xref: /openbmc/linux/include/uapi/drm/i915_drm.h (revision 4eb5928d)
1 /*
2  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the
14  * next paragraph) shall be included in all copies or substantial portions
15  * of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
20  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
21  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24  *
25  */
26 
27 #ifndef _UAPI_I915_DRM_H_
28 #define _UAPI_I915_DRM_H_
29 
30 #include "drm.h"
31 
32 #if defined(__cplusplus)
33 extern "C" {
34 #endif
35 
36 /* Please note that modifications to all structs defined here are
37  * subject to backwards-compatibility constraints.
38  */
39 
40 /**
41  * DOC: uevents generated by i915 on it's device node
42  *
43  * I915_L3_PARITY_UEVENT - Generated when the driver receives a parity mismatch
44  *	event from the gpu l3 cache. Additional information supplied is ROW,
45  *	BANK, SUBBANK, SLICE of the affected cacheline. Userspace should keep
46  *	track of these events and if a specific cache-line seems to have a
47  *	persistent error remap it with the l3 remapping tool supplied in
48  *	intel-gpu-tools.  The value supplied with the event is always 1.
49  *
50  * I915_ERROR_UEVENT - Generated upon error detection, currently only via
51  *	hangcheck. The error detection event is a good indicator of when things
52  *	began to go badly. The value supplied with the event is a 1 upon error
53  *	detection, and a 0 upon reset completion, signifying no more error
54  *	exists. NOTE: Disabling hangcheck or reset via module parameter will
55  *	cause the related events to not be seen.
56  *
57  * I915_RESET_UEVENT - Event is generated just before an attempt to reset the
58  *	GPU. The value supplied with the event is always 1. NOTE: Disable
59  *	reset via module parameter will cause this event to not be seen.
60  */
61 #define I915_L3_PARITY_UEVENT		"L3_PARITY_ERROR"
62 #define I915_ERROR_UEVENT		"ERROR"
63 #define I915_RESET_UEVENT		"RESET"
64 
65 /*
66  * i915_user_extension: Base class for defining a chain of extensions
67  *
68  * Many interfaces need to grow over time. In most cases we can simply
69  * extend the struct and have userspace pass in more data. Another option,
70  * as demonstrated by Vulkan's approach to providing extensions for forward
71  * and backward compatibility, is to use a list of optional structs to
72  * provide those extra details.
73  *
74  * The key advantage to using an extension chain is that it allows us to
75  * redefine the interface more easily than an ever growing struct of
76  * increasing complexity, and for large parts of that interface to be
77  * entirely optional. The downside is more pointer chasing; chasing across
78  * the __user boundary with pointers encapsulated inside u64.
79  */
80 struct i915_user_extension {
81 	__u64 next_extension;
82 	__u32 name;
83 	__u32 flags; /* All undefined bits must be zero. */
84 	__u32 rsvd[4]; /* Reserved for future use; must be zero. */
85 };
86 
87 /*
88  * MOCS indexes used for GPU surfaces, defining the cacheability of the
89  * surface data and the coherency for this data wrt. CPU vs. GPU accesses.
90  */
91 enum i915_mocs_table_index {
92 	/*
93 	 * Not cached anywhere, coherency between CPU and GPU accesses is
94 	 * guaranteed.
95 	 */
96 	I915_MOCS_UNCACHED,
97 	/*
98 	 * Cacheability and coherency controlled by the kernel automatically
99 	 * based on the DRM_I915_GEM_SET_CACHING IOCTL setting and the current
100 	 * usage of the surface (used for display scanout or not).
101 	 */
102 	I915_MOCS_PTE,
103 	/*
104 	 * Cached in all GPU caches available on the platform.
105 	 * Coherency between CPU and GPU accesses to the surface is not
106 	 * guaranteed without extra synchronization.
107 	 */
108 	I915_MOCS_CACHED,
109 };
110 
111 /*
112  * Different engines serve different roles, and there may be more than one
113  * engine serving each role. enum drm_i915_gem_engine_class provides a
114  * classification of the role of the engine, which may be used when requesting
115  * operations to be performed on a certain subset of engines, or for providing
116  * information about that group.
117  */
118 enum drm_i915_gem_engine_class {
119 	I915_ENGINE_CLASS_RENDER	= 0,
120 	I915_ENGINE_CLASS_COPY		= 1,
121 	I915_ENGINE_CLASS_VIDEO		= 2,
122 	I915_ENGINE_CLASS_VIDEO_ENHANCE	= 3,
123 
124 	/* should be kept compact */
125 
126 	I915_ENGINE_CLASS_INVALID	= -1
127 };
128 
129 /*
130  * There may be more than one engine fulfilling any role within the system.
131  * Each engine of a class is given a unique instance number and therefore
132  * any engine can be specified by its class:instance tuplet. APIs that allow
133  * access to any engine in the system will use struct i915_engine_class_instance
134  * for this identification.
135  */
136 struct i915_engine_class_instance {
137 	__u16 engine_class; /* see enum drm_i915_gem_engine_class */
138 	__u16 engine_instance;
139 #define I915_ENGINE_CLASS_INVALID_NONE -1
140 #define I915_ENGINE_CLASS_INVALID_VIRTUAL -2
141 };
142 
143 /**
144  * DOC: perf_events exposed by i915 through /sys/bus/event_sources/drivers/i915
145  *
146  */
147 
148 enum drm_i915_pmu_engine_sample {
149 	I915_SAMPLE_BUSY = 0,
150 	I915_SAMPLE_WAIT = 1,
151 	I915_SAMPLE_SEMA = 2
152 };
153 
154 #define I915_PMU_SAMPLE_BITS (4)
155 #define I915_PMU_SAMPLE_MASK (0xf)
156 #define I915_PMU_SAMPLE_INSTANCE_BITS (8)
157 #define I915_PMU_CLASS_SHIFT \
158 	(I915_PMU_SAMPLE_BITS + I915_PMU_SAMPLE_INSTANCE_BITS)
159 
160 #define __I915_PMU_ENGINE(class, instance, sample) \
161 	((class) << I915_PMU_CLASS_SHIFT | \
162 	(instance) << I915_PMU_SAMPLE_BITS | \
163 	(sample))
164 
165 #define I915_PMU_ENGINE_BUSY(class, instance) \
166 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_BUSY)
167 
168 #define I915_PMU_ENGINE_WAIT(class, instance) \
169 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_WAIT)
170 
171 #define I915_PMU_ENGINE_SEMA(class, instance) \
172 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_SEMA)
173 
174 #define __I915_PMU_OTHER(x) (__I915_PMU_ENGINE(0xff, 0xff, 0xf) + 1 + (x))
175 
176 #define I915_PMU_ACTUAL_FREQUENCY	__I915_PMU_OTHER(0)
177 #define I915_PMU_REQUESTED_FREQUENCY	__I915_PMU_OTHER(1)
178 #define I915_PMU_INTERRUPTS		__I915_PMU_OTHER(2)
179 #define I915_PMU_RC6_RESIDENCY		__I915_PMU_OTHER(3)
180 
181 #define I915_PMU_LAST I915_PMU_RC6_RESIDENCY
182 
183 /* Each region is a minimum of 16k, and there are at most 255 of them.
184  */
185 #define I915_NR_TEX_REGIONS 255	/* table size 2k - maximum due to use
186 				 * of chars for next/prev indices */
187 #define I915_LOG_MIN_TEX_REGION_SIZE 14
188 
189 typedef struct _drm_i915_init {
190 	enum {
191 		I915_INIT_DMA = 0x01,
192 		I915_CLEANUP_DMA = 0x02,
193 		I915_RESUME_DMA = 0x03
194 	} func;
195 	unsigned int mmio_offset;
196 	int sarea_priv_offset;
197 	unsigned int ring_start;
198 	unsigned int ring_end;
199 	unsigned int ring_size;
200 	unsigned int front_offset;
201 	unsigned int back_offset;
202 	unsigned int depth_offset;
203 	unsigned int w;
204 	unsigned int h;
205 	unsigned int pitch;
206 	unsigned int pitch_bits;
207 	unsigned int back_pitch;
208 	unsigned int depth_pitch;
209 	unsigned int cpp;
210 	unsigned int chipset;
211 } drm_i915_init_t;
212 
213 typedef struct _drm_i915_sarea {
214 	struct drm_tex_region texList[I915_NR_TEX_REGIONS + 1];
215 	int last_upload;	/* last time texture was uploaded */
216 	int last_enqueue;	/* last time a buffer was enqueued */
217 	int last_dispatch;	/* age of the most recently dispatched buffer */
218 	int ctxOwner;		/* last context to upload state */
219 	int texAge;
220 	int pf_enabled;		/* is pageflipping allowed? */
221 	int pf_active;
222 	int pf_current_page;	/* which buffer is being displayed? */
223 	int perf_boxes;		/* performance boxes to be displayed */
224 	int width, height;      /* screen size in pixels */
225 
226 	drm_handle_t front_handle;
227 	int front_offset;
228 	int front_size;
229 
230 	drm_handle_t back_handle;
231 	int back_offset;
232 	int back_size;
233 
234 	drm_handle_t depth_handle;
235 	int depth_offset;
236 	int depth_size;
237 
238 	drm_handle_t tex_handle;
239 	int tex_offset;
240 	int tex_size;
241 	int log_tex_granularity;
242 	int pitch;
243 	int rotation;           /* 0, 90, 180 or 270 */
244 	int rotated_offset;
245 	int rotated_size;
246 	int rotated_pitch;
247 	int virtualX, virtualY;
248 
249 	unsigned int front_tiled;
250 	unsigned int back_tiled;
251 	unsigned int depth_tiled;
252 	unsigned int rotated_tiled;
253 	unsigned int rotated2_tiled;
254 
255 	int pipeA_x;
256 	int pipeA_y;
257 	int pipeA_w;
258 	int pipeA_h;
259 	int pipeB_x;
260 	int pipeB_y;
261 	int pipeB_w;
262 	int pipeB_h;
263 
264 	/* fill out some space for old userspace triple buffer */
265 	drm_handle_t unused_handle;
266 	__u32 unused1, unused2, unused3;
267 
268 	/* buffer object handles for static buffers. May change
269 	 * over the lifetime of the client.
270 	 */
271 	__u32 front_bo_handle;
272 	__u32 back_bo_handle;
273 	__u32 unused_bo_handle;
274 	__u32 depth_bo_handle;
275 
276 } drm_i915_sarea_t;
277 
278 /* due to userspace building against these headers we need some compat here */
279 #define planeA_x pipeA_x
280 #define planeA_y pipeA_y
281 #define planeA_w pipeA_w
282 #define planeA_h pipeA_h
283 #define planeB_x pipeB_x
284 #define planeB_y pipeB_y
285 #define planeB_w pipeB_w
286 #define planeB_h pipeB_h
287 
288 /* Flags for perf_boxes
289  */
290 #define I915_BOX_RING_EMPTY    0x1
291 #define I915_BOX_FLIP          0x2
292 #define I915_BOX_WAIT          0x4
293 #define I915_BOX_TEXTURE_LOAD  0x8
294 #define I915_BOX_LOST_CONTEXT  0x10
295 
296 /*
297  * i915 specific ioctls.
298  *
299  * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie
300  * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset
301  * against DRM_COMMAND_BASE and should be between [0x0, 0x60).
302  */
303 #define DRM_I915_INIT		0x00
304 #define DRM_I915_FLUSH		0x01
305 #define DRM_I915_FLIP		0x02
306 #define DRM_I915_BATCHBUFFER	0x03
307 #define DRM_I915_IRQ_EMIT	0x04
308 #define DRM_I915_IRQ_WAIT	0x05
309 #define DRM_I915_GETPARAM	0x06
310 #define DRM_I915_SETPARAM	0x07
311 #define DRM_I915_ALLOC		0x08
312 #define DRM_I915_FREE		0x09
313 #define DRM_I915_INIT_HEAP	0x0a
314 #define DRM_I915_CMDBUFFER	0x0b
315 #define DRM_I915_DESTROY_HEAP	0x0c
316 #define DRM_I915_SET_VBLANK_PIPE	0x0d
317 #define DRM_I915_GET_VBLANK_PIPE	0x0e
318 #define DRM_I915_VBLANK_SWAP	0x0f
319 #define DRM_I915_HWS_ADDR	0x11
320 #define DRM_I915_GEM_INIT	0x13
321 #define DRM_I915_GEM_EXECBUFFER	0x14
322 #define DRM_I915_GEM_PIN	0x15
323 #define DRM_I915_GEM_UNPIN	0x16
324 #define DRM_I915_GEM_BUSY	0x17
325 #define DRM_I915_GEM_THROTTLE	0x18
326 #define DRM_I915_GEM_ENTERVT	0x19
327 #define DRM_I915_GEM_LEAVEVT	0x1a
328 #define DRM_I915_GEM_CREATE	0x1b
329 #define DRM_I915_GEM_PREAD	0x1c
330 #define DRM_I915_GEM_PWRITE	0x1d
331 #define DRM_I915_GEM_MMAP	0x1e
332 #define DRM_I915_GEM_SET_DOMAIN	0x1f
333 #define DRM_I915_GEM_SW_FINISH	0x20
334 #define DRM_I915_GEM_SET_TILING	0x21
335 #define DRM_I915_GEM_GET_TILING	0x22
336 #define DRM_I915_GEM_GET_APERTURE 0x23
337 #define DRM_I915_GEM_MMAP_GTT	0x24
338 #define DRM_I915_GET_PIPE_FROM_CRTC_ID	0x25
339 #define DRM_I915_GEM_MADVISE	0x26
340 #define DRM_I915_OVERLAY_PUT_IMAGE	0x27
341 #define DRM_I915_OVERLAY_ATTRS	0x28
342 #define DRM_I915_GEM_EXECBUFFER2	0x29
343 #define DRM_I915_GEM_EXECBUFFER2_WR	DRM_I915_GEM_EXECBUFFER2
344 #define DRM_I915_GET_SPRITE_COLORKEY	0x2a
345 #define DRM_I915_SET_SPRITE_COLORKEY	0x2b
346 #define DRM_I915_GEM_WAIT	0x2c
347 #define DRM_I915_GEM_CONTEXT_CREATE	0x2d
348 #define DRM_I915_GEM_CONTEXT_DESTROY	0x2e
349 #define DRM_I915_GEM_SET_CACHING	0x2f
350 #define DRM_I915_GEM_GET_CACHING	0x30
351 #define DRM_I915_REG_READ		0x31
352 #define DRM_I915_GET_RESET_STATS	0x32
353 #define DRM_I915_GEM_USERPTR		0x33
354 #define DRM_I915_GEM_CONTEXT_GETPARAM	0x34
355 #define DRM_I915_GEM_CONTEXT_SETPARAM	0x35
356 #define DRM_I915_PERF_OPEN		0x36
357 #define DRM_I915_PERF_ADD_CONFIG	0x37
358 #define DRM_I915_PERF_REMOVE_CONFIG	0x38
359 #define DRM_I915_QUERY			0x39
360 #define DRM_I915_GEM_VM_CREATE		0x3a
361 #define DRM_I915_GEM_VM_DESTROY		0x3b
362 /* Must be kept compact -- no holes */
363 
364 #define DRM_IOCTL_I915_INIT		DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT, drm_i915_init_t)
365 #define DRM_IOCTL_I915_FLUSH		DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLUSH)
366 #define DRM_IOCTL_I915_FLIP		DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLIP)
367 #define DRM_IOCTL_I915_BATCHBUFFER	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_BATCHBUFFER, drm_i915_batchbuffer_t)
368 #define DRM_IOCTL_I915_IRQ_EMIT         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_IRQ_EMIT, drm_i915_irq_emit_t)
369 #define DRM_IOCTL_I915_IRQ_WAIT         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_IRQ_WAIT, drm_i915_irq_wait_t)
370 #define DRM_IOCTL_I915_GETPARAM         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GETPARAM, drm_i915_getparam_t)
371 #define DRM_IOCTL_I915_SETPARAM         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SETPARAM, drm_i915_setparam_t)
372 #define DRM_IOCTL_I915_ALLOC            DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_ALLOC, drm_i915_mem_alloc_t)
373 #define DRM_IOCTL_I915_FREE             DRM_IOW( DRM_COMMAND_BASE + DRM_I915_FREE, drm_i915_mem_free_t)
374 #define DRM_IOCTL_I915_INIT_HEAP        DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT_HEAP, drm_i915_mem_init_heap_t)
375 #define DRM_IOCTL_I915_CMDBUFFER	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_CMDBUFFER, drm_i915_cmdbuffer_t)
376 #define DRM_IOCTL_I915_DESTROY_HEAP	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_DESTROY_HEAP, drm_i915_mem_destroy_heap_t)
377 #define DRM_IOCTL_I915_SET_VBLANK_PIPE	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
378 #define DRM_IOCTL_I915_GET_VBLANK_PIPE	DRM_IOR( DRM_COMMAND_BASE + DRM_I915_GET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
379 #define DRM_IOCTL_I915_VBLANK_SWAP	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_VBLANK_SWAP, drm_i915_vblank_swap_t)
380 #define DRM_IOCTL_I915_HWS_ADDR		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_HWS_ADDR, struct drm_i915_gem_init)
381 #define DRM_IOCTL_I915_GEM_INIT		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_INIT, struct drm_i915_gem_init)
382 #define DRM_IOCTL_I915_GEM_EXECBUFFER	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER, struct drm_i915_gem_execbuffer)
383 #define DRM_IOCTL_I915_GEM_EXECBUFFER2	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2, struct drm_i915_gem_execbuffer2)
384 #define DRM_IOCTL_I915_GEM_EXECBUFFER2_WR	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2_WR, struct drm_i915_gem_execbuffer2)
385 #define DRM_IOCTL_I915_GEM_PIN		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_PIN, struct drm_i915_gem_pin)
386 #define DRM_IOCTL_I915_GEM_UNPIN	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_UNPIN, struct drm_i915_gem_unpin)
387 #define DRM_IOCTL_I915_GEM_BUSY		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_BUSY, struct drm_i915_gem_busy)
388 #define DRM_IOCTL_I915_GEM_SET_CACHING		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_SET_CACHING, struct drm_i915_gem_caching)
389 #define DRM_IOCTL_I915_GEM_GET_CACHING		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_GET_CACHING, struct drm_i915_gem_caching)
390 #define DRM_IOCTL_I915_GEM_THROTTLE	DRM_IO ( DRM_COMMAND_BASE + DRM_I915_GEM_THROTTLE)
391 #define DRM_IOCTL_I915_GEM_ENTERVT	DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_ENTERVT)
392 #define DRM_IOCTL_I915_GEM_LEAVEVT	DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_LEAVEVT)
393 #define DRM_IOCTL_I915_GEM_CREATE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE, struct drm_i915_gem_create)
394 #define DRM_IOCTL_I915_GEM_PREAD	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PREAD, struct drm_i915_gem_pread)
395 #define DRM_IOCTL_I915_GEM_PWRITE	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PWRITE, struct drm_i915_gem_pwrite)
396 #define DRM_IOCTL_I915_GEM_MMAP		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP, struct drm_i915_gem_mmap)
397 #define DRM_IOCTL_I915_GEM_MMAP_GTT	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_gtt)
398 #define DRM_IOCTL_I915_GEM_MMAP_OFFSET	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_offset)
399 #define DRM_IOCTL_I915_GEM_SET_DOMAIN	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SET_DOMAIN, struct drm_i915_gem_set_domain)
400 #define DRM_IOCTL_I915_GEM_SW_FINISH	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SW_FINISH, struct drm_i915_gem_sw_finish)
401 #define DRM_IOCTL_I915_GEM_SET_TILING	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_SET_TILING, struct drm_i915_gem_set_tiling)
402 #define DRM_IOCTL_I915_GEM_GET_TILING	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_TILING, struct drm_i915_gem_get_tiling)
403 #define DRM_IOCTL_I915_GEM_GET_APERTURE	DRM_IOR  (DRM_COMMAND_BASE + DRM_I915_GEM_GET_APERTURE, struct drm_i915_gem_get_aperture)
404 #define DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_PIPE_FROM_CRTC_ID, struct drm_i915_get_pipe_from_crtc_id)
405 #define DRM_IOCTL_I915_GEM_MADVISE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MADVISE, struct drm_i915_gem_madvise)
406 #define DRM_IOCTL_I915_OVERLAY_PUT_IMAGE	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_OVERLAY_PUT_IMAGE, struct drm_intel_overlay_put_image)
407 #define DRM_IOCTL_I915_OVERLAY_ATTRS	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_OVERLAY_ATTRS, struct drm_intel_overlay_attrs)
408 #define DRM_IOCTL_I915_SET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_SET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
409 #define DRM_IOCTL_I915_GET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
410 #define DRM_IOCTL_I915_GEM_WAIT		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_WAIT, struct drm_i915_gem_wait)
411 #define DRM_IOCTL_I915_GEM_CONTEXT_CREATE	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create)
412 #define DRM_IOCTL_I915_GEM_CONTEXT_CREATE_EXT	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create_ext)
413 #define DRM_IOCTL_I915_GEM_CONTEXT_DESTROY	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_DESTROY, struct drm_i915_gem_context_destroy)
414 #define DRM_IOCTL_I915_REG_READ			DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_REG_READ, struct drm_i915_reg_read)
415 #define DRM_IOCTL_I915_GET_RESET_STATS		DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GET_RESET_STATS, struct drm_i915_reset_stats)
416 #define DRM_IOCTL_I915_GEM_USERPTR			DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_USERPTR, struct drm_i915_gem_userptr)
417 #define DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_GETPARAM, struct drm_i915_gem_context_param)
418 #define DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_SETPARAM, struct drm_i915_gem_context_param)
419 #define DRM_IOCTL_I915_PERF_OPEN	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_OPEN, struct drm_i915_perf_open_param)
420 #define DRM_IOCTL_I915_PERF_ADD_CONFIG	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_ADD_CONFIG, struct drm_i915_perf_oa_config)
421 #define DRM_IOCTL_I915_PERF_REMOVE_CONFIG	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_REMOVE_CONFIG, __u64)
422 #define DRM_IOCTL_I915_QUERY			DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_QUERY, struct drm_i915_query)
423 #define DRM_IOCTL_I915_GEM_VM_CREATE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_VM_CREATE, struct drm_i915_gem_vm_control)
424 #define DRM_IOCTL_I915_GEM_VM_DESTROY	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_VM_DESTROY, struct drm_i915_gem_vm_control)
425 
426 /* Allow drivers to submit batchbuffers directly to hardware, relying
427  * on the security mechanisms provided by hardware.
428  */
429 typedef struct drm_i915_batchbuffer {
430 	int start;		/* agp offset */
431 	int used;		/* nr bytes in use */
432 	int DR1;		/* hw flags for GFX_OP_DRAWRECT_INFO */
433 	int DR4;		/* window origin for GFX_OP_DRAWRECT_INFO */
434 	int num_cliprects;	/* mulitpass with multiple cliprects? */
435 	struct drm_clip_rect __user *cliprects;	/* pointer to userspace cliprects */
436 } drm_i915_batchbuffer_t;
437 
438 /* As above, but pass a pointer to userspace buffer which can be
439  * validated by the kernel prior to sending to hardware.
440  */
441 typedef struct _drm_i915_cmdbuffer {
442 	char __user *buf;	/* pointer to userspace command buffer */
443 	int sz;			/* nr bytes in buf */
444 	int DR1;		/* hw flags for GFX_OP_DRAWRECT_INFO */
445 	int DR4;		/* window origin for GFX_OP_DRAWRECT_INFO */
446 	int num_cliprects;	/* mulitpass with multiple cliprects? */
447 	struct drm_clip_rect __user *cliprects;	/* pointer to userspace cliprects */
448 } drm_i915_cmdbuffer_t;
449 
450 /* Userspace can request & wait on irq's:
451  */
452 typedef struct drm_i915_irq_emit {
453 	int __user *irq_seq;
454 } drm_i915_irq_emit_t;
455 
456 typedef struct drm_i915_irq_wait {
457 	int irq_seq;
458 } drm_i915_irq_wait_t;
459 
460 /*
461  * Different modes of per-process Graphics Translation Table,
462  * see I915_PARAM_HAS_ALIASING_PPGTT
463  */
464 #define I915_GEM_PPGTT_NONE	0
465 #define I915_GEM_PPGTT_ALIASING	1
466 #define I915_GEM_PPGTT_FULL	2
467 
468 /* Ioctl to query kernel params:
469  */
470 #define I915_PARAM_IRQ_ACTIVE            1
471 #define I915_PARAM_ALLOW_BATCHBUFFER     2
472 #define I915_PARAM_LAST_DISPATCH         3
473 #define I915_PARAM_CHIPSET_ID            4
474 #define I915_PARAM_HAS_GEM               5
475 #define I915_PARAM_NUM_FENCES_AVAIL      6
476 #define I915_PARAM_HAS_OVERLAY           7
477 #define I915_PARAM_HAS_PAGEFLIPPING	 8
478 #define I915_PARAM_HAS_EXECBUF2          9
479 #define I915_PARAM_HAS_BSD		 10
480 #define I915_PARAM_HAS_BLT		 11
481 #define I915_PARAM_HAS_RELAXED_FENCING	 12
482 #define I915_PARAM_HAS_COHERENT_RINGS	 13
483 #define I915_PARAM_HAS_EXEC_CONSTANTS	 14
484 #define I915_PARAM_HAS_RELAXED_DELTA	 15
485 #define I915_PARAM_HAS_GEN7_SOL_RESET	 16
486 #define I915_PARAM_HAS_LLC     	 	 17
487 #define I915_PARAM_HAS_ALIASING_PPGTT	 18
488 #define I915_PARAM_HAS_WAIT_TIMEOUT	 19
489 #define I915_PARAM_HAS_SEMAPHORES	 20
490 #define I915_PARAM_HAS_PRIME_VMAP_FLUSH	 21
491 #define I915_PARAM_HAS_VEBOX		 22
492 #define I915_PARAM_HAS_SECURE_BATCHES	 23
493 #define I915_PARAM_HAS_PINNED_BATCHES	 24
494 #define I915_PARAM_HAS_EXEC_NO_RELOC	 25
495 #define I915_PARAM_HAS_EXEC_HANDLE_LUT   26
496 #define I915_PARAM_HAS_WT     	 	 27
497 #define I915_PARAM_CMD_PARSER_VERSION	 28
498 #define I915_PARAM_HAS_COHERENT_PHYS_GTT 29
499 #define I915_PARAM_MMAP_VERSION          30
500 #define I915_PARAM_HAS_BSD2		 31
501 #define I915_PARAM_REVISION              32
502 #define I915_PARAM_SUBSLICE_TOTAL	 33
503 #define I915_PARAM_EU_TOTAL		 34
504 #define I915_PARAM_HAS_GPU_RESET	 35
505 #define I915_PARAM_HAS_RESOURCE_STREAMER 36
506 #define I915_PARAM_HAS_EXEC_SOFTPIN	 37
507 #define I915_PARAM_HAS_POOLED_EU	 38
508 #define I915_PARAM_MIN_EU_IN_POOL	 39
509 #define I915_PARAM_MMAP_GTT_VERSION	 40
510 
511 /*
512  * Query whether DRM_I915_GEM_EXECBUFFER2 supports user defined execution
513  * priorities and the driver will attempt to execute batches in priority order.
514  * The param returns a capability bitmask, nonzero implies that the scheduler
515  * is enabled, with different features present according to the mask.
516  *
517  * The initial priority for each batch is supplied by the context and is
518  * controlled via I915_CONTEXT_PARAM_PRIORITY.
519  */
520 #define I915_PARAM_HAS_SCHEDULER	 41
521 #define   I915_SCHEDULER_CAP_ENABLED	(1ul << 0)
522 #define   I915_SCHEDULER_CAP_PRIORITY	(1ul << 1)
523 #define   I915_SCHEDULER_CAP_PREEMPTION	(1ul << 2)
524 #define   I915_SCHEDULER_CAP_SEMAPHORES	(1ul << 3)
525 #define   I915_SCHEDULER_CAP_ENGINE_BUSY_STATS	(1ul << 4)
526 
527 #define I915_PARAM_HUC_STATUS		 42
528 
529 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to opt-out of
530  * synchronisation with implicit fencing on individual objects.
531  * See EXEC_OBJECT_ASYNC.
532  */
533 #define I915_PARAM_HAS_EXEC_ASYNC	 43
534 
535 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports explicit fence support -
536  * both being able to pass in a sync_file fd to wait upon before executing,
537  * and being able to return a new sync_file fd that is signaled when the
538  * current request is complete. See I915_EXEC_FENCE_IN and I915_EXEC_FENCE_OUT.
539  */
540 #define I915_PARAM_HAS_EXEC_FENCE	 44
541 
542 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to capture
543  * user specified bufffers for post-mortem debugging of GPU hangs. See
544  * EXEC_OBJECT_CAPTURE.
545  */
546 #define I915_PARAM_HAS_EXEC_CAPTURE	 45
547 
548 #define I915_PARAM_SLICE_MASK		 46
549 
550 /* Assuming it's uniform for each slice, this queries the mask of subslices
551  * per-slice for this system.
552  */
553 #define I915_PARAM_SUBSLICE_MASK	 47
554 
555 /*
556  * Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying the batch buffer
557  * as the first execobject as opposed to the last. See I915_EXEC_BATCH_FIRST.
558  */
559 #define I915_PARAM_HAS_EXEC_BATCH_FIRST	 48
560 
561 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
562  * drm_i915_gem_exec_fence structures.  See I915_EXEC_FENCE_ARRAY.
563  */
564 #define I915_PARAM_HAS_EXEC_FENCE_ARRAY  49
565 
566 /*
567  * Query whether every context (both per-file default and user created) is
568  * isolated (insofar as HW supports). If this parameter is not true, then
569  * freshly created contexts may inherit values from an existing context,
570  * rather than default HW values. If true, it also ensures (insofar as HW
571  * supports) that all state set by this context will not leak to any other
572  * context.
573  *
574  * As not every engine across every gen support contexts, the returned
575  * value reports the support of context isolation for individual engines by
576  * returning a bitmask of each engine class set to true if that class supports
577  * isolation.
578  */
579 #define I915_PARAM_HAS_CONTEXT_ISOLATION 50
580 
581 /* Frequency of the command streamer timestamps given by the *_TIMESTAMP
582  * registers. This used to be fixed per platform but from CNL onwards, this
583  * might vary depending on the parts.
584  */
585 #define I915_PARAM_CS_TIMESTAMP_FREQUENCY 51
586 
587 /*
588  * Once upon a time we supposed that writes through the GGTT would be
589  * immediately in physical memory (once flushed out of the CPU path). However,
590  * on a few different processors and chipsets, this is not necessarily the case
591  * as the writes appear to be buffered internally. Thus a read of the backing
592  * storage (physical memory) via a different path (with different physical tags
593  * to the indirect write via the GGTT) will see stale values from before
594  * the GGTT write. Inside the kernel, we can for the most part keep track of
595  * the different read/write domains in use (e.g. set-domain), but the assumption
596  * of coherency is baked into the ABI, hence reporting its true state in this
597  * parameter.
598  *
599  * Reports true when writes via mmap_gtt are immediately visible following an
600  * lfence to flush the WCB.
601  *
602  * Reports false when writes via mmap_gtt are indeterminately delayed in an in
603  * internal buffer and are _not_ immediately visible to third parties accessing
604  * directly via mmap_cpu/mmap_wc. Use of mmap_gtt as part of an IPC
605  * communications channel when reporting false is strongly disadvised.
606  */
607 #define I915_PARAM_MMAP_GTT_COHERENT	52
608 
609 /*
610  * Query whether DRM_I915_GEM_EXECBUFFER2 supports coordination of parallel
611  * execution through use of explicit fence support.
612  * See I915_EXEC_FENCE_OUT and I915_EXEC_FENCE_SUBMIT.
613  */
614 #define I915_PARAM_HAS_EXEC_SUBMIT_FENCE 53
615 
616 /*
617  * Revision of the i915-perf uAPI. The value returned helps determine what
618  * i915-perf features are available. See drm_i915_perf_property_id.
619  */
620 #define I915_PARAM_PERF_REVISION	54
621 
622 /* Must be kept compact -- no holes and well documented */
623 
624 typedef struct drm_i915_getparam {
625 	__s32 param;
626 	/*
627 	 * WARNING: Using pointers instead of fixed-size u64 means we need to write
628 	 * compat32 code. Don't repeat this mistake.
629 	 */
630 	int __user *value;
631 } drm_i915_getparam_t;
632 
633 /* Ioctl to set kernel params:
634  */
635 #define I915_SETPARAM_USE_MI_BATCHBUFFER_START            1
636 #define I915_SETPARAM_TEX_LRU_LOG_GRANULARITY             2
637 #define I915_SETPARAM_ALLOW_BATCHBUFFER                   3
638 #define I915_SETPARAM_NUM_USED_FENCES                     4
639 /* Must be kept compact -- no holes */
640 
641 typedef struct drm_i915_setparam {
642 	int param;
643 	int value;
644 } drm_i915_setparam_t;
645 
646 /* A memory manager for regions of shared memory:
647  */
648 #define I915_MEM_REGION_AGP 1
649 
650 typedef struct drm_i915_mem_alloc {
651 	int region;
652 	int alignment;
653 	int size;
654 	int __user *region_offset;	/* offset from start of fb or agp */
655 } drm_i915_mem_alloc_t;
656 
657 typedef struct drm_i915_mem_free {
658 	int region;
659 	int region_offset;
660 } drm_i915_mem_free_t;
661 
662 typedef struct drm_i915_mem_init_heap {
663 	int region;
664 	int size;
665 	int start;
666 } drm_i915_mem_init_heap_t;
667 
668 /* Allow memory manager to be torn down and re-initialized (eg on
669  * rotate):
670  */
671 typedef struct drm_i915_mem_destroy_heap {
672 	int region;
673 } drm_i915_mem_destroy_heap_t;
674 
675 /* Allow X server to configure which pipes to monitor for vblank signals
676  */
677 #define	DRM_I915_VBLANK_PIPE_A	1
678 #define	DRM_I915_VBLANK_PIPE_B	2
679 
680 typedef struct drm_i915_vblank_pipe {
681 	int pipe;
682 } drm_i915_vblank_pipe_t;
683 
684 /* Schedule buffer swap at given vertical blank:
685  */
686 typedef struct drm_i915_vblank_swap {
687 	drm_drawable_t drawable;
688 	enum drm_vblank_seq_type seqtype;
689 	unsigned int sequence;
690 } drm_i915_vblank_swap_t;
691 
692 typedef struct drm_i915_hws_addr {
693 	__u64 addr;
694 } drm_i915_hws_addr_t;
695 
696 struct drm_i915_gem_init {
697 	/**
698 	 * Beginning offset in the GTT to be managed by the DRM memory
699 	 * manager.
700 	 */
701 	__u64 gtt_start;
702 	/**
703 	 * Ending offset in the GTT to be managed by the DRM memory
704 	 * manager.
705 	 */
706 	__u64 gtt_end;
707 };
708 
709 struct drm_i915_gem_create {
710 	/**
711 	 * Requested size for the object.
712 	 *
713 	 * The (page-aligned) allocated size for the object will be returned.
714 	 */
715 	__u64 size;
716 	/**
717 	 * Returned handle for the object.
718 	 *
719 	 * Object handles are nonzero.
720 	 */
721 	__u32 handle;
722 	__u32 pad;
723 };
724 
725 struct drm_i915_gem_pread {
726 	/** Handle for the object being read. */
727 	__u32 handle;
728 	__u32 pad;
729 	/** Offset into the object to read from */
730 	__u64 offset;
731 	/** Length of data to read */
732 	__u64 size;
733 	/**
734 	 * Pointer to write the data into.
735 	 *
736 	 * This is a fixed-size type for 32/64 compatibility.
737 	 */
738 	__u64 data_ptr;
739 };
740 
741 struct drm_i915_gem_pwrite {
742 	/** Handle for the object being written to. */
743 	__u32 handle;
744 	__u32 pad;
745 	/** Offset into the object to write to */
746 	__u64 offset;
747 	/** Length of data to write */
748 	__u64 size;
749 	/**
750 	 * Pointer to read the data from.
751 	 *
752 	 * This is a fixed-size type for 32/64 compatibility.
753 	 */
754 	__u64 data_ptr;
755 };
756 
757 struct drm_i915_gem_mmap {
758 	/** Handle for the object being mapped. */
759 	__u32 handle;
760 	__u32 pad;
761 	/** Offset in the object to map. */
762 	__u64 offset;
763 	/**
764 	 * Length of data to map.
765 	 *
766 	 * The value will be page-aligned.
767 	 */
768 	__u64 size;
769 	/**
770 	 * Returned pointer the data was mapped at.
771 	 *
772 	 * This is a fixed-size type for 32/64 compatibility.
773 	 */
774 	__u64 addr_ptr;
775 
776 	/**
777 	 * Flags for extended behaviour.
778 	 *
779 	 * Added in version 2.
780 	 */
781 	__u64 flags;
782 #define I915_MMAP_WC 0x1
783 };
784 
785 struct drm_i915_gem_mmap_gtt {
786 	/** Handle for the object being mapped. */
787 	__u32 handle;
788 	__u32 pad;
789 	/**
790 	 * Fake offset to use for subsequent mmap call
791 	 *
792 	 * This is a fixed-size type for 32/64 compatibility.
793 	 */
794 	__u64 offset;
795 };
796 
797 struct drm_i915_gem_mmap_offset {
798 	/** Handle for the object being mapped. */
799 	__u32 handle;
800 	__u32 pad;
801 	/**
802 	 * Fake offset to use for subsequent mmap call
803 	 *
804 	 * This is a fixed-size type for 32/64 compatibility.
805 	 */
806 	__u64 offset;
807 
808 	/**
809 	 * Flags for extended behaviour.
810 	 *
811 	 * It is mandatory that one of the MMAP_OFFSET types
812 	 * (GTT, WC, WB, UC, etc) should be included.
813 	 */
814 	__u64 flags;
815 #define I915_MMAP_OFFSET_GTT 0
816 #define I915_MMAP_OFFSET_WC  1
817 #define I915_MMAP_OFFSET_WB  2
818 #define I915_MMAP_OFFSET_UC  3
819 
820 	/*
821 	 * Zero-terminated chain of extensions.
822 	 *
823 	 * No current extensions defined; mbz.
824 	 */
825 	__u64 extensions;
826 };
827 
828 struct drm_i915_gem_set_domain {
829 	/** Handle for the object */
830 	__u32 handle;
831 
832 	/** New read domains */
833 	__u32 read_domains;
834 
835 	/** New write domain */
836 	__u32 write_domain;
837 };
838 
839 struct drm_i915_gem_sw_finish {
840 	/** Handle for the object */
841 	__u32 handle;
842 };
843 
844 struct drm_i915_gem_relocation_entry {
845 	/**
846 	 * Handle of the buffer being pointed to by this relocation entry.
847 	 *
848 	 * It's appealing to make this be an index into the mm_validate_entry
849 	 * list to refer to the buffer, but this allows the driver to create
850 	 * a relocation list for state buffers and not re-write it per
851 	 * exec using the buffer.
852 	 */
853 	__u32 target_handle;
854 
855 	/**
856 	 * Value to be added to the offset of the target buffer to make up
857 	 * the relocation entry.
858 	 */
859 	__u32 delta;
860 
861 	/** Offset in the buffer the relocation entry will be written into */
862 	__u64 offset;
863 
864 	/**
865 	 * Offset value of the target buffer that the relocation entry was last
866 	 * written as.
867 	 *
868 	 * If the buffer has the same offset as last time, we can skip syncing
869 	 * and writing the relocation.  This value is written back out by
870 	 * the execbuffer ioctl when the relocation is written.
871 	 */
872 	__u64 presumed_offset;
873 
874 	/**
875 	 * Target memory domains read by this operation.
876 	 */
877 	__u32 read_domains;
878 
879 	/**
880 	 * Target memory domains written by this operation.
881 	 *
882 	 * Note that only one domain may be written by the whole
883 	 * execbuffer operation, so that where there are conflicts,
884 	 * the application will get -EINVAL back.
885 	 */
886 	__u32 write_domain;
887 };
888 
889 /** @{
890  * Intel memory domains
891  *
892  * Most of these just align with the various caches in
893  * the system and are used to flush and invalidate as
894  * objects end up cached in different domains.
895  */
896 /** CPU cache */
897 #define I915_GEM_DOMAIN_CPU		0x00000001
898 /** Render cache, used by 2D and 3D drawing */
899 #define I915_GEM_DOMAIN_RENDER		0x00000002
900 /** Sampler cache, used by texture engine */
901 #define I915_GEM_DOMAIN_SAMPLER		0x00000004
902 /** Command queue, used to load batch buffers */
903 #define I915_GEM_DOMAIN_COMMAND		0x00000008
904 /** Instruction cache, used by shader programs */
905 #define I915_GEM_DOMAIN_INSTRUCTION	0x00000010
906 /** Vertex address cache */
907 #define I915_GEM_DOMAIN_VERTEX		0x00000020
908 /** GTT domain - aperture and scanout */
909 #define I915_GEM_DOMAIN_GTT		0x00000040
910 /** WC domain - uncached access */
911 #define I915_GEM_DOMAIN_WC		0x00000080
912 /** @} */
913 
914 struct drm_i915_gem_exec_object {
915 	/**
916 	 * User's handle for a buffer to be bound into the GTT for this
917 	 * operation.
918 	 */
919 	__u32 handle;
920 
921 	/** Number of relocations to be performed on this buffer */
922 	__u32 relocation_count;
923 	/**
924 	 * Pointer to array of struct drm_i915_gem_relocation_entry containing
925 	 * the relocations to be performed in this buffer.
926 	 */
927 	__u64 relocs_ptr;
928 
929 	/** Required alignment in graphics aperture */
930 	__u64 alignment;
931 
932 	/**
933 	 * Returned value of the updated offset of the object, for future
934 	 * presumed_offset writes.
935 	 */
936 	__u64 offset;
937 };
938 
939 struct drm_i915_gem_execbuffer {
940 	/**
941 	 * List of buffers to be validated with their relocations to be
942 	 * performend on them.
943 	 *
944 	 * This is a pointer to an array of struct drm_i915_gem_validate_entry.
945 	 *
946 	 * These buffers must be listed in an order such that all relocations
947 	 * a buffer is performing refer to buffers that have already appeared
948 	 * in the validate list.
949 	 */
950 	__u64 buffers_ptr;
951 	__u32 buffer_count;
952 
953 	/** Offset in the batchbuffer to start execution from. */
954 	__u32 batch_start_offset;
955 	/** Bytes used in batchbuffer from batch_start_offset */
956 	__u32 batch_len;
957 	__u32 DR1;
958 	__u32 DR4;
959 	__u32 num_cliprects;
960 	/** This is a struct drm_clip_rect *cliprects */
961 	__u64 cliprects_ptr;
962 };
963 
964 struct drm_i915_gem_exec_object2 {
965 	/**
966 	 * User's handle for a buffer to be bound into the GTT for this
967 	 * operation.
968 	 */
969 	__u32 handle;
970 
971 	/** Number of relocations to be performed on this buffer */
972 	__u32 relocation_count;
973 	/**
974 	 * Pointer to array of struct drm_i915_gem_relocation_entry containing
975 	 * the relocations to be performed in this buffer.
976 	 */
977 	__u64 relocs_ptr;
978 
979 	/** Required alignment in graphics aperture */
980 	__u64 alignment;
981 
982 	/**
983 	 * When the EXEC_OBJECT_PINNED flag is specified this is populated by
984 	 * the user with the GTT offset at which this object will be pinned.
985 	 * When the I915_EXEC_NO_RELOC flag is specified this must contain the
986 	 * presumed_offset of the object.
987 	 * During execbuffer2 the kernel populates it with the value of the
988 	 * current GTT offset of the object, for future presumed_offset writes.
989 	 */
990 	__u64 offset;
991 
992 #define EXEC_OBJECT_NEEDS_FENCE		 (1<<0)
993 #define EXEC_OBJECT_NEEDS_GTT		 (1<<1)
994 #define EXEC_OBJECT_WRITE		 (1<<2)
995 #define EXEC_OBJECT_SUPPORTS_48B_ADDRESS (1<<3)
996 #define EXEC_OBJECT_PINNED		 (1<<4)
997 #define EXEC_OBJECT_PAD_TO_SIZE		 (1<<5)
998 /* The kernel implicitly tracks GPU activity on all GEM objects, and
999  * synchronises operations with outstanding rendering. This includes
1000  * rendering on other devices if exported via dma-buf. However, sometimes
1001  * this tracking is too coarse and the user knows better. For example,
1002  * if the object is split into non-overlapping ranges shared between different
1003  * clients or engines (i.e. suballocating objects), the implicit tracking
1004  * by kernel assumes that each operation affects the whole object rather
1005  * than an individual range, causing needless synchronisation between clients.
1006  * The kernel will also forgo any CPU cache flushes prior to rendering from
1007  * the object as the client is expected to be also handling such domain
1008  * tracking.
1009  *
1010  * The kernel maintains the implicit tracking in order to manage resources
1011  * used by the GPU - this flag only disables the synchronisation prior to
1012  * rendering with this object in this execbuf.
1013  *
1014  * Opting out of implicit synhronisation requires the user to do its own
1015  * explicit tracking to avoid rendering corruption. See, for example,
1016  * I915_PARAM_HAS_EXEC_FENCE to order execbufs and execute them asynchronously.
1017  */
1018 #define EXEC_OBJECT_ASYNC		(1<<6)
1019 /* Request that the contents of this execobject be copied into the error
1020  * state upon a GPU hang involving this batch for post-mortem debugging.
1021  * These buffers are recorded in no particular order as "user" in
1022  * /sys/class/drm/cardN/error. Query I915_PARAM_HAS_EXEC_CAPTURE to see
1023  * if the kernel supports this flag.
1024  */
1025 #define EXEC_OBJECT_CAPTURE		(1<<7)
1026 /* All remaining bits are MBZ and RESERVED FOR FUTURE USE */
1027 #define __EXEC_OBJECT_UNKNOWN_FLAGS -(EXEC_OBJECT_CAPTURE<<1)
1028 	__u64 flags;
1029 
1030 	union {
1031 		__u64 rsvd1;
1032 		__u64 pad_to_size;
1033 	};
1034 	__u64 rsvd2;
1035 };
1036 
1037 struct drm_i915_gem_exec_fence {
1038 	/**
1039 	 * User's handle for a drm_syncobj to wait on or signal.
1040 	 */
1041 	__u32 handle;
1042 
1043 #define I915_EXEC_FENCE_WAIT            (1<<0)
1044 #define I915_EXEC_FENCE_SIGNAL          (1<<1)
1045 #define __I915_EXEC_FENCE_UNKNOWN_FLAGS (-(I915_EXEC_FENCE_SIGNAL << 1))
1046 	__u32 flags;
1047 };
1048 
1049 struct drm_i915_gem_execbuffer2 {
1050 	/**
1051 	 * List of gem_exec_object2 structs
1052 	 */
1053 	__u64 buffers_ptr;
1054 	__u32 buffer_count;
1055 
1056 	/** Offset in the batchbuffer to start execution from. */
1057 	__u32 batch_start_offset;
1058 	/** Bytes used in batchbuffer from batch_start_offset */
1059 	__u32 batch_len;
1060 	__u32 DR1;
1061 	__u32 DR4;
1062 	__u32 num_cliprects;
1063 	/**
1064 	 * This is a struct drm_clip_rect *cliprects if I915_EXEC_FENCE_ARRAY
1065 	 * is not set.  If I915_EXEC_FENCE_ARRAY is set, then this is a
1066 	 * struct drm_i915_gem_exec_fence *fences.
1067 	 */
1068 	__u64 cliprects_ptr;
1069 #define I915_EXEC_RING_MASK              (0x3f)
1070 #define I915_EXEC_DEFAULT                (0<<0)
1071 #define I915_EXEC_RENDER                 (1<<0)
1072 #define I915_EXEC_BSD                    (2<<0)
1073 #define I915_EXEC_BLT                    (3<<0)
1074 #define I915_EXEC_VEBOX                  (4<<0)
1075 
1076 /* Used for switching the constants addressing mode on gen4+ RENDER ring.
1077  * Gen6+ only supports relative addressing to dynamic state (default) and
1078  * absolute addressing.
1079  *
1080  * These flags are ignored for the BSD and BLT rings.
1081  */
1082 #define I915_EXEC_CONSTANTS_MASK 	(3<<6)
1083 #define I915_EXEC_CONSTANTS_REL_GENERAL (0<<6) /* default */
1084 #define I915_EXEC_CONSTANTS_ABSOLUTE 	(1<<6)
1085 #define I915_EXEC_CONSTANTS_REL_SURFACE (2<<6) /* gen4/5 only */
1086 	__u64 flags;
1087 	__u64 rsvd1; /* now used for context info */
1088 	__u64 rsvd2;
1089 };
1090 
1091 /** Resets the SO write offset registers for transform feedback on gen7. */
1092 #define I915_EXEC_GEN7_SOL_RESET	(1<<8)
1093 
1094 /** Request a privileged ("secure") batch buffer. Note only available for
1095  * DRM_ROOT_ONLY | DRM_MASTER processes.
1096  */
1097 #define I915_EXEC_SECURE		(1<<9)
1098 
1099 /** Inform the kernel that the batch is and will always be pinned. This
1100  * negates the requirement for a workaround to be performed to avoid
1101  * an incoherent CS (such as can be found on 830/845). If this flag is
1102  * not passed, the kernel will endeavour to make sure the batch is
1103  * coherent with the CS before execution. If this flag is passed,
1104  * userspace assumes the responsibility for ensuring the same.
1105  */
1106 #define I915_EXEC_IS_PINNED		(1<<10)
1107 
1108 /** Provide a hint to the kernel that the command stream and auxiliary
1109  * state buffers already holds the correct presumed addresses and so the
1110  * relocation process may be skipped if no buffers need to be moved in
1111  * preparation for the execbuffer.
1112  */
1113 #define I915_EXEC_NO_RELOC		(1<<11)
1114 
1115 /** Use the reloc.handle as an index into the exec object array rather
1116  * than as the per-file handle.
1117  */
1118 #define I915_EXEC_HANDLE_LUT		(1<<12)
1119 
1120 /** Used for switching BSD rings on the platforms with two BSD rings */
1121 #define I915_EXEC_BSD_SHIFT	 (13)
1122 #define I915_EXEC_BSD_MASK	 (3 << I915_EXEC_BSD_SHIFT)
1123 /* default ping-pong mode */
1124 #define I915_EXEC_BSD_DEFAULT	 (0 << I915_EXEC_BSD_SHIFT)
1125 #define I915_EXEC_BSD_RING1	 (1 << I915_EXEC_BSD_SHIFT)
1126 #define I915_EXEC_BSD_RING2	 (2 << I915_EXEC_BSD_SHIFT)
1127 
1128 /** Tell the kernel that the batchbuffer is processed by
1129  *  the resource streamer.
1130  */
1131 #define I915_EXEC_RESOURCE_STREAMER     (1<<15)
1132 
1133 /* Setting I915_EXEC_FENCE_IN implies that lower_32_bits(rsvd2) represent
1134  * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1135  * the batch.
1136  *
1137  * Returns -EINVAL if the sync_file fd cannot be found.
1138  */
1139 #define I915_EXEC_FENCE_IN		(1<<16)
1140 
1141 /* Setting I915_EXEC_FENCE_OUT causes the ioctl to return a sync_file fd
1142  * in the upper_32_bits(rsvd2) upon success. Ownership of the fd is given
1143  * to the caller, and it should be close() after use. (The fd is a regular
1144  * file descriptor and will be cleaned up on process termination. It holds
1145  * a reference to the request, but nothing else.)
1146  *
1147  * The sync_file fd can be combined with other sync_file and passed either
1148  * to execbuf using I915_EXEC_FENCE_IN, to atomic KMS ioctls (so that a flip
1149  * will only occur after this request completes), or to other devices.
1150  *
1151  * Using I915_EXEC_FENCE_OUT requires use of
1152  * DRM_IOCTL_I915_GEM_EXECBUFFER2_WR ioctl so that the result is written
1153  * back to userspace. Failure to do so will cause the out-fence to always
1154  * be reported as zero, and the real fence fd to be leaked.
1155  */
1156 #define I915_EXEC_FENCE_OUT		(1<<17)
1157 
1158 /*
1159  * Traditionally the execbuf ioctl has only considered the final element in
1160  * the execobject[] to be the executable batch. Often though, the client
1161  * will known the batch object prior to construction and being able to place
1162  * it into the execobject[] array first can simplify the relocation tracking.
1163  * Setting I915_EXEC_BATCH_FIRST tells execbuf to use element 0 of the
1164  * execobject[] as the * batch instead (the default is to use the last
1165  * element).
1166  */
1167 #define I915_EXEC_BATCH_FIRST		(1<<18)
1168 
1169 /* Setting I915_FENCE_ARRAY implies that num_cliprects and cliprects_ptr
1170  * define an array of i915_gem_exec_fence structures which specify a set of
1171  * dma fences to wait upon or signal.
1172  */
1173 #define I915_EXEC_FENCE_ARRAY   (1<<19)
1174 
1175 /*
1176  * Setting I915_EXEC_FENCE_SUBMIT implies that lower_32_bits(rsvd2) represent
1177  * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1178  * the batch.
1179  *
1180  * Returns -EINVAL if the sync_file fd cannot be found.
1181  */
1182 #define I915_EXEC_FENCE_SUBMIT		(1 << 20)
1183 
1184 #define __I915_EXEC_UNKNOWN_FLAGS (-(I915_EXEC_FENCE_SUBMIT << 1))
1185 
1186 #define I915_EXEC_CONTEXT_ID_MASK	(0xffffffff)
1187 #define i915_execbuffer2_set_context_id(eb2, context) \
1188 	(eb2).rsvd1 = context & I915_EXEC_CONTEXT_ID_MASK
1189 #define i915_execbuffer2_get_context_id(eb2) \
1190 	((eb2).rsvd1 & I915_EXEC_CONTEXT_ID_MASK)
1191 
1192 struct drm_i915_gem_pin {
1193 	/** Handle of the buffer to be pinned. */
1194 	__u32 handle;
1195 	__u32 pad;
1196 
1197 	/** alignment required within the aperture */
1198 	__u64 alignment;
1199 
1200 	/** Returned GTT offset of the buffer. */
1201 	__u64 offset;
1202 };
1203 
1204 struct drm_i915_gem_unpin {
1205 	/** Handle of the buffer to be unpinned. */
1206 	__u32 handle;
1207 	__u32 pad;
1208 };
1209 
1210 struct drm_i915_gem_busy {
1211 	/** Handle of the buffer to check for busy */
1212 	__u32 handle;
1213 
1214 	/** Return busy status
1215 	 *
1216 	 * A return of 0 implies that the object is idle (after
1217 	 * having flushed any pending activity), and a non-zero return that
1218 	 * the object is still in-flight on the GPU. (The GPU has not yet
1219 	 * signaled completion for all pending requests that reference the
1220 	 * object.) An object is guaranteed to become idle eventually (so
1221 	 * long as no new GPU commands are executed upon it). Due to the
1222 	 * asynchronous nature of the hardware, an object reported
1223 	 * as busy may become idle before the ioctl is completed.
1224 	 *
1225 	 * Furthermore, if the object is busy, which engine is busy is only
1226 	 * provided as a guide and only indirectly by reporting its class
1227 	 * (there may be more than one engine in each class). There are race
1228 	 * conditions which prevent the report of which engines are busy from
1229 	 * being always accurate.  However, the converse is not true. If the
1230 	 * object is idle, the result of the ioctl, that all engines are idle,
1231 	 * is accurate.
1232 	 *
1233 	 * The returned dword is split into two fields to indicate both
1234 	 * the engine classess on which the object is being read, and the
1235 	 * engine class on which it is currently being written (if any).
1236 	 *
1237 	 * The low word (bits 0:15) indicate if the object is being written
1238 	 * to by any engine (there can only be one, as the GEM implicit
1239 	 * synchronisation rules force writes to be serialised). Only the
1240 	 * engine class (offset by 1, I915_ENGINE_CLASS_RENDER is reported as
1241 	 * 1 not 0 etc) for the last write is reported.
1242 	 *
1243 	 * The high word (bits 16:31) are a bitmask of which engines classes
1244 	 * are currently reading from the object. Multiple engines may be
1245 	 * reading from the object simultaneously.
1246 	 *
1247 	 * The value of each engine class is the same as specified in the
1248 	 * I915_CONTEXT_SET_ENGINES parameter and via perf, i.e.
1249 	 * I915_ENGINE_CLASS_RENDER, I915_ENGINE_CLASS_COPY, etc.
1250 	 * reported as active itself. Some hardware may have parallel
1251 	 * execution engines, e.g. multiple media engines, which are
1252 	 * mapped to the same class identifier and so are not separately
1253 	 * reported for busyness.
1254 	 *
1255 	 * Caveat emptor:
1256 	 * Only the boolean result of this query is reliable; that is whether
1257 	 * the object is idle or busy. The report of which engines are busy
1258 	 * should be only used as a heuristic.
1259 	 */
1260 	__u32 busy;
1261 };
1262 
1263 /**
1264  * I915_CACHING_NONE
1265  *
1266  * GPU access is not coherent with cpu caches. Default for machines without an
1267  * LLC.
1268  */
1269 #define I915_CACHING_NONE		0
1270 /**
1271  * I915_CACHING_CACHED
1272  *
1273  * GPU access is coherent with cpu caches and furthermore the data is cached in
1274  * last-level caches shared between cpu cores and the gpu GT. Default on
1275  * machines with HAS_LLC.
1276  */
1277 #define I915_CACHING_CACHED		1
1278 /**
1279  * I915_CACHING_DISPLAY
1280  *
1281  * Special GPU caching mode which is coherent with the scanout engines.
1282  * Transparently falls back to I915_CACHING_NONE on platforms where no special
1283  * cache mode (like write-through or gfdt flushing) is available. The kernel
1284  * automatically sets this mode when using a buffer as a scanout target.
1285  * Userspace can manually set this mode to avoid a costly stall and clflush in
1286  * the hotpath of drawing the first frame.
1287  */
1288 #define I915_CACHING_DISPLAY		2
1289 
1290 struct drm_i915_gem_caching {
1291 	/**
1292 	 * Handle of the buffer to set/get the caching level of. */
1293 	__u32 handle;
1294 
1295 	/**
1296 	 * Cacheing level to apply or return value
1297 	 *
1298 	 * bits0-15 are for generic caching control (i.e. the above defined
1299 	 * values). bits16-31 are reserved for platform-specific variations
1300 	 * (e.g. l3$ caching on gen7). */
1301 	__u32 caching;
1302 };
1303 
1304 #define I915_TILING_NONE	0
1305 #define I915_TILING_X		1
1306 #define I915_TILING_Y		2
1307 #define I915_TILING_LAST	I915_TILING_Y
1308 
1309 #define I915_BIT_6_SWIZZLE_NONE		0
1310 #define I915_BIT_6_SWIZZLE_9		1
1311 #define I915_BIT_6_SWIZZLE_9_10		2
1312 #define I915_BIT_6_SWIZZLE_9_11		3
1313 #define I915_BIT_6_SWIZZLE_9_10_11	4
1314 /* Not seen by userland */
1315 #define I915_BIT_6_SWIZZLE_UNKNOWN	5
1316 /* Seen by userland. */
1317 #define I915_BIT_6_SWIZZLE_9_17		6
1318 #define I915_BIT_6_SWIZZLE_9_10_17	7
1319 
1320 struct drm_i915_gem_set_tiling {
1321 	/** Handle of the buffer to have its tiling state updated */
1322 	__u32 handle;
1323 
1324 	/**
1325 	 * Tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1326 	 * I915_TILING_Y).
1327 	 *
1328 	 * This value is to be set on request, and will be updated by the
1329 	 * kernel on successful return with the actual chosen tiling layout.
1330 	 *
1331 	 * The tiling mode may be demoted to I915_TILING_NONE when the system
1332 	 * has bit 6 swizzling that can't be managed correctly by GEM.
1333 	 *
1334 	 * Buffer contents become undefined when changing tiling_mode.
1335 	 */
1336 	__u32 tiling_mode;
1337 
1338 	/**
1339 	 * Stride in bytes for the object when in I915_TILING_X or
1340 	 * I915_TILING_Y.
1341 	 */
1342 	__u32 stride;
1343 
1344 	/**
1345 	 * Returned address bit 6 swizzling required for CPU access through
1346 	 * mmap mapping.
1347 	 */
1348 	__u32 swizzle_mode;
1349 };
1350 
1351 struct drm_i915_gem_get_tiling {
1352 	/** Handle of the buffer to get tiling state for. */
1353 	__u32 handle;
1354 
1355 	/**
1356 	 * Current tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1357 	 * I915_TILING_Y).
1358 	 */
1359 	__u32 tiling_mode;
1360 
1361 	/**
1362 	 * Returned address bit 6 swizzling required for CPU access through
1363 	 * mmap mapping.
1364 	 */
1365 	__u32 swizzle_mode;
1366 
1367 	/**
1368 	 * Returned address bit 6 swizzling required for CPU access through
1369 	 * mmap mapping whilst bound.
1370 	 */
1371 	__u32 phys_swizzle_mode;
1372 };
1373 
1374 struct drm_i915_gem_get_aperture {
1375 	/** Total size of the aperture used by i915_gem_execbuffer, in bytes */
1376 	__u64 aper_size;
1377 
1378 	/**
1379 	 * Available space in the aperture used by i915_gem_execbuffer, in
1380 	 * bytes
1381 	 */
1382 	__u64 aper_available_size;
1383 };
1384 
1385 struct drm_i915_get_pipe_from_crtc_id {
1386 	/** ID of CRTC being requested **/
1387 	__u32 crtc_id;
1388 
1389 	/** pipe of requested CRTC **/
1390 	__u32 pipe;
1391 };
1392 
1393 #define I915_MADV_WILLNEED 0
1394 #define I915_MADV_DONTNEED 1
1395 #define __I915_MADV_PURGED 2 /* internal state */
1396 
1397 struct drm_i915_gem_madvise {
1398 	/** Handle of the buffer to change the backing store advice */
1399 	__u32 handle;
1400 
1401 	/* Advice: either the buffer will be needed again in the near future,
1402 	 *         or wont be and could be discarded under memory pressure.
1403 	 */
1404 	__u32 madv;
1405 
1406 	/** Whether the backing store still exists. */
1407 	__u32 retained;
1408 };
1409 
1410 /* flags */
1411 #define I915_OVERLAY_TYPE_MASK 		0xff
1412 #define I915_OVERLAY_YUV_PLANAR 	0x01
1413 #define I915_OVERLAY_YUV_PACKED 	0x02
1414 #define I915_OVERLAY_RGB		0x03
1415 
1416 #define I915_OVERLAY_DEPTH_MASK		0xff00
1417 #define I915_OVERLAY_RGB24		0x1000
1418 #define I915_OVERLAY_RGB16		0x2000
1419 #define I915_OVERLAY_RGB15		0x3000
1420 #define I915_OVERLAY_YUV422		0x0100
1421 #define I915_OVERLAY_YUV411		0x0200
1422 #define I915_OVERLAY_YUV420		0x0300
1423 #define I915_OVERLAY_YUV410		0x0400
1424 
1425 #define I915_OVERLAY_SWAP_MASK		0xff0000
1426 #define I915_OVERLAY_NO_SWAP		0x000000
1427 #define I915_OVERLAY_UV_SWAP		0x010000
1428 #define I915_OVERLAY_Y_SWAP		0x020000
1429 #define I915_OVERLAY_Y_AND_UV_SWAP	0x030000
1430 
1431 #define I915_OVERLAY_FLAGS_MASK		0xff000000
1432 #define I915_OVERLAY_ENABLE		0x01000000
1433 
1434 struct drm_intel_overlay_put_image {
1435 	/* various flags and src format description */
1436 	__u32 flags;
1437 	/* source picture description */
1438 	__u32 bo_handle;
1439 	/* stride values and offsets are in bytes, buffer relative */
1440 	__u16 stride_Y; /* stride for packed formats */
1441 	__u16 stride_UV;
1442 	__u32 offset_Y; /* offset for packet formats */
1443 	__u32 offset_U;
1444 	__u32 offset_V;
1445 	/* in pixels */
1446 	__u16 src_width;
1447 	__u16 src_height;
1448 	/* to compensate the scaling factors for partially covered surfaces */
1449 	__u16 src_scan_width;
1450 	__u16 src_scan_height;
1451 	/* output crtc description */
1452 	__u32 crtc_id;
1453 	__u16 dst_x;
1454 	__u16 dst_y;
1455 	__u16 dst_width;
1456 	__u16 dst_height;
1457 };
1458 
1459 /* flags */
1460 #define I915_OVERLAY_UPDATE_ATTRS	(1<<0)
1461 #define I915_OVERLAY_UPDATE_GAMMA	(1<<1)
1462 #define I915_OVERLAY_DISABLE_DEST_COLORKEY	(1<<2)
1463 struct drm_intel_overlay_attrs {
1464 	__u32 flags;
1465 	__u32 color_key;
1466 	__s32 brightness;
1467 	__u32 contrast;
1468 	__u32 saturation;
1469 	__u32 gamma0;
1470 	__u32 gamma1;
1471 	__u32 gamma2;
1472 	__u32 gamma3;
1473 	__u32 gamma4;
1474 	__u32 gamma5;
1475 };
1476 
1477 /*
1478  * Intel sprite handling
1479  *
1480  * Color keying works with a min/mask/max tuple.  Both source and destination
1481  * color keying is allowed.
1482  *
1483  * Source keying:
1484  * Sprite pixels within the min & max values, masked against the color channels
1485  * specified in the mask field, will be transparent.  All other pixels will
1486  * be displayed on top of the primary plane.  For RGB surfaces, only the min
1487  * and mask fields will be used; ranged compares are not allowed.
1488  *
1489  * Destination keying:
1490  * Primary plane pixels that match the min value, masked against the color
1491  * channels specified in the mask field, will be replaced by corresponding
1492  * pixels from the sprite plane.
1493  *
1494  * Note that source & destination keying are exclusive; only one can be
1495  * active on a given plane.
1496  */
1497 
1498 #define I915_SET_COLORKEY_NONE		(1<<0) /* Deprecated. Instead set
1499 						* flags==0 to disable colorkeying.
1500 						*/
1501 #define I915_SET_COLORKEY_DESTINATION	(1<<1)
1502 #define I915_SET_COLORKEY_SOURCE	(1<<2)
1503 struct drm_intel_sprite_colorkey {
1504 	__u32 plane_id;
1505 	__u32 min_value;
1506 	__u32 channel_mask;
1507 	__u32 max_value;
1508 	__u32 flags;
1509 };
1510 
1511 struct drm_i915_gem_wait {
1512 	/** Handle of BO we shall wait on */
1513 	__u32 bo_handle;
1514 	__u32 flags;
1515 	/** Number of nanoseconds to wait, Returns time remaining. */
1516 	__s64 timeout_ns;
1517 };
1518 
1519 struct drm_i915_gem_context_create {
1520 	__u32 ctx_id; /* output: id of new context*/
1521 	__u32 pad;
1522 };
1523 
1524 struct drm_i915_gem_context_create_ext {
1525 	__u32 ctx_id; /* output: id of new context*/
1526 	__u32 flags;
1527 #define I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS	(1u << 0)
1528 #define I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE	(1u << 1)
1529 #define I915_CONTEXT_CREATE_FLAGS_UNKNOWN \
1530 	(-(I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE << 1))
1531 	__u64 extensions;
1532 };
1533 
1534 struct drm_i915_gem_context_param {
1535 	__u32 ctx_id;
1536 	__u32 size;
1537 	__u64 param;
1538 #define I915_CONTEXT_PARAM_BAN_PERIOD	0x1
1539 #define I915_CONTEXT_PARAM_NO_ZEROMAP	0x2
1540 #define I915_CONTEXT_PARAM_GTT_SIZE	0x3
1541 #define I915_CONTEXT_PARAM_NO_ERROR_CAPTURE	0x4
1542 #define I915_CONTEXT_PARAM_BANNABLE	0x5
1543 #define I915_CONTEXT_PARAM_PRIORITY	0x6
1544 #define   I915_CONTEXT_MAX_USER_PRIORITY	1023 /* inclusive */
1545 #define   I915_CONTEXT_DEFAULT_PRIORITY		0
1546 #define   I915_CONTEXT_MIN_USER_PRIORITY	-1023 /* inclusive */
1547 	/*
1548 	 * When using the following param, value should be a pointer to
1549 	 * drm_i915_gem_context_param_sseu.
1550 	 */
1551 #define I915_CONTEXT_PARAM_SSEU		0x7
1552 
1553 /*
1554  * Not all clients may want to attempt automatic recover of a context after
1555  * a hang (for example, some clients may only submit very small incremental
1556  * batches relying on known logical state of previous batches which will never
1557  * recover correctly and each attempt will hang), and so would prefer that
1558  * the context is forever banned instead.
1559  *
1560  * If set to false (0), after a reset, subsequent (and in flight) rendering
1561  * from this context is discarded, and the client will need to create a new
1562  * context to use instead.
1563  *
1564  * If set to true (1), the kernel will automatically attempt to recover the
1565  * context by skipping the hanging batch and executing the next batch starting
1566  * from the default context state (discarding the incomplete logical context
1567  * state lost due to the reset).
1568  *
1569  * On creation, all new contexts are marked as recoverable.
1570  */
1571 #define I915_CONTEXT_PARAM_RECOVERABLE	0x8
1572 
1573 	/*
1574 	 * The id of the associated virtual memory address space (ppGTT) of
1575 	 * this context. Can be retrieved and passed to another context
1576 	 * (on the same fd) for both to use the same ppGTT and so share
1577 	 * address layouts, and avoid reloading the page tables on context
1578 	 * switches between themselves.
1579 	 *
1580 	 * See DRM_I915_GEM_VM_CREATE and DRM_I915_GEM_VM_DESTROY.
1581 	 */
1582 #define I915_CONTEXT_PARAM_VM		0x9
1583 
1584 /*
1585  * I915_CONTEXT_PARAM_ENGINES:
1586  *
1587  * Bind this context to operate on this subset of available engines. Henceforth,
1588  * the I915_EXEC_RING selector for DRM_IOCTL_I915_GEM_EXECBUFFER2 operates as
1589  * an index into this array of engines; I915_EXEC_DEFAULT selecting engine[0]
1590  * and upwards. Slots 0...N are filled in using the specified (class, instance).
1591  * Use
1592  *	engine_class: I915_ENGINE_CLASS_INVALID,
1593  *	engine_instance: I915_ENGINE_CLASS_INVALID_NONE
1594  * to specify a gap in the array that can be filled in later, e.g. by a
1595  * virtual engine used for load balancing.
1596  *
1597  * Setting the number of engines bound to the context to 0, by passing a zero
1598  * sized argument, will revert back to default settings.
1599  *
1600  * See struct i915_context_param_engines.
1601  *
1602  * Extensions:
1603  *   i915_context_engines_load_balance (I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE)
1604  *   i915_context_engines_bond (I915_CONTEXT_ENGINES_EXT_BOND)
1605  */
1606 #define I915_CONTEXT_PARAM_ENGINES	0xa
1607 
1608 /*
1609  * I915_CONTEXT_PARAM_PERSISTENCE:
1610  *
1611  * Allow the context and active rendering to survive the process until
1612  * completion. Persistence allows fire-and-forget clients to queue up a
1613  * bunch of work, hand the output over to a display server and then quit.
1614  * If the context is marked as not persistent, upon closing (either via
1615  * an explicit DRM_I915_GEM_CONTEXT_DESTROY or implicitly from file closure
1616  * or process termination), the context and any outstanding requests will be
1617  * cancelled (and exported fences for cancelled requests marked as -EIO).
1618  *
1619  * By default, new contexts allow persistence.
1620  */
1621 #define I915_CONTEXT_PARAM_PERSISTENCE	0xb
1622 
1623 /*
1624  * I915_CONTEXT_PARAM_RINGSIZE:
1625  *
1626  * Sets the size of the CS ringbuffer to use for logical ring contexts. This
1627  * applies a limit of how many batches can be queued to HW before the caller
1628  * is blocked due to lack of space for more commands.
1629  *
1630  * Only reliably possible to be set prior to first use, i.e. during
1631  * construction. At any later point, the current execution must be flushed as
1632  * the ring can only be changed while the context is idle. Note, the ringsize
1633  * can be specified as a constructor property, see
1634  * I915_CONTEXT_CREATE_EXT_SETPARAM, but can also be set later if required.
1635  *
1636  * Only applies to the current set of engine and lost when those engines
1637  * are replaced by a new mapping (see I915_CONTEXT_PARAM_ENGINES).
1638  *
1639  * Must be between 4 - 512 KiB, in intervals of page size [4 KiB].
1640  * Default is 16 KiB.
1641  */
1642 #define I915_CONTEXT_PARAM_RINGSIZE	0xc
1643 /* Must be kept compact -- no holes and well documented */
1644 
1645 	__u64 value;
1646 };
1647 
1648 /**
1649  * Context SSEU programming
1650  *
1651  * It may be necessary for either functional or performance reason to configure
1652  * a context to run with a reduced number of SSEU (where SSEU stands for Slice/
1653  * Sub-slice/EU).
1654  *
1655  * This is done by configuring SSEU configuration using the below
1656  * @struct drm_i915_gem_context_param_sseu for every supported engine which
1657  * userspace intends to use.
1658  *
1659  * Not all GPUs or engines support this functionality in which case an error
1660  * code -ENODEV will be returned.
1661  *
1662  * Also, flexibility of possible SSEU configuration permutations varies between
1663  * GPU generations and software imposed limitations. Requesting such a
1664  * combination will return an error code of -EINVAL.
1665  *
1666  * NOTE: When perf/OA is active the context's SSEU configuration is ignored in
1667  * favour of a single global setting.
1668  */
1669 struct drm_i915_gem_context_param_sseu {
1670 	/*
1671 	 * Engine class & instance to be configured or queried.
1672 	 */
1673 	struct i915_engine_class_instance engine;
1674 
1675 	/*
1676 	 * Unknown flags must be cleared to zero.
1677 	 */
1678 	__u32 flags;
1679 #define I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX (1u << 0)
1680 
1681 	/*
1682 	 * Mask of slices to enable for the context. Valid values are a subset
1683 	 * of the bitmask value returned for I915_PARAM_SLICE_MASK.
1684 	 */
1685 	__u64 slice_mask;
1686 
1687 	/*
1688 	 * Mask of subslices to enable for the context. Valid values are a
1689 	 * subset of the bitmask value return by I915_PARAM_SUBSLICE_MASK.
1690 	 */
1691 	__u64 subslice_mask;
1692 
1693 	/*
1694 	 * Minimum/Maximum number of EUs to enable per subslice for the
1695 	 * context. min_eus_per_subslice must be inferior or equal to
1696 	 * max_eus_per_subslice.
1697 	 */
1698 	__u16 min_eus_per_subslice;
1699 	__u16 max_eus_per_subslice;
1700 
1701 	/*
1702 	 * Unused for now. Must be cleared to zero.
1703 	 */
1704 	__u32 rsvd;
1705 };
1706 
1707 /*
1708  * i915_context_engines_load_balance:
1709  *
1710  * Enable load balancing across this set of engines.
1711  *
1712  * Into the I915_EXEC_DEFAULT slot [0], a virtual engine is created that when
1713  * used will proxy the execbuffer request onto one of the set of engines
1714  * in such a way as to distribute the load evenly across the set.
1715  *
1716  * The set of engines must be compatible (e.g. the same HW class) as they
1717  * will share the same logical GPU context and ring.
1718  *
1719  * To intermix rendering with the virtual engine and direct rendering onto
1720  * the backing engines (bypassing the load balancing proxy), the context must
1721  * be defined to use a single timeline for all engines.
1722  */
1723 struct i915_context_engines_load_balance {
1724 	struct i915_user_extension base;
1725 
1726 	__u16 engine_index;
1727 	__u16 num_siblings;
1728 	__u32 flags; /* all undefined flags must be zero */
1729 
1730 	__u64 mbz64; /* reserved for future use; must be zero */
1731 
1732 	struct i915_engine_class_instance engines[0];
1733 } __attribute__((packed));
1734 
1735 #define I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(name__, N__) struct { \
1736 	struct i915_user_extension base; \
1737 	__u16 engine_index; \
1738 	__u16 num_siblings; \
1739 	__u32 flags; \
1740 	__u64 mbz64; \
1741 	struct i915_engine_class_instance engines[N__]; \
1742 } __attribute__((packed)) name__
1743 
1744 /*
1745  * i915_context_engines_bond:
1746  *
1747  * Constructed bonded pairs for execution within a virtual engine.
1748  *
1749  * All engines are equal, but some are more equal than others. Given
1750  * the distribution of resources in the HW, it may be preferable to run
1751  * a request on a given subset of engines in parallel to a request on a
1752  * specific engine. We enable this selection of engines within a virtual
1753  * engine by specifying bonding pairs, for any given master engine we will
1754  * only execute on one of the corresponding siblings within the virtual engine.
1755  *
1756  * To execute a request in parallel on the master engine and a sibling requires
1757  * coordination with a I915_EXEC_FENCE_SUBMIT.
1758  */
1759 struct i915_context_engines_bond {
1760 	struct i915_user_extension base;
1761 
1762 	struct i915_engine_class_instance master;
1763 
1764 	__u16 virtual_index; /* index of virtual engine in ctx->engines[] */
1765 	__u16 num_bonds;
1766 
1767 	__u64 flags; /* all undefined flags must be zero */
1768 	__u64 mbz64[4]; /* reserved for future use; must be zero */
1769 
1770 	struct i915_engine_class_instance engines[0];
1771 } __attribute__((packed));
1772 
1773 #define I915_DEFINE_CONTEXT_ENGINES_BOND(name__, N__) struct { \
1774 	struct i915_user_extension base; \
1775 	struct i915_engine_class_instance master; \
1776 	__u16 virtual_index; \
1777 	__u16 num_bonds; \
1778 	__u64 flags; \
1779 	__u64 mbz64[4]; \
1780 	struct i915_engine_class_instance engines[N__]; \
1781 } __attribute__((packed)) name__
1782 
1783 struct i915_context_param_engines {
1784 	__u64 extensions; /* linked chain of extension blocks, 0 terminates */
1785 #define I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE 0 /* see i915_context_engines_load_balance */
1786 #define I915_CONTEXT_ENGINES_EXT_BOND 1 /* see i915_context_engines_bond */
1787 	struct i915_engine_class_instance engines[0];
1788 } __attribute__((packed));
1789 
1790 #define I915_DEFINE_CONTEXT_PARAM_ENGINES(name__, N__) struct { \
1791 	__u64 extensions; \
1792 	struct i915_engine_class_instance engines[N__]; \
1793 } __attribute__((packed)) name__
1794 
1795 struct drm_i915_gem_context_create_ext_setparam {
1796 #define I915_CONTEXT_CREATE_EXT_SETPARAM 0
1797 	struct i915_user_extension base;
1798 	struct drm_i915_gem_context_param param;
1799 };
1800 
1801 struct drm_i915_gem_context_create_ext_clone {
1802 #define I915_CONTEXT_CREATE_EXT_CLONE 1
1803 	struct i915_user_extension base;
1804 	__u32 clone_id;
1805 	__u32 flags;
1806 #define I915_CONTEXT_CLONE_ENGINES	(1u << 0)
1807 #define I915_CONTEXT_CLONE_FLAGS	(1u << 1)
1808 #define I915_CONTEXT_CLONE_SCHEDATTR	(1u << 2)
1809 #define I915_CONTEXT_CLONE_SSEU		(1u << 3)
1810 #define I915_CONTEXT_CLONE_TIMELINE	(1u << 4)
1811 #define I915_CONTEXT_CLONE_VM		(1u << 5)
1812 #define I915_CONTEXT_CLONE_UNKNOWN -(I915_CONTEXT_CLONE_VM << 1)
1813 	__u64 rsvd;
1814 };
1815 
1816 struct drm_i915_gem_context_destroy {
1817 	__u32 ctx_id;
1818 	__u32 pad;
1819 };
1820 
1821 /*
1822  * DRM_I915_GEM_VM_CREATE -
1823  *
1824  * Create a new virtual memory address space (ppGTT) for use within a context
1825  * on the same file. Extensions can be provided to configure exactly how the
1826  * address space is setup upon creation.
1827  *
1828  * The id of new VM (bound to the fd) for use with I915_CONTEXT_PARAM_VM is
1829  * returned in the outparam @id.
1830  *
1831  * No flags are defined, with all bits reserved and must be zero.
1832  *
1833  * An extension chain maybe provided, starting with @extensions, and terminated
1834  * by the @next_extension being 0. Currently, no extensions are defined.
1835  *
1836  * DRM_I915_GEM_VM_DESTROY -
1837  *
1838  * Destroys a previously created VM id, specified in @id.
1839  *
1840  * No extensions or flags are allowed currently, and so must be zero.
1841  */
1842 struct drm_i915_gem_vm_control {
1843 	__u64 extensions;
1844 	__u32 flags;
1845 	__u32 vm_id;
1846 };
1847 
1848 struct drm_i915_reg_read {
1849 	/*
1850 	 * Register offset.
1851 	 * For 64bit wide registers where the upper 32bits don't immediately
1852 	 * follow the lower 32bits, the offset of the lower 32bits must
1853 	 * be specified
1854 	 */
1855 	__u64 offset;
1856 #define I915_REG_READ_8B_WA (1ul << 0)
1857 
1858 	__u64 val; /* Return value */
1859 };
1860 
1861 /* Known registers:
1862  *
1863  * Render engine timestamp - 0x2358 + 64bit - gen7+
1864  * - Note this register returns an invalid value if using the default
1865  *   single instruction 8byte read, in order to workaround that pass
1866  *   flag I915_REG_READ_8B_WA in offset field.
1867  *
1868  */
1869 
1870 struct drm_i915_reset_stats {
1871 	__u32 ctx_id;
1872 	__u32 flags;
1873 
1874 	/* All resets since boot/module reload, for all contexts */
1875 	__u32 reset_count;
1876 
1877 	/* Number of batches lost when active in GPU, for this context */
1878 	__u32 batch_active;
1879 
1880 	/* Number of batches lost pending for execution, for this context */
1881 	__u32 batch_pending;
1882 
1883 	__u32 pad;
1884 };
1885 
1886 struct drm_i915_gem_userptr {
1887 	__u64 user_ptr;
1888 	__u64 user_size;
1889 	__u32 flags;
1890 #define I915_USERPTR_READ_ONLY 0x1
1891 #define I915_USERPTR_UNSYNCHRONIZED 0x80000000
1892 	/**
1893 	 * Returned handle for the object.
1894 	 *
1895 	 * Object handles are nonzero.
1896 	 */
1897 	__u32 handle;
1898 };
1899 
1900 enum drm_i915_oa_format {
1901 	I915_OA_FORMAT_A13 = 1,	    /* HSW only */
1902 	I915_OA_FORMAT_A29,	    /* HSW only */
1903 	I915_OA_FORMAT_A13_B8_C8,   /* HSW only */
1904 	I915_OA_FORMAT_B4_C8,	    /* HSW only */
1905 	I915_OA_FORMAT_A45_B8_C8,   /* HSW only */
1906 	I915_OA_FORMAT_B4_C8_A16,   /* HSW only */
1907 	I915_OA_FORMAT_C4_B8,	    /* HSW+ */
1908 
1909 	/* Gen8+ */
1910 	I915_OA_FORMAT_A12,
1911 	I915_OA_FORMAT_A12_B8_C8,
1912 	I915_OA_FORMAT_A32u40_A4u32_B8_C8,
1913 
1914 	I915_OA_FORMAT_MAX	    /* non-ABI */
1915 };
1916 
1917 enum drm_i915_perf_property_id {
1918 	/**
1919 	 * Open the stream for a specific context handle (as used with
1920 	 * execbuffer2). A stream opened for a specific context this way
1921 	 * won't typically require root privileges.
1922 	 *
1923 	 * This property is available in perf revision 1.
1924 	 */
1925 	DRM_I915_PERF_PROP_CTX_HANDLE = 1,
1926 
1927 	/**
1928 	 * A value of 1 requests the inclusion of raw OA unit reports as
1929 	 * part of stream samples.
1930 	 *
1931 	 * This property is available in perf revision 1.
1932 	 */
1933 	DRM_I915_PERF_PROP_SAMPLE_OA,
1934 
1935 	/**
1936 	 * The value specifies which set of OA unit metrics should be
1937 	 * configured, defining the contents of any OA unit reports.
1938 	 *
1939 	 * This property is available in perf revision 1.
1940 	 */
1941 	DRM_I915_PERF_PROP_OA_METRICS_SET,
1942 
1943 	/**
1944 	 * The value specifies the size and layout of OA unit reports.
1945 	 *
1946 	 * This property is available in perf revision 1.
1947 	 */
1948 	DRM_I915_PERF_PROP_OA_FORMAT,
1949 
1950 	/**
1951 	 * Specifying this property implicitly requests periodic OA unit
1952 	 * sampling and (at least on Haswell) the sampling frequency is derived
1953 	 * from this exponent as follows:
1954 	 *
1955 	 *   80ns * 2^(period_exponent + 1)
1956 	 *
1957 	 * This property is available in perf revision 1.
1958 	 */
1959 	DRM_I915_PERF_PROP_OA_EXPONENT,
1960 
1961 	/**
1962 	 * Specifying this property is only valid when specify a context to
1963 	 * filter with DRM_I915_PERF_PROP_CTX_HANDLE. Specifying this property
1964 	 * will hold preemption of the particular context we want to gather
1965 	 * performance data about. The execbuf2 submissions must include a
1966 	 * drm_i915_gem_execbuffer_ext_perf parameter for this to apply.
1967 	 *
1968 	 * This property is available in perf revision 3.
1969 	 */
1970 	DRM_I915_PERF_PROP_HOLD_PREEMPTION,
1971 
1972 	/**
1973 	 * Specifying this pins all contexts to the specified SSEU power
1974 	 * configuration for the duration of the recording.
1975 	 *
1976 	 * This parameter's value is a pointer to a struct
1977 	 * drm_i915_gem_context_param_sseu.
1978 	 *
1979 	 * This property is available in perf revision 4.
1980 	 */
1981 	DRM_I915_PERF_PROP_GLOBAL_SSEU,
1982 
1983 	/**
1984 	 * This optional parameter specifies the timer interval in nanoseconds
1985 	 * at which the i915 driver will check the OA buffer for available data.
1986 	 * Minimum allowed value is 100 microseconds. A default value is used by
1987 	 * the driver if this parameter is not specified. Note that larger timer
1988 	 * values will reduce cpu consumption during OA perf captures. However,
1989 	 * excessively large values would potentially result in OA buffer
1990 	 * overwrites as captures reach end of the OA buffer.
1991 	 *
1992 	 * This property is available in perf revision 5.
1993 	 */
1994 	DRM_I915_PERF_PROP_POLL_OA_PERIOD,
1995 
1996 	DRM_I915_PERF_PROP_MAX /* non-ABI */
1997 };
1998 
1999 struct drm_i915_perf_open_param {
2000 	__u32 flags;
2001 #define I915_PERF_FLAG_FD_CLOEXEC	(1<<0)
2002 #define I915_PERF_FLAG_FD_NONBLOCK	(1<<1)
2003 #define I915_PERF_FLAG_DISABLED		(1<<2)
2004 
2005 	/** The number of u64 (id, value) pairs */
2006 	__u32 num_properties;
2007 
2008 	/**
2009 	 * Pointer to array of u64 (id, value) pairs configuring the stream
2010 	 * to open.
2011 	 */
2012 	__u64 properties_ptr;
2013 };
2014 
2015 /**
2016  * Enable data capture for a stream that was either opened in a disabled state
2017  * via I915_PERF_FLAG_DISABLED or was later disabled via
2018  * I915_PERF_IOCTL_DISABLE.
2019  *
2020  * It is intended to be cheaper to disable and enable a stream than it may be
2021  * to close and re-open a stream with the same configuration.
2022  *
2023  * It's undefined whether any pending data for the stream will be lost.
2024  *
2025  * This ioctl is available in perf revision 1.
2026  */
2027 #define I915_PERF_IOCTL_ENABLE	_IO('i', 0x0)
2028 
2029 /**
2030  * Disable data capture for a stream.
2031  *
2032  * It is an error to try and read a stream that is disabled.
2033  *
2034  * This ioctl is available in perf revision 1.
2035  */
2036 #define I915_PERF_IOCTL_DISABLE	_IO('i', 0x1)
2037 
2038 /**
2039  * Change metrics_set captured by a stream.
2040  *
2041  * If the stream is bound to a specific context, the configuration change
2042  * will performed inline with that context such that it takes effect before
2043  * the next execbuf submission.
2044  *
2045  * Returns the previously bound metrics set id, or a negative error code.
2046  *
2047  * This ioctl is available in perf revision 2.
2048  */
2049 #define I915_PERF_IOCTL_CONFIG	_IO('i', 0x2)
2050 
2051 /**
2052  * Common to all i915 perf records
2053  */
2054 struct drm_i915_perf_record_header {
2055 	__u32 type;
2056 	__u16 pad;
2057 	__u16 size;
2058 };
2059 
2060 enum drm_i915_perf_record_type {
2061 
2062 	/**
2063 	 * Samples are the work horse record type whose contents are extensible
2064 	 * and defined when opening an i915 perf stream based on the given
2065 	 * properties.
2066 	 *
2067 	 * Boolean properties following the naming convention
2068 	 * DRM_I915_PERF_SAMPLE_xyz_PROP request the inclusion of 'xyz' data in
2069 	 * every sample.
2070 	 *
2071 	 * The order of these sample properties given by userspace has no
2072 	 * affect on the ordering of data within a sample. The order is
2073 	 * documented here.
2074 	 *
2075 	 * struct {
2076 	 *     struct drm_i915_perf_record_header header;
2077 	 *
2078 	 *     { u32 oa_report[]; } && DRM_I915_PERF_PROP_SAMPLE_OA
2079 	 * };
2080 	 */
2081 	DRM_I915_PERF_RECORD_SAMPLE = 1,
2082 
2083 	/*
2084 	 * Indicates that one or more OA reports were not written by the
2085 	 * hardware. This can happen for example if an MI_REPORT_PERF_COUNT
2086 	 * command collides with periodic sampling - which would be more likely
2087 	 * at higher sampling frequencies.
2088 	 */
2089 	DRM_I915_PERF_RECORD_OA_REPORT_LOST = 2,
2090 
2091 	/**
2092 	 * An error occurred that resulted in all pending OA reports being lost.
2093 	 */
2094 	DRM_I915_PERF_RECORD_OA_BUFFER_LOST = 3,
2095 
2096 	DRM_I915_PERF_RECORD_MAX /* non-ABI */
2097 };
2098 
2099 /**
2100  * Structure to upload perf dynamic configuration into the kernel.
2101  */
2102 struct drm_i915_perf_oa_config {
2103 	/** String formatted like "%08x-%04x-%04x-%04x-%012x" */
2104 	char uuid[36];
2105 
2106 	__u32 n_mux_regs;
2107 	__u32 n_boolean_regs;
2108 	__u32 n_flex_regs;
2109 
2110 	/*
2111 	 * These fields are pointers to tuples of u32 values (register address,
2112 	 * value). For example the expected length of the buffer pointed by
2113 	 * mux_regs_ptr is (2 * sizeof(u32) * n_mux_regs).
2114 	 */
2115 	__u64 mux_regs_ptr;
2116 	__u64 boolean_regs_ptr;
2117 	__u64 flex_regs_ptr;
2118 };
2119 
2120 struct drm_i915_query_item {
2121 	__u64 query_id;
2122 #define DRM_I915_QUERY_TOPOLOGY_INFO    1
2123 #define DRM_I915_QUERY_ENGINE_INFO	2
2124 #define DRM_I915_QUERY_PERF_CONFIG      3
2125 /* Must be kept compact -- no holes and well documented */
2126 
2127 	/*
2128 	 * When set to zero by userspace, this is filled with the size of the
2129 	 * data to be written at the data_ptr pointer. The kernel sets this
2130 	 * value to a negative value to signal an error on a particular query
2131 	 * item.
2132 	 */
2133 	__s32 length;
2134 
2135 	/*
2136 	 * When query_id == DRM_I915_QUERY_TOPOLOGY_INFO, must be 0.
2137 	 *
2138 	 * When query_id == DRM_I915_QUERY_PERF_CONFIG, must be one of the
2139 	 * following :
2140 	 *         - DRM_I915_QUERY_PERF_CONFIG_LIST
2141 	 *         - DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID
2142 	 *         - DRM_I915_QUERY_PERF_CONFIG_FOR_UUID
2143 	 */
2144 	__u32 flags;
2145 #define DRM_I915_QUERY_PERF_CONFIG_LIST          1
2146 #define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID 2
2147 #define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID   3
2148 
2149 	/*
2150 	 * Data will be written at the location pointed by data_ptr when the
2151 	 * value of length matches the length of the data to be written by the
2152 	 * kernel.
2153 	 */
2154 	__u64 data_ptr;
2155 };
2156 
2157 struct drm_i915_query {
2158 	__u32 num_items;
2159 
2160 	/*
2161 	 * Unused for now. Must be cleared to zero.
2162 	 */
2163 	__u32 flags;
2164 
2165 	/*
2166 	 * This points to an array of num_items drm_i915_query_item structures.
2167 	 */
2168 	__u64 items_ptr;
2169 };
2170 
2171 /*
2172  * Data written by the kernel with query DRM_I915_QUERY_TOPOLOGY_INFO :
2173  *
2174  * data: contains the 3 pieces of information :
2175  *
2176  * - the slice mask with one bit per slice telling whether a slice is
2177  *   available. The availability of slice X can be queried with the following
2178  *   formula :
2179  *
2180  *           (data[X / 8] >> (X % 8)) & 1
2181  *
2182  * - the subslice mask for each slice with one bit per subslice telling
2183  *   whether a subslice is available. Gen12 has dual-subslices, which are
2184  *   similar to two gen11 subslices. For gen12, this array represents dual-
2185  *   subslices. The availability of subslice Y in slice X can be queried
2186  *   with the following formula :
2187  *
2188  *           (data[subslice_offset +
2189  *                 X * subslice_stride +
2190  *                 Y / 8] >> (Y % 8)) & 1
2191  *
2192  * - the EU mask for each subslice in each slice with one bit per EU telling
2193  *   whether an EU is available. The availability of EU Z in subslice Y in
2194  *   slice X can be queried with the following formula :
2195  *
2196  *           (data[eu_offset +
2197  *                 (X * max_subslices + Y) * eu_stride +
2198  *                 Z / 8] >> (Z % 8)) & 1
2199  */
2200 struct drm_i915_query_topology_info {
2201 	/*
2202 	 * Unused for now. Must be cleared to zero.
2203 	 */
2204 	__u16 flags;
2205 
2206 	__u16 max_slices;
2207 	__u16 max_subslices;
2208 	__u16 max_eus_per_subslice;
2209 
2210 	/*
2211 	 * Offset in data[] at which the subslice masks are stored.
2212 	 */
2213 	__u16 subslice_offset;
2214 
2215 	/*
2216 	 * Stride at which each of the subslice masks for each slice are
2217 	 * stored.
2218 	 */
2219 	__u16 subslice_stride;
2220 
2221 	/*
2222 	 * Offset in data[] at which the EU masks are stored.
2223 	 */
2224 	__u16 eu_offset;
2225 
2226 	/*
2227 	 * Stride at which each of the EU masks for each subslice are stored.
2228 	 */
2229 	__u16 eu_stride;
2230 
2231 	__u8 data[];
2232 };
2233 
2234 /**
2235  * struct drm_i915_engine_info
2236  *
2237  * Describes one engine and it's capabilities as known to the driver.
2238  */
2239 struct drm_i915_engine_info {
2240 	/** Engine class and instance. */
2241 	struct i915_engine_class_instance engine;
2242 
2243 	/** Reserved field. */
2244 	__u32 rsvd0;
2245 
2246 	/** Engine flags. */
2247 	__u64 flags;
2248 
2249 	/** Capabilities of this engine. */
2250 	__u64 capabilities;
2251 #define I915_VIDEO_CLASS_CAPABILITY_HEVC		(1 << 0)
2252 #define I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC	(1 << 1)
2253 
2254 	/** Reserved fields. */
2255 	__u64 rsvd1[4];
2256 };
2257 
2258 /**
2259  * struct drm_i915_query_engine_info
2260  *
2261  * Engine info query enumerates all engines known to the driver by filling in
2262  * an array of struct drm_i915_engine_info structures.
2263  */
2264 struct drm_i915_query_engine_info {
2265 	/** Number of struct drm_i915_engine_info structs following. */
2266 	__u32 num_engines;
2267 
2268 	/** MBZ */
2269 	__u32 rsvd[3];
2270 
2271 	/** Marker for drm_i915_engine_info structures. */
2272 	struct drm_i915_engine_info engines[];
2273 };
2274 
2275 /*
2276  * Data written by the kernel with query DRM_I915_QUERY_PERF_CONFIG.
2277  */
2278 struct drm_i915_query_perf_config {
2279 	union {
2280 		/*
2281 		 * When query_item.flags == DRM_I915_QUERY_PERF_CONFIG_LIST, i915 sets
2282 		 * this fields to the number of configurations available.
2283 		 */
2284 		__u64 n_configs;
2285 
2286 		/*
2287 		 * When query_id == DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID,
2288 		 * i915 will use the value in this field as configuration
2289 		 * identifier to decide what data to write into config_ptr.
2290 		 */
2291 		__u64 config;
2292 
2293 		/*
2294 		 * When query_id == DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID,
2295 		 * i915 will use the value in this field as configuration
2296 		 * identifier to decide what data to write into config_ptr.
2297 		 *
2298 		 * String formatted like "%08x-%04x-%04x-%04x-%012x"
2299 		 */
2300 		char uuid[36];
2301 	};
2302 
2303 	/*
2304 	 * Unused for now. Must be cleared to zero.
2305 	 */
2306 	__u32 flags;
2307 
2308 	/*
2309 	 * When query_item.flags == DRM_I915_QUERY_PERF_CONFIG_LIST, i915 will
2310 	 * write an array of __u64 of configuration identifiers.
2311 	 *
2312 	 * When query_item.flags == DRM_I915_QUERY_PERF_CONFIG_DATA, i915 will
2313 	 * write a struct drm_i915_perf_oa_config. If the following fields of
2314 	 * drm_i915_perf_oa_config are set not set to 0, i915 will write into
2315 	 * the associated pointers the values of submitted when the
2316 	 * configuration was created :
2317 	 *
2318 	 *         - n_mux_regs
2319 	 *         - n_boolean_regs
2320 	 *         - n_flex_regs
2321 	 */
2322 	__u8 data[];
2323 };
2324 
2325 #if defined(__cplusplus)
2326 }
2327 #endif
2328 
2329 #endif /* _UAPI_I915_DRM_H_ */
2330