xref: /openbmc/linux/include/uapi/drm/drm_fourcc.h (revision a080a92a6f89e716b8a264f6b93123b41a1c004c)
1 /*
2  * Copyright 2011 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #ifndef DRM_FOURCC_H
25 #define DRM_FOURCC_H
26 
27 #include "drm.h"
28 
29 #if defined(__cplusplus)
30 extern "C" {
31 #endif
32 
33 /**
34  * DOC: overview
35  *
36  * In the DRM subsystem, framebuffer pixel formats are described using the
37  * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
38  * fourcc code, a Format Modifier may optionally be provided, in order to
39  * further describe the buffer's format - for example tiling or compression.
40  *
41  * Format Modifiers
42  * ----------------
43  *
44  * Format modifiers are used in conjunction with a fourcc code, forming a
45  * unique fourcc:modifier pair. This format:modifier pair must fully define the
46  * format and data layout of the buffer, and should be the only way to describe
47  * that particular buffer.
48  *
49  * Having multiple fourcc:modifier pairs which describe the same layout should
50  * be avoided, as such aliases run the risk of different drivers exposing
51  * different names for the same data format, forcing userspace to understand
52  * that they are aliases.
53  *
54  * Format modifiers may change any property of the buffer, including the number
55  * of planes and/or the required allocation size. Format modifiers are
56  * vendor-namespaced, and as such the relationship between a fourcc code and a
57  * modifier is specific to the modifer being used. For example, some modifiers
58  * may preserve meaning - such as number of planes - from the fourcc code,
59  * whereas others may not.
60  *
61  * Vendors should document their modifier usage in as much detail as
62  * possible, to ensure maximum compatibility across devices, drivers and
63  * applications.
64  *
65  * The authoritative list of format modifier codes is found in
66  * `include/uapi/drm/drm_fourcc.h`
67  */
68 
69 #define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \
70 				 ((__u32)(c) << 16) | ((__u32)(d) << 24))
71 
72 #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
73 
74 /* Reserve 0 for the invalid format specifier */
75 #define DRM_FORMAT_INVALID	0
76 
77 /* color index */
78 #define DRM_FORMAT_C8		fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
79 
80 /* 8 bpp Red */
81 #define DRM_FORMAT_R8		fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
82 
83 /* 16 bpp Red */
84 #define DRM_FORMAT_R16		fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
85 
86 /* 16 bpp RG */
87 #define DRM_FORMAT_RG88		fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
88 #define DRM_FORMAT_GR88		fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
89 
90 /* 32 bpp RG */
91 #define DRM_FORMAT_RG1616	fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
92 #define DRM_FORMAT_GR1616	fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
93 
94 /* 8 bpp RGB */
95 #define DRM_FORMAT_RGB332	fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
96 #define DRM_FORMAT_BGR233	fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
97 
98 /* 16 bpp RGB */
99 #define DRM_FORMAT_XRGB4444	fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
100 #define DRM_FORMAT_XBGR4444	fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
101 #define DRM_FORMAT_RGBX4444	fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
102 #define DRM_FORMAT_BGRX4444	fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
103 
104 #define DRM_FORMAT_ARGB4444	fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
105 #define DRM_FORMAT_ABGR4444	fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
106 #define DRM_FORMAT_RGBA4444	fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
107 #define DRM_FORMAT_BGRA4444	fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
108 
109 #define DRM_FORMAT_XRGB1555	fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
110 #define DRM_FORMAT_XBGR1555	fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
111 #define DRM_FORMAT_RGBX5551	fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
112 #define DRM_FORMAT_BGRX5551	fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
113 
114 #define DRM_FORMAT_ARGB1555	fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
115 #define DRM_FORMAT_ABGR1555	fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
116 #define DRM_FORMAT_RGBA5551	fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
117 #define DRM_FORMAT_BGRA5551	fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
118 
119 #define DRM_FORMAT_RGB565	fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
120 #define DRM_FORMAT_BGR565	fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
121 
122 /* 24 bpp RGB */
123 #define DRM_FORMAT_RGB888	fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
124 #define DRM_FORMAT_BGR888	fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
125 
126 /* 32 bpp RGB */
127 #define DRM_FORMAT_XRGB8888	fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
128 #define DRM_FORMAT_XBGR8888	fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
129 #define DRM_FORMAT_RGBX8888	fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
130 #define DRM_FORMAT_BGRX8888	fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
131 
132 #define DRM_FORMAT_ARGB8888	fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
133 #define DRM_FORMAT_ABGR8888	fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
134 #define DRM_FORMAT_RGBA8888	fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
135 #define DRM_FORMAT_BGRA8888	fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
136 
137 #define DRM_FORMAT_XRGB2101010	fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
138 #define DRM_FORMAT_XBGR2101010	fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
139 #define DRM_FORMAT_RGBX1010102	fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
140 #define DRM_FORMAT_BGRX1010102	fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
141 
142 #define DRM_FORMAT_ARGB2101010	fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
143 #define DRM_FORMAT_ABGR2101010	fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
144 #define DRM_FORMAT_RGBA1010102	fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
145 #define DRM_FORMAT_BGRA1010102	fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
146 
147 /*
148  * Floating point 64bpp RGB
149  * IEEE 754-2008 binary16 half-precision float
150  * [15:0] sign:exponent:mantissa 1:5:10
151  */
152 #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
153 #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
154 
155 #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
156 #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
157 
158 /* packed YCbCr */
159 #define DRM_FORMAT_YUYV		fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
160 #define DRM_FORMAT_YVYU		fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
161 #define DRM_FORMAT_UYVY		fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
162 #define DRM_FORMAT_VYUY		fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
163 
164 #define DRM_FORMAT_AYUV		fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
165 #define DRM_FORMAT_XYUV8888	fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
166 #define DRM_FORMAT_VUY888	fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
167 #define DRM_FORMAT_VUY101010	fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
168 
169 /*
170  * packed Y2xx indicate for each component, xx valid data occupy msb
171  * 16-xx padding occupy lsb
172  */
173 #define DRM_FORMAT_Y210         fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
174 #define DRM_FORMAT_Y212         fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
175 #define DRM_FORMAT_Y216         fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
176 
177 /*
178  * packed Y4xx indicate for each component, xx valid data occupy msb
179  * 16-xx padding occupy lsb except Y410
180  */
181 #define DRM_FORMAT_Y410         fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
182 #define DRM_FORMAT_Y412         fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
183 #define DRM_FORMAT_Y416         fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
184 
185 #define DRM_FORMAT_XVYU2101010	fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
186 #define DRM_FORMAT_XVYU12_16161616	fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
187 #define DRM_FORMAT_XVYU16161616	fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
188 
189 /*
190  * packed YCbCr420 2x2 tiled formats
191  * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
192  */
193 /* [63:0]   A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
194 #define DRM_FORMAT_Y0L0		fourcc_code('Y', '0', 'L', '0')
195 /* [63:0]   X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
196 #define DRM_FORMAT_X0L0		fourcc_code('X', '0', 'L', '0')
197 
198 /* [63:0]   A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
199 #define DRM_FORMAT_Y0L2		fourcc_code('Y', '0', 'L', '2')
200 /* [63:0]   X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
201 #define DRM_FORMAT_X0L2		fourcc_code('X', '0', 'L', '2')
202 
203 /*
204  * 1-plane YUV 4:2:0
205  * In these formats, the component ordering is specified (Y, followed by U
206  * then V), but the exact Linear layout is undefined.
207  * These formats can only be used with a non-Linear modifier.
208  */
209 #define DRM_FORMAT_YUV420_8BIT	fourcc_code('Y', 'U', '0', '8')
210 #define DRM_FORMAT_YUV420_10BIT	fourcc_code('Y', 'U', '1', '0')
211 
212 /*
213  * 2 plane RGB + A
214  * index 0 = RGB plane, same format as the corresponding non _A8 format has
215  * index 1 = A plane, [7:0] A
216  */
217 #define DRM_FORMAT_XRGB8888_A8	fourcc_code('X', 'R', 'A', '8')
218 #define DRM_FORMAT_XBGR8888_A8	fourcc_code('X', 'B', 'A', '8')
219 #define DRM_FORMAT_RGBX8888_A8	fourcc_code('R', 'X', 'A', '8')
220 #define DRM_FORMAT_BGRX8888_A8	fourcc_code('B', 'X', 'A', '8')
221 #define DRM_FORMAT_RGB888_A8	fourcc_code('R', '8', 'A', '8')
222 #define DRM_FORMAT_BGR888_A8	fourcc_code('B', '8', 'A', '8')
223 #define DRM_FORMAT_RGB565_A8	fourcc_code('R', '5', 'A', '8')
224 #define DRM_FORMAT_BGR565_A8	fourcc_code('B', '5', 'A', '8')
225 
226 /*
227  * 2 plane YCbCr
228  * index 0 = Y plane, [7:0] Y
229  * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
230  * or
231  * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
232  */
233 #define DRM_FORMAT_NV12		fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
234 #define DRM_FORMAT_NV21		fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
235 #define DRM_FORMAT_NV16		fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
236 #define DRM_FORMAT_NV61		fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
237 #define DRM_FORMAT_NV24		fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
238 #define DRM_FORMAT_NV42		fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
239 
240 /*
241  * 2 plane YCbCr MSB aligned
242  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
243  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
244  */
245 #define DRM_FORMAT_P210		fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
246 
247 /*
248  * 2 plane YCbCr MSB aligned
249  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
250  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
251  */
252 #define DRM_FORMAT_P010		fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
253 
254 /*
255  * 2 plane YCbCr MSB aligned
256  * index 0 = Y plane, [15:0] Y:x [12:4] little endian
257  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
258  */
259 #define DRM_FORMAT_P012		fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
260 
261 /*
262  * 2 plane YCbCr MSB aligned
263  * index 0 = Y plane, [15:0] Y little endian
264  * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
265  */
266 #define DRM_FORMAT_P016		fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
267 
268 /*
269  * 3 plane YCbCr
270  * index 0: Y plane, [7:0] Y
271  * index 1: Cb plane, [7:0] Cb
272  * index 2: Cr plane, [7:0] Cr
273  * or
274  * index 1: Cr plane, [7:0] Cr
275  * index 2: Cb plane, [7:0] Cb
276  */
277 #define DRM_FORMAT_YUV410	fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
278 #define DRM_FORMAT_YVU410	fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
279 #define DRM_FORMAT_YUV411	fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
280 #define DRM_FORMAT_YVU411	fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
281 #define DRM_FORMAT_YUV420	fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
282 #define DRM_FORMAT_YVU420	fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
283 #define DRM_FORMAT_YUV422	fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
284 #define DRM_FORMAT_YVU422	fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
285 #define DRM_FORMAT_YUV444	fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
286 #define DRM_FORMAT_YVU444	fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
287 
288 
289 /*
290  * Format Modifiers:
291  *
292  * Format modifiers describe, typically, a re-ordering or modification
293  * of the data in a plane of an FB.  This can be used to express tiled/
294  * swizzled formats, or compression, or a combination of the two.
295  *
296  * The upper 8 bits of the format modifier are a vendor-id as assigned
297  * below.  The lower 56 bits are assigned as vendor sees fit.
298  */
299 
300 /* Vendor Ids: */
301 #define DRM_FORMAT_MOD_NONE           0
302 #define DRM_FORMAT_MOD_VENDOR_NONE    0
303 #define DRM_FORMAT_MOD_VENDOR_INTEL   0x01
304 #define DRM_FORMAT_MOD_VENDOR_AMD     0x02
305 #define DRM_FORMAT_MOD_VENDOR_NVIDIA  0x03
306 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
307 #define DRM_FORMAT_MOD_VENDOR_QCOM    0x05
308 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
309 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
310 #define DRM_FORMAT_MOD_VENDOR_ARM     0x08
311 #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
312 
313 /* add more to the end as needed */
314 
315 #define DRM_FORMAT_RESERVED	      ((1ULL << 56) - 1)
316 
317 #define fourcc_mod_code(vendor, val) \
318 	((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
319 
320 /*
321  * Format Modifier tokens:
322  *
323  * When adding a new token please document the layout with a code comment,
324  * similar to the fourcc codes above. drm_fourcc.h is considered the
325  * authoritative source for all of these.
326  */
327 
328 /*
329  * Invalid Modifier
330  *
331  * This modifier can be used as a sentinel to terminate the format modifiers
332  * list, or to initialize a variable with an invalid modifier. It might also be
333  * used to report an error back to userspace for certain APIs.
334  */
335 #define DRM_FORMAT_MOD_INVALID	fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
336 
337 /*
338  * Linear Layout
339  *
340  * Just plain linear layout. Note that this is different from no specifying any
341  * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
342  * which tells the driver to also take driver-internal information into account
343  * and so might actually result in a tiled framebuffer.
344  */
345 #define DRM_FORMAT_MOD_LINEAR	fourcc_mod_code(NONE, 0)
346 
347 /* Intel framebuffer modifiers */
348 
349 /*
350  * Intel X-tiling layout
351  *
352  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
353  * in row-major layout. Within the tile bytes are laid out row-major, with
354  * a platform-dependent stride. On top of that the memory can apply
355  * platform-depending swizzling of some higher address bits into bit6.
356  *
357  * This format is highly platforms specific and not useful for cross-driver
358  * sharing. It exists since on a given platform it does uniquely identify the
359  * layout in a simple way for i915-specific userspace.
360  */
361 #define I915_FORMAT_MOD_X_TILED	fourcc_mod_code(INTEL, 1)
362 
363 /*
364  * Intel Y-tiling layout
365  *
366  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
367  * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
368  * chunks column-major, with a platform-dependent height. On top of that the
369  * memory can apply platform-depending swizzling of some higher address bits
370  * into bit6.
371  *
372  * This format is highly platforms specific and not useful for cross-driver
373  * sharing. It exists since on a given platform it does uniquely identify the
374  * layout in a simple way for i915-specific userspace.
375  */
376 #define I915_FORMAT_MOD_Y_TILED	fourcc_mod_code(INTEL, 2)
377 
378 /*
379  * Intel Yf-tiling layout
380  *
381  * This is a tiled layout using 4Kb tiles in row-major layout.
382  * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
383  * are arranged in four groups (two wide, two high) with column-major layout.
384  * Each group therefore consits out of four 256 byte units, which are also laid
385  * out as 2x2 column-major.
386  * 256 byte units are made out of four 64 byte blocks of pixels, producing
387  * either a square block or a 2:1 unit.
388  * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
389  * in pixel depends on the pixel depth.
390  */
391 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
392 
393 /*
394  * Intel color control surface (CCS) for render compression
395  *
396  * The framebuffer format must be one of the 8:8:8:8 RGB formats.
397  * The main surface will be plane index 0 and must be Y/Yf-tiled,
398  * the CCS will be plane index 1.
399  *
400  * Each CCS tile matches a 1024x512 pixel area of the main surface.
401  * To match certain aspects of the 3D hardware the CCS is
402  * considered to be made up of normal 128Bx32 Y tiles, Thus
403  * the CCS pitch must be specified in multiples of 128 bytes.
404  *
405  * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
406  * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
407  * But that fact is not relevant unless the memory is accessed
408  * directly.
409  */
410 #define I915_FORMAT_MOD_Y_TILED_CCS	fourcc_mod_code(INTEL, 4)
411 #define I915_FORMAT_MOD_Yf_TILED_CCS	fourcc_mod_code(INTEL, 5)
412 
413 /*
414  * Intel color control surfaces (CCS) for Gen-12 render compression.
415  *
416  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
417  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
418  * main surface. In other words, 4 bits in CCS map to a main surface cache
419  * line pair. The main surface pitch is required to be a multiple of four
420  * Y-tile widths.
421  */
422 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
423 
424 /*
425  * Intel color control surfaces (CCS) for Gen-12 media compression
426  *
427  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
428  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
429  * main surface. In other words, 4 bits in CCS map to a main surface cache
430  * line pair. The main surface pitch is required to be a multiple of four
431  * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
432  * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
433  * planes 2 and 3 for the respective CCS.
434  */
435 #define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
436 
437 /*
438  * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
439  *
440  * Macroblocks are laid in a Z-shape, and each pixel data is following the
441  * standard NV12 style.
442  * As for NV12, an image is the result of two frame buffers: one for Y,
443  * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
444  * Alignment requirements are (for each buffer):
445  * - multiple of 128 pixels for the width
446  * - multiple of  32 pixels for the height
447  *
448  * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
449  */
450 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE	fourcc_mod_code(SAMSUNG, 1)
451 
452 /*
453  * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
454  *
455  * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
456  * layout. For YCbCr formats Cb/Cr components are taken in such a way that
457  * they correspond to their 16x16 luma block.
458  */
459 #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE	fourcc_mod_code(SAMSUNG, 2)
460 
461 /*
462  * Qualcomm Compressed Format
463  *
464  * Refers to a compressed variant of the base format that is compressed.
465  * Implementation may be platform and base-format specific.
466  *
467  * Each macrotile consists of m x n (mostly 4 x 4) tiles.
468  * Pixel data pitch/stride is aligned with macrotile width.
469  * Pixel data height is aligned with macrotile height.
470  * Entire pixel data buffer is aligned with 4k(bytes).
471  */
472 #define DRM_FORMAT_MOD_QCOM_COMPRESSED	fourcc_mod_code(QCOM, 1)
473 
474 /* Vivante framebuffer modifiers */
475 
476 /*
477  * Vivante 4x4 tiling layout
478  *
479  * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
480  * layout.
481  */
482 #define DRM_FORMAT_MOD_VIVANTE_TILED		fourcc_mod_code(VIVANTE, 1)
483 
484 /*
485  * Vivante 64x64 super-tiling layout
486  *
487  * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
488  * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
489  * major layout.
490  *
491  * For more information: see
492  * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
493  */
494 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED	fourcc_mod_code(VIVANTE, 2)
495 
496 /*
497  * Vivante 4x4 tiling layout for dual-pipe
498  *
499  * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
500  * different base address. Offsets from the base addresses are therefore halved
501  * compared to the non-split tiled layout.
502  */
503 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED	fourcc_mod_code(VIVANTE, 3)
504 
505 /*
506  * Vivante 64x64 super-tiling layout for dual-pipe
507  *
508  * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
509  * starts at a different base address. Offsets from the base addresses are
510  * therefore halved compared to the non-split super-tiled layout.
511  */
512 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
513 
514 /* NVIDIA frame buffer modifiers */
515 
516 /*
517  * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
518  *
519  * Pixels are arranged in simple tiles of 16 x 16 bytes.
520  */
521 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
522 
523 /*
524  * 16Bx2 Block Linear layout, used by desktop GPUs, and Tegra K1 and later
525  *
526  * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
527  * vertically by a power of 2 (1 to 32 GOBs) to form a block.
528  *
529  * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
530  *
531  * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
532  * Valid values are:
533  *
534  * 0 == ONE_GOB
535  * 1 == TWO_GOBS
536  * 2 == FOUR_GOBS
537  * 3 == EIGHT_GOBS
538  * 4 == SIXTEEN_GOBS
539  * 5 == THIRTYTWO_GOBS
540  *
541  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
542  * in full detail.
543  */
544 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
545 	fourcc_mod_code(NVIDIA, 0x10 | ((v) & 0xf))
546 
547 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
548 	fourcc_mod_code(NVIDIA, 0x10)
549 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
550 	fourcc_mod_code(NVIDIA, 0x11)
551 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
552 	fourcc_mod_code(NVIDIA, 0x12)
553 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
554 	fourcc_mod_code(NVIDIA, 0x13)
555 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
556 	fourcc_mod_code(NVIDIA, 0x14)
557 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
558 	fourcc_mod_code(NVIDIA, 0x15)
559 
560 /*
561  * Some Broadcom modifiers take parameters, for example the number of
562  * vertical lines in the image. Reserve the lower 32 bits for modifier
563  * type, and the next 24 bits for parameters. Top 8 bits are the
564  * vendor code.
565  */
566 #define __fourcc_mod_broadcom_param_shift 8
567 #define __fourcc_mod_broadcom_param_bits 48
568 #define fourcc_mod_broadcom_code(val, params) \
569 	fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val))
570 #define fourcc_mod_broadcom_param(m) \
571 	((int)(((m) >> __fourcc_mod_broadcom_param_shift) &	\
572 	       ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
573 #define fourcc_mod_broadcom_mod(m) \
574 	((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) <<	\
575 		 __fourcc_mod_broadcom_param_shift))
576 
577 /*
578  * Broadcom VC4 "T" format
579  *
580  * This is the primary layout that the V3D GPU can texture from (it
581  * can't do linear).  The T format has:
582  *
583  * - 64b utiles of pixels in a raster-order grid according to cpp.  It's 4x4
584  *   pixels at 32 bit depth.
585  *
586  * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
587  *   16x16 pixels).
588  *
589  * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels).  On
590  *   even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
591  *   they're (TR, BR, BL, TL), where bottom left is start of memory.
592  *
593  * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
594  *   tiles) or right-to-left (odd rows of 4k tiles).
595  */
596 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
597 
598 /*
599  * Broadcom SAND format
600  *
601  * This is the native format that the H.264 codec block uses.  For VC4
602  * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
603  *
604  * The image can be considered to be split into columns, and the
605  * columns are placed consecutively into memory.  The width of those
606  * columns can be either 32, 64, 128, or 256 pixels, but in practice
607  * only 128 pixel columns are used.
608  *
609  * The pitch between the start of each column is set to optimally
610  * switch between SDRAM banks. This is passed as the number of lines
611  * of column width in the modifier (we can't use the stride value due
612  * to various core checks that look at it , so you should set the
613  * stride to width*cpp).
614  *
615  * Note that the column height for this format modifier is the same
616  * for all of the planes, assuming that each column contains both Y
617  * and UV.  Some SAND-using hardware stores UV in a separate tiled
618  * image from Y to reduce the column height, which is not supported
619  * with these modifiers.
620  */
621 
622 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
623 	fourcc_mod_broadcom_code(2, v)
624 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
625 	fourcc_mod_broadcom_code(3, v)
626 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
627 	fourcc_mod_broadcom_code(4, v)
628 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
629 	fourcc_mod_broadcom_code(5, v)
630 
631 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \
632 	DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
633 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \
634 	DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
635 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \
636 	DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
637 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \
638 	DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
639 
640 /* Broadcom UIF format
641  *
642  * This is the common format for the current Broadcom multimedia
643  * blocks, including V3D 3.x and newer, newer video codecs, and
644  * displays.
645  *
646  * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
647  * and macroblocks (4x4 UIF blocks).  Those 4x4 UIF block groups are
648  * stored in columns, with padding between the columns to ensure that
649  * moving from one column to the next doesn't hit the same SDRAM page
650  * bank.
651  *
652  * To calculate the padding, it is assumed that each hardware block
653  * and the software driving it knows the platform's SDRAM page size,
654  * number of banks, and XOR address, and that it's identical between
655  * all blocks using the format.  This tiling modifier will use XOR as
656  * necessary to reduce the padding.  If a hardware block can't do XOR,
657  * the assumption is that a no-XOR tiling modifier will be created.
658  */
659 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
660 
661 /*
662  * Arm Framebuffer Compression (AFBC) modifiers
663  *
664  * AFBC is a proprietary lossless image compression protocol and format.
665  * It provides fine-grained random access and minimizes the amount of data
666  * transferred between IP blocks.
667  *
668  * AFBC has several features which may be supported and/or used, which are
669  * represented using bits in the modifier. Not all combinations are valid,
670  * and different devices or use-cases may support different combinations.
671  *
672  * Further information on the use of AFBC modifiers can be found in
673  * Documentation/gpu/afbc.rst
674  */
675 
676 /*
677  * The top 4 bits (out of the 56 bits alloted for specifying vendor specific
678  * modifiers) denote the category for modifiers. Currently we have only two
679  * categories of modifiers ie AFBC and MISC. We can have a maximum of sixteen
680  * different categories.
681  */
682 #define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
683 	fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
684 
685 #define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
686 #define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
687 
688 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
689 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
690 
691 /*
692  * AFBC superblock size
693  *
694  * Indicates the superblock size(s) used for the AFBC buffer. The buffer
695  * size (in pixels) must be aligned to a multiple of the superblock size.
696  * Four lowest significant bits(LSBs) are reserved for block size.
697  *
698  * Where one superblock size is specified, it applies to all planes of the
699  * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
700  * the first applies to the Luma plane and the second applies to the Chroma
701  * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
702  * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
703  */
704 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK      0xf
705 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16     (1ULL)
706 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8      (2ULL)
707 #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4      (3ULL)
708 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
709 
710 /*
711  * AFBC lossless colorspace transform
712  *
713  * Indicates that the buffer makes use of the AFBC lossless colorspace
714  * transform.
715  */
716 #define AFBC_FORMAT_MOD_YTR     (1ULL <<  4)
717 
718 /*
719  * AFBC block-split
720  *
721  * Indicates that the payload of each superblock is split. The second
722  * half of the payload is positioned at a predefined offset from the start
723  * of the superblock payload.
724  */
725 #define AFBC_FORMAT_MOD_SPLIT   (1ULL <<  5)
726 
727 /*
728  * AFBC sparse layout
729  *
730  * This flag indicates that the payload of each superblock must be stored at a
731  * predefined position relative to the other superblocks in the same AFBC
732  * buffer. This order is the same order used by the header buffer. In this mode
733  * each superblock is given the same amount of space as an uncompressed
734  * superblock of the particular format would require, rounding up to the next
735  * multiple of 128 bytes in size.
736  */
737 #define AFBC_FORMAT_MOD_SPARSE  (1ULL <<  6)
738 
739 /*
740  * AFBC copy-block restrict
741  *
742  * Buffers with this flag must obey the copy-block restriction. The restriction
743  * is such that there are no copy-blocks referring across the border of 8x8
744  * blocks. For the subsampled data the 8x8 limitation is also subsampled.
745  */
746 #define AFBC_FORMAT_MOD_CBR     (1ULL <<  7)
747 
748 /*
749  * AFBC tiled layout
750  *
751  * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
752  * superblocks inside a tile are stored together in memory. 8x8 tiles are used
753  * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
754  * larger bpp formats. The order between the tiles is scan line.
755  * When the tiled layout is used, the buffer size (in pixels) must be aligned
756  * to the tile size.
757  */
758 #define AFBC_FORMAT_MOD_TILED   (1ULL <<  8)
759 
760 /*
761  * AFBC solid color blocks
762  *
763  * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
764  * can be reduced if a whole superblock is a single color.
765  */
766 #define AFBC_FORMAT_MOD_SC      (1ULL <<  9)
767 
768 /*
769  * AFBC double-buffer
770  *
771  * Indicates that the buffer is allocated in a layout safe for front-buffer
772  * rendering.
773  */
774 #define AFBC_FORMAT_MOD_DB      (1ULL << 10)
775 
776 /*
777  * AFBC buffer content hints
778  *
779  * Indicates that the buffer includes per-superblock content hints.
780  */
781 #define AFBC_FORMAT_MOD_BCH     (1ULL << 11)
782 
783 /*
784  * Arm 16x16 Block U-Interleaved modifier
785  *
786  * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
787  * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
788  * in the block are reordered.
789  */
790 #define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
791 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
792 
793 /*
794  * Allwinner tiled modifier
795  *
796  * This tiling mode is implemented by the VPU found on all Allwinner platforms,
797  * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
798  * planes.
799  *
800  * With this tiling, the luminance samples are disposed in tiles representing
801  * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
802  * The pixel order in each tile is linear and the tiles are disposed linearly,
803  * both in row-major order.
804  */
805 #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
806 
807 #if defined(__cplusplus)
808 }
809 #endif
810 
811 #endif /* DRM_FOURCC_H */
812