xref: /openbmc/linux/include/uapi/drm/i915_drm.h (revision 4f57332d6a551185ba729617f04455e83fbe4e41)
1 /*
2  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the
14  * next paragraph) shall be included in all copies or substantial portions
15  * of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
20  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
21  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24  *
25  */
26 
27 #ifndef _UAPI_I915_DRM_H_
28 #define _UAPI_I915_DRM_H_
29 
30 #include "drm.h"
31 
32 #if defined(__cplusplus)
33 extern "C" {
34 #endif
35 
36 /* Please note that modifications to all structs defined here are
37  * subject to backwards-compatibility constraints.
38  */
39 
40 /**
41  * DOC: uevents generated by i915 on it's device node
42  *
43  * I915_L3_PARITY_UEVENT - Generated when the driver receives a parity mismatch
44  *	event from the gpu l3 cache. Additional information supplied is ROW,
45  *	BANK, SUBBANK, SLICE of the affected cacheline. Userspace should keep
46  *	track of these events and if a specific cache-line seems to have a
47  *	persistent error remap it with the l3 remapping tool supplied in
48  *	intel-gpu-tools.  The value supplied with the event is always 1.
49  *
50  * I915_ERROR_UEVENT - Generated upon error detection, currently only via
51  *	hangcheck. The error detection event is a good indicator of when things
52  *	began to go badly. The value supplied with the event is a 1 upon error
53  *	detection, and a 0 upon reset completion, signifying no more error
54  *	exists. NOTE: Disabling hangcheck or reset via module parameter will
55  *	cause the related events to not be seen.
56  *
57  * I915_RESET_UEVENT - Event is generated just before an attempt to reset the
58  *	GPU. The value supplied with the event is always 1. NOTE: Disable
59  *	reset via module parameter will cause this event to not be seen.
60  */
61 #define I915_L3_PARITY_UEVENT		"L3_PARITY_ERROR"
62 #define I915_ERROR_UEVENT		"ERROR"
63 #define I915_RESET_UEVENT		"RESET"
64 
65 /**
66  * struct i915_user_extension - Base class for defining a chain of extensions
67  *
68  * Many interfaces need to grow over time. In most cases we can simply
69  * extend the struct and have userspace pass in more data. Another option,
70  * as demonstrated by Vulkan's approach to providing extensions for forward
71  * and backward compatibility, is to use a list of optional structs to
72  * provide those extra details.
73  *
74  * The key advantage to using an extension chain is that it allows us to
75  * redefine the interface more easily than an ever growing struct of
76  * increasing complexity, and for large parts of that interface to be
77  * entirely optional. The downside is more pointer chasing; chasing across
78  * the __user boundary with pointers encapsulated inside u64.
79  *
80  * Example chaining:
81  *
82  * .. code-block:: C
83  *
84  *	struct i915_user_extension ext3 {
85  *		.next_extension = 0, // end
86  *		.name = ...,
87  *	};
88  *	struct i915_user_extension ext2 {
89  *		.next_extension = (uintptr_t)&ext3,
90  *		.name = ...,
91  *	};
92  *	struct i915_user_extension ext1 {
93  *		.next_extension = (uintptr_t)&ext2,
94  *		.name = ...,
95  *	};
96  *
97  * Typically the struct i915_user_extension would be embedded in some uAPI
98  * struct, and in this case we would feed it the head of the chain(i.e ext1),
99  * which would then apply all of the above extensions.
100  *
101  */
102 struct i915_user_extension {
103 	/**
104 	 * @next_extension:
105 	 *
106 	 * Pointer to the next struct i915_user_extension, or zero if the end.
107 	 */
108 	__u64 next_extension;
109 	/**
110 	 * @name: Name of the extension.
111 	 *
112 	 * Note that the name here is just some integer.
113 	 *
114 	 * Also note that the name space for this is not global for the whole
115 	 * driver, but rather its scope/meaning is limited to the specific piece
116 	 * of uAPI which has embedded the struct i915_user_extension.
117 	 */
118 	__u32 name;
119 	/**
120 	 * @flags: MBZ
121 	 *
122 	 * All undefined bits must be zero.
123 	 */
124 	__u32 flags;
125 	/**
126 	 * @rsvd: MBZ
127 	 *
128 	 * Reserved for future use; must be zero.
129 	 */
130 	__u32 rsvd[4];
131 };
132 
133 /*
134  * MOCS indexes used for GPU surfaces, defining the cacheability of the
135  * surface data and the coherency for this data wrt. CPU vs. GPU accesses.
136  */
137 enum i915_mocs_table_index {
138 	/*
139 	 * Not cached anywhere, coherency between CPU and GPU accesses is
140 	 * guaranteed.
141 	 */
142 	I915_MOCS_UNCACHED,
143 	/*
144 	 * Cacheability and coherency controlled by the kernel automatically
145 	 * based on the DRM_I915_GEM_SET_CACHING IOCTL setting and the current
146 	 * usage of the surface (used for display scanout or not).
147 	 */
148 	I915_MOCS_PTE,
149 	/*
150 	 * Cached in all GPU caches available on the platform.
151 	 * Coherency between CPU and GPU accesses to the surface is not
152 	 * guaranteed without extra synchronization.
153 	 */
154 	I915_MOCS_CACHED,
155 };
156 
157 /**
158  * enum drm_i915_gem_engine_class - uapi engine type enumeration
159  *
160  * Different engines serve different roles, and there may be more than one
161  * engine serving each role.  This enum provides a classification of the role
162  * of the engine, which may be used when requesting operations to be performed
163  * on a certain subset of engines, or for providing information about that
164  * group.
165  */
166 enum drm_i915_gem_engine_class {
167 	/**
168 	 * @I915_ENGINE_CLASS_RENDER:
169 	 *
170 	 * Render engines support instructions used for 3D, Compute (GPGPU),
171 	 * and programmable media workloads.  These instructions fetch data and
172 	 * dispatch individual work items to threads that operate in parallel.
173 	 * The threads run small programs (called "kernels" or "shaders") on
174 	 * the GPU's execution units (EUs).
175 	 */
176 	I915_ENGINE_CLASS_RENDER	= 0,
177 
178 	/**
179 	 * @I915_ENGINE_CLASS_COPY:
180 	 *
181 	 * Copy engines (also referred to as "blitters") support instructions
182 	 * that move blocks of data from one location in memory to another,
183 	 * or that fill a specified location of memory with fixed data.
184 	 * Copy engines can perform pre-defined logical or bitwise operations
185 	 * on the source, destination, or pattern data.
186 	 */
187 	I915_ENGINE_CLASS_COPY		= 1,
188 
189 	/**
190 	 * @I915_ENGINE_CLASS_VIDEO:
191 	 *
192 	 * Video engines (also referred to as "bit stream decode" (BSD) or
193 	 * "vdbox") support instructions that perform fixed-function media
194 	 * decode and encode.
195 	 */
196 	I915_ENGINE_CLASS_VIDEO		= 2,
197 
198 	/**
199 	 * @I915_ENGINE_CLASS_VIDEO_ENHANCE:
200 	 *
201 	 * Video enhancement engines (also referred to as "vebox") support
202 	 * instructions related to image enhancement.
203 	 */
204 	I915_ENGINE_CLASS_VIDEO_ENHANCE	= 3,
205 
206 	/**
207 	 * @I915_ENGINE_CLASS_COMPUTE:
208 	 *
209 	 * Compute engines support a subset of the instructions available
210 	 * on render engines:  compute engines support Compute (GPGPU) and
211 	 * programmable media workloads, but do not support the 3D pipeline.
212 	 */
213 	I915_ENGINE_CLASS_COMPUTE	= 4,
214 
215 	/* Values in this enum should be kept compact. */
216 
217 	/**
218 	 * @I915_ENGINE_CLASS_INVALID:
219 	 *
220 	 * Placeholder value to represent an invalid engine class assignment.
221 	 */
222 	I915_ENGINE_CLASS_INVALID	= -1
223 };
224 
225 /**
226  * struct i915_engine_class_instance - Engine class/instance identifier
227  *
228  * There may be more than one engine fulfilling any role within the system.
229  * Each engine of a class is given a unique instance number and therefore
230  * any engine can be specified by its class:instance tuplet. APIs that allow
231  * access to any engine in the system will use struct i915_engine_class_instance
232  * for this identification.
233  */
234 struct i915_engine_class_instance {
235 	/**
236 	 * @engine_class:
237 	 *
238 	 * Engine class from enum drm_i915_gem_engine_class
239 	 */
240 	__u16 engine_class;
241 #define I915_ENGINE_CLASS_INVALID_NONE -1
242 #define I915_ENGINE_CLASS_INVALID_VIRTUAL -2
243 
244 	/**
245 	 * @engine_instance:
246 	 *
247 	 * Engine instance.
248 	 */
249 	__u16 engine_instance;
250 };
251 
252 /**
253  * DOC: perf_events exposed by i915 through /sys/bus/event_sources/drivers/i915
254  *
255  */
256 
257 enum drm_i915_pmu_engine_sample {
258 	I915_SAMPLE_BUSY = 0,
259 	I915_SAMPLE_WAIT = 1,
260 	I915_SAMPLE_SEMA = 2
261 };
262 
263 #define I915_PMU_SAMPLE_BITS (4)
264 #define I915_PMU_SAMPLE_MASK (0xf)
265 #define I915_PMU_SAMPLE_INSTANCE_BITS (8)
266 #define I915_PMU_CLASS_SHIFT \
267 	(I915_PMU_SAMPLE_BITS + I915_PMU_SAMPLE_INSTANCE_BITS)
268 
269 #define __I915_PMU_ENGINE(class, instance, sample) \
270 	((class) << I915_PMU_CLASS_SHIFT | \
271 	(instance) << I915_PMU_SAMPLE_BITS | \
272 	(sample))
273 
274 #define I915_PMU_ENGINE_BUSY(class, instance) \
275 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_BUSY)
276 
277 #define I915_PMU_ENGINE_WAIT(class, instance) \
278 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_WAIT)
279 
280 #define I915_PMU_ENGINE_SEMA(class, instance) \
281 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_SEMA)
282 
283 #define __I915_PMU_OTHER(x) (__I915_PMU_ENGINE(0xff, 0xff, 0xf) + 1 + (x))
284 
285 #define I915_PMU_ACTUAL_FREQUENCY	__I915_PMU_OTHER(0)
286 #define I915_PMU_REQUESTED_FREQUENCY	__I915_PMU_OTHER(1)
287 #define I915_PMU_INTERRUPTS		__I915_PMU_OTHER(2)
288 #define I915_PMU_RC6_RESIDENCY		__I915_PMU_OTHER(3)
289 #define I915_PMU_SOFTWARE_GT_AWAKE_TIME	__I915_PMU_OTHER(4)
290 
291 #define I915_PMU_LAST /* Deprecated - do not use */ I915_PMU_RC6_RESIDENCY
292 
293 /* Each region is a minimum of 16k, and there are at most 255 of them.
294  */
295 #define I915_NR_TEX_REGIONS 255	/* table size 2k - maximum due to use
296 				 * of chars for next/prev indices */
297 #define I915_LOG_MIN_TEX_REGION_SIZE 14
298 
299 typedef struct _drm_i915_init {
300 	enum {
301 		I915_INIT_DMA = 0x01,
302 		I915_CLEANUP_DMA = 0x02,
303 		I915_RESUME_DMA = 0x03
304 	} func;
305 	unsigned int mmio_offset;
306 	int sarea_priv_offset;
307 	unsigned int ring_start;
308 	unsigned int ring_end;
309 	unsigned int ring_size;
310 	unsigned int front_offset;
311 	unsigned int back_offset;
312 	unsigned int depth_offset;
313 	unsigned int w;
314 	unsigned int h;
315 	unsigned int pitch;
316 	unsigned int pitch_bits;
317 	unsigned int back_pitch;
318 	unsigned int depth_pitch;
319 	unsigned int cpp;
320 	unsigned int chipset;
321 } drm_i915_init_t;
322 
323 typedef struct _drm_i915_sarea {
324 	struct drm_tex_region texList[I915_NR_TEX_REGIONS + 1];
325 	int last_upload;	/* last time texture was uploaded */
326 	int last_enqueue;	/* last time a buffer was enqueued */
327 	int last_dispatch;	/* age of the most recently dispatched buffer */
328 	int ctxOwner;		/* last context to upload state */
329 	int texAge;
330 	int pf_enabled;		/* is pageflipping allowed? */
331 	int pf_active;
332 	int pf_current_page;	/* which buffer is being displayed? */
333 	int perf_boxes;		/* performance boxes to be displayed */
334 	int width, height;      /* screen size in pixels */
335 
336 	drm_handle_t front_handle;
337 	int front_offset;
338 	int front_size;
339 
340 	drm_handle_t back_handle;
341 	int back_offset;
342 	int back_size;
343 
344 	drm_handle_t depth_handle;
345 	int depth_offset;
346 	int depth_size;
347 
348 	drm_handle_t tex_handle;
349 	int tex_offset;
350 	int tex_size;
351 	int log_tex_granularity;
352 	int pitch;
353 	int rotation;           /* 0, 90, 180 or 270 */
354 	int rotated_offset;
355 	int rotated_size;
356 	int rotated_pitch;
357 	int virtualX, virtualY;
358 
359 	unsigned int front_tiled;
360 	unsigned int back_tiled;
361 	unsigned int depth_tiled;
362 	unsigned int rotated_tiled;
363 	unsigned int rotated2_tiled;
364 
365 	int pipeA_x;
366 	int pipeA_y;
367 	int pipeA_w;
368 	int pipeA_h;
369 	int pipeB_x;
370 	int pipeB_y;
371 	int pipeB_w;
372 	int pipeB_h;
373 
374 	/* fill out some space for old userspace triple buffer */
375 	drm_handle_t unused_handle;
376 	__u32 unused1, unused2, unused3;
377 
378 	/* buffer object handles for static buffers. May change
379 	 * over the lifetime of the client.
380 	 */
381 	__u32 front_bo_handle;
382 	__u32 back_bo_handle;
383 	__u32 unused_bo_handle;
384 	__u32 depth_bo_handle;
385 
386 } drm_i915_sarea_t;
387 
388 /* due to userspace building against these headers we need some compat here */
389 #define planeA_x pipeA_x
390 #define planeA_y pipeA_y
391 #define planeA_w pipeA_w
392 #define planeA_h pipeA_h
393 #define planeB_x pipeB_x
394 #define planeB_y pipeB_y
395 #define planeB_w pipeB_w
396 #define planeB_h pipeB_h
397 
398 /* Flags for perf_boxes
399  */
400 #define I915_BOX_RING_EMPTY    0x1
401 #define I915_BOX_FLIP          0x2
402 #define I915_BOX_WAIT          0x4
403 #define I915_BOX_TEXTURE_LOAD  0x8
404 #define I915_BOX_LOST_CONTEXT  0x10
405 
406 /*
407  * i915 specific ioctls.
408  *
409  * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie
410  * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset
411  * against DRM_COMMAND_BASE and should be between [0x0, 0x60).
412  */
413 #define DRM_I915_INIT		0x00
414 #define DRM_I915_FLUSH		0x01
415 #define DRM_I915_FLIP		0x02
416 #define DRM_I915_BATCHBUFFER	0x03
417 #define DRM_I915_IRQ_EMIT	0x04
418 #define DRM_I915_IRQ_WAIT	0x05
419 #define DRM_I915_GETPARAM	0x06
420 #define DRM_I915_SETPARAM	0x07
421 #define DRM_I915_ALLOC		0x08
422 #define DRM_I915_FREE		0x09
423 #define DRM_I915_INIT_HEAP	0x0a
424 #define DRM_I915_CMDBUFFER	0x0b
425 #define DRM_I915_DESTROY_HEAP	0x0c
426 #define DRM_I915_SET_VBLANK_PIPE	0x0d
427 #define DRM_I915_GET_VBLANK_PIPE	0x0e
428 #define DRM_I915_VBLANK_SWAP	0x0f
429 #define DRM_I915_HWS_ADDR	0x11
430 #define DRM_I915_GEM_INIT	0x13
431 #define DRM_I915_GEM_EXECBUFFER	0x14
432 #define DRM_I915_GEM_PIN	0x15
433 #define DRM_I915_GEM_UNPIN	0x16
434 #define DRM_I915_GEM_BUSY	0x17
435 #define DRM_I915_GEM_THROTTLE	0x18
436 #define DRM_I915_GEM_ENTERVT	0x19
437 #define DRM_I915_GEM_LEAVEVT	0x1a
438 #define DRM_I915_GEM_CREATE	0x1b
439 #define DRM_I915_GEM_PREAD	0x1c
440 #define DRM_I915_GEM_PWRITE	0x1d
441 #define DRM_I915_GEM_MMAP	0x1e
442 #define DRM_I915_GEM_SET_DOMAIN	0x1f
443 #define DRM_I915_GEM_SW_FINISH	0x20
444 #define DRM_I915_GEM_SET_TILING	0x21
445 #define DRM_I915_GEM_GET_TILING	0x22
446 #define DRM_I915_GEM_GET_APERTURE 0x23
447 #define DRM_I915_GEM_MMAP_GTT	0x24
448 #define DRM_I915_GET_PIPE_FROM_CRTC_ID	0x25
449 #define DRM_I915_GEM_MADVISE	0x26
450 #define DRM_I915_OVERLAY_PUT_IMAGE	0x27
451 #define DRM_I915_OVERLAY_ATTRS	0x28
452 #define DRM_I915_GEM_EXECBUFFER2	0x29
453 #define DRM_I915_GEM_EXECBUFFER2_WR	DRM_I915_GEM_EXECBUFFER2
454 #define DRM_I915_GET_SPRITE_COLORKEY	0x2a
455 #define DRM_I915_SET_SPRITE_COLORKEY	0x2b
456 #define DRM_I915_GEM_WAIT	0x2c
457 #define DRM_I915_GEM_CONTEXT_CREATE	0x2d
458 #define DRM_I915_GEM_CONTEXT_DESTROY	0x2e
459 #define DRM_I915_GEM_SET_CACHING	0x2f
460 #define DRM_I915_GEM_GET_CACHING	0x30
461 #define DRM_I915_REG_READ		0x31
462 #define DRM_I915_GET_RESET_STATS	0x32
463 #define DRM_I915_GEM_USERPTR		0x33
464 #define DRM_I915_GEM_CONTEXT_GETPARAM	0x34
465 #define DRM_I915_GEM_CONTEXT_SETPARAM	0x35
466 #define DRM_I915_PERF_OPEN		0x36
467 #define DRM_I915_PERF_ADD_CONFIG	0x37
468 #define DRM_I915_PERF_REMOVE_CONFIG	0x38
469 #define DRM_I915_QUERY			0x39
470 #define DRM_I915_GEM_VM_CREATE		0x3a
471 #define DRM_I915_GEM_VM_DESTROY		0x3b
472 #define DRM_I915_GEM_CREATE_EXT		0x3c
473 /* Must be kept compact -- no holes */
474 
475 #define DRM_IOCTL_I915_INIT		DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT, drm_i915_init_t)
476 #define DRM_IOCTL_I915_FLUSH		DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLUSH)
477 #define DRM_IOCTL_I915_FLIP		DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLIP)
478 #define DRM_IOCTL_I915_BATCHBUFFER	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_BATCHBUFFER, drm_i915_batchbuffer_t)
479 #define DRM_IOCTL_I915_IRQ_EMIT         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_IRQ_EMIT, drm_i915_irq_emit_t)
480 #define DRM_IOCTL_I915_IRQ_WAIT         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_IRQ_WAIT, drm_i915_irq_wait_t)
481 #define DRM_IOCTL_I915_GETPARAM         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GETPARAM, drm_i915_getparam_t)
482 #define DRM_IOCTL_I915_SETPARAM         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SETPARAM, drm_i915_setparam_t)
483 #define DRM_IOCTL_I915_ALLOC            DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_ALLOC, drm_i915_mem_alloc_t)
484 #define DRM_IOCTL_I915_FREE             DRM_IOW( DRM_COMMAND_BASE + DRM_I915_FREE, drm_i915_mem_free_t)
485 #define DRM_IOCTL_I915_INIT_HEAP        DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT_HEAP, drm_i915_mem_init_heap_t)
486 #define DRM_IOCTL_I915_CMDBUFFER	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_CMDBUFFER, drm_i915_cmdbuffer_t)
487 #define DRM_IOCTL_I915_DESTROY_HEAP	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_DESTROY_HEAP, drm_i915_mem_destroy_heap_t)
488 #define DRM_IOCTL_I915_SET_VBLANK_PIPE	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
489 #define DRM_IOCTL_I915_GET_VBLANK_PIPE	DRM_IOR( DRM_COMMAND_BASE + DRM_I915_GET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
490 #define DRM_IOCTL_I915_VBLANK_SWAP	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_VBLANK_SWAP, drm_i915_vblank_swap_t)
491 #define DRM_IOCTL_I915_HWS_ADDR		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_HWS_ADDR, struct drm_i915_gem_init)
492 #define DRM_IOCTL_I915_GEM_INIT		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_INIT, struct drm_i915_gem_init)
493 #define DRM_IOCTL_I915_GEM_EXECBUFFER	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER, struct drm_i915_gem_execbuffer)
494 #define DRM_IOCTL_I915_GEM_EXECBUFFER2	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2, struct drm_i915_gem_execbuffer2)
495 #define DRM_IOCTL_I915_GEM_EXECBUFFER2_WR	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2_WR, struct drm_i915_gem_execbuffer2)
496 #define DRM_IOCTL_I915_GEM_PIN		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_PIN, struct drm_i915_gem_pin)
497 #define DRM_IOCTL_I915_GEM_UNPIN	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_UNPIN, struct drm_i915_gem_unpin)
498 #define DRM_IOCTL_I915_GEM_BUSY		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_BUSY, struct drm_i915_gem_busy)
499 #define DRM_IOCTL_I915_GEM_SET_CACHING		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_SET_CACHING, struct drm_i915_gem_caching)
500 #define DRM_IOCTL_I915_GEM_GET_CACHING		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_GET_CACHING, struct drm_i915_gem_caching)
501 #define DRM_IOCTL_I915_GEM_THROTTLE	DRM_IO ( DRM_COMMAND_BASE + DRM_I915_GEM_THROTTLE)
502 #define DRM_IOCTL_I915_GEM_ENTERVT	DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_ENTERVT)
503 #define DRM_IOCTL_I915_GEM_LEAVEVT	DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_LEAVEVT)
504 #define DRM_IOCTL_I915_GEM_CREATE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE, struct drm_i915_gem_create)
505 #define DRM_IOCTL_I915_GEM_CREATE_EXT	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE_EXT, struct drm_i915_gem_create_ext)
506 #define DRM_IOCTL_I915_GEM_PREAD	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PREAD, struct drm_i915_gem_pread)
507 #define DRM_IOCTL_I915_GEM_PWRITE	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PWRITE, struct drm_i915_gem_pwrite)
508 #define DRM_IOCTL_I915_GEM_MMAP		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP, struct drm_i915_gem_mmap)
509 #define DRM_IOCTL_I915_GEM_MMAP_GTT	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_gtt)
510 #define DRM_IOCTL_I915_GEM_MMAP_OFFSET	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_offset)
511 #define DRM_IOCTL_I915_GEM_SET_DOMAIN	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SET_DOMAIN, struct drm_i915_gem_set_domain)
512 #define DRM_IOCTL_I915_GEM_SW_FINISH	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SW_FINISH, struct drm_i915_gem_sw_finish)
513 #define DRM_IOCTL_I915_GEM_SET_TILING	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_SET_TILING, struct drm_i915_gem_set_tiling)
514 #define DRM_IOCTL_I915_GEM_GET_TILING	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_TILING, struct drm_i915_gem_get_tiling)
515 #define DRM_IOCTL_I915_GEM_GET_APERTURE	DRM_IOR  (DRM_COMMAND_BASE + DRM_I915_GEM_GET_APERTURE, struct drm_i915_gem_get_aperture)
516 #define DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_PIPE_FROM_CRTC_ID, struct drm_i915_get_pipe_from_crtc_id)
517 #define DRM_IOCTL_I915_GEM_MADVISE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MADVISE, struct drm_i915_gem_madvise)
518 #define DRM_IOCTL_I915_OVERLAY_PUT_IMAGE	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_OVERLAY_PUT_IMAGE, struct drm_intel_overlay_put_image)
519 #define DRM_IOCTL_I915_OVERLAY_ATTRS	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_OVERLAY_ATTRS, struct drm_intel_overlay_attrs)
520 #define DRM_IOCTL_I915_SET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_SET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
521 #define DRM_IOCTL_I915_GET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
522 #define DRM_IOCTL_I915_GEM_WAIT		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_WAIT, struct drm_i915_gem_wait)
523 #define DRM_IOCTL_I915_GEM_CONTEXT_CREATE	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create)
524 #define DRM_IOCTL_I915_GEM_CONTEXT_CREATE_EXT	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create_ext)
525 #define DRM_IOCTL_I915_GEM_CONTEXT_DESTROY	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_DESTROY, struct drm_i915_gem_context_destroy)
526 #define DRM_IOCTL_I915_REG_READ			DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_REG_READ, struct drm_i915_reg_read)
527 #define DRM_IOCTL_I915_GET_RESET_STATS		DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GET_RESET_STATS, struct drm_i915_reset_stats)
528 #define DRM_IOCTL_I915_GEM_USERPTR			DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_USERPTR, struct drm_i915_gem_userptr)
529 #define DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_GETPARAM, struct drm_i915_gem_context_param)
530 #define DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_SETPARAM, struct drm_i915_gem_context_param)
531 #define DRM_IOCTL_I915_PERF_OPEN	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_OPEN, struct drm_i915_perf_open_param)
532 #define DRM_IOCTL_I915_PERF_ADD_CONFIG	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_ADD_CONFIG, struct drm_i915_perf_oa_config)
533 #define DRM_IOCTL_I915_PERF_REMOVE_CONFIG	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_REMOVE_CONFIG, __u64)
534 #define DRM_IOCTL_I915_QUERY			DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_QUERY, struct drm_i915_query)
535 #define DRM_IOCTL_I915_GEM_VM_CREATE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_VM_CREATE, struct drm_i915_gem_vm_control)
536 #define DRM_IOCTL_I915_GEM_VM_DESTROY	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_VM_DESTROY, struct drm_i915_gem_vm_control)
537 
538 /* Allow drivers to submit batchbuffers directly to hardware, relying
539  * on the security mechanisms provided by hardware.
540  */
541 typedef struct drm_i915_batchbuffer {
542 	int start;		/* agp offset */
543 	int used;		/* nr bytes in use */
544 	int DR1;		/* hw flags for GFX_OP_DRAWRECT_INFO */
545 	int DR4;		/* window origin for GFX_OP_DRAWRECT_INFO */
546 	int num_cliprects;	/* mulitpass with multiple cliprects? */
547 	struct drm_clip_rect __user *cliprects;	/* pointer to userspace cliprects */
548 } drm_i915_batchbuffer_t;
549 
550 /* As above, but pass a pointer to userspace buffer which can be
551  * validated by the kernel prior to sending to hardware.
552  */
553 typedef struct _drm_i915_cmdbuffer {
554 	char __user *buf;	/* pointer to userspace command buffer */
555 	int sz;			/* nr bytes in buf */
556 	int DR1;		/* hw flags for GFX_OP_DRAWRECT_INFO */
557 	int DR4;		/* window origin for GFX_OP_DRAWRECT_INFO */
558 	int num_cliprects;	/* mulitpass with multiple cliprects? */
559 	struct drm_clip_rect __user *cliprects;	/* pointer to userspace cliprects */
560 } drm_i915_cmdbuffer_t;
561 
562 /* Userspace can request & wait on irq's:
563  */
564 typedef struct drm_i915_irq_emit {
565 	int __user *irq_seq;
566 } drm_i915_irq_emit_t;
567 
568 typedef struct drm_i915_irq_wait {
569 	int irq_seq;
570 } drm_i915_irq_wait_t;
571 
572 /*
573  * Different modes of per-process Graphics Translation Table,
574  * see I915_PARAM_HAS_ALIASING_PPGTT
575  */
576 #define I915_GEM_PPGTT_NONE	0
577 #define I915_GEM_PPGTT_ALIASING	1
578 #define I915_GEM_PPGTT_FULL	2
579 
580 /* Ioctl to query kernel params:
581  */
582 #define I915_PARAM_IRQ_ACTIVE            1
583 #define I915_PARAM_ALLOW_BATCHBUFFER     2
584 #define I915_PARAM_LAST_DISPATCH         3
585 #define I915_PARAM_CHIPSET_ID            4
586 #define I915_PARAM_HAS_GEM               5
587 #define I915_PARAM_NUM_FENCES_AVAIL      6
588 #define I915_PARAM_HAS_OVERLAY           7
589 #define I915_PARAM_HAS_PAGEFLIPPING	 8
590 #define I915_PARAM_HAS_EXECBUF2          9
591 #define I915_PARAM_HAS_BSD		 10
592 #define I915_PARAM_HAS_BLT		 11
593 #define I915_PARAM_HAS_RELAXED_FENCING	 12
594 #define I915_PARAM_HAS_COHERENT_RINGS	 13
595 #define I915_PARAM_HAS_EXEC_CONSTANTS	 14
596 #define I915_PARAM_HAS_RELAXED_DELTA	 15
597 #define I915_PARAM_HAS_GEN7_SOL_RESET	 16
598 #define I915_PARAM_HAS_LLC     	 	 17
599 #define I915_PARAM_HAS_ALIASING_PPGTT	 18
600 #define I915_PARAM_HAS_WAIT_TIMEOUT	 19
601 #define I915_PARAM_HAS_SEMAPHORES	 20
602 #define I915_PARAM_HAS_PRIME_VMAP_FLUSH	 21
603 #define I915_PARAM_HAS_VEBOX		 22
604 #define I915_PARAM_HAS_SECURE_BATCHES	 23
605 #define I915_PARAM_HAS_PINNED_BATCHES	 24
606 #define I915_PARAM_HAS_EXEC_NO_RELOC	 25
607 #define I915_PARAM_HAS_EXEC_HANDLE_LUT   26
608 #define I915_PARAM_HAS_WT     	 	 27
609 #define I915_PARAM_CMD_PARSER_VERSION	 28
610 #define I915_PARAM_HAS_COHERENT_PHYS_GTT 29
611 #define I915_PARAM_MMAP_VERSION          30
612 #define I915_PARAM_HAS_BSD2		 31
613 #define I915_PARAM_REVISION              32
614 #define I915_PARAM_SUBSLICE_TOTAL	 33
615 #define I915_PARAM_EU_TOTAL		 34
616 #define I915_PARAM_HAS_GPU_RESET	 35
617 #define I915_PARAM_HAS_RESOURCE_STREAMER 36
618 #define I915_PARAM_HAS_EXEC_SOFTPIN	 37
619 #define I915_PARAM_HAS_POOLED_EU	 38
620 #define I915_PARAM_MIN_EU_IN_POOL	 39
621 #define I915_PARAM_MMAP_GTT_VERSION	 40
622 
623 /*
624  * Query whether DRM_I915_GEM_EXECBUFFER2 supports user defined execution
625  * priorities and the driver will attempt to execute batches in priority order.
626  * The param returns a capability bitmask, nonzero implies that the scheduler
627  * is enabled, with different features present according to the mask.
628  *
629  * The initial priority for each batch is supplied by the context and is
630  * controlled via I915_CONTEXT_PARAM_PRIORITY.
631  */
632 #define I915_PARAM_HAS_SCHEDULER	 41
633 #define   I915_SCHEDULER_CAP_ENABLED	(1ul << 0)
634 #define   I915_SCHEDULER_CAP_PRIORITY	(1ul << 1)
635 #define   I915_SCHEDULER_CAP_PREEMPTION	(1ul << 2)
636 #define   I915_SCHEDULER_CAP_SEMAPHORES	(1ul << 3)
637 #define   I915_SCHEDULER_CAP_ENGINE_BUSY_STATS	(1ul << 4)
638 /*
639  * Indicates the 2k user priority levels are statically mapped into 3 buckets as
640  * follows:
641  *
642  * -1k to -1	Low priority
643  * 0		Normal priority
644  * 1 to 1k	Highest priority
645  */
646 #define   I915_SCHEDULER_CAP_STATIC_PRIORITY_MAP	(1ul << 5)
647 
648 #define I915_PARAM_HUC_STATUS		 42
649 
650 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to opt-out of
651  * synchronisation with implicit fencing on individual objects.
652  * See EXEC_OBJECT_ASYNC.
653  */
654 #define I915_PARAM_HAS_EXEC_ASYNC	 43
655 
656 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports explicit fence support -
657  * both being able to pass in a sync_file fd to wait upon before executing,
658  * and being able to return a new sync_file fd that is signaled when the
659  * current request is complete. See I915_EXEC_FENCE_IN and I915_EXEC_FENCE_OUT.
660  */
661 #define I915_PARAM_HAS_EXEC_FENCE	 44
662 
663 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to capture
664  * user specified bufffers for post-mortem debugging of GPU hangs. See
665  * EXEC_OBJECT_CAPTURE.
666  */
667 #define I915_PARAM_HAS_EXEC_CAPTURE	 45
668 
669 #define I915_PARAM_SLICE_MASK		 46
670 
671 /* Assuming it's uniform for each slice, this queries the mask of subslices
672  * per-slice for this system.
673  */
674 #define I915_PARAM_SUBSLICE_MASK	 47
675 
676 /*
677  * Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying the batch buffer
678  * as the first execobject as opposed to the last. See I915_EXEC_BATCH_FIRST.
679  */
680 #define I915_PARAM_HAS_EXEC_BATCH_FIRST	 48
681 
682 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
683  * drm_i915_gem_exec_fence structures.  See I915_EXEC_FENCE_ARRAY.
684  */
685 #define I915_PARAM_HAS_EXEC_FENCE_ARRAY  49
686 
687 /*
688  * Query whether every context (both per-file default and user created) is
689  * isolated (insofar as HW supports). If this parameter is not true, then
690  * freshly created contexts may inherit values from an existing context,
691  * rather than default HW values. If true, it also ensures (insofar as HW
692  * supports) that all state set by this context will not leak to any other
693  * context.
694  *
695  * As not every engine across every gen support contexts, the returned
696  * value reports the support of context isolation for individual engines by
697  * returning a bitmask of each engine class set to true if that class supports
698  * isolation.
699  */
700 #define I915_PARAM_HAS_CONTEXT_ISOLATION 50
701 
702 /* Frequency of the command streamer timestamps given by the *_TIMESTAMP
703  * registers. This used to be fixed per platform but from CNL onwards, this
704  * might vary depending on the parts.
705  */
706 #define I915_PARAM_CS_TIMESTAMP_FREQUENCY 51
707 
708 /*
709  * Once upon a time we supposed that writes through the GGTT would be
710  * immediately in physical memory (once flushed out of the CPU path). However,
711  * on a few different processors and chipsets, this is not necessarily the case
712  * as the writes appear to be buffered internally. Thus a read of the backing
713  * storage (physical memory) via a different path (with different physical tags
714  * to the indirect write via the GGTT) will see stale values from before
715  * the GGTT write. Inside the kernel, we can for the most part keep track of
716  * the different read/write domains in use (e.g. set-domain), but the assumption
717  * of coherency is baked into the ABI, hence reporting its true state in this
718  * parameter.
719  *
720  * Reports true when writes via mmap_gtt are immediately visible following an
721  * lfence to flush the WCB.
722  *
723  * Reports false when writes via mmap_gtt are indeterminately delayed in an in
724  * internal buffer and are _not_ immediately visible to third parties accessing
725  * directly via mmap_cpu/mmap_wc. Use of mmap_gtt as part of an IPC
726  * communications channel when reporting false is strongly disadvised.
727  */
728 #define I915_PARAM_MMAP_GTT_COHERENT	52
729 
730 /*
731  * Query whether DRM_I915_GEM_EXECBUFFER2 supports coordination of parallel
732  * execution through use of explicit fence support.
733  * See I915_EXEC_FENCE_OUT and I915_EXEC_FENCE_SUBMIT.
734  */
735 #define I915_PARAM_HAS_EXEC_SUBMIT_FENCE 53
736 
737 /*
738  * Revision of the i915-perf uAPI. The value returned helps determine what
739  * i915-perf features are available. See drm_i915_perf_property_id.
740  */
741 #define I915_PARAM_PERF_REVISION	54
742 
743 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
744  * timeline syncobj through drm_i915_gem_execbuffer_ext_timeline_fences. See
745  * I915_EXEC_USE_EXTENSIONS.
746  */
747 #define I915_PARAM_HAS_EXEC_TIMELINE_FENCES 55
748 
749 /* Query if the kernel supports the I915_USERPTR_PROBE flag. */
750 #define I915_PARAM_HAS_USERPTR_PROBE 56
751 
752 /* Must be kept compact -- no holes and well documented */
753 
754 /**
755  * struct drm_i915_getparam - Driver parameter query structure.
756  */
757 struct drm_i915_getparam {
758 	/** @param: Driver parameter to query. */
759 	__s32 param;
760 
761 	/**
762 	 * @value: Address of memory where queried value should be put.
763 	 *
764 	 * WARNING: Using pointers instead of fixed-size u64 means we need to write
765 	 * compat32 code. Don't repeat this mistake.
766 	 */
767 	int __user *value;
768 };
769 
770 /**
771  * typedef drm_i915_getparam_t - Driver parameter query structure.
772  * See struct drm_i915_getparam.
773  */
774 typedef struct drm_i915_getparam drm_i915_getparam_t;
775 
776 /* Ioctl to set kernel params:
777  */
778 #define I915_SETPARAM_USE_MI_BATCHBUFFER_START            1
779 #define I915_SETPARAM_TEX_LRU_LOG_GRANULARITY             2
780 #define I915_SETPARAM_ALLOW_BATCHBUFFER                   3
781 #define I915_SETPARAM_NUM_USED_FENCES                     4
782 /* Must be kept compact -- no holes */
783 
784 typedef struct drm_i915_setparam {
785 	int param;
786 	int value;
787 } drm_i915_setparam_t;
788 
789 /* A memory manager for regions of shared memory:
790  */
791 #define I915_MEM_REGION_AGP 1
792 
793 typedef struct drm_i915_mem_alloc {
794 	int region;
795 	int alignment;
796 	int size;
797 	int __user *region_offset;	/* offset from start of fb or agp */
798 } drm_i915_mem_alloc_t;
799 
800 typedef struct drm_i915_mem_free {
801 	int region;
802 	int region_offset;
803 } drm_i915_mem_free_t;
804 
805 typedef struct drm_i915_mem_init_heap {
806 	int region;
807 	int size;
808 	int start;
809 } drm_i915_mem_init_heap_t;
810 
811 /* Allow memory manager to be torn down and re-initialized (eg on
812  * rotate):
813  */
814 typedef struct drm_i915_mem_destroy_heap {
815 	int region;
816 } drm_i915_mem_destroy_heap_t;
817 
818 /* Allow X server to configure which pipes to monitor for vblank signals
819  */
820 #define	DRM_I915_VBLANK_PIPE_A	1
821 #define	DRM_I915_VBLANK_PIPE_B	2
822 
823 typedef struct drm_i915_vblank_pipe {
824 	int pipe;
825 } drm_i915_vblank_pipe_t;
826 
827 /* Schedule buffer swap at given vertical blank:
828  */
829 typedef struct drm_i915_vblank_swap {
830 	drm_drawable_t drawable;
831 	enum drm_vblank_seq_type seqtype;
832 	unsigned int sequence;
833 } drm_i915_vblank_swap_t;
834 
835 typedef struct drm_i915_hws_addr {
836 	__u64 addr;
837 } drm_i915_hws_addr_t;
838 
839 struct drm_i915_gem_init {
840 	/**
841 	 * Beginning offset in the GTT to be managed by the DRM memory
842 	 * manager.
843 	 */
844 	__u64 gtt_start;
845 	/**
846 	 * Ending offset in the GTT to be managed by the DRM memory
847 	 * manager.
848 	 */
849 	__u64 gtt_end;
850 };
851 
852 struct drm_i915_gem_create {
853 	/**
854 	 * Requested size for the object.
855 	 *
856 	 * The (page-aligned) allocated size for the object will be returned.
857 	 */
858 	__u64 size;
859 	/**
860 	 * Returned handle for the object.
861 	 *
862 	 * Object handles are nonzero.
863 	 */
864 	__u32 handle;
865 	__u32 pad;
866 };
867 
868 struct drm_i915_gem_pread {
869 	/** Handle for the object being read. */
870 	__u32 handle;
871 	__u32 pad;
872 	/** Offset into the object to read from */
873 	__u64 offset;
874 	/** Length of data to read */
875 	__u64 size;
876 	/**
877 	 * Pointer to write the data into.
878 	 *
879 	 * This is a fixed-size type for 32/64 compatibility.
880 	 */
881 	__u64 data_ptr;
882 };
883 
884 struct drm_i915_gem_pwrite {
885 	/** Handle for the object being written to. */
886 	__u32 handle;
887 	__u32 pad;
888 	/** Offset into the object to write to */
889 	__u64 offset;
890 	/** Length of data to write */
891 	__u64 size;
892 	/**
893 	 * Pointer to read the data from.
894 	 *
895 	 * This is a fixed-size type for 32/64 compatibility.
896 	 */
897 	__u64 data_ptr;
898 };
899 
900 struct drm_i915_gem_mmap {
901 	/** Handle for the object being mapped. */
902 	__u32 handle;
903 	__u32 pad;
904 	/** Offset in the object to map. */
905 	__u64 offset;
906 	/**
907 	 * Length of data to map.
908 	 *
909 	 * The value will be page-aligned.
910 	 */
911 	__u64 size;
912 	/**
913 	 * Returned pointer the data was mapped at.
914 	 *
915 	 * This is a fixed-size type for 32/64 compatibility.
916 	 */
917 	__u64 addr_ptr;
918 
919 	/**
920 	 * Flags for extended behaviour.
921 	 *
922 	 * Added in version 2.
923 	 */
924 	__u64 flags;
925 #define I915_MMAP_WC 0x1
926 };
927 
928 struct drm_i915_gem_mmap_gtt {
929 	/** Handle for the object being mapped. */
930 	__u32 handle;
931 	__u32 pad;
932 	/**
933 	 * Fake offset to use for subsequent mmap call
934 	 *
935 	 * This is a fixed-size type for 32/64 compatibility.
936 	 */
937 	__u64 offset;
938 };
939 
940 /**
941  * struct drm_i915_gem_mmap_offset - Retrieve an offset so we can mmap this buffer object.
942  *
943  * This struct is passed as argument to the `DRM_IOCTL_I915_GEM_MMAP_OFFSET` ioctl,
944  * and is used to retrieve the fake offset to mmap an object specified by &handle.
945  *
946  * The legacy way of using `DRM_IOCTL_I915_GEM_MMAP` is removed on gen12+.
947  * `DRM_IOCTL_I915_GEM_MMAP_GTT` is an older supported alias to this struct, but will behave
948  * as setting the &extensions to 0, and &flags to `I915_MMAP_OFFSET_GTT`.
949  */
950 struct drm_i915_gem_mmap_offset {
951 	/** @handle: Handle for the object being mapped. */
952 	__u32 handle;
953 	/** @pad: Must be zero */
954 	__u32 pad;
955 	/**
956 	 * @offset: The fake offset to use for subsequent mmap call
957 	 *
958 	 * This is a fixed-size type for 32/64 compatibility.
959 	 */
960 	__u64 offset;
961 
962 	/**
963 	 * @flags: Flags for extended behaviour.
964 	 *
965 	 * It is mandatory that one of the `MMAP_OFFSET` types
966 	 * should be included:
967 	 *
968 	 * - `I915_MMAP_OFFSET_GTT`: Use mmap with the object bound to GTT. (Write-Combined)
969 	 * - `I915_MMAP_OFFSET_WC`: Use Write-Combined caching.
970 	 * - `I915_MMAP_OFFSET_WB`: Use Write-Back caching.
971 	 * - `I915_MMAP_OFFSET_FIXED`: Use object placement to determine caching.
972 	 *
973 	 * On devices with local memory `I915_MMAP_OFFSET_FIXED` is the only valid
974 	 * type. On devices without local memory, this caching mode is invalid.
975 	 *
976 	 * As caching mode when specifying `I915_MMAP_OFFSET_FIXED`, WC or WB will
977 	 * be used, depending on the object placement on creation. WB will be used
978 	 * when the object can only exist in system memory, WC otherwise.
979 	 */
980 	__u64 flags;
981 
982 #define I915_MMAP_OFFSET_GTT	0
983 #define I915_MMAP_OFFSET_WC	1
984 #define I915_MMAP_OFFSET_WB	2
985 #define I915_MMAP_OFFSET_UC	3
986 #define I915_MMAP_OFFSET_FIXED	4
987 
988 	/**
989 	 * @extensions: Zero-terminated chain of extensions.
990 	 *
991 	 * No current extensions defined; mbz.
992 	 */
993 	__u64 extensions;
994 };
995 
996 /**
997  * struct drm_i915_gem_set_domain - Adjust the objects write or read domain, in
998  * preparation for accessing the pages via some CPU domain.
999  *
1000  * Specifying a new write or read domain will flush the object out of the
1001  * previous domain(if required), before then updating the objects domain
1002  * tracking with the new domain.
1003  *
1004  * Note this might involve waiting for the object first if it is still active on
1005  * the GPU.
1006  *
1007  * Supported values for @read_domains and @write_domain:
1008  *
1009  *	- I915_GEM_DOMAIN_WC: Uncached write-combined domain
1010  *	- I915_GEM_DOMAIN_CPU: CPU cache domain
1011  *	- I915_GEM_DOMAIN_GTT: Mappable aperture domain
1012  *
1013  * All other domains are rejected.
1014  *
1015  * Note that for discrete, starting from DG1, this is no longer supported, and
1016  * is instead rejected. On such platforms the CPU domain is effectively static,
1017  * where we also only support a single &drm_i915_gem_mmap_offset cache mode,
1018  * which can't be set explicitly and instead depends on the object placements,
1019  * as per the below.
1020  *
1021  * Implicit caching rules, starting from DG1:
1022  *
1023  *	- If any of the object placements (see &drm_i915_gem_create_ext_memory_regions)
1024  *	  contain I915_MEMORY_CLASS_DEVICE then the object will be allocated and
1025  *	  mapped as write-combined only.
1026  *
1027  *	- Everything else is always allocated and mapped as write-back, with the
1028  *	  guarantee that everything is also coherent with the GPU.
1029  *
1030  * Note that this is likely to change in the future again, where we might need
1031  * more flexibility on future devices, so making this all explicit as part of a
1032  * new &drm_i915_gem_create_ext extension is probable.
1033  */
1034 struct drm_i915_gem_set_domain {
1035 	/** @handle: Handle for the object. */
1036 	__u32 handle;
1037 
1038 	/** @read_domains: New read domains. */
1039 	__u32 read_domains;
1040 
1041 	/**
1042 	 * @write_domain: New write domain.
1043 	 *
1044 	 * Note that having something in the write domain implies it's in the
1045 	 * read domain, and only that read domain.
1046 	 */
1047 	__u32 write_domain;
1048 };
1049 
1050 struct drm_i915_gem_sw_finish {
1051 	/** Handle for the object */
1052 	__u32 handle;
1053 };
1054 
1055 struct drm_i915_gem_relocation_entry {
1056 	/**
1057 	 * Handle of the buffer being pointed to by this relocation entry.
1058 	 *
1059 	 * It's appealing to make this be an index into the mm_validate_entry
1060 	 * list to refer to the buffer, but this allows the driver to create
1061 	 * a relocation list for state buffers and not re-write it per
1062 	 * exec using the buffer.
1063 	 */
1064 	__u32 target_handle;
1065 
1066 	/**
1067 	 * Value to be added to the offset of the target buffer to make up
1068 	 * the relocation entry.
1069 	 */
1070 	__u32 delta;
1071 
1072 	/** Offset in the buffer the relocation entry will be written into */
1073 	__u64 offset;
1074 
1075 	/**
1076 	 * Offset value of the target buffer that the relocation entry was last
1077 	 * written as.
1078 	 *
1079 	 * If the buffer has the same offset as last time, we can skip syncing
1080 	 * and writing the relocation.  This value is written back out by
1081 	 * the execbuffer ioctl when the relocation is written.
1082 	 */
1083 	__u64 presumed_offset;
1084 
1085 	/**
1086 	 * Target memory domains read by this operation.
1087 	 */
1088 	__u32 read_domains;
1089 
1090 	/**
1091 	 * Target memory domains written by this operation.
1092 	 *
1093 	 * Note that only one domain may be written by the whole
1094 	 * execbuffer operation, so that where there are conflicts,
1095 	 * the application will get -EINVAL back.
1096 	 */
1097 	__u32 write_domain;
1098 };
1099 
1100 /** @{
1101  * Intel memory domains
1102  *
1103  * Most of these just align with the various caches in
1104  * the system and are used to flush and invalidate as
1105  * objects end up cached in different domains.
1106  */
1107 /** CPU cache */
1108 #define I915_GEM_DOMAIN_CPU		0x00000001
1109 /** Render cache, used by 2D and 3D drawing */
1110 #define I915_GEM_DOMAIN_RENDER		0x00000002
1111 /** Sampler cache, used by texture engine */
1112 #define I915_GEM_DOMAIN_SAMPLER		0x00000004
1113 /** Command queue, used to load batch buffers */
1114 #define I915_GEM_DOMAIN_COMMAND		0x00000008
1115 /** Instruction cache, used by shader programs */
1116 #define I915_GEM_DOMAIN_INSTRUCTION	0x00000010
1117 /** Vertex address cache */
1118 #define I915_GEM_DOMAIN_VERTEX		0x00000020
1119 /** GTT domain - aperture and scanout */
1120 #define I915_GEM_DOMAIN_GTT		0x00000040
1121 /** WC domain - uncached access */
1122 #define I915_GEM_DOMAIN_WC		0x00000080
1123 /** @} */
1124 
1125 struct drm_i915_gem_exec_object {
1126 	/**
1127 	 * User's handle for a buffer to be bound into the GTT for this
1128 	 * operation.
1129 	 */
1130 	__u32 handle;
1131 
1132 	/** Number of relocations to be performed on this buffer */
1133 	__u32 relocation_count;
1134 	/**
1135 	 * Pointer to array of struct drm_i915_gem_relocation_entry containing
1136 	 * the relocations to be performed in this buffer.
1137 	 */
1138 	__u64 relocs_ptr;
1139 
1140 	/** Required alignment in graphics aperture */
1141 	__u64 alignment;
1142 
1143 	/**
1144 	 * Returned value of the updated offset of the object, for future
1145 	 * presumed_offset writes.
1146 	 */
1147 	__u64 offset;
1148 };
1149 
1150 /* DRM_IOCTL_I915_GEM_EXECBUFFER was removed in Linux 5.13 */
1151 struct drm_i915_gem_execbuffer {
1152 	/**
1153 	 * List of buffers to be validated with their relocations to be
1154 	 * performend on them.
1155 	 *
1156 	 * This is a pointer to an array of struct drm_i915_gem_validate_entry.
1157 	 *
1158 	 * These buffers must be listed in an order such that all relocations
1159 	 * a buffer is performing refer to buffers that have already appeared
1160 	 * in the validate list.
1161 	 */
1162 	__u64 buffers_ptr;
1163 	__u32 buffer_count;
1164 
1165 	/** Offset in the batchbuffer to start execution from. */
1166 	__u32 batch_start_offset;
1167 	/** Bytes used in batchbuffer from batch_start_offset */
1168 	__u32 batch_len;
1169 	__u32 DR1;
1170 	__u32 DR4;
1171 	__u32 num_cliprects;
1172 	/** This is a struct drm_clip_rect *cliprects */
1173 	__u64 cliprects_ptr;
1174 };
1175 
1176 struct drm_i915_gem_exec_object2 {
1177 	/**
1178 	 * User's handle for a buffer to be bound into the GTT for this
1179 	 * operation.
1180 	 */
1181 	__u32 handle;
1182 
1183 	/** Number of relocations to be performed on this buffer */
1184 	__u32 relocation_count;
1185 	/**
1186 	 * Pointer to array of struct drm_i915_gem_relocation_entry containing
1187 	 * the relocations to be performed in this buffer.
1188 	 */
1189 	__u64 relocs_ptr;
1190 
1191 	/** Required alignment in graphics aperture */
1192 	__u64 alignment;
1193 
1194 	/**
1195 	 * When the EXEC_OBJECT_PINNED flag is specified this is populated by
1196 	 * the user with the GTT offset at which this object will be pinned.
1197 	 *
1198 	 * When the I915_EXEC_NO_RELOC flag is specified this must contain the
1199 	 * presumed_offset of the object.
1200 	 *
1201 	 * During execbuffer2 the kernel populates it with the value of the
1202 	 * current GTT offset of the object, for future presumed_offset writes.
1203 	 *
1204 	 * See struct drm_i915_gem_create_ext for the rules when dealing with
1205 	 * alignment restrictions with I915_MEMORY_CLASS_DEVICE, on devices with
1206 	 * minimum page sizes, like DG2.
1207 	 */
1208 	__u64 offset;
1209 
1210 #define EXEC_OBJECT_NEEDS_FENCE		 (1<<0)
1211 #define EXEC_OBJECT_NEEDS_GTT		 (1<<1)
1212 #define EXEC_OBJECT_WRITE		 (1<<2)
1213 #define EXEC_OBJECT_SUPPORTS_48B_ADDRESS (1<<3)
1214 #define EXEC_OBJECT_PINNED		 (1<<4)
1215 #define EXEC_OBJECT_PAD_TO_SIZE		 (1<<5)
1216 /* The kernel implicitly tracks GPU activity on all GEM objects, and
1217  * synchronises operations with outstanding rendering. This includes
1218  * rendering on other devices if exported via dma-buf. However, sometimes
1219  * this tracking is too coarse and the user knows better. For example,
1220  * if the object is split into non-overlapping ranges shared between different
1221  * clients or engines (i.e. suballocating objects), the implicit tracking
1222  * by kernel assumes that each operation affects the whole object rather
1223  * than an individual range, causing needless synchronisation between clients.
1224  * The kernel will also forgo any CPU cache flushes prior to rendering from
1225  * the object as the client is expected to be also handling such domain
1226  * tracking.
1227  *
1228  * The kernel maintains the implicit tracking in order to manage resources
1229  * used by the GPU - this flag only disables the synchronisation prior to
1230  * rendering with this object in this execbuf.
1231  *
1232  * Opting out of implicit synhronisation requires the user to do its own
1233  * explicit tracking to avoid rendering corruption. See, for example,
1234  * I915_PARAM_HAS_EXEC_FENCE to order execbufs and execute them asynchronously.
1235  */
1236 #define EXEC_OBJECT_ASYNC		(1<<6)
1237 /* Request that the contents of this execobject be copied into the error
1238  * state upon a GPU hang involving this batch for post-mortem debugging.
1239  * These buffers are recorded in no particular order as "user" in
1240  * /sys/class/drm/cardN/error. Query I915_PARAM_HAS_EXEC_CAPTURE to see
1241  * if the kernel supports this flag.
1242  */
1243 #define EXEC_OBJECT_CAPTURE		(1<<7)
1244 /* All remaining bits are MBZ and RESERVED FOR FUTURE USE */
1245 #define __EXEC_OBJECT_UNKNOWN_FLAGS -(EXEC_OBJECT_CAPTURE<<1)
1246 	__u64 flags;
1247 
1248 	union {
1249 		__u64 rsvd1;
1250 		__u64 pad_to_size;
1251 	};
1252 	__u64 rsvd2;
1253 };
1254 
1255 /**
1256  * struct drm_i915_gem_exec_fence - An input or output fence for the execbuf
1257  * ioctl.
1258  *
1259  * The request will wait for input fence to signal before submission.
1260  *
1261  * The returned output fence will be signaled after the completion of the
1262  * request.
1263  */
1264 struct drm_i915_gem_exec_fence {
1265 	/** @handle: User's handle for a drm_syncobj to wait on or signal. */
1266 	__u32 handle;
1267 
1268 	/**
1269 	 * @flags: Supported flags are:
1270 	 *
1271 	 * I915_EXEC_FENCE_WAIT:
1272 	 * Wait for the input fence before request submission.
1273 	 *
1274 	 * I915_EXEC_FENCE_SIGNAL:
1275 	 * Return request completion fence as output
1276 	 */
1277 	__u32 flags;
1278 #define I915_EXEC_FENCE_WAIT            (1<<0)
1279 #define I915_EXEC_FENCE_SIGNAL          (1<<1)
1280 #define __I915_EXEC_FENCE_UNKNOWN_FLAGS (-(I915_EXEC_FENCE_SIGNAL << 1))
1281 };
1282 
1283 /**
1284  * struct drm_i915_gem_execbuffer_ext_timeline_fences - Timeline fences
1285  * for execbuf ioctl.
1286  *
1287  * This structure describes an array of drm_syncobj and associated points for
1288  * timeline variants of drm_syncobj. It is invalid to append this structure to
1289  * the execbuf if I915_EXEC_FENCE_ARRAY is set.
1290  */
1291 struct drm_i915_gem_execbuffer_ext_timeline_fences {
1292 #define DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES 0
1293 	/** @base: Extension link. See struct i915_user_extension. */
1294 	struct i915_user_extension base;
1295 
1296 	/**
1297 	 * @fence_count: Number of elements in the @handles_ptr & @value_ptr
1298 	 * arrays.
1299 	 */
1300 	__u64 fence_count;
1301 
1302 	/**
1303 	 * @handles_ptr: Pointer to an array of struct drm_i915_gem_exec_fence
1304 	 * of length @fence_count.
1305 	 */
1306 	__u64 handles_ptr;
1307 
1308 	/**
1309 	 * @values_ptr: Pointer to an array of u64 values of length
1310 	 * @fence_count.
1311 	 * Values must be 0 for a binary drm_syncobj. A Value of 0 for a
1312 	 * timeline drm_syncobj is invalid as it turns a drm_syncobj into a
1313 	 * binary one.
1314 	 */
1315 	__u64 values_ptr;
1316 };
1317 
1318 /**
1319  * struct drm_i915_gem_execbuffer2 - Structure for DRM_I915_GEM_EXECBUFFER2
1320  * ioctl.
1321  */
1322 struct drm_i915_gem_execbuffer2 {
1323 	/** @buffers_ptr: Pointer to a list of gem_exec_object2 structs */
1324 	__u64 buffers_ptr;
1325 
1326 	/** @buffer_count: Number of elements in @buffers_ptr array */
1327 	__u32 buffer_count;
1328 
1329 	/**
1330 	 * @batch_start_offset: Offset in the batchbuffer to start execution
1331 	 * from.
1332 	 */
1333 	__u32 batch_start_offset;
1334 
1335 	/**
1336 	 * @batch_len: Length in bytes of the batch buffer, starting from the
1337 	 * @batch_start_offset. If 0, length is assumed to be the batch buffer
1338 	 * object size.
1339 	 */
1340 	__u32 batch_len;
1341 
1342 	/** @DR1: deprecated */
1343 	__u32 DR1;
1344 
1345 	/** @DR4: deprecated */
1346 	__u32 DR4;
1347 
1348 	/** @num_cliprects: See @cliprects_ptr */
1349 	__u32 num_cliprects;
1350 
1351 	/**
1352 	 * @cliprects_ptr: Kernel clipping was a DRI1 misfeature.
1353 	 *
1354 	 * It is invalid to use this field if I915_EXEC_FENCE_ARRAY or
1355 	 * I915_EXEC_USE_EXTENSIONS flags are not set.
1356 	 *
1357 	 * If I915_EXEC_FENCE_ARRAY is set, then this is a pointer to an array
1358 	 * of &drm_i915_gem_exec_fence and @num_cliprects is the length of the
1359 	 * array.
1360 	 *
1361 	 * If I915_EXEC_USE_EXTENSIONS is set, then this is a pointer to a
1362 	 * single &i915_user_extension and num_cliprects is 0.
1363 	 */
1364 	__u64 cliprects_ptr;
1365 
1366 	/** @flags: Execbuf flags */
1367 	__u64 flags;
1368 #define I915_EXEC_RING_MASK              (0x3f)
1369 #define I915_EXEC_DEFAULT                (0<<0)
1370 #define I915_EXEC_RENDER                 (1<<0)
1371 #define I915_EXEC_BSD                    (2<<0)
1372 #define I915_EXEC_BLT                    (3<<0)
1373 #define I915_EXEC_VEBOX                  (4<<0)
1374 
1375 /* Used for switching the constants addressing mode on gen4+ RENDER ring.
1376  * Gen6+ only supports relative addressing to dynamic state (default) and
1377  * absolute addressing.
1378  *
1379  * These flags are ignored for the BSD and BLT rings.
1380  */
1381 #define I915_EXEC_CONSTANTS_MASK 	(3<<6)
1382 #define I915_EXEC_CONSTANTS_REL_GENERAL (0<<6) /* default */
1383 #define I915_EXEC_CONSTANTS_ABSOLUTE 	(1<<6)
1384 #define I915_EXEC_CONSTANTS_REL_SURFACE (2<<6) /* gen4/5 only */
1385 
1386 /** Resets the SO write offset registers for transform feedback on gen7. */
1387 #define I915_EXEC_GEN7_SOL_RESET	(1<<8)
1388 
1389 /** Request a privileged ("secure") batch buffer. Note only available for
1390  * DRM_ROOT_ONLY | DRM_MASTER processes.
1391  */
1392 #define I915_EXEC_SECURE		(1<<9)
1393 
1394 /** Inform the kernel that the batch is and will always be pinned. This
1395  * negates the requirement for a workaround to be performed to avoid
1396  * an incoherent CS (such as can be found on 830/845). If this flag is
1397  * not passed, the kernel will endeavour to make sure the batch is
1398  * coherent with the CS before execution. If this flag is passed,
1399  * userspace assumes the responsibility for ensuring the same.
1400  */
1401 #define I915_EXEC_IS_PINNED		(1<<10)
1402 
1403 /** Provide a hint to the kernel that the command stream and auxiliary
1404  * state buffers already holds the correct presumed addresses and so the
1405  * relocation process may be skipped if no buffers need to be moved in
1406  * preparation for the execbuffer.
1407  */
1408 #define I915_EXEC_NO_RELOC		(1<<11)
1409 
1410 /** Use the reloc.handle as an index into the exec object array rather
1411  * than as the per-file handle.
1412  */
1413 #define I915_EXEC_HANDLE_LUT		(1<<12)
1414 
1415 /** Used for switching BSD rings on the platforms with two BSD rings */
1416 #define I915_EXEC_BSD_SHIFT	 (13)
1417 #define I915_EXEC_BSD_MASK	 (3 << I915_EXEC_BSD_SHIFT)
1418 /* default ping-pong mode */
1419 #define I915_EXEC_BSD_DEFAULT	 (0 << I915_EXEC_BSD_SHIFT)
1420 #define I915_EXEC_BSD_RING1	 (1 << I915_EXEC_BSD_SHIFT)
1421 #define I915_EXEC_BSD_RING2	 (2 << I915_EXEC_BSD_SHIFT)
1422 
1423 /** Tell the kernel that the batchbuffer is processed by
1424  *  the resource streamer.
1425  */
1426 #define I915_EXEC_RESOURCE_STREAMER     (1<<15)
1427 
1428 /* Setting I915_EXEC_FENCE_IN implies that lower_32_bits(rsvd2) represent
1429  * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1430  * the batch.
1431  *
1432  * Returns -EINVAL if the sync_file fd cannot be found.
1433  */
1434 #define I915_EXEC_FENCE_IN		(1<<16)
1435 
1436 /* Setting I915_EXEC_FENCE_OUT causes the ioctl to return a sync_file fd
1437  * in the upper_32_bits(rsvd2) upon success. Ownership of the fd is given
1438  * to the caller, and it should be close() after use. (The fd is a regular
1439  * file descriptor and will be cleaned up on process termination. It holds
1440  * a reference to the request, but nothing else.)
1441  *
1442  * The sync_file fd can be combined with other sync_file and passed either
1443  * to execbuf using I915_EXEC_FENCE_IN, to atomic KMS ioctls (so that a flip
1444  * will only occur after this request completes), or to other devices.
1445  *
1446  * Using I915_EXEC_FENCE_OUT requires use of
1447  * DRM_IOCTL_I915_GEM_EXECBUFFER2_WR ioctl so that the result is written
1448  * back to userspace. Failure to do so will cause the out-fence to always
1449  * be reported as zero, and the real fence fd to be leaked.
1450  */
1451 #define I915_EXEC_FENCE_OUT		(1<<17)
1452 
1453 /*
1454  * Traditionally the execbuf ioctl has only considered the final element in
1455  * the execobject[] to be the executable batch. Often though, the client
1456  * will known the batch object prior to construction and being able to place
1457  * it into the execobject[] array first can simplify the relocation tracking.
1458  * Setting I915_EXEC_BATCH_FIRST tells execbuf to use element 0 of the
1459  * execobject[] as the * batch instead (the default is to use the last
1460  * element).
1461  */
1462 #define I915_EXEC_BATCH_FIRST		(1<<18)
1463 
1464 /* Setting I915_FENCE_ARRAY implies that num_cliprects and cliprects_ptr
1465  * define an array of i915_gem_exec_fence structures which specify a set of
1466  * dma fences to wait upon or signal.
1467  */
1468 #define I915_EXEC_FENCE_ARRAY   (1<<19)
1469 
1470 /*
1471  * Setting I915_EXEC_FENCE_SUBMIT implies that lower_32_bits(rsvd2) represent
1472  * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1473  * the batch.
1474  *
1475  * Returns -EINVAL if the sync_file fd cannot be found.
1476  */
1477 #define I915_EXEC_FENCE_SUBMIT		(1 << 20)
1478 
1479 /*
1480  * Setting I915_EXEC_USE_EXTENSIONS implies that
1481  * drm_i915_gem_execbuffer2.cliprects_ptr is treated as a pointer to an linked
1482  * list of i915_user_extension. Each i915_user_extension node is the base of a
1483  * larger structure. The list of supported structures are listed in the
1484  * drm_i915_gem_execbuffer_ext enum.
1485  */
1486 #define I915_EXEC_USE_EXTENSIONS	(1 << 21)
1487 #define __I915_EXEC_UNKNOWN_FLAGS (-(I915_EXEC_USE_EXTENSIONS << 1))
1488 
1489 	/** @rsvd1: Context id */
1490 	__u64 rsvd1;
1491 
1492 	/**
1493 	 * @rsvd2: in and out sync_file file descriptors.
1494 	 *
1495 	 * When I915_EXEC_FENCE_IN or I915_EXEC_FENCE_SUBMIT flag is set, the
1496 	 * lower 32 bits of this field will have the in sync_file fd (input).
1497 	 *
1498 	 * When I915_EXEC_FENCE_OUT flag is set, the upper 32 bits of this
1499 	 * field will have the out sync_file fd (output).
1500 	 */
1501 	__u64 rsvd2;
1502 };
1503 
1504 #define I915_EXEC_CONTEXT_ID_MASK	(0xffffffff)
1505 #define i915_execbuffer2_set_context_id(eb2, context) \
1506 	(eb2).rsvd1 = context & I915_EXEC_CONTEXT_ID_MASK
1507 #define i915_execbuffer2_get_context_id(eb2) \
1508 	((eb2).rsvd1 & I915_EXEC_CONTEXT_ID_MASK)
1509 
1510 struct drm_i915_gem_pin {
1511 	/** Handle of the buffer to be pinned. */
1512 	__u32 handle;
1513 	__u32 pad;
1514 
1515 	/** alignment required within the aperture */
1516 	__u64 alignment;
1517 
1518 	/** Returned GTT offset of the buffer. */
1519 	__u64 offset;
1520 };
1521 
1522 struct drm_i915_gem_unpin {
1523 	/** Handle of the buffer to be unpinned. */
1524 	__u32 handle;
1525 	__u32 pad;
1526 };
1527 
1528 struct drm_i915_gem_busy {
1529 	/** Handle of the buffer to check for busy */
1530 	__u32 handle;
1531 
1532 	/** Return busy status
1533 	 *
1534 	 * A return of 0 implies that the object is idle (after
1535 	 * having flushed any pending activity), and a non-zero return that
1536 	 * the object is still in-flight on the GPU. (The GPU has not yet
1537 	 * signaled completion for all pending requests that reference the
1538 	 * object.) An object is guaranteed to become idle eventually (so
1539 	 * long as no new GPU commands are executed upon it). Due to the
1540 	 * asynchronous nature of the hardware, an object reported
1541 	 * as busy may become idle before the ioctl is completed.
1542 	 *
1543 	 * Furthermore, if the object is busy, which engine is busy is only
1544 	 * provided as a guide and only indirectly by reporting its class
1545 	 * (there may be more than one engine in each class). There are race
1546 	 * conditions which prevent the report of which engines are busy from
1547 	 * being always accurate.  However, the converse is not true. If the
1548 	 * object is idle, the result of the ioctl, that all engines are idle,
1549 	 * is accurate.
1550 	 *
1551 	 * The returned dword is split into two fields to indicate both
1552 	 * the engine classess on which the object is being read, and the
1553 	 * engine class on which it is currently being written (if any).
1554 	 *
1555 	 * The low word (bits 0:15) indicate if the object is being written
1556 	 * to by any engine (there can only be one, as the GEM implicit
1557 	 * synchronisation rules force writes to be serialised). Only the
1558 	 * engine class (offset by 1, I915_ENGINE_CLASS_RENDER is reported as
1559 	 * 1 not 0 etc) for the last write is reported.
1560 	 *
1561 	 * The high word (bits 16:31) are a bitmask of which engines classes
1562 	 * are currently reading from the object. Multiple engines may be
1563 	 * reading from the object simultaneously.
1564 	 *
1565 	 * The value of each engine class is the same as specified in the
1566 	 * I915_CONTEXT_PARAM_ENGINES context parameter and via perf, i.e.
1567 	 * I915_ENGINE_CLASS_RENDER, I915_ENGINE_CLASS_COPY, etc.
1568 	 * Some hardware may have parallel execution engines, e.g. multiple
1569 	 * media engines, which are mapped to the same class identifier and so
1570 	 * are not separately reported for busyness.
1571 	 *
1572 	 * Caveat emptor:
1573 	 * Only the boolean result of this query is reliable; that is whether
1574 	 * the object is idle or busy. The report of which engines are busy
1575 	 * should be only used as a heuristic.
1576 	 */
1577 	__u32 busy;
1578 };
1579 
1580 /**
1581  * struct drm_i915_gem_caching - Set or get the caching for given object
1582  * handle.
1583  *
1584  * Allow userspace to control the GTT caching bits for a given object when the
1585  * object is later mapped through the ppGTT(or GGTT on older platforms lacking
1586  * ppGTT support, or if the object is used for scanout). Note that this might
1587  * require unbinding the object from the GTT first, if its current caching value
1588  * doesn't match.
1589  *
1590  * Note that this all changes on discrete platforms, starting from DG1, the
1591  * set/get caching is no longer supported, and is now rejected.  Instead the CPU
1592  * caching attributes(WB vs WC) will become an immutable creation time property
1593  * for the object, along with the GTT caching level. For now we don't expose any
1594  * new uAPI for this, instead on DG1 this is all implicit, although this largely
1595  * shouldn't matter since DG1 is coherent by default(without any way of
1596  * controlling it).
1597  *
1598  * Implicit caching rules, starting from DG1:
1599  *
1600  *     - If any of the object placements (see &drm_i915_gem_create_ext_memory_regions)
1601  *       contain I915_MEMORY_CLASS_DEVICE then the object will be allocated and
1602  *       mapped as write-combined only.
1603  *
1604  *     - Everything else is always allocated and mapped as write-back, with the
1605  *       guarantee that everything is also coherent with the GPU.
1606  *
1607  * Note that this is likely to change in the future again, where we might need
1608  * more flexibility on future devices, so making this all explicit as part of a
1609  * new &drm_i915_gem_create_ext extension is probable.
1610  *
1611  * Side note: Part of the reason for this is that changing the at-allocation-time CPU
1612  * caching attributes for the pages might be required(and is expensive) if we
1613  * need to then CPU map the pages later with different caching attributes. This
1614  * inconsistent caching behaviour, while supported on x86, is not universally
1615  * supported on other architectures. So for simplicity we opt for setting
1616  * everything at creation time, whilst also making it immutable, on discrete
1617  * platforms.
1618  */
1619 struct drm_i915_gem_caching {
1620 	/**
1621 	 * @handle: Handle of the buffer to set/get the caching level.
1622 	 */
1623 	__u32 handle;
1624 
1625 	/**
1626 	 * @caching: The GTT caching level to apply or possible return value.
1627 	 *
1628 	 * The supported @caching values:
1629 	 *
1630 	 * I915_CACHING_NONE:
1631 	 *
1632 	 * GPU access is not coherent with CPU caches.  Default for machines
1633 	 * without an LLC. This means manual flushing might be needed, if we
1634 	 * want GPU access to be coherent.
1635 	 *
1636 	 * I915_CACHING_CACHED:
1637 	 *
1638 	 * GPU access is coherent with CPU caches and furthermore the data is
1639 	 * cached in last-level caches shared between CPU cores and the GPU GT.
1640 	 *
1641 	 * I915_CACHING_DISPLAY:
1642 	 *
1643 	 * Special GPU caching mode which is coherent with the scanout engines.
1644 	 * Transparently falls back to I915_CACHING_NONE on platforms where no
1645 	 * special cache mode (like write-through or gfdt flushing) is
1646 	 * available. The kernel automatically sets this mode when using a
1647 	 * buffer as a scanout target.  Userspace can manually set this mode to
1648 	 * avoid a costly stall and clflush in the hotpath of drawing the first
1649 	 * frame.
1650 	 */
1651 #define I915_CACHING_NONE		0
1652 #define I915_CACHING_CACHED		1
1653 #define I915_CACHING_DISPLAY		2
1654 	__u32 caching;
1655 };
1656 
1657 #define I915_TILING_NONE	0
1658 #define I915_TILING_X		1
1659 #define I915_TILING_Y		2
1660 /*
1661  * Do not add new tiling types here.  The I915_TILING_* values are for
1662  * de-tiling fence registers that no longer exist on modern platforms.  Although
1663  * the hardware may support new types of tiling in general (e.g., Tile4), we
1664  * do not need to add them to the uapi that is specific to now-defunct ioctls.
1665  */
1666 #define I915_TILING_LAST	I915_TILING_Y
1667 
1668 #define I915_BIT_6_SWIZZLE_NONE		0
1669 #define I915_BIT_6_SWIZZLE_9		1
1670 #define I915_BIT_6_SWIZZLE_9_10		2
1671 #define I915_BIT_6_SWIZZLE_9_11		3
1672 #define I915_BIT_6_SWIZZLE_9_10_11	4
1673 /* Not seen by userland */
1674 #define I915_BIT_6_SWIZZLE_UNKNOWN	5
1675 /* Seen by userland. */
1676 #define I915_BIT_6_SWIZZLE_9_17		6
1677 #define I915_BIT_6_SWIZZLE_9_10_17	7
1678 
1679 struct drm_i915_gem_set_tiling {
1680 	/** Handle of the buffer to have its tiling state updated */
1681 	__u32 handle;
1682 
1683 	/**
1684 	 * Tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1685 	 * I915_TILING_Y).
1686 	 *
1687 	 * This value is to be set on request, and will be updated by the
1688 	 * kernel on successful return with the actual chosen tiling layout.
1689 	 *
1690 	 * The tiling mode may be demoted to I915_TILING_NONE when the system
1691 	 * has bit 6 swizzling that can't be managed correctly by GEM.
1692 	 *
1693 	 * Buffer contents become undefined when changing tiling_mode.
1694 	 */
1695 	__u32 tiling_mode;
1696 
1697 	/**
1698 	 * Stride in bytes for the object when in I915_TILING_X or
1699 	 * I915_TILING_Y.
1700 	 */
1701 	__u32 stride;
1702 
1703 	/**
1704 	 * Returned address bit 6 swizzling required for CPU access through
1705 	 * mmap mapping.
1706 	 */
1707 	__u32 swizzle_mode;
1708 };
1709 
1710 struct drm_i915_gem_get_tiling {
1711 	/** Handle of the buffer to get tiling state for. */
1712 	__u32 handle;
1713 
1714 	/**
1715 	 * Current tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1716 	 * I915_TILING_Y).
1717 	 */
1718 	__u32 tiling_mode;
1719 
1720 	/**
1721 	 * Returned address bit 6 swizzling required for CPU access through
1722 	 * mmap mapping.
1723 	 */
1724 	__u32 swizzle_mode;
1725 
1726 	/**
1727 	 * Returned address bit 6 swizzling required for CPU access through
1728 	 * mmap mapping whilst bound.
1729 	 */
1730 	__u32 phys_swizzle_mode;
1731 };
1732 
1733 struct drm_i915_gem_get_aperture {
1734 	/** Total size of the aperture used by i915_gem_execbuffer, in bytes */
1735 	__u64 aper_size;
1736 
1737 	/**
1738 	 * Available space in the aperture used by i915_gem_execbuffer, in
1739 	 * bytes
1740 	 */
1741 	__u64 aper_available_size;
1742 };
1743 
1744 struct drm_i915_get_pipe_from_crtc_id {
1745 	/** ID of CRTC being requested **/
1746 	__u32 crtc_id;
1747 
1748 	/** pipe of requested CRTC **/
1749 	__u32 pipe;
1750 };
1751 
1752 #define I915_MADV_WILLNEED 0
1753 #define I915_MADV_DONTNEED 1
1754 #define __I915_MADV_PURGED 2 /* internal state */
1755 
1756 struct drm_i915_gem_madvise {
1757 	/** Handle of the buffer to change the backing store advice */
1758 	__u32 handle;
1759 
1760 	/* Advice: either the buffer will be needed again in the near future,
1761 	 *         or wont be and could be discarded under memory pressure.
1762 	 */
1763 	__u32 madv;
1764 
1765 	/** Whether the backing store still exists. */
1766 	__u32 retained;
1767 };
1768 
1769 /* flags */
1770 #define I915_OVERLAY_TYPE_MASK 		0xff
1771 #define I915_OVERLAY_YUV_PLANAR 	0x01
1772 #define I915_OVERLAY_YUV_PACKED 	0x02
1773 #define I915_OVERLAY_RGB		0x03
1774 
1775 #define I915_OVERLAY_DEPTH_MASK		0xff00
1776 #define I915_OVERLAY_RGB24		0x1000
1777 #define I915_OVERLAY_RGB16		0x2000
1778 #define I915_OVERLAY_RGB15		0x3000
1779 #define I915_OVERLAY_YUV422		0x0100
1780 #define I915_OVERLAY_YUV411		0x0200
1781 #define I915_OVERLAY_YUV420		0x0300
1782 #define I915_OVERLAY_YUV410		0x0400
1783 
1784 #define I915_OVERLAY_SWAP_MASK		0xff0000
1785 #define I915_OVERLAY_NO_SWAP		0x000000
1786 #define I915_OVERLAY_UV_SWAP		0x010000
1787 #define I915_OVERLAY_Y_SWAP		0x020000
1788 #define I915_OVERLAY_Y_AND_UV_SWAP	0x030000
1789 
1790 #define I915_OVERLAY_FLAGS_MASK		0xff000000
1791 #define I915_OVERLAY_ENABLE		0x01000000
1792 
1793 struct drm_intel_overlay_put_image {
1794 	/* various flags and src format description */
1795 	__u32 flags;
1796 	/* source picture description */
1797 	__u32 bo_handle;
1798 	/* stride values and offsets are in bytes, buffer relative */
1799 	__u16 stride_Y; /* stride for packed formats */
1800 	__u16 stride_UV;
1801 	__u32 offset_Y; /* offset for packet formats */
1802 	__u32 offset_U;
1803 	__u32 offset_V;
1804 	/* in pixels */
1805 	__u16 src_width;
1806 	__u16 src_height;
1807 	/* to compensate the scaling factors for partially covered surfaces */
1808 	__u16 src_scan_width;
1809 	__u16 src_scan_height;
1810 	/* output crtc description */
1811 	__u32 crtc_id;
1812 	__u16 dst_x;
1813 	__u16 dst_y;
1814 	__u16 dst_width;
1815 	__u16 dst_height;
1816 };
1817 
1818 /* flags */
1819 #define I915_OVERLAY_UPDATE_ATTRS	(1<<0)
1820 #define I915_OVERLAY_UPDATE_GAMMA	(1<<1)
1821 #define I915_OVERLAY_DISABLE_DEST_COLORKEY	(1<<2)
1822 struct drm_intel_overlay_attrs {
1823 	__u32 flags;
1824 	__u32 color_key;
1825 	__s32 brightness;
1826 	__u32 contrast;
1827 	__u32 saturation;
1828 	__u32 gamma0;
1829 	__u32 gamma1;
1830 	__u32 gamma2;
1831 	__u32 gamma3;
1832 	__u32 gamma4;
1833 	__u32 gamma5;
1834 };
1835 
1836 /*
1837  * Intel sprite handling
1838  *
1839  * Color keying works with a min/mask/max tuple.  Both source and destination
1840  * color keying is allowed.
1841  *
1842  * Source keying:
1843  * Sprite pixels within the min & max values, masked against the color channels
1844  * specified in the mask field, will be transparent.  All other pixels will
1845  * be displayed on top of the primary plane.  For RGB surfaces, only the min
1846  * and mask fields will be used; ranged compares are not allowed.
1847  *
1848  * Destination keying:
1849  * Primary plane pixels that match the min value, masked against the color
1850  * channels specified in the mask field, will be replaced by corresponding
1851  * pixels from the sprite plane.
1852  *
1853  * Note that source & destination keying are exclusive; only one can be
1854  * active on a given plane.
1855  */
1856 
1857 #define I915_SET_COLORKEY_NONE		(1<<0) /* Deprecated. Instead set
1858 						* flags==0 to disable colorkeying.
1859 						*/
1860 #define I915_SET_COLORKEY_DESTINATION	(1<<1)
1861 #define I915_SET_COLORKEY_SOURCE	(1<<2)
1862 struct drm_intel_sprite_colorkey {
1863 	__u32 plane_id;
1864 	__u32 min_value;
1865 	__u32 channel_mask;
1866 	__u32 max_value;
1867 	__u32 flags;
1868 };
1869 
1870 struct drm_i915_gem_wait {
1871 	/** Handle of BO we shall wait on */
1872 	__u32 bo_handle;
1873 	__u32 flags;
1874 	/** Number of nanoseconds to wait, Returns time remaining. */
1875 	__s64 timeout_ns;
1876 };
1877 
1878 struct drm_i915_gem_context_create {
1879 	__u32 ctx_id; /* output: id of new context*/
1880 	__u32 pad;
1881 };
1882 
1883 /**
1884  * struct drm_i915_gem_context_create_ext - Structure for creating contexts.
1885  */
1886 struct drm_i915_gem_context_create_ext {
1887 	/** @ctx_id: Id of the created context (output) */
1888 	__u32 ctx_id;
1889 
1890 	/**
1891 	 * @flags: Supported flags are:
1892 	 *
1893 	 * I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS:
1894 	 *
1895 	 * Extensions may be appended to this structure and driver must check
1896 	 * for those. See @extensions.
1897 	 *
1898 	 * I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE
1899 	 *
1900 	 * Created context will have single timeline.
1901 	 */
1902 	__u32 flags;
1903 #define I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS	(1u << 0)
1904 #define I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE	(1u << 1)
1905 #define I915_CONTEXT_CREATE_FLAGS_UNKNOWN \
1906 	(-(I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE << 1))
1907 
1908 	/**
1909 	 * @extensions: Zero-terminated chain of extensions.
1910 	 *
1911 	 * I915_CONTEXT_CREATE_EXT_SETPARAM:
1912 	 * Context parameter to set or query during context creation.
1913 	 * See struct drm_i915_gem_context_create_ext_setparam.
1914 	 *
1915 	 * I915_CONTEXT_CREATE_EXT_CLONE:
1916 	 * This extension has been removed. On the off chance someone somewhere
1917 	 * has attempted to use it, never re-use this extension number.
1918 	 */
1919 	__u64 extensions;
1920 #define I915_CONTEXT_CREATE_EXT_SETPARAM 0
1921 #define I915_CONTEXT_CREATE_EXT_CLONE 1
1922 };
1923 
1924 /**
1925  * struct drm_i915_gem_context_param - Context parameter to set or query.
1926  */
1927 struct drm_i915_gem_context_param {
1928 	/** @ctx_id: Context id */
1929 	__u32 ctx_id;
1930 
1931 	/** @size: Size of the parameter @value */
1932 	__u32 size;
1933 
1934 	/** @param: Parameter to set or query */
1935 	__u64 param;
1936 #define I915_CONTEXT_PARAM_BAN_PERIOD	0x1
1937 /* I915_CONTEXT_PARAM_NO_ZEROMAP has been removed.  On the off chance
1938  * someone somewhere has attempted to use it, never re-use this context
1939  * param number.
1940  */
1941 #define I915_CONTEXT_PARAM_NO_ZEROMAP	0x2
1942 #define I915_CONTEXT_PARAM_GTT_SIZE	0x3
1943 #define I915_CONTEXT_PARAM_NO_ERROR_CAPTURE	0x4
1944 #define I915_CONTEXT_PARAM_BANNABLE	0x5
1945 #define I915_CONTEXT_PARAM_PRIORITY	0x6
1946 #define   I915_CONTEXT_MAX_USER_PRIORITY	1023 /* inclusive */
1947 #define   I915_CONTEXT_DEFAULT_PRIORITY		0
1948 #define   I915_CONTEXT_MIN_USER_PRIORITY	-1023 /* inclusive */
1949 	/*
1950 	 * When using the following param, value should be a pointer to
1951 	 * drm_i915_gem_context_param_sseu.
1952 	 */
1953 #define I915_CONTEXT_PARAM_SSEU		0x7
1954 
1955 /*
1956  * Not all clients may want to attempt automatic recover of a context after
1957  * a hang (for example, some clients may only submit very small incremental
1958  * batches relying on known logical state of previous batches which will never
1959  * recover correctly and each attempt will hang), and so would prefer that
1960  * the context is forever banned instead.
1961  *
1962  * If set to false (0), after a reset, subsequent (and in flight) rendering
1963  * from this context is discarded, and the client will need to create a new
1964  * context to use instead.
1965  *
1966  * If set to true (1), the kernel will automatically attempt to recover the
1967  * context by skipping the hanging batch and executing the next batch starting
1968  * from the default context state (discarding the incomplete logical context
1969  * state lost due to the reset).
1970  *
1971  * On creation, all new contexts are marked as recoverable.
1972  */
1973 #define I915_CONTEXT_PARAM_RECOVERABLE	0x8
1974 
1975 	/*
1976 	 * The id of the associated virtual memory address space (ppGTT) of
1977 	 * this context. Can be retrieved and passed to another context
1978 	 * (on the same fd) for both to use the same ppGTT and so share
1979 	 * address layouts, and avoid reloading the page tables on context
1980 	 * switches between themselves.
1981 	 *
1982 	 * See DRM_I915_GEM_VM_CREATE and DRM_I915_GEM_VM_DESTROY.
1983 	 */
1984 #define I915_CONTEXT_PARAM_VM		0x9
1985 
1986 /*
1987  * I915_CONTEXT_PARAM_ENGINES:
1988  *
1989  * Bind this context to operate on this subset of available engines. Henceforth,
1990  * the I915_EXEC_RING selector for DRM_IOCTL_I915_GEM_EXECBUFFER2 operates as
1991  * an index into this array of engines; I915_EXEC_DEFAULT selecting engine[0]
1992  * and upwards. Slots 0...N are filled in using the specified (class, instance).
1993  * Use
1994  *	engine_class: I915_ENGINE_CLASS_INVALID,
1995  *	engine_instance: I915_ENGINE_CLASS_INVALID_NONE
1996  * to specify a gap in the array that can be filled in later, e.g. by a
1997  * virtual engine used for load balancing.
1998  *
1999  * Setting the number of engines bound to the context to 0, by passing a zero
2000  * sized argument, will revert back to default settings.
2001  *
2002  * See struct i915_context_param_engines.
2003  *
2004  * Extensions:
2005  *   i915_context_engines_load_balance (I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE)
2006  *   i915_context_engines_bond (I915_CONTEXT_ENGINES_EXT_BOND)
2007  *   i915_context_engines_parallel_submit (I915_CONTEXT_ENGINES_EXT_PARALLEL_SUBMIT)
2008  */
2009 #define I915_CONTEXT_PARAM_ENGINES	0xa
2010 
2011 /*
2012  * I915_CONTEXT_PARAM_PERSISTENCE:
2013  *
2014  * Allow the context and active rendering to survive the process until
2015  * completion. Persistence allows fire-and-forget clients to queue up a
2016  * bunch of work, hand the output over to a display server and then quit.
2017  * If the context is marked as not persistent, upon closing (either via
2018  * an explicit DRM_I915_GEM_CONTEXT_DESTROY or implicitly from file closure
2019  * or process termination), the context and any outstanding requests will be
2020  * cancelled (and exported fences for cancelled requests marked as -EIO).
2021  *
2022  * By default, new contexts allow persistence.
2023  */
2024 #define I915_CONTEXT_PARAM_PERSISTENCE	0xb
2025 
2026 /* This API has been removed.  On the off chance someone somewhere has
2027  * attempted to use it, never re-use this context param number.
2028  */
2029 #define I915_CONTEXT_PARAM_RINGSIZE	0xc
2030 
2031 /*
2032  * I915_CONTEXT_PARAM_PROTECTED_CONTENT:
2033  *
2034  * Mark that the context makes use of protected content, which will result
2035  * in the context being invalidated when the protected content session is.
2036  * Given that the protected content session is killed on suspend, the device
2037  * is kept awake for the lifetime of a protected context, so the user should
2038  * make sure to dispose of them once done.
2039  * This flag can only be set at context creation time and, when set to true,
2040  * must be preceded by an explicit setting of I915_CONTEXT_PARAM_RECOVERABLE
2041  * to false. This flag can't be set to true in conjunction with setting the
2042  * I915_CONTEXT_PARAM_BANNABLE flag to false. Creation example:
2043  *
2044  * .. code-block:: C
2045  *
2046  *	struct drm_i915_gem_context_create_ext_setparam p_protected = {
2047  *		.base = {
2048  *			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2049  *		},
2050  *		.param = {
2051  *			.param = I915_CONTEXT_PARAM_PROTECTED_CONTENT,
2052  *			.value = 1,
2053  *		}
2054  *	};
2055  *	struct drm_i915_gem_context_create_ext_setparam p_norecover = {
2056  *		.base = {
2057  *			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2058  *			.next_extension = to_user_pointer(&p_protected),
2059  *		},
2060  *		.param = {
2061  *			.param = I915_CONTEXT_PARAM_RECOVERABLE,
2062  *			.value = 0,
2063  *		}
2064  *	};
2065  *	struct drm_i915_gem_context_create_ext create = {
2066  *		.flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
2067  *		.extensions = to_user_pointer(&p_norecover);
2068  *	};
2069  *
2070  *	ctx_id = gem_context_create_ext(drm_fd, &create);
2071  *
2072  * In addition to the normal failure cases, setting this flag during context
2073  * creation can result in the following errors:
2074  *
2075  * -ENODEV: feature not available
2076  * -EPERM: trying to mark a recoverable or not bannable context as protected
2077  */
2078 #define I915_CONTEXT_PARAM_PROTECTED_CONTENT    0xd
2079 /* Must be kept compact -- no holes and well documented */
2080 
2081 	/** @value: Context parameter value to be set or queried */
2082 	__u64 value;
2083 };
2084 
2085 /*
2086  * Context SSEU programming
2087  *
2088  * It may be necessary for either functional or performance reason to configure
2089  * a context to run with a reduced number of SSEU (where SSEU stands for Slice/
2090  * Sub-slice/EU).
2091  *
2092  * This is done by configuring SSEU configuration using the below
2093  * @struct drm_i915_gem_context_param_sseu for every supported engine which
2094  * userspace intends to use.
2095  *
2096  * Not all GPUs or engines support this functionality in which case an error
2097  * code -ENODEV will be returned.
2098  *
2099  * Also, flexibility of possible SSEU configuration permutations varies between
2100  * GPU generations and software imposed limitations. Requesting such a
2101  * combination will return an error code of -EINVAL.
2102  *
2103  * NOTE: When perf/OA is active the context's SSEU configuration is ignored in
2104  * favour of a single global setting.
2105  */
2106 struct drm_i915_gem_context_param_sseu {
2107 	/*
2108 	 * Engine class & instance to be configured or queried.
2109 	 */
2110 	struct i915_engine_class_instance engine;
2111 
2112 	/*
2113 	 * Unknown flags must be cleared to zero.
2114 	 */
2115 	__u32 flags;
2116 #define I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX (1u << 0)
2117 
2118 	/*
2119 	 * Mask of slices to enable for the context. Valid values are a subset
2120 	 * of the bitmask value returned for I915_PARAM_SLICE_MASK.
2121 	 */
2122 	__u64 slice_mask;
2123 
2124 	/*
2125 	 * Mask of subslices to enable for the context. Valid values are a
2126 	 * subset of the bitmask value return by I915_PARAM_SUBSLICE_MASK.
2127 	 */
2128 	__u64 subslice_mask;
2129 
2130 	/*
2131 	 * Minimum/Maximum number of EUs to enable per subslice for the
2132 	 * context. min_eus_per_subslice must be inferior or equal to
2133 	 * max_eus_per_subslice.
2134 	 */
2135 	__u16 min_eus_per_subslice;
2136 	__u16 max_eus_per_subslice;
2137 
2138 	/*
2139 	 * Unused for now. Must be cleared to zero.
2140 	 */
2141 	__u32 rsvd;
2142 };
2143 
2144 /**
2145  * DOC: Virtual Engine uAPI
2146  *
2147  * Virtual engine is a concept where userspace is able to configure a set of
2148  * physical engines, submit a batch buffer, and let the driver execute it on any
2149  * engine from the set as it sees fit.
2150  *
2151  * This is primarily useful on parts which have multiple instances of a same
2152  * class engine, like for example GT3+ Skylake parts with their two VCS engines.
2153  *
2154  * For instance userspace can enumerate all engines of a certain class using the
2155  * previously described `Engine Discovery uAPI`_. After that userspace can
2156  * create a GEM context with a placeholder slot for the virtual engine (using
2157  * `I915_ENGINE_CLASS_INVALID` and `I915_ENGINE_CLASS_INVALID_NONE` for class
2158  * and instance respectively) and finally using the
2159  * `I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE` extension place a virtual engine in
2160  * the same reserved slot.
2161  *
2162  * Example of creating a virtual engine and submitting a batch buffer to it:
2163  *
2164  * .. code-block:: C
2165  *
2166  * 	I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(virtual, 2) = {
2167  * 		.base.name = I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE,
2168  * 		.engine_index = 0, // Place this virtual engine into engine map slot 0
2169  * 		.num_siblings = 2,
2170  * 		.engines = { { I915_ENGINE_CLASS_VIDEO, 0 },
2171  * 			     { I915_ENGINE_CLASS_VIDEO, 1 }, },
2172  * 	};
2173  * 	I915_DEFINE_CONTEXT_PARAM_ENGINES(engines, 1) = {
2174  * 		.engines = { { I915_ENGINE_CLASS_INVALID,
2175  * 			       I915_ENGINE_CLASS_INVALID_NONE } },
2176  * 		.extensions = to_user_pointer(&virtual), // Chains after load_balance extension
2177  * 	};
2178  * 	struct drm_i915_gem_context_create_ext_setparam p_engines = {
2179  * 		.base = {
2180  * 			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2181  * 		},
2182  * 		.param = {
2183  * 			.param = I915_CONTEXT_PARAM_ENGINES,
2184  * 			.value = to_user_pointer(&engines),
2185  * 			.size = sizeof(engines),
2186  * 		},
2187  * 	};
2188  * 	struct drm_i915_gem_context_create_ext create = {
2189  * 		.flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
2190  * 		.extensions = to_user_pointer(&p_engines);
2191  * 	};
2192  *
2193  * 	ctx_id = gem_context_create_ext(drm_fd, &create);
2194  *
2195  * 	// Now we have created a GEM context with its engine map containing a
2196  * 	// single virtual engine. Submissions to this slot can go either to
2197  * 	// vcs0 or vcs1, depending on the load balancing algorithm used inside
2198  * 	// the driver. The load balancing is dynamic from one batch buffer to
2199  * 	// another and transparent to userspace.
2200  *
2201  * 	...
2202  * 	execbuf.rsvd1 = ctx_id;
2203  * 	execbuf.flags = 0; // Submits to index 0 which is the virtual engine
2204  * 	gem_execbuf(drm_fd, &execbuf);
2205  */
2206 
2207 /*
2208  * i915_context_engines_load_balance:
2209  *
2210  * Enable load balancing across this set of engines.
2211  *
2212  * Into the I915_EXEC_DEFAULT slot [0], a virtual engine is created that when
2213  * used will proxy the execbuffer request onto one of the set of engines
2214  * in such a way as to distribute the load evenly across the set.
2215  *
2216  * The set of engines must be compatible (e.g. the same HW class) as they
2217  * will share the same logical GPU context and ring.
2218  *
2219  * To intermix rendering with the virtual engine and direct rendering onto
2220  * the backing engines (bypassing the load balancing proxy), the context must
2221  * be defined to use a single timeline for all engines.
2222  */
2223 struct i915_context_engines_load_balance {
2224 	struct i915_user_extension base;
2225 
2226 	__u16 engine_index;
2227 	__u16 num_siblings;
2228 	__u32 flags; /* all undefined flags must be zero */
2229 
2230 	__u64 mbz64; /* reserved for future use; must be zero */
2231 
2232 	struct i915_engine_class_instance engines[];
2233 } __attribute__((packed));
2234 
2235 #define I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(name__, N__) struct { \
2236 	struct i915_user_extension base; \
2237 	__u16 engine_index; \
2238 	__u16 num_siblings; \
2239 	__u32 flags; \
2240 	__u64 mbz64; \
2241 	struct i915_engine_class_instance engines[N__]; \
2242 } __attribute__((packed)) name__
2243 
2244 /*
2245  * i915_context_engines_bond:
2246  *
2247  * Constructed bonded pairs for execution within a virtual engine.
2248  *
2249  * All engines are equal, but some are more equal than others. Given
2250  * the distribution of resources in the HW, it may be preferable to run
2251  * a request on a given subset of engines in parallel to a request on a
2252  * specific engine. We enable this selection of engines within a virtual
2253  * engine by specifying bonding pairs, for any given master engine we will
2254  * only execute on one of the corresponding siblings within the virtual engine.
2255  *
2256  * To execute a request in parallel on the master engine and a sibling requires
2257  * coordination with a I915_EXEC_FENCE_SUBMIT.
2258  */
2259 struct i915_context_engines_bond {
2260 	struct i915_user_extension base;
2261 
2262 	struct i915_engine_class_instance master;
2263 
2264 	__u16 virtual_index; /* index of virtual engine in ctx->engines[] */
2265 	__u16 num_bonds;
2266 
2267 	__u64 flags; /* all undefined flags must be zero */
2268 	__u64 mbz64[4]; /* reserved for future use; must be zero */
2269 
2270 	struct i915_engine_class_instance engines[];
2271 } __attribute__((packed));
2272 
2273 #define I915_DEFINE_CONTEXT_ENGINES_BOND(name__, N__) struct { \
2274 	struct i915_user_extension base; \
2275 	struct i915_engine_class_instance master; \
2276 	__u16 virtual_index; \
2277 	__u16 num_bonds; \
2278 	__u64 flags; \
2279 	__u64 mbz64[4]; \
2280 	struct i915_engine_class_instance engines[N__]; \
2281 } __attribute__((packed)) name__
2282 
2283 /**
2284  * struct i915_context_engines_parallel_submit - Configure engine for
2285  * parallel submission.
2286  *
2287  * Setup a slot in the context engine map to allow multiple BBs to be submitted
2288  * in a single execbuf IOCTL. Those BBs will then be scheduled to run on the GPU
2289  * in parallel. Multiple hardware contexts are created internally in the i915 to
2290  * run these BBs. Once a slot is configured for N BBs only N BBs can be
2291  * submitted in each execbuf IOCTL and this is implicit behavior e.g. The user
2292  * doesn't tell the execbuf IOCTL there are N BBs, the execbuf IOCTL knows how
2293  * many BBs there are based on the slot's configuration. The N BBs are the last
2294  * N buffer objects or first N if I915_EXEC_BATCH_FIRST is set.
2295  *
2296  * The default placement behavior is to create implicit bonds between each
2297  * context if each context maps to more than 1 physical engine (e.g. context is
2298  * a virtual engine). Also we only allow contexts of same engine class and these
2299  * contexts must be in logically contiguous order. Examples of the placement
2300  * behavior are described below. Lastly, the default is to not allow BBs to be
2301  * preempted mid-batch. Rather insert coordinated preemption points on all
2302  * hardware contexts between each set of BBs. Flags could be added in the future
2303  * to change both of these default behaviors.
2304  *
2305  * Returns -EINVAL if hardware context placement configuration is invalid or if
2306  * the placement configuration isn't supported on the platform / submission
2307  * interface.
2308  * Returns -ENODEV if extension isn't supported on the platform / submission
2309  * interface.
2310  *
2311  * .. code-block:: none
2312  *
2313  *	Examples syntax:
2314  *	CS[X] = generic engine of same class, logical instance X
2315  *	INVALID = I915_ENGINE_CLASS_INVALID, I915_ENGINE_CLASS_INVALID_NONE
2316  *
2317  *	Example 1 pseudo code:
2318  *	set_engines(INVALID)
2319  *	set_parallel(engine_index=0, width=2, num_siblings=1,
2320  *		     engines=CS[0],CS[1])
2321  *
2322  *	Results in the following valid placement:
2323  *	CS[0], CS[1]
2324  *
2325  *	Example 2 pseudo code:
2326  *	set_engines(INVALID)
2327  *	set_parallel(engine_index=0, width=2, num_siblings=2,
2328  *		     engines=CS[0],CS[2],CS[1],CS[3])
2329  *
2330  *	Results in the following valid placements:
2331  *	CS[0], CS[1]
2332  *	CS[2], CS[3]
2333  *
2334  *	This can be thought of as two virtual engines, each containing two
2335  *	engines thereby making a 2D array. However, there are bonds tying the
2336  *	entries together and placing restrictions on how they can be scheduled.
2337  *	Specifically, the scheduler can choose only vertical columns from the 2D
2338  *	array. That is, CS[0] is bonded to CS[1] and CS[2] to CS[3]. So if the
2339  *	scheduler wants to submit to CS[0], it must also choose CS[1] and vice
2340  *	versa. Same for CS[2] requires also using CS[3].
2341  *	VE[0] = CS[0], CS[2]
2342  *	VE[1] = CS[1], CS[3]
2343  *
2344  *	Example 3 pseudo code:
2345  *	set_engines(INVALID)
2346  *	set_parallel(engine_index=0, width=2, num_siblings=2,
2347  *		     engines=CS[0],CS[1],CS[1],CS[3])
2348  *
2349  *	Results in the following valid and invalid placements:
2350  *	CS[0], CS[1]
2351  *	CS[1], CS[3] - Not logically contiguous, return -EINVAL
2352  */
2353 struct i915_context_engines_parallel_submit {
2354 	/**
2355 	 * @base: base user extension.
2356 	 */
2357 	struct i915_user_extension base;
2358 
2359 	/**
2360 	 * @engine_index: slot for parallel engine
2361 	 */
2362 	__u16 engine_index;
2363 
2364 	/**
2365 	 * @width: number of contexts per parallel engine or in other words the
2366 	 * number of batches in each submission
2367 	 */
2368 	__u16 width;
2369 
2370 	/**
2371 	 * @num_siblings: number of siblings per context or in other words the
2372 	 * number of possible placements for each submission
2373 	 */
2374 	__u16 num_siblings;
2375 
2376 	/**
2377 	 * @mbz16: reserved for future use; must be zero
2378 	 */
2379 	__u16 mbz16;
2380 
2381 	/**
2382 	 * @flags: all undefined flags must be zero, currently not defined flags
2383 	 */
2384 	__u64 flags;
2385 
2386 	/**
2387 	 * @mbz64: reserved for future use; must be zero
2388 	 */
2389 	__u64 mbz64[3];
2390 
2391 	/**
2392 	 * @engines: 2-d array of engine instances to configure parallel engine
2393 	 *
2394 	 * length = width (i) * num_siblings (j)
2395 	 * index = j + i * num_siblings
2396 	 */
2397 	struct i915_engine_class_instance engines[];
2398 
2399 } __packed;
2400 
2401 #define I915_DEFINE_CONTEXT_ENGINES_PARALLEL_SUBMIT(name__, N__) struct { \
2402 	struct i915_user_extension base; \
2403 	__u16 engine_index; \
2404 	__u16 width; \
2405 	__u16 num_siblings; \
2406 	__u16 mbz16; \
2407 	__u64 flags; \
2408 	__u64 mbz64[3]; \
2409 	struct i915_engine_class_instance engines[N__]; \
2410 } __attribute__((packed)) name__
2411 
2412 /**
2413  * DOC: Context Engine Map uAPI
2414  *
2415  * Context engine map is a new way of addressing engines when submitting batch-
2416  * buffers, replacing the existing way of using identifiers like `I915_EXEC_BLT`
2417  * inside the flags field of `struct drm_i915_gem_execbuffer2`.
2418  *
2419  * To use it created GEM contexts need to be configured with a list of engines
2420  * the user is intending to submit to. This is accomplished using the
2421  * `I915_CONTEXT_PARAM_ENGINES` parameter and `struct
2422  * i915_context_param_engines`.
2423  *
2424  * For such contexts the `I915_EXEC_RING_MASK` field becomes an index into the
2425  * configured map.
2426  *
2427  * Example of creating such context and submitting against it:
2428  *
2429  * .. code-block:: C
2430  *
2431  * 	I915_DEFINE_CONTEXT_PARAM_ENGINES(engines, 2) = {
2432  * 		.engines = { { I915_ENGINE_CLASS_RENDER, 0 },
2433  * 			     { I915_ENGINE_CLASS_COPY, 0 } }
2434  * 	};
2435  * 	struct drm_i915_gem_context_create_ext_setparam p_engines = {
2436  * 		.base = {
2437  * 			.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
2438  * 		},
2439  * 		.param = {
2440  * 			.param = I915_CONTEXT_PARAM_ENGINES,
2441  * 			.value = to_user_pointer(&engines),
2442  * 			.size = sizeof(engines),
2443  * 		},
2444  * 	};
2445  * 	struct drm_i915_gem_context_create_ext create = {
2446  * 		.flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS,
2447  * 		.extensions = to_user_pointer(&p_engines);
2448  * 	};
2449  *
2450  * 	ctx_id = gem_context_create_ext(drm_fd, &create);
2451  *
2452  * 	// We have now created a GEM context with two engines in the map:
2453  * 	// Index 0 points to rcs0 while index 1 points to bcs0. Other engines
2454  * 	// will not be accessible from this context.
2455  *
2456  * 	...
2457  * 	execbuf.rsvd1 = ctx_id;
2458  * 	execbuf.flags = 0; // Submits to index 0, which is rcs0 for this context
2459  * 	gem_execbuf(drm_fd, &execbuf);
2460  *
2461  * 	...
2462  * 	execbuf.rsvd1 = ctx_id;
2463  * 	execbuf.flags = 1; // Submits to index 0, which is bcs0 for this context
2464  * 	gem_execbuf(drm_fd, &execbuf);
2465  */
2466 
2467 struct i915_context_param_engines {
2468 	__u64 extensions; /* linked chain of extension blocks, 0 terminates */
2469 #define I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE 0 /* see i915_context_engines_load_balance */
2470 #define I915_CONTEXT_ENGINES_EXT_BOND 1 /* see i915_context_engines_bond */
2471 #define I915_CONTEXT_ENGINES_EXT_PARALLEL_SUBMIT 2 /* see i915_context_engines_parallel_submit */
2472 	struct i915_engine_class_instance engines[0];
2473 } __attribute__((packed));
2474 
2475 #define I915_DEFINE_CONTEXT_PARAM_ENGINES(name__, N__) struct { \
2476 	__u64 extensions; \
2477 	struct i915_engine_class_instance engines[N__]; \
2478 } __attribute__((packed)) name__
2479 
2480 /**
2481  * struct drm_i915_gem_context_create_ext_setparam - Context parameter
2482  * to set or query during context creation.
2483  */
2484 struct drm_i915_gem_context_create_ext_setparam {
2485 	/** @base: Extension link. See struct i915_user_extension. */
2486 	struct i915_user_extension base;
2487 
2488 	/**
2489 	 * @param: Context parameter to set or query.
2490 	 * See struct drm_i915_gem_context_param.
2491 	 */
2492 	struct drm_i915_gem_context_param param;
2493 };
2494 
2495 struct drm_i915_gem_context_destroy {
2496 	__u32 ctx_id;
2497 	__u32 pad;
2498 };
2499 
2500 /**
2501  * struct drm_i915_gem_vm_control - Structure to create or destroy VM.
2502  *
2503  * DRM_I915_GEM_VM_CREATE -
2504  *
2505  * Create a new virtual memory address space (ppGTT) for use within a context
2506  * on the same file. Extensions can be provided to configure exactly how the
2507  * address space is setup upon creation.
2508  *
2509  * The id of new VM (bound to the fd) for use with I915_CONTEXT_PARAM_VM is
2510  * returned in the outparam @id.
2511  *
2512  * An extension chain maybe provided, starting with @extensions, and terminated
2513  * by the @next_extension being 0. Currently, no extensions are defined.
2514  *
2515  * DRM_I915_GEM_VM_DESTROY -
2516  *
2517  * Destroys a previously created VM id, specified in @vm_id.
2518  *
2519  * No extensions or flags are allowed currently, and so must be zero.
2520  */
2521 struct drm_i915_gem_vm_control {
2522 	/** @extensions: Zero-terminated chain of extensions. */
2523 	__u64 extensions;
2524 
2525 	/** @flags: reserved for future usage, currently MBZ */
2526 	__u32 flags;
2527 
2528 	/** @vm_id: Id of the VM created or to be destroyed */
2529 	__u32 vm_id;
2530 };
2531 
2532 struct drm_i915_reg_read {
2533 	/*
2534 	 * Register offset.
2535 	 * For 64bit wide registers where the upper 32bits don't immediately
2536 	 * follow the lower 32bits, the offset of the lower 32bits must
2537 	 * be specified
2538 	 */
2539 	__u64 offset;
2540 #define I915_REG_READ_8B_WA (1ul << 0)
2541 
2542 	__u64 val; /* Return value */
2543 };
2544 
2545 /* Known registers:
2546  *
2547  * Render engine timestamp - 0x2358 + 64bit - gen7+
2548  * - Note this register returns an invalid value if using the default
2549  *   single instruction 8byte read, in order to workaround that pass
2550  *   flag I915_REG_READ_8B_WA in offset field.
2551  *
2552  */
2553 
2554 struct drm_i915_reset_stats {
2555 	__u32 ctx_id;
2556 	__u32 flags;
2557 
2558 	/* All resets since boot/module reload, for all contexts */
2559 	__u32 reset_count;
2560 
2561 	/* Number of batches lost when active in GPU, for this context */
2562 	__u32 batch_active;
2563 
2564 	/* Number of batches lost pending for execution, for this context */
2565 	__u32 batch_pending;
2566 
2567 	__u32 pad;
2568 };
2569 
2570 /**
2571  * struct drm_i915_gem_userptr - Create GEM object from user allocated memory.
2572  *
2573  * Userptr objects have several restrictions on what ioctls can be used with the
2574  * object handle.
2575  */
2576 struct drm_i915_gem_userptr {
2577 	/**
2578 	 * @user_ptr: The pointer to the allocated memory.
2579 	 *
2580 	 * Needs to be aligned to PAGE_SIZE.
2581 	 */
2582 	__u64 user_ptr;
2583 
2584 	/**
2585 	 * @user_size:
2586 	 *
2587 	 * The size in bytes for the allocated memory. This will also become the
2588 	 * object size.
2589 	 *
2590 	 * Needs to be aligned to PAGE_SIZE, and should be at least PAGE_SIZE,
2591 	 * or larger.
2592 	 */
2593 	__u64 user_size;
2594 
2595 	/**
2596 	 * @flags:
2597 	 *
2598 	 * Supported flags:
2599 	 *
2600 	 * I915_USERPTR_READ_ONLY:
2601 	 *
2602 	 * Mark the object as readonly, this also means GPU access can only be
2603 	 * readonly. This is only supported on HW which supports readonly access
2604 	 * through the GTT. If the HW can't support readonly access, an error is
2605 	 * returned.
2606 	 *
2607 	 * I915_USERPTR_PROBE:
2608 	 *
2609 	 * Probe the provided @user_ptr range and validate that the @user_ptr is
2610 	 * indeed pointing to normal memory and that the range is also valid.
2611 	 * For example if some garbage address is given to the kernel, then this
2612 	 * should complain.
2613 	 *
2614 	 * Returns -EFAULT if the probe failed.
2615 	 *
2616 	 * Note that this doesn't populate the backing pages, and also doesn't
2617 	 * guarantee that the object will remain valid when the object is
2618 	 * eventually used.
2619 	 *
2620 	 * The kernel supports this feature if I915_PARAM_HAS_USERPTR_PROBE
2621 	 * returns a non-zero value.
2622 	 *
2623 	 * I915_USERPTR_UNSYNCHRONIZED:
2624 	 *
2625 	 * NOT USED. Setting this flag will result in an error.
2626 	 */
2627 	__u32 flags;
2628 #define I915_USERPTR_READ_ONLY 0x1
2629 #define I915_USERPTR_PROBE 0x2
2630 #define I915_USERPTR_UNSYNCHRONIZED 0x80000000
2631 	/**
2632 	 * @handle: Returned handle for the object.
2633 	 *
2634 	 * Object handles are nonzero.
2635 	 */
2636 	__u32 handle;
2637 };
2638 
2639 enum drm_i915_oa_format {
2640 	I915_OA_FORMAT_A13 = 1,	    /* HSW only */
2641 	I915_OA_FORMAT_A29,	    /* HSW only */
2642 	I915_OA_FORMAT_A13_B8_C8,   /* HSW only */
2643 	I915_OA_FORMAT_B4_C8,	    /* HSW only */
2644 	I915_OA_FORMAT_A45_B8_C8,   /* HSW only */
2645 	I915_OA_FORMAT_B4_C8_A16,   /* HSW only */
2646 	I915_OA_FORMAT_C4_B8,	    /* HSW+ */
2647 
2648 	/* Gen8+ */
2649 	I915_OA_FORMAT_A12,
2650 	I915_OA_FORMAT_A12_B8_C8,
2651 	I915_OA_FORMAT_A32u40_A4u32_B8_C8,
2652 
2653 	I915_OA_FORMAT_MAX	    /* non-ABI */
2654 };
2655 
2656 enum drm_i915_perf_property_id {
2657 	/**
2658 	 * Open the stream for a specific context handle (as used with
2659 	 * execbuffer2). A stream opened for a specific context this way
2660 	 * won't typically require root privileges.
2661 	 *
2662 	 * This property is available in perf revision 1.
2663 	 */
2664 	DRM_I915_PERF_PROP_CTX_HANDLE = 1,
2665 
2666 	/**
2667 	 * A value of 1 requests the inclusion of raw OA unit reports as
2668 	 * part of stream samples.
2669 	 *
2670 	 * This property is available in perf revision 1.
2671 	 */
2672 	DRM_I915_PERF_PROP_SAMPLE_OA,
2673 
2674 	/**
2675 	 * The value specifies which set of OA unit metrics should be
2676 	 * configured, defining the contents of any OA unit reports.
2677 	 *
2678 	 * This property is available in perf revision 1.
2679 	 */
2680 	DRM_I915_PERF_PROP_OA_METRICS_SET,
2681 
2682 	/**
2683 	 * The value specifies the size and layout of OA unit reports.
2684 	 *
2685 	 * This property is available in perf revision 1.
2686 	 */
2687 	DRM_I915_PERF_PROP_OA_FORMAT,
2688 
2689 	/**
2690 	 * Specifying this property implicitly requests periodic OA unit
2691 	 * sampling and (at least on Haswell) the sampling frequency is derived
2692 	 * from this exponent as follows:
2693 	 *
2694 	 *   80ns * 2^(period_exponent + 1)
2695 	 *
2696 	 * This property is available in perf revision 1.
2697 	 */
2698 	DRM_I915_PERF_PROP_OA_EXPONENT,
2699 
2700 	/**
2701 	 * Specifying this property is only valid when specify a context to
2702 	 * filter with DRM_I915_PERF_PROP_CTX_HANDLE. Specifying this property
2703 	 * will hold preemption of the particular context we want to gather
2704 	 * performance data about. The execbuf2 submissions must include a
2705 	 * drm_i915_gem_execbuffer_ext_perf parameter for this to apply.
2706 	 *
2707 	 * This property is available in perf revision 3.
2708 	 */
2709 	DRM_I915_PERF_PROP_HOLD_PREEMPTION,
2710 
2711 	/**
2712 	 * Specifying this pins all contexts to the specified SSEU power
2713 	 * configuration for the duration of the recording.
2714 	 *
2715 	 * This parameter's value is a pointer to a struct
2716 	 * drm_i915_gem_context_param_sseu.
2717 	 *
2718 	 * This property is available in perf revision 4.
2719 	 */
2720 	DRM_I915_PERF_PROP_GLOBAL_SSEU,
2721 
2722 	/**
2723 	 * This optional parameter specifies the timer interval in nanoseconds
2724 	 * at which the i915 driver will check the OA buffer for available data.
2725 	 * Minimum allowed value is 100 microseconds. A default value is used by
2726 	 * the driver if this parameter is not specified. Note that larger timer
2727 	 * values will reduce cpu consumption during OA perf captures. However,
2728 	 * excessively large values would potentially result in OA buffer
2729 	 * overwrites as captures reach end of the OA buffer.
2730 	 *
2731 	 * This property is available in perf revision 5.
2732 	 */
2733 	DRM_I915_PERF_PROP_POLL_OA_PERIOD,
2734 
2735 	DRM_I915_PERF_PROP_MAX /* non-ABI */
2736 };
2737 
2738 struct drm_i915_perf_open_param {
2739 	__u32 flags;
2740 #define I915_PERF_FLAG_FD_CLOEXEC	(1<<0)
2741 #define I915_PERF_FLAG_FD_NONBLOCK	(1<<1)
2742 #define I915_PERF_FLAG_DISABLED		(1<<2)
2743 
2744 	/** The number of u64 (id, value) pairs */
2745 	__u32 num_properties;
2746 
2747 	/**
2748 	 * Pointer to array of u64 (id, value) pairs configuring the stream
2749 	 * to open.
2750 	 */
2751 	__u64 properties_ptr;
2752 };
2753 
2754 /*
2755  * Enable data capture for a stream that was either opened in a disabled state
2756  * via I915_PERF_FLAG_DISABLED or was later disabled via
2757  * I915_PERF_IOCTL_DISABLE.
2758  *
2759  * It is intended to be cheaper to disable and enable a stream than it may be
2760  * to close and re-open a stream with the same configuration.
2761  *
2762  * It's undefined whether any pending data for the stream will be lost.
2763  *
2764  * This ioctl is available in perf revision 1.
2765  */
2766 #define I915_PERF_IOCTL_ENABLE	_IO('i', 0x0)
2767 
2768 /*
2769  * Disable data capture for a stream.
2770  *
2771  * It is an error to try and read a stream that is disabled.
2772  *
2773  * This ioctl is available in perf revision 1.
2774  */
2775 #define I915_PERF_IOCTL_DISABLE	_IO('i', 0x1)
2776 
2777 /*
2778  * Change metrics_set captured by a stream.
2779  *
2780  * If the stream is bound to a specific context, the configuration change
2781  * will performed inline with that context such that it takes effect before
2782  * the next execbuf submission.
2783  *
2784  * Returns the previously bound metrics set id, or a negative error code.
2785  *
2786  * This ioctl is available in perf revision 2.
2787  */
2788 #define I915_PERF_IOCTL_CONFIG	_IO('i', 0x2)
2789 
2790 /*
2791  * Common to all i915 perf records
2792  */
2793 struct drm_i915_perf_record_header {
2794 	__u32 type;
2795 	__u16 pad;
2796 	__u16 size;
2797 };
2798 
2799 enum drm_i915_perf_record_type {
2800 
2801 	/**
2802 	 * Samples are the work horse record type whose contents are extensible
2803 	 * and defined when opening an i915 perf stream based on the given
2804 	 * properties.
2805 	 *
2806 	 * Boolean properties following the naming convention
2807 	 * DRM_I915_PERF_SAMPLE_xyz_PROP request the inclusion of 'xyz' data in
2808 	 * every sample.
2809 	 *
2810 	 * The order of these sample properties given by userspace has no
2811 	 * affect on the ordering of data within a sample. The order is
2812 	 * documented here.
2813 	 *
2814 	 * struct {
2815 	 *     struct drm_i915_perf_record_header header;
2816 	 *
2817 	 *     { u32 oa_report[]; } && DRM_I915_PERF_PROP_SAMPLE_OA
2818 	 * };
2819 	 */
2820 	DRM_I915_PERF_RECORD_SAMPLE = 1,
2821 
2822 	/*
2823 	 * Indicates that one or more OA reports were not written by the
2824 	 * hardware. This can happen for example if an MI_REPORT_PERF_COUNT
2825 	 * command collides with periodic sampling - which would be more likely
2826 	 * at higher sampling frequencies.
2827 	 */
2828 	DRM_I915_PERF_RECORD_OA_REPORT_LOST = 2,
2829 
2830 	/**
2831 	 * An error occurred that resulted in all pending OA reports being lost.
2832 	 */
2833 	DRM_I915_PERF_RECORD_OA_BUFFER_LOST = 3,
2834 
2835 	DRM_I915_PERF_RECORD_MAX /* non-ABI */
2836 };
2837 
2838 /**
2839  * struct drm_i915_perf_oa_config
2840  *
2841  * Structure to upload perf dynamic configuration into the kernel.
2842  */
2843 struct drm_i915_perf_oa_config {
2844 	/**
2845 	 * @uuid:
2846 	 *
2847 	 * String formatted like "%\08x-%\04x-%\04x-%\04x-%\012x"
2848 	 */
2849 	char uuid[36];
2850 
2851 	/**
2852 	 * @n_mux_regs:
2853 	 *
2854 	 * Number of mux regs in &mux_regs_ptr.
2855 	 */
2856 	__u32 n_mux_regs;
2857 
2858 	/**
2859 	 * @n_boolean_regs:
2860 	 *
2861 	 * Number of boolean regs in &boolean_regs_ptr.
2862 	 */
2863 	__u32 n_boolean_regs;
2864 
2865 	/**
2866 	 * @n_flex_regs:
2867 	 *
2868 	 * Number of flex regs in &flex_regs_ptr.
2869 	 */
2870 	__u32 n_flex_regs;
2871 
2872 	/**
2873 	 * @mux_regs_ptr:
2874 	 *
2875 	 * Pointer to tuples of u32 values (register address, value) for mux
2876 	 * registers.  Expected length of buffer is (2 * sizeof(u32) *
2877 	 * &n_mux_regs).
2878 	 */
2879 	__u64 mux_regs_ptr;
2880 
2881 	/**
2882 	 * @boolean_regs_ptr:
2883 	 *
2884 	 * Pointer to tuples of u32 values (register address, value) for mux
2885 	 * registers.  Expected length of buffer is (2 * sizeof(u32) *
2886 	 * &n_boolean_regs).
2887 	 */
2888 	__u64 boolean_regs_ptr;
2889 
2890 	/**
2891 	 * @flex_regs_ptr:
2892 	 *
2893 	 * Pointer to tuples of u32 values (register address, value) for mux
2894 	 * registers.  Expected length of buffer is (2 * sizeof(u32) *
2895 	 * &n_flex_regs).
2896 	 */
2897 	__u64 flex_regs_ptr;
2898 };
2899 
2900 /**
2901  * struct drm_i915_query_item - An individual query for the kernel to process.
2902  *
2903  * The behaviour is determined by the @query_id. Note that exactly what
2904  * @data_ptr is also depends on the specific @query_id.
2905  */
2906 struct drm_i915_query_item {
2907 	/**
2908 	 * @query_id:
2909 	 *
2910 	 * The id for this query.  Currently accepted query IDs are:
2911 	 *  - %DRM_I915_QUERY_TOPOLOGY_INFO (see struct drm_i915_query_topology_info)
2912 	 *  - %DRM_I915_QUERY_ENGINE_INFO (see struct drm_i915_engine_info)
2913 	 *  - %DRM_I915_QUERY_PERF_CONFIG (see struct drm_i915_query_perf_config)
2914 	 *  - %DRM_I915_QUERY_MEMORY_REGIONS (see struct drm_i915_query_memory_regions)
2915 	 *  - %DRM_I915_QUERY_HWCONFIG_BLOB (see `GuC HWCONFIG blob uAPI`)
2916 	 *  - %DRM_I915_QUERY_GEOMETRY_SUBSLICES (see struct drm_i915_query_topology_info)
2917 	 */
2918 	__u64 query_id;
2919 #define DRM_I915_QUERY_TOPOLOGY_INFO		1
2920 #define DRM_I915_QUERY_ENGINE_INFO		2
2921 #define DRM_I915_QUERY_PERF_CONFIG		3
2922 #define DRM_I915_QUERY_MEMORY_REGIONS		4
2923 #define DRM_I915_QUERY_HWCONFIG_BLOB		5
2924 #define DRM_I915_QUERY_GEOMETRY_SUBSLICES	6
2925 /* Must be kept compact -- no holes and well documented */
2926 
2927 	/**
2928 	 * @length:
2929 	 *
2930 	 * When set to zero by userspace, this is filled with the size of the
2931 	 * data to be written at the @data_ptr pointer. The kernel sets this
2932 	 * value to a negative value to signal an error on a particular query
2933 	 * item.
2934 	 */
2935 	__s32 length;
2936 
2937 	/**
2938 	 * @flags:
2939 	 *
2940 	 * When &query_id == %DRM_I915_QUERY_TOPOLOGY_INFO, must be 0.
2941 	 *
2942 	 * When &query_id == %DRM_I915_QUERY_PERF_CONFIG, must be one of the
2943 	 * following:
2944 	 *
2945 	 *	- %DRM_I915_QUERY_PERF_CONFIG_LIST
2946 	 *      - %DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID
2947 	 *      - %DRM_I915_QUERY_PERF_CONFIG_FOR_UUID
2948 	 *
2949 	 * When &query_id == %DRM_I915_QUERY_GEOMETRY_SUBSLICES must contain
2950 	 * a struct i915_engine_class_instance that references a render engine.
2951 	 */
2952 	__u32 flags;
2953 #define DRM_I915_QUERY_PERF_CONFIG_LIST          1
2954 #define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID 2
2955 #define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID   3
2956 
2957 	/**
2958 	 * @data_ptr:
2959 	 *
2960 	 * Data will be written at the location pointed by @data_ptr when the
2961 	 * value of @length matches the length of the data to be written by the
2962 	 * kernel.
2963 	 */
2964 	__u64 data_ptr;
2965 };
2966 
2967 /**
2968  * struct drm_i915_query - Supply an array of struct drm_i915_query_item for the
2969  * kernel to fill out.
2970  *
2971  * Note that this is generally a two step process for each struct
2972  * drm_i915_query_item in the array:
2973  *
2974  * 1. Call the DRM_IOCTL_I915_QUERY, giving it our array of struct
2975  *    drm_i915_query_item, with &drm_i915_query_item.length set to zero. The
2976  *    kernel will then fill in the size, in bytes, which tells userspace how
2977  *    memory it needs to allocate for the blob(say for an array of properties).
2978  *
2979  * 2. Next we call DRM_IOCTL_I915_QUERY again, this time with the
2980  *    &drm_i915_query_item.data_ptr equal to our newly allocated blob. Note that
2981  *    the &drm_i915_query_item.length should still be the same as what the
2982  *    kernel previously set. At this point the kernel can fill in the blob.
2983  *
2984  * Note that for some query items it can make sense for userspace to just pass
2985  * in a buffer/blob equal to or larger than the required size. In this case only
2986  * a single ioctl call is needed. For some smaller query items this can work
2987  * quite well.
2988  *
2989  */
2990 struct drm_i915_query {
2991 	/** @num_items: The number of elements in the @items_ptr array */
2992 	__u32 num_items;
2993 
2994 	/**
2995 	 * @flags: Unused for now. Must be cleared to zero.
2996 	 */
2997 	__u32 flags;
2998 
2999 	/**
3000 	 * @items_ptr:
3001 	 *
3002 	 * Pointer to an array of struct drm_i915_query_item. The number of
3003 	 * array elements is @num_items.
3004 	 */
3005 	__u64 items_ptr;
3006 };
3007 
3008 /**
3009  * struct drm_i915_query_topology_info
3010  *
3011  * Describes slice/subslice/EU information queried by
3012  * %DRM_I915_QUERY_TOPOLOGY_INFO
3013  */
3014 struct drm_i915_query_topology_info {
3015 	/**
3016 	 * @flags:
3017 	 *
3018 	 * Unused for now. Must be cleared to zero.
3019 	 */
3020 	__u16 flags;
3021 
3022 	/**
3023 	 * @max_slices:
3024 	 *
3025 	 * The number of bits used to express the slice mask.
3026 	 */
3027 	__u16 max_slices;
3028 
3029 	/**
3030 	 * @max_subslices:
3031 	 *
3032 	 * The number of bits used to express the subslice mask.
3033 	 */
3034 	__u16 max_subslices;
3035 
3036 	/**
3037 	 * @max_eus_per_subslice:
3038 	 *
3039 	 * The number of bits in the EU mask that correspond to a single
3040 	 * subslice's EUs.
3041 	 */
3042 	__u16 max_eus_per_subslice;
3043 
3044 	/**
3045 	 * @subslice_offset:
3046 	 *
3047 	 * Offset in data[] at which the subslice masks are stored.
3048 	 */
3049 	__u16 subslice_offset;
3050 
3051 	/**
3052 	 * @subslice_stride:
3053 	 *
3054 	 * Stride at which each of the subslice masks for each slice are
3055 	 * stored.
3056 	 */
3057 	__u16 subslice_stride;
3058 
3059 	/**
3060 	 * @eu_offset:
3061 	 *
3062 	 * Offset in data[] at which the EU masks are stored.
3063 	 */
3064 	__u16 eu_offset;
3065 
3066 	/**
3067 	 * @eu_stride:
3068 	 *
3069 	 * Stride at which each of the EU masks for each subslice are stored.
3070 	 */
3071 	__u16 eu_stride;
3072 
3073 	/**
3074 	 * @data:
3075 	 *
3076 	 * Contains 3 pieces of information :
3077 	 *
3078 	 * - The slice mask with one bit per slice telling whether a slice is
3079 	 *   available. The availability of slice X can be queried with the
3080 	 *   following formula :
3081 	 *
3082 	 *   .. code:: c
3083 	 *
3084 	 *      (data[X / 8] >> (X % 8)) & 1
3085 	 *
3086 	 *   Starting with Xe_HP platforms, Intel hardware no longer has
3087 	 *   traditional slices so i915 will always report a single slice
3088 	 *   (hardcoded slicemask = 0x1) which contains all of the platform's
3089 	 *   subslices.  I.e., the mask here does not reflect any of the newer
3090 	 *   hardware concepts such as "gslices" or "cslices" since userspace
3091 	 *   is capable of inferring those from the subslice mask.
3092 	 *
3093 	 * - The subslice mask for each slice with one bit per subslice telling
3094 	 *   whether a subslice is available.  Starting with Gen12 we use the
3095 	 *   term "subslice" to refer to what the hardware documentation
3096 	 *   describes as a "dual-subslices."  The availability of subslice Y
3097 	 *   in slice X can be queried with the following formula :
3098 	 *
3099 	 *   .. code:: c
3100 	 *
3101 	 *      (data[subslice_offset + X * subslice_stride + Y / 8] >> (Y % 8)) & 1
3102 	 *
3103 	 * - The EU mask for each subslice in each slice, with one bit per EU
3104 	 *   telling whether an EU is available. The availability of EU Z in
3105 	 *   subslice Y in slice X can be queried with the following formula :
3106 	 *
3107 	 *   .. code:: c
3108 	 *
3109 	 *      (data[eu_offset +
3110 	 *            (X * max_subslices + Y) * eu_stride +
3111 	 *            Z / 8
3112 	 *       ] >> (Z % 8)) & 1
3113 	 */
3114 	__u8 data[];
3115 };
3116 
3117 /**
3118  * DOC: Engine Discovery uAPI
3119  *
3120  * Engine discovery uAPI is a way of enumerating physical engines present in a
3121  * GPU associated with an open i915 DRM file descriptor. This supersedes the old
3122  * way of using `DRM_IOCTL_I915_GETPARAM` and engine identifiers like
3123  * `I915_PARAM_HAS_BLT`.
3124  *
3125  * The need for this interface came starting with Icelake and newer GPUs, which
3126  * started to establish a pattern of having multiple engines of a same class,
3127  * where not all instances were always completely functionally equivalent.
3128  *
3129  * Entry point for this uapi is `DRM_IOCTL_I915_QUERY` with the
3130  * `DRM_I915_QUERY_ENGINE_INFO` as the queried item id.
3131  *
3132  * Example for getting the list of engines:
3133  *
3134  * .. code-block:: C
3135  *
3136  * 	struct drm_i915_query_engine_info *info;
3137  * 	struct drm_i915_query_item item = {
3138  * 		.query_id = DRM_I915_QUERY_ENGINE_INFO;
3139  * 	};
3140  * 	struct drm_i915_query query = {
3141  * 		.num_items = 1,
3142  * 		.items_ptr = (uintptr_t)&item,
3143  * 	};
3144  * 	int err, i;
3145  *
3146  * 	// First query the size of the blob we need, this needs to be large
3147  * 	// enough to hold our array of engines. The kernel will fill out the
3148  * 	// item.length for us, which is the number of bytes we need.
3149  * 	//
3150  * 	// Alternatively a large buffer can be allocated straight away enabling
3151  * 	// querying in one pass, in which case item.length should contain the
3152  * 	// length of the provided buffer.
3153  * 	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3154  * 	if (err) ...
3155  *
3156  * 	info = calloc(1, item.length);
3157  * 	// Now that we allocated the required number of bytes, we call the ioctl
3158  * 	// again, this time with the data_ptr pointing to our newly allocated
3159  * 	// blob, which the kernel can then populate with info on all engines.
3160  * 	item.data_ptr = (uintptr_t)&info,
3161  *
3162  * 	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3163  * 	if (err) ...
3164  *
3165  * 	// We can now access each engine in the array
3166  * 	for (i = 0; i < info->num_engines; i++) {
3167  * 		struct drm_i915_engine_info einfo = info->engines[i];
3168  * 		u16 class = einfo.engine.class;
3169  * 		u16 instance = einfo.engine.instance;
3170  * 		....
3171  * 	}
3172  *
3173  * 	free(info);
3174  *
3175  * Each of the enumerated engines, apart from being defined by its class and
3176  * instance (see `struct i915_engine_class_instance`), also can have flags and
3177  * capabilities defined as documented in i915_drm.h.
3178  *
3179  * For instance video engines which support HEVC encoding will have the
3180  * `I915_VIDEO_CLASS_CAPABILITY_HEVC` capability bit set.
3181  *
3182  * Engine discovery only fully comes to its own when combined with the new way
3183  * of addressing engines when submitting batch buffers using contexts with
3184  * engine maps configured.
3185  */
3186 
3187 /**
3188  * struct drm_i915_engine_info
3189  *
3190  * Describes one engine and it's capabilities as known to the driver.
3191  */
3192 struct drm_i915_engine_info {
3193 	/** @engine: Engine class and instance. */
3194 	struct i915_engine_class_instance engine;
3195 
3196 	/** @rsvd0: Reserved field. */
3197 	__u32 rsvd0;
3198 
3199 	/** @flags: Engine flags. */
3200 	__u64 flags;
3201 #define I915_ENGINE_INFO_HAS_LOGICAL_INSTANCE		(1 << 0)
3202 
3203 	/** @capabilities: Capabilities of this engine. */
3204 	__u64 capabilities;
3205 #define I915_VIDEO_CLASS_CAPABILITY_HEVC		(1 << 0)
3206 #define I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC	(1 << 1)
3207 
3208 	/** @logical_instance: Logical instance of engine */
3209 	__u16 logical_instance;
3210 
3211 	/** @rsvd1: Reserved fields. */
3212 	__u16 rsvd1[3];
3213 	/** @rsvd2: Reserved fields. */
3214 	__u64 rsvd2[3];
3215 };
3216 
3217 /**
3218  * struct drm_i915_query_engine_info
3219  *
3220  * Engine info query enumerates all engines known to the driver by filling in
3221  * an array of struct drm_i915_engine_info structures.
3222  */
3223 struct drm_i915_query_engine_info {
3224 	/** @num_engines: Number of struct drm_i915_engine_info structs following. */
3225 	__u32 num_engines;
3226 
3227 	/** @rsvd: MBZ */
3228 	__u32 rsvd[3];
3229 
3230 	/** @engines: Marker for drm_i915_engine_info structures. */
3231 	struct drm_i915_engine_info engines[];
3232 };
3233 
3234 /**
3235  * struct drm_i915_query_perf_config
3236  *
3237  * Data written by the kernel with query %DRM_I915_QUERY_PERF_CONFIG and
3238  * %DRM_I915_QUERY_GEOMETRY_SUBSLICES.
3239  */
3240 struct drm_i915_query_perf_config {
3241 	union {
3242 		/**
3243 		 * @n_configs:
3244 		 *
3245 		 * When &drm_i915_query_item.flags ==
3246 		 * %DRM_I915_QUERY_PERF_CONFIG_LIST, i915 sets this fields to
3247 		 * the number of configurations available.
3248 		 */
3249 		__u64 n_configs;
3250 
3251 		/**
3252 		 * @config:
3253 		 *
3254 		 * When &drm_i915_query_item.flags ==
3255 		 * %DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID, i915 will use the
3256 		 * value in this field as configuration identifier to decide
3257 		 * what data to write into config_ptr.
3258 		 */
3259 		__u64 config;
3260 
3261 		/**
3262 		 * @uuid:
3263 		 *
3264 		 * When &drm_i915_query_item.flags ==
3265 		 * %DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID, i915 will use the
3266 		 * value in this field as configuration identifier to decide
3267 		 * what data to write into config_ptr.
3268 		 *
3269 		 * String formatted like "%08x-%04x-%04x-%04x-%012x"
3270 		 */
3271 		char uuid[36];
3272 	};
3273 
3274 	/**
3275 	 * @flags:
3276 	 *
3277 	 * Unused for now. Must be cleared to zero.
3278 	 */
3279 	__u32 flags;
3280 
3281 	/**
3282 	 * @data:
3283 	 *
3284 	 * When &drm_i915_query_item.flags == %DRM_I915_QUERY_PERF_CONFIG_LIST,
3285 	 * i915 will write an array of __u64 of configuration identifiers.
3286 	 *
3287 	 * When &drm_i915_query_item.flags == %DRM_I915_QUERY_PERF_CONFIG_DATA,
3288 	 * i915 will write a struct drm_i915_perf_oa_config. If the following
3289 	 * fields of struct drm_i915_perf_oa_config are not set to 0, i915 will
3290 	 * write into the associated pointers the values of submitted when the
3291 	 * configuration was created :
3292 	 *
3293 	 *  - &drm_i915_perf_oa_config.n_mux_regs
3294 	 *  - &drm_i915_perf_oa_config.n_boolean_regs
3295 	 *  - &drm_i915_perf_oa_config.n_flex_regs
3296 	 */
3297 	__u8 data[];
3298 };
3299 
3300 /**
3301  * enum drm_i915_gem_memory_class - Supported memory classes
3302  */
3303 enum drm_i915_gem_memory_class {
3304 	/** @I915_MEMORY_CLASS_SYSTEM: System memory */
3305 	I915_MEMORY_CLASS_SYSTEM = 0,
3306 	/** @I915_MEMORY_CLASS_DEVICE: Device local-memory */
3307 	I915_MEMORY_CLASS_DEVICE,
3308 };
3309 
3310 /**
3311  * struct drm_i915_gem_memory_class_instance - Identify particular memory region
3312  */
3313 struct drm_i915_gem_memory_class_instance {
3314 	/** @memory_class: See enum drm_i915_gem_memory_class */
3315 	__u16 memory_class;
3316 
3317 	/** @memory_instance: Which instance */
3318 	__u16 memory_instance;
3319 };
3320 
3321 /**
3322  * struct drm_i915_memory_region_info - Describes one region as known to the
3323  * driver.
3324  *
3325  * Note this is using both struct drm_i915_query_item and struct drm_i915_query.
3326  * For this new query we are adding the new query id DRM_I915_QUERY_MEMORY_REGIONS
3327  * at &drm_i915_query_item.query_id.
3328  */
3329 struct drm_i915_memory_region_info {
3330 	/** @region: The class:instance pair encoding */
3331 	struct drm_i915_gem_memory_class_instance region;
3332 
3333 	/** @rsvd0: MBZ */
3334 	__u32 rsvd0;
3335 
3336 	/**
3337 	 * @probed_size: Memory probed by the driver
3338 	 *
3339 	 * Note that it should not be possible to ever encounter a zero value
3340 	 * here, also note that no current region type will ever return -1 here.
3341 	 * Although for future region types, this might be a possibility. The
3342 	 * same applies to the other size fields.
3343 	 */
3344 	__u64 probed_size;
3345 
3346 	/**
3347 	 * @unallocated_size: Estimate of memory remaining
3348 	 *
3349 	 * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable accounting.
3350 	 * Without this (or if this is an older kernel) the value here will
3351 	 * always equal the @probed_size. Note this is only currently tracked
3352 	 * for I915_MEMORY_CLASS_DEVICE regions (for other types the value here
3353 	 * will always equal the @probed_size).
3354 	 */
3355 	__u64 unallocated_size;
3356 
3357 	union {
3358 		/** @rsvd1: MBZ */
3359 		__u64 rsvd1[8];
3360 		struct {
3361 			/**
3362 			 * @probed_cpu_visible_size: Memory probed by the driver
3363 			 * that is CPU accessible.
3364 			 *
3365 			 * This will be always be <= @probed_size, and the
3366 			 * remainder (if there is any) will not be CPU
3367 			 * accessible.
3368 			 *
3369 			 * On systems without small BAR, the @probed_size will
3370 			 * always equal the @probed_cpu_visible_size, since all
3371 			 * of it will be CPU accessible.
3372 			 *
3373 			 * Note this is only tracked for
3374 			 * I915_MEMORY_CLASS_DEVICE regions (for other types the
3375 			 * value here will always equal the @probed_size).
3376 			 *
3377 			 * Note that if the value returned here is zero, then
3378 			 * this must be an old kernel which lacks the relevant
3379 			 * small-bar uAPI support (including
3380 			 * I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS), but on
3381 			 * such systems we should never actually end up with a
3382 			 * small BAR configuration, assuming we are able to load
3383 			 * the kernel module. Hence it should be safe to treat
3384 			 * this the same as when @probed_cpu_visible_size ==
3385 			 * @probed_size.
3386 			 */
3387 			__u64 probed_cpu_visible_size;
3388 
3389 			/**
3390 			 * @unallocated_cpu_visible_size: Estimate of CPU
3391 			 * visible memory remaining.
3392 			 *
3393 			 * Note this is only tracked for
3394 			 * I915_MEMORY_CLASS_DEVICE regions (for other types the
3395 			 * value here will always equal the
3396 			 * @probed_cpu_visible_size).
3397 			 *
3398 			 * Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable
3399 			 * accounting.  Without this the value here will always
3400 			 * equal the @probed_cpu_visible_size. Note this is only
3401 			 * currently tracked for I915_MEMORY_CLASS_DEVICE
3402 			 * regions (for other types the value here will also
3403 			 * always equal the @probed_cpu_visible_size).
3404 			 *
3405 			 * If this is an older kernel the value here will be
3406 			 * zero, see also @probed_cpu_visible_size.
3407 			 */
3408 			__u64 unallocated_cpu_visible_size;
3409 		};
3410 	};
3411 };
3412 
3413 /**
3414  * struct drm_i915_query_memory_regions
3415  *
3416  * The region info query enumerates all regions known to the driver by filling
3417  * in an array of struct drm_i915_memory_region_info structures.
3418  *
3419  * Example for getting the list of supported regions:
3420  *
3421  * .. code-block:: C
3422  *
3423  *	struct drm_i915_query_memory_regions *info;
3424  *	struct drm_i915_query_item item = {
3425  *		.query_id = DRM_I915_QUERY_MEMORY_REGIONS;
3426  *	};
3427  *	struct drm_i915_query query = {
3428  *		.num_items = 1,
3429  *		.items_ptr = (uintptr_t)&item,
3430  *	};
3431  *	int err, i;
3432  *
3433  *	// First query the size of the blob we need, this needs to be large
3434  *	// enough to hold our array of regions. The kernel will fill out the
3435  *	// item.length for us, which is the number of bytes we need.
3436  *	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3437  *	if (err) ...
3438  *
3439  *	info = calloc(1, item.length);
3440  *	// Now that we allocated the required number of bytes, we call the ioctl
3441  *	// again, this time with the data_ptr pointing to our newly allocated
3442  *	// blob, which the kernel can then populate with the all the region info.
3443  *	item.data_ptr = (uintptr_t)&info,
3444  *
3445  *	err = ioctl(fd, DRM_IOCTL_I915_QUERY, &query);
3446  *	if (err) ...
3447  *
3448  *	// We can now access each region in the array
3449  *	for (i = 0; i < info->num_regions; i++) {
3450  *		struct drm_i915_memory_region_info mr = info->regions[i];
3451  *		u16 class = mr.region.class;
3452  *		u16 instance = mr.region.instance;
3453  *
3454  *		....
3455  *	}
3456  *
3457  *	free(info);
3458  */
3459 struct drm_i915_query_memory_regions {
3460 	/** @num_regions: Number of supported regions */
3461 	__u32 num_regions;
3462 
3463 	/** @rsvd: MBZ */
3464 	__u32 rsvd[3];
3465 
3466 	/** @regions: Info about each supported region */
3467 	struct drm_i915_memory_region_info regions[];
3468 };
3469 
3470 /**
3471  * DOC: GuC HWCONFIG blob uAPI
3472  *
3473  * The GuC produces a blob with information about the current device.
3474  * i915 reads this blob from GuC and makes it available via this uAPI.
3475  *
3476  * The format and meaning of the blob content are documented in the
3477  * Programmer's Reference Manual.
3478  */
3479 
3480 /**
3481  * struct drm_i915_gem_create_ext - Existing gem_create behaviour, with added
3482  * extension support using struct i915_user_extension.
3483  *
3484  * Note that new buffer flags should be added here, at least for the stuff that
3485  * is immutable. Previously we would have two ioctls, one to create the object
3486  * with gem_create, and another to apply various parameters, however this
3487  * creates some ambiguity for the params which are considered immutable. Also in
3488  * general we're phasing out the various SET/GET ioctls.
3489  */
3490 struct drm_i915_gem_create_ext {
3491 	/**
3492 	 * @size: Requested size for the object.
3493 	 *
3494 	 * The (page-aligned) allocated size for the object will be returned.
3495 	 *
3496 	 * DG2 64K min page size implications:
3497 	 *
3498 	 * On discrete platforms, starting from DG2, we have to contend with GTT
3499 	 * page size restrictions when dealing with I915_MEMORY_CLASS_DEVICE
3500 	 * objects.  Specifically the hardware only supports 64K or larger GTT
3501 	 * page sizes for such memory. The kernel will already ensure that all
3502 	 * I915_MEMORY_CLASS_DEVICE memory is allocated using 64K or larger page
3503 	 * sizes underneath.
3504 	 *
3505 	 * Note that the returned size here will always reflect any required
3506 	 * rounding up done by the kernel, i.e 4K will now become 64K on devices
3507 	 * such as DG2. The kernel will always select the largest minimum
3508 	 * page-size for the set of possible placements as the value to use when
3509 	 * rounding up the @size.
3510 	 *
3511 	 * Special DG2 GTT address alignment requirement:
3512 	 *
3513 	 * The GTT alignment will also need to be at least 2M for such objects.
3514 	 *
3515 	 * Note that due to how the hardware implements 64K GTT page support, we
3516 	 * have some further complications:
3517 	 *
3518 	 *   1) The entire PDE (which covers a 2MB virtual address range), must
3519 	 *   contain only 64K PTEs, i.e mixing 4K and 64K PTEs in the same
3520 	 *   PDE is forbidden by the hardware.
3521 	 *
3522 	 *   2) We still need to support 4K PTEs for I915_MEMORY_CLASS_SYSTEM
3523 	 *   objects.
3524 	 *
3525 	 * To keep things simple for userland, we mandate that any GTT mappings
3526 	 * must be aligned to and rounded up to 2MB. The kernel will internally
3527 	 * pad them out to the next 2MB boundary. As this only wastes virtual
3528 	 * address space and avoids userland having to copy any needlessly
3529 	 * complicated PDE sharing scheme (coloring) and only affects DG2, this
3530 	 * is deemed to be a good compromise.
3531 	 */
3532 	__u64 size;
3533 
3534 	/**
3535 	 * @handle: Returned handle for the object.
3536 	 *
3537 	 * Object handles are nonzero.
3538 	 */
3539 	__u32 handle;
3540 
3541 	/**
3542 	 * @flags: Optional flags.
3543 	 *
3544 	 * Supported values:
3545 	 *
3546 	 * I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS - Signal to the kernel that
3547 	 * the object will need to be accessed via the CPU.
3548 	 *
3549 	 * Only valid when placing objects in I915_MEMORY_CLASS_DEVICE, and only
3550 	 * strictly required on configurations where some subset of the device
3551 	 * memory is directly visible/mappable through the CPU (which we also
3552 	 * call small BAR), like on some DG2+ systems. Note that this is quite
3553 	 * undesirable, but due to various factors like the client CPU, BIOS etc
3554 	 * it's something we can expect to see in the wild. See
3555 	 * &drm_i915_memory_region_info.probed_cpu_visible_size for how to
3556 	 * determine if this system applies.
3557 	 *
3558 	 * Note that one of the placements MUST be I915_MEMORY_CLASS_SYSTEM, to
3559 	 * ensure the kernel can always spill the allocation to system memory,
3560 	 * if the object can't be allocated in the mappable part of
3561 	 * I915_MEMORY_CLASS_DEVICE.
3562 	 *
3563 	 * Also note that since the kernel only supports flat-CCS on objects
3564 	 * that can *only* be placed in I915_MEMORY_CLASS_DEVICE, we therefore
3565 	 * don't support I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS together with
3566 	 * flat-CCS.
3567 	 *
3568 	 * Without this hint, the kernel will assume that non-mappable
3569 	 * I915_MEMORY_CLASS_DEVICE is preferred for this object. Note that the
3570 	 * kernel can still migrate the object to the mappable part, as a last
3571 	 * resort, if userspace ever CPU faults this object, but this might be
3572 	 * expensive, and so ideally should be avoided.
3573 	 *
3574 	 * On older kernels which lack the relevant small-bar uAPI support (see
3575 	 * also &drm_i915_memory_region_info.probed_cpu_visible_size),
3576 	 * usage of the flag will result in an error, but it should NEVER be
3577 	 * possible to end up with a small BAR configuration, assuming we can
3578 	 * also successfully load the i915 kernel module. In such cases the
3579 	 * entire I915_MEMORY_CLASS_DEVICE region will be CPU accessible, and as
3580 	 * such there are zero restrictions on where the object can be placed.
3581 	 */
3582 #define I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS (1 << 0)
3583 	__u32 flags;
3584 
3585 	/**
3586 	 * @extensions: The chain of extensions to apply to this object.
3587 	 *
3588 	 * This will be useful in the future when we need to support several
3589 	 * different extensions, and we need to apply more than one when
3590 	 * creating the object. See struct i915_user_extension.
3591 	 *
3592 	 * If we don't supply any extensions then we get the same old gem_create
3593 	 * behaviour.
3594 	 *
3595 	 * For I915_GEM_CREATE_EXT_MEMORY_REGIONS usage see
3596 	 * struct drm_i915_gem_create_ext_memory_regions.
3597 	 *
3598 	 * For I915_GEM_CREATE_EXT_PROTECTED_CONTENT usage see
3599 	 * struct drm_i915_gem_create_ext_protected_content.
3600 	 */
3601 #define I915_GEM_CREATE_EXT_MEMORY_REGIONS 0
3602 #define I915_GEM_CREATE_EXT_PROTECTED_CONTENT 1
3603 	__u64 extensions;
3604 };
3605 
3606 /**
3607  * struct drm_i915_gem_create_ext_memory_regions - The
3608  * I915_GEM_CREATE_EXT_MEMORY_REGIONS extension.
3609  *
3610  * Set the object with the desired set of placements/regions in priority
3611  * order. Each entry must be unique and supported by the device.
3612  *
3613  * This is provided as an array of struct drm_i915_gem_memory_class_instance, or
3614  * an equivalent layout of class:instance pair encodings. See struct
3615  * drm_i915_query_memory_regions and DRM_I915_QUERY_MEMORY_REGIONS for how to
3616  * query the supported regions for a device.
3617  *
3618  * As an example, on discrete devices, if we wish to set the placement as
3619  * device local-memory we can do something like:
3620  *
3621  * .. code-block:: C
3622  *
3623  *	struct drm_i915_gem_memory_class_instance region_lmem = {
3624  *              .memory_class = I915_MEMORY_CLASS_DEVICE,
3625  *              .memory_instance = 0,
3626  *      };
3627  *      struct drm_i915_gem_create_ext_memory_regions regions = {
3628  *              .base = { .name = I915_GEM_CREATE_EXT_MEMORY_REGIONS },
3629  *              .regions = (uintptr_t)&region_lmem,
3630  *              .num_regions = 1,
3631  *      };
3632  *      struct drm_i915_gem_create_ext create_ext = {
3633  *              .size = 16 * PAGE_SIZE,
3634  *              .extensions = (uintptr_t)&regions,
3635  *      };
3636  *
3637  *      int err = ioctl(fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create_ext);
3638  *      if (err) ...
3639  *
3640  * At which point we get the object handle in &drm_i915_gem_create_ext.handle,
3641  * along with the final object size in &drm_i915_gem_create_ext.size, which
3642  * should account for any rounding up, if required.
3643  *
3644  * Note that userspace has no means of knowing the current backing region
3645  * for objects where @num_regions is larger than one. The kernel will only
3646  * ensure that the priority order of the @regions array is honoured, either
3647  * when initially placing the object, or when moving memory around due to
3648  * memory pressure
3649  *
3650  * On Flat-CCS capable HW, compression is supported for the objects residing
3651  * in I915_MEMORY_CLASS_DEVICE. When such objects (compressed) have other
3652  * memory class in @regions and migrated (by i915, due to memory
3653  * constraints) to the non I915_MEMORY_CLASS_DEVICE region, then i915 needs to
3654  * decompress the content. But i915 doesn't have the required information to
3655  * decompress the userspace compressed objects.
3656  *
3657  * So i915 supports Flat-CCS, on the objects which can reside only on
3658  * I915_MEMORY_CLASS_DEVICE regions.
3659  */
3660 struct drm_i915_gem_create_ext_memory_regions {
3661 	/** @base: Extension link. See struct i915_user_extension. */
3662 	struct i915_user_extension base;
3663 
3664 	/** @pad: MBZ */
3665 	__u32 pad;
3666 	/** @num_regions: Number of elements in the @regions array. */
3667 	__u32 num_regions;
3668 	/**
3669 	 * @regions: The regions/placements array.
3670 	 *
3671 	 * An array of struct drm_i915_gem_memory_class_instance.
3672 	 */
3673 	__u64 regions;
3674 };
3675 
3676 /**
3677  * struct drm_i915_gem_create_ext_protected_content - The
3678  * I915_OBJECT_PARAM_PROTECTED_CONTENT extension.
3679  *
3680  * If this extension is provided, buffer contents are expected to be protected
3681  * by PXP encryption and require decryption for scan out and processing. This
3682  * is only possible on platforms that have PXP enabled, on all other scenarios
3683  * using this extension will cause the ioctl to fail and return -ENODEV. The
3684  * flags parameter is reserved for future expansion and must currently be set
3685  * to zero.
3686  *
3687  * The buffer contents are considered invalid after a PXP session teardown.
3688  *
3689  * The encryption is guaranteed to be processed correctly only if the object
3690  * is submitted with a context created using the
3691  * I915_CONTEXT_PARAM_PROTECTED_CONTENT flag. This will also enable extra checks
3692  * at submission time on the validity of the objects involved.
3693  *
3694  * Below is an example on how to create a protected object:
3695  *
3696  * .. code-block:: C
3697  *
3698  *      struct drm_i915_gem_create_ext_protected_content protected_ext = {
3699  *              .base = { .name = I915_GEM_CREATE_EXT_PROTECTED_CONTENT },
3700  *              .flags = 0,
3701  *      };
3702  *      struct drm_i915_gem_create_ext create_ext = {
3703  *              .size = PAGE_SIZE,
3704  *              .extensions = (uintptr_t)&protected_ext,
3705  *      };
3706  *
3707  *      int err = ioctl(fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create_ext);
3708  *      if (err) ...
3709  */
3710 struct drm_i915_gem_create_ext_protected_content {
3711 	/** @base: Extension link. See struct i915_user_extension. */
3712 	struct i915_user_extension base;
3713 	/** @flags: reserved for future usage, currently MBZ */
3714 	__u32 flags;
3715 };
3716 
3717 /* ID of the protected content session managed by i915 when PXP is active */
3718 #define I915_PROTECTED_CONTENT_DEFAULT_SESSION 0xf
3719 
3720 #if defined(__cplusplus)
3721 }
3722 #endif
3723 
3724 #endif /* _UAPI_I915_DRM_H_ */
3725