xref: /openbmc/linux/include/uapi/drm/i915_drm.h (revision 2f0f2441b4a10948e2ec042b48fef13680387f7c)
1 /*
2  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the
14  * next paragraph) shall be included in all copies or substantial portions
15  * of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
20  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
21  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24  *
25  */
26 
27 #ifndef _UAPI_I915_DRM_H_
28 #define _UAPI_I915_DRM_H_
29 
30 #include "drm.h"
31 
32 #if defined(__cplusplus)
33 extern "C" {
34 #endif
35 
36 /* Please note that modifications to all structs defined here are
37  * subject to backwards-compatibility constraints.
38  */
39 
40 /**
41  * DOC: uevents generated by i915 on it's device node
42  *
43  * I915_L3_PARITY_UEVENT - Generated when the driver receives a parity mismatch
44  *	event from the gpu l3 cache. Additional information supplied is ROW,
45  *	BANK, SUBBANK, SLICE of the affected cacheline. Userspace should keep
46  *	track of these events and if a specific cache-line seems to have a
47  *	persistent error remap it with the l3 remapping tool supplied in
48  *	intel-gpu-tools.  The value supplied with the event is always 1.
49  *
50  * I915_ERROR_UEVENT - Generated upon error detection, currently only via
51  *	hangcheck. The error detection event is a good indicator of when things
52  *	began to go badly. The value supplied with the event is a 1 upon error
53  *	detection, and a 0 upon reset completion, signifying no more error
54  *	exists. NOTE: Disabling hangcheck or reset via module parameter will
55  *	cause the related events to not be seen.
56  *
57  * I915_RESET_UEVENT - Event is generated just before an attempt to reset the
58  *	the GPU. The value supplied with the event is always 1. NOTE: Disable
59  *	reset via module parameter will cause this event to not be seen.
60  */
61 #define I915_L3_PARITY_UEVENT		"L3_PARITY_ERROR"
62 #define I915_ERROR_UEVENT		"ERROR"
63 #define I915_RESET_UEVENT		"RESET"
64 
65 /*
66  * i915_user_extension: Base class for defining a chain of extensions
67  *
68  * Many interfaces need to grow over time. In most cases we can simply
69  * extend the struct and have userspace pass in more data. Another option,
70  * as demonstrated by Vulkan's approach to providing extensions for forward
71  * and backward compatibility, is to use a list of optional structs to
72  * provide those extra details.
73  *
74  * The key advantage to using an extension chain is that it allows us to
75  * redefine the interface more easily than an ever growing struct of
76  * increasing complexity, and for large parts of that interface to be
77  * entirely optional. The downside is more pointer chasing; chasing across
78  * the __user boundary with pointers encapsulated inside u64.
79  */
80 struct i915_user_extension {
81 	__u64 next_extension;
82 	__u32 name;
83 	__u32 flags; /* All undefined bits must be zero. */
84 	__u32 rsvd[4]; /* Reserved for future use; must be zero. */
85 };
86 
87 /*
88  * MOCS indexes used for GPU surfaces, defining the cacheability of the
89  * surface data and the coherency for this data wrt. CPU vs. GPU accesses.
90  */
91 enum i915_mocs_table_index {
92 	/*
93 	 * Not cached anywhere, coherency between CPU and GPU accesses is
94 	 * guaranteed.
95 	 */
96 	I915_MOCS_UNCACHED,
97 	/*
98 	 * Cacheability and coherency controlled by the kernel automatically
99 	 * based on the DRM_I915_GEM_SET_CACHING IOCTL setting and the current
100 	 * usage of the surface (used for display scanout or not).
101 	 */
102 	I915_MOCS_PTE,
103 	/*
104 	 * Cached in all GPU caches available on the platform.
105 	 * Coherency between CPU and GPU accesses to the surface is not
106 	 * guaranteed without extra synchronization.
107 	 */
108 	I915_MOCS_CACHED,
109 };
110 
111 /*
112  * Different engines serve different roles, and there may be more than one
113  * engine serving each role. enum drm_i915_gem_engine_class provides a
114  * classification of the role of the engine, which may be used when requesting
115  * operations to be performed on a certain subset of engines, or for providing
116  * information about that group.
117  */
118 enum drm_i915_gem_engine_class {
119 	I915_ENGINE_CLASS_RENDER	= 0,
120 	I915_ENGINE_CLASS_COPY		= 1,
121 	I915_ENGINE_CLASS_VIDEO		= 2,
122 	I915_ENGINE_CLASS_VIDEO_ENHANCE	= 3,
123 
124 	/* should be kept compact */
125 
126 	I915_ENGINE_CLASS_INVALID	= -1
127 };
128 
129 /*
130  * There may be more than one engine fulfilling any role within the system.
131  * Each engine of a class is given a unique instance number and therefore
132  * any engine can be specified by its class:instance tuplet. APIs that allow
133  * access to any engine in the system will use struct i915_engine_class_instance
134  * for this identification.
135  */
136 struct i915_engine_class_instance {
137 	__u16 engine_class; /* see enum drm_i915_gem_engine_class */
138 	__u16 engine_instance;
139 };
140 
141 /**
142  * DOC: perf_events exposed by i915 through /sys/bus/event_sources/drivers/i915
143  *
144  */
145 
146 enum drm_i915_pmu_engine_sample {
147 	I915_SAMPLE_BUSY = 0,
148 	I915_SAMPLE_WAIT = 1,
149 	I915_SAMPLE_SEMA = 2
150 };
151 
152 #define I915_PMU_SAMPLE_BITS (4)
153 #define I915_PMU_SAMPLE_MASK (0xf)
154 #define I915_PMU_SAMPLE_INSTANCE_BITS (8)
155 #define I915_PMU_CLASS_SHIFT \
156 	(I915_PMU_SAMPLE_BITS + I915_PMU_SAMPLE_INSTANCE_BITS)
157 
158 #define __I915_PMU_ENGINE(class, instance, sample) \
159 	((class) << I915_PMU_CLASS_SHIFT | \
160 	(instance) << I915_PMU_SAMPLE_BITS | \
161 	(sample))
162 
163 #define I915_PMU_ENGINE_BUSY(class, instance) \
164 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_BUSY)
165 
166 #define I915_PMU_ENGINE_WAIT(class, instance) \
167 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_WAIT)
168 
169 #define I915_PMU_ENGINE_SEMA(class, instance) \
170 	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_SEMA)
171 
172 #define __I915_PMU_OTHER(x) (__I915_PMU_ENGINE(0xff, 0xff, 0xf) + 1 + (x))
173 
174 #define I915_PMU_ACTUAL_FREQUENCY	__I915_PMU_OTHER(0)
175 #define I915_PMU_REQUESTED_FREQUENCY	__I915_PMU_OTHER(1)
176 #define I915_PMU_INTERRUPTS		__I915_PMU_OTHER(2)
177 #define I915_PMU_RC6_RESIDENCY		__I915_PMU_OTHER(3)
178 
179 #define I915_PMU_LAST I915_PMU_RC6_RESIDENCY
180 
181 /* Each region is a minimum of 16k, and there are at most 255 of them.
182  */
183 #define I915_NR_TEX_REGIONS 255	/* table size 2k - maximum due to use
184 				 * of chars for next/prev indices */
185 #define I915_LOG_MIN_TEX_REGION_SIZE 14
186 
187 typedef struct _drm_i915_init {
188 	enum {
189 		I915_INIT_DMA = 0x01,
190 		I915_CLEANUP_DMA = 0x02,
191 		I915_RESUME_DMA = 0x03
192 	} func;
193 	unsigned int mmio_offset;
194 	int sarea_priv_offset;
195 	unsigned int ring_start;
196 	unsigned int ring_end;
197 	unsigned int ring_size;
198 	unsigned int front_offset;
199 	unsigned int back_offset;
200 	unsigned int depth_offset;
201 	unsigned int w;
202 	unsigned int h;
203 	unsigned int pitch;
204 	unsigned int pitch_bits;
205 	unsigned int back_pitch;
206 	unsigned int depth_pitch;
207 	unsigned int cpp;
208 	unsigned int chipset;
209 } drm_i915_init_t;
210 
211 typedef struct _drm_i915_sarea {
212 	struct drm_tex_region texList[I915_NR_TEX_REGIONS + 1];
213 	int last_upload;	/* last time texture was uploaded */
214 	int last_enqueue;	/* last time a buffer was enqueued */
215 	int last_dispatch;	/* age of the most recently dispatched buffer */
216 	int ctxOwner;		/* last context to upload state */
217 	int texAge;
218 	int pf_enabled;		/* is pageflipping allowed? */
219 	int pf_active;
220 	int pf_current_page;	/* which buffer is being displayed? */
221 	int perf_boxes;		/* performance boxes to be displayed */
222 	int width, height;      /* screen size in pixels */
223 
224 	drm_handle_t front_handle;
225 	int front_offset;
226 	int front_size;
227 
228 	drm_handle_t back_handle;
229 	int back_offset;
230 	int back_size;
231 
232 	drm_handle_t depth_handle;
233 	int depth_offset;
234 	int depth_size;
235 
236 	drm_handle_t tex_handle;
237 	int tex_offset;
238 	int tex_size;
239 	int log_tex_granularity;
240 	int pitch;
241 	int rotation;           /* 0, 90, 180 or 270 */
242 	int rotated_offset;
243 	int rotated_size;
244 	int rotated_pitch;
245 	int virtualX, virtualY;
246 
247 	unsigned int front_tiled;
248 	unsigned int back_tiled;
249 	unsigned int depth_tiled;
250 	unsigned int rotated_tiled;
251 	unsigned int rotated2_tiled;
252 
253 	int pipeA_x;
254 	int pipeA_y;
255 	int pipeA_w;
256 	int pipeA_h;
257 	int pipeB_x;
258 	int pipeB_y;
259 	int pipeB_w;
260 	int pipeB_h;
261 
262 	/* fill out some space for old userspace triple buffer */
263 	drm_handle_t unused_handle;
264 	__u32 unused1, unused2, unused3;
265 
266 	/* buffer object handles for static buffers. May change
267 	 * over the lifetime of the client.
268 	 */
269 	__u32 front_bo_handle;
270 	__u32 back_bo_handle;
271 	__u32 unused_bo_handle;
272 	__u32 depth_bo_handle;
273 
274 } drm_i915_sarea_t;
275 
276 /* due to userspace building against these headers we need some compat here */
277 #define planeA_x pipeA_x
278 #define planeA_y pipeA_y
279 #define planeA_w pipeA_w
280 #define planeA_h pipeA_h
281 #define planeB_x pipeB_x
282 #define planeB_y pipeB_y
283 #define planeB_w pipeB_w
284 #define planeB_h pipeB_h
285 
286 /* Flags for perf_boxes
287  */
288 #define I915_BOX_RING_EMPTY    0x1
289 #define I915_BOX_FLIP          0x2
290 #define I915_BOX_WAIT          0x4
291 #define I915_BOX_TEXTURE_LOAD  0x8
292 #define I915_BOX_LOST_CONTEXT  0x10
293 
294 /*
295  * i915 specific ioctls.
296  *
297  * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie
298  * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset
299  * against DRM_COMMAND_BASE and should be between [0x0, 0x60).
300  */
301 #define DRM_I915_INIT		0x00
302 #define DRM_I915_FLUSH		0x01
303 #define DRM_I915_FLIP		0x02
304 #define DRM_I915_BATCHBUFFER	0x03
305 #define DRM_I915_IRQ_EMIT	0x04
306 #define DRM_I915_IRQ_WAIT	0x05
307 #define DRM_I915_GETPARAM	0x06
308 #define DRM_I915_SETPARAM	0x07
309 #define DRM_I915_ALLOC		0x08
310 #define DRM_I915_FREE		0x09
311 #define DRM_I915_INIT_HEAP	0x0a
312 #define DRM_I915_CMDBUFFER	0x0b
313 #define DRM_I915_DESTROY_HEAP	0x0c
314 #define DRM_I915_SET_VBLANK_PIPE	0x0d
315 #define DRM_I915_GET_VBLANK_PIPE	0x0e
316 #define DRM_I915_VBLANK_SWAP	0x0f
317 #define DRM_I915_HWS_ADDR	0x11
318 #define DRM_I915_GEM_INIT	0x13
319 #define DRM_I915_GEM_EXECBUFFER	0x14
320 #define DRM_I915_GEM_PIN	0x15
321 #define DRM_I915_GEM_UNPIN	0x16
322 #define DRM_I915_GEM_BUSY	0x17
323 #define DRM_I915_GEM_THROTTLE	0x18
324 #define DRM_I915_GEM_ENTERVT	0x19
325 #define DRM_I915_GEM_LEAVEVT	0x1a
326 #define DRM_I915_GEM_CREATE	0x1b
327 #define DRM_I915_GEM_PREAD	0x1c
328 #define DRM_I915_GEM_PWRITE	0x1d
329 #define DRM_I915_GEM_MMAP	0x1e
330 #define DRM_I915_GEM_SET_DOMAIN	0x1f
331 #define DRM_I915_GEM_SW_FINISH	0x20
332 #define DRM_I915_GEM_SET_TILING	0x21
333 #define DRM_I915_GEM_GET_TILING	0x22
334 #define DRM_I915_GEM_GET_APERTURE 0x23
335 #define DRM_I915_GEM_MMAP_GTT	0x24
336 #define DRM_I915_GET_PIPE_FROM_CRTC_ID	0x25
337 #define DRM_I915_GEM_MADVISE	0x26
338 #define DRM_I915_OVERLAY_PUT_IMAGE	0x27
339 #define DRM_I915_OVERLAY_ATTRS	0x28
340 #define DRM_I915_GEM_EXECBUFFER2	0x29
341 #define DRM_I915_GEM_EXECBUFFER2_WR	DRM_I915_GEM_EXECBUFFER2
342 #define DRM_I915_GET_SPRITE_COLORKEY	0x2a
343 #define DRM_I915_SET_SPRITE_COLORKEY	0x2b
344 #define DRM_I915_GEM_WAIT	0x2c
345 #define DRM_I915_GEM_CONTEXT_CREATE	0x2d
346 #define DRM_I915_GEM_CONTEXT_DESTROY	0x2e
347 #define DRM_I915_GEM_SET_CACHING	0x2f
348 #define DRM_I915_GEM_GET_CACHING	0x30
349 #define DRM_I915_REG_READ		0x31
350 #define DRM_I915_GET_RESET_STATS	0x32
351 #define DRM_I915_GEM_USERPTR		0x33
352 #define DRM_I915_GEM_CONTEXT_GETPARAM	0x34
353 #define DRM_I915_GEM_CONTEXT_SETPARAM	0x35
354 #define DRM_I915_PERF_OPEN		0x36
355 #define DRM_I915_PERF_ADD_CONFIG	0x37
356 #define DRM_I915_PERF_REMOVE_CONFIG	0x38
357 #define DRM_I915_QUERY			0x39
358 /* Must be kept compact -- no holes */
359 
360 #define DRM_IOCTL_I915_INIT		DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT, drm_i915_init_t)
361 #define DRM_IOCTL_I915_FLUSH		DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLUSH)
362 #define DRM_IOCTL_I915_FLIP		DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLIP)
363 #define DRM_IOCTL_I915_BATCHBUFFER	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_BATCHBUFFER, drm_i915_batchbuffer_t)
364 #define DRM_IOCTL_I915_IRQ_EMIT         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_IRQ_EMIT, drm_i915_irq_emit_t)
365 #define DRM_IOCTL_I915_IRQ_WAIT         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_IRQ_WAIT, drm_i915_irq_wait_t)
366 #define DRM_IOCTL_I915_GETPARAM         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GETPARAM, drm_i915_getparam_t)
367 #define DRM_IOCTL_I915_SETPARAM         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SETPARAM, drm_i915_setparam_t)
368 #define DRM_IOCTL_I915_ALLOC            DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_ALLOC, drm_i915_mem_alloc_t)
369 #define DRM_IOCTL_I915_FREE             DRM_IOW( DRM_COMMAND_BASE + DRM_I915_FREE, drm_i915_mem_free_t)
370 #define DRM_IOCTL_I915_INIT_HEAP        DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT_HEAP, drm_i915_mem_init_heap_t)
371 #define DRM_IOCTL_I915_CMDBUFFER	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_CMDBUFFER, drm_i915_cmdbuffer_t)
372 #define DRM_IOCTL_I915_DESTROY_HEAP	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_DESTROY_HEAP, drm_i915_mem_destroy_heap_t)
373 #define DRM_IOCTL_I915_SET_VBLANK_PIPE	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
374 #define DRM_IOCTL_I915_GET_VBLANK_PIPE	DRM_IOR( DRM_COMMAND_BASE + DRM_I915_GET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
375 #define DRM_IOCTL_I915_VBLANK_SWAP	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_VBLANK_SWAP, drm_i915_vblank_swap_t)
376 #define DRM_IOCTL_I915_HWS_ADDR		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_HWS_ADDR, struct drm_i915_gem_init)
377 #define DRM_IOCTL_I915_GEM_INIT		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_INIT, struct drm_i915_gem_init)
378 #define DRM_IOCTL_I915_GEM_EXECBUFFER	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER, struct drm_i915_gem_execbuffer)
379 #define DRM_IOCTL_I915_GEM_EXECBUFFER2	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2, struct drm_i915_gem_execbuffer2)
380 #define DRM_IOCTL_I915_GEM_EXECBUFFER2_WR	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2_WR, struct drm_i915_gem_execbuffer2)
381 #define DRM_IOCTL_I915_GEM_PIN		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_PIN, struct drm_i915_gem_pin)
382 #define DRM_IOCTL_I915_GEM_UNPIN	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_UNPIN, struct drm_i915_gem_unpin)
383 #define DRM_IOCTL_I915_GEM_BUSY		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_BUSY, struct drm_i915_gem_busy)
384 #define DRM_IOCTL_I915_GEM_SET_CACHING		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_SET_CACHING, struct drm_i915_gem_caching)
385 #define DRM_IOCTL_I915_GEM_GET_CACHING		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_GET_CACHING, struct drm_i915_gem_caching)
386 #define DRM_IOCTL_I915_GEM_THROTTLE	DRM_IO ( DRM_COMMAND_BASE + DRM_I915_GEM_THROTTLE)
387 #define DRM_IOCTL_I915_GEM_ENTERVT	DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_ENTERVT)
388 #define DRM_IOCTL_I915_GEM_LEAVEVT	DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_LEAVEVT)
389 #define DRM_IOCTL_I915_GEM_CREATE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE, struct drm_i915_gem_create)
390 #define DRM_IOCTL_I915_GEM_PREAD	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PREAD, struct drm_i915_gem_pread)
391 #define DRM_IOCTL_I915_GEM_PWRITE	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PWRITE, struct drm_i915_gem_pwrite)
392 #define DRM_IOCTL_I915_GEM_MMAP		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP, struct drm_i915_gem_mmap)
393 #define DRM_IOCTL_I915_GEM_MMAP_GTT	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_gtt)
394 #define DRM_IOCTL_I915_GEM_SET_DOMAIN	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SET_DOMAIN, struct drm_i915_gem_set_domain)
395 #define DRM_IOCTL_I915_GEM_SW_FINISH	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SW_FINISH, struct drm_i915_gem_sw_finish)
396 #define DRM_IOCTL_I915_GEM_SET_TILING	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_SET_TILING, struct drm_i915_gem_set_tiling)
397 #define DRM_IOCTL_I915_GEM_GET_TILING	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_TILING, struct drm_i915_gem_get_tiling)
398 #define DRM_IOCTL_I915_GEM_GET_APERTURE	DRM_IOR  (DRM_COMMAND_BASE + DRM_I915_GEM_GET_APERTURE, struct drm_i915_gem_get_aperture)
399 #define DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_PIPE_FROM_CRTC_ID, struct drm_i915_get_pipe_from_crtc_id)
400 #define DRM_IOCTL_I915_GEM_MADVISE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MADVISE, struct drm_i915_gem_madvise)
401 #define DRM_IOCTL_I915_OVERLAY_PUT_IMAGE	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_OVERLAY_PUT_IMAGE, struct drm_intel_overlay_put_image)
402 #define DRM_IOCTL_I915_OVERLAY_ATTRS	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_OVERLAY_ATTRS, struct drm_intel_overlay_attrs)
403 #define DRM_IOCTL_I915_SET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_SET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
404 #define DRM_IOCTL_I915_GET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
405 #define DRM_IOCTL_I915_GEM_WAIT		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_WAIT, struct drm_i915_gem_wait)
406 #define DRM_IOCTL_I915_GEM_CONTEXT_CREATE	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create)
407 #define DRM_IOCTL_I915_GEM_CONTEXT_CREATE_EXT	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create_ext)
408 #define DRM_IOCTL_I915_GEM_CONTEXT_DESTROY	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_DESTROY, struct drm_i915_gem_context_destroy)
409 #define DRM_IOCTL_I915_REG_READ			DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_REG_READ, struct drm_i915_reg_read)
410 #define DRM_IOCTL_I915_GET_RESET_STATS		DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GET_RESET_STATS, struct drm_i915_reset_stats)
411 #define DRM_IOCTL_I915_GEM_USERPTR			DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_USERPTR, struct drm_i915_gem_userptr)
412 #define DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_GETPARAM, struct drm_i915_gem_context_param)
413 #define DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_SETPARAM, struct drm_i915_gem_context_param)
414 #define DRM_IOCTL_I915_PERF_OPEN	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_OPEN, struct drm_i915_perf_open_param)
415 #define DRM_IOCTL_I915_PERF_ADD_CONFIG	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_ADD_CONFIG, struct drm_i915_perf_oa_config)
416 #define DRM_IOCTL_I915_PERF_REMOVE_CONFIG	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_REMOVE_CONFIG, __u64)
417 #define DRM_IOCTL_I915_QUERY			DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_QUERY, struct drm_i915_query)
418 
419 /* Allow drivers to submit batchbuffers directly to hardware, relying
420  * on the security mechanisms provided by hardware.
421  */
422 typedef struct drm_i915_batchbuffer {
423 	int start;		/* agp offset */
424 	int used;		/* nr bytes in use */
425 	int DR1;		/* hw flags for GFX_OP_DRAWRECT_INFO */
426 	int DR4;		/* window origin for GFX_OP_DRAWRECT_INFO */
427 	int num_cliprects;	/* mulitpass with multiple cliprects? */
428 	struct drm_clip_rect __user *cliprects;	/* pointer to userspace cliprects */
429 } drm_i915_batchbuffer_t;
430 
431 /* As above, but pass a pointer to userspace buffer which can be
432  * validated by the kernel prior to sending to hardware.
433  */
434 typedef struct _drm_i915_cmdbuffer {
435 	char __user *buf;	/* pointer to userspace command buffer */
436 	int sz;			/* nr bytes in buf */
437 	int DR1;		/* hw flags for GFX_OP_DRAWRECT_INFO */
438 	int DR4;		/* window origin for GFX_OP_DRAWRECT_INFO */
439 	int num_cliprects;	/* mulitpass with multiple cliprects? */
440 	struct drm_clip_rect __user *cliprects;	/* pointer to userspace cliprects */
441 } drm_i915_cmdbuffer_t;
442 
443 /* Userspace can request & wait on irq's:
444  */
445 typedef struct drm_i915_irq_emit {
446 	int __user *irq_seq;
447 } drm_i915_irq_emit_t;
448 
449 typedef struct drm_i915_irq_wait {
450 	int irq_seq;
451 } drm_i915_irq_wait_t;
452 
453 /*
454  * Different modes of per-process Graphics Translation Table,
455  * see I915_PARAM_HAS_ALIASING_PPGTT
456  */
457 #define I915_GEM_PPGTT_NONE	0
458 #define I915_GEM_PPGTT_ALIASING	1
459 #define I915_GEM_PPGTT_FULL	2
460 
461 /* Ioctl to query kernel params:
462  */
463 #define I915_PARAM_IRQ_ACTIVE            1
464 #define I915_PARAM_ALLOW_BATCHBUFFER     2
465 #define I915_PARAM_LAST_DISPATCH         3
466 #define I915_PARAM_CHIPSET_ID            4
467 #define I915_PARAM_HAS_GEM               5
468 #define I915_PARAM_NUM_FENCES_AVAIL      6
469 #define I915_PARAM_HAS_OVERLAY           7
470 #define I915_PARAM_HAS_PAGEFLIPPING	 8
471 #define I915_PARAM_HAS_EXECBUF2          9
472 #define I915_PARAM_HAS_BSD		 10
473 #define I915_PARAM_HAS_BLT		 11
474 #define I915_PARAM_HAS_RELAXED_FENCING	 12
475 #define I915_PARAM_HAS_COHERENT_RINGS	 13
476 #define I915_PARAM_HAS_EXEC_CONSTANTS	 14
477 #define I915_PARAM_HAS_RELAXED_DELTA	 15
478 #define I915_PARAM_HAS_GEN7_SOL_RESET	 16
479 #define I915_PARAM_HAS_LLC     	 	 17
480 #define I915_PARAM_HAS_ALIASING_PPGTT	 18
481 #define I915_PARAM_HAS_WAIT_TIMEOUT	 19
482 #define I915_PARAM_HAS_SEMAPHORES	 20
483 #define I915_PARAM_HAS_PRIME_VMAP_FLUSH	 21
484 #define I915_PARAM_HAS_VEBOX		 22
485 #define I915_PARAM_HAS_SECURE_BATCHES	 23
486 #define I915_PARAM_HAS_PINNED_BATCHES	 24
487 #define I915_PARAM_HAS_EXEC_NO_RELOC	 25
488 #define I915_PARAM_HAS_EXEC_HANDLE_LUT   26
489 #define I915_PARAM_HAS_WT     	 	 27
490 #define I915_PARAM_CMD_PARSER_VERSION	 28
491 #define I915_PARAM_HAS_COHERENT_PHYS_GTT 29
492 #define I915_PARAM_MMAP_VERSION          30
493 #define I915_PARAM_HAS_BSD2		 31
494 #define I915_PARAM_REVISION              32
495 #define I915_PARAM_SUBSLICE_TOTAL	 33
496 #define I915_PARAM_EU_TOTAL		 34
497 #define I915_PARAM_HAS_GPU_RESET	 35
498 #define I915_PARAM_HAS_RESOURCE_STREAMER 36
499 #define I915_PARAM_HAS_EXEC_SOFTPIN	 37
500 #define I915_PARAM_HAS_POOLED_EU	 38
501 #define I915_PARAM_MIN_EU_IN_POOL	 39
502 #define I915_PARAM_MMAP_GTT_VERSION	 40
503 
504 /*
505  * Query whether DRM_I915_GEM_EXECBUFFER2 supports user defined execution
506  * priorities and the driver will attempt to execute batches in priority order.
507  * The param returns a capability bitmask, nonzero implies that the scheduler
508  * is enabled, with different features present according to the mask.
509  *
510  * The initial priority for each batch is supplied by the context and is
511  * controlled via I915_CONTEXT_PARAM_PRIORITY.
512  */
513 #define I915_PARAM_HAS_SCHEDULER	 41
514 #define   I915_SCHEDULER_CAP_ENABLED	(1ul << 0)
515 #define   I915_SCHEDULER_CAP_PRIORITY	(1ul << 1)
516 #define   I915_SCHEDULER_CAP_PREEMPTION	(1ul << 2)
517 #define   I915_SCHEDULER_CAP_SEMAPHORES	(1ul << 3)
518 
519 #define I915_PARAM_HUC_STATUS		 42
520 
521 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to opt-out of
522  * synchronisation with implicit fencing on individual objects.
523  * See EXEC_OBJECT_ASYNC.
524  */
525 #define I915_PARAM_HAS_EXEC_ASYNC	 43
526 
527 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports explicit fence support -
528  * both being able to pass in a sync_file fd to wait upon before executing,
529  * and being able to return a new sync_file fd that is signaled when the
530  * current request is complete. See I915_EXEC_FENCE_IN and I915_EXEC_FENCE_OUT.
531  */
532 #define I915_PARAM_HAS_EXEC_FENCE	 44
533 
534 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to capture
535  * user specified bufffers for post-mortem debugging of GPU hangs. See
536  * EXEC_OBJECT_CAPTURE.
537  */
538 #define I915_PARAM_HAS_EXEC_CAPTURE	 45
539 
540 #define I915_PARAM_SLICE_MASK		 46
541 
542 /* Assuming it's uniform for each slice, this queries the mask of subslices
543  * per-slice for this system.
544  */
545 #define I915_PARAM_SUBSLICE_MASK	 47
546 
547 /*
548  * Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying the batch buffer
549  * as the first execobject as opposed to the last. See I915_EXEC_BATCH_FIRST.
550  */
551 #define I915_PARAM_HAS_EXEC_BATCH_FIRST	 48
552 
553 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
554  * drm_i915_gem_exec_fence structures.  See I915_EXEC_FENCE_ARRAY.
555  */
556 #define I915_PARAM_HAS_EXEC_FENCE_ARRAY  49
557 
558 /*
559  * Query whether every context (both per-file default and user created) is
560  * isolated (insofar as HW supports). If this parameter is not true, then
561  * freshly created contexts may inherit values from an existing context,
562  * rather than default HW values. If true, it also ensures (insofar as HW
563  * supports) that all state set by this context will not leak to any other
564  * context.
565  *
566  * As not every engine across every gen support contexts, the returned
567  * value reports the support of context isolation for individual engines by
568  * returning a bitmask of each engine class set to true if that class supports
569  * isolation.
570  */
571 #define I915_PARAM_HAS_CONTEXT_ISOLATION 50
572 
573 /* Frequency of the command streamer timestamps given by the *_TIMESTAMP
574  * registers. This used to be fixed per platform but from CNL onwards, this
575  * might vary depending on the parts.
576  */
577 #define I915_PARAM_CS_TIMESTAMP_FREQUENCY 51
578 
579 /*
580  * Once upon a time we supposed that writes through the GGTT would be
581  * immediately in physical memory (once flushed out of the CPU path). However,
582  * on a few different processors and chipsets, this is not necessarily the case
583  * as the writes appear to be buffered internally. Thus a read of the backing
584  * storage (physical memory) via a different path (with different physical tags
585  * to the indirect write via the GGTT) will see stale values from before
586  * the GGTT write. Inside the kernel, we can for the most part keep track of
587  * the different read/write domains in use (e.g. set-domain), but the assumption
588  * of coherency is baked into the ABI, hence reporting its true state in this
589  * parameter.
590  *
591  * Reports true when writes via mmap_gtt are immediately visible following an
592  * lfence to flush the WCB.
593  *
594  * Reports false when writes via mmap_gtt are indeterminately delayed in an in
595  * internal buffer and are _not_ immediately visible to third parties accessing
596  * directly via mmap_cpu/mmap_wc. Use of mmap_gtt as part of an IPC
597  * communications channel when reporting false is strongly disadvised.
598  */
599 #define I915_PARAM_MMAP_GTT_COHERENT	52
600 
601 /* Must be kept compact -- no holes and well documented */
602 
603 typedef struct drm_i915_getparam {
604 	__s32 param;
605 	/*
606 	 * WARNING: Using pointers instead of fixed-size u64 means we need to write
607 	 * compat32 code. Don't repeat this mistake.
608 	 */
609 	int __user *value;
610 } drm_i915_getparam_t;
611 
612 /* Ioctl to set kernel params:
613  */
614 #define I915_SETPARAM_USE_MI_BATCHBUFFER_START            1
615 #define I915_SETPARAM_TEX_LRU_LOG_GRANULARITY             2
616 #define I915_SETPARAM_ALLOW_BATCHBUFFER                   3
617 #define I915_SETPARAM_NUM_USED_FENCES                     4
618 /* Must be kept compact -- no holes */
619 
620 typedef struct drm_i915_setparam {
621 	int param;
622 	int value;
623 } drm_i915_setparam_t;
624 
625 /* A memory manager for regions of shared memory:
626  */
627 #define I915_MEM_REGION_AGP 1
628 
629 typedef struct drm_i915_mem_alloc {
630 	int region;
631 	int alignment;
632 	int size;
633 	int __user *region_offset;	/* offset from start of fb or agp */
634 } drm_i915_mem_alloc_t;
635 
636 typedef struct drm_i915_mem_free {
637 	int region;
638 	int region_offset;
639 } drm_i915_mem_free_t;
640 
641 typedef struct drm_i915_mem_init_heap {
642 	int region;
643 	int size;
644 	int start;
645 } drm_i915_mem_init_heap_t;
646 
647 /* Allow memory manager to be torn down and re-initialized (eg on
648  * rotate):
649  */
650 typedef struct drm_i915_mem_destroy_heap {
651 	int region;
652 } drm_i915_mem_destroy_heap_t;
653 
654 /* Allow X server to configure which pipes to monitor for vblank signals
655  */
656 #define	DRM_I915_VBLANK_PIPE_A	1
657 #define	DRM_I915_VBLANK_PIPE_B	2
658 
659 typedef struct drm_i915_vblank_pipe {
660 	int pipe;
661 } drm_i915_vblank_pipe_t;
662 
663 /* Schedule buffer swap at given vertical blank:
664  */
665 typedef struct drm_i915_vblank_swap {
666 	drm_drawable_t drawable;
667 	enum drm_vblank_seq_type seqtype;
668 	unsigned int sequence;
669 } drm_i915_vblank_swap_t;
670 
671 typedef struct drm_i915_hws_addr {
672 	__u64 addr;
673 } drm_i915_hws_addr_t;
674 
675 struct drm_i915_gem_init {
676 	/**
677 	 * Beginning offset in the GTT to be managed by the DRM memory
678 	 * manager.
679 	 */
680 	__u64 gtt_start;
681 	/**
682 	 * Ending offset in the GTT to be managed by the DRM memory
683 	 * manager.
684 	 */
685 	__u64 gtt_end;
686 };
687 
688 struct drm_i915_gem_create {
689 	/**
690 	 * Requested size for the object.
691 	 *
692 	 * The (page-aligned) allocated size for the object will be returned.
693 	 */
694 	__u64 size;
695 	/**
696 	 * Returned handle for the object.
697 	 *
698 	 * Object handles are nonzero.
699 	 */
700 	__u32 handle;
701 	__u32 pad;
702 };
703 
704 struct drm_i915_gem_pread {
705 	/** Handle for the object being read. */
706 	__u32 handle;
707 	__u32 pad;
708 	/** Offset into the object to read from */
709 	__u64 offset;
710 	/** Length of data to read */
711 	__u64 size;
712 	/**
713 	 * Pointer to write the data into.
714 	 *
715 	 * This is a fixed-size type for 32/64 compatibility.
716 	 */
717 	__u64 data_ptr;
718 };
719 
720 struct drm_i915_gem_pwrite {
721 	/** Handle for the object being written to. */
722 	__u32 handle;
723 	__u32 pad;
724 	/** Offset into the object to write to */
725 	__u64 offset;
726 	/** Length of data to write */
727 	__u64 size;
728 	/**
729 	 * Pointer to read the data from.
730 	 *
731 	 * This is a fixed-size type for 32/64 compatibility.
732 	 */
733 	__u64 data_ptr;
734 };
735 
736 struct drm_i915_gem_mmap {
737 	/** Handle for the object being mapped. */
738 	__u32 handle;
739 	__u32 pad;
740 	/** Offset in the object to map. */
741 	__u64 offset;
742 	/**
743 	 * Length of data to map.
744 	 *
745 	 * The value will be page-aligned.
746 	 */
747 	__u64 size;
748 	/**
749 	 * Returned pointer the data was mapped at.
750 	 *
751 	 * This is a fixed-size type for 32/64 compatibility.
752 	 */
753 	__u64 addr_ptr;
754 
755 	/**
756 	 * Flags for extended behaviour.
757 	 *
758 	 * Added in version 2.
759 	 */
760 	__u64 flags;
761 #define I915_MMAP_WC 0x1
762 };
763 
764 struct drm_i915_gem_mmap_gtt {
765 	/** Handle for the object being mapped. */
766 	__u32 handle;
767 	__u32 pad;
768 	/**
769 	 * Fake offset to use for subsequent mmap call
770 	 *
771 	 * This is a fixed-size type for 32/64 compatibility.
772 	 */
773 	__u64 offset;
774 };
775 
776 struct drm_i915_gem_set_domain {
777 	/** Handle for the object */
778 	__u32 handle;
779 
780 	/** New read domains */
781 	__u32 read_domains;
782 
783 	/** New write domain */
784 	__u32 write_domain;
785 };
786 
787 struct drm_i915_gem_sw_finish {
788 	/** Handle for the object */
789 	__u32 handle;
790 };
791 
792 struct drm_i915_gem_relocation_entry {
793 	/**
794 	 * Handle of the buffer being pointed to by this relocation entry.
795 	 *
796 	 * It's appealing to make this be an index into the mm_validate_entry
797 	 * list to refer to the buffer, but this allows the driver to create
798 	 * a relocation list for state buffers and not re-write it per
799 	 * exec using the buffer.
800 	 */
801 	__u32 target_handle;
802 
803 	/**
804 	 * Value to be added to the offset of the target buffer to make up
805 	 * the relocation entry.
806 	 */
807 	__u32 delta;
808 
809 	/** Offset in the buffer the relocation entry will be written into */
810 	__u64 offset;
811 
812 	/**
813 	 * Offset value of the target buffer that the relocation entry was last
814 	 * written as.
815 	 *
816 	 * If the buffer has the same offset as last time, we can skip syncing
817 	 * and writing the relocation.  This value is written back out by
818 	 * the execbuffer ioctl when the relocation is written.
819 	 */
820 	__u64 presumed_offset;
821 
822 	/**
823 	 * Target memory domains read by this operation.
824 	 */
825 	__u32 read_domains;
826 
827 	/**
828 	 * Target memory domains written by this operation.
829 	 *
830 	 * Note that only one domain may be written by the whole
831 	 * execbuffer operation, so that where there are conflicts,
832 	 * the application will get -EINVAL back.
833 	 */
834 	__u32 write_domain;
835 };
836 
837 /** @{
838  * Intel memory domains
839  *
840  * Most of these just align with the various caches in
841  * the system and are used to flush and invalidate as
842  * objects end up cached in different domains.
843  */
844 /** CPU cache */
845 #define I915_GEM_DOMAIN_CPU		0x00000001
846 /** Render cache, used by 2D and 3D drawing */
847 #define I915_GEM_DOMAIN_RENDER		0x00000002
848 /** Sampler cache, used by texture engine */
849 #define I915_GEM_DOMAIN_SAMPLER		0x00000004
850 /** Command queue, used to load batch buffers */
851 #define I915_GEM_DOMAIN_COMMAND		0x00000008
852 /** Instruction cache, used by shader programs */
853 #define I915_GEM_DOMAIN_INSTRUCTION	0x00000010
854 /** Vertex address cache */
855 #define I915_GEM_DOMAIN_VERTEX		0x00000020
856 /** GTT domain - aperture and scanout */
857 #define I915_GEM_DOMAIN_GTT		0x00000040
858 /** WC domain - uncached access */
859 #define I915_GEM_DOMAIN_WC		0x00000080
860 /** @} */
861 
862 struct drm_i915_gem_exec_object {
863 	/**
864 	 * User's handle for a buffer to be bound into the GTT for this
865 	 * operation.
866 	 */
867 	__u32 handle;
868 
869 	/** Number of relocations to be performed on this buffer */
870 	__u32 relocation_count;
871 	/**
872 	 * Pointer to array of struct drm_i915_gem_relocation_entry containing
873 	 * the relocations to be performed in this buffer.
874 	 */
875 	__u64 relocs_ptr;
876 
877 	/** Required alignment in graphics aperture */
878 	__u64 alignment;
879 
880 	/**
881 	 * Returned value of the updated offset of the object, for future
882 	 * presumed_offset writes.
883 	 */
884 	__u64 offset;
885 };
886 
887 struct drm_i915_gem_execbuffer {
888 	/**
889 	 * List of buffers to be validated with their relocations to be
890 	 * performend on them.
891 	 *
892 	 * This is a pointer to an array of struct drm_i915_gem_validate_entry.
893 	 *
894 	 * These buffers must be listed in an order such that all relocations
895 	 * a buffer is performing refer to buffers that have already appeared
896 	 * in the validate list.
897 	 */
898 	__u64 buffers_ptr;
899 	__u32 buffer_count;
900 
901 	/** Offset in the batchbuffer to start execution from. */
902 	__u32 batch_start_offset;
903 	/** Bytes used in batchbuffer from batch_start_offset */
904 	__u32 batch_len;
905 	__u32 DR1;
906 	__u32 DR4;
907 	__u32 num_cliprects;
908 	/** This is a struct drm_clip_rect *cliprects */
909 	__u64 cliprects_ptr;
910 };
911 
912 struct drm_i915_gem_exec_object2 {
913 	/**
914 	 * User's handle for a buffer to be bound into the GTT for this
915 	 * operation.
916 	 */
917 	__u32 handle;
918 
919 	/** Number of relocations to be performed on this buffer */
920 	__u32 relocation_count;
921 	/**
922 	 * Pointer to array of struct drm_i915_gem_relocation_entry containing
923 	 * the relocations to be performed in this buffer.
924 	 */
925 	__u64 relocs_ptr;
926 
927 	/** Required alignment in graphics aperture */
928 	__u64 alignment;
929 
930 	/**
931 	 * When the EXEC_OBJECT_PINNED flag is specified this is populated by
932 	 * the user with the GTT offset at which this object will be pinned.
933 	 * When the I915_EXEC_NO_RELOC flag is specified this must contain the
934 	 * presumed_offset of the object.
935 	 * During execbuffer2 the kernel populates it with the value of the
936 	 * current GTT offset of the object, for future presumed_offset writes.
937 	 */
938 	__u64 offset;
939 
940 #define EXEC_OBJECT_NEEDS_FENCE		 (1<<0)
941 #define EXEC_OBJECT_NEEDS_GTT		 (1<<1)
942 #define EXEC_OBJECT_WRITE		 (1<<2)
943 #define EXEC_OBJECT_SUPPORTS_48B_ADDRESS (1<<3)
944 #define EXEC_OBJECT_PINNED		 (1<<4)
945 #define EXEC_OBJECT_PAD_TO_SIZE		 (1<<5)
946 /* The kernel implicitly tracks GPU activity on all GEM objects, and
947  * synchronises operations with outstanding rendering. This includes
948  * rendering on other devices if exported via dma-buf. However, sometimes
949  * this tracking is too coarse and the user knows better. For example,
950  * if the object is split into non-overlapping ranges shared between different
951  * clients or engines (i.e. suballocating objects), the implicit tracking
952  * by kernel assumes that each operation affects the whole object rather
953  * than an individual range, causing needless synchronisation between clients.
954  * The kernel will also forgo any CPU cache flushes prior to rendering from
955  * the object as the client is expected to be also handling such domain
956  * tracking.
957  *
958  * The kernel maintains the implicit tracking in order to manage resources
959  * used by the GPU - this flag only disables the synchronisation prior to
960  * rendering with this object in this execbuf.
961  *
962  * Opting out of implicit synhronisation requires the user to do its own
963  * explicit tracking to avoid rendering corruption. See, for example,
964  * I915_PARAM_HAS_EXEC_FENCE to order execbufs and execute them asynchronously.
965  */
966 #define EXEC_OBJECT_ASYNC		(1<<6)
967 /* Request that the contents of this execobject be copied into the error
968  * state upon a GPU hang involving this batch for post-mortem debugging.
969  * These buffers are recorded in no particular order as "user" in
970  * /sys/class/drm/cardN/error. Query I915_PARAM_HAS_EXEC_CAPTURE to see
971  * if the kernel supports this flag.
972  */
973 #define EXEC_OBJECT_CAPTURE		(1<<7)
974 /* All remaining bits are MBZ and RESERVED FOR FUTURE USE */
975 #define __EXEC_OBJECT_UNKNOWN_FLAGS -(EXEC_OBJECT_CAPTURE<<1)
976 	__u64 flags;
977 
978 	union {
979 		__u64 rsvd1;
980 		__u64 pad_to_size;
981 	};
982 	__u64 rsvd2;
983 };
984 
985 struct drm_i915_gem_exec_fence {
986 	/**
987 	 * User's handle for a drm_syncobj to wait on or signal.
988 	 */
989 	__u32 handle;
990 
991 #define I915_EXEC_FENCE_WAIT            (1<<0)
992 #define I915_EXEC_FENCE_SIGNAL          (1<<1)
993 #define __I915_EXEC_FENCE_UNKNOWN_FLAGS (-(I915_EXEC_FENCE_SIGNAL << 1))
994 	__u32 flags;
995 };
996 
997 struct drm_i915_gem_execbuffer2 {
998 	/**
999 	 * List of gem_exec_object2 structs
1000 	 */
1001 	__u64 buffers_ptr;
1002 	__u32 buffer_count;
1003 
1004 	/** Offset in the batchbuffer to start execution from. */
1005 	__u32 batch_start_offset;
1006 	/** Bytes used in batchbuffer from batch_start_offset */
1007 	__u32 batch_len;
1008 	__u32 DR1;
1009 	__u32 DR4;
1010 	__u32 num_cliprects;
1011 	/**
1012 	 * This is a struct drm_clip_rect *cliprects if I915_EXEC_FENCE_ARRAY
1013 	 * is not set.  If I915_EXEC_FENCE_ARRAY is set, then this is a
1014 	 * struct drm_i915_gem_exec_fence *fences.
1015 	 */
1016 	__u64 cliprects_ptr;
1017 #define I915_EXEC_RING_MASK              (0x3f)
1018 #define I915_EXEC_DEFAULT                (0<<0)
1019 #define I915_EXEC_RENDER                 (1<<0)
1020 #define I915_EXEC_BSD                    (2<<0)
1021 #define I915_EXEC_BLT                    (3<<0)
1022 #define I915_EXEC_VEBOX                  (4<<0)
1023 
1024 /* Used for switching the constants addressing mode on gen4+ RENDER ring.
1025  * Gen6+ only supports relative addressing to dynamic state (default) and
1026  * absolute addressing.
1027  *
1028  * These flags are ignored for the BSD and BLT rings.
1029  */
1030 #define I915_EXEC_CONSTANTS_MASK 	(3<<6)
1031 #define I915_EXEC_CONSTANTS_REL_GENERAL (0<<6) /* default */
1032 #define I915_EXEC_CONSTANTS_ABSOLUTE 	(1<<6)
1033 #define I915_EXEC_CONSTANTS_REL_SURFACE (2<<6) /* gen4/5 only */
1034 	__u64 flags;
1035 	__u64 rsvd1; /* now used for context info */
1036 	__u64 rsvd2;
1037 };
1038 
1039 /** Resets the SO write offset registers for transform feedback on gen7. */
1040 #define I915_EXEC_GEN7_SOL_RESET	(1<<8)
1041 
1042 /** Request a privileged ("secure") batch buffer. Note only available for
1043  * DRM_ROOT_ONLY | DRM_MASTER processes.
1044  */
1045 #define I915_EXEC_SECURE		(1<<9)
1046 
1047 /** Inform the kernel that the batch is and will always be pinned. This
1048  * negates the requirement for a workaround to be performed to avoid
1049  * an incoherent CS (such as can be found on 830/845). If this flag is
1050  * not passed, the kernel will endeavour to make sure the batch is
1051  * coherent with the CS before execution. If this flag is passed,
1052  * userspace assumes the responsibility for ensuring the same.
1053  */
1054 #define I915_EXEC_IS_PINNED		(1<<10)
1055 
1056 /** Provide a hint to the kernel that the command stream and auxiliary
1057  * state buffers already holds the correct presumed addresses and so the
1058  * relocation process may be skipped if no buffers need to be moved in
1059  * preparation for the execbuffer.
1060  */
1061 #define I915_EXEC_NO_RELOC		(1<<11)
1062 
1063 /** Use the reloc.handle as an index into the exec object array rather
1064  * than as the per-file handle.
1065  */
1066 #define I915_EXEC_HANDLE_LUT		(1<<12)
1067 
1068 /** Used for switching BSD rings on the platforms with two BSD rings */
1069 #define I915_EXEC_BSD_SHIFT	 (13)
1070 #define I915_EXEC_BSD_MASK	 (3 << I915_EXEC_BSD_SHIFT)
1071 /* default ping-pong mode */
1072 #define I915_EXEC_BSD_DEFAULT	 (0 << I915_EXEC_BSD_SHIFT)
1073 #define I915_EXEC_BSD_RING1	 (1 << I915_EXEC_BSD_SHIFT)
1074 #define I915_EXEC_BSD_RING2	 (2 << I915_EXEC_BSD_SHIFT)
1075 
1076 /** Tell the kernel that the batchbuffer is processed by
1077  *  the resource streamer.
1078  */
1079 #define I915_EXEC_RESOURCE_STREAMER     (1<<15)
1080 
1081 /* Setting I915_EXEC_FENCE_IN implies that lower_32_bits(rsvd2) represent
1082  * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1083  * the batch.
1084  *
1085  * Returns -EINVAL if the sync_file fd cannot be found.
1086  */
1087 #define I915_EXEC_FENCE_IN		(1<<16)
1088 
1089 /* Setting I915_EXEC_FENCE_OUT causes the ioctl to return a sync_file fd
1090  * in the upper_32_bits(rsvd2) upon success. Ownership of the fd is given
1091  * to the caller, and it should be close() after use. (The fd is a regular
1092  * file descriptor and will be cleaned up on process termination. It holds
1093  * a reference to the request, but nothing else.)
1094  *
1095  * The sync_file fd can be combined with other sync_file and passed either
1096  * to execbuf using I915_EXEC_FENCE_IN, to atomic KMS ioctls (so that a flip
1097  * will only occur after this request completes), or to other devices.
1098  *
1099  * Using I915_EXEC_FENCE_OUT requires use of
1100  * DRM_IOCTL_I915_GEM_EXECBUFFER2_WR ioctl so that the result is written
1101  * back to userspace. Failure to do so will cause the out-fence to always
1102  * be reported as zero, and the real fence fd to be leaked.
1103  */
1104 #define I915_EXEC_FENCE_OUT		(1<<17)
1105 
1106 /*
1107  * Traditionally the execbuf ioctl has only considered the final element in
1108  * the execobject[] to be the executable batch. Often though, the client
1109  * will known the batch object prior to construction and being able to place
1110  * it into the execobject[] array first can simplify the relocation tracking.
1111  * Setting I915_EXEC_BATCH_FIRST tells execbuf to use element 0 of the
1112  * execobject[] as the * batch instead (the default is to use the last
1113  * element).
1114  */
1115 #define I915_EXEC_BATCH_FIRST		(1<<18)
1116 
1117 /* Setting I915_FENCE_ARRAY implies that num_cliprects and cliprects_ptr
1118  * define an array of i915_gem_exec_fence structures which specify a set of
1119  * dma fences to wait upon or signal.
1120  */
1121 #define I915_EXEC_FENCE_ARRAY   (1<<19)
1122 
1123 #define __I915_EXEC_UNKNOWN_FLAGS (-(I915_EXEC_FENCE_ARRAY<<1))
1124 
1125 #define I915_EXEC_CONTEXT_ID_MASK	(0xffffffff)
1126 #define i915_execbuffer2_set_context_id(eb2, context) \
1127 	(eb2).rsvd1 = context & I915_EXEC_CONTEXT_ID_MASK
1128 #define i915_execbuffer2_get_context_id(eb2) \
1129 	((eb2).rsvd1 & I915_EXEC_CONTEXT_ID_MASK)
1130 
1131 struct drm_i915_gem_pin {
1132 	/** Handle of the buffer to be pinned. */
1133 	__u32 handle;
1134 	__u32 pad;
1135 
1136 	/** alignment required within the aperture */
1137 	__u64 alignment;
1138 
1139 	/** Returned GTT offset of the buffer. */
1140 	__u64 offset;
1141 };
1142 
1143 struct drm_i915_gem_unpin {
1144 	/** Handle of the buffer to be unpinned. */
1145 	__u32 handle;
1146 	__u32 pad;
1147 };
1148 
1149 struct drm_i915_gem_busy {
1150 	/** Handle of the buffer to check for busy */
1151 	__u32 handle;
1152 
1153 	/** Return busy status
1154 	 *
1155 	 * A return of 0 implies that the object is idle (after
1156 	 * having flushed any pending activity), and a non-zero return that
1157 	 * the object is still in-flight on the GPU. (The GPU has not yet
1158 	 * signaled completion for all pending requests that reference the
1159 	 * object.) An object is guaranteed to become idle eventually (so
1160 	 * long as no new GPU commands are executed upon it). Due to the
1161 	 * asynchronous nature of the hardware, an object reported
1162 	 * as busy may become idle before the ioctl is completed.
1163 	 *
1164 	 * Furthermore, if the object is busy, which engine is busy is only
1165 	 * provided as a guide and only indirectly by reporting its class
1166 	 * (there may be more than one engine in each class). There are race
1167 	 * conditions which prevent the report of which engines are busy from
1168 	 * being always accurate.  However, the converse is not true. If the
1169 	 * object is idle, the result of the ioctl, that all engines are idle,
1170 	 * is accurate.
1171 	 *
1172 	 * The returned dword is split into two fields to indicate both
1173 	 * the engine classess on which the object is being read, and the
1174 	 * engine class on which it is currently being written (if any).
1175 	 *
1176 	 * The low word (bits 0:15) indicate if the object is being written
1177 	 * to by any engine (there can only be one, as the GEM implicit
1178 	 * synchronisation rules force writes to be serialised). Only the
1179 	 * engine class (offset by 1, I915_ENGINE_CLASS_RENDER is reported as
1180 	 * 1 not 0 etc) for the last write is reported.
1181 	 *
1182 	 * The high word (bits 16:31) are a bitmask of which engines classes
1183 	 * are currently reading from the object. Multiple engines may be
1184 	 * reading from the object simultaneously.
1185 	 *
1186 	 * The value of each engine class is the same as specified in the
1187 	 * I915_CONTEXT_SET_ENGINES parameter and via perf, i.e.
1188 	 * I915_ENGINE_CLASS_RENDER, I915_ENGINE_CLASS_COPY, etc.
1189 	 * reported as active itself. Some hardware may have parallel
1190 	 * execution engines, e.g. multiple media engines, which are
1191 	 * mapped to the same class identifier and so are not separately
1192 	 * reported for busyness.
1193 	 *
1194 	 * Caveat emptor:
1195 	 * Only the boolean result of this query is reliable; that is whether
1196 	 * the object is idle or busy. The report of which engines are busy
1197 	 * should be only used as a heuristic.
1198 	 */
1199 	__u32 busy;
1200 };
1201 
1202 /**
1203  * I915_CACHING_NONE
1204  *
1205  * GPU access is not coherent with cpu caches. Default for machines without an
1206  * LLC.
1207  */
1208 #define I915_CACHING_NONE		0
1209 /**
1210  * I915_CACHING_CACHED
1211  *
1212  * GPU access is coherent with cpu caches and furthermore the data is cached in
1213  * last-level caches shared between cpu cores and the gpu GT. Default on
1214  * machines with HAS_LLC.
1215  */
1216 #define I915_CACHING_CACHED		1
1217 /**
1218  * I915_CACHING_DISPLAY
1219  *
1220  * Special GPU caching mode which is coherent with the scanout engines.
1221  * Transparently falls back to I915_CACHING_NONE on platforms where no special
1222  * cache mode (like write-through or gfdt flushing) is available. The kernel
1223  * automatically sets this mode when using a buffer as a scanout target.
1224  * Userspace can manually set this mode to avoid a costly stall and clflush in
1225  * the hotpath of drawing the first frame.
1226  */
1227 #define I915_CACHING_DISPLAY		2
1228 
1229 struct drm_i915_gem_caching {
1230 	/**
1231 	 * Handle of the buffer to set/get the caching level of. */
1232 	__u32 handle;
1233 
1234 	/**
1235 	 * Cacheing level to apply or return value
1236 	 *
1237 	 * bits0-15 are for generic caching control (i.e. the above defined
1238 	 * values). bits16-31 are reserved for platform-specific variations
1239 	 * (e.g. l3$ caching on gen7). */
1240 	__u32 caching;
1241 };
1242 
1243 #define I915_TILING_NONE	0
1244 #define I915_TILING_X		1
1245 #define I915_TILING_Y		2
1246 #define I915_TILING_LAST	I915_TILING_Y
1247 
1248 #define I915_BIT_6_SWIZZLE_NONE		0
1249 #define I915_BIT_6_SWIZZLE_9		1
1250 #define I915_BIT_6_SWIZZLE_9_10		2
1251 #define I915_BIT_6_SWIZZLE_9_11		3
1252 #define I915_BIT_6_SWIZZLE_9_10_11	4
1253 /* Not seen by userland */
1254 #define I915_BIT_6_SWIZZLE_UNKNOWN	5
1255 /* Seen by userland. */
1256 #define I915_BIT_6_SWIZZLE_9_17		6
1257 #define I915_BIT_6_SWIZZLE_9_10_17	7
1258 
1259 struct drm_i915_gem_set_tiling {
1260 	/** Handle of the buffer to have its tiling state updated */
1261 	__u32 handle;
1262 
1263 	/**
1264 	 * Tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1265 	 * I915_TILING_Y).
1266 	 *
1267 	 * This value is to be set on request, and will be updated by the
1268 	 * kernel on successful return with the actual chosen tiling layout.
1269 	 *
1270 	 * The tiling mode may be demoted to I915_TILING_NONE when the system
1271 	 * has bit 6 swizzling that can't be managed correctly by GEM.
1272 	 *
1273 	 * Buffer contents become undefined when changing tiling_mode.
1274 	 */
1275 	__u32 tiling_mode;
1276 
1277 	/**
1278 	 * Stride in bytes for the object when in I915_TILING_X or
1279 	 * I915_TILING_Y.
1280 	 */
1281 	__u32 stride;
1282 
1283 	/**
1284 	 * Returned address bit 6 swizzling required for CPU access through
1285 	 * mmap mapping.
1286 	 */
1287 	__u32 swizzle_mode;
1288 };
1289 
1290 struct drm_i915_gem_get_tiling {
1291 	/** Handle of the buffer to get tiling state for. */
1292 	__u32 handle;
1293 
1294 	/**
1295 	 * Current tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1296 	 * I915_TILING_Y).
1297 	 */
1298 	__u32 tiling_mode;
1299 
1300 	/**
1301 	 * Returned address bit 6 swizzling required for CPU access through
1302 	 * mmap mapping.
1303 	 */
1304 	__u32 swizzle_mode;
1305 
1306 	/**
1307 	 * Returned address bit 6 swizzling required for CPU access through
1308 	 * mmap mapping whilst bound.
1309 	 */
1310 	__u32 phys_swizzle_mode;
1311 };
1312 
1313 struct drm_i915_gem_get_aperture {
1314 	/** Total size of the aperture used by i915_gem_execbuffer, in bytes */
1315 	__u64 aper_size;
1316 
1317 	/**
1318 	 * Available space in the aperture used by i915_gem_execbuffer, in
1319 	 * bytes
1320 	 */
1321 	__u64 aper_available_size;
1322 };
1323 
1324 struct drm_i915_get_pipe_from_crtc_id {
1325 	/** ID of CRTC being requested **/
1326 	__u32 crtc_id;
1327 
1328 	/** pipe of requested CRTC **/
1329 	__u32 pipe;
1330 };
1331 
1332 #define I915_MADV_WILLNEED 0
1333 #define I915_MADV_DONTNEED 1
1334 #define __I915_MADV_PURGED 2 /* internal state */
1335 
1336 struct drm_i915_gem_madvise {
1337 	/** Handle of the buffer to change the backing store advice */
1338 	__u32 handle;
1339 
1340 	/* Advice: either the buffer will be needed again in the near future,
1341 	 *         or wont be and could be discarded under memory pressure.
1342 	 */
1343 	__u32 madv;
1344 
1345 	/** Whether the backing store still exists. */
1346 	__u32 retained;
1347 };
1348 
1349 /* flags */
1350 #define I915_OVERLAY_TYPE_MASK 		0xff
1351 #define I915_OVERLAY_YUV_PLANAR 	0x01
1352 #define I915_OVERLAY_YUV_PACKED 	0x02
1353 #define I915_OVERLAY_RGB		0x03
1354 
1355 #define I915_OVERLAY_DEPTH_MASK		0xff00
1356 #define I915_OVERLAY_RGB24		0x1000
1357 #define I915_OVERLAY_RGB16		0x2000
1358 #define I915_OVERLAY_RGB15		0x3000
1359 #define I915_OVERLAY_YUV422		0x0100
1360 #define I915_OVERLAY_YUV411		0x0200
1361 #define I915_OVERLAY_YUV420		0x0300
1362 #define I915_OVERLAY_YUV410		0x0400
1363 
1364 #define I915_OVERLAY_SWAP_MASK		0xff0000
1365 #define I915_OVERLAY_NO_SWAP		0x000000
1366 #define I915_OVERLAY_UV_SWAP		0x010000
1367 #define I915_OVERLAY_Y_SWAP		0x020000
1368 #define I915_OVERLAY_Y_AND_UV_SWAP	0x030000
1369 
1370 #define I915_OVERLAY_FLAGS_MASK		0xff000000
1371 #define I915_OVERLAY_ENABLE		0x01000000
1372 
1373 struct drm_intel_overlay_put_image {
1374 	/* various flags and src format description */
1375 	__u32 flags;
1376 	/* source picture description */
1377 	__u32 bo_handle;
1378 	/* stride values and offsets are in bytes, buffer relative */
1379 	__u16 stride_Y; /* stride for packed formats */
1380 	__u16 stride_UV;
1381 	__u32 offset_Y; /* offset for packet formats */
1382 	__u32 offset_U;
1383 	__u32 offset_V;
1384 	/* in pixels */
1385 	__u16 src_width;
1386 	__u16 src_height;
1387 	/* to compensate the scaling factors for partially covered surfaces */
1388 	__u16 src_scan_width;
1389 	__u16 src_scan_height;
1390 	/* output crtc description */
1391 	__u32 crtc_id;
1392 	__u16 dst_x;
1393 	__u16 dst_y;
1394 	__u16 dst_width;
1395 	__u16 dst_height;
1396 };
1397 
1398 /* flags */
1399 #define I915_OVERLAY_UPDATE_ATTRS	(1<<0)
1400 #define I915_OVERLAY_UPDATE_GAMMA	(1<<1)
1401 #define I915_OVERLAY_DISABLE_DEST_COLORKEY	(1<<2)
1402 struct drm_intel_overlay_attrs {
1403 	__u32 flags;
1404 	__u32 color_key;
1405 	__s32 brightness;
1406 	__u32 contrast;
1407 	__u32 saturation;
1408 	__u32 gamma0;
1409 	__u32 gamma1;
1410 	__u32 gamma2;
1411 	__u32 gamma3;
1412 	__u32 gamma4;
1413 	__u32 gamma5;
1414 };
1415 
1416 /*
1417  * Intel sprite handling
1418  *
1419  * Color keying works with a min/mask/max tuple.  Both source and destination
1420  * color keying is allowed.
1421  *
1422  * Source keying:
1423  * Sprite pixels within the min & max values, masked against the color channels
1424  * specified in the mask field, will be transparent.  All other pixels will
1425  * be displayed on top of the primary plane.  For RGB surfaces, only the min
1426  * and mask fields will be used; ranged compares are not allowed.
1427  *
1428  * Destination keying:
1429  * Primary plane pixels that match the min value, masked against the color
1430  * channels specified in the mask field, will be replaced by corresponding
1431  * pixels from the sprite plane.
1432  *
1433  * Note that source & destination keying are exclusive; only one can be
1434  * active on a given plane.
1435  */
1436 
1437 #define I915_SET_COLORKEY_NONE		(1<<0) /* Deprecated. Instead set
1438 						* flags==0 to disable colorkeying.
1439 						*/
1440 #define I915_SET_COLORKEY_DESTINATION	(1<<1)
1441 #define I915_SET_COLORKEY_SOURCE	(1<<2)
1442 struct drm_intel_sprite_colorkey {
1443 	__u32 plane_id;
1444 	__u32 min_value;
1445 	__u32 channel_mask;
1446 	__u32 max_value;
1447 	__u32 flags;
1448 };
1449 
1450 struct drm_i915_gem_wait {
1451 	/** Handle of BO we shall wait on */
1452 	__u32 bo_handle;
1453 	__u32 flags;
1454 	/** Number of nanoseconds to wait, Returns time remaining. */
1455 	__s64 timeout_ns;
1456 };
1457 
1458 struct drm_i915_gem_context_create {
1459 	__u32 ctx_id; /* output: id of new context*/
1460 	__u32 pad;
1461 };
1462 
1463 struct drm_i915_gem_context_create_ext {
1464 	__u32 ctx_id; /* output: id of new context*/
1465 	__u32 flags;
1466 #define I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS	(1u << 0)
1467 #define I915_CONTEXT_CREATE_FLAGS_UNKNOWN \
1468 	(-(I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS << 1))
1469 	__u64 extensions;
1470 };
1471 
1472 struct drm_i915_gem_context_param {
1473 	__u32 ctx_id;
1474 	__u32 size;
1475 	__u64 param;
1476 #define I915_CONTEXT_PARAM_BAN_PERIOD	0x1
1477 #define I915_CONTEXT_PARAM_NO_ZEROMAP	0x2
1478 #define I915_CONTEXT_PARAM_GTT_SIZE	0x3
1479 #define I915_CONTEXT_PARAM_NO_ERROR_CAPTURE	0x4
1480 #define I915_CONTEXT_PARAM_BANNABLE	0x5
1481 #define I915_CONTEXT_PARAM_PRIORITY	0x6
1482 #define   I915_CONTEXT_MAX_USER_PRIORITY	1023 /* inclusive */
1483 #define   I915_CONTEXT_DEFAULT_PRIORITY		0
1484 #define   I915_CONTEXT_MIN_USER_PRIORITY	-1023 /* inclusive */
1485 	/*
1486 	 * When using the following param, value should be a pointer to
1487 	 * drm_i915_gem_context_param_sseu.
1488 	 */
1489 #define I915_CONTEXT_PARAM_SSEU		0x7
1490 
1491 /*
1492  * Not all clients may want to attempt automatic recover of a context after
1493  * a hang (for example, some clients may only submit very small incremental
1494  * batches relying on known logical state of previous batches which will never
1495  * recover correctly and each attempt will hang), and so would prefer that
1496  * the context is forever banned instead.
1497  *
1498  * If set to false (0), after a reset, subsequent (and in flight) rendering
1499  * from this context is discarded, and the client will need to create a new
1500  * context to use instead.
1501  *
1502  * If set to true (1), the kernel will automatically attempt to recover the
1503  * context by skipping the hanging batch and executing the next batch starting
1504  * from the default context state (discarding the incomplete logical context
1505  * state lost due to the reset).
1506  *
1507  * On creation, all new contexts are marked as recoverable.
1508  */
1509 #define I915_CONTEXT_PARAM_RECOVERABLE	0x8
1510 /* Must be kept compact -- no holes and well documented */
1511 
1512 	__u64 value;
1513 };
1514 
1515 /**
1516  * Context SSEU programming
1517  *
1518  * It may be necessary for either functional or performance reason to configure
1519  * a context to run with a reduced number of SSEU (where SSEU stands for Slice/
1520  * Sub-slice/EU).
1521  *
1522  * This is done by configuring SSEU configuration using the below
1523  * @struct drm_i915_gem_context_param_sseu for every supported engine which
1524  * userspace intends to use.
1525  *
1526  * Not all GPUs or engines support this functionality in which case an error
1527  * code -ENODEV will be returned.
1528  *
1529  * Also, flexibility of possible SSEU configuration permutations varies between
1530  * GPU generations and software imposed limitations. Requesting such a
1531  * combination will return an error code of -EINVAL.
1532  *
1533  * NOTE: When perf/OA is active the context's SSEU configuration is ignored in
1534  * favour of a single global setting.
1535  */
1536 struct drm_i915_gem_context_param_sseu {
1537 	/*
1538 	 * Engine class & instance to be configured or queried.
1539 	 */
1540 	struct i915_engine_class_instance engine;
1541 
1542 	/*
1543 	 * Unused for now. Must be cleared to zero.
1544 	 */
1545 	__u32 flags;
1546 
1547 	/*
1548 	 * Mask of slices to enable for the context. Valid values are a subset
1549 	 * of the bitmask value returned for I915_PARAM_SLICE_MASK.
1550 	 */
1551 	__u64 slice_mask;
1552 
1553 	/*
1554 	 * Mask of subslices to enable for the context. Valid values are a
1555 	 * subset of the bitmask value return by I915_PARAM_SUBSLICE_MASK.
1556 	 */
1557 	__u64 subslice_mask;
1558 
1559 	/*
1560 	 * Minimum/Maximum number of EUs to enable per subslice for the
1561 	 * context. min_eus_per_subslice must be inferior or equal to
1562 	 * max_eus_per_subslice.
1563 	 */
1564 	__u16 min_eus_per_subslice;
1565 	__u16 max_eus_per_subslice;
1566 
1567 	/*
1568 	 * Unused for now. Must be cleared to zero.
1569 	 */
1570 	__u32 rsvd;
1571 };
1572 
1573 struct drm_i915_gem_context_create_ext_setparam {
1574 #define I915_CONTEXT_CREATE_EXT_SETPARAM 0
1575 	struct i915_user_extension base;
1576 	struct drm_i915_gem_context_param param;
1577 };
1578 
1579 struct drm_i915_gem_context_destroy {
1580 	__u32 ctx_id;
1581 	__u32 pad;
1582 };
1583 
1584 /*
1585  * DRM_I915_GEM_VM_CREATE -
1586  *
1587  * Create a new virtual memory address space (ppGTT) for use within a context
1588  * on the same file. Extensions can be provided to configure exactly how the
1589  * address space is setup upon creation.
1590  *
1591  * The id of new VM (bound to the fd) for use with I915_CONTEXT_PARAM_VM is
1592  * returned in the outparam @id.
1593  *
1594  * No flags are defined, with all bits reserved and must be zero.
1595  *
1596  * An extension chain maybe provided, starting with @extensions, and terminated
1597  * by the @next_extension being 0. Currently, no extensions are defined.
1598  *
1599  * DRM_I915_GEM_VM_DESTROY -
1600  *
1601  * Destroys a previously created VM id, specified in @id.
1602  *
1603  * No extensions or flags are allowed currently, and so must be zero.
1604  */
1605 struct drm_i915_gem_vm_control {
1606 	__u64 extensions;
1607 	__u32 flags;
1608 	__u32 vm_id;
1609 };
1610 
1611 struct drm_i915_reg_read {
1612 	/*
1613 	 * Register offset.
1614 	 * For 64bit wide registers where the upper 32bits don't immediately
1615 	 * follow the lower 32bits, the offset of the lower 32bits must
1616 	 * be specified
1617 	 */
1618 	__u64 offset;
1619 #define I915_REG_READ_8B_WA (1ul << 0)
1620 
1621 	__u64 val; /* Return value */
1622 };
1623 
1624 /* Known registers:
1625  *
1626  * Render engine timestamp - 0x2358 + 64bit - gen7+
1627  * - Note this register returns an invalid value if using the default
1628  *   single instruction 8byte read, in order to workaround that pass
1629  *   flag I915_REG_READ_8B_WA in offset field.
1630  *
1631  */
1632 
1633 struct drm_i915_reset_stats {
1634 	__u32 ctx_id;
1635 	__u32 flags;
1636 
1637 	/* All resets since boot/module reload, for all contexts */
1638 	__u32 reset_count;
1639 
1640 	/* Number of batches lost when active in GPU, for this context */
1641 	__u32 batch_active;
1642 
1643 	/* Number of batches lost pending for execution, for this context */
1644 	__u32 batch_pending;
1645 
1646 	__u32 pad;
1647 };
1648 
1649 struct drm_i915_gem_userptr {
1650 	__u64 user_ptr;
1651 	__u64 user_size;
1652 	__u32 flags;
1653 #define I915_USERPTR_READ_ONLY 0x1
1654 #define I915_USERPTR_UNSYNCHRONIZED 0x80000000
1655 	/**
1656 	 * Returned handle for the object.
1657 	 *
1658 	 * Object handles are nonzero.
1659 	 */
1660 	__u32 handle;
1661 };
1662 
1663 enum drm_i915_oa_format {
1664 	I915_OA_FORMAT_A13 = 1,	    /* HSW only */
1665 	I915_OA_FORMAT_A29,	    /* HSW only */
1666 	I915_OA_FORMAT_A13_B8_C8,   /* HSW only */
1667 	I915_OA_FORMAT_B4_C8,	    /* HSW only */
1668 	I915_OA_FORMAT_A45_B8_C8,   /* HSW only */
1669 	I915_OA_FORMAT_B4_C8_A16,   /* HSW only */
1670 	I915_OA_FORMAT_C4_B8,	    /* HSW+ */
1671 
1672 	/* Gen8+ */
1673 	I915_OA_FORMAT_A12,
1674 	I915_OA_FORMAT_A12_B8_C8,
1675 	I915_OA_FORMAT_A32u40_A4u32_B8_C8,
1676 
1677 	I915_OA_FORMAT_MAX	    /* non-ABI */
1678 };
1679 
1680 enum drm_i915_perf_property_id {
1681 	/**
1682 	 * Open the stream for a specific context handle (as used with
1683 	 * execbuffer2). A stream opened for a specific context this way
1684 	 * won't typically require root privileges.
1685 	 */
1686 	DRM_I915_PERF_PROP_CTX_HANDLE = 1,
1687 
1688 	/**
1689 	 * A value of 1 requests the inclusion of raw OA unit reports as
1690 	 * part of stream samples.
1691 	 */
1692 	DRM_I915_PERF_PROP_SAMPLE_OA,
1693 
1694 	/**
1695 	 * The value specifies which set of OA unit metrics should be
1696 	 * be configured, defining the contents of any OA unit reports.
1697 	 */
1698 	DRM_I915_PERF_PROP_OA_METRICS_SET,
1699 
1700 	/**
1701 	 * The value specifies the size and layout of OA unit reports.
1702 	 */
1703 	DRM_I915_PERF_PROP_OA_FORMAT,
1704 
1705 	/**
1706 	 * Specifying this property implicitly requests periodic OA unit
1707 	 * sampling and (at least on Haswell) the sampling frequency is derived
1708 	 * from this exponent as follows:
1709 	 *
1710 	 *   80ns * 2^(period_exponent + 1)
1711 	 */
1712 	DRM_I915_PERF_PROP_OA_EXPONENT,
1713 
1714 	DRM_I915_PERF_PROP_MAX /* non-ABI */
1715 };
1716 
1717 struct drm_i915_perf_open_param {
1718 	__u32 flags;
1719 #define I915_PERF_FLAG_FD_CLOEXEC	(1<<0)
1720 #define I915_PERF_FLAG_FD_NONBLOCK	(1<<1)
1721 #define I915_PERF_FLAG_DISABLED		(1<<2)
1722 
1723 	/** The number of u64 (id, value) pairs */
1724 	__u32 num_properties;
1725 
1726 	/**
1727 	 * Pointer to array of u64 (id, value) pairs configuring the stream
1728 	 * to open.
1729 	 */
1730 	__u64 properties_ptr;
1731 };
1732 
1733 /**
1734  * Enable data capture for a stream that was either opened in a disabled state
1735  * via I915_PERF_FLAG_DISABLED or was later disabled via
1736  * I915_PERF_IOCTL_DISABLE.
1737  *
1738  * It is intended to be cheaper to disable and enable a stream than it may be
1739  * to close and re-open a stream with the same configuration.
1740  *
1741  * It's undefined whether any pending data for the stream will be lost.
1742  */
1743 #define I915_PERF_IOCTL_ENABLE	_IO('i', 0x0)
1744 
1745 /**
1746  * Disable data capture for a stream.
1747  *
1748  * It is an error to try and read a stream that is disabled.
1749  */
1750 #define I915_PERF_IOCTL_DISABLE	_IO('i', 0x1)
1751 
1752 /**
1753  * Common to all i915 perf records
1754  */
1755 struct drm_i915_perf_record_header {
1756 	__u32 type;
1757 	__u16 pad;
1758 	__u16 size;
1759 };
1760 
1761 enum drm_i915_perf_record_type {
1762 
1763 	/**
1764 	 * Samples are the work horse record type whose contents are extensible
1765 	 * and defined when opening an i915 perf stream based on the given
1766 	 * properties.
1767 	 *
1768 	 * Boolean properties following the naming convention
1769 	 * DRM_I915_PERF_SAMPLE_xyz_PROP request the inclusion of 'xyz' data in
1770 	 * every sample.
1771 	 *
1772 	 * The order of these sample properties given by userspace has no
1773 	 * affect on the ordering of data within a sample. The order is
1774 	 * documented here.
1775 	 *
1776 	 * struct {
1777 	 *     struct drm_i915_perf_record_header header;
1778 	 *
1779 	 *     { u32 oa_report[]; } && DRM_I915_PERF_PROP_SAMPLE_OA
1780 	 * };
1781 	 */
1782 	DRM_I915_PERF_RECORD_SAMPLE = 1,
1783 
1784 	/*
1785 	 * Indicates that one or more OA reports were not written by the
1786 	 * hardware. This can happen for example if an MI_REPORT_PERF_COUNT
1787 	 * command collides with periodic sampling - which would be more likely
1788 	 * at higher sampling frequencies.
1789 	 */
1790 	DRM_I915_PERF_RECORD_OA_REPORT_LOST = 2,
1791 
1792 	/**
1793 	 * An error occurred that resulted in all pending OA reports being lost.
1794 	 */
1795 	DRM_I915_PERF_RECORD_OA_BUFFER_LOST = 3,
1796 
1797 	DRM_I915_PERF_RECORD_MAX /* non-ABI */
1798 };
1799 
1800 /**
1801  * Structure to upload perf dynamic configuration into the kernel.
1802  */
1803 struct drm_i915_perf_oa_config {
1804 	/** String formatted like "%08x-%04x-%04x-%04x-%012x" */
1805 	char uuid[36];
1806 
1807 	__u32 n_mux_regs;
1808 	__u32 n_boolean_regs;
1809 	__u32 n_flex_regs;
1810 
1811 	/*
1812 	 * These fields are pointers to tuples of u32 values (register address,
1813 	 * value). For example the expected length of the buffer pointed by
1814 	 * mux_regs_ptr is (2 * sizeof(u32) * n_mux_regs).
1815 	 */
1816 	__u64 mux_regs_ptr;
1817 	__u64 boolean_regs_ptr;
1818 	__u64 flex_regs_ptr;
1819 };
1820 
1821 struct drm_i915_query_item {
1822 	__u64 query_id;
1823 #define DRM_I915_QUERY_TOPOLOGY_INFO    1
1824 /* Must be kept compact -- no holes and well documented */
1825 
1826 	/*
1827 	 * When set to zero by userspace, this is filled with the size of the
1828 	 * data to be written at the data_ptr pointer. The kernel sets this
1829 	 * value to a negative value to signal an error on a particular query
1830 	 * item.
1831 	 */
1832 	__s32 length;
1833 
1834 	/*
1835 	 * Unused for now. Must be cleared to zero.
1836 	 */
1837 	__u32 flags;
1838 
1839 	/*
1840 	 * Data will be written at the location pointed by data_ptr when the
1841 	 * value of length matches the length of the data to be written by the
1842 	 * kernel.
1843 	 */
1844 	__u64 data_ptr;
1845 };
1846 
1847 struct drm_i915_query {
1848 	__u32 num_items;
1849 
1850 	/*
1851 	 * Unused for now. Must be cleared to zero.
1852 	 */
1853 	__u32 flags;
1854 
1855 	/*
1856 	 * This points to an array of num_items drm_i915_query_item structures.
1857 	 */
1858 	__u64 items_ptr;
1859 };
1860 
1861 /*
1862  * Data written by the kernel with query DRM_I915_QUERY_TOPOLOGY_INFO :
1863  *
1864  * data: contains the 3 pieces of information :
1865  *
1866  * - the slice mask with one bit per slice telling whether a slice is
1867  *   available. The availability of slice X can be queried with the following
1868  *   formula :
1869  *
1870  *           (data[X / 8] >> (X % 8)) & 1
1871  *
1872  * - the subslice mask for each slice with one bit per subslice telling
1873  *   whether a subslice is available. The availability of subslice Y in slice
1874  *   X can be queried with the following formula :
1875  *
1876  *           (data[subslice_offset +
1877  *                 X * subslice_stride +
1878  *                 Y / 8] >> (Y % 8)) & 1
1879  *
1880  * - the EU mask for each subslice in each slice with one bit per EU telling
1881  *   whether an EU is available. The availability of EU Z in subslice Y in
1882  *   slice X can be queried with the following formula :
1883  *
1884  *           (data[eu_offset +
1885  *                 (X * max_subslices + Y) * eu_stride +
1886  *                 Z / 8] >> (Z % 8)) & 1
1887  */
1888 struct drm_i915_query_topology_info {
1889 	/*
1890 	 * Unused for now. Must be cleared to zero.
1891 	 */
1892 	__u16 flags;
1893 
1894 	__u16 max_slices;
1895 	__u16 max_subslices;
1896 	__u16 max_eus_per_subslice;
1897 
1898 	/*
1899 	 * Offset in data[] at which the subslice masks are stored.
1900 	 */
1901 	__u16 subslice_offset;
1902 
1903 	/*
1904 	 * Stride at which each of the subslice masks for each slice are
1905 	 * stored.
1906 	 */
1907 	__u16 subslice_stride;
1908 
1909 	/*
1910 	 * Offset in data[] at which the EU masks are stored.
1911 	 */
1912 	__u16 eu_offset;
1913 
1914 	/*
1915 	 * Stride at which each of the EU masks for each subslice are stored.
1916 	 */
1917 	__u16 eu_stride;
1918 
1919 	__u8 data[];
1920 };
1921 
1922 #if defined(__cplusplus)
1923 }
1924 #endif
1925 
1926 #endif /* _UAPI_I915_DRM_H_ */
1927