xref: /openbmc/linux/include/uapi/drm/drm_fourcc.h (revision 5497b23e)
1 /*
2  * Copyright 2011 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #ifndef DRM_FOURCC_H
25 #define DRM_FOURCC_H
26 
27 #include "drm.h"
28 
29 #if defined(__cplusplus)
30 extern "C" {
31 #endif
32 
33 /**
34  * DOC: overview
35  *
36  * In the DRM subsystem, framebuffer pixel formats are described using the
37  * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
38  * fourcc code, a Format Modifier may optionally be provided, in order to
39  * further describe the buffer's format - for example tiling or compression.
40  *
41  * Format Modifiers
42  * ----------------
43  *
44  * Format modifiers are used in conjunction with a fourcc code, forming a
45  * unique fourcc:modifier pair. This format:modifier pair must fully define the
46  * format and data layout of the buffer, and should be the only way to describe
47  * that particular buffer.
48  *
49  * Having multiple fourcc:modifier pairs which describe the same layout should
50  * be avoided, as such aliases run the risk of different drivers exposing
51  * different names for the same data format, forcing userspace to understand
52  * that they are aliases.
53  *
54  * Format modifiers may change any property of the buffer, including the number
55  * of planes and/or the required allocation size. Format modifiers are
56  * vendor-namespaced, and as such the relationship between a fourcc code and a
57  * modifier is specific to the modifer being used. For example, some modifiers
58  * may preserve meaning - such as number of planes - from the fourcc code,
59  * whereas others may not.
60  *
61  * Modifiers must uniquely encode buffer layout. In other words, a buffer must
62  * match only a single modifier. A modifier must not be a subset of layouts of
63  * another modifier. For instance, it's incorrect to encode pitch alignment in
64  * a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel
65  * aligned modifier. That said, modifiers can have implicit minimal
66  * requirements.
67  *
68  * For modifiers where the combination of fourcc code and modifier can alias,
69  * a canonical pair needs to be defined and used by all drivers. Preferred
70  * combinations are also encouraged where all combinations might lead to
71  * confusion and unnecessarily reduced interoperability. An example for the
72  * latter is AFBC, where the ABGR layouts are preferred over ARGB layouts.
73  *
74  * There are two kinds of modifier users:
75  *
76  * - Kernel and user-space drivers: for drivers it's important that modifiers
77  *   don't alias, otherwise two drivers might support the same format but use
78  *   different aliases, preventing them from sharing buffers in an efficient
79  *   format.
80  * - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users
81  *   see modifiers as opaque tokens they can check for equality and intersect.
82  *   These users musn't need to know to reason about the modifier value
83  *   (i.e. they are not expected to extract information out of the modifier).
84  *
85  * Vendors should document their modifier usage in as much detail as
86  * possible, to ensure maximum compatibility across devices, drivers and
87  * applications.
88  *
89  * The authoritative list of format modifier codes is found in
90  * `include/uapi/drm/drm_fourcc.h`
91  */
92 
93 #define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \
94 				 ((__u32)(c) << 16) | ((__u32)(d) << 24))
95 
96 #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
97 
98 /* Reserve 0 for the invalid format specifier */
99 #define DRM_FORMAT_INVALID	0
100 
101 /* color index */
102 #define DRM_FORMAT_C8		fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
103 
104 /* 8 bpp Red */
105 #define DRM_FORMAT_R8		fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
106 
107 /* 16 bpp Red */
108 #define DRM_FORMAT_R16		fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
109 
110 /* 16 bpp RG */
111 #define DRM_FORMAT_RG88		fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
112 #define DRM_FORMAT_GR88		fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
113 
114 /* 32 bpp RG */
115 #define DRM_FORMAT_RG1616	fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
116 #define DRM_FORMAT_GR1616	fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
117 
118 /* 8 bpp RGB */
119 #define DRM_FORMAT_RGB332	fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
120 #define DRM_FORMAT_BGR233	fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
121 
122 /* 16 bpp RGB */
123 #define DRM_FORMAT_XRGB4444	fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
124 #define DRM_FORMAT_XBGR4444	fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
125 #define DRM_FORMAT_RGBX4444	fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
126 #define DRM_FORMAT_BGRX4444	fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
127 
128 #define DRM_FORMAT_ARGB4444	fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
129 #define DRM_FORMAT_ABGR4444	fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
130 #define DRM_FORMAT_RGBA4444	fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
131 #define DRM_FORMAT_BGRA4444	fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
132 
133 #define DRM_FORMAT_XRGB1555	fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
134 #define DRM_FORMAT_XBGR1555	fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
135 #define DRM_FORMAT_RGBX5551	fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
136 #define DRM_FORMAT_BGRX5551	fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
137 
138 #define DRM_FORMAT_ARGB1555	fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
139 #define DRM_FORMAT_ABGR1555	fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
140 #define DRM_FORMAT_RGBA5551	fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
141 #define DRM_FORMAT_BGRA5551	fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
142 
143 #define DRM_FORMAT_RGB565	fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
144 #define DRM_FORMAT_BGR565	fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
145 
146 /* 24 bpp RGB */
147 #define DRM_FORMAT_RGB888	fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
148 #define DRM_FORMAT_BGR888	fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
149 
150 /* 32 bpp RGB */
151 #define DRM_FORMAT_XRGB8888	fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
152 #define DRM_FORMAT_XBGR8888	fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
153 #define DRM_FORMAT_RGBX8888	fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
154 #define DRM_FORMAT_BGRX8888	fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
155 
156 #define DRM_FORMAT_ARGB8888	fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
157 #define DRM_FORMAT_ABGR8888	fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
158 #define DRM_FORMAT_RGBA8888	fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
159 #define DRM_FORMAT_BGRA8888	fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
160 
161 #define DRM_FORMAT_XRGB2101010	fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
162 #define DRM_FORMAT_XBGR2101010	fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
163 #define DRM_FORMAT_RGBX1010102	fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
164 #define DRM_FORMAT_BGRX1010102	fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
165 
166 #define DRM_FORMAT_ARGB2101010	fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
167 #define DRM_FORMAT_ABGR2101010	fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
168 #define DRM_FORMAT_RGBA1010102	fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
169 #define DRM_FORMAT_BGRA1010102	fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
170 
171 /*
172  * Floating point 64bpp RGB
173  * IEEE 754-2008 binary16 half-precision float
174  * [15:0] sign:exponent:mantissa 1:5:10
175  */
176 #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
177 #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
178 
179 #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
180 #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
181 
182 /*
183  * RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits
184  * of unused padding per component:
185  */
186 #define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */
187 
188 /* packed YCbCr */
189 #define DRM_FORMAT_YUYV		fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
190 #define DRM_FORMAT_YVYU		fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
191 #define DRM_FORMAT_UYVY		fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
192 #define DRM_FORMAT_VYUY		fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
193 
194 #define DRM_FORMAT_AYUV		fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
195 #define DRM_FORMAT_XYUV8888	fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
196 #define DRM_FORMAT_VUY888	fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
197 #define DRM_FORMAT_VUY101010	fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
198 
199 /*
200  * packed Y2xx indicate for each component, xx valid data occupy msb
201  * 16-xx padding occupy lsb
202  */
203 #define DRM_FORMAT_Y210         fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
204 #define DRM_FORMAT_Y212         fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
205 #define DRM_FORMAT_Y216         fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
206 
207 /*
208  * packed Y4xx indicate for each component, xx valid data occupy msb
209  * 16-xx padding occupy lsb except Y410
210  */
211 #define DRM_FORMAT_Y410         fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
212 #define DRM_FORMAT_Y412         fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
213 #define DRM_FORMAT_Y416         fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
214 
215 #define DRM_FORMAT_XVYU2101010	fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
216 #define DRM_FORMAT_XVYU12_16161616	fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
217 #define DRM_FORMAT_XVYU16161616	fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
218 
219 /*
220  * packed YCbCr420 2x2 tiled formats
221  * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
222  */
223 /* [63:0]   A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
224 #define DRM_FORMAT_Y0L0		fourcc_code('Y', '0', 'L', '0')
225 /* [63:0]   X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
226 #define DRM_FORMAT_X0L0		fourcc_code('X', '0', 'L', '0')
227 
228 /* [63:0]   A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
229 #define DRM_FORMAT_Y0L2		fourcc_code('Y', '0', 'L', '2')
230 /* [63:0]   X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
231 #define DRM_FORMAT_X0L2		fourcc_code('X', '0', 'L', '2')
232 
233 /*
234  * 1-plane YUV 4:2:0
235  * In these formats, the component ordering is specified (Y, followed by U
236  * then V), but the exact Linear layout is undefined.
237  * These formats can only be used with a non-Linear modifier.
238  */
239 #define DRM_FORMAT_YUV420_8BIT	fourcc_code('Y', 'U', '0', '8')
240 #define DRM_FORMAT_YUV420_10BIT	fourcc_code('Y', 'U', '1', '0')
241 
242 /*
243  * 2 plane RGB + A
244  * index 0 = RGB plane, same format as the corresponding non _A8 format has
245  * index 1 = A plane, [7:0] A
246  */
247 #define DRM_FORMAT_XRGB8888_A8	fourcc_code('X', 'R', 'A', '8')
248 #define DRM_FORMAT_XBGR8888_A8	fourcc_code('X', 'B', 'A', '8')
249 #define DRM_FORMAT_RGBX8888_A8	fourcc_code('R', 'X', 'A', '8')
250 #define DRM_FORMAT_BGRX8888_A8	fourcc_code('B', 'X', 'A', '8')
251 #define DRM_FORMAT_RGB888_A8	fourcc_code('R', '8', 'A', '8')
252 #define DRM_FORMAT_BGR888_A8	fourcc_code('B', '8', 'A', '8')
253 #define DRM_FORMAT_RGB565_A8	fourcc_code('R', '5', 'A', '8')
254 #define DRM_FORMAT_BGR565_A8	fourcc_code('B', '5', 'A', '8')
255 
256 /*
257  * 2 plane YCbCr
258  * index 0 = Y plane, [7:0] Y
259  * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
260  * or
261  * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
262  */
263 #define DRM_FORMAT_NV12		fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
264 #define DRM_FORMAT_NV21		fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
265 #define DRM_FORMAT_NV16		fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
266 #define DRM_FORMAT_NV61		fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
267 #define DRM_FORMAT_NV24		fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
268 #define DRM_FORMAT_NV42		fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
269 /*
270  * 2 plane YCbCr
271  * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian
272  * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
273  */
274 #define DRM_FORMAT_NV15		fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
275 
276 /*
277  * 2 plane YCbCr MSB aligned
278  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
279  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
280  */
281 #define DRM_FORMAT_P210		fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
282 
283 /*
284  * 2 plane YCbCr MSB aligned
285  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
286  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
287  */
288 #define DRM_FORMAT_P010		fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
289 
290 /*
291  * 2 plane YCbCr MSB aligned
292  * index 0 = Y plane, [15:0] Y:x [12:4] little endian
293  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
294  */
295 #define DRM_FORMAT_P012		fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
296 
297 /*
298  * 2 plane YCbCr MSB aligned
299  * index 0 = Y plane, [15:0] Y little endian
300  * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
301  */
302 #define DRM_FORMAT_P016		fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
303 
304 /* 3 plane non-subsampled (444) YCbCr
305  * 16 bits per component, but only 10 bits are used and 6 bits are padded
306  * index 0: Y plane, [15:0] Y:x [10:6] little endian
307  * index 1: Cb plane, [15:0] Cb:x [10:6] little endian
308  * index 2: Cr plane, [15:0] Cr:x [10:6] little endian
309  */
310 #define DRM_FORMAT_Q410		fourcc_code('Q', '4', '1', '0')
311 
312 /* 3 plane non-subsampled (444) YCrCb
313  * 16 bits per component, but only 10 bits are used and 6 bits are padded
314  * index 0: Y plane, [15:0] Y:x [10:6] little endian
315  * index 1: Cr plane, [15:0] Cr:x [10:6] little endian
316  * index 2: Cb plane, [15:0] Cb:x [10:6] little endian
317  */
318 #define DRM_FORMAT_Q401		fourcc_code('Q', '4', '0', '1')
319 
320 /*
321  * 3 plane YCbCr
322  * index 0: Y plane, [7:0] Y
323  * index 1: Cb plane, [7:0] Cb
324  * index 2: Cr plane, [7:0] Cr
325  * or
326  * index 1: Cr plane, [7:0] Cr
327  * index 2: Cb plane, [7:0] Cb
328  */
329 #define DRM_FORMAT_YUV410	fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
330 #define DRM_FORMAT_YVU410	fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
331 #define DRM_FORMAT_YUV411	fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
332 #define DRM_FORMAT_YVU411	fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
333 #define DRM_FORMAT_YUV420	fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
334 #define DRM_FORMAT_YVU420	fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
335 #define DRM_FORMAT_YUV422	fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
336 #define DRM_FORMAT_YVU422	fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
337 #define DRM_FORMAT_YUV444	fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
338 #define DRM_FORMAT_YVU444	fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
339 
340 
341 /*
342  * Format Modifiers:
343  *
344  * Format modifiers describe, typically, a re-ordering or modification
345  * of the data in a plane of an FB.  This can be used to express tiled/
346  * swizzled formats, or compression, or a combination of the two.
347  *
348  * The upper 8 bits of the format modifier are a vendor-id as assigned
349  * below.  The lower 56 bits are assigned as vendor sees fit.
350  */
351 
352 /* Vendor Ids: */
353 #define DRM_FORMAT_MOD_VENDOR_NONE    0
354 #define DRM_FORMAT_MOD_VENDOR_INTEL   0x01
355 #define DRM_FORMAT_MOD_VENDOR_AMD     0x02
356 #define DRM_FORMAT_MOD_VENDOR_NVIDIA  0x03
357 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
358 #define DRM_FORMAT_MOD_VENDOR_QCOM    0x05
359 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
360 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
361 #define DRM_FORMAT_MOD_VENDOR_ARM     0x08
362 #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
363 #define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a
364 
365 /* add more to the end as needed */
366 
367 #define DRM_FORMAT_RESERVED	      ((1ULL << 56) - 1)
368 
369 #define fourcc_mod_code(vendor, val) \
370 	((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
371 
372 /*
373  * Format Modifier tokens:
374  *
375  * When adding a new token please document the layout with a code comment,
376  * similar to the fourcc codes above. drm_fourcc.h is considered the
377  * authoritative source for all of these.
378  *
379  * Generic modifier names:
380  *
381  * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
382  * for layouts which are common across multiple vendors. To preserve
383  * compatibility, in cases where a vendor-specific definition already exists and
384  * a generic name for it is desired, the common name is a purely symbolic alias
385  * and must use the same numerical value as the original definition.
386  *
387  * Note that generic names should only be used for modifiers which describe
388  * generic layouts (such as pixel re-ordering), which may have
389  * independently-developed support across multiple vendors.
390  *
391  * In future cases where a generic layout is identified before merging with a
392  * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
393  * 'NONE' could be considered. This should only be for obvious, exceptional
394  * cases to avoid polluting the 'GENERIC' namespace with modifiers which only
395  * apply to a single vendor.
396  *
397  * Generic names should not be used for cases where multiple hardware vendors
398  * have implementations of the same standardised compression scheme (such as
399  * AFBC). In those cases, all implementations should use the same format
400  * modifier(s), reflecting the vendor of the standard.
401  */
402 
403 #define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE
404 
405 /*
406  * Invalid Modifier
407  *
408  * This modifier can be used as a sentinel to terminate the format modifiers
409  * list, or to initialize a variable with an invalid modifier. It might also be
410  * used to report an error back to userspace for certain APIs.
411  */
412 #define DRM_FORMAT_MOD_INVALID	fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
413 
414 /*
415  * Linear Layout
416  *
417  * Just plain linear layout. Note that this is different from no specifying any
418  * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
419  * which tells the driver to also take driver-internal information into account
420  * and so might actually result in a tiled framebuffer.
421  */
422 #define DRM_FORMAT_MOD_LINEAR	fourcc_mod_code(NONE, 0)
423 
424 /*
425  * Deprecated: use DRM_FORMAT_MOD_LINEAR instead
426  *
427  * The "none" format modifier doesn't actually mean that the modifier is
428  * implicit, instead it means that the layout is linear. Whether modifiers are
429  * used is out-of-band information carried in an API-specific way (e.g. in a
430  * flag for drm_mode_fb_cmd2).
431  */
432 #define DRM_FORMAT_MOD_NONE	0
433 
434 /* Intel framebuffer modifiers */
435 
436 /*
437  * Intel X-tiling layout
438  *
439  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
440  * in row-major layout. Within the tile bytes are laid out row-major, with
441  * a platform-dependent stride. On top of that the memory can apply
442  * platform-depending swizzling of some higher address bits into bit6.
443  *
444  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
445  * On earlier platforms the is highly platforms specific and not useful for
446  * cross-driver sharing. It exists since on a given platform it does uniquely
447  * identify the layout in a simple way for i915-specific userspace, which
448  * facilitated conversion of userspace to modifiers. Additionally the exact
449  * format on some really old platforms is not known.
450  */
451 #define I915_FORMAT_MOD_X_TILED	fourcc_mod_code(INTEL, 1)
452 
453 /*
454  * Intel Y-tiling layout
455  *
456  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
457  * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
458  * chunks column-major, with a platform-dependent height. On top of that the
459  * memory can apply platform-depending swizzling of some higher address bits
460  * into bit6.
461  *
462  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
463  * On earlier platforms the is highly platforms specific and not useful for
464  * cross-driver sharing. It exists since on a given platform it does uniquely
465  * identify the layout in a simple way for i915-specific userspace, which
466  * facilitated conversion of userspace to modifiers. Additionally the exact
467  * format on some really old platforms is not known.
468  */
469 #define I915_FORMAT_MOD_Y_TILED	fourcc_mod_code(INTEL, 2)
470 
471 /*
472  * Intel Yf-tiling layout
473  *
474  * This is a tiled layout using 4Kb tiles in row-major layout.
475  * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
476  * are arranged in four groups (two wide, two high) with column-major layout.
477  * Each group therefore consits out of four 256 byte units, which are also laid
478  * out as 2x2 column-major.
479  * 256 byte units are made out of four 64 byte blocks of pixels, producing
480  * either a square block or a 2:1 unit.
481  * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
482  * in pixel depends on the pixel depth.
483  */
484 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
485 
486 /*
487  * Intel color control surface (CCS) for render compression
488  *
489  * The framebuffer format must be one of the 8:8:8:8 RGB formats.
490  * The main surface will be plane index 0 and must be Y/Yf-tiled,
491  * the CCS will be plane index 1.
492  *
493  * Each CCS tile matches a 1024x512 pixel area of the main surface.
494  * To match certain aspects of the 3D hardware the CCS is
495  * considered to be made up of normal 128Bx32 Y tiles, Thus
496  * the CCS pitch must be specified in multiples of 128 bytes.
497  *
498  * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
499  * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
500  * But that fact is not relevant unless the memory is accessed
501  * directly.
502  */
503 #define I915_FORMAT_MOD_Y_TILED_CCS	fourcc_mod_code(INTEL, 4)
504 #define I915_FORMAT_MOD_Yf_TILED_CCS	fourcc_mod_code(INTEL, 5)
505 
506 /*
507  * Intel color control surfaces (CCS) for Gen-12 render compression.
508  *
509  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
510  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
511  * main surface. In other words, 4 bits in CCS map to a main surface cache
512  * line pair. The main surface pitch is required to be a multiple of four
513  * Y-tile widths.
514  */
515 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
516 
517 /*
518  * Intel color control surfaces (CCS) for Gen-12 media compression
519  *
520  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
521  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
522  * main surface. In other words, 4 bits in CCS map to a main surface cache
523  * line pair. The main surface pitch is required to be a multiple of four
524  * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
525  * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
526  * planes 2 and 3 for the respective CCS.
527  */
528 #define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
529 
530 /*
531  * Intel Color Control Surface with Clear Color (CCS) for Gen-12 render
532  * compression.
533  *
534  * The main surface is Y-tiled and is at plane index 0 whereas CCS is linear
535  * and at index 1. The clear color is stored at index 2, and the pitch should
536  * be ignored. The clear color structure is 256 bits. The first 128 bits
537  * represents Raw Clear Color Red, Green, Blue and Alpha color each represented
538  * by 32 bits. The raw clear color is consumed by the 3d engine and generates
539  * the converted clear color of size 64 bits. The first 32 bits store the Lower
540  * Converted Clear Color value and the next 32 bits store the Higher Converted
541  * Clear Color value when applicable. The Converted Clear Color values are
542  * consumed by the DE. The last 64 bits are used to store Color Discard Enable
543  * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
544  * corresponds to an area of 4x1 tiles in the main surface. The main surface
545  * pitch is required to be a multiple of 4 tile widths.
546  */
547 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC fourcc_mod_code(INTEL, 8)
548 
549 /*
550  * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
551  *
552  * Macroblocks are laid in a Z-shape, and each pixel data is following the
553  * standard NV12 style.
554  * As for NV12, an image is the result of two frame buffers: one for Y,
555  * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
556  * Alignment requirements are (for each buffer):
557  * - multiple of 128 pixels for the width
558  * - multiple of  32 pixels for the height
559  *
560  * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
561  */
562 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE	fourcc_mod_code(SAMSUNG, 1)
563 
564 /*
565  * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
566  *
567  * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
568  * layout. For YCbCr formats Cb/Cr components are taken in such a way that
569  * they correspond to their 16x16 luma block.
570  */
571 #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE	fourcc_mod_code(SAMSUNG, 2)
572 
573 /*
574  * Qualcomm Compressed Format
575  *
576  * Refers to a compressed variant of the base format that is compressed.
577  * Implementation may be platform and base-format specific.
578  *
579  * Each macrotile consists of m x n (mostly 4 x 4) tiles.
580  * Pixel data pitch/stride is aligned with macrotile width.
581  * Pixel data height is aligned with macrotile height.
582  * Entire pixel data buffer is aligned with 4k(bytes).
583  */
584 #define DRM_FORMAT_MOD_QCOM_COMPRESSED	fourcc_mod_code(QCOM, 1)
585 
586 /* Vivante framebuffer modifiers */
587 
588 /*
589  * Vivante 4x4 tiling layout
590  *
591  * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
592  * layout.
593  */
594 #define DRM_FORMAT_MOD_VIVANTE_TILED		fourcc_mod_code(VIVANTE, 1)
595 
596 /*
597  * Vivante 64x64 super-tiling layout
598  *
599  * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
600  * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
601  * major layout.
602  *
603  * For more information: see
604  * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
605  */
606 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED	fourcc_mod_code(VIVANTE, 2)
607 
608 /*
609  * Vivante 4x4 tiling layout for dual-pipe
610  *
611  * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
612  * different base address. Offsets from the base addresses are therefore halved
613  * compared to the non-split tiled layout.
614  */
615 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED	fourcc_mod_code(VIVANTE, 3)
616 
617 /*
618  * Vivante 64x64 super-tiling layout for dual-pipe
619  *
620  * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
621  * starts at a different base address. Offsets from the base addresses are
622  * therefore halved compared to the non-split super-tiled layout.
623  */
624 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
625 
626 /* NVIDIA frame buffer modifiers */
627 
628 /*
629  * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
630  *
631  * Pixels are arranged in simple tiles of 16 x 16 bytes.
632  */
633 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
634 
635 /*
636  * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
637  * and Tegra GPUs starting with Tegra K1.
638  *
639  * Pixels are arranged in Groups of Bytes (GOBs).  GOB size and layout varies
640  * based on the architecture generation.  GOBs themselves are then arranged in
641  * 3D blocks, with the block dimensions (in terms of GOBs) always being a power
642  * of two, and hence expressible as their log2 equivalent (E.g., "2" represents
643  * a block depth or height of "4").
644  *
645  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
646  * in full detail.
647  *
648  *       Macro
649  * Bits  Param Description
650  * ----  ----- -----------------------------------------------------------------
651  *
652  *  3:0  h     log2(height) of each block, in GOBs.  Placed here for
653  *             compatibility with the existing
654  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
655  *
656  *  4:4  -     Must be 1, to indicate block-linear layout.  Necessary for
657  *             compatibility with the existing
658  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
659  *
660  *  8:5  -     Reserved (To support 3D-surfaces with variable log2(depth) block
661  *             size).  Must be zero.
662  *
663  *             Note there is no log2(width) parameter.  Some portions of the
664  *             hardware support a block width of two gobs, but it is impractical
665  *             to use due to lack of support elsewhere, and has no known
666  *             benefits.
667  *
668  * 11:9  -     Reserved (To support 2D-array textures with variable array stride
669  *             in blocks, specified via log2(tile width in blocks)).  Must be
670  *             zero.
671  *
672  * 19:12 k     Page Kind.  This value directly maps to a field in the page
673  *             tables of all GPUs >= NV50.  It affects the exact layout of bits
674  *             in memory and can be derived from the tuple
675  *
676  *               (format, GPU model, compression type, samples per pixel)
677  *
678  *             Where compression type is defined below.  If GPU model were
679  *             implied by the format modifier, format, or memory buffer, page
680  *             kind would not need to be included in the modifier itself, but
681  *             since the modifier should define the layout of the associated
682  *             memory buffer independent from any device or other context, it
683  *             must be included here.
684  *
685  * 21:20 g     GOB Height and Page Kind Generation.  The height of a GOB changed
686  *             starting with Fermi GPUs.  Additionally, the mapping between page
687  *             kind and bit layout has changed at various points.
688  *
689  *               0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
690  *               1 = Gob Height 4, G80 - GT2XX Page Kind mapping
691  *               2 = Gob Height 8, Turing+ Page Kind mapping
692  *               3 = Reserved for future use.
693  *
694  * 22:22 s     Sector layout.  On Tegra GPUs prior to Xavier, there is a further
695  *             bit remapping step that occurs at an even lower level than the
696  *             page kind and block linear swizzles.  This causes the layout of
697  *             surfaces mapped in those SOC's GPUs to be incompatible with the
698  *             equivalent mapping on other GPUs in the same system.
699  *
700  *               0 = Tegra K1 - Tegra Parker/TX2 Layout.
701  *               1 = Desktop GPU and Tegra Xavier+ Layout
702  *
703  * 25:23 c     Lossless Framebuffer Compression type.
704  *
705  *               0 = none
706  *               1 = ROP/3D, layout 1, exact compression format implied by Page
707  *                   Kind field
708  *               2 = ROP/3D, layout 2, exact compression format implied by Page
709  *                   Kind field
710  *               3 = CDE horizontal
711  *               4 = CDE vertical
712  *               5 = Reserved for future use
713  *               6 = Reserved for future use
714  *               7 = Reserved for future use
715  *
716  * 55:25 -     Reserved for future use.  Must be zero.
717  */
718 #define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
719 	fourcc_mod_code(NVIDIA, (0x10 | \
720 				 ((h) & 0xf) | \
721 				 (((k) & 0xff) << 12) | \
722 				 (((g) & 0x3) << 20) | \
723 				 (((s) & 0x1) << 22) | \
724 				 (((c) & 0x7) << 23)))
725 
726 /* To grandfather in prior block linear format modifiers to the above layout,
727  * the page kind "0", which corresponds to "pitch/linear" and hence is unusable
728  * with block-linear layouts, is remapped within drivers to the value 0xfe,
729  * which corresponds to the "generic" kind used for simple single-sample
730  * uncompressed color formats on Fermi - Volta GPUs.
731  */
732 static inline __u64
733 drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)
734 {
735 	if (!(modifier & 0x10) || (modifier & (0xff << 12)))
736 		return modifier;
737 	else
738 		return modifier | (0xfe << 12);
739 }
740 
741 /*
742  * 16Bx2 Block Linear layout, used by Tegra K1 and later
743  *
744  * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
745  * vertically by a power of 2 (1 to 32 GOBs) to form a block.
746  *
747  * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
748  *
749  * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
750  * Valid values are:
751  *
752  * 0 == ONE_GOB
753  * 1 == TWO_GOBS
754  * 2 == FOUR_GOBS
755  * 3 == EIGHT_GOBS
756  * 4 == SIXTEEN_GOBS
757  * 5 == THIRTYTWO_GOBS
758  *
759  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
760  * in full detail.
761  */
762 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
763 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
764 
765 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
766 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
767 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
768 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
769 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
770 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
771 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
772 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
773 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
774 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
775 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
776 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
777 
778 /*
779  * Some Broadcom modifiers take parameters, for example the number of
780  * vertical lines in the image. Reserve the lower 32 bits for modifier
781  * type, and the next 24 bits for parameters. Top 8 bits are the
782  * vendor code.
783  */
784 #define __fourcc_mod_broadcom_param_shift 8
785 #define __fourcc_mod_broadcom_param_bits 48
786 #define fourcc_mod_broadcom_code(val, params) \
787 	fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val))
788 #define fourcc_mod_broadcom_param(m) \
789 	((int)(((m) >> __fourcc_mod_broadcom_param_shift) &	\
790 	       ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
791 #define fourcc_mod_broadcom_mod(m) \
792 	((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) <<	\
793 		 __fourcc_mod_broadcom_param_shift))
794 
795 /*
796  * Broadcom VC4 "T" format
797  *
798  * This is the primary layout that the V3D GPU can texture from (it
799  * can't do linear).  The T format has:
800  *
801  * - 64b utiles of pixels in a raster-order grid according to cpp.  It's 4x4
802  *   pixels at 32 bit depth.
803  *
804  * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
805  *   16x16 pixels).
806  *
807  * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels).  On
808  *   even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
809  *   they're (TR, BR, BL, TL), where bottom left is start of memory.
810  *
811  * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
812  *   tiles) or right-to-left (odd rows of 4k tiles).
813  */
814 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
815 
816 /*
817  * Broadcom SAND format
818  *
819  * This is the native format that the H.264 codec block uses.  For VC4
820  * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
821  *
822  * The image can be considered to be split into columns, and the
823  * columns are placed consecutively into memory.  The width of those
824  * columns can be either 32, 64, 128, or 256 pixels, but in practice
825  * only 128 pixel columns are used.
826  *
827  * The pitch between the start of each column is set to optimally
828  * switch between SDRAM banks. This is passed as the number of lines
829  * of column width in the modifier (we can't use the stride value due
830  * to various core checks that look at it , so you should set the
831  * stride to width*cpp).
832  *
833  * Note that the column height for this format modifier is the same
834  * for all of the planes, assuming that each column contains both Y
835  * and UV.  Some SAND-using hardware stores UV in a separate tiled
836  * image from Y to reduce the column height, which is not supported
837  * with these modifiers.
838  */
839 
840 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
841 	fourcc_mod_broadcom_code(2, v)
842 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
843 	fourcc_mod_broadcom_code(3, v)
844 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
845 	fourcc_mod_broadcom_code(4, v)
846 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
847 	fourcc_mod_broadcom_code(5, v)
848 
849 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \
850 	DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
851 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \
852 	DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
853 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \
854 	DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
855 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \
856 	DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
857 
858 /* Broadcom UIF format
859  *
860  * This is the common format for the current Broadcom multimedia
861  * blocks, including V3D 3.x and newer, newer video codecs, and
862  * displays.
863  *
864  * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
865  * and macroblocks (4x4 UIF blocks).  Those 4x4 UIF block groups are
866  * stored in columns, with padding between the columns to ensure that
867  * moving from one column to the next doesn't hit the same SDRAM page
868  * bank.
869  *
870  * To calculate the padding, it is assumed that each hardware block
871  * and the software driving it knows the platform's SDRAM page size,
872  * number of banks, and XOR address, and that it's identical between
873  * all blocks using the format.  This tiling modifier will use XOR as
874  * necessary to reduce the padding.  If a hardware block can't do XOR,
875  * the assumption is that a no-XOR tiling modifier will be created.
876  */
877 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
878 
879 /*
880  * Arm Framebuffer Compression (AFBC) modifiers
881  *
882  * AFBC is a proprietary lossless image compression protocol and format.
883  * It provides fine-grained random access and minimizes the amount of data
884  * transferred between IP blocks.
885  *
886  * AFBC has several features which may be supported and/or used, which are
887  * represented using bits in the modifier. Not all combinations are valid,
888  * and different devices or use-cases may support different combinations.
889  *
890  * Further information on the use of AFBC modifiers can be found in
891  * Documentation/gpu/afbc.rst
892  */
893 
894 /*
895  * The top 4 bits (out of the 56 bits alloted for specifying vendor specific
896  * modifiers) denote the category for modifiers. Currently we have only two
897  * categories of modifiers ie AFBC and MISC. We can have a maximum of sixteen
898  * different categories.
899  */
900 #define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
901 	fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
902 
903 #define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
904 #define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
905 
906 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
907 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
908 
909 /*
910  * AFBC superblock size
911  *
912  * Indicates the superblock size(s) used for the AFBC buffer. The buffer
913  * size (in pixels) must be aligned to a multiple of the superblock size.
914  * Four lowest significant bits(LSBs) are reserved for block size.
915  *
916  * Where one superblock size is specified, it applies to all planes of the
917  * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
918  * the first applies to the Luma plane and the second applies to the Chroma
919  * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
920  * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
921  */
922 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK      0xf
923 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16     (1ULL)
924 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8      (2ULL)
925 #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4      (3ULL)
926 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
927 
928 /*
929  * AFBC lossless colorspace transform
930  *
931  * Indicates that the buffer makes use of the AFBC lossless colorspace
932  * transform.
933  */
934 #define AFBC_FORMAT_MOD_YTR     (1ULL <<  4)
935 
936 /*
937  * AFBC block-split
938  *
939  * Indicates that the payload of each superblock is split. The second
940  * half of the payload is positioned at a predefined offset from the start
941  * of the superblock payload.
942  */
943 #define AFBC_FORMAT_MOD_SPLIT   (1ULL <<  5)
944 
945 /*
946  * AFBC sparse layout
947  *
948  * This flag indicates that the payload of each superblock must be stored at a
949  * predefined position relative to the other superblocks in the same AFBC
950  * buffer. This order is the same order used by the header buffer. In this mode
951  * each superblock is given the same amount of space as an uncompressed
952  * superblock of the particular format would require, rounding up to the next
953  * multiple of 128 bytes in size.
954  */
955 #define AFBC_FORMAT_MOD_SPARSE  (1ULL <<  6)
956 
957 /*
958  * AFBC copy-block restrict
959  *
960  * Buffers with this flag must obey the copy-block restriction. The restriction
961  * is such that there are no copy-blocks referring across the border of 8x8
962  * blocks. For the subsampled data the 8x8 limitation is also subsampled.
963  */
964 #define AFBC_FORMAT_MOD_CBR     (1ULL <<  7)
965 
966 /*
967  * AFBC tiled layout
968  *
969  * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
970  * superblocks inside a tile are stored together in memory. 8x8 tiles are used
971  * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
972  * larger bpp formats. The order between the tiles is scan line.
973  * When the tiled layout is used, the buffer size (in pixels) must be aligned
974  * to the tile size.
975  */
976 #define AFBC_FORMAT_MOD_TILED   (1ULL <<  8)
977 
978 /*
979  * AFBC solid color blocks
980  *
981  * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
982  * can be reduced if a whole superblock is a single color.
983  */
984 #define AFBC_FORMAT_MOD_SC      (1ULL <<  9)
985 
986 /*
987  * AFBC double-buffer
988  *
989  * Indicates that the buffer is allocated in a layout safe for front-buffer
990  * rendering.
991  */
992 #define AFBC_FORMAT_MOD_DB      (1ULL << 10)
993 
994 /*
995  * AFBC buffer content hints
996  *
997  * Indicates that the buffer includes per-superblock content hints.
998  */
999 #define AFBC_FORMAT_MOD_BCH     (1ULL << 11)
1000 
1001 /* AFBC uncompressed storage mode
1002  *
1003  * Indicates that the buffer is using AFBC uncompressed storage mode.
1004  * In this mode all superblock payloads in the buffer use the uncompressed
1005  * storage mode, which is usually only used for data which cannot be compressed.
1006  * The buffer layout is the same as for AFBC buffers without USM set, this only
1007  * affects the storage mode of the individual superblocks. Note that even a
1008  * buffer without USM set may use uncompressed storage mode for some or all
1009  * superblocks, USM just guarantees it for all.
1010  */
1011 #define AFBC_FORMAT_MOD_USM	(1ULL << 12)
1012 
1013 /*
1014  * Arm 16x16 Block U-Interleaved modifier
1015  *
1016  * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
1017  * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
1018  * in the block are reordered.
1019  */
1020 #define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
1021 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
1022 
1023 /*
1024  * Allwinner tiled modifier
1025  *
1026  * This tiling mode is implemented by the VPU found on all Allwinner platforms,
1027  * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
1028  * planes.
1029  *
1030  * With this tiling, the luminance samples are disposed in tiles representing
1031  * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
1032  * The pixel order in each tile is linear and the tiles are disposed linearly,
1033  * both in row-major order.
1034  */
1035 #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
1036 
1037 /*
1038  * Amlogic Video Framebuffer Compression modifiers
1039  *
1040  * Amlogic uses a proprietary lossless image compression protocol and format
1041  * for their hardware video codec accelerators, either video decoders or
1042  * video input encoders.
1043  *
1044  * It considerably reduces memory bandwidth while writing and reading
1045  * frames in memory.
1046  *
1047  * The underlying storage is considered to be 3 components, 8bit or 10-bit
1048  * per component YCbCr 420, single plane :
1049  * - DRM_FORMAT_YUV420_8BIT
1050  * - DRM_FORMAT_YUV420_10BIT
1051  *
1052  * The first 8 bits of the mode defines the layout, then the following 8 bits
1053  * defines the options changing the layout.
1054  *
1055  * Not all combinations are valid, and different SoCs may support different
1056  * combinations of layout and options.
1057  */
1058 #define __fourcc_mod_amlogic_layout_mask 0xff
1059 #define __fourcc_mod_amlogic_options_shift 8
1060 #define __fourcc_mod_amlogic_options_mask 0xff
1061 
1062 #define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \
1063 	fourcc_mod_code(AMLOGIC, \
1064 			((__layout) & __fourcc_mod_amlogic_layout_mask) | \
1065 			(((__options) & __fourcc_mod_amlogic_options_mask) \
1066 			 << __fourcc_mod_amlogic_options_shift))
1067 
1068 /* Amlogic FBC Layouts */
1069 
1070 /*
1071  * Amlogic FBC Basic Layout
1072  *
1073  * The basic layout is composed of:
1074  * - a body content organized in 64x32 superblocks with 4096 bytes per
1075  *   superblock in default mode.
1076  * - a 32 bytes per 128x64 header block
1077  *
1078  * This layout is transferrable between Amlogic SoCs supporting this modifier.
1079  */
1080 #define AMLOGIC_FBC_LAYOUT_BASIC		(1ULL)
1081 
1082 /*
1083  * Amlogic FBC Scatter Memory layout
1084  *
1085  * Indicates the header contains IOMMU references to the compressed
1086  * frames content to optimize memory access and layout.
1087  *
1088  * In this mode, only the header memory address is needed, thus the
1089  * content memory organization is tied to the current producer
1090  * execution and cannot be saved/dumped neither transferrable between
1091  * Amlogic SoCs supporting this modifier.
1092  *
1093  * Due to the nature of the layout, these buffers are not expected to
1094  * be accessible by the user-space clients, but only accessible by the
1095  * hardware producers and consumers.
1096  *
1097  * The user-space clients should expect a failure while trying to mmap
1098  * the DMA-BUF handle returned by the producer.
1099  */
1100 #define AMLOGIC_FBC_LAYOUT_SCATTER		(2ULL)
1101 
1102 /* Amlogic FBC Layout Options Bit Mask */
1103 
1104 /*
1105  * Amlogic FBC Memory Saving mode
1106  *
1107  * Indicates the storage is packed when pixel size is multiple of word
1108  * boudaries, i.e. 8bit should be stored in this mode to save allocation
1109  * memory.
1110  *
1111  * This mode reduces body layout to 3072 bytes per 64x32 superblock with
1112  * the basic layout and 3200 bytes per 64x32 superblock combined with
1113  * the scatter layout.
1114  */
1115 #define AMLOGIC_FBC_OPTION_MEM_SAVING		(1ULL << 0)
1116 
1117 /*
1118  * AMD modifiers
1119  *
1120  * Memory layout:
1121  *
1122  * without DCC:
1123  *   - main surface
1124  *
1125  * with DCC & without DCC_RETILE:
1126  *   - main surface in plane 0
1127  *   - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set)
1128  *
1129  * with DCC & DCC_RETILE:
1130  *   - main surface in plane 0
1131  *   - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned)
1132  *   - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned)
1133  *
1134  * For multi-plane formats the above surfaces get merged into one plane for
1135  * each format plane, based on the required alignment only.
1136  *
1137  * Bits  Parameter                Notes
1138  * ----- ------------------------ ---------------------------------------------
1139  *
1140  *   7:0 TILE_VERSION             Values are AMD_FMT_MOD_TILE_VER_*
1141  *  12:8 TILE                     Values are AMD_FMT_MOD_TILE_<version>_*
1142  *    13 DCC
1143  *    14 DCC_RETILE
1144  *    15 DCC_PIPE_ALIGN
1145  *    16 DCC_INDEPENDENT_64B
1146  *    17 DCC_INDEPENDENT_128B
1147  * 19:18 DCC_MAX_COMPRESSED_BLOCK Values are AMD_FMT_MOD_DCC_BLOCK_*
1148  *    20 DCC_CONSTANT_ENCODE
1149  * 23:21 PIPE_XOR_BITS            Only for some chips
1150  * 26:24 BANK_XOR_BITS            Only for some chips
1151  * 29:27 PACKERS                  Only for some chips
1152  * 32:30 RB                       Only for some chips
1153  * 35:33 PIPE                     Only for some chips
1154  * 55:36 -                        Reserved for future use, must be zero
1155  */
1156 #define AMD_FMT_MOD fourcc_mod_code(AMD, 0)
1157 
1158 #define IS_AMD_FMT_MOD(val) (((val) >> 56) == DRM_FORMAT_MOD_VENDOR_AMD)
1159 
1160 /* Reserve 0 for GFX8 and older */
1161 #define AMD_FMT_MOD_TILE_VER_GFX9 1
1162 #define AMD_FMT_MOD_TILE_VER_GFX10 2
1163 #define AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS 3
1164 
1165 /*
1166  * 64K_S is the same for GFX9/GFX10/GFX10_RBPLUS and hence has GFX9 as canonical
1167  * version.
1168  */
1169 #define AMD_FMT_MOD_TILE_GFX9_64K_S 9
1170 
1171 /*
1172  * 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has
1173  * GFX9 as canonical version.
1174  */
1175 #define AMD_FMT_MOD_TILE_GFX9_64K_D 10
1176 #define AMD_FMT_MOD_TILE_GFX9_64K_S_X 25
1177 #define AMD_FMT_MOD_TILE_GFX9_64K_D_X 26
1178 #define AMD_FMT_MOD_TILE_GFX9_64K_R_X 27
1179 
1180 #define AMD_FMT_MOD_DCC_BLOCK_64B 0
1181 #define AMD_FMT_MOD_DCC_BLOCK_128B 1
1182 #define AMD_FMT_MOD_DCC_BLOCK_256B 2
1183 
1184 #define AMD_FMT_MOD_TILE_VERSION_SHIFT 0
1185 #define AMD_FMT_MOD_TILE_VERSION_MASK 0xFF
1186 #define AMD_FMT_MOD_TILE_SHIFT 8
1187 #define AMD_FMT_MOD_TILE_MASK 0x1F
1188 
1189 /* Whether DCC compression is enabled. */
1190 #define AMD_FMT_MOD_DCC_SHIFT 13
1191 #define AMD_FMT_MOD_DCC_MASK 0x1
1192 
1193 /*
1194  * Whether to include two DCC surfaces, one which is rb & pipe aligned, and
1195  * one which is not-aligned.
1196  */
1197 #define AMD_FMT_MOD_DCC_RETILE_SHIFT 14
1198 #define AMD_FMT_MOD_DCC_RETILE_MASK 0x1
1199 
1200 /* Only set if DCC_RETILE = false */
1201 #define AMD_FMT_MOD_DCC_PIPE_ALIGN_SHIFT 15
1202 #define AMD_FMT_MOD_DCC_PIPE_ALIGN_MASK 0x1
1203 
1204 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_SHIFT 16
1205 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_MASK 0x1
1206 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_SHIFT 17
1207 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_MASK 0x1
1208 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_SHIFT 18
1209 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_MASK 0x3
1210 
1211 /*
1212  * DCC supports embedding some clear colors directly in the DCC surface.
1213  * However, on older GPUs the rendering HW ignores the embedded clear color
1214  * and prefers the driver provided color. This necessitates doing a fastclear
1215  * eliminate operation before a process transfers control.
1216  *
1217  * If this bit is set that means the fastclear eliminate is not needed for these
1218  * embeddable colors.
1219  */
1220 #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_SHIFT 20
1221 #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_MASK 0x1
1222 
1223 /*
1224  * The below fields are for accounting for per GPU differences. These are only
1225  * relevant for GFX9 and later and if the tile field is *_X/_T.
1226  *
1227  * PIPE_XOR_BITS = always needed
1228  * BANK_XOR_BITS = only for TILE_VER_GFX9
1229  * PACKERS = only for TILE_VER_GFX10_RBPLUS
1230  * RB = only for TILE_VER_GFX9 & DCC
1231  * PIPE = only for TILE_VER_GFX9 & DCC & (DCC_RETILE | DCC_PIPE_ALIGN)
1232  */
1233 #define AMD_FMT_MOD_PIPE_XOR_BITS_SHIFT 21
1234 #define AMD_FMT_MOD_PIPE_XOR_BITS_MASK 0x7
1235 #define AMD_FMT_MOD_BANK_XOR_BITS_SHIFT 24
1236 #define AMD_FMT_MOD_BANK_XOR_BITS_MASK 0x7
1237 #define AMD_FMT_MOD_PACKERS_SHIFT 27
1238 #define AMD_FMT_MOD_PACKERS_MASK 0x7
1239 #define AMD_FMT_MOD_RB_SHIFT 30
1240 #define AMD_FMT_MOD_RB_MASK 0x7
1241 #define AMD_FMT_MOD_PIPE_SHIFT 33
1242 #define AMD_FMT_MOD_PIPE_MASK 0x7
1243 
1244 #define AMD_FMT_MOD_SET(field, value) \
1245 	((uint64_t)(value) << AMD_FMT_MOD_##field##_SHIFT)
1246 #define AMD_FMT_MOD_GET(field, value) \
1247 	(((value) >> AMD_FMT_MOD_##field##_SHIFT) & AMD_FMT_MOD_##field##_MASK)
1248 #define AMD_FMT_MOD_CLEAR(field) \
1249 	(~((uint64_t)AMD_FMT_MOD_##field##_MASK << AMD_FMT_MOD_##field##_SHIFT))
1250 
1251 #if defined(__cplusplus)
1252 }
1253 #endif
1254 
1255 #endif /* DRM_FOURCC_H */
1256