1 /* 2 * Copyright 2011 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #ifndef DRM_FOURCC_H 25 #define DRM_FOURCC_H 26 27 #include "drm.h" 28 29 #if defined(__cplusplus) 30 extern "C" { 31 #endif 32 33 /** 34 * DOC: overview 35 * 36 * In the DRM subsystem, framebuffer pixel formats are described using the 37 * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the 38 * fourcc code, a Format Modifier may optionally be provided, in order to 39 * further describe the buffer's format - for example tiling or compression. 40 * 41 * Format Modifiers 42 * ---------------- 43 * 44 * Format modifiers are used in conjunction with a fourcc code, forming a 45 * unique fourcc:modifier pair. This format:modifier pair must fully define the 46 * format and data layout of the buffer, and should be the only way to describe 47 * that particular buffer. 48 * 49 * Having multiple fourcc:modifier pairs which describe the same layout should 50 * be avoided, as such aliases run the risk of different drivers exposing 51 * different names for the same data format, forcing userspace to understand 52 * that they are aliases. 53 * 54 * Format modifiers may change any property of the buffer, including the number 55 * of planes and/or the required allocation size. Format modifiers are 56 * vendor-namespaced, and as such the relationship between a fourcc code and a 57 * modifier is specific to the modifer being used. For example, some modifiers 58 * may preserve meaning - such as number of planes - from the fourcc code, 59 * whereas others may not. 60 * 61 * Vendors should document their modifier usage in as much detail as 62 * possible, to ensure maximum compatibility across devices, drivers and 63 * applications. 64 * 65 * The authoritative list of format modifier codes is found in 66 * `include/uapi/drm/drm_fourcc.h` 67 */ 68 69 #define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \ 70 ((__u32)(c) << 16) | ((__u32)(d) << 24)) 71 72 #define DRM_FORMAT_BIG_ENDIAN (1<<31) /* format is big endian instead of little endian */ 73 74 /* Reserve 0 for the invalid format specifier */ 75 #define DRM_FORMAT_INVALID 0 76 77 /* color index */ 78 #define DRM_FORMAT_C8 fourcc_code('C', '8', ' ', ' ') /* [7:0] C */ 79 80 /* 8 bpp Red */ 81 #define DRM_FORMAT_R8 fourcc_code('R', '8', ' ', ' ') /* [7:0] R */ 82 83 /* 16 bpp Red */ 84 #define DRM_FORMAT_R16 fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */ 85 86 /* 16 bpp RG */ 87 #define DRM_FORMAT_RG88 fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */ 88 #define DRM_FORMAT_GR88 fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */ 89 90 /* 32 bpp RG */ 91 #define DRM_FORMAT_RG1616 fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */ 92 #define DRM_FORMAT_GR1616 fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */ 93 94 /* 8 bpp RGB */ 95 #define DRM_FORMAT_RGB332 fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */ 96 #define DRM_FORMAT_BGR233 fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */ 97 98 /* 16 bpp RGB */ 99 #define DRM_FORMAT_XRGB4444 fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */ 100 #define DRM_FORMAT_XBGR4444 fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */ 101 #define DRM_FORMAT_RGBX4444 fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */ 102 #define DRM_FORMAT_BGRX4444 fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */ 103 104 #define DRM_FORMAT_ARGB4444 fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */ 105 #define DRM_FORMAT_ABGR4444 fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */ 106 #define DRM_FORMAT_RGBA4444 fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */ 107 #define DRM_FORMAT_BGRA4444 fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */ 108 109 #define DRM_FORMAT_XRGB1555 fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */ 110 #define DRM_FORMAT_XBGR1555 fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */ 111 #define DRM_FORMAT_RGBX5551 fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */ 112 #define DRM_FORMAT_BGRX5551 fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */ 113 114 #define DRM_FORMAT_ARGB1555 fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */ 115 #define DRM_FORMAT_ABGR1555 fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */ 116 #define DRM_FORMAT_RGBA5551 fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */ 117 #define DRM_FORMAT_BGRA5551 fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */ 118 119 #define DRM_FORMAT_RGB565 fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */ 120 #define DRM_FORMAT_BGR565 fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */ 121 122 /* 24 bpp RGB */ 123 #define DRM_FORMAT_RGB888 fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */ 124 #define DRM_FORMAT_BGR888 fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */ 125 126 /* 32 bpp RGB */ 127 #define DRM_FORMAT_XRGB8888 fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */ 128 #define DRM_FORMAT_XBGR8888 fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */ 129 #define DRM_FORMAT_RGBX8888 fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */ 130 #define DRM_FORMAT_BGRX8888 fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */ 131 132 #define DRM_FORMAT_ARGB8888 fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */ 133 #define DRM_FORMAT_ABGR8888 fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */ 134 #define DRM_FORMAT_RGBA8888 fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */ 135 #define DRM_FORMAT_BGRA8888 fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */ 136 137 #define DRM_FORMAT_XRGB2101010 fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */ 138 #define DRM_FORMAT_XBGR2101010 fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */ 139 #define DRM_FORMAT_RGBX1010102 fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */ 140 #define DRM_FORMAT_BGRX1010102 fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */ 141 142 #define DRM_FORMAT_ARGB2101010 fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */ 143 #define DRM_FORMAT_ABGR2101010 fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */ 144 #define DRM_FORMAT_RGBA1010102 fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */ 145 #define DRM_FORMAT_BGRA1010102 fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */ 146 147 /* packed YCbCr */ 148 #define DRM_FORMAT_YUYV fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */ 149 #define DRM_FORMAT_YVYU fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */ 150 #define DRM_FORMAT_UYVY fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */ 151 #define DRM_FORMAT_VYUY fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */ 152 153 #define DRM_FORMAT_AYUV fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */ 154 #define DRM_FORMAT_XYUV8888 fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */ 155 156 /* 157 * packed YCbCr420 2x2 tiled formats 158 * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile 159 */ 160 /* [63:0] A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */ 161 #define DRM_FORMAT_Y0L0 fourcc_code('Y', '0', 'L', '0') 162 /* [63:0] X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */ 163 #define DRM_FORMAT_X0L0 fourcc_code('X', '0', 'L', '0') 164 165 /* [63:0] A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */ 166 #define DRM_FORMAT_Y0L2 fourcc_code('Y', '0', 'L', '2') 167 /* [63:0] X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */ 168 #define DRM_FORMAT_X0L2 fourcc_code('X', '0', 'L', '2') 169 170 /* 171 * 2 plane RGB + A 172 * index 0 = RGB plane, same format as the corresponding non _A8 format has 173 * index 1 = A plane, [7:0] A 174 */ 175 #define DRM_FORMAT_XRGB8888_A8 fourcc_code('X', 'R', 'A', '8') 176 #define DRM_FORMAT_XBGR8888_A8 fourcc_code('X', 'B', 'A', '8') 177 #define DRM_FORMAT_RGBX8888_A8 fourcc_code('R', 'X', 'A', '8') 178 #define DRM_FORMAT_BGRX8888_A8 fourcc_code('B', 'X', 'A', '8') 179 #define DRM_FORMAT_RGB888_A8 fourcc_code('R', '8', 'A', '8') 180 #define DRM_FORMAT_BGR888_A8 fourcc_code('B', '8', 'A', '8') 181 #define DRM_FORMAT_RGB565_A8 fourcc_code('R', '5', 'A', '8') 182 #define DRM_FORMAT_BGR565_A8 fourcc_code('B', '5', 'A', '8') 183 184 /* 185 * 2 plane YCbCr 186 * index 0 = Y plane, [7:0] Y 187 * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian 188 * or 189 * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian 190 */ 191 #define DRM_FORMAT_NV12 fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */ 192 #define DRM_FORMAT_NV21 fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */ 193 #define DRM_FORMAT_NV16 fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */ 194 #define DRM_FORMAT_NV61 fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */ 195 #define DRM_FORMAT_NV24 fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */ 196 #define DRM_FORMAT_NV42 fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */ 197 198 /* 199 * 3 plane YCbCr 200 * index 0: Y plane, [7:0] Y 201 * index 1: Cb plane, [7:0] Cb 202 * index 2: Cr plane, [7:0] Cr 203 * or 204 * index 1: Cr plane, [7:0] Cr 205 * index 2: Cb plane, [7:0] Cb 206 */ 207 #define DRM_FORMAT_YUV410 fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */ 208 #define DRM_FORMAT_YVU410 fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */ 209 #define DRM_FORMAT_YUV411 fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */ 210 #define DRM_FORMAT_YVU411 fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */ 211 #define DRM_FORMAT_YUV420 fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */ 212 #define DRM_FORMAT_YVU420 fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */ 213 #define DRM_FORMAT_YUV422 fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */ 214 #define DRM_FORMAT_YVU422 fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */ 215 #define DRM_FORMAT_YUV444 fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */ 216 #define DRM_FORMAT_YVU444 fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */ 217 218 219 /* 220 * Format Modifiers: 221 * 222 * Format modifiers describe, typically, a re-ordering or modification 223 * of the data in a plane of an FB. This can be used to express tiled/ 224 * swizzled formats, or compression, or a combination of the two. 225 * 226 * The upper 8 bits of the format modifier are a vendor-id as assigned 227 * below. The lower 56 bits are assigned as vendor sees fit. 228 */ 229 230 /* Vendor Ids: */ 231 #define DRM_FORMAT_MOD_NONE 0 232 #define DRM_FORMAT_MOD_VENDOR_NONE 0 233 #define DRM_FORMAT_MOD_VENDOR_INTEL 0x01 234 #define DRM_FORMAT_MOD_VENDOR_AMD 0x02 235 #define DRM_FORMAT_MOD_VENDOR_NVIDIA 0x03 236 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04 237 #define DRM_FORMAT_MOD_VENDOR_QCOM 0x05 238 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06 239 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07 240 #define DRM_FORMAT_MOD_VENDOR_ARM 0x08 241 /* add more to the end as needed */ 242 243 #define DRM_FORMAT_RESERVED ((1ULL << 56) - 1) 244 245 #define fourcc_mod_code(vendor, val) \ 246 ((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL)) 247 248 /* 249 * Format Modifier tokens: 250 * 251 * When adding a new token please document the layout with a code comment, 252 * similar to the fourcc codes above. drm_fourcc.h is considered the 253 * authoritative source for all of these. 254 */ 255 256 /* 257 * Invalid Modifier 258 * 259 * This modifier can be used as a sentinel to terminate the format modifiers 260 * list, or to initialize a variable with an invalid modifier. It might also be 261 * used to report an error back to userspace for certain APIs. 262 */ 263 #define DRM_FORMAT_MOD_INVALID fourcc_mod_code(NONE, DRM_FORMAT_RESERVED) 264 265 /* 266 * Linear Layout 267 * 268 * Just plain linear layout. Note that this is different from no specifying any 269 * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl), 270 * which tells the driver to also take driver-internal information into account 271 * and so might actually result in a tiled framebuffer. 272 */ 273 #define DRM_FORMAT_MOD_LINEAR fourcc_mod_code(NONE, 0) 274 275 /* Intel framebuffer modifiers */ 276 277 /* 278 * Intel X-tiling layout 279 * 280 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb) 281 * in row-major layout. Within the tile bytes are laid out row-major, with 282 * a platform-dependent stride. On top of that the memory can apply 283 * platform-depending swizzling of some higher address bits into bit6. 284 * 285 * This format is highly platforms specific and not useful for cross-driver 286 * sharing. It exists since on a given platform it does uniquely identify the 287 * layout in a simple way for i915-specific userspace. 288 */ 289 #define I915_FORMAT_MOD_X_TILED fourcc_mod_code(INTEL, 1) 290 291 /* 292 * Intel Y-tiling layout 293 * 294 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb) 295 * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes) 296 * chunks column-major, with a platform-dependent height. On top of that the 297 * memory can apply platform-depending swizzling of some higher address bits 298 * into bit6. 299 * 300 * This format is highly platforms specific and not useful for cross-driver 301 * sharing. It exists since on a given platform it does uniquely identify the 302 * layout in a simple way for i915-specific userspace. 303 */ 304 #define I915_FORMAT_MOD_Y_TILED fourcc_mod_code(INTEL, 2) 305 306 /* 307 * Intel Yf-tiling layout 308 * 309 * This is a tiled layout using 4Kb tiles in row-major layout. 310 * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which 311 * are arranged in four groups (two wide, two high) with column-major layout. 312 * Each group therefore consits out of four 256 byte units, which are also laid 313 * out as 2x2 column-major. 314 * 256 byte units are made out of four 64 byte blocks of pixels, producing 315 * either a square block or a 2:1 unit. 316 * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width 317 * in pixel depends on the pixel depth. 318 */ 319 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3) 320 321 /* 322 * Intel color control surface (CCS) for render compression 323 * 324 * The framebuffer format must be one of the 8:8:8:8 RGB formats. 325 * The main surface will be plane index 0 and must be Y/Yf-tiled, 326 * the CCS will be plane index 1. 327 * 328 * Each CCS tile matches a 1024x512 pixel area of the main surface. 329 * To match certain aspects of the 3D hardware the CCS is 330 * considered to be made up of normal 128Bx32 Y tiles, Thus 331 * the CCS pitch must be specified in multiples of 128 bytes. 332 * 333 * In reality the CCS tile appears to be a 64Bx64 Y tile, composed 334 * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks. 335 * But that fact is not relevant unless the memory is accessed 336 * directly. 337 */ 338 #define I915_FORMAT_MOD_Y_TILED_CCS fourcc_mod_code(INTEL, 4) 339 #define I915_FORMAT_MOD_Yf_TILED_CCS fourcc_mod_code(INTEL, 5) 340 341 /* 342 * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks 343 * 344 * Macroblocks are laid in a Z-shape, and each pixel data is following the 345 * standard NV12 style. 346 * As for NV12, an image is the result of two frame buffers: one for Y, 347 * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer). 348 * Alignment requirements are (for each buffer): 349 * - multiple of 128 pixels for the width 350 * - multiple of 32 pixels for the height 351 * 352 * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html 353 */ 354 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE fourcc_mod_code(SAMSUNG, 1) 355 356 /* 357 * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks 358 * 359 * This is a simple tiled layout using tiles of 16x16 pixels in a row-major 360 * layout. For YCbCr formats Cb/Cr components are taken in such a way that 361 * they correspond to their 16x16 luma block. 362 */ 363 #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE fourcc_mod_code(SAMSUNG, 2) 364 365 /* 366 * Qualcomm Compressed Format 367 * 368 * Refers to a compressed variant of the base format that is compressed. 369 * Implementation may be platform and base-format specific. 370 * 371 * Each macrotile consists of m x n (mostly 4 x 4) tiles. 372 * Pixel data pitch/stride is aligned with macrotile width. 373 * Pixel data height is aligned with macrotile height. 374 * Entire pixel data buffer is aligned with 4k(bytes). 375 */ 376 #define DRM_FORMAT_MOD_QCOM_COMPRESSED fourcc_mod_code(QCOM, 1) 377 378 /* Vivante framebuffer modifiers */ 379 380 /* 381 * Vivante 4x4 tiling layout 382 * 383 * This is a simple tiled layout using tiles of 4x4 pixels in a row-major 384 * layout. 385 */ 386 #define DRM_FORMAT_MOD_VIVANTE_TILED fourcc_mod_code(VIVANTE, 1) 387 388 /* 389 * Vivante 64x64 super-tiling layout 390 * 391 * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile 392 * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row- 393 * major layout. 394 * 395 * For more information: see 396 * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling 397 */ 398 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED fourcc_mod_code(VIVANTE, 2) 399 400 /* 401 * Vivante 4x4 tiling layout for dual-pipe 402 * 403 * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a 404 * different base address. Offsets from the base addresses are therefore halved 405 * compared to the non-split tiled layout. 406 */ 407 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED fourcc_mod_code(VIVANTE, 3) 408 409 /* 410 * Vivante 64x64 super-tiling layout for dual-pipe 411 * 412 * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile 413 * starts at a different base address. Offsets from the base addresses are 414 * therefore halved compared to the non-split super-tiled layout. 415 */ 416 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4) 417 418 /* NVIDIA frame buffer modifiers */ 419 420 /* 421 * Tegra Tiled Layout, used by Tegra 2, 3 and 4. 422 * 423 * Pixels are arranged in simple tiles of 16 x 16 bytes. 424 */ 425 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1) 426 427 /* 428 * 16Bx2 Block Linear layout, used by desktop GPUs, and Tegra K1 and later 429 * 430 * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked 431 * vertically by a power of 2 (1 to 32 GOBs) to form a block. 432 * 433 * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape. 434 * 435 * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically. 436 * Valid values are: 437 * 438 * 0 == ONE_GOB 439 * 1 == TWO_GOBS 440 * 2 == FOUR_GOBS 441 * 3 == EIGHT_GOBS 442 * 4 == SIXTEEN_GOBS 443 * 5 == THIRTYTWO_GOBS 444 * 445 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format 446 * in full detail. 447 */ 448 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \ 449 fourcc_mod_code(NVIDIA, 0x10 | ((v) & 0xf)) 450 451 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \ 452 fourcc_mod_code(NVIDIA, 0x10) 453 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \ 454 fourcc_mod_code(NVIDIA, 0x11) 455 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \ 456 fourcc_mod_code(NVIDIA, 0x12) 457 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \ 458 fourcc_mod_code(NVIDIA, 0x13) 459 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \ 460 fourcc_mod_code(NVIDIA, 0x14) 461 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \ 462 fourcc_mod_code(NVIDIA, 0x15) 463 464 /* 465 * Some Broadcom modifiers take parameters, for example the number of 466 * vertical lines in the image. Reserve the lower 32 bits for modifier 467 * type, and the next 24 bits for parameters. Top 8 bits are the 468 * vendor code. 469 */ 470 #define __fourcc_mod_broadcom_param_shift 8 471 #define __fourcc_mod_broadcom_param_bits 48 472 #define fourcc_mod_broadcom_code(val, params) \ 473 fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val)) 474 #define fourcc_mod_broadcom_param(m) \ 475 ((int)(((m) >> __fourcc_mod_broadcom_param_shift) & \ 476 ((1ULL << __fourcc_mod_broadcom_param_bits) - 1))) 477 #define fourcc_mod_broadcom_mod(m) \ 478 ((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) << \ 479 __fourcc_mod_broadcom_param_shift)) 480 481 /* 482 * Broadcom VC4 "T" format 483 * 484 * This is the primary layout that the V3D GPU can texture from (it 485 * can't do linear). The T format has: 486 * 487 * - 64b utiles of pixels in a raster-order grid according to cpp. It's 4x4 488 * pixels at 32 bit depth. 489 * 490 * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually 491 * 16x16 pixels). 492 * 493 * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels). On 494 * even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows 495 * they're (TR, BR, BL, TL), where bottom left is start of memory. 496 * 497 * - an image made of 4k tiles in rows either left-to-right (even rows of 4k 498 * tiles) or right-to-left (odd rows of 4k tiles). 499 */ 500 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1) 501 502 /* 503 * Broadcom SAND format 504 * 505 * This is the native format that the H.264 codec block uses. For VC4 506 * HVS, it is only valid for H.264 (NV12/21) and RGBA modes. 507 * 508 * The image can be considered to be split into columns, and the 509 * columns are placed consecutively into memory. The width of those 510 * columns can be either 32, 64, 128, or 256 pixels, but in practice 511 * only 128 pixel columns are used. 512 * 513 * The pitch between the start of each column is set to optimally 514 * switch between SDRAM banks. This is passed as the number of lines 515 * of column width in the modifier (we can't use the stride value due 516 * to various core checks that look at it , so you should set the 517 * stride to width*cpp). 518 * 519 * Note that the column height for this format modifier is the same 520 * for all of the planes, assuming that each column contains both Y 521 * and UV. Some SAND-using hardware stores UV in a separate tiled 522 * image from Y to reduce the column height, which is not supported 523 * with these modifiers. 524 */ 525 526 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \ 527 fourcc_mod_broadcom_code(2, v) 528 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \ 529 fourcc_mod_broadcom_code(3, v) 530 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \ 531 fourcc_mod_broadcom_code(4, v) 532 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \ 533 fourcc_mod_broadcom_code(5, v) 534 535 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \ 536 DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0) 537 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \ 538 DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0) 539 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \ 540 DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0) 541 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \ 542 DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0) 543 544 /* Broadcom UIF format 545 * 546 * This is the common format for the current Broadcom multimedia 547 * blocks, including V3D 3.x and newer, newer video codecs, and 548 * displays. 549 * 550 * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles), 551 * and macroblocks (4x4 UIF blocks). Those 4x4 UIF block groups are 552 * stored in columns, with padding between the columns to ensure that 553 * moving from one column to the next doesn't hit the same SDRAM page 554 * bank. 555 * 556 * To calculate the padding, it is assumed that each hardware block 557 * and the software driving it knows the platform's SDRAM page size, 558 * number of banks, and XOR address, and that it's identical between 559 * all blocks using the format. This tiling modifier will use XOR as 560 * necessary to reduce the padding. If a hardware block can't do XOR, 561 * the assumption is that a no-XOR tiling modifier will be created. 562 */ 563 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6) 564 565 /* 566 * Arm Framebuffer Compression (AFBC) modifiers 567 * 568 * AFBC is a proprietary lossless image compression protocol and format. 569 * It provides fine-grained random access and minimizes the amount of data 570 * transferred between IP blocks. 571 * 572 * AFBC has several features which may be supported and/or used, which are 573 * represented using bits in the modifier. Not all combinations are valid, 574 * and different devices or use-cases may support different combinations. 575 */ 576 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) fourcc_mod_code(ARM, __afbc_mode) 577 578 /* 579 * AFBC superblock size 580 * 581 * Indicates the superblock size(s) used for the AFBC buffer. The buffer 582 * size (in pixels) must be aligned to a multiple of the superblock size. 583 * Four lowest significant bits(LSBs) are reserved for block size. 584 */ 585 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK 0xf 586 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16 (1ULL) 587 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8 (2ULL) 588 589 /* 590 * AFBC lossless colorspace transform 591 * 592 * Indicates that the buffer makes use of the AFBC lossless colorspace 593 * transform. 594 */ 595 #define AFBC_FORMAT_MOD_YTR (1ULL << 4) 596 597 /* 598 * AFBC block-split 599 * 600 * Indicates that the payload of each superblock is split. The second 601 * half of the payload is positioned at a predefined offset from the start 602 * of the superblock payload. 603 */ 604 #define AFBC_FORMAT_MOD_SPLIT (1ULL << 5) 605 606 /* 607 * AFBC sparse layout 608 * 609 * This flag indicates that the payload of each superblock must be stored at a 610 * predefined position relative to the other superblocks in the same AFBC 611 * buffer. This order is the same order used by the header buffer. In this mode 612 * each superblock is given the same amount of space as an uncompressed 613 * superblock of the particular format would require, rounding up to the next 614 * multiple of 128 bytes in size. 615 */ 616 #define AFBC_FORMAT_MOD_SPARSE (1ULL << 6) 617 618 /* 619 * AFBC copy-block restrict 620 * 621 * Buffers with this flag must obey the copy-block restriction. The restriction 622 * is such that there are no copy-blocks referring across the border of 8x8 623 * blocks. For the subsampled data the 8x8 limitation is also subsampled. 624 */ 625 #define AFBC_FORMAT_MOD_CBR (1ULL << 7) 626 627 /* 628 * AFBC tiled layout 629 * 630 * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all 631 * superblocks inside a tile are stored together in memory. 8x8 tiles are used 632 * for pixel formats up to and including 32 bpp while 4x4 tiles are used for 633 * larger bpp formats. The order between the tiles is scan line. 634 * When the tiled layout is used, the buffer size (in pixels) must be aligned 635 * to the tile size. 636 */ 637 #define AFBC_FORMAT_MOD_TILED (1ULL << 8) 638 639 /* 640 * AFBC solid color blocks 641 * 642 * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth 643 * can be reduced if a whole superblock is a single color. 644 */ 645 #define AFBC_FORMAT_MOD_SC (1ULL << 9) 646 647 #if defined(__cplusplus) 648 } 649 #endif 650 651 #endif /* DRM_FOURCC_H */ 652