xref: /openbmc/linux/include/uapi/drm/drm_fourcc.h (revision 9aab6601)
1 /*
2  * Copyright 2011 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #ifndef DRM_FOURCC_H
25 #define DRM_FOURCC_H
26 
27 #include "drm.h"
28 
29 #if defined(__cplusplus)
30 extern "C" {
31 #endif
32 
33 /**
34  * DOC: overview
35  *
36  * In the DRM subsystem, framebuffer pixel formats are described using the
37  * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
38  * fourcc code, a Format Modifier may optionally be provided, in order to
39  * further describe the buffer's format - for example tiling or compression.
40  *
41  * Format Modifiers
42  * ----------------
43  *
44  * Format modifiers are used in conjunction with a fourcc code, forming a
45  * unique fourcc:modifier pair. This format:modifier pair must fully define the
46  * format and data layout of the buffer, and should be the only way to describe
47  * that particular buffer.
48  *
49  * Having multiple fourcc:modifier pairs which describe the same layout should
50  * be avoided, as such aliases run the risk of different drivers exposing
51  * different names for the same data format, forcing userspace to understand
52  * that they are aliases.
53  *
54  * Format modifiers may change any property of the buffer, including the number
55  * of planes and/or the required allocation size. Format modifiers are
56  * vendor-namespaced, and as such the relationship between a fourcc code and a
57  * modifier is specific to the modifer being used. For example, some modifiers
58  * may preserve meaning - such as number of planes - from the fourcc code,
59  * whereas others may not.
60  *
61  * Modifiers must uniquely encode buffer layout. In other words, a buffer must
62  * match only a single modifier. A modifier must not be a subset of layouts of
63  * another modifier. For instance, it's incorrect to encode pitch alignment in
64  * a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel
65  * aligned modifier. That said, modifiers can have implicit minimal
66  * requirements.
67  *
68  * For modifiers where the combination of fourcc code and modifier can alias,
69  * a canonical pair needs to be defined and used by all drivers. Preferred
70  * combinations are also encouraged where all combinations might lead to
71  * confusion and unnecessarily reduced interoperability. An example for the
72  * latter is AFBC, where the ABGR layouts are preferred over ARGB layouts.
73  *
74  * There are two kinds of modifier users:
75  *
76  * - Kernel and user-space drivers: for drivers it's important that modifiers
77  *   don't alias, otherwise two drivers might support the same format but use
78  *   different aliases, preventing them from sharing buffers in an efficient
79  *   format.
80  * - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users
81  *   see modifiers as opaque tokens they can check for equality and intersect.
82  *   These users musn't need to know to reason about the modifier value
83  *   (i.e. they are not expected to extract information out of the modifier).
84  *
85  * Vendors should document their modifier usage in as much detail as
86  * possible, to ensure maximum compatibility across devices, drivers and
87  * applications.
88  *
89  * The authoritative list of format modifier codes is found in
90  * `include/uapi/drm/drm_fourcc.h`
91  */
92 
93 #define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \
94 				 ((__u32)(c) << 16) | ((__u32)(d) << 24))
95 
96 #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
97 
98 /* Reserve 0 for the invalid format specifier */
99 #define DRM_FORMAT_INVALID	0
100 
101 /* color index */
102 #define DRM_FORMAT_C8		fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
103 
104 /* 8 bpp Red */
105 #define DRM_FORMAT_R8		fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
106 
107 /* 16 bpp Red */
108 #define DRM_FORMAT_R16		fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
109 
110 /* 16 bpp RG */
111 #define DRM_FORMAT_RG88		fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
112 #define DRM_FORMAT_GR88		fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
113 
114 /* 32 bpp RG */
115 #define DRM_FORMAT_RG1616	fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
116 #define DRM_FORMAT_GR1616	fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
117 
118 /* 8 bpp RGB */
119 #define DRM_FORMAT_RGB332	fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
120 #define DRM_FORMAT_BGR233	fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
121 
122 /* 16 bpp RGB */
123 #define DRM_FORMAT_XRGB4444	fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
124 #define DRM_FORMAT_XBGR4444	fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
125 #define DRM_FORMAT_RGBX4444	fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
126 #define DRM_FORMAT_BGRX4444	fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
127 
128 #define DRM_FORMAT_ARGB4444	fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
129 #define DRM_FORMAT_ABGR4444	fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
130 #define DRM_FORMAT_RGBA4444	fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
131 #define DRM_FORMAT_BGRA4444	fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
132 
133 #define DRM_FORMAT_XRGB1555	fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
134 #define DRM_FORMAT_XBGR1555	fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
135 #define DRM_FORMAT_RGBX5551	fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
136 #define DRM_FORMAT_BGRX5551	fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
137 
138 #define DRM_FORMAT_ARGB1555	fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
139 #define DRM_FORMAT_ABGR1555	fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
140 #define DRM_FORMAT_RGBA5551	fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
141 #define DRM_FORMAT_BGRA5551	fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
142 
143 #define DRM_FORMAT_RGB565	fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
144 #define DRM_FORMAT_BGR565	fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
145 
146 /* 24 bpp RGB */
147 #define DRM_FORMAT_RGB888	fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
148 #define DRM_FORMAT_BGR888	fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
149 
150 /* 32 bpp RGB */
151 #define DRM_FORMAT_XRGB8888	fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
152 #define DRM_FORMAT_XBGR8888	fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
153 #define DRM_FORMAT_RGBX8888	fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
154 #define DRM_FORMAT_BGRX8888	fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
155 
156 #define DRM_FORMAT_ARGB8888	fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
157 #define DRM_FORMAT_ABGR8888	fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
158 #define DRM_FORMAT_RGBA8888	fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
159 #define DRM_FORMAT_BGRA8888	fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
160 
161 #define DRM_FORMAT_XRGB2101010	fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
162 #define DRM_FORMAT_XBGR2101010	fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
163 #define DRM_FORMAT_RGBX1010102	fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
164 #define DRM_FORMAT_BGRX1010102	fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
165 
166 #define DRM_FORMAT_ARGB2101010	fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
167 #define DRM_FORMAT_ABGR2101010	fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
168 #define DRM_FORMAT_RGBA1010102	fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
169 #define DRM_FORMAT_BGRA1010102	fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
170 
171 /*
172  * Floating point 64bpp RGB
173  * IEEE 754-2008 binary16 half-precision float
174  * [15:0] sign:exponent:mantissa 1:5:10
175  */
176 #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
177 #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
178 
179 #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
180 #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
181 
182 /* packed YCbCr */
183 #define DRM_FORMAT_YUYV		fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
184 #define DRM_FORMAT_YVYU		fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
185 #define DRM_FORMAT_UYVY		fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
186 #define DRM_FORMAT_VYUY		fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
187 
188 #define DRM_FORMAT_AYUV		fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
189 #define DRM_FORMAT_XYUV8888	fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
190 #define DRM_FORMAT_VUY888	fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
191 #define DRM_FORMAT_VUY101010	fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
192 
193 /*
194  * packed Y2xx indicate for each component, xx valid data occupy msb
195  * 16-xx padding occupy lsb
196  */
197 #define DRM_FORMAT_Y210         fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
198 #define DRM_FORMAT_Y212         fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
199 #define DRM_FORMAT_Y216         fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
200 
201 /*
202  * packed Y4xx indicate for each component, xx valid data occupy msb
203  * 16-xx padding occupy lsb except Y410
204  */
205 #define DRM_FORMAT_Y410         fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
206 #define DRM_FORMAT_Y412         fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
207 #define DRM_FORMAT_Y416         fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
208 
209 #define DRM_FORMAT_XVYU2101010	fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
210 #define DRM_FORMAT_XVYU12_16161616	fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
211 #define DRM_FORMAT_XVYU16161616	fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
212 
213 /*
214  * packed YCbCr420 2x2 tiled formats
215  * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
216  */
217 /* [63:0]   A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
218 #define DRM_FORMAT_Y0L0		fourcc_code('Y', '0', 'L', '0')
219 /* [63:0]   X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
220 #define DRM_FORMAT_X0L0		fourcc_code('X', '0', 'L', '0')
221 
222 /* [63:0]   A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
223 #define DRM_FORMAT_Y0L2		fourcc_code('Y', '0', 'L', '2')
224 /* [63:0]   X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
225 #define DRM_FORMAT_X0L2		fourcc_code('X', '0', 'L', '2')
226 
227 /*
228  * 1-plane YUV 4:2:0
229  * In these formats, the component ordering is specified (Y, followed by U
230  * then V), but the exact Linear layout is undefined.
231  * These formats can only be used with a non-Linear modifier.
232  */
233 #define DRM_FORMAT_YUV420_8BIT	fourcc_code('Y', 'U', '0', '8')
234 #define DRM_FORMAT_YUV420_10BIT	fourcc_code('Y', 'U', '1', '0')
235 
236 /*
237  * 2 plane RGB + A
238  * index 0 = RGB plane, same format as the corresponding non _A8 format has
239  * index 1 = A plane, [7:0] A
240  */
241 #define DRM_FORMAT_XRGB8888_A8	fourcc_code('X', 'R', 'A', '8')
242 #define DRM_FORMAT_XBGR8888_A8	fourcc_code('X', 'B', 'A', '8')
243 #define DRM_FORMAT_RGBX8888_A8	fourcc_code('R', 'X', 'A', '8')
244 #define DRM_FORMAT_BGRX8888_A8	fourcc_code('B', 'X', 'A', '8')
245 #define DRM_FORMAT_RGB888_A8	fourcc_code('R', '8', 'A', '8')
246 #define DRM_FORMAT_BGR888_A8	fourcc_code('B', '8', 'A', '8')
247 #define DRM_FORMAT_RGB565_A8	fourcc_code('R', '5', 'A', '8')
248 #define DRM_FORMAT_BGR565_A8	fourcc_code('B', '5', 'A', '8')
249 
250 /*
251  * 2 plane YCbCr
252  * index 0 = Y plane, [7:0] Y
253  * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
254  * or
255  * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
256  */
257 #define DRM_FORMAT_NV12		fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
258 #define DRM_FORMAT_NV21		fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
259 #define DRM_FORMAT_NV16		fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
260 #define DRM_FORMAT_NV61		fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
261 #define DRM_FORMAT_NV24		fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
262 #define DRM_FORMAT_NV42		fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
263 /*
264  * 2 plane YCbCr
265  * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian
266  * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
267  */
268 #define DRM_FORMAT_NV15		fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
269 
270 /*
271  * 2 plane YCbCr MSB aligned
272  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
273  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
274  */
275 #define DRM_FORMAT_P210		fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
276 
277 /*
278  * 2 plane YCbCr MSB aligned
279  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
280  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
281  */
282 #define DRM_FORMAT_P010		fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
283 
284 /*
285  * 2 plane YCbCr MSB aligned
286  * index 0 = Y plane, [15:0] Y:x [12:4] little endian
287  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
288  */
289 #define DRM_FORMAT_P012		fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
290 
291 /*
292  * 2 plane YCbCr MSB aligned
293  * index 0 = Y plane, [15:0] Y little endian
294  * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
295  */
296 #define DRM_FORMAT_P016		fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
297 
298 /* 3 plane non-subsampled (444) YCbCr
299  * 16 bits per component, but only 10 bits are used and 6 bits are padded
300  * index 0: Y plane, [15:0] Y:x [10:6] little endian
301  * index 1: Cb plane, [15:0] Cb:x [10:6] little endian
302  * index 2: Cr plane, [15:0] Cr:x [10:6] little endian
303  */
304 #define DRM_FORMAT_Q410		fourcc_code('Q', '4', '1', '0')
305 
306 /* 3 plane non-subsampled (444) YCrCb
307  * 16 bits per component, but only 10 bits are used and 6 bits are padded
308  * index 0: Y plane, [15:0] Y:x [10:6] little endian
309  * index 1: Cr plane, [15:0] Cr:x [10:6] little endian
310  * index 2: Cb plane, [15:0] Cb:x [10:6] little endian
311  */
312 #define DRM_FORMAT_Q401		fourcc_code('Q', '4', '0', '1')
313 
314 /*
315  * 3 plane YCbCr
316  * index 0: Y plane, [7:0] Y
317  * index 1: Cb plane, [7:0] Cb
318  * index 2: Cr plane, [7:0] Cr
319  * or
320  * index 1: Cr plane, [7:0] Cr
321  * index 2: Cb plane, [7:0] Cb
322  */
323 #define DRM_FORMAT_YUV410	fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
324 #define DRM_FORMAT_YVU410	fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
325 #define DRM_FORMAT_YUV411	fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
326 #define DRM_FORMAT_YVU411	fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
327 #define DRM_FORMAT_YUV420	fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
328 #define DRM_FORMAT_YVU420	fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
329 #define DRM_FORMAT_YUV422	fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
330 #define DRM_FORMAT_YVU422	fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
331 #define DRM_FORMAT_YUV444	fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
332 #define DRM_FORMAT_YVU444	fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
333 
334 
335 /*
336  * Format Modifiers:
337  *
338  * Format modifiers describe, typically, a re-ordering or modification
339  * of the data in a plane of an FB.  This can be used to express tiled/
340  * swizzled formats, or compression, or a combination of the two.
341  *
342  * The upper 8 bits of the format modifier are a vendor-id as assigned
343  * below.  The lower 56 bits are assigned as vendor sees fit.
344  */
345 
346 /* Vendor Ids: */
347 #define DRM_FORMAT_MOD_NONE           0
348 #define DRM_FORMAT_MOD_VENDOR_NONE    0
349 #define DRM_FORMAT_MOD_VENDOR_INTEL   0x01
350 #define DRM_FORMAT_MOD_VENDOR_AMD     0x02
351 #define DRM_FORMAT_MOD_VENDOR_NVIDIA  0x03
352 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
353 #define DRM_FORMAT_MOD_VENDOR_QCOM    0x05
354 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
355 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
356 #define DRM_FORMAT_MOD_VENDOR_ARM     0x08
357 #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
358 #define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a
359 
360 /* add more to the end as needed */
361 
362 #define DRM_FORMAT_RESERVED	      ((1ULL << 56) - 1)
363 
364 #define fourcc_mod_code(vendor, val) \
365 	((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
366 
367 /*
368  * Format Modifier tokens:
369  *
370  * When adding a new token please document the layout with a code comment,
371  * similar to the fourcc codes above. drm_fourcc.h is considered the
372  * authoritative source for all of these.
373  *
374  * Generic modifier names:
375  *
376  * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
377  * for layouts which are common across multiple vendors. To preserve
378  * compatibility, in cases where a vendor-specific definition already exists and
379  * a generic name for it is desired, the common name is a purely symbolic alias
380  * and must use the same numerical value as the original definition.
381  *
382  * Note that generic names should only be used for modifiers which describe
383  * generic layouts (such as pixel re-ordering), which may have
384  * independently-developed support across multiple vendors.
385  *
386  * In future cases where a generic layout is identified before merging with a
387  * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
388  * 'NONE' could be considered. This should only be for obvious, exceptional
389  * cases to avoid polluting the 'GENERIC' namespace with modifiers which only
390  * apply to a single vendor.
391  *
392  * Generic names should not be used for cases where multiple hardware vendors
393  * have implementations of the same standardised compression scheme (such as
394  * AFBC). In those cases, all implementations should use the same format
395  * modifier(s), reflecting the vendor of the standard.
396  */
397 
398 #define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE
399 
400 /*
401  * Invalid Modifier
402  *
403  * This modifier can be used as a sentinel to terminate the format modifiers
404  * list, or to initialize a variable with an invalid modifier. It might also be
405  * used to report an error back to userspace for certain APIs.
406  */
407 #define DRM_FORMAT_MOD_INVALID	fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
408 
409 /*
410  * Linear Layout
411  *
412  * Just plain linear layout. Note that this is different from no specifying any
413  * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
414  * which tells the driver to also take driver-internal information into account
415  * and so might actually result in a tiled framebuffer.
416  */
417 #define DRM_FORMAT_MOD_LINEAR	fourcc_mod_code(NONE, 0)
418 
419 /* Intel framebuffer modifiers */
420 
421 /*
422  * Intel X-tiling layout
423  *
424  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
425  * in row-major layout. Within the tile bytes are laid out row-major, with
426  * a platform-dependent stride. On top of that the memory can apply
427  * platform-depending swizzling of some higher address bits into bit6.
428  *
429  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
430  * On earlier platforms the is highly platforms specific and not useful for
431  * cross-driver sharing. It exists since on a given platform it does uniquely
432  * identify the layout in a simple way for i915-specific userspace, which
433  * facilitated conversion of userspace to modifiers. Additionally the exact
434  * format on some really old platforms is not known.
435  */
436 #define I915_FORMAT_MOD_X_TILED	fourcc_mod_code(INTEL, 1)
437 
438 /*
439  * Intel Y-tiling layout
440  *
441  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
442  * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
443  * chunks column-major, with a platform-dependent height. On top of that the
444  * memory can apply platform-depending swizzling of some higher address bits
445  * into bit6.
446  *
447  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
448  * On earlier platforms the is highly platforms specific and not useful for
449  * cross-driver sharing. It exists since on a given platform it does uniquely
450  * identify the layout in a simple way for i915-specific userspace, which
451  * facilitated conversion of userspace to modifiers. Additionally the exact
452  * format on some really old platforms is not known.
453  */
454 #define I915_FORMAT_MOD_Y_TILED	fourcc_mod_code(INTEL, 2)
455 
456 /*
457  * Intel Yf-tiling layout
458  *
459  * This is a tiled layout using 4Kb tiles in row-major layout.
460  * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
461  * are arranged in four groups (two wide, two high) with column-major layout.
462  * Each group therefore consits out of four 256 byte units, which are also laid
463  * out as 2x2 column-major.
464  * 256 byte units are made out of four 64 byte blocks of pixels, producing
465  * either a square block or a 2:1 unit.
466  * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
467  * in pixel depends on the pixel depth.
468  */
469 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
470 
471 /*
472  * Intel color control surface (CCS) for render compression
473  *
474  * The framebuffer format must be one of the 8:8:8:8 RGB formats.
475  * The main surface will be plane index 0 and must be Y/Yf-tiled,
476  * the CCS will be plane index 1.
477  *
478  * Each CCS tile matches a 1024x512 pixel area of the main surface.
479  * To match certain aspects of the 3D hardware the CCS is
480  * considered to be made up of normal 128Bx32 Y tiles, Thus
481  * the CCS pitch must be specified in multiples of 128 bytes.
482  *
483  * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
484  * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
485  * But that fact is not relevant unless the memory is accessed
486  * directly.
487  */
488 #define I915_FORMAT_MOD_Y_TILED_CCS	fourcc_mod_code(INTEL, 4)
489 #define I915_FORMAT_MOD_Yf_TILED_CCS	fourcc_mod_code(INTEL, 5)
490 
491 /*
492  * Intel color control surfaces (CCS) for Gen-12 render compression.
493  *
494  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
495  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
496  * main surface. In other words, 4 bits in CCS map to a main surface cache
497  * line pair. The main surface pitch is required to be a multiple of four
498  * Y-tile widths.
499  */
500 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
501 
502 /*
503  * Intel color control surfaces (CCS) for Gen-12 media compression
504  *
505  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
506  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
507  * main surface. In other words, 4 bits in CCS map to a main surface cache
508  * line pair. The main surface pitch is required to be a multiple of four
509  * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
510  * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
511  * planes 2 and 3 for the respective CCS.
512  */
513 #define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
514 
515 /*
516  * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
517  *
518  * Macroblocks are laid in a Z-shape, and each pixel data is following the
519  * standard NV12 style.
520  * As for NV12, an image is the result of two frame buffers: one for Y,
521  * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
522  * Alignment requirements are (for each buffer):
523  * - multiple of 128 pixels for the width
524  * - multiple of  32 pixels for the height
525  *
526  * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
527  */
528 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE	fourcc_mod_code(SAMSUNG, 1)
529 
530 /*
531  * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
532  *
533  * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
534  * layout. For YCbCr formats Cb/Cr components are taken in such a way that
535  * they correspond to their 16x16 luma block.
536  */
537 #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE	fourcc_mod_code(SAMSUNG, 2)
538 
539 /*
540  * Qualcomm Compressed Format
541  *
542  * Refers to a compressed variant of the base format that is compressed.
543  * Implementation may be platform and base-format specific.
544  *
545  * Each macrotile consists of m x n (mostly 4 x 4) tiles.
546  * Pixel data pitch/stride is aligned with macrotile width.
547  * Pixel data height is aligned with macrotile height.
548  * Entire pixel data buffer is aligned with 4k(bytes).
549  */
550 #define DRM_FORMAT_MOD_QCOM_COMPRESSED	fourcc_mod_code(QCOM, 1)
551 
552 /* Vivante framebuffer modifiers */
553 
554 /*
555  * Vivante 4x4 tiling layout
556  *
557  * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
558  * layout.
559  */
560 #define DRM_FORMAT_MOD_VIVANTE_TILED		fourcc_mod_code(VIVANTE, 1)
561 
562 /*
563  * Vivante 64x64 super-tiling layout
564  *
565  * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
566  * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
567  * major layout.
568  *
569  * For more information: see
570  * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
571  */
572 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED	fourcc_mod_code(VIVANTE, 2)
573 
574 /*
575  * Vivante 4x4 tiling layout for dual-pipe
576  *
577  * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
578  * different base address. Offsets from the base addresses are therefore halved
579  * compared to the non-split tiled layout.
580  */
581 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED	fourcc_mod_code(VIVANTE, 3)
582 
583 /*
584  * Vivante 64x64 super-tiling layout for dual-pipe
585  *
586  * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
587  * starts at a different base address. Offsets from the base addresses are
588  * therefore halved compared to the non-split super-tiled layout.
589  */
590 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
591 
592 /* NVIDIA frame buffer modifiers */
593 
594 /*
595  * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
596  *
597  * Pixels are arranged in simple tiles of 16 x 16 bytes.
598  */
599 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
600 
601 /*
602  * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
603  * and Tegra GPUs starting with Tegra K1.
604  *
605  * Pixels are arranged in Groups of Bytes (GOBs).  GOB size and layout varies
606  * based on the architecture generation.  GOBs themselves are then arranged in
607  * 3D blocks, with the block dimensions (in terms of GOBs) always being a power
608  * of two, and hence expressible as their log2 equivalent (E.g., "2" represents
609  * a block depth or height of "4").
610  *
611  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
612  * in full detail.
613  *
614  *       Macro
615  * Bits  Param Description
616  * ----  ----- -----------------------------------------------------------------
617  *
618  *  3:0  h     log2(height) of each block, in GOBs.  Placed here for
619  *             compatibility with the existing
620  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
621  *
622  *  4:4  -     Must be 1, to indicate block-linear layout.  Necessary for
623  *             compatibility with the existing
624  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
625  *
626  *  8:5  -     Reserved (To support 3D-surfaces with variable log2(depth) block
627  *             size).  Must be zero.
628  *
629  *             Note there is no log2(width) parameter.  Some portions of the
630  *             hardware support a block width of two gobs, but it is impractical
631  *             to use due to lack of support elsewhere, and has no known
632  *             benefits.
633  *
634  * 11:9  -     Reserved (To support 2D-array textures with variable array stride
635  *             in blocks, specified via log2(tile width in blocks)).  Must be
636  *             zero.
637  *
638  * 19:12 k     Page Kind.  This value directly maps to a field in the page
639  *             tables of all GPUs >= NV50.  It affects the exact layout of bits
640  *             in memory and can be derived from the tuple
641  *
642  *               (format, GPU model, compression type, samples per pixel)
643  *
644  *             Where compression type is defined below.  If GPU model were
645  *             implied by the format modifier, format, or memory buffer, page
646  *             kind would not need to be included in the modifier itself, but
647  *             since the modifier should define the layout of the associated
648  *             memory buffer independent from any device or other context, it
649  *             must be included here.
650  *
651  * 21:20 g     GOB Height and Page Kind Generation.  The height of a GOB changed
652  *             starting with Fermi GPUs.  Additionally, the mapping between page
653  *             kind and bit layout has changed at various points.
654  *
655  *               0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
656  *               1 = Gob Height 4, G80 - GT2XX Page Kind mapping
657  *               2 = Gob Height 8, Turing+ Page Kind mapping
658  *               3 = Reserved for future use.
659  *
660  * 22:22 s     Sector layout.  On Tegra GPUs prior to Xavier, there is a further
661  *             bit remapping step that occurs at an even lower level than the
662  *             page kind and block linear swizzles.  This causes the layout of
663  *             surfaces mapped in those SOC's GPUs to be incompatible with the
664  *             equivalent mapping on other GPUs in the same system.
665  *
666  *               0 = Tegra K1 - Tegra Parker/TX2 Layout.
667  *               1 = Desktop GPU and Tegra Xavier+ Layout
668  *
669  * 25:23 c     Lossless Framebuffer Compression type.
670  *
671  *               0 = none
672  *               1 = ROP/3D, layout 1, exact compression format implied by Page
673  *                   Kind field
674  *               2 = ROP/3D, layout 2, exact compression format implied by Page
675  *                   Kind field
676  *               3 = CDE horizontal
677  *               4 = CDE vertical
678  *               5 = Reserved for future use
679  *               6 = Reserved for future use
680  *               7 = Reserved for future use
681  *
682  * 55:25 -     Reserved for future use.  Must be zero.
683  */
684 #define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
685 	fourcc_mod_code(NVIDIA, (0x10 | \
686 				 ((h) & 0xf) | \
687 				 (((k) & 0xff) << 12) | \
688 				 (((g) & 0x3) << 20) | \
689 				 (((s) & 0x1) << 22) | \
690 				 (((c) & 0x7) << 23)))
691 
692 /* To grandfather in prior block linear format modifiers to the above layout,
693  * the page kind "0", which corresponds to "pitch/linear" and hence is unusable
694  * with block-linear layouts, is remapped within drivers to the value 0xfe,
695  * which corresponds to the "generic" kind used for simple single-sample
696  * uncompressed color formats on Fermi - Volta GPUs.
697  */
698 static inline __u64
699 drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)
700 {
701 	if (!(modifier & 0x10) || (modifier & (0xff << 12)))
702 		return modifier;
703 	else
704 		return modifier | (0xfe << 12);
705 }
706 
707 /*
708  * 16Bx2 Block Linear layout, used by Tegra K1 and later
709  *
710  * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
711  * vertically by a power of 2 (1 to 32 GOBs) to form a block.
712  *
713  * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
714  *
715  * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
716  * Valid values are:
717  *
718  * 0 == ONE_GOB
719  * 1 == TWO_GOBS
720  * 2 == FOUR_GOBS
721  * 3 == EIGHT_GOBS
722  * 4 == SIXTEEN_GOBS
723  * 5 == THIRTYTWO_GOBS
724  *
725  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
726  * in full detail.
727  */
728 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
729 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
730 
731 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
732 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
733 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
734 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
735 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
736 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
737 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
738 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
739 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
740 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
741 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
742 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
743 
744 /*
745  * Some Broadcom modifiers take parameters, for example the number of
746  * vertical lines in the image. Reserve the lower 32 bits for modifier
747  * type, and the next 24 bits for parameters. Top 8 bits are the
748  * vendor code.
749  */
750 #define __fourcc_mod_broadcom_param_shift 8
751 #define __fourcc_mod_broadcom_param_bits 48
752 #define fourcc_mod_broadcom_code(val, params) \
753 	fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val))
754 #define fourcc_mod_broadcom_param(m) \
755 	((int)(((m) >> __fourcc_mod_broadcom_param_shift) &	\
756 	       ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
757 #define fourcc_mod_broadcom_mod(m) \
758 	((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) <<	\
759 		 __fourcc_mod_broadcom_param_shift))
760 
761 /*
762  * Broadcom VC4 "T" format
763  *
764  * This is the primary layout that the V3D GPU can texture from (it
765  * can't do linear).  The T format has:
766  *
767  * - 64b utiles of pixels in a raster-order grid according to cpp.  It's 4x4
768  *   pixels at 32 bit depth.
769  *
770  * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
771  *   16x16 pixels).
772  *
773  * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels).  On
774  *   even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
775  *   they're (TR, BR, BL, TL), where bottom left is start of memory.
776  *
777  * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
778  *   tiles) or right-to-left (odd rows of 4k tiles).
779  */
780 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
781 
782 /*
783  * Broadcom SAND format
784  *
785  * This is the native format that the H.264 codec block uses.  For VC4
786  * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
787  *
788  * The image can be considered to be split into columns, and the
789  * columns are placed consecutively into memory.  The width of those
790  * columns can be either 32, 64, 128, or 256 pixels, but in practice
791  * only 128 pixel columns are used.
792  *
793  * The pitch between the start of each column is set to optimally
794  * switch between SDRAM banks. This is passed as the number of lines
795  * of column width in the modifier (we can't use the stride value due
796  * to various core checks that look at it , so you should set the
797  * stride to width*cpp).
798  *
799  * Note that the column height for this format modifier is the same
800  * for all of the planes, assuming that each column contains both Y
801  * and UV.  Some SAND-using hardware stores UV in a separate tiled
802  * image from Y to reduce the column height, which is not supported
803  * with these modifiers.
804  */
805 
806 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
807 	fourcc_mod_broadcom_code(2, v)
808 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
809 	fourcc_mod_broadcom_code(3, v)
810 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
811 	fourcc_mod_broadcom_code(4, v)
812 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
813 	fourcc_mod_broadcom_code(5, v)
814 
815 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \
816 	DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
817 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \
818 	DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
819 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \
820 	DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
821 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \
822 	DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
823 
824 /* Broadcom UIF format
825  *
826  * This is the common format for the current Broadcom multimedia
827  * blocks, including V3D 3.x and newer, newer video codecs, and
828  * displays.
829  *
830  * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
831  * and macroblocks (4x4 UIF blocks).  Those 4x4 UIF block groups are
832  * stored in columns, with padding between the columns to ensure that
833  * moving from one column to the next doesn't hit the same SDRAM page
834  * bank.
835  *
836  * To calculate the padding, it is assumed that each hardware block
837  * and the software driving it knows the platform's SDRAM page size,
838  * number of banks, and XOR address, and that it's identical between
839  * all blocks using the format.  This tiling modifier will use XOR as
840  * necessary to reduce the padding.  If a hardware block can't do XOR,
841  * the assumption is that a no-XOR tiling modifier will be created.
842  */
843 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
844 
845 /*
846  * Arm Framebuffer Compression (AFBC) modifiers
847  *
848  * AFBC is a proprietary lossless image compression protocol and format.
849  * It provides fine-grained random access and minimizes the amount of data
850  * transferred between IP blocks.
851  *
852  * AFBC has several features which may be supported and/or used, which are
853  * represented using bits in the modifier. Not all combinations are valid,
854  * and different devices or use-cases may support different combinations.
855  *
856  * Further information on the use of AFBC modifiers can be found in
857  * Documentation/gpu/afbc.rst
858  */
859 
860 /*
861  * The top 4 bits (out of the 56 bits alloted for specifying vendor specific
862  * modifiers) denote the category for modifiers. Currently we have only two
863  * categories of modifiers ie AFBC and MISC. We can have a maximum of sixteen
864  * different categories.
865  */
866 #define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
867 	fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
868 
869 #define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
870 #define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
871 
872 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
873 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
874 
875 /*
876  * AFBC superblock size
877  *
878  * Indicates the superblock size(s) used for the AFBC buffer. The buffer
879  * size (in pixels) must be aligned to a multiple of the superblock size.
880  * Four lowest significant bits(LSBs) are reserved for block size.
881  *
882  * Where one superblock size is specified, it applies to all planes of the
883  * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
884  * the first applies to the Luma plane and the second applies to the Chroma
885  * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
886  * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
887  */
888 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK      0xf
889 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16     (1ULL)
890 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8      (2ULL)
891 #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4      (3ULL)
892 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
893 
894 /*
895  * AFBC lossless colorspace transform
896  *
897  * Indicates that the buffer makes use of the AFBC lossless colorspace
898  * transform.
899  */
900 #define AFBC_FORMAT_MOD_YTR     (1ULL <<  4)
901 
902 /*
903  * AFBC block-split
904  *
905  * Indicates that the payload of each superblock is split. The second
906  * half of the payload is positioned at a predefined offset from the start
907  * of the superblock payload.
908  */
909 #define AFBC_FORMAT_MOD_SPLIT   (1ULL <<  5)
910 
911 /*
912  * AFBC sparse layout
913  *
914  * This flag indicates that the payload of each superblock must be stored at a
915  * predefined position relative to the other superblocks in the same AFBC
916  * buffer. This order is the same order used by the header buffer. In this mode
917  * each superblock is given the same amount of space as an uncompressed
918  * superblock of the particular format would require, rounding up to the next
919  * multiple of 128 bytes in size.
920  */
921 #define AFBC_FORMAT_MOD_SPARSE  (1ULL <<  6)
922 
923 /*
924  * AFBC copy-block restrict
925  *
926  * Buffers with this flag must obey the copy-block restriction. The restriction
927  * is such that there are no copy-blocks referring across the border of 8x8
928  * blocks. For the subsampled data the 8x8 limitation is also subsampled.
929  */
930 #define AFBC_FORMAT_MOD_CBR     (1ULL <<  7)
931 
932 /*
933  * AFBC tiled layout
934  *
935  * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
936  * superblocks inside a tile are stored together in memory. 8x8 tiles are used
937  * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
938  * larger bpp formats. The order between the tiles is scan line.
939  * When the tiled layout is used, the buffer size (in pixels) must be aligned
940  * to the tile size.
941  */
942 #define AFBC_FORMAT_MOD_TILED   (1ULL <<  8)
943 
944 /*
945  * AFBC solid color blocks
946  *
947  * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
948  * can be reduced if a whole superblock is a single color.
949  */
950 #define AFBC_FORMAT_MOD_SC      (1ULL <<  9)
951 
952 /*
953  * AFBC double-buffer
954  *
955  * Indicates that the buffer is allocated in a layout safe for front-buffer
956  * rendering.
957  */
958 #define AFBC_FORMAT_MOD_DB      (1ULL << 10)
959 
960 /*
961  * AFBC buffer content hints
962  *
963  * Indicates that the buffer includes per-superblock content hints.
964  */
965 #define AFBC_FORMAT_MOD_BCH     (1ULL << 11)
966 
967 /* AFBC uncompressed storage mode
968  *
969  * Indicates that the buffer is using AFBC uncompressed storage mode.
970  * In this mode all superblock payloads in the buffer use the uncompressed
971  * storage mode, which is usually only used for data which cannot be compressed.
972  * The buffer layout is the same as for AFBC buffers without USM set, this only
973  * affects the storage mode of the individual superblocks. Note that even a
974  * buffer without USM set may use uncompressed storage mode for some or all
975  * superblocks, USM just guarantees it for all.
976  */
977 #define AFBC_FORMAT_MOD_USM	(1ULL << 12)
978 
979 /*
980  * Arm 16x16 Block U-Interleaved modifier
981  *
982  * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
983  * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
984  * in the block are reordered.
985  */
986 #define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
987 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
988 
989 /*
990  * Allwinner tiled modifier
991  *
992  * This tiling mode is implemented by the VPU found on all Allwinner platforms,
993  * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
994  * planes.
995  *
996  * With this tiling, the luminance samples are disposed in tiles representing
997  * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
998  * The pixel order in each tile is linear and the tiles are disposed linearly,
999  * both in row-major order.
1000  */
1001 #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
1002 
1003 /*
1004  * Amlogic Video Framebuffer Compression modifiers
1005  *
1006  * Amlogic uses a proprietary lossless image compression protocol and format
1007  * for their hardware video codec accelerators, either video decoders or
1008  * video input encoders.
1009  *
1010  * It considerably reduces memory bandwidth while writing and reading
1011  * frames in memory.
1012  *
1013  * The underlying storage is considered to be 3 components, 8bit or 10-bit
1014  * per component YCbCr 420, single plane :
1015  * - DRM_FORMAT_YUV420_8BIT
1016  * - DRM_FORMAT_YUV420_10BIT
1017  *
1018  * The first 8 bits of the mode defines the layout, then the following 8 bits
1019  * defines the options changing the layout.
1020  *
1021  * Not all combinations are valid, and different SoCs may support different
1022  * combinations of layout and options.
1023  */
1024 #define __fourcc_mod_amlogic_layout_mask 0xf
1025 #define __fourcc_mod_amlogic_options_shift 8
1026 #define __fourcc_mod_amlogic_options_mask 0xf
1027 
1028 #define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \
1029 	fourcc_mod_code(AMLOGIC, \
1030 			((__layout) & __fourcc_mod_amlogic_layout_mask) | \
1031 			(((__options) & __fourcc_mod_amlogic_options_mask) \
1032 			 << __fourcc_mod_amlogic_options_shift))
1033 
1034 /* Amlogic FBC Layouts */
1035 
1036 /*
1037  * Amlogic FBC Basic Layout
1038  *
1039  * The basic layout is composed of:
1040  * - a body content organized in 64x32 superblocks with 4096 bytes per
1041  *   superblock in default mode.
1042  * - a 32 bytes per 128x64 header block
1043  *
1044  * This layout is transferrable between Amlogic SoCs supporting this modifier.
1045  */
1046 #define AMLOGIC_FBC_LAYOUT_BASIC		(1ULL)
1047 
1048 /*
1049  * Amlogic FBC Scatter Memory layout
1050  *
1051  * Indicates the header contains IOMMU references to the compressed
1052  * frames content to optimize memory access and layout.
1053  *
1054  * In this mode, only the header memory address is needed, thus the
1055  * content memory organization is tied to the current producer
1056  * execution and cannot be saved/dumped neither transferrable between
1057  * Amlogic SoCs supporting this modifier.
1058  *
1059  * Due to the nature of the layout, these buffers are not expected to
1060  * be accessible by the user-space clients, but only accessible by the
1061  * hardware producers and consumers.
1062  *
1063  * The user-space clients should expect a failure while trying to mmap
1064  * the DMA-BUF handle returned by the producer.
1065  */
1066 #define AMLOGIC_FBC_LAYOUT_SCATTER		(2ULL)
1067 
1068 /* Amlogic FBC Layout Options Bit Mask */
1069 
1070 /*
1071  * Amlogic FBC Memory Saving mode
1072  *
1073  * Indicates the storage is packed when pixel size is multiple of word
1074  * boudaries, i.e. 8bit should be stored in this mode to save allocation
1075  * memory.
1076  *
1077  * This mode reduces body layout to 3072 bytes per 64x32 superblock with
1078  * the basic layout and 3200 bytes per 64x32 superblock combined with
1079  * the scatter layout.
1080  */
1081 #define AMLOGIC_FBC_OPTION_MEM_SAVING		(1ULL << 0)
1082 
1083 #if defined(__cplusplus)
1084 }
1085 #endif
1086 
1087 #endif /* DRM_FOURCC_H */
1088