], CS[1]
2403  *	CS[2], CS[3]
2404  *
2405  *	This can be thought of as two virtual engines, each containing two
2406  *	engines thereby making a 2D array. However, there are bonds tying the
2407  *	entries together and placing restrictions on how they can be scheduled.
2408  *	Specifically, the scheduler can choose only vertical columns from the 2D
2409  *	array. That is, CS[0] is bonded to CS[1] and CS[2] to CS[3]. So if the
2410  *	scheduler wants to submit to CS[0], it must also choose CS[1] and vice
2411  *	versa. Same for CS[2] requires also using CS[3].
2412  *	VE[0] = CS[0], CS[2]
2413  *	VE[1] = CS[1], CS[3]
2414  *
2415  *	Example 3 pseudo code:
2416  *	set_engines(INVALID)
2417  *	set_parallel(engine_index=0, width=2, num_siblings=2,
2418  *		     engines=CS[0],CS[1],CS[1],CS[3])
2419  *
2420  *	Results in the following valid and invalid placements:
2421  *	CS[0], CS[1]
2422  *	CS[1], CS[3] - Not logically contiguous, return -EINVAL
2423  */
2424 struct i915_context_engines_parallel_submit {
2425 	/**
2426 	 * @base: base user extension.
2427 	 */
2428 	struct i915_user_extension base;
2429 
2430 	/**
2431 	 * @engine_index: slot for parallel engine
2432 	 */
2433 	__u16 engine_index;
2434 
2435 	/**
2436 	 * @width: number of contexts per parallel engine or in other words the
2437 	 * number of batches in each submission
2438 	 */
2439 	__u16 width;
2440 
2441 	/**
2442 	 * @num_siblings: number of siblings per context or in other words the
2443 	 * number of possible placements for each submission
2444 	 */
2445 	__u16 num_siblings;
2446 
2447 	/**
2448 	 * @mbz16: reserved for future use; must be zero
2449 	 */
2450 	__u16 mbz16;
2451 
2452 	/**
2453 	 * @flags: all undefined flags must be zero, currently not defined flags
2454 	 */
2455 	__u64 flags;
2456 
2457 	/**
2458 	 * @mbz64: reserved for future use; must be zero
2459 	 */
2460 	__u64 mbz64[3];
2461 
2462 	/**
2463 	 * @engines: 2-d array of engine instances to configure parallel engine
2464 	 *
2465 	 * length = width (i) * num_siblings (j)
2466 	 * index = j + i * num_siblings
2467 	 */
2468 	struct i915_engine_class_instance engines[];
2469 
2470 } __packed;
2471 
2472 #define I915_DEFINE_CONTEXT_ENGINES_PARALLEL_SUBMIT(name__, N__) struct { \
2473 	struct i915_user_extension base; \
2474 	__u16 engine_index; \
2475 	__u16 width; \
2476 	__u16 num_siblings; \
2477 	__u16 mbz16; \
2478 	__u64 flags; \
2479 	__u64 mbz64[3]; \
2480 	struct i915_engine_class_instance engines[N__]; \
2481 } __attribute__((packed)) name__
2482 
2483 /**
2484  * DOC: Context Engine Map uAPI
2485  *
2486  * Context engine map is a new way of addressing engines when submitting batch-
2487  * buffers, replacing the existing way of using identifiers like `I915_EXEC_BLT`
2488  * inside the flags field of `struct drm_i915_gem_execbuffer2`.
2489  *
2490  * To use it created GEM contexts need to be configured with a list of engines
2491  * the user is intending to submit to. This is accomplished using the
2492  * `I915_CONTEXT_PARAM_ENGINES` parameter and `struct
2493  * i915_context_param_engines`.
2494  *
2495  * For such contexts the `I915_EXEC_RING_MASK` field becomes an index into the
2496  * configured map.
2497  *
2498  * Example of creating such context and submitting against it:
2499  *
2500  * .. code-block:: C
2501  *
2502  * 	I915_DEFINE_CONTEXT_PARAM_ENGINES(engines, 2) = {
2503  * 		.engines = { { I915_ENGINE_CLASS_RENDER, 0 },
2504  * 			     { I915_ENGINE_CLASS_COPY, 0 } }
2505  * 	};
2506  * 	struct drm_i915_gem_context_create_ext_setparam p_engines = {
2507  * 		.base = {
2508  * 			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2509  * 		},
2510  * 		.param = {
2511  * 			.param = I915_CONTEXT_PARAM_ENGINES,
2512  * 			.value = to_user_pointer(&engines),
2513  * 			.size = sizeof(engines),
2514  * 		},
2515  * 	};
2516  * 	struct drm_i915_gem_context_create_ext create = {
2517  * 		.flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
2518  * 		.extensions = to_user_pointer(&p_engines);
2519  * 	};
2520  *
2521  * 	ctx_id = gem_context_create_ext(drm_fd, &create);
2522  *
2523  * 	// We have now created a GEM context with two engines in the map:
2524  * 	// Index 0 points to rcs0 while index 1 points to bcs0. Other engines
2525  * 	// will not be accessible from this context.
2526  *
2527  * 	...
2528  * 	execbuf.rsvd1 = ctx_id;
2529  * 	execbuf.flags = 0; // Submits to index 0, which is rcs0 for this context
2530  * 	gem_execbuf(drm_fd, &execbuf);
2531  *
2532  * 	...
2533  * 	execbuf.rsvd1 = ctx_id;
2534  * 	execbuf.flags = 1; // Submits to index 0, which is bcs0 for this context
2535  * 	gem_execbuf(drm_fd, &execbuf);
2536  */
2537 
2538 struct i915_context_param_engines {
2539 	__u64 extensions; /* linked chain of extension blocks, 0 terminates */
2540 #define I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE 0 /* see i915_context_engines_load_balance */
2541 #define I915_CONTEXT_ENGINES_EXT_BOND 1 /* see i915_context_engines_bond */
2542 #define I915_CONTEXT_ENGINES_EXT_PARALLEL_SUBMIT 2 /* see i915_context_engines_parallel_submit */
2543 	struct i915_engine_class_instance engines[];
2544 } __attribute__((packed));
2545 
2546 #define I915_DEFINE_CONTEXT_PARAM_ENGINES(name__, N__) struct { \
2547 	__u64 extensions; \
2548 	struct i915_engine_class_instance engines[N__]; \
2549 } __attribute__((packed)) name__
2550 
2551 /**
2552  * struct drm_i915_gem_context_create_ext_setparam - Context parameter
2553  * to set or query during context creation.
2554  */
2555 struct drm_i915_gem_context_create_ext_setparam {
2556 	/** @base: Extension link. See struct i915_user_extension. */
2557 	struct i915_user_extension base;
2558 
2559 	/**
2560 	 * @param: Context parameter to set or query.
2561 	 * See struct drm_i915_gem_context_param.
2562 	 */
2563 	struct drm_i915_gem_context_param param;
2564 };
2565 
2566 struct drm_i915_gem_context_destroy {
2567 	__u32 ctx_id;
2568 	__u32 pad;
2569 };
2570 
2571 /**
2572  * struct drm_i915_gem_vm_control - Structure to create or destroy VM.
2573  *
2574  * DRM_I915_GEM_VM_CREATE -
2575  *
2576  * Create a new virtual memory address space (ppGTT) for use within a context
2577  * on the same file. Extensions can be provided to configure exactly how the
2578  * address space is setup upon creation.
2579  *
2580  * The id of new VM (bound to the fd) for use with I915_CONTEXT_PARAM_VM is
2581  * returned in the outparam @id.
2582  *
2583  * An extension chain maybe provided, starting with @extensions, and terminated
2584  * by the @next_extension being 0. Currently, no extensions are defined.
2585  *
2586  * DRM_I915_GEM_VM_DESTROY -
2587  *
2588  * Destroys a previously created VM id, specified in @vm_id.
2589  *
2590  * No extensions or flags are allowed currently, and so must be zero.
2591  */
2592 struct drm_i915_gem_vm_control {
2593 	/** @extensions: Zero-terminated chain of extensions. */
2594 	__u64 extensions;
2595 
2596 	/** @flags: reserved for future usage, currently MBZ */
2597 	__u32 flags;
2598 
2599 	/** @vm_id: Id of the VM created or to be destroyed */
2600 	__u32 vm_id;
2601 };
2602 
2603 struct drm_i915_reg_read {
2604 	/*
2605 	 * Register offset.
2606 	 * For 64bit wide registers where the upper 32bits don't immediately
2607 	 * follow the lower 32bits, the offset of the lower 32bits must
2608 	 * be specified
2609 	 */
2610 	__u64 offset;
2611 #define I915_REG_READ_8B_WA (1ul << 0)
2612 
2613 	__u64 val; /* Return value */
2614 };
2615 
2616 /* Known registers:
2617  *
2618  * Render engine timestamp - 0x2358 + 64bit - gen7+
2619  * - Note this register returns an invalid value if using the default
2620  *   single instruction 8byte read, in order to workaround that pass
2621  *   flag I915_REG_READ_8B_WA in offset field.
2622  *
2623  */
2624 
2625 struct drm_i915_reset_stats {
2626 	__u32 ctx_id;
2627 	__u32 flags;
2628 
2629 	/* All resets since boot/module reload, for all contexts */
2630 	__u32 reset_count;
2631 
2632 	/* Number of batches lost when active in GPU, for this context */
2633 	__u32 batch_active;
2634 
2635 	/* Number of batches lost pending for execution, for this context */
2636 	__u32 batch_pending;
2637 
2638 	__u32 pad;
2639 };
2640 
2641 /**
2642  * struct drm_i915_gem_userptr - Create GEM object from user allocated memory.
2643  *
2644  * Userptr objects have several restrictions on what ioctls can be used with the
2645  * object handle.
2646  */
2647 struct drm_i915_gem_userptr {
2648 	/**
2649 	 * @user_ptr: The pointer to the allocated memory.
2650 	 *
2651 	 * Needs to be aligned to PAGE_SIZE.
2652 	 */
2653 	__u64 user_ptr;
2654 
2655 	/**
2656 	 * @user_size:
2657 	 *
2658 	 * The size in bytes for the allocated memory. This will also become the
2659 	 * object size.
2660 	 *
2661 	 * Needs to be aligned to PAGE_SIZE, and should be at least PAGE_SIZE,
2662 	 * or larger.
2663 	 */
2664 	__u64 user_size;
2665 
2666 	/**
2667 	 * @flags:
2668 	 *
2669 	 * Supported flags:
2670 	 *
2671 	 * I915_USERPTR_READ_ONLY:
2672 	 *
2673 	 * Mark the object as readonly, this also means GPU access can only be
2674 	 * readonly. This is only supported on HW which supports readonly access
2675 	 * through the GTT. If the HW can't support readonly access, an error is
2676 	 * returned.
2677 	 *
2678 	 * I915_USERPTR_PROBE:
2679 	 *
2680 	 * Probe the provided @user_ptr range and validate that the @user_ptr is
2681 	 * indeed pointing to normal memory and that the range is also valid.
2682 	 * For example if some garbage address is given to the kernel, then this
2683 	 * should complain.
2684 	 *
2685 	 * Returns -EFAULT if the probe failed.
2686 	 *
2687 	 * Note that this doesn't populate the backing pages, and also doesn't
2688 	 * guarantee that the object will remain valid when the object is
2689 	 * eventually used.
2690 	 *
2691 	 * The kernel supports this feature if I915_PARAM_HAS_USERPTR_PROBE
2692 	 * returns a non-zero value.
2693 	 *
2694 	 * I915_USERPTR_UNSYNCHRONIZED:
2695 	 *
2696 	 * NOT USED. Setting this flag will result in an error.
2697 	 */
2698 	__u32 flags;
2699 #define I915_USERPTR_READ_ONLY 0x1
2700 #define I915_USERPTR_PROBE 0x2
2701 #define I915_USERPTR_UNSYNCHRONIZED 0x80000000
2702 	/**
2703 	 * @handle: Returned handle for the object.
2704 	 *
2705 	 * Object handles are nonzero.
2706 	 */
2707 	__u32 handle;
2708 };
2709 
2710 enum drm_i915_oa_format {
2711 	I915_OA_FORMAT_A13 = 1,	    /* HSW only */
2712 	I915_OA_FORMAT_A29,	    /* HSW only */
2713 	I915_OA_FORMAT_A13_B8_C8,   /* HSW only */
2714 	I915_OA_FORMAT_B4_C8,	    /* HSW only */
2715 	I915_OA_FORMAT_A45_B8_C8,   /* HSW only */
2716 	I915_OA_FORMAT_B4_C8_A16,   /* HSW only */
2717 	I915_OA_FORMAT_C4_B8,	    /* HSW+ */
2718 
2719 	/* Gen8+ */
2720 	I915_OA_FORMAT_A12,
2721 	I915_OA_FORMAT_A12_B8_C8,
2722 	I915_OA_FORMAT_A32u40_A4u32_B8_C8,
2723 
2724 	/* DG2 */
2725 	I915_OAR_FORMAT_A32u40_A4u32_B8_C8,
2726 	I915_OA_FORMAT_A24u40_A14u32_B8_C8,
2727 
2728 	/* MTL OAM */
2729 	I915_OAM_FORMAT_MPEC8u64_B8_C8,
2730 	I915_OAM_FORMAT_MPEC8u32_B8_C8,
2731 
2732 	I915_OA_FORMAT_MAX	    /* non-ABI */
2733 };
2734 
2735 enum drm_i915_perf_property_id {
2736 	/**
2737 	 * Open the stream for a specific context handle (as used with
2738 	 * execbuffer2). A stream opened for a specific context this way
2739 	 * won't typically require root privileges.
2740 	 *
2741 	 * This property is available in perf revision 1.
2742 	 */
2743 	DRM_I915_PERF_PROP_CTX_HANDLE = 1,
2744 
2745 	/**
2746 	 * A value of 1 requests the inclusion of raw OA unit reports as
2747 	 * part of stream samples.
2748 	 *
2749 	 * This property is available in perf revision 1.
2750 	 */
2751 	DRM_I915_PERF_PROP_SAMPLE_OA,
2752 
2753 	/**
2754 	 * The value specifies which set of OA unit metrics should be
2755 	 * configured, defining the contents of any OA unit reports.
2756 	 *
2757 	 * This property is available in perf revision 1.
2758 	 */
2759 	DRM_I915_PERF_PROP_OA_METRICS_SET,
2760 
2761 	/**
2762 	 * The value specifies the size and layout of OA unit reports.
2763 	 *
2764 	 * This property is available in perf revision 1.
2765 	 */
2766 	DRM_I915_PERF_PROP_OA_FORMAT,
2767 
2768 	/**
2769 	 * Specifying this property implicitly requests periodic OA unit
2770 	 * sampling and (at least on Haswell) the sampling frequency is derived
2771 	 * from this exponent as follows:
2772 	 *
2773 	 *   80ns * 2^(period_exponent + 1)
2774 	 *
2775 	 * This property is available in perf revision 1.
2776 	 */
2777 	DRM_I915_PERF_PROP_OA_EXPONENT,
2778 
2779 	/**
2780 	 * Specifying this property is only valid when specify a context to
2781 	 * filter with DRM_I915_PERF_PROP_CTX_HANDLE. Specifying this property
2782 	 * will hold preemption of the particular context we want to gather
2783 	 * performance data about. The execbuf2 submissions must include a
2784 	 * drm_i915_gem_execbuffer_ext_perf parameter for this to apply.
2785 	 *
2786 	 * This property is available in perf revision 3.
2787 	 */
2788 	DRM_I915_PERF_PROP_HOLD_PREEMPTION,
2789 
2790 	/**
2791 	 * Specifying this pins all contexts to the specified SSEU power
2792 	 * configuration for the duration of the recording.
2793 	 *
2794 	 * This parameter's value is a pointer to a struct
2795 	 * drm_i915_gem_context_param_sseu.
2796 	 *
2797 	 * This property is available in perf revision 4.
2798 	 */
2799 	DRM_I915_PERF_PROP_GLOBAL_SSEU,
2800 
2801 	/**
2802 	 * This optional parameter specifies the timer interval in nanoseconds
2803 	 * at which the i915 driver will check the OA buffer for available data.
2804 	 * Minimum allowed value is 100 microseconds. A default value is used by
2805 	 * the driver if this parameter is not specified. Note that larger timer
2806 	 * values will reduce cpu consumption during OA perf captures. However,
2807 	 * excessively large values would potentially result in OA buffer
2808 	 * overwrites as captures reach end of the OA buffer.
2809 	 *
2810 	 * This property is available in perf revision 5.
2811 	 */
2812 	DRM_I915_PERF_PROP_POLL_OA_PERIOD,
2813 
2814 	/**
2815 	 * Multiple engines may be mapped to the same OA unit. The OA unit is
2816 	 * identified by class:instance of any engine mapped to it.
2817 	 *
2818 	 * This parameter specifies the engine class and must be passed along
2819 	 * with DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE.
2820 	 *
2821 	 * This property is available in perf revision 6.
2822 	 */
2823 	DRM_I915_PERF_PROP_OA_ENGINE_CLASS,
2824 
2825 	/**
2826 	 * This parameter specifies the engine instance and must be passed along
2827 	 * with DRM_I915_PERF_PROP_OA_ENGINE_CLASS.
2828 	 *
2829 	 * This property is available in perf revision 6.
2830 	 */
2831 	DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE,
2832 
2833 	DRM_I915_PERF_PROP_MAX /* non-ABI */
2834 };
2835 
2836 struct drm_i915_perf_open_param {
2837 	__u32 flags;
2838 #define I915_PERF_FLAG_FD_CLOEXEC	(1<<0)
2839 #define I915_PERF_FLAG_FD_NONBLOCK	(1<<1)
2840 #define I915_PERF_FLAG_DISABLED		(1<<2)
2841 
2842 	/** The number of u64 (id, value) pairs */
2843 	__u32 num_properties;
2844 
2845 	/**
2846 	 * Pointer to array of u64 (id, value) pairs configuring the stream
2847 	 * to open.
2848 	 */
2849 	__u64 properties_ptr;
2850 };
2851 
2852 /*
2853  * Enable data capture for a stream that was either opened in a disabled state
2854  * via I915_PERF_FLAG_DISABLED or was later disabled via
2855  * I915_PERF_IOCTL_DISABLE.
2856  *
2857  * It is intended to be cheaper to disable and enable a stream than it may be
2858  * to close and re-open a stream with the same configuration.
2859  *
2860  * It's undefined whether any pending data for the stream will be lost.
2861  *
2862  * This ioctl is available in perf revision 1.
2863  */
2864 #define I915_PERF_IOCTL_ENABLE	_IO('i', 0x0)
2865 
2866 /*
2867  * Disable data capture for a stream.
2868  *
2869  * It is an error to try and read a stream that is disabled.
2870  *
2871  * This ioctl is available in perf revision 1.
2872  */
2873 #define I915_PERF_IOCTL_DISABLE	_IO('i', 0x1)
2874 
2875 /*
2876  * Change metrics_set captured by a stream.
2877  *
2878  * If the stream is bound to a specific context, the configuration change
2879  * will performed inline with that context such that it takes effect before
2880  * the next execbuf submission.
2881  *
2882  * Returns the previously bound metrics set id, or a negative error code.
2883  *
2884  * This ioctl is available in perf revision 2.
2885  */
2886 #define I915_PERF_IOCTL_CONFIG	_IO('i', 0x2)
2887 
2888 /*
2889  * Common to all i915 perf records
2890  */
2891 struct drm_i915_perf_record_header {
2892 	__u32 type;
2893 	__u16 pad;
2894 	__u16 size;
2895 };
2896 
2897 enum drm_i915_perf_record_type {
2898 
2899 	/**
2900 	 * Samples are the work horse record type whose contents are extensible
2901 	 * and defined when opening an i915 perf stream based on the given
2902 	 * properties.
2903 	 *
2904 	 * Boolean properties following the naming convention
2905 	 * DRM_I915_PERF_SAMPLE_xyz_PROP request the inclusion of 'xyz' data in
2906 	 * every sample.
2907 	 *
2908 	 * The order of these sample properties given by userspace has no
2909 	 * affect on the ordering of data within a sample. The order is
2910 	 * documented here.
2911 	 *
2912 	 * struct {
2913 	 *     struct drm_i915_perf_record_header header;
2914 	 *
2915 	 *     { u32 oa_report[]; } && DRM_I915_PERF_PROP_SAMPLE_OA
2916 	 * };
2917 	 */
2918 	DRM_I915_PERF_RECORD_SAMPLE = 1,
2919 
2920 	/*
2921 	 * Indicates that one or more OA reports were not written by the
2922 	 * hardware. This can happen for example if an MI_REPORT_PERF_COUNT
2923 	 * command collides with periodic sampling - which would be more likely
2924 	 * at higher sampling frequencies.
2925 	 */
2926 	DRM_I915_PERF_RECORD_OA_REPORT_LOST = 2,
2927 
2928 	/**
2929 	 * An error occurred that resulted in all pending OA reports being lost.
2930 	 */
2931 	DRM_I915_PERF_RECORD_OA_BUFFER_LOST = 3,
2932 
2933 	DRM_I915_PERF_RECORD_MAX /* non-ABI */
2934 };
2935 
2936 /**
2937  * struct drm_i915_perf_oa_config
2938  *
2939  * Structure to upload perf dynamic configuration into the kernel.
2940  */
2941 struct drm_i915_perf_oa_config {
2942 	/**
2943 	 * @uuid:
2944 	 *
2945 	 * String formatted like "%\08x-%\04x-%\04x-%\04x-%\012x"
2946 	 */
2947 	char uuid[36];
2948 
2949 	/**
2950 	 * @n_mux_regs:
2951 	 *
2952 	 * Number of mux regs in &mux_regs_ptr.
2953 	 */
2954 	__u32 n_mux_regs;
2955 
2956 	/**
2957 	 * @n_boolean_regs:
2958 	 *
2959 	 * Number of boolean regs in &boolean_regs_ptr.
2960 	 */
2961 	__u32 n_boolean_regs;
2962 
2963 	/**
2964 	 * @n_flex_regs:
2965 	 *
2966 	 * Number of flex regs in &flex_regs_ptr.
2967 	 */
2968 	__u32 n_flex_regs;
2969 
2970 	/**
2971 	 * @mux_regs_ptr:
2972 	 *
2973 	 * Pointer to tuples of u32 values (register address, value) for mux
2974 	 * registers.  Expected length of buffer is (2 * sizeof(u32) *
2975 	 * &n_mux_regs).
2976 	 */
2977 	__u64 mux_regs_ptr;
2978 
2979 	/**
2980 	 * @boolean_regs_ptr:
2981 	 *
2982 	 * Pointer to tuples of u32 values (register address, value) for mux
2983 	 * registers.  Expected length of buffer is (2 * sizeof(u32) *
2984 	 * &n_boolean_regs).
2985 	 */
2986 	__u64 boolean_regs_ptr;
2987 
2988 	/**
2989 	 * @flex_regs_ptr:
2990 	 *
2991 	 * Pointer to tuples of u32 values (register address, value) for mux
2992 	 * registers.  Expected length of buffer is (2 * sizeof(u32) *
2993 	 * &n_flex_regs).
2994 	 */
2995 	__u64 flex_regs_ptr;
2996 };
2997 
2998 /**
2999  * struct drm_i915_query_item - An individual query for the kernel to process.
3000  *
3001  * The behaviour is determined by the @query_id. Note that exactly what
3002  * @data_ptr is also depends on the specific @query_id.
3003  */
3004 struct drm_i915_query_item {
3005 	/**
3006 	 * @query_id:
3007 	 *
3008 	 * The id for this query.  Currently accepted query IDs are:
3009 	 *  - %DRM_I915_QUERY_TOPOLOGY_INFO (see struct drm_i915_query_topology_info)
3010 	 *  - %DRM_I915_QUERY_ENGINE_INFO (see struct drm_i915_engine_info)
3011 	 *  - %DRM_I915_QUERY_PERF_CONFIG (see struct drm_i915_query_perf_config)
3012 	 *  - %DRM_I915_QUERY_MEMORY_REGIONS (see struct drm_i915_query_memory_regions)
3013 	 *  - %DRM_I915_QUERY_HWCONFIG_BLOB (see `GuC HWCONFIG blob uAPI`)
3014 	 *  - %DRM_I915_QUERY_GEOMETRY_SUBSLICES (see struct drm_i915_query_topology_info)
3015 	 */
3016 	__u64 query_id;
3017 #define DRM_I915_QUERY_TOPOLOGY_INFO		1
3018 #define DRM_I915_QUERY_ENGINE_INFO		2
3019 #define DRM_I915_QUERY_PERF_CONFIG		3
3020 #define DRM_I915_QUERY_MEMORY_REGIONS		4
3021 #define DRM_I915_QUERY_HWCONFIG_BLOB		5
3022 #define DRM_I915_QUERY_GEOMETRY_SUBSLICES	6
3023 /* Must be kept compact -- no holes and well documented */
3024 
3025 	/**
3026 	 * @length:
3027 	 *
3028 	 * When set to zero by userspace, this is filled with the size of the
3029 	 * data to be written at the @data_ptr pointer. The kernel sets this
3030 	 * value to a negative value to signal an error on a particular query
3031 	 * item.
3032 	 */
3033 	__s32 length;
3034 
3035 	/**
3036 	 * @flags:
3037 	 *
3038 	 * When &query_id == %DRM_I915_QUERY_TOPOLOGY_INFO, must be 0.
3039 	 *
3040 	 * When &query_id == %DRM_I915_QUERY_PERF_CONFIG, must be one of the
3041 	 * following:
3042 	 *
3043 	 *	- %DRM_I915_QUERY_PERF_CONFIG_LIST
3044 	 *      - %DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID
3045 	 *      - %DRM_I915_QUERY_PERF_CONFIG_FOR_UUID
3046 	 *
3047 	 * When &query_id == %DRM_I915_QUERY_GEOMETRY_SUBSLICES must contain
3048 	 * a struct i915_engine_class_instance that references a render engine.
3049 	 */
3050 	__u32 flags;
3051 #define DRM_I915_QUERY_PERF_CONFIG_LIST          1
3052 #define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID 2
3053 #define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID   3
3054 
3055 	/**
3056 	 * @data_ptr:
3057 	 *
3058 	 * Data will be written at the location pointed by @data_ptr when the
3059 	 * value of @length matches the length of the data to be written by the
3060 	 * kernel.
3061 	 */
3062 	__u64 data_ptr;
3063 };
3064 
3065 /**
3066  * struct drm_i915_query - Supply an array of struct drm_i915_query_item for the
3067  * kernel to fill out.
3068  *
3069  * Note that this is generally a two step process for each struct
3070  * drm_i915_query_item in the array:
3071  *
3072  * 1. Call the DRM_IOCTL_I915_QUERY, giving it our array of struct
3073  *    drm_i915_query_item, with &drm_i915_query_item.length set to zero. The
3074  *    kernel will then fill in the size, in bytes, which tells userspace how
3075  *    memory it needs to allocate for the blob(say for an array of properties).
3076  *
3077  * 2. Next we call DRM_IOCTL_I915_QUERY again, this time with the
3078  *    &drm_i915_query_item.data_ptr equal to our newly allocated blob. Note that
3079  *    the &drm_i915_query_item.length should still be the same as what the
3080  *    kernel previously set. At this point the kernel can fill in the blob.
3081  *
3082  * Note that for some query items it can make sense for userspace to just pass
3083  * in a buffer/blob equal to or larger than the required size. In this case only
3084  * a single ioctl call is needed. For some smaller query items this can work
3085  * quite well.
3086  *
3087  */
3088 struct drm_i915_query {
3089 	/** @num_items: The number of elements in the @items_ptr array */
3090 	__u32 num_items;
3091 
3092 	/**
3093 	 * @flags: Unused for now. Must be cleared to zero.
3094 	 */
3095 	__u32 flags;
3096 
3097 	/**
3098 	 * @items_ptr:
3099 	 *
3100 	 * Pointer to an array of struct drm_i915_query_item. The number of
3101 	 * array elements is @num_items.
3102 	 */
3103 	__u64 items_ptr;
3104 };
3105 
3106 /**
3107  * struct drm_i915_query_topology_info
3108  *
3109  * Describes slice/subslice/EU information queried by
3110  * %DRM_I915_QUERY_TOPOLOGY_INFO
3111  */
3112 struct drm_i915_query_topology_info {
3113 	/**
3114 	 * @flags:
3115 	 *
3116 	 * Unused for now. Must be cleared to zero.
3117 	 */
3118 	__u16 flags;
3119 
3120 	/**
3121 	 * @max_slices:
3122 	 *
3123 	 * The number of bits used to express the slice mask.
3124 	 */
3125 	__u16 max_slices;
3126 
3127 	/**
3128 	 * @max_subslices:
3129 	 *
3130 	 * The number of bits used to express the subslice mask.
3131 	 */
3132 	__u16 max_subslices;
3133 
3134 	/**
3135 	 * @max_eus_per_subslice:
3136 	 *
3137 	 * The number of bits in the EU mask that correspond to a single
3138 	 * subslice's EUs.
3139 	 */
3140 	__u16 max_eus_per_subslice;
3141 
3142 	/**
3143 	 * @subslice_offset:
3144 	 *
3145 	 * Offset in data[] at which the subslice masks are stored.
3146 	 */
3147 	__u16 subslice_offset;
3148 
3149 	/**
3150 	 * @subslice_stride:
3151 	 *
3152 	 * Stride at which each of the subslice masks for each slice are
3153 	 * stored.
3154 	 */
3155 	__u16 subslice_stride;
3156 
3157 	/**
3158 	 * @eu_offset:
3159 	 *
3160 	 * Offset in data[] at which the EU masks are stored.
3161 	 */
3162 	__u16 eu_offset;
3163 
3164 	/**
3165 	 * @eu_stride:
3166 	 *
3167 	 * Stride at which each of the EU masks for each subslice are stored.
3168 	 */
3169 	__u16 eu_stride;
3170 
3171 	/**
3172 	 * @data:
3173 	 *
3174 	 * Contains 3 pieces of information :
3175 	 *
3176 	 * - The slice mask with one bit per slice telling whether a slice is
3177 	 *   available. The availability of slice X can be queried with the
3178 	 *   following formula :
3179 	 *
3180 	 *   .. code:: c
3181 	 *
3182 	 *      (data[X / 8] >> (X % 8)) & 1
3183 	 *
3184 	 *   Starting with Xe_HP platforms, Intel hardware no longer has
3185 	 *   traditional slices so i915 will always report a single slice
3186 	 *   (hardcoded slicemask = 0x1) which contains all of the platform's
3187 	 *   subslices.  I.e., the mask here does not reflect any of the newer
3188 	 *   hardware concepts such as "gslices" or "cslices" since userspace
3189 	 *   is capable of inferring those from the subslice mask.
3190 	 *
3191 	 * - The subslice mask for each slice with one bit per subslice telling
3192 	 *   whether a subslice is available.  Starting with Gen12 we use the
3193 	 *   term "subslice" to refer to what the hardware documentation
3194 	 *   describes as a "dual-subslices."  The availability of subslice Y
3195 	 *   in slice X can be queried with the following formula :
3196 	 *
3197 	 *   .. code:: c
3198 	 *
3199 	 *      (data[subslice_offset + X * subslice_stride + Y / 8] >> (Y % 8)) & 1
3200 	 *
3201 	 * - The EU mask for each subslice in each slice, with one bit per EU
3202 	 *   telling whether an EU is available. The availability of EU Z in
3203 	 *   subslice Y in slice X can be queried with the following formula :
3204 	 *
3205 	 *   .. code:: c
3206 	 *
3207 	 *      (data[eu_offset +
3208 	 *            (X * max_subslices + Y) * eu_stride +
3209 	 *            Z / 8
3210 	 *       ] >> (Z % 8)) & 1
3211 	 */
3212 	__u8 data[];
3213 };
3214 
3215 /**
3216  * DOC: Engine Discovery uAPI
3217  *
3218  * Engine discovery uAPI is a way of enumerating physical engines present in a
3219  * GPU associated with an open i915 DRM file descriptor. This supersedes the old
3220  * way of using `DRM_IOCTL_I915_GETPARAM` and engine identifiers like
3221  * `I915_PARAM_HAS_BLT`.
3222  *
3223  * The need for this interface came starting with Icelake and newer GPUs, which
3224  * started to establish a pattern of having multiple engines of a same class,
3225  * where not all instances were always completely functionally equivalent.
3226  *
3227  * Entry point for this uapi is `DRM_IOCTL_I915_QUERY` with the
3228  * `DRM_I915_QUERY_ENGINE_INFO` as the queried item id.
3229  *
3230  * Example for getting the list of engines:
3231  *
3232  * .. code-block:: C
3233  *
3234  * 	struct drm_i915_query_engine_info *info;
3235  * 	struct drm_i915_query_item item = {
3236  * 		.query_id = DRM_I915_QUERY_ENGINE_INFO;
3237  * 	};
3238  * 	struct drm_i915_query query = {
3239  * 		.num_items = 1,
3240  * 		.items_ptr = (uintptr_t)&item,
3241  * 	};
3242  * 	int err, i;
3243  *
3244  * 	// First query the size of the blob we need, this needs to be large
3245  * 	// enough to hold our array of engines. The kernel will fill out the
3246  * 	// item.length for us, which is the number of bytes we need.
3247  * 	//
3248  * 	// Alternatively a large buffer can be allocated straight away enabling
3249  * 	// querying in one pass, in which case item.length should contain the
3250  * 	// length of the provided buffer.
3251  * 	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3252  * 	if (err) ...
3253  *
3254  * 	info = calloc(1, item.length);
3255  * 	// Now that we allocated the required number of bytes, we call the ioctl
3256  * 	// again, this time with the data_ptr pointing to our newly allocated
3257  * 	// blob, which the kernel can then populate with info on all engines.
3258  * 	item.data_ptr = (uintptr_t)&info,
3259  *
3260  * 	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3261  * 	if (err) ...
3262  *
3263  * 	// We can now access each engine in the array
3264  * 	for (i = 0; i < info->num_engines; i++) {
3265  * 		struct drm_i915_engine_info einfo = info->engines[i];
3266  * 		u16 class = einfo.engine.class;
3267  * 		u16 instance = einfo.engine.instance;
3268  * 		....
3269  * 	}
3270  *
3271  * 	free(info);
3272  *
3273  * Each of the enumerated engines, apart from being defined by its class and
3274  * instance (see `struct i915_engine_class_instance`), also can have flags and
3275  * capabilities defined as documented in i915_drm.h.
3276  *
3277  * For instance video engines which support HEVC encoding will have the
3278  * `I915_VIDEO_CLASS_CAPABILITY_HEVC` capability bit set.
3279  *
3280  * Engine discovery only fully comes to its own when combined with the new way
3281  * of addressing engines when submitting batch buffers using contexts with
3282  * engine maps configured.
3283  */
3284 
3285 /**
3286  * struct drm_i915_engine_info
3287  *
3288  * Describes one engine and it's capabilities as known to the driver.
3289  */
3290 struct drm_i915_engine_info {
3291 	/** @engine: Engine class and instance. */
3292 	struct i915_engine_class_instance engine;
3293 
3294 	/** @rsvd0: Reserved field. */
3295 	__u32 rsvd0;
3296 
3297 	/** @flags: Engine flags. */
3298 	__u64 flags;
3299 #define I915_ENGINE_INFO_HAS_LOGICAL_INSTANCE		(1 << 0)
3300 
3301 	/** @capabilities: Capabilities of this engine. */
3302 	__u64 capabilities;
3303 #define I915_VIDEO_CLASS_CAPABILITY_HEVC		(1 << 0)
3304 #define I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC	(1 << 1)
3305 
3306 	/** @logical_instance: Logical instance of engine */
3307 	__u16 logical_instance;
3308 
3309 	/** @rsvd1: Reserved fields. */
3310 	__u16 rsvd1[3];
3311 	/** @rsvd2: Reserved fields. */
3312 	__u64 rsvd2[3];
3313 };
3314 
3315 /**
3316  * struct drm_i915_query_engine_info
3317  *
3318  * Engine info query enumerates all engines known to the driver by filling in
3319  * an array of struct drm_i915_engine_info structures.
3320  */
3321 struct drm_i915_query_engine_info {
3322 	/** @num_engines: Number of struct drm_i915_engine_info structs following. */
3323 	__u32 num_engines;
3324 
3325 	/** @rsvd: MBZ */
3326 	__u32 rsvd[3];
3327 
3328 	/** @engines: Marker for drm_i915_engine_info structures. */
3329 	struct drm_i915_engine_info engines[];
3330 };
3331 
3332 /**
3333  * struct drm_i915_query_perf_config
3334  *
3335  * Data written by the kernel with query %DRM_I915_QUERY_PERF_CONFIG and
3336  * %DRM_I915_QUERY_GEOMETRY_SUBSLICES.
3337  */
3338 struct drm_i915_query_perf_config {
3339 	union {
3340 		/**
3341 		 * @n_configs:
3342 		 *
3343 		 * When &drm_i915_query_item.flags ==
3344 		 * %DRM_I915_QUERY_PERF_CONFIG_LIST, i915 sets this fields to
3345 		 * the number of configurations available.
3346 		 */
3347 		__u64 n_configs;
3348 
3349 		/**
3350 		 * @config:
3351 		 *
3352 		 * When &drm_i915_query_item.flags ==
3353 		 * %DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID, i915 will use the
3354 		 * value in this field as configuration identifier to decide
3355 		 * what data to write into config_ptr.
3356 		 */
3357 		__u64 config;
3358 
3359 		/**
3360 		 * @uuid:
3361 		 *
3362 		 * When &drm_i915_query_item.flags ==
3363 		 * %DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID, i915 will use the
3364 		 * value in this field as configuration identifier to decide
3365 		 * what data to write into config_ptr.
3366 		 *
3367 		 * String formatted like "%08x-%04x-%04x-%04x-%012x"
3368 		 */
3369 		char uuid[36];
3370 	};
3371 
3372 	/**
3373 	 * @flags:
3374 	 *
3375 	 * Unused for now. Must be cleared to zero.
3376 	 */
3377 	__u32 flags;
3378 
3379 	/**
3380 	 * @data:
3381 	 *
3382 	 * When &drm_i915_query_item.flags == %DRM_I915_QUERY_PERF_CONFIG_LIST,
3383 	 * i915 will write an array of __u64 of configuration identifiers.
3384 	 *
3385 	 * When &drm_i915_query_item.flags == %DRM_I915_QUERY_PERF_CONFIG_DATA,
3386 	 * i915 will write a struct drm_i915_perf_oa_config. If the following
3387 	 * fields of struct drm_i915_perf_oa_config are not set to 0, i915 will
3388 	 * write into the associated pointers the values of submitted when the
3389 	 * configuration was created :
3390 	 *
3391 	 *  - &drm_i915_perf_oa_config.n_mux_regs
3392 	 *  - &drm_i915_perf_oa_config.n_boolean_regs
3393 	 *  - &drm_i915_perf_oa_config.n_flex_regs
3394 	 */
3395 	__u8 data[];
3396 };
3397 
3398 /**
3399  * enum drm_i915_gem_memory_class - Supported memory classes
3400  */
3401 enum drm_i915_gem_memory_class {
3402 	/** @I915_MEMORY_CLASS_SYSTEM: System memory */
3403 	I915_MEMORY_CLASS_SYSTEM = 0,
3404 	/** @I915_MEMORY_CLASS_DEVICE: Device local-memory */
3405 	I915_MEMORY_CLASS_DEVICE,
3406 };
3407 
3408 /**
3409  * struct drm_i915_gem_memory_class_instance - Identify particular memory region
3410  */
3411 struct drm_i915_gem_memory_class_instance {
3412 	/** @memory_class: See enum drm_i915_gem_memory_class */
3413 	__u16 memory_class;
3414 
3415 	/** @memory_instance: Which instance */
3416 	__u16 memory_instance;
3417 };
3418 
3419 /**
3420  * struct drm_i915_memory_region_info - Describes one region as known to the
3421  * driver.
3422  *
3423  * Note this is using both struct drm_i915_query_item and struct drm_i915_query.
3424  * For this new query we are adding the new query id DRM_I915_QUERY_MEMORY_REGIONS
3425  * at &drm_i915_query_item.query_id.
3426  */
3427 struct drm_i915_memory_region_info {
3428 	/** @region: The class:instance pair encoding */
3429 	struct drm_i915_gem_memory_class_instance region;
3430 
3431 	/** @rsvd0: MBZ */
3432 	__u32 rsvd0;
3433 
3434 	/**
3435 	 * @probed_size: Memory probed by the driver
3436 	 *
3437 	 * Note that it should not be possible to ever encounter a zero value
3438 	 * here, also note that no current region type will ever return -1 here.
3439 	 * Although for future region types, this might be a possibility. The
3440 	 * same applies to the other size fields.
3441 	 */
3442 	__u64 probed_size;
3443 
3444 	/**
3445 	 * @unallocated_size: Estimate of memory remaining
3446 	 *
3447 	 * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable accounting.
3448 	 * Without this (or if this is an older kernel) the value here will
3449 	 * always equal the @probed_size. Note this is only currently tracked
3450 	 * for I915_MEMORY_CLASS_DEVICE regions (for other types the value here
3451 	 * will always equal the @probed_size).
3452 	 */
3453 	__u64 unallocated_size;
3454 
3455 	union {
3456 		/** @rsvd1: MBZ */
3457 		__u64 rsvd1[8];
3458 		struct {
3459 			/**
3460 			 * @probed_cpu_visible_size: Memory probed by the driver
3461 			 * that is CPU accessible.
3462 			 *
3463 			 * This will be always be <= @probed_size, and the
3464 			 * remainder (if there is any) will not be CPU
3465 			 * accessible.
3466 			 *
3467 			 * On systems without small BAR, the @probed_size will
3468 			 * always equal the @probed_cpu_visible_size, since all
3469 			 * of it will be CPU accessible.
3470 			 *
3471 			 * Note this is only tracked for
3472 			 * I915_MEMORY_CLASS_DEVICE regions (for other types the
3473 			 * value here will always equal the @probed_size).
3474 			 *
3475 			 * Note that if the value returned here is zero, then
3476 			 * this must be an old kernel which lacks the relevant
3477 			 * small-bar uAPI support (including
3478 			 * I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS), but on
3479 			 * such systems we should never actually end up with a
3480 			 * small BAR configuration, assuming we are able to load
3481 			 * the kernel module. Hence it should be safe to treat
3482 			 * this the same as when @probed_cpu_visible_size ==
3483 			 * @probed_size.
3484 			 */
3485 			__u64 probed_cpu_visible_size;
3486 
3487 			/**
3488 			 * @unallocated_cpu_visible_size: Estimate of CPU
3489 			 * visible memory remaining.
3490 			 *
3491 			 * Note this is only tracked for
3492 			 * I915_MEMORY_CLASS_DEVICE regions (for other types the
3493 			 * value here will always equal the
3494 			 * @probed_cpu_visible_size).
3495 			 *
3496 			 * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable
3497 			 * accounting.  Without this the value here will always
3498 			 * equal the @probed_cpu_visible_size. Note this is only
3499 			 * currently tracked for I915_MEMORY_CLASS_DEVICE
3500 			 * regions (for other types the value here will also
3501 			 * always equal the @probed_cpu_visible_size).
3502 			 *
3503 			 * If this is an older kernel the value here will be
3504 			 * zero, see also @probed_cpu_visible_size.
3505 			 */
3506 			__u64 unallocated_cpu_visible_size;
3507 		};
3508 	};
3509 };
3510 
3511 /**
3512  * struct drm_i915_query_memory_regions
3513  *
3514  * The region info query enumerates all regions known to the driver by filling
3515  * in an array of struct drm_i915_memory_region_info structures.
3516  *
3517  * Example for getting the list of supported regions:
3518  *
3519  * .. code-block:: C
3520  *
3521  *	struct drm_i915_query_memory_regions *info;
3522  *	struct drm_i915_query_item item = {
3523  *		.query_id = DRM_I915_QUERY_MEMORY_REGIONS;
3524  *	};
3525  *	struct drm_i915_query query = {
3526  *		.num_items = 1,
3527  *		.items_ptr = (uintptr_t)&item,
3528  *	};
3529  *	int err, i;
3530  *
3531  *	// First query the size of the blob we need, this needs to be large
3532  *	// enough to hold our array of regions. The kernel will fill out the
3533  *	// item.length for us, which is the number of bytes we need.
3534  *	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3535  *	if (err) ...
3536  *
3537  *	info = calloc(1, item.length);
3538  *	// Now that we allocated the required number of bytes, we call the ioctl
3539  *	// again, this time with the data_ptr pointing to our newly allocated
3540  *	// blob, which the kernel can then populate with the all the region info.
3541  *	item.data_ptr = (uintptr_t)&info,
3542  *
3543  *	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3544  *	if (err) ...
3545  *
3546  *	// We can now access each region in the array
3547  *	for (i = 0; i < info->num_regions; i++) {
3548  *		struct drm_i915_memory_region_info mr = info->regions[i];
3549  *		u16 class = mr.region.class;
3550  *		u16 instance = mr.region.instance;
3551  *
3552  *		....
3553  *	}
3554  *
3555  *	free(info);
3556  */
3557 struct drm_i915_query_memory_regions {
3558 	/** @num_regions: Number of supported regions */
3559 	__u32 num_regions;
3560 
3561 	/** @rsvd: MBZ */
3562 	__u32 rsvd[3];
3563 
3564 	/** @regions: Info about each supported region */
3565 	struct drm_i915_memory_region_info regions[];
3566 };
3567 
3568 /**
3569  * DOC: GuC HWCONFIG blob uAPI
3570  *
3571  * The GuC produces a blob with information about the current device.
3572  * i915 reads this blob from GuC and makes it available via this uAPI.
3573  *
3574  * The format and meaning of the blob content are documented in the
3575  * Programmer's Reference Manual.
3576  */
3577 
3578 /**
3579  * struct drm_i915_gem_create_ext - Existing gem_create behaviour, with added
3580  * extension support using struct i915_user_extension.
3581  *
3582  * Note that new buffer flags should be added here, at least for the stuff that
3583  * is immutable. Previously we would have two ioctls, one to create the object
3584  * with gem_create, and another to apply various parameters, however this
3585  * creates some ambiguity for the params which are considered immutable. Also in
3586  * general we're phasing out the various SET/GET ioctls.
3587  */
3588 struct drm_i915_gem_create_ext {
3589 	/**
3590 	 * @size: Requested size for the object.
3591 	 *
3592 	 * The (page-aligned) allocated size for the object will be returned.
3593 	 *
3594 	 * On platforms like DG2/ATS the kernel will always use 64K or larger
3595 	 * pages for I915_MEMORY_CLASS_DEVICE. The kernel also requires a
3596 	 * minimum of 64K GTT alignment for such objects.
3597 	 *
3598 	 * NOTE: Previously the ABI here required a minimum GTT alignment of 2M
3599 	 * on DG2/ATS, due to how the hardware implemented 64K GTT page support,
3600 	 * where we had the following complications:
3601 	 *
3602 	 *   1) The entire PDE (which covers a 2MB virtual address range), must
3603 	 *   contain only 64K PTEs, i.e mixing 4K and 64K PTEs in the same
3604 	 *   PDE is forbidden by the hardware.
3605 	 *
3606 	 *   2) We still need to support 4K PTEs for I915_MEMORY_CLASS_SYSTEM
3607 	 *   objects.
3608 	 *
3609 	 * However on actual production HW this was completely changed to now
3610 	 * allow setting a TLB hint at the PTE level (see PS64), which is a lot
3611 	 * more flexible than the above. With this the 2M restriction was
3612 	 * dropped where we now only require 64K.
3613 	 */
3614 	__u64 size;
3615 
3616 	/**
3617 	 * @handle: Returned handle for the object.
3618 	 *
3619 	 * Object handles are nonzero.
3620 	 */
3621 	__u32 handle;
3622 
3623 	/**
3624 	 * @flags: Optional flags.
3625 	 *
3626 	 * Supported values:
3627 	 *
3628 	 * I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS - Signal to the kernel that
3629 	 * the object will need to be accessed via the CPU.
3630 	 *
3631 	 * Only valid when placing objects in I915_MEMORY_CLASS_DEVICE, and only
3632 	 * strictly required on configurations where some subset of the device
3633 	 * memory is directly visible/mappable through the CPU (which we also
3634 	 * call small BAR), like on some DG2+ systems. Note that this is quite
3635 	 * undesirable, but due to various factors like the client CPU, BIOS etc
3636 	 * it's something we can expect to see in the wild. See
3637 	 * &drm_i915_memory_region_info.probed_cpu_visible_size for how to
3638 	 * determine if this system applies.
3639 	 *
3640 	 * Note that one of the placements MUST be I915_MEMORY_CLASS_SYSTEM, to
3641 	 * ensure the kernel can always spill the allocation to system memory,
3642 	 * if the object can't be allocated in the mappable part of
3643 	 * I915_MEMORY_CLASS_DEVICE.
3644 	 *
3645 	 * Also note that since the kernel only supports flat-CCS on objects
3646 	 * that can *only* be placed in I915_MEMORY_CLASS_DEVICE, we therefore
3647 	 * don't support I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS together with
3648 	 * flat-CCS.
3649 	 *
3650 	 * Without this hint, the kernel will assume that non-mappable
3651 	 * I915_MEMORY_CLASS_DEVICE is preferred for this object. Note that the
3652 	 * kernel can still migrate the object to the mappable part, as a last
3653 	 * resort, if userspace ever CPU faults this object, but this might be
3654 	 * expensive, and so ideally should be avoided.
3655 	 *
3656 	 * On older kernels which lack the relevant small-bar uAPI support (see
3657 	 * also &drm_i915_memory_region_info.probed_cpu_visible_size),
3658 	 * usage of the flag will result in an error, but it should NEVER be
3659 	 * possible to end up with a small BAR configuration, assuming we can
3660 	 * also successfully load the i915 kernel module. In such cases the
3661 	 * entire I915_MEMORY_CLASS_DEVICE region will be CPU accessible, and as
3662 	 * such there are zero restrictions on where the object can be placed.
3663 	 */
3664 #define I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS (1 << 0)
3665 	__u32 flags;
3666 
3667 	/**
3668 	 * @extensions: The chain of extensions to apply to this object.
3669 	 *
3670 	 * This will be useful in the future when we need to support several
3671 	 * different extensions, and we need to apply more than one when
3672 	 * creating the object. See struct i915_user_extension.
3673 	 *
3674 	 * If we don't supply any extensions then we get the same old gem_create
3675 	 * behaviour.
3676 	 *
3677 	 * For I915_GEM_CREATE_EXT_MEMORY_REGIONS usage see
3678 	 * struct drm_i915_gem_create_ext_memory_regions.
3679 	 *
3680 	 * For I915_GEM_CREATE_EXT_PROTECTED_CONTENT usage see
3681 	 * struct drm_i915_gem_create_ext_protected_content.
3682 	 */
3683 #define I915_GEM_CREATE_EXT_MEMORY_REGIONS 0
3684 #define I915_GEM_CREATE_EXT_PROTECTED_CONTENT 1
3685 	__u64 extensions;
3686 };
3687 
3688 /**
3689  * struct drm_i915_gem_create_ext_memory_regions - The
3690  * I915_GEM_CREATE_EXT_MEMORY_REGIONS extension.
3691  *
3692  * Set the object with the desired set of placements/regions in priority
3693  * order. Each entry must be unique and supported by the device.
3694  *
3695  * This is provided as an array of struct drm_i915_gem_memory_class_instance, or
3696  * an equivalent layout of class:instance pair encodings. See struct
3697  * drm_i915_query_memory_regions and DRM_I915_QUERY_MEMORY_REGIONS for how to
3698  * query the supported regions for a device.
3699  *
3700  * As an example, on discrete devices, if we wish to set the placement as
3701  * device local-memory we can do something like:
3702  *
3703  * .. code-block:: C
3704  *
3705  *	struct drm_i915_gem_memory_class_instance region_lmem = {
3706  *              .memory_class = I915_MEMORY_CLASS_DEVICE,
3707  *              .memory_instance = 0,
3708  *      };
3709  *      struct drm_i915_gem_create_ext_memory_regions regions = {
3710  *              .base = { .name = I915_GEM_CREATE_EXT_MEMORY_REGIONS },
3711  *              .regions = (uintptr_t)&region_lmem,
3712  *              .num_regions = 1,
3713  *      };
3714  *      struct drm_i915_gem_create_ext create_ext = {
3715  *              .size = 16 * PAGE_SIZE,
3716  *              .extensions = (uintptr_t)&regions,
3717  *      };
3718  *
3719  *      int err = ioctl(fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create_ext);
3720  *      if (err) ...
3721  *
3722  * At which point we get the object handle in &drm_i915_gem_create_ext.handle,
3723  * along with the final object size in &drm_i915_gem_create_ext.size, which
3724  * should account for any rounding up, if required.
3725  *
3726  * Note that userspace has no means of knowing the current backing region
3727  * for objects where @num_regions is larger than one. The kernel will only
3728  * ensure that the priority order of the @regions array is honoured, either
3729  * when initially placing the object, or when moving memory around due to
3730  * memory pressure
3731  *
3732  * On Flat-CCS capable HW, compression is supported for the objects residing
3733  * in I915_MEMORY_CLASS_DEVICE. When such objects (compressed) have other
3734  * memory class in @regions and migrated (by i915, due to memory
3735  * constraints) to the non I915_MEMORY_CLASS_DEVICE region, then i915 needs to
3736  * decompress the content. But i915 doesn't have the required information to
3737  * decompress the userspace compressed objects.
3738  *
3739  * So i915 supports Flat-CCS, on the objects which can reside only on
3740  * I915_MEMORY_CLASS_DEVICE regions.
3741  */
3742 struct drm_i915_gem_create_ext_memory_regions {
3743 	/** @base: Extension link. See struct i915_user_extension. */
3744 	struct i915_user_extension base;
3745 
3746 	/** @pad: MBZ */
3747 	__u32 pad;
3748 	/** @num_regions: Number of elements in the @regions array. */
3749 	__u32 num_regions;
3750 	/**
3751 	 * @regions: The regions/placements array.
3752 	 *
3753 	 * An array of struct drm_i915_gem_memory_class_instance.
3754 	 */
3755 	__u64 regions;
3756 };
3757 
3758 /**
3759  * struct drm_i915_gem_create_ext_protected_content - The
3760  * I915_OBJECT_PARAM_PROTECTED_CONTENT extension.
3761  *
3762  * If this extension is provided, buffer contents are expected to be protected
3763  * by PXP encryption and require decryption for scan out and processing. This
3764  * is only possible on platforms that have PXP enabled, on all other scenarios
3765  * using this extension will cause the ioctl to fail and return -ENODEV. The
3766  * flags parameter is reserved for future expansion and must currently be set
3767  * to zero.
3768  *
3769  * The buffer contents are considered invalid after a PXP session teardown.
3770  *
3771  * The encryption is guaranteed to be processed correctly only if the object
3772  * is submitted with a context created using the
3773  * I915_CONTEXT_PARAM_PROTECTED_CONTENT flag. This will also enable extra checks
3774  * at submission time on the validity of the objects involved.
3775  *
3776  * Below is an example on how to create a protected object:
3777  *
3778  * .. code-block:: C
3779  *
3780  *      struct drm_i915_gem_create_ext_protected_content protected_ext = {
3781  *              .base = { .name = I915_GEM_CREATE_EXT_PROTECTED_CONTENT },
3782  *              .flags = 0,
3783  *      };
3784  *      struct drm_i915_gem_create_ext create_ext = {
3785  *              .size = PAGE_SIZE,
3786  *              .extensions = (uintptr_t)&protected_ext,
3787  *      };
3788  *
3789  *      int err = ioctl(fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create_ext);
3790  *      if (err) ...
3791  */
3792 struct drm_i915_gem_create_ext_protected_content {
3793 	/** @base: Extension link. See struct i915_user_extension. */
3794 	struct i915_user_extension base;
3795 	/** @flags: reserved for future usage, currently MBZ */
3796 	__u32 flags;
3797 };
3798 
3799 /* ID of the protected content session managed by i915 when PXP is active */
3800 #define I915_PROTECTED_CONTENT_DEFAULT_SESSION 0xf
3801 
3802 #if defined(__cplusplus)
3803 }
3804 #endif
3805 
3806 #endif /* _UAPI_I915_DRM_H_ */
3807