xref: /openbmc/linux/include/uapi/drm/drm_fourcc.h (revision c0605cd6)
1 /*
2  * Copyright 2011 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #ifndef DRM_FOURCC_H
25 #define DRM_FOURCC_H
26 
27 #include "drm.h"
28 
29 #if defined(__cplusplus)
30 extern "C" {
31 #endif
32 
33 /**
34  * DOC: overview
35  *
36  * In the DRM subsystem, framebuffer pixel formats are described using the
37  * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
38  * fourcc code, a Format Modifier may optionally be provided, in order to
39  * further describe the buffer's format - for example tiling or compression.
40  *
41  * Format Modifiers
42  * ----------------
43  *
44  * Format modifiers are used in conjunction with a fourcc code, forming a
45  * unique fourcc:modifier pair. This format:modifier pair must fully define the
46  * format and data layout of the buffer, and should be the only way to describe
47  * that particular buffer.
48  *
49  * Having multiple fourcc:modifier pairs which describe the same layout should
50  * be avoided, as such aliases run the risk of different drivers exposing
51  * different names for the same data format, forcing userspace to understand
52  * that they are aliases.
53  *
54  * Format modifiers may change any property of the buffer, including the number
55  * of planes and/or the required allocation size. Format modifiers are
56  * vendor-namespaced, and as such the relationship between a fourcc code and a
57  * modifier is specific to the modifer being used. For example, some modifiers
58  * may preserve meaning - such as number of planes - from the fourcc code,
59  * whereas others may not.
60  *
61  * Modifiers must uniquely encode buffer layout. In other words, a buffer must
62  * match only a single modifier. A modifier must not be a subset of layouts of
63  * another modifier. For instance, it's incorrect to encode pitch alignment in
64  * a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel
65  * aligned modifier. That said, modifiers can have implicit minimal
66  * requirements.
67  *
68  * For modifiers where the combination of fourcc code and modifier can alias,
69  * a canonical pair needs to be defined and used by all drivers. Preferred
70  * combinations are also encouraged where all combinations might lead to
71  * confusion and unnecessarily reduced interoperability. An example for the
72  * latter is AFBC, where the ABGR layouts are preferred over ARGB layouts.
73  *
74  * There are two kinds of modifier users:
75  *
76  * - Kernel and user-space drivers: for drivers it's important that modifiers
77  *   don't alias, otherwise two drivers might support the same format but use
78  *   different aliases, preventing them from sharing buffers in an efficient
79  *   format.
80  * - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users
81  *   see modifiers as opaque tokens they can check for equality and intersect.
82  *   These users musn't need to know to reason about the modifier value
83  *   (i.e. they are not expected to extract information out of the modifier).
84  *
85  * Vendors should document their modifier usage in as much detail as
86  * possible, to ensure maximum compatibility across devices, drivers and
87  * applications.
88  *
89  * The authoritative list of format modifier codes is found in
90  * `include/uapi/drm/drm_fourcc.h`
91  */
92 
93 #define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \
94 				 ((__u32)(c) << 16) | ((__u32)(d) << 24))
95 
96 #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
97 
98 /* Reserve 0 for the invalid format specifier */
99 #define DRM_FORMAT_INVALID	0
100 
101 /* color index */
102 #define DRM_FORMAT_C1		fourcc_code('C', '1', ' ', ' ') /* [7:0] C0:C1:C2:C3:C4:C5:C6:C7 1:1:1:1:1:1:1:1 eight pixels/byte */
103 #define DRM_FORMAT_C2		fourcc_code('C', '2', ' ', ' ') /* [7:0] C0:C1:C2:C3 2:2:2:2 four pixels/byte */
104 #define DRM_FORMAT_C4		fourcc_code('C', '4', ' ', ' ') /* [7:0] C0:C1 4:4 two pixels/byte */
105 #define DRM_FORMAT_C8		fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
106 
107 /* 1 bpp Darkness (inverse relationship between channel value and brightness) */
108 #define DRM_FORMAT_D1		fourcc_code('D', '1', ' ', ' ') /* [7:0] D0:D1:D2:D3:D4:D5:D6:D7 1:1:1:1:1:1:1:1 eight pixels/byte */
109 
110 /* 2 bpp Darkness (inverse relationship between channel value and brightness) */
111 #define DRM_FORMAT_D2		fourcc_code('D', '2', ' ', ' ') /* [7:0] D0:D1:D2:D3 2:2:2:2 four pixels/byte */
112 
113 /* 4 bpp Darkness (inverse relationship between channel value and brightness) */
114 #define DRM_FORMAT_D4		fourcc_code('D', '4', ' ', ' ') /* [7:0] D0:D1 4:4 two pixels/byte */
115 
116 /* 8 bpp Darkness (inverse relationship between channel value and brightness) */
117 #define DRM_FORMAT_D8		fourcc_code('D', '8', ' ', ' ') /* [7:0] D */
118 
119 /* 1 bpp Red (direct relationship between channel value and brightness) */
120 #define DRM_FORMAT_R1		fourcc_code('R', '1', ' ', ' ') /* [7:0] R0:R1:R2:R3:R4:R5:R6:R7 1:1:1:1:1:1:1:1 eight pixels/byte */
121 
122 /* 2 bpp Red (direct relationship between channel value and brightness) */
123 #define DRM_FORMAT_R2		fourcc_code('R', '2', ' ', ' ') /* [7:0] R0:R1:R2:R3 2:2:2:2 four pixels/byte */
124 
125 /* 4 bpp Red (direct relationship between channel value and brightness) */
126 #define DRM_FORMAT_R4		fourcc_code('R', '4', ' ', ' ') /* [7:0] R0:R1 4:4 two pixels/byte */
127 
128 /* 8 bpp Red (direct relationship between channel value and brightness) */
129 #define DRM_FORMAT_R8		fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
130 
131 /* 10 bpp Red (direct relationship between channel value and brightness) */
132 #define DRM_FORMAT_R10		fourcc_code('R', '1', '0', ' ') /* [15:0] x:R 6:10 little endian */
133 
134 /* 12 bpp Red (direct relationship between channel value and brightness) */
135 #define DRM_FORMAT_R12		fourcc_code('R', '1', '2', ' ') /* [15:0] x:R 4:12 little endian */
136 
137 /* 16 bpp Red (direct relationship between channel value and brightness) */
138 #define DRM_FORMAT_R16		fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
139 
140 /* 16 bpp RG */
141 #define DRM_FORMAT_RG88		fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
142 #define DRM_FORMAT_GR88		fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
143 
144 /* 32 bpp RG */
145 #define DRM_FORMAT_RG1616	fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
146 #define DRM_FORMAT_GR1616	fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
147 
148 /* 8 bpp RGB */
149 #define DRM_FORMAT_RGB332	fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
150 #define DRM_FORMAT_BGR233	fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
151 
152 /* 16 bpp RGB */
153 #define DRM_FORMAT_XRGB4444	fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
154 #define DRM_FORMAT_XBGR4444	fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
155 #define DRM_FORMAT_RGBX4444	fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
156 #define DRM_FORMAT_BGRX4444	fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
157 
158 #define DRM_FORMAT_ARGB4444	fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
159 #define DRM_FORMAT_ABGR4444	fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
160 #define DRM_FORMAT_RGBA4444	fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
161 #define DRM_FORMAT_BGRA4444	fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
162 
163 #define DRM_FORMAT_XRGB1555	fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
164 #define DRM_FORMAT_XBGR1555	fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
165 #define DRM_FORMAT_RGBX5551	fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
166 #define DRM_FORMAT_BGRX5551	fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
167 
168 #define DRM_FORMAT_ARGB1555	fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
169 #define DRM_FORMAT_ABGR1555	fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
170 #define DRM_FORMAT_RGBA5551	fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
171 #define DRM_FORMAT_BGRA5551	fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
172 
173 #define DRM_FORMAT_RGB565	fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
174 #define DRM_FORMAT_BGR565	fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
175 
176 /* 24 bpp RGB */
177 #define DRM_FORMAT_RGB888	fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
178 #define DRM_FORMAT_BGR888	fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
179 
180 /* 32 bpp RGB */
181 #define DRM_FORMAT_XRGB8888	fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
182 #define DRM_FORMAT_XBGR8888	fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
183 #define DRM_FORMAT_RGBX8888	fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
184 #define DRM_FORMAT_BGRX8888	fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
185 
186 #define DRM_FORMAT_ARGB8888	fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
187 #define DRM_FORMAT_ABGR8888	fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
188 #define DRM_FORMAT_RGBA8888	fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
189 #define DRM_FORMAT_BGRA8888	fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
190 
191 #define DRM_FORMAT_XRGB2101010	fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
192 #define DRM_FORMAT_XBGR2101010	fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
193 #define DRM_FORMAT_RGBX1010102	fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
194 #define DRM_FORMAT_BGRX1010102	fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
195 
196 #define DRM_FORMAT_ARGB2101010	fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
197 #define DRM_FORMAT_ABGR2101010	fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
198 #define DRM_FORMAT_RGBA1010102	fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
199 #define DRM_FORMAT_BGRA1010102	fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
200 
201 /* 64 bpp RGB */
202 #define DRM_FORMAT_XRGB16161616	fourcc_code('X', 'R', '4', '8') /* [63:0] x:R:G:B 16:16:16:16 little endian */
203 #define DRM_FORMAT_XBGR16161616	fourcc_code('X', 'B', '4', '8') /* [63:0] x:B:G:R 16:16:16:16 little endian */
204 
205 #define DRM_FORMAT_ARGB16161616	fourcc_code('A', 'R', '4', '8') /* [63:0] A:R:G:B 16:16:16:16 little endian */
206 #define DRM_FORMAT_ABGR16161616	fourcc_code('A', 'B', '4', '8') /* [63:0] A:B:G:R 16:16:16:16 little endian */
207 
208 /*
209  * Floating point 64bpp RGB
210  * IEEE 754-2008 binary16 half-precision float
211  * [15:0] sign:exponent:mantissa 1:5:10
212  */
213 #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
214 #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
215 
216 #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
217 #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
218 
219 /*
220  * RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits
221  * of unused padding per component:
222  */
223 #define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */
224 
225 /* packed YCbCr */
226 #define DRM_FORMAT_YUYV		fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
227 #define DRM_FORMAT_YVYU		fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
228 #define DRM_FORMAT_UYVY		fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
229 #define DRM_FORMAT_VYUY		fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
230 
231 #define DRM_FORMAT_AYUV		fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
232 #define DRM_FORMAT_AVUY8888	fourcc_code('A', 'V', 'U', 'Y') /* [31:0] A:Cr:Cb:Y 8:8:8:8 little endian */
233 #define DRM_FORMAT_XYUV8888	fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
234 #define DRM_FORMAT_XVUY8888	fourcc_code('X', 'V', 'U', 'Y') /* [31:0] X:Cr:Cb:Y 8:8:8:8 little endian */
235 #define DRM_FORMAT_VUY888	fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
236 #define DRM_FORMAT_VUY101010	fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
237 
238 /*
239  * packed Y2xx indicate for each component, xx valid data occupy msb
240  * 16-xx padding occupy lsb
241  */
242 #define DRM_FORMAT_Y210         fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
243 #define DRM_FORMAT_Y212         fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
244 #define DRM_FORMAT_Y216         fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
245 
246 /*
247  * packed Y4xx indicate for each component, xx valid data occupy msb
248  * 16-xx padding occupy lsb except Y410
249  */
250 #define DRM_FORMAT_Y410         fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
251 #define DRM_FORMAT_Y412         fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
252 #define DRM_FORMAT_Y416         fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
253 
254 #define DRM_FORMAT_XVYU2101010	fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
255 #define DRM_FORMAT_XVYU12_16161616	fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
256 #define DRM_FORMAT_XVYU16161616	fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
257 
258 /*
259  * packed YCbCr420 2x2 tiled formats
260  * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
261  */
262 /* [63:0]   A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
263 #define DRM_FORMAT_Y0L0		fourcc_code('Y', '0', 'L', '0')
264 /* [63:0]   X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
265 #define DRM_FORMAT_X0L0		fourcc_code('X', '0', 'L', '0')
266 
267 /* [63:0]   A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
268 #define DRM_FORMAT_Y0L2		fourcc_code('Y', '0', 'L', '2')
269 /* [63:0]   X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
270 #define DRM_FORMAT_X0L2		fourcc_code('X', '0', 'L', '2')
271 
272 /*
273  * 1-plane YUV 4:2:0
274  * In these formats, the component ordering is specified (Y, followed by U
275  * then V), but the exact Linear layout is undefined.
276  * These formats can only be used with a non-Linear modifier.
277  */
278 #define DRM_FORMAT_YUV420_8BIT	fourcc_code('Y', 'U', '0', '8')
279 #define DRM_FORMAT_YUV420_10BIT	fourcc_code('Y', 'U', '1', '0')
280 
281 /*
282  * 2 plane RGB + A
283  * index 0 = RGB plane, same format as the corresponding non _A8 format has
284  * index 1 = A plane, [7:0] A
285  */
286 #define DRM_FORMAT_XRGB8888_A8	fourcc_code('X', 'R', 'A', '8')
287 #define DRM_FORMAT_XBGR8888_A8	fourcc_code('X', 'B', 'A', '8')
288 #define DRM_FORMAT_RGBX8888_A8	fourcc_code('R', 'X', 'A', '8')
289 #define DRM_FORMAT_BGRX8888_A8	fourcc_code('B', 'X', 'A', '8')
290 #define DRM_FORMAT_RGB888_A8	fourcc_code('R', '8', 'A', '8')
291 #define DRM_FORMAT_BGR888_A8	fourcc_code('B', '8', 'A', '8')
292 #define DRM_FORMAT_RGB565_A8	fourcc_code('R', '5', 'A', '8')
293 #define DRM_FORMAT_BGR565_A8	fourcc_code('B', '5', 'A', '8')
294 
295 /*
296  * 2 plane YCbCr
297  * index 0 = Y plane, [7:0] Y
298  * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
299  * or
300  * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
301  */
302 #define DRM_FORMAT_NV12		fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
303 #define DRM_FORMAT_NV21		fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
304 #define DRM_FORMAT_NV16		fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
305 #define DRM_FORMAT_NV61		fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
306 #define DRM_FORMAT_NV24		fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
307 #define DRM_FORMAT_NV42		fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
308 /*
309  * 2 plane YCbCr
310  * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian
311  * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
312  */
313 #define DRM_FORMAT_NV15		fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
314 
315 /*
316  * 2 plane YCbCr MSB aligned
317  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
318  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
319  */
320 #define DRM_FORMAT_P210		fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
321 
322 /*
323  * 2 plane YCbCr MSB aligned
324  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
325  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
326  */
327 #define DRM_FORMAT_P010		fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
328 
329 /*
330  * 2 plane YCbCr MSB aligned
331  * index 0 = Y plane, [15:0] Y:x [12:4] little endian
332  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
333  */
334 #define DRM_FORMAT_P012		fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
335 
336 /*
337  * 2 plane YCbCr MSB aligned
338  * index 0 = Y plane, [15:0] Y little endian
339  * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
340  */
341 #define DRM_FORMAT_P016		fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
342 
343 /* 2 plane YCbCr420.
344  * 3 10 bit components and 2 padding bits packed into 4 bytes.
345  * index 0 = Y plane, [31:0] x:Y2:Y1:Y0 2:10:10:10 little endian
346  * index 1 = Cr:Cb plane, [63:0] x:Cr2:Cb2:Cr1:x:Cb1:Cr0:Cb0 [2:10:10:10:2:10:10:10] little endian
347  */
348 #define DRM_FORMAT_P030		fourcc_code('P', '0', '3', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel packed */
349 
350 /* 3 plane non-subsampled (444) YCbCr
351  * 16 bits per component, but only 10 bits are used and 6 bits are padded
352  * index 0: Y plane, [15:0] Y:x [10:6] little endian
353  * index 1: Cb plane, [15:0] Cb:x [10:6] little endian
354  * index 2: Cr plane, [15:0] Cr:x [10:6] little endian
355  */
356 #define DRM_FORMAT_Q410		fourcc_code('Q', '4', '1', '0')
357 
358 /* 3 plane non-subsampled (444) YCrCb
359  * 16 bits per component, but only 10 bits are used and 6 bits are padded
360  * index 0: Y plane, [15:0] Y:x [10:6] little endian
361  * index 1: Cr plane, [15:0] Cr:x [10:6] little endian
362  * index 2: Cb plane, [15:0] Cb:x [10:6] little endian
363  */
364 #define DRM_FORMAT_Q401		fourcc_code('Q', '4', '0', '1')
365 
366 /*
367  * 3 plane YCbCr
368  * index 0: Y plane, [7:0] Y
369  * index 1: Cb plane, [7:0] Cb
370  * index 2: Cr plane, [7:0] Cr
371  * or
372  * index 1: Cr plane, [7:0] Cr
373  * index 2: Cb plane, [7:0] Cb
374  */
375 #define DRM_FORMAT_YUV410	fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
376 #define DRM_FORMAT_YVU410	fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
377 #define DRM_FORMAT_YUV411	fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
378 #define DRM_FORMAT_YVU411	fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
379 #define DRM_FORMAT_YUV420	fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
380 #define DRM_FORMAT_YVU420	fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
381 #define DRM_FORMAT_YUV422	fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
382 #define DRM_FORMAT_YVU422	fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
383 #define DRM_FORMAT_YUV444	fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
384 #define DRM_FORMAT_YVU444	fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
385 
386 
387 /*
388  * Format Modifiers:
389  *
390  * Format modifiers describe, typically, a re-ordering or modification
391  * of the data in a plane of an FB.  This can be used to express tiled/
392  * swizzled formats, or compression, or a combination of the two.
393  *
394  * The upper 8 bits of the format modifier are a vendor-id as assigned
395  * below.  The lower 56 bits are assigned as vendor sees fit.
396  */
397 
398 /* Vendor Ids: */
399 #define DRM_FORMAT_MOD_VENDOR_NONE    0
400 #define DRM_FORMAT_MOD_VENDOR_INTEL   0x01
401 #define DRM_FORMAT_MOD_VENDOR_AMD     0x02
402 #define DRM_FORMAT_MOD_VENDOR_NVIDIA  0x03
403 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
404 #define DRM_FORMAT_MOD_VENDOR_QCOM    0x05
405 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
406 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
407 #define DRM_FORMAT_MOD_VENDOR_ARM     0x08
408 #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
409 #define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a
410 
411 /* add more to the end as needed */
412 
413 #define DRM_FORMAT_RESERVED	      ((1ULL << 56) - 1)
414 
415 #define fourcc_mod_get_vendor(modifier) \
416 	(((modifier) >> 56) & 0xff)
417 
418 #define fourcc_mod_is_vendor(modifier, vendor) \
419 	(fourcc_mod_get_vendor(modifier) == DRM_FORMAT_MOD_VENDOR_## vendor)
420 
421 #define fourcc_mod_code(vendor, val) \
422 	((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
423 
424 /*
425  * Format Modifier tokens:
426  *
427  * When adding a new token please document the layout with a code comment,
428  * similar to the fourcc codes above. drm_fourcc.h is considered the
429  * authoritative source for all of these.
430  *
431  * Generic modifier names:
432  *
433  * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
434  * for layouts which are common across multiple vendors. To preserve
435  * compatibility, in cases where a vendor-specific definition already exists and
436  * a generic name for it is desired, the common name is a purely symbolic alias
437  * and must use the same numerical value as the original definition.
438  *
439  * Note that generic names should only be used for modifiers which describe
440  * generic layouts (such as pixel re-ordering), which may have
441  * independently-developed support across multiple vendors.
442  *
443  * In future cases where a generic layout is identified before merging with a
444  * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
445  * 'NONE' could be considered. This should only be for obvious, exceptional
446  * cases to avoid polluting the 'GENERIC' namespace with modifiers which only
447  * apply to a single vendor.
448  *
449  * Generic names should not be used for cases where multiple hardware vendors
450  * have implementations of the same standardised compression scheme (such as
451  * AFBC). In those cases, all implementations should use the same format
452  * modifier(s), reflecting the vendor of the standard.
453  */
454 
455 #define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE
456 
457 /*
458  * Invalid Modifier
459  *
460  * This modifier can be used as a sentinel to terminate the format modifiers
461  * list, or to initialize a variable with an invalid modifier. It might also be
462  * used to report an error back to userspace for certain APIs.
463  */
464 #define DRM_FORMAT_MOD_INVALID	fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
465 
466 /*
467  * Linear Layout
468  *
469  * Just plain linear layout. Note that this is different from no specifying any
470  * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
471  * which tells the driver to also take driver-internal information into account
472  * and so might actually result in a tiled framebuffer.
473  */
474 #define DRM_FORMAT_MOD_LINEAR	fourcc_mod_code(NONE, 0)
475 
476 /*
477  * Deprecated: use DRM_FORMAT_MOD_LINEAR instead
478  *
479  * The "none" format modifier doesn't actually mean that the modifier is
480  * implicit, instead it means that the layout is linear. Whether modifiers are
481  * used is out-of-band information carried in an API-specific way (e.g. in a
482  * flag for drm_mode_fb_cmd2).
483  */
484 #define DRM_FORMAT_MOD_NONE	0
485 
486 /* Intel framebuffer modifiers */
487 
488 /*
489  * Intel X-tiling layout
490  *
491  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
492  * in row-major layout. Within the tile bytes are laid out row-major, with
493  * a platform-dependent stride. On top of that the memory can apply
494  * platform-depending swizzling of some higher address bits into bit6.
495  *
496  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
497  * On earlier platforms the is highly platforms specific and not useful for
498  * cross-driver sharing. It exists since on a given platform it does uniquely
499  * identify the layout in a simple way for i915-specific userspace, which
500  * facilitated conversion of userspace to modifiers. Additionally the exact
501  * format on some really old platforms is not known.
502  */
503 #define I915_FORMAT_MOD_X_TILED	fourcc_mod_code(INTEL, 1)
504 
505 /*
506  * Intel Y-tiling layout
507  *
508  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
509  * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
510  * chunks column-major, with a platform-dependent height. On top of that the
511  * memory can apply platform-depending swizzling of some higher address bits
512  * into bit6.
513  *
514  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
515  * On earlier platforms the is highly platforms specific and not useful for
516  * cross-driver sharing. It exists since on a given platform it does uniquely
517  * identify the layout in a simple way for i915-specific userspace, which
518  * facilitated conversion of userspace to modifiers. Additionally the exact
519  * format on some really old platforms is not known.
520  */
521 #define I915_FORMAT_MOD_Y_TILED	fourcc_mod_code(INTEL, 2)
522 
523 /*
524  * Intel Yf-tiling layout
525  *
526  * This is a tiled layout using 4Kb tiles in row-major layout.
527  * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
528  * are arranged in four groups (two wide, two high) with column-major layout.
529  * Each group therefore consits out of four 256 byte units, which are also laid
530  * out as 2x2 column-major.
531  * 256 byte units are made out of four 64 byte blocks of pixels, producing
532  * either a square block or a 2:1 unit.
533  * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
534  * in pixel depends on the pixel depth.
535  */
536 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
537 
538 /*
539  * Intel color control surface (CCS) for render compression
540  *
541  * The framebuffer format must be one of the 8:8:8:8 RGB formats.
542  * The main surface will be plane index 0 and must be Y/Yf-tiled,
543  * the CCS will be plane index 1.
544  *
545  * Each CCS tile matches a 1024x512 pixel area of the main surface.
546  * To match certain aspects of the 3D hardware the CCS is
547  * considered to be made up of normal 128Bx32 Y tiles, Thus
548  * the CCS pitch must be specified in multiples of 128 bytes.
549  *
550  * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
551  * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
552  * But that fact is not relevant unless the memory is accessed
553  * directly.
554  */
555 #define I915_FORMAT_MOD_Y_TILED_CCS	fourcc_mod_code(INTEL, 4)
556 #define I915_FORMAT_MOD_Yf_TILED_CCS	fourcc_mod_code(INTEL, 5)
557 
558 /*
559  * Intel color control surfaces (CCS) for Gen-12 render compression.
560  *
561  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
562  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
563  * main surface. In other words, 4 bits in CCS map to a main surface cache
564  * line pair. The main surface pitch is required to be a multiple of four
565  * Y-tile widths.
566  */
567 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
568 
569 /*
570  * Intel color control surfaces (CCS) for Gen-12 media compression
571  *
572  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
573  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
574  * main surface. In other words, 4 bits in CCS map to a main surface cache
575  * line pair. The main surface pitch is required to be a multiple of four
576  * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
577  * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
578  * planes 2 and 3 for the respective CCS.
579  */
580 #define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
581 
582 /*
583  * Intel Color Control Surface with Clear Color (CCS) for Gen-12 render
584  * compression.
585  *
586  * The main surface is Y-tiled and is at plane index 0 whereas CCS is linear
587  * and at index 1. The clear color is stored at index 2, and the pitch should
588  * be 64 bytes aligned. The clear color structure is 256 bits. The first 128 bits
589  * represents Raw Clear Color Red, Green, Blue and Alpha color each represented
590  * by 32 bits. The raw clear color is consumed by the 3d engine and generates
591  * the converted clear color of size 64 bits. The first 32 bits store the Lower
592  * Converted Clear Color value and the next 32 bits store the Higher Converted
593  * Clear Color value when applicable. The Converted Clear Color values are
594  * consumed by the DE. The last 64 bits are used to store Color Discard Enable
595  * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
596  * corresponds to an area of 4x1 tiles in the main surface. The main surface
597  * pitch is required to be a multiple of 4 tile widths.
598  */
599 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC fourcc_mod_code(INTEL, 8)
600 
601 /*
602  * Intel Tile 4 layout
603  *
604  * This is a tiled layout using 4KB tiles in a row-major layout. It has the same
605  * shape as Tile Y at two granularities: 4KB (128B x 32) and 64B (16B x 4). It
606  * only differs from Tile Y at the 256B granularity in between. At this
607  * granularity, Tile Y has a shape of 16B x 32 rows, but this tiling has a shape
608  * of 64B x 8 rows.
609  */
610 #define I915_FORMAT_MOD_4_TILED         fourcc_mod_code(INTEL, 9)
611 
612 /*
613  * Intel color control surfaces (CCS) for DG2 render compression.
614  *
615  * The main surface is Tile 4 and at plane index 0. The CCS data is stored
616  * outside of the GEM object in a reserved memory area dedicated for the
617  * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
618  * main surface pitch is required to be a multiple of four Tile 4 widths.
619  */
620 #define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS fourcc_mod_code(INTEL, 10)
621 
622 /*
623  * Intel color control surfaces (CCS) for DG2 media compression.
624  *
625  * The main surface is Tile 4 and at plane index 0. For semi-planar formats
626  * like NV12, the Y and UV planes are Tile 4 and are located at plane indices
627  * 0 and 1, respectively. The CCS for all planes are stored outside of the
628  * GEM object in a reserved memory area dedicated for the storage of the
629  * CCS data for all RC/RC_CC/MC compressible GEM objects. The main surface
630  * pitch is required to be a multiple of four Tile 4 widths.
631  */
632 #define I915_FORMAT_MOD_4_TILED_DG2_MC_CCS fourcc_mod_code(INTEL, 11)
633 
634 /*
635  * Intel Color Control Surface with Clear Color (CCS) for DG2 render compression.
636  *
637  * The main surface is Tile 4 and at plane index 0. The CCS data is stored
638  * outside of the GEM object in a reserved memory area dedicated for the
639  * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
640  * main surface pitch is required to be a multiple of four Tile 4 widths. The
641  * clear color is stored at plane index 1 and the pitch should be 64 bytes
642  * aligned. The format of the 256 bits of clear color data matches the one used
643  * for the I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC modifier, see its description
644  * for details.
645  */
646 #define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS_CC fourcc_mod_code(INTEL, 12)
647 
648 /*
649  * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
650  *
651  * Macroblocks are laid in a Z-shape, and each pixel data is following the
652  * standard NV12 style.
653  * As for NV12, an image is the result of two frame buffers: one for Y,
654  * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
655  * Alignment requirements are (for each buffer):
656  * - multiple of 128 pixels for the width
657  * - multiple of  32 pixels for the height
658  *
659  * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
660  */
661 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE	fourcc_mod_code(SAMSUNG, 1)
662 
663 /*
664  * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
665  *
666  * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
667  * layout. For YCbCr formats Cb/Cr components are taken in such a way that
668  * they correspond to their 16x16 luma block.
669  */
670 #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE	fourcc_mod_code(SAMSUNG, 2)
671 
672 /*
673  * Qualcomm Compressed Format
674  *
675  * Refers to a compressed variant of the base format that is compressed.
676  * Implementation may be platform and base-format specific.
677  *
678  * Each macrotile consists of m x n (mostly 4 x 4) tiles.
679  * Pixel data pitch/stride is aligned with macrotile width.
680  * Pixel data height is aligned with macrotile height.
681  * Entire pixel data buffer is aligned with 4k(bytes).
682  */
683 #define DRM_FORMAT_MOD_QCOM_COMPRESSED	fourcc_mod_code(QCOM, 1)
684 
685 /*
686  * Qualcomm Tiled Format
687  *
688  * Similar to DRM_FORMAT_MOD_QCOM_COMPRESSED but not compressed.
689  * Implementation may be platform and base-format specific.
690  *
691  * Each macrotile consists of m x n (mostly 4 x 4) tiles.
692  * Pixel data pitch/stride is aligned with macrotile width.
693  * Pixel data height is aligned with macrotile height.
694  * Entire pixel data buffer is aligned with 4k(bytes).
695  */
696 #define DRM_FORMAT_MOD_QCOM_TILED3	fourcc_mod_code(QCOM, 3)
697 
698 /*
699  * Qualcomm Alternate Tiled Format
700  *
701  * Alternate tiled format typically only used within GMEM.
702  * Implementation may be platform and base-format specific.
703  */
704 #define DRM_FORMAT_MOD_QCOM_TILED2	fourcc_mod_code(QCOM, 2)
705 
706 
707 /* Vivante framebuffer modifiers */
708 
709 /*
710  * Vivante 4x4 tiling layout
711  *
712  * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
713  * layout.
714  */
715 #define DRM_FORMAT_MOD_VIVANTE_TILED		fourcc_mod_code(VIVANTE, 1)
716 
717 /*
718  * Vivante 64x64 super-tiling layout
719  *
720  * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
721  * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
722  * major layout.
723  *
724  * For more information: see
725  * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
726  */
727 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED	fourcc_mod_code(VIVANTE, 2)
728 
729 /*
730  * Vivante 4x4 tiling layout for dual-pipe
731  *
732  * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
733  * different base address. Offsets from the base addresses are therefore halved
734  * compared to the non-split tiled layout.
735  */
736 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED	fourcc_mod_code(VIVANTE, 3)
737 
738 /*
739  * Vivante 64x64 super-tiling layout for dual-pipe
740  *
741  * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
742  * starts at a different base address. Offsets from the base addresses are
743  * therefore halved compared to the non-split super-tiled layout.
744  */
745 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
746 
747 /* NVIDIA frame buffer modifiers */
748 
749 /*
750  * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
751  *
752  * Pixels are arranged in simple tiles of 16 x 16 bytes.
753  */
754 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
755 
756 /*
757  * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
758  * and Tegra GPUs starting with Tegra K1.
759  *
760  * Pixels are arranged in Groups of Bytes (GOBs).  GOB size and layout varies
761  * based on the architecture generation.  GOBs themselves are then arranged in
762  * 3D blocks, with the block dimensions (in terms of GOBs) always being a power
763  * of two, and hence expressible as their log2 equivalent (E.g., "2" represents
764  * a block depth or height of "4").
765  *
766  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
767  * in full detail.
768  *
769  *       Macro
770  * Bits  Param Description
771  * ----  ----- -----------------------------------------------------------------
772  *
773  *  3:0  h     log2(height) of each block, in GOBs.  Placed here for
774  *             compatibility with the existing
775  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
776  *
777  *  4:4  -     Must be 1, to indicate block-linear layout.  Necessary for
778  *             compatibility with the existing
779  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
780  *
781  *  8:5  -     Reserved (To support 3D-surfaces with variable log2(depth) block
782  *             size).  Must be zero.
783  *
784  *             Note there is no log2(width) parameter.  Some portions of the
785  *             hardware support a block width of two gobs, but it is impractical
786  *             to use due to lack of support elsewhere, and has no known
787  *             benefits.
788  *
789  * 11:9  -     Reserved (To support 2D-array textures with variable array stride
790  *             in blocks, specified via log2(tile width in blocks)).  Must be
791  *             zero.
792  *
793  * 19:12 k     Page Kind.  This value directly maps to a field in the page
794  *             tables of all GPUs >= NV50.  It affects the exact layout of bits
795  *             in memory and can be derived from the tuple
796  *
797  *               (format, GPU model, compression type, samples per pixel)
798  *
799  *             Where compression type is defined below.  If GPU model were
800  *             implied by the format modifier, format, or memory buffer, page
801  *             kind would not need to be included in the modifier itself, but
802  *             since the modifier should define the layout of the associated
803  *             memory buffer independent from any device or other context, it
804  *             must be included here.
805  *
806  * 21:20 g     GOB Height and Page Kind Generation.  The height of a GOB changed
807  *             starting with Fermi GPUs.  Additionally, the mapping between page
808  *             kind and bit layout has changed at various points.
809  *
810  *               0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
811  *               1 = Gob Height 4, G80 - GT2XX Page Kind mapping
812  *               2 = Gob Height 8, Turing+ Page Kind mapping
813  *               3 = Reserved for future use.
814  *
815  * 22:22 s     Sector layout.  On Tegra GPUs prior to Xavier, there is a further
816  *             bit remapping step that occurs at an even lower level than the
817  *             page kind and block linear swizzles.  This causes the layout of
818  *             surfaces mapped in those SOC's GPUs to be incompatible with the
819  *             equivalent mapping on other GPUs in the same system.
820  *
821  *               0 = Tegra K1 - Tegra Parker/TX2 Layout.
822  *               1 = Desktop GPU and Tegra Xavier+ Layout
823  *
824  * 25:23 c     Lossless Framebuffer Compression type.
825  *
826  *               0 = none
827  *               1 = ROP/3D, layout 1, exact compression format implied by Page
828  *                   Kind field
829  *               2 = ROP/3D, layout 2, exact compression format implied by Page
830  *                   Kind field
831  *               3 = CDE horizontal
832  *               4 = CDE vertical
833  *               5 = Reserved for future use
834  *               6 = Reserved for future use
835  *               7 = Reserved for future use
836  *
837  * 55:25 -     Reserved for future use.  Must be zero.
838  */
839 #define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
840 	fourcc_mod_code(NVIDIA, (0x10 | \
841 				 ((h) & 0xf) | \
842 				 (((k) & 0xff) << 12) | \
843 				 (((g) & 0x3) << 20) | \
844 				 (((s) & 0x1) << 22) | \
845 				 (((c) & 0x7) << 23)))
846 
847 /* To grandfather in prior block linear format modifiers to the above layout,
848  * the page kind "0", which corresponds to "pitch/linear" and hence is unusable
849  * with block-linear layouts, is remapped within drivers to the value 0xfe,
850  * which corresponds to the "generic" kind used for simple single-sample
851  * uncompressed color formats on Fermi - Volta GPUs.
852  */
853 static inline __u64
854 drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)
855 {
856 	if (!(modifier & 0x10) || (modifier & (0xff << 12)))
857 		return modifier;
858 	else
859 		return modifier | (0xfe << 12);
860 }
861 
862 /*
863  * 16Bx2 Block Linear layout, used by Tegra K1 and later
864  *
865  * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
866  * vertically by a power of 2 (1 to 32 GOBs) to form a block.
867  *
868  * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
869  *
870  * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
871  * Valid values are:
872  *
873  * 0 == ONE_GOB
874  * 1 == TWO_GOBS
875  * 2 == FOUR_GOBS
876  * 3 == EIGHT_GOBS
877  * 4 == SIXTEEN_GOBS
878  * 5 == THIRTYTWO_GOBS
879  *
880  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
881  * in full detail.
882  */
883 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
884 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
885 
886 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
887 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
888 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
889 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
890 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
891 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
892 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
893 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
894 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
895 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
896 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
897 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
898 
899 /*
900  * Some Broadcom modifiers take parameters, for example the number of
901  * vertical lines in the image. Reserve the lower 32 bits for modifier
902  * type, and the next 24 bits for parameters. Top 8 bits are the
903  * vendor code.
904  */
905 #define __fourcc_mod_broadcom_param_shift 8
906 #define __fourcc_mod_broadcom_param_bits 48
907 #define fourcc_mod_broadcom_code(val, params) \
908 	fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val))
909 #define fourcc_mod_broadcom_param(m) \
910 	((int)(((m) >> __fourcc_mod_broadcom_param_shift) &	\
911 	       ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
912 #define fourcc_mod_broadcom_mod(m) \
913 	((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) <<	\
914 		 __fourcc_mod_broadcom_param_shift))
915 
916 /*
917  * Broadcom VC4 "T" format
918  *
919  * This is the primary layout that the V3D GPU can texture from (it
920  * can't do linear).  The T format has:
921  *
922  * - 64b utiles of pixels in a raster-order grid according to cpp.  It's 4x4
923  *   pixels at 32 bit depth.
924  *
925  * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
926  *   16x16 pixels).
927  *
928  * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels).  On
929  *   even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
930  *   they're (TR, BR, BL, TL), where bottom left is start of memory.
931  *
932  * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
933  *   tiles) or right-to-left (odd rows of 4k tiles).
934  */
935 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
936 
937 /*
938  * Broadcom SAND format
939  *
940  * This is the native format that the H.264 codec block uses.  For VC4
941  * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
942  *
943  * The image can be considered to be split into columns, and the
944  * columns are placed consecutively into memory.  The width of those
945  * columns can be either 32, 64, 128, or 256 pixels, but in practice
946  * only 128 pixel columns are used.
947  *
948  * The pitch between the start of each column is set to optimally
949  * switch between SDRAM banks. This is passed as the number of lines
950  * of column width in the modifier (we can't use the stride value due
951  * to various core checks that look at it , so you should set the
952  * stride to width*cpp).
953  *
954  * Note that the column height for this format modifier is the same
955  * for all of the planes, assuming that each column contains both Y
956  * and UV.  Some SAND-using hardware stores UV in a separate tiled
957  * image from Y to reduce the column height, which is not supported
958  * with these modifiers.
959  *
960  * The DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT modifier is also
961  * supported for DRM_FORMAT_P030 where the columns remain as 128 bytes
962  * wide, but as this is a 10 bpp format that translates to 96 pixels.
963  */
964 
965 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
966 	fourcc_mod_broadcom_code(2, v)
967 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
968 	fourcc_mod_broadcom_code(3, v)
969 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
970 	fourcc_mod_broadcom_code(4, v)
971 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
972 	fourcc_mod_broadcom_code(5, v)
973 
974 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \
975 	DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
976 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \
977 	DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
978 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \
979 	DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
980 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \
981 	DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
982 
983 /* Broadcom UIF format
984  *
985  * This is the common format for the current Broadcom multimedia
986  * blocks, including V3D 3.x and newer, newer video codecs, and
987  * displays.
988  *
989  * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
990  * and macroblocks (4x4 UIF blocks).  Those 4x4 UIF block groups are
991  * stored in columns, with padding between the columns to ensure that
992  * moving from one column to the next doesn't hit the same SDRAM page
993  * bank.
994  *
995  * To calculate the padding, it is assumed that each hardware block
996  * and the software driving it knows the platform's SDRAM page size,
997  * number of banks, and XOR address, and that it's identical between
998  * all blocks using the format.  This tiling modifier will use XOR as
999  * necessary to reduce the padding.  If a hardware block can't do XOR,
1000  * the assumption is that a no-XOR tiling modifier will be created.
1001  */
1002 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
1003 
1004 /*
1005  * Arm Framebuffer Compression (AFBC) modifiers
1006  *
1007  * AFBC is a proprietary lossless image compression protocol and format.
1008  * It provides fine-grained random access and minimizes the amount of data
1009  * transferred between IP blocks.
1010  *
1011  * AFBC has several features which may be supported and/or used, which are
1012  * represented using bits in the modifier. Not all combinations are valid,
1013  * and different devices or use-cases may support different combinations.
1014  *
1015  * Further information on the use of AFBC modifiers can be found in
1016  * Documentation/gpu/afbc.rst
1017  */
1018 
1019 /*
1020  * The top 4 bits (out of the 56 bits alloted for specifying vendor specific
1021  * modifiers) denote the category for modifiers. Currently we have three
1022  * categories of modifiers ie AFBC, MISC and AFRC. We can have a maximum of
1023  * sixteen different categories.
1024  */
1025 #define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
1026 	fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
1027 
1028 #define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
1029 #define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
1030 
1031 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
1032 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
1033 
1034 /*
1035  * AFBC superblock size
1036  *
1037  * Indicates the superblock size(s) used for the AFBC buffer. The buffer
1038  * size (in pixels) must be aligned to a multiple of the superblock size.
1039  * Four lowest significant bits(LSBs) are reserved for block size.
1040  *
1041  * Where one superblock size is specified, it applies to all planes of the
1042  * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
1043  * the first applies to the Luma plane and the second applies to the Chroma
1044  * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
1045  * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
1046  */
1047 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK      0xf
1048 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16     (1ULL)
1049 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8      (2ULL)
1050 #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4      (3ULL)
1051 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
1052 
1053 /*
1054  * AFBC lossless colorspace transform
1055  *
1056  * Indicates that the buffer makes use of the AFBC lossless colorspace
1057  * transform.
1058  */
1059 #define AFBC_FORMAT_MOD_YTR     (1ULL <<  4)
1060 
1061 /*
1062  * AFBC block-split
1063  *
1064  * Indicates that the payload of each superblock is split. The second
1065  * half of the payload is positioned at a predefined offset from the start
1066  * of the superblock payload.
1067  */
1068 #define AFBC_FORMAT_MOD_SPLIT   (1ULL <<  5)
1069 
1070 /*
1071  * AFBC sparse layout
1072  *
1073  * This flag indicates that the payload of each superblock must be stored at a
1074  * predefined position relative to the other superblocks in the same AFBC
1075  * buffer. This order is the same order used by the header buffer. In this mode
1076  * each superblock is given the same amount of space as an uncompressed
1077  * superblock of the particular format would require, rounding up to the next
1078  * multiple of 128 bytes in size.
1079  */
1080 #define AFBC_FORMAT_MOD_SPARSE  (1ULL <<  6)
1081 
1082 /*
1083  * AFBC copy-block restrict
1084  *
1085  * Buffers with this flag must obey the copy-block restriction. The restriction
1086  * is such that there are no copy-blocks referring across the border of 8x8
1087  * blocks. For the subsampled data the 8x8 limitation is also subsampled.
1088  */
1089 #define AFBC_FORMAT_MOD_CBR     (1ULL <<  7)
1090 
1091 /*
1092  * AFBC tiled layout
1093  *
1094  * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
1095  * superblocks inside a tile are stored together in memory. 8x8 tiles are used
1096  * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
1097  * larger bpp formats. The order between the tiles is scan line.
1098  * When the tiled layout is used, the buffer size (in pixels) must be aligned
1099  * to the tile size.
1100  */
1101 #define AFBC_FORMAT_MOD_TILED   (1ULL <<  8)
1102 
1103 /*
1104  * AFBC solid color blocks
1105  *
1106  * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
1107  * can be reduced if a whole superblock is a single color.
1108  */
1109 #define AFBC_FORMAT_MOD_SC      (1ULL <<  9)
1110 
1111 /*
1112  * AFBC double-buffer
1113  *
1114  * Indicates that the buffer is allocated in a layout safe for front-buffer
1115  * rendering.
1116  */
1117 #define AFBC_FORMAT_MOD_DB      (1ULL << 10)
1118 
1119 /*
1120  * AFBC buffer content hints
1121  *
1122  * Indicates that the buffer includes per-superblock content hints.
1123  */
1124 #define AFBC_FORMAT_MOD_BCH     (1ULL << 11)
1125 
1126 /* AFBC uncompressed storage mode
1127  *
1128  * Indicates that the buffer is using AFBC uncompressed storage mode.
1129  * In this mode all superblock payloads in the buffer use the uncompressed
1130  * storage mode, which is usually only used for data which cannot be compressed.
1131  * The buffer layout is the same as for AFBC buffers without USM set, this only
1132  * affects the storage mode of the individual superblocks. Note that even a
1133  * buffer without USM set may use uncompressed storage mode for some or all
1134  * superblocks, USM just guarantees it for all.
1135  */
1136 #define AFBC_FORMAT_MOD_USM	(1ULL << 12)
1137 
1138 /*
1139  * Arm Fixed-Rate Compression (AFRC) modifiers
1140  *
1141  * AFRC is a proprietary fixed rate image compression protocol and format,
1142  * designed to provide guaranteed bandwidth and memory footprint
1143  * reductions in graphics and media use-cases.
1144  *
1145  * AFRC buffers consist of one or more planes, with the same components
1146  * and meaning as an uncompressed buffer using the same pixel format.
1147  *
1148  * Within each plane, the pixel/luma/chroma values are grouped into
1149  * "coding unit" blocks which are individually compressed to a
1150  * fixed size (in bytes). All coding units within a given plane of a buffer
1151  * store the same number of values, and have the same compressed size.
1152  *
1153  * The coding unit size is configurable, allowing different rates of compression.
1154  *
1155  * The start of each AFRC buffer plane must be aligned to an alignment granule which
1156  * depends on the coding unit size.
1157  *
1158  * Coding Unit Size   Plane Alignment
1159  * ----------------   ---------------
1160  * 16 bytes           1024 bytes
1161  * 24 bytes           512  bytes
1162  * 32 bytes           2048 bytes
1163  *
1164  * Coding units are grouped into paging tiles. AFRC buffer dimensions must be aligned
1165  * to a multiple of the paging tile dimensions.
1166  * The dimensions of each paging tile depend on whether the buffer is optimised for
1167  * scanline (SCAN layout) or rotated (ROT layout) access.
1168  *
1169  * Layout   Paging Tile Width   Paging Tile Height
1170  * ------   -----------------   ------------------
1171  * SCAN     16 coding units     4 coding units
1172  * ROT      8  coding units     8 coding units
1173  *
1174  * The dimensions of each coding unit depend on the number of components
1175  * in the compressed plane and whether the buffer is optimised for
1176  * scanline (SCAN layout) or rotated (ROT layout) access.
1177  *
1178  * Number of Components in Plane   Layout      Coding Unit Width   Coding Unit Height
1179  * -----------------------------   ---------   -----------------   ------------------
1180  * 1                               SCAN        16 samples          4 samples
1181  * Example: 16x4 luma samples in a 'Y' plane
1182  *          16x4 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1183  * -----------------------------   ---------   -----------------   ------------------
1184  * 1                               ROT         8 samples           8 samples
1185  * Example: 8x8 luma samples in a 'Y' plane
1186  *          8x8 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1187  * -----------------------------   ---------   -----------------   ------------------
1188  * 2                               DONT CARE   8 samples           4 samples
1189  * Example: 8x4 chroma pairs in the 'UV' plane of a semi-planar YUV buffer
1190  * -----------------------------   ---------   -----------------   ------------------
1191  * 3                               DONT CARE   4 samples           4 samples
1192  * Example: 4x4 pixels in an RGB buffer without alpha
1193  * -----------------------------   ---------   -----------------   ------------------
1194  * 4                               DONT CARE   4 samples           4 samples
1195  * Example: 4x4 pixels in an RGB buffer with alpha
1196  */
1197 
1198 #define DRM_FORMAT_MOD_ARM_TYPE_AFRC 0x02
1199 
1200 #define DRM_FORMAT_MOD_ARM_AFRC(__afrc_mode) \
1201 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFRC, __afrc_mode)
1202 
1203 /*
1204  * AFRC coding unit size modifier.
1205  *
1206  * Indicates the number of bytes used to store each compressed coding unit for
1207  * one or more planes in an AFRC encoded buffer. The coding unit size for chrominance
1208  * is the same for both Cb and Cr, which may be stored in separate planes.
1209  *
1210  * AFRC_FORMAT_MOD_CU_SIZE_P0 indicates the number of bytes used to store
1211  * each compressed coding unit in the first plane of the buffer. For RGBA buffers
1212  * this is the only plane, while for semi-planar and fully-planar YUV buffers,
1213  * this corresponds to the luma plane.
1214  *
1215  * AFRC_FORMAT_MOD_CU_SIZE_P12 indicates the number of bytes used to store
1216  * each compressed coding unit in the second and third planes in the buffer.
1217  * For semi-planar and fully-planar YUV buffers, this corresponds to the chroma plane(s).
1218  *
1219  * For single-plane buffers, AFRC_FORMAT_MOD_CU_SIZE_P0 must be specified
1220  * and AFRC_FORMAT_MOD_CU_SIZE_P12 must be zero.
1221  * For semi-planar and fully-planar buffers, both AFRC_FORMAT_MOD_CU_SIZE_P0 and
1222  * AFRC_FORMAT_MOD_CU_SIZE_P12 must be specified.
1223  */
1224 #define AFRC_FORMAT_MOD_CU_SIZE_MASK 0xf
1225 #define AFRC_FORMAT_MOD_CU_SIZE_16 (1ULL)
1226 #define AFRC_FORMAT_MOD_CU_SIZE_24 (2ULL)
1227 #define AFRC_FORMAT_MOD_CU_SIZE_32 (3ULL)
1228 
1229 #define AFRC_FORMAT_MOD_CU_SIZE_P0(__afrc_cu_size) (__afrc_cu_size)
1230 #define AFRC_FORMAT_MOD_CU_SIZE_P12(__afrc_cu_size) ((__afrc_cu_size) << 4)
1231 
1232 /*
1233  * AFRC scanline memory layout.
1234  *
1235  * Indicates if the buffer uses the scanline-optimised layout
1236  * for an AFRC encoded buffer, otherwise, it uses the rotation-optimised layout.
1237  * The memory layout is the same for all planes.
1238  */
1239 #define AFRC_FORMAT_MOD_LAYOUT_SCAN (1ULL << 8)
1240 
1241 /*
1242  * Arm 16x16 Block U-Interleaved modifier
1243  *
1244  * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
1245  * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
1246  * in the block are reordered.
1247  */
1248 #define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
1249 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
1250 
1251 /*
1252  * Allwinner tiled modifier
1253  *
1254  * This tiling mode is implemented by the VPU found on all Allwinner platforms,
1255  * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
1256  * planes.
1257  *
1258  * With this tiling, the luminance samples are disposed in tiles representing
1259  * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
1260  * The pixel order in each tile is linear and the tiles are disposed linearly,
1261  * both in row-major order.
1262  */
1263 #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
1264 
1265 /*
1266  * Amlogic Video Framebuffer Compression modifiers
1267  *
1268  * Amlogic uses a proprietary lossless image compression protocol and format
1269  * for their hardware video codec accelerators, either video decoders or
1270  * video input encoders.
1271  *
1272  * It considerably reduces memory bandwidth while writing and reading
1273  * frames in memory.
1274  *
1275  * The underlying storage is considered to be 3 components, 8bit or 10-bit
1276  * per component YCbCr 420, single plane :
1277  * - DRM_FORMAT_YUV420_8BIT
1278  * - DRM_FORMAT_YUV420_10BIT
1279  *
1280  * The first 8 bits of the mode defines the layout, then the following 8 bits
1281  * defines the options changing the layout.
1282  *
1283  * Not all combinations are valid, and different SoCs may support different
1284  * combinations of layout and options.
1285  */
1286 #define __fourcc_mod_amlogic_layout_mask 0xff
1287 #define __fourcc_mod_amlogic_options_shift 8
1288 #define __fourcc_mod_amlogic_options_mask 0xff
1289 
1290 #define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \
1291 	fourcc_mod_code(AMLOGIC, \
1292 			((__layout) & __fourcc_mod_amlogic_layout_mask) | \
1293 			(((__options) & __fourcc_mod_amlogic_options_mask) \
1294 			 << __fourcc_mod_amlogic_options_shift))
1295 
1296 /* Amlogic FBC Layouts */
1297 
1298 /*
1299  * Amlogic FBC Basic Layout
1300  *
1301  * The basic layout is composed of:
1302  * - a body content organized in 64x32 superblocks with 4096 bytes per
1303  *   superblock in default mode.
1304  * - a 32 bytes per 128x64 header block
1305  *
1306  * This layout is transferrable between Amlogic SoCs supporting this modifier.
1307  */
1308 #define AMLOGIC_FBC_LAYOUT_BASIC		(1ULL)
1309 
1310 /*
1311  * Amlogic FBC Scatter Memory layout
1312  *
1313  * Indicates the header contains IOMMU references to the compressed
1314  * frames content to optimize memory access and layout.
1315  *
1316  * In this mode, only the header memory address is needed, thus the
1317  * content memory organization is tied to the current producer
1318  * execution and cannot be saved/dumped neither transferrable between
1319  * Amlogic SoCs supporting this modifier.
1320  *
1321  * Due to the nature of the layout, these buffers are not expected to
1322  * be accessible by the user-space clients, but only accessible by the
1323  * hardware producers and consumers.
1324  *
1325  * The user-space clients should expect a failure while trying to mmap
1326  * the DMA-BUF handle returned by the producer.
1327  */
1328 #define AMLOGIC_FBC_LAYOUT_SCATTER		(2ULL)
1329 
1330 /* Amlogic FBC Layout Options Bit Mask */
1331 
1332 /*
1333  * Amlogic FBC Memory Saving mode
1334  *
1335  * Indicates the storage is packed when pixel size is multiple of word
1336  * boudaries, i.e. 8bit should be stored in this mode to save allocation
1337  * memory.
1338  *
1339  * This mode reduces body layout to 3072 bytes per 64x32 superblock with
1340  * the basic layout and 3200 bytes per 64x32 superblock combined with
1341  * the scatter layout.
1342  */
1343 #define AMLOGIC_FBC_OPTION_MEM_SAVING		(1ULL << 0)
1344 
1345 /*
1346  * AMD modifiers
1347  *
1348  * Memory layout:
1349  *
1350  * without DCC:
1351  *   - main surface
1352  *
1353  * with DCC & without DCC_RETILE:
1354  *   - main surface in plane 0
1355  *   - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set)
1356  *
1357  * with DCC & DCC_RETILE:
1358  *   - main surface in plane 0
1359  *   - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned)
1360  *   - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned)
1361  *
1362  * For multi-plane formats the above surfaces get merged into one plane for
1363  * each format plane, based on the required alignment only.
1364  *
1365  * Bits  Parameter                Notes
1366  * ----- ------------------------ ---------------------------------------------
1367  *
1368  *   7:0 TILE_VERSION             Values are AMD_FMT_MOD_TILE_VER_*
1369  *  12:8 TILE                     Values are AMD_FMT_MOD_TILE_<version>_*
1370  *    13 DCC
1371  *    14 DCC_RETILE
1372  *    15 DCC_PIPE_ALIGN
1373  *    16 DCC_INDEPENDENT_64B
1374  *    17 DCC_INDEPENDENT_128B
1375  * 19:18 DCC_MAX_COMPRESSED_BLOCK Values are AMD_FMT_MOD_DCC_BLOCK_*
1376  *    20 DCC_CONSTANT_ENCODE
1377  * 23:21 PIPE_XOR_BITS            Only for some chips
1378  * 26:24 BANK_XOR_BITS            Only for some chips
1379  * 29:27 PACKERS                  Only for some chips
1380  * 32:30 RB                       Only for some chips
1381  * 35:33 PIPE                     Only for some chips
1382  * 55:36 -                        Reserved for future use, must be zero
1383  */
1384 #define AMD_FMT_MOD fourcc_mod_code(AMD, 0)
1385 
1386 #define IS_AMD_FMT_MOD(val) (((val) >> 56) == DRM_FORMAT_MOD_VENDOR_AMD)
1387 
1388 /* Reserve 0 for GFX8 and older */
1389 #define AMD_FMT_MOD_TILE_VER_GFX9 1
1390 #define AMD_FMT_MOD_TILE_VER_GFX10 2
1391 #define AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS 3
1392 #define AMD_FMT_MOD_TILE_VER_GFX11 4
1393 
1394 /*
1395  * 64K_S is the same for GFX9/GFX10/GFX10_RBPLUS and hence has GFX9 as canonical
1396  * version.
1397  */
1398 #define AMD_FMT_MOD_TILE_GFX9_64K_S 9
1399 
1400 /*
1401  * 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has
1402  * GFX9 as canonical version.
1403  */
1404 #define AMD_FMT_MOD_TILE_GFX9_64K_D 10
1405 #define AMD_FMT_MOD_TILE_GFX9_64K_S_X 25
1406 #define AMD_FMT_MOD_TILE_GFX9_64K_D_X 26
1407 #define AMD_FMT_MOD_TILE_GFX9_64K_R_X 27
1408 #define AMD_FMT_MOD_TILE_GFX11_256K_R_X 31
1409 
1410 #define AMD_FMT_MOD_DCC_BLOCK_64B 0
1411 #define AMD_FMT_MOD_DCC_BLOCK_128B 1
1412 #define AMD_FMT_MOD_DCC_BLOCK_256B 2
1413 
1414 #define AMD_FMT_MOD_TILE_VERSION_SHIFT 0
1415 #define AMD_FMT_MOD_TILE_VERSION_MASK 0xFF
1416 #define AMD_FMT_MOD_TILE_SHIFT 8
1417 #define AMD_FMT_MOD_TILE_MASK 0x1F
1418 
1419 /* Whether DCC compression is enabled. */
1420 #define AMD_FMT_MOD_DCC_SHIFT 13
1421 #define AMD_FMT_MOD_DCC_MASK 0x1
1422 
1423 /*
1424  * Whether to include two DCC surfaces, one which is rb & pipe aligned, and
1425  * one which is not-aligned.
1426  */
1427 #define AMD_FMT_MOD_DCC_RETILE_SHIFT 14
1428 #define AMD_FMT_MOD_DCC_RETILE_MASK 0x1
1429 
1430 /* Only set if DCC_RETILE = false */
1431 #define AMD_FMT_MOD_DCC_PIPE_ALIGN_SHIFT 15
1432 #define AMD_FMT_MOD_DCC_PIPE_ALIGN_MASK 0x1
1433 
1434 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_SHIFT 16
1435 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_MASK 0x1
1436 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_SHIFT 17
1437 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_MASK 0x1
1438 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_SHIFT 18
1439 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_MASK 0x3
1440 
1441 /*
1442  * DCC supports embedding some clear colors directly in the DCC surface.
1443  * However, on older GPUs the rendering HW ignores the embedded clear color
1444  * and prefers the driver provided color. This necessitates doing a fastclear
1445  * eliminate operation before a process transfers control.
1446  *
1447  * If this bit is set that means the fastclear eliminate is not needed for these
1448  * embeddable colors.
1449  */
1450 #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_SHIFT 20
1451 #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_MASK 0x1
1452 
1453 /*
1454  * The below fields are for accounting for per GPU differences. These are only
1455  * relevant for GFX9 and later and if the tile field is *_X/_T.
1456  *
1457  * PIPE_XOR_BITS = always needed
1458  * BANK_XOR_BITS = only for TILE_VER_GFX9
1459  * PACKERS = only for TILE_VER_GFX10_RBPLUS
1460  * RB = only for TILE_VER_GFX9 & DCC
1461  * PIPE = only for TILE_VER_GFX9 & DCC & (DCC_RETILE | DCC_PIPE_ALIGN)
1462  */
1463 #define AMD_FMT_MOD_PIPE_XOR_BITS_SHIFT 21
1464 #define AMD_FMT_MOD_PIPE_XOR_BITS_MASK 0x7
1465 #define AMD_FMT_MOD_BANK_XOR_BITS_SHIFT 24
1466 #define AMD_FMT_MOD_BANK_XOR_BITS_MASK 0x7
1467 #define AMD_FMT_MOD_PACKERS_SHIFT 27
1468 #define AMD_FMT_MOD_PACKERS_MASK 0x7
1469 #define AMD_FMT_MOD_RB_SHIFT 30
1470 #define AMD_FMT_MOD_RB_MASK 0x7
1471 #define AMD_FMT_MOD_PIPE_SHIFT 33
1472 #define AMD_FMT_MOD_PIPE_MASK 0x7
1473 
1474 #define AMD_FMT_MOD_SET(field, value) \
1475 	((__u64)(value) << AMD_FMT_MOD_##field##_SHIFT)
1476 #define AMD_FMT_MOD_GET(field, value) \
1477 	(((value) >> AMD_FMT_MOD_##field##_SHIFT) & AMD_FMT_MOD_##field##_MASK)
1478 #define AMD_FMT_MOD_CLEAR(field) \
1479 	(~((__u64)AMD_FMT_MOD_##field##_MASK << AMD_FMT_MOD_##field##_SHIFT))
1480 
1481 #if defined(__cplusplus)
1482 }
1483 #endif
1484 
1485 #endif /* DRM_FOURCC_H */
1486