1 /* 2 * Copyright 2011 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #ifndef DRM_FOURCC_H 25 #define DRM_FOURCC_H 26 27 #include "drm.h" 28 29 #if defined(__cplusplus) 30 extern "C" { 31 #endif 32 33 /** 34 * DOC: overview 35 * 36 * In the DRM subsystem, framebuffer pixel formats are described using the 37 * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the 38 * fourcc code, a Format Modifier may optionally be provided, in order to 39 * further describe the buffer's format - for example tiling or compression. 40 * 41 * Format Modifiers 42 * ---------------- 43 * 44 * Format modifiers are used in conjunction with a fourcc code, forming a 45 * unique fourcc:modifier pair. This format:modifier pair must fully define the 46 * format and data layout of the buffer, and should be the only way to describe 47 * that particular buffer. 48 * 49 * Having multiple fourcc:modifier pairs which describe the same layout should 50 * be avoided, as such aliases run the risk of different drivers exposing 51 * different names for the same data format, forcing userspace to understand 52 * that they are aliases. 53 * 54 * Format modifiers may change any property of the buffer, including the number 55 * of planes and/or the required allocation size. Format modifiers are 56 * vendor-namespaced, and as such the relationship between a fourcc code and a 57 * modifier is specific to the modifer being used. For example, some modifiers 58 * may preserve meaning - such as number of planes - from the fourcc code, 59 * whereas others may not. 60 * 61 * Vendors should document their modifier usage in as much detail as 62 * possible, to ensure maximum compatibility across devices, drivers and 63 * applications. 64 * 65 * The authoritative list of format modifier codes is found in 66 * `include/uapi/drm/drm_fourcc.h` 67 */ 68 69 #define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \ 70 ((__u32)(c) << 16) | ((__u32)(d) << 24)) 71 72 #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */ 73 74 /* Reserve 0 for the invalid format specifier */ 75 #define DRM_FORMAT_INVALID 0 76 77 /* color index */ 78 #define DRM_FORMAT_C8 fourcc_code('C', '8', ' ', ' ') /* [7:0] C */ 79 80 /* 8 bpp Red */ 81 #define DRM_FORMAT_R8 fourcc_code('R', '8', ' ', ' ') /* [7:0] R */ 82 83 /* 16 bpp Red */ 84 #define DRM_FORMAT_R16 fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */ 85 86 /* 16 bpp RG */ 87 #define DRM_FORMAT_RG88 fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */ 88 #define DRM_FORMAT_GR88 fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */ 89 90 /* 32 bpp RG */ 91 #define DRM_FORMAT_RG1616 fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */ 92 #define DRM_FORMAT_GR1616 fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */ 93 94 /* 8 bpp RGB */ 95 #define DRM_FORMAT_RGB332 fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */ 96 #define DRM_FORMAT_BGR233 fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */ 97 98 /* 16 bpp RGB */ 99 #define DRM_FORMAT_XRGB4444 fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */ 100 #define DRM_FORMAT_XBGR4444 fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */ 101 #define DRM_FORMAT_RGBX4444 fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */ 102 #define DRM_FORMAT_BGRX4444 fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */ 103 104 #define DRM_FORMAT_ARGB4444 fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */ 105 #define DRM_FORMAT_ABGR4444 fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */ 106 #define DRM_FORMAT_RGBA4444 fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */ 107 #define DRM_FORMAT_BGRA4444 fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */ 108 109 #define DRM_FORMAT_XRGB1555 fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */ 110 #define DRM_FORMAT_XBGR1555 fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */ 111 #define DRM_FORMAT_RGBX5551 fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */ 112 #define DRM_FORMAT_BGRX5551 fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */ 113 114 #define DRM_FORMAT_ARGB1555 fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */ 115 #define DRM_FORMAT_ABGR1555 fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */ 116 #define DRM_FORMAT_RGBA5551 fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */ 117 #define DRM_FORMAT_BGRA5551 fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */ 118 119 #define DRM_FORMAT_RGB565 fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */ 120 #define DRM_FORMAT_BGR565 fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */ 121 122 /* 24 bpp RGB */ 123 #define DRM_FORMAT_RGB888 fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */ 124 #define DRM_FORMAT_BGR888 fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */ 125 126 /* 32 bpp RGB */ 127 #define DRM_FORMAT_XRGB8888 fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */ 128 #define DRM_FORMAT_XBGR8888 fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */ 129 #define DRM_FORMAT_RGBX8888 fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */ 130 #define DRM_FORMAT_BGRX8888 fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */ 131 132 #define DRM_FORMAT_ARGB8888 fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */ 133 #define DRM_FORMAT_ABGR8888 fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */ 134 #define DRM_FORMAT_RGBA8888 fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */ 135 #define DRM_FORMAT_BGRA8888 fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */ 136 137 #define DRM_FORMAT_XRGB2101010 fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */ 138 #define DRM_FORMAT_XBGR2101010 fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */ 139 #define DRM_FORMAT_RGBX1010102 fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */ 140 #define DRM_FORMAT_BGRX1010102 fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */ 141 142 #define DRM_FORMAT_ARGB2101010 fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */ 143 #define DRM_FORMAT_ABGR2101010 fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */ 144 #define DRM_FORMAT_RGBA1010102 fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */ 145 #define DRM_FORMAT_BGRA1010102 fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */ 146 147 /* 148 * Floating point 64bpp RGB 149 * IEEE 754-2008 binary16 half-precision float 150 * [15:0] sign:exponent:mantissa 1:5:10 151 */ 152 #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */ 153 #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */ 154 155 #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */ 156 #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */ 157 158 /* packed YCbCr */ 159 #define DRM_FORMAT_YUYV fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */ 160 #define DRM_FORMAT_YVYU fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */ 161 #define DRM_FORMAT_UYVY fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */ 162 #define DRM_FORMAT_VYUY fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */ 163 164 #define DRM_FORMAT_AYUV fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */ 165 #define DRM_FORMAT_XYUV8888 fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */ 166 #define DRM_FORMAT_VUY888 fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */ 167 #define DRM_FORMAT_VUY101010 fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */ 168 169 /* 170 * packed Y2xx indicate for each component, xx valid data occupy msb 171 * 16-xx padding occupy lsb 172 */ 173 #define DRM_FORMAT_Y210 fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */ 174 #define DRM_FORMAT_Y212 fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */ 175 #define DRM_FORMAT_Y216 fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */ 176 177 /* 178 * packed Y4xx indicate for each component, xx valid data occupy msb 179 * 16-xx padding occupy lsb except Y410 180 */ 181 #define DRM_FORMAT_Y410 fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */ 182 #define DRM_FORMAT_Y412 fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */ 183 #define DRM_FORMAT_Y416 fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */ 184 185 #define DRM_FORMAT_XVYU2101010 fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */ 186 #define DRM_FORMAT_XVYU12_16161616 fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */ 187 #define DRM_FORMAT_XVYU16161616 fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */ 188 189 /* 190 * packed YCbCr420 2x2 tiled formats 191 * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile 192 */ 193 /* [63:0] A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */ 194 #define DRM_FORMAT_Y0L0 fourcc_code('Y', '0', 'L', '0') 195 /* [63:0] X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */ 196 #define DRM_FORMAT_X0L0 fourcc_code('X', '0', 'L', '0') 197 198 /* [63:0] A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */ 199 #define DRM_FORMAT_Y0L2 fourcc_code('Y', '0', 'L', '2') 200 /* [63:0] X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */ 201 #define DRM_FORMAT_X0L2 fourcc_code('X', '0', 'L', '2') 202 203 /* 204 * 1-plane YUV 4:2:0 205 * In these formats, the component ordering is specified (Y, followed by U 206 * then V), but the exact Linear layout is undefined. 207 * These formats can only be used with a non-Linear modifier. 208 */ 209 #define DRM_FORMAT_YUV420_8BIT fourcc_code('Y', 'U', '0', '8') 210 #define DRM_FORMAT_YUV420_10BIT fourcc_code('Y', 'U', '1', '0') 211 212 /* 213 * 2 plane RGB + A 214 * index 0 = RGB plane, same format as the corresponding non _A8 format has 215 * index 1 = A plane, [7:0] A 216 */ 217 #define DRM_FORMAT_XRGB8888_A8 fourcc_code('X', 'R', 'A', '8') 218 #define DRM_FORMAT_XBGR8888_A8 fourcc_code('X', 'B', 'A', '8') 219 #define DRM_FORMAT_RGBX8888_A8 fourcc_code('R', 'X', 'A', '8') 220 #define DRM_FORMAT_BGRX8888_A8 fourcc_code('B', 'X', 'A', '8') 221 #define DRM_FORMAT_RGB888_A8 fourcc_code('R', '8', 'A', '8') 222 #define DRM_FORMAT_BGR888_A8 fourcc_code('B', '8', 'A', '8') 223 #define DRM_FORMAT_RGB565_A8 fourcc_code('R', '5', 'A', '8') 224 #define DRM_FORMAT_BGR565_A8 fourcc_code('B', '5', 'A', '8') 225 226 /* 227 * 2 plane YCbCr 228 * index 0 = Y plane, [7:0] Y 229 * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian 230 * or 231 * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian 232 */ 233 #define DRM_FORMAT_NV12 fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */ 234 #define DRM_FORMAT_NV21 fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */ 235 #define DRM_FORMAT_NV16 fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */ 236 #define DRM_FORMAT_NV61 fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */ 237 #define DRM_FORMAT_NV24 fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */ 238 #define DRM_FORMAT_NV42 fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */ 239 240 /* 241 * 2 plane YCbCr MSB aligned 242 * index 0 = Y plane, [15:0] Y:x [10:6] little endian 243 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian 244 */ 245 #define DRM_FORMAT_P210 fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */ 246 247 /* 248 * 2 plane YCbCr MSB aligned 249 * index 0 = Y plane, [15:0] Y:x [10:6] little endian 250 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian 251 */ 252 #define DRM_FORMAT_P010 fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */ 253 254 /* 255 * 2 plane YCbCr MSB aligned 256 * index 0 = Y plane, [15:0] Y:x [12:4] little endian 257 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian 258 */ 259 #define DRM_FORMAT_P012 fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */ 260 261 /* 262 * 2 plane YCbCr MSB aligned 263 * index 0 = Y plane, [15:0] Y little endian 264 * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian 265 */ 266 #define DRM_FORMAT_P016 fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */ 267 268 /* 269 * 3 plane YCbCr 270 * index 0: Y plane, [7:0] Y 271 * index 1: Cb plane, [7:0] Cb 272 * index 2: Cr plane, [7:0] Cr 273 * or 274 * index 1: Cr plane, [7:0] Cr 275 * index 2: Cb plane, [7:0] Cb 276 */ 277 #define DRM_FORMAT_YUV410 fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */ 278 #define DRM_FORMAT_YVU410 fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */ 279 #define DRM_FORMAT_YUV411 fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */ 280 #define DRM_FORMAT_YVU411 fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */ 281 #define DRM_FORMAT_YUV420 fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */ 282 #define DRM_FORMAT_YVU420 fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */ 283 #define DRM_FORMAT_YUV422 fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */ 284 #define DRM_FORMAT_YVU422 fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */ 285 #define DRM_FORMAT_YUV444 fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */ 286 #define DRM_FORMAT_YVU444 fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */ 287 288 289 /* 290 * Format Modifiers: 291 * 292 * Format modifiers describe, typically, a re-ordering or modification 293 * of the data in a plane of an FB. This can be used to express tiled/ 294 * swizzled formats, or compression, or a combination of the two. 295 * 296 * The upper 8 bits of the format modifier are a vendor-id as assigned 297 * below. The lower 56 bits are assigned as vendor sees fit. 298 */ 299 300 /* Vendor Ids: */ 301 #define DRM_FORMAT_MOD_NONE 0 302 #define DRM_FORMAT_MOD_VENDOR_NONE 0 303 #define DRM_FORMAT_MOD_VENDOR_INTEL 0x01 304 #define DRM_FORMAT_MOD_VENDOR_AMD 0x02 305 #define DRM_FORMAT_MOD_VENDOR_NVIDIA 0x03 306 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04 307 #define DRM_FORMAT_MOD_VENDOR_QCOM 0x05 308 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06 309 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07 310 #define DRM_FORMAT_MOD_VENDOR_ARM 0x08 311 #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09 312 313 /* add more to the end as needed */ 314 315 #define DRM_FORMAT_RESERVED ((1ULL << 56) - 1) 316 317 #define fourcc_mod_code(vendor, val) \ 318 ((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL)) 319 320 /* 321 * Format Modifier tokens: 322 * 323 * When adding a new token please document the layout with a code comment, 324 * similar to the fourcc codes above. drm_fourcc.h is considered the 325 * authoritative source for all of these. 326 */ 327 328 /* 329 * Invalid Modifier 330 * 331 * This modifier can be used as a sentinel to terminate the format modifiers 332 * list, or to initialize a variable with an invalid modifier. It might also be 333 * used to report an error back to userspace for certain APIs. 334 */ 335 #define DRM_FORMAT_MOD_INVALID fourcc_mod_code(NONE, DRM_FORMAT_RESERVED) 336 337 /* 338 * Linear Layout 339 * 340 * Just plain linear layout. Note that this is different from no specifying any 341 * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl), 342 * which tells the driver to also take driver-internal information into account 343 * and so might actually result in a tiled framebuffer. 344 */ 345 #define DRM_FORMAT_MOD_LINEAR fourcc_mod_code(NONE, 0) 346 347 /* Intel framebuffer modifiers */ 348 349 /* 350 * Intel X-tiling layout 351 * 352 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb) 353 * in row-major layout. Within the tile bytes are laid out row-major, with 354 * a platform-dependent stride. On top of that the memory can apply 355 * platform-depending swizzling of some higher address bits into bit6. 356 * 357 * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets. 358 * On earlier platforms the is highly platforms specific and not useful for 359 * cross-driver sharing. It exists since on a given platform it does uniquely 360 * identify the layout in a simple way for i915-specific userspace, which 361 * facilitated conversion of userspace to modifiers. Additionally the exact 362 * format on some really old platforms is not known. 363 */ 364 #define I915_FORMAT_MOD_X_TILED fourcc_mod_code(INTEL, 1) 365 366 /* 367 * Intel Y-tiling layout 368 * 369 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb) 370 * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes) 371 * chunks column-major, with a platform-dependent height. On top of that the 372 * memory can apply platform-depending swizzling of some higher address bits 373 * into bit6. 374 * 375 * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets. 376 * On earlier platforms the is highly platforms specific and not useful for 377 * cross-driver sharing. It exists since on a given platform it does uniquely 378 * identify the layout in a simple way for i915-specific userspace, which 379 * facilitated conversion of userspace to modifiers. Additionally the exact 380 * format on some really old platforms is not known. 381 */ 382 #define I915_FORMAT_MOD_Y_TILED fourcc_mod_code(INTEL, 2) 383 384 /* 385 * Intel Yf-tiling layout 386 * 387 * This is a tiled layout using 4Kb tiles in row-major layout. 388 * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which 389 * are arranged in four groups (two wide, two high) with column-major layout. 390 * Each group therefore consits out of four 256 byte units, which are also laid 391 * out as 2x2 column-major. 392 * 256 byte units are made out of four 64 byte blocks of pixels, producing 393 * either a square block or a 2:1 unit. 394 * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width 395 * in pixel depends on the pixel depth. 396 */ 397 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3) 398 399 /* 400 * Intel color control surface (CCS) for render compression 401 * 402 * The framebuffer format must be one of the 8:8:8:8 RGB formats. 403 * The main surface will be plane index 0 and must be Y/Yf-tiled, 404 * the CCS will be plane index 1. 405 * 406 * Each CCS tile matches a 1024x512 pixel area of the main surface. 407 * To match certain aspects of the 3D hardware the CCS is 408 * considered to be made up of normal 128Bx32 Y tiles, Thus 409 * the CCS pitch must be specified in multiples of 128 bytes. 410 * 411 * In reality the CCS tile appears to be a 64Bx64 Y tile, composed 412 * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks. 413 * But that fact is not relevant unless the memory is accessed 414 * directly. 415 */ 416 #define I915_FORMAT_MOD_Y_TILED_CCS fourcc_mod_code(INTEL, 4) 417 #define I915_FORMAT_MOD_Yf_TILED_CCS fourcc_mod_code(INTEL, 5) 418 419 /* 420 * Intel color control surfaces (CCS) for Gen-12 render compression. 421 * 422 * The main surface is Y-tiled and at plane index 0, the CCS is linear and 423 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in 424 * main surface. In other words, 4 bits in CCS map to a main surface cache 425 * line pair. The main surface pitch is required to be a multiple of four 426 * Y-tile widths. 427 */ 428 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6) 429 430 /* 431 * Intel color control surfaces (CCS) for Gen-12 media compression 432 * 433 * The main surface is Y-tiled and at plane index 0, the CCS is linear and 434 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in 435 * main surface. In other words, 4 bits in CCS map to a main surface cache 436 * line pair. The main surface pitch is required to be a multiple of four 437 * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the 438 * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces, 439 * planes 2 and 3 for the respective CCS. 440 */ 441 #define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7) 442 443 /* 444 * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks 445 * 446 * Macroblocks are laid in a Z-shape, and each pixel data is following the 447 * standard NV12 style. 448 * As for NV12, an image is the result of two frame buffers: one for Y, 449 * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer). 450 * Alignment requirements are (for each buffer): 451 * - multiple of 128 pixels for the width 452 * - multiple of 32 pixels for the height 453 * 454 * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html 455 */ 456 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE fourcc_mod_code(SAMSUNG, 1) 457 458 /* 459 * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks 460 * 461 * This is a simple tiled layout using tiles of 16x16 pixels in a row-major 462 * layout. For YCbCr formats Cb/Cr components are taken in such a way that 463 * they correspond to their 16x16 luma block. 464 */ 465 #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE fourcc_mod_code(SAMSUNG, 2) 466 467 /* 468 * Qualcomm Compressed Format 469 * 470 * Refers to a compressed variant of the base format that is compressed. 471 * Implementation may be platform and base-format specific. 472 * 473 * Each macrotile consists of m x n (mostly 4 x 4) tiles. 474 * Pixel data pitch/stride is aligned with macrotile width. 475 * Pixel data height is aligned with macrotile height. 476 * Entire pixel data buffer is aligned with 4k(bytes). 477 */ 478 #define DRM_FORMAT_MOD_QCOM_COMPRESSED fourcc_mod_code(QCOM, 1) 479 480 /* Vivante framebuffer modifiers */ 481 482 /* 483 * Vivante 4x4 tiling layout 484 * 485 * This is a simple tiled layout using tiles of 4x4 pixels in a row-major 486 * layout. 487 */ 488 #define DRM_FORMAT_MOD_VIVANTE_TILED fourcc_mod_code(VIVANTE, 1) 489 490 /* 491 * Vivante 64x64 super-tiling layout 492 * 493 * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile 494 * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row- 495 * major layout. 496 * 497 * For more information: see 498 * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling 499 */ 500 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED fourcc_mod_code(VIVANTE, 2) 501 502 /* 503 * Vivante 4x4 tiling layout for dual-pipe 504 * 505 * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a 506 * different base address. Offsets from the base addresses are therefore halved 507 * compared to the non-split tiled layout. 508 */ 509 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED fourcc_mod_code(VIVANTE, 3) 510 511 /* 512 * Vivante 64x64 super-tiling layout for dual-pipe 513 * 514 * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile 515 * starts at a different base address. Offsets from the base addresses are 516 * therefore halved compared to the non-split super-tiled layout. 517 */ 518 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4) 519 520 /* NVIDIA frame buffer modifiers */ 521 522 /* 523 * Tegra Tiled Layout, used by Tegra 2, 3 and 4. 524 * 525 * Pixels are arranged in simple tiles of 16 x 16 bytes. 526 */ 527 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1) 528 529 /* 530 * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80, 531 * and Tegra GPUs starting with Tegra K1. 532 * 533 * Pixels are arranged in Groups of Bytes (GOBs). GOB size and layout varies 534 * based on the architecture generation. GOBs themselves are then arranged in 535 * 3D blocks, with the block dimensions (in terms of GOBs) always being a power 536 * of two, and hence expressible as their log2 equivalent (E.g., "2" represents 537 * a block depth or height of "4"). 538 * 539 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format 540 * in full detail. 541 * 542 * Macro 543 * Bits Param Description 544 * ---- ----- ----------------------------------------------------------------- 545 * 546 * 3:0 h log2(height) of each block, in GOBs. Placed here for 547 * compatibility with the existing 548 * DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers. 549 * 550 * 4:4 - Must be 1, to indicate block-linear layout. Necessary for 551 * compatibility with the existing 552 * DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers. 553 * 554 * 8:5 - Reserved (To support 3D-surfaces with variable log2(depth) block 555 * size). Must be zero. 556 * 557 * Note there is no log2(width) parameter. Some portions of the 558 * hardware support a block width of two gobs, but it is impractical 559 * to use due to lack of support elsewhere, and has no known 560 * benefits. 561 * 562 * 11:9 - Reserved (To support 2D-array textures with variable array stride 563 * in blocks, specified via log2(tile width in blocks)). Must be 564 * zero. 565 * 566 * 19:12 k Page Kind. This value directly maps to a field in the page 567 * tables of all GPUs >= NV50. It affects the exact layout of bits 568 * in memory and can be derived from the tuple 569 * 570 * (format, GPU model, compression type, samples per pixel) 571 * 572 * Where compression type is defined below. If GPU model were 573 * implied by the format modifier, format, or memory buffer, page 574 * kind would not need to be included in the modifier itself, but 575 * since the modifier should define the layout of the associated 576 * memory buffer independent from any device or other context, it 577 * must be included here. 578 * 579 * 21:20 g GOB Height and Page Kind Generation. The height of a GOB changed 580 * starting with Fermi GPUs. Additionally, the mapping between page 581 * kind and bit layout has changed at various points. 582 * 583 * 0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping 584 * 1 = Gob Height 4, G80 - GT2XX Page Kind mapping 585 * 2 = Gob Height 8, Turing+ Page Kind mapping 586 * 3 = Reserved for future use. 587 * 588 * 22:22 s Sector layout. On Tegra GPUs prior to Xavier, there is a further 589 * bit remapping step that occurs at an even lower level than the 590 * page kind and block linear swizzles. This causes the layout of 591 * surfaces mapped in those SOC's GPUs to be incompatible with the 592 * equivalent mapping on other GPUs in the same system. 593 * 594 * 0 = Tegra K1 - Tegra Parker/TX2 Layout. 595 * 1 = Desktop GPU and Tegra Xavier+ Layout 596 * 597 * 25:23 c Lossless Framebuffer Compression type. 598 * 599 * 0 = none 600 * 1 = ROP/3D, layout 1, exact compression format implied by Page 601 * Kind field 602 * 2 = ROP/3D, layout 2, exact compression format implied by Page 603 * Kind field 604 * 3 = CDE horizontal 605 * 4 = CDE vertical 606 * 5 = Reserved for future use 607 * 6 = Reserved for future use 608 * 7 = Reserved for future use 609 * 610 * 55:25 - Reserved for future use. Must be zero. 611 */ 612 #define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \ 613 fourcc_mod_code(NVIDIA, (0x10 | \ 614 ((h) & 0xf) | \ 615 (((k) & 0xff) << 12) | \ 616 (((g) & 0x3) << 20) | \ 617 (((s) & 0x1) << 22) | \ 618 (((c) & 0x7) << 23))) 619 620 /* To grandfather in prior block linear format modifiers to the above layout, 621 * the page kind "0", which corresponds to "pitch/linear" and hence is unusable 622 * with block-linear layouts, is remapped within drivers to the value 0xfe, 623 * which corresponds to the "generic" kind used for simple single-sample 624 * uncompressed color formats on Fermi - Volta GPUs. 625 */ 626 static inline __u64 627 drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier) 628 { 629 if (!(modifier & 0x10) || (modifier & (0xff << 12))) 630 return modifier; 631 else 632 return modifier | (0xfe << 12); 633 } 634 635 /* 636 * 16Bx2 Block Linear layout, used by Tegra K1 and later 637 * 638 * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked 639 * vertically by a power of 2 (1 to 32 GOBs) to form a block. 640 * 641 * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape. 642 * 643 * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically. 644 * Valid values are: 645 * 646 * 0 == ONE_GOB 647 * 1 == TWO_GOBS 648 * 2 == FOUR_GOBS 649 * 3 == EIGHT_GOBS 650 * 4 == SIXTEEN_GOBS 651 * 5 == THIRTYTWO_GOBS 652 * 653 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format 654 * in full detail. 655 */ 656 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \ 657 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v)) 658 659 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \ 660 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0) 661 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \ 662 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1) 663 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \ 664 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2) 665 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \ 666 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3) 667 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \ 668 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4) 669 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \ 670 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5) 671 672 /* 673 * Some Broadcom modifiers take parameters, for example the number of 674 * vertical lines in the image. Reserve the lower 32 bits for modifier 675 * type, and the next 24 bits for parameters. Top 8 bits are the 676 * vendor code. 677 */ 678 #define __fourcc_mod_broadcom_param_shift 8 679 #define __fourcc_mod_broadcom_param_bits 48 680 #define fourcc_mod_broadcom_code(val, params) \ 681 fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val)) 682 #define fourcc_mod_broadcom_param(m) \ 683 ((int)(((m) >> __fourcc_mod_broadcom_param_shift) & \ 684 ((1ULL << __fourcc_mod_broadcom_param_bits) - 1))) 685 #define fourcc_mod_broadcom_mod(m) \ 686 ((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) << \ 687 __fourcc_mod_broadcom_param_shift)) 688 689 /* 690 * Broadcom VC4 "T" format 691 * 692 * This is the primary layout that the V3D GPU can texture from (it 693 * can't do linear). The T format has: 694 * 695 * - 64b utiles of pixels in a raster-order grid according to cpp. It's 4x4 696 * pixels at 32 bit depth. 697 * 698 * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually 699 * 16x16 pixels). 700 * 701 * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels). On 702 * even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows 703 * they're (TR, BR, BL, TL), where bottom left is start of memory. 704 * 705 * - an image made of 4k tiles in rows either left-to-right (even rows of 4k 706 * tiles) or right-to-left (odd rows of 4k tiles). 707 */ 708 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1) 709 710 /* 711 * Broadcom SAND format 712 * 713 * This is the native format that the H.264 codec block uses. For VC4 714 * HVS, it is only valid for H.264 (NV12/21) and RGBA modes. 715 * 716 * The image can be considered to be split into columns, and the 717 * columns are placed consecutively into memory. The width of those 718 * columns can be either 32, 64, 128, or 256 pixels, but in practice 719 * only 128 pixel columns are used. 720 * 721 * The pitch between the start of each column is set to optimally 722 * switch between SDRAM banks. This is passed as the number of lines 723 * of column width in the modifier (we can't use the stride value due 724 * to various core checks that look at it , so you should set the 725 * stride to width*cpp). 726 * 727 * Note that the column height for this format modifier is the same 728 * for all of the planes, assuming that each column contains both Y 729 * and UV. Some SAND-using hardware stores UV in a separate tiled 730 * image from Y to reduce the column height, which is not supported 731 * with these modifiers. 732 */ 733 734 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \ 735 fourcc_mod_broadcom_code(2, v) 736 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \ 737 fourcc_mod_broadcom_code(3, v) 738 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \ 739 fourcc_mod_broadcom_code(4, v) 740 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \ 741 fourcc_mod_broadcom_code(5, v) 742 743 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \ 744 DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0) 745 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \ 746 DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0) 747 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \ 748 DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0) 749 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \ 750 DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0) 751 752 /* Broadcom UIF format 753 * 754 * This is the common format for the current Broadcom multimedia 755 * blocks, including V3D 3.x and newer, newer video codecs, and 756 * displays. 757 * 758 * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles), 759 * and macroblocks (4x4 UIF blocks). Those 4x4 UIF block groups are 760 * stored in columns, with padding between the columns to ensure that 761 * moving from one column to the next doesn't hit the same SDRAM page 762 * bank. 763 * 764 * To calculate the padding, it is assumed that each hardware block 765 * and the software driving it knows the platform's SDRAM page size, 766 * number of banks, and XOR address, and that it's identical between 767 * all blocks using the format. This tiling modifier will use XOR as 768 * necessary to reduce the padding. If a hardware block can't do XOR, 769 * the assumption is that a no-XOR tiling modifier will be created. 770 */ 771 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6) 772 773 /* 774 * Arm Framebuffer Compression (AFBC) modifiers 775 * 776 * AFBC is a proprietary lossless image compression protocol and format. 777 * It provides fine-grained random access and minimizes the amount of data 778 * transferred between IP blocks. 779 * 780 * AFBC has several features which may be supported and/or used, which are 781 * represented using bits in the modifier. Not all combinations are valid, 782 * and different devices or use-cases may support different combinations. 783 * 784 * Further information on the use of AFBC modifiers can be found in 785 * Documentation/gpu/afbc.rst 786 */ 787 788 /* 789 * The top 4 bits (out of the 56 bits alloted for specifying vendor specific 790 * modifiers) denote the category for modifiers. Currently we have only two 791 * categories of modifiers ie AFBC and MISC. We can have a maximum of sixteen 792 * different categories. 793 */ 794 #define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \ 795 fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL)) 796 797 #define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00 798 #define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01 799 800 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \ 801 DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode) 802 803 /* 804 * AFBC superblock size 805 * 806 * Indicates the superblock size(s) used for the AFBC buffer. The buffer 807 * size (in pixels) must be aligned to a multiple of the superblock size. 808 * Four lowest significant bits(LSBs) are reserved for block size. 809 * 810 * Where one superblock size is specified, it applies to all planes of the 811 * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified, 812 * the first applies to the Luma plane and the second applies to the Chroma 813 * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma). 814 * Multiple superblock sizes are only valid for multi-plane YCbCr formats. 815 */ 816 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK 0xf 817 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16 (1ULL) 818 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8 (2ULL) 819 #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4 (3ULL) 820 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL) 821 822 /* 823 * AFBC lossless colorspace transform 824 * 825 * Indicates that the buffer makes use of the AFBC lossless colorspace 826 * transform. 827 */ 828 #define AFBC_FORMAT_MOD_YTR (1ULL << 4) 829 830 /* 831 * AFBC block-split 832 * 833 * Indicates that the payload of each superblock is split. The second 834 * half of the payload is positioned at a predefined offset from the start 835 * of the superblock payload. 836 */ 837 #define AFBC_FORMAT_MOD_SPLIT (1ULL << 5) 838 839 /* 840 * AFBC sparse layout 841 * 842 * This flag indicates that the payload of each superblock must be stored at a 843 * predefined position relative to the other superblocks in the same AFBC 844 * buffer. This order is the same order used by the header buffer. In this mode 845 * each superblock is given the same amount of space as an uncompressed 846 * superblock of the particular format would require, rounding up to the next 847 * multiple of 128 bytes in size. 848 */ 849 #define AFBC_FORMAT_MOD_SPARSE (1ULL << 6) 850 851 /* 852 * AFBC copy-block restrict 853 * 854 * Buffers with this flag must obey the copy-block restriction. The restriction 855 * is such that there are no copy-blocks referring across the border of 8x8 856 * blocks. For the subsampled data the 8x8 limitation is also subsampled. 857 */ 858 #define AFBC_FORMAT_MOD_CBR (1ULL << 7) 859 860 /* 861 * AFBC tiled layout 862 * 863 * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all 864 * superblocks inside a tile are stored together in memory. 8x8 tiles are used 865 * for pixel formats up to and including 32 bpp while 4x4 tiles are used for 866 * larger bpp formats. The order between the tiles is scan line. 867 * When the tiled layout is used, the buffer size (in pixels) must be aligned 868 * to the tile size. 869 */ 870 #define AFBC_FORMAT_MOD_TILED (1ULL << 8) 871 872 /* 873 * AFBC solid color blocks 874 * 875 * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth 876 * can be reduced if a whole superblock is a single color. 877 */ 878 #define AFBC_FORMAT_MOD_SC (1ULL << 9) 879 880 /* 881 * AFBC double-buffer 882 * 883 * Indicates that the buffer is allocated in a layout safe for front-buffer 884 * rendering. 885 */ 886 #define AFBC_FORMAT_MOD_DB (1ULL << 10) 887 888 /* 889 * AFBC buffer content hints 890 * 891 * Indicates that the buffer includes per-superblock content hints. 892 */ 893 #define AFBC_FORMAT_MOD_BCH (1ULL << 11) 894 895 /* 896 * Arm 16x16 Block U-Interleaved modifier 897 * 898 * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image 899 * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels 900 * in the block are reordered. 901 */ 902 #define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \ 903 DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL) 904 905 /* 906 * Allwinner tiled modifier 907 * 908 * This tiling mode is implemented by the VPU found on all Allwinner platforms, 909 * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3 910 * planes. 911 * 912 * With this tiling, the luminance samples are disposed in tiles representing 913 * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels. 914 * The pixel order in each tile is linear and the tiles are disposed linearly, 915 * both in row-major order. 916 */ 917 #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1) 918 919 #if defined(__cplusplus) 920 } 921 #endif 922 923 #endif /* DRM_FOURCC_H */ 924