xref: /openbmc/linux/include/uapi/drm/drm_fourcc.h (revision 501f94d0)
1 /*
2  * Copyright 2011 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #ifndef DRM_FOURCC_H
25 #define DRM_FOURCC_H
26 
27 #include "drm.h"
28 
29 #if defined(__cplusplus)
30 extern "C" {
31 #endif
32 
33 /**
34  * DOC: overview
35  *
36  * In the DRM subsystem, framebuffer pixel formats are described using the
37  * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
38  * fourcc code, a Format Modifier may optionally be provided, in order to
39  * further describe the buffer's format - for example tiling or compression.
40  *
41  * Format Modifiers
42  * ----------------
43  *
44  * Format modifiers are used in conjunction with a fourcc code, forming a
45  * unique fourcc:modifier pair. This format:modifier pair must fully define the
46  * format and data layout of the buffer, and should be the only way to describe
47  * that particular buffer.
48  *
49  * Having multiple fourcc:modifier pairs which describe the same layout should
50  * be avoided, as such aliases run the risk of different drivers exposing
51  * different names for the same data format, forcing userspace to understand
52  * that they are aliases.
53  *
54  * Format modifiers may change any property of the buffer, including the number
55  * of planes and/or the required allocation size. Format modifiers are
56  * vendor-namespaced, and as such the relationship between a fourcc code and a
57  * modifier is specific to the modifer being used. For example, some modifiers
58  * may preserve meaning - such as number of planes - from the fourcc code,
59  * whereas others may not.
60  *
61  * Modifiers must uniquely encode buffer layout. In other words, a buffer must
62  * match only a single modifier. A modifier must not be a subset of layouts of
63  * another modifier. For instance, it's incorrect to encode pitch alignment in
64  * a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel
65  * aligned modifier. That said, modifiers can have implicit minimal
66  * requirements.
67  *
68  * For modifiers where the combination of fourcc code and modifier can alias,
69  * a canonical pair needs to be defined and used by all drivers. Preferred
70  * combinations are also encouraged where all combinations might lead to
71  * confusion and unnecessarily reduced interoperability. An example for the
72  * latter is AFBC, where the ABGR layouts are preferred over ARGB layouts.
73  *
74  * There are two kinds of modifier users:
75  *
76  * - Kernel and user-space drivers: for drivers it's important that modifiers
77  *   don't alias, otherwise two drivers might support the same format but use
78  *   different aliases, preventing them from sharing buffers in an efficient
79  *   format.
80  * - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users
81  *   see modifiers as opaque tokens they can check for equality and intersect.
82  *   These users musn't need to know to reason about the modifier value
83  *   (i.e. they are not expected to extract information out of the modifier).
84  *
85  * Vendors should document their modifier usage in as much detail as
86  * possible, to ensure maximum compatibility across devices, drivers and
87  * applications.
88  *
89  * The authoritative list of format modifier codes is found in
90  * `include/uapi/drm/drm_fourcc.h`
91  */
92 
93 #define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \
94 				 ((__u32)(c) << 16) | ((__u32)(d) << 24))
95 
96 #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
97 
98 /* Reserve 0 for the invalid format specifier */
99 #define DRM_FORMAT_INVALID	0
100 
101 /* color index */
102 #define DRM_FORMAT_C8		fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
103 
104 /* 8 bpp Red */
105 #define DRM_FORMAT_R8		fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
106 
107 /* 10 bpp Red */
108 #define DRM_FORMAT_R10		fourcc_code('R', '1', '0', ' ') /* [15:0] x:R 6:10 little endian */
109 
110 /* 12 bpp Red */
111 #define DRM_FORMAT_R12		fourcc_code('R', '1', '2', ' ') /* [15:0] x:R 4:12 little endian */
112 
113 /* 16 bpp Red */
114 #define DRM_FORMAT_R16		fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
115 
116 /* 16 bpp RG */
117 #define DRM_FORMAT_RG88		fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
118 #define DRM_FORMAT_GR88		fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
119 
120 /* 32 bpp RG */
121 #define DRM_FORMAT_RG1616	fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
122 #define DRM_FORMAT_GR1616	fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
123 
124 /* 8 bpp RGB */
125 #define DRM_FORMAT_RGB332	fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
126 #define DRM_FORMAT_BGR233	fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
127 
128 /* 16 bpp RGB */
129 #define DRM_FORMAT_XRGB4444	fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
130 #define DRM_FORMAT_XBGR4444	fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
131 #define DRM_FORMAT_RGBX4444	fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
132 #define DRM_FORMAT_BGRX4444	fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
133 
134 #define DRM_FORMAT_ARGB4444	fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
135 #define DRM_FORMAT_ABGR4444	fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
136 #define DRM_FORMAT_RGBA4444	fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
137 #define DRM_FORMAT_BGRA4444	fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
138 
139 #define DRM_FORMAT_XRGB1555	fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
140 #define DRM_FORMAT_XBGR1555	fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
141 #define DRM_FORMAT_RGBX5551	fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
142 #define DRM_FORMAT_BGRX5551	fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
143 
144 #define DRM_FORMAT_ARGB1555	fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
145 #define DRM_FORMAT_ABGR1555	fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
146 #define DRM_FORMAT_RGBA5551	fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
147 #define DRM_FORMAT_BGRA5551	fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
148 
149 #define DRM_FORMAT_RGB565	fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
150 #define DRM_FORMAT_BGR565	fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
151 
152 /* 24 bpp RGB */
153 #define DRM_FORMAT_RGB888	fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
154 #define DRM_FORMAT_BGR888	fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
155 
156 /* 32 bpp RGB */
157 #define DRM_FORMAT_XRGB8888	fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
158 #define DRM_FORMAT_XBGR8888	fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
159 #define DRM_FORMAT_RGBX8888	fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
160 #define DRM_FORMAT_BGRX8888	fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
161 
162 #define DRM_FORMAT_ARGB8888	fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
163 #define DRM_FORMAT_ABGR8888	fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
164 #define DRM_FORMAT_RGBA8888	fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
165 #define DRM_FORMAT_BGRA8888	fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
166 
167 #define DRM_FORMAT_XRGB2101010	fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
168 #define DRM_FORMAT_XBGR2101010	fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
169 #define DRM_FORMAT_RGBX1010102	fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
170 #define DRM_FORMAT_BGRX1010102	fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
171 
172 #define DRM_FORMAT_ARGB2101010	fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
173 #define DRM_FORMAT_ABGR2101010	fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
174 #define DRM_FORMAT_RGBA1010102	fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
175 #define DRM_FORMAT_BGRA1010102	fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
176 
177 /* 64 bpp RGB */
178 #define DRM_FORMAT_XRGB16161616	fourcc_code('X', 'R', '4', '8') /* [63:0] x:R:G:B 16:16:16:16 little endian */
179 #define DRM_FORMAT_XBGR16161616	fourcc_code('X', 'B', '4', '8') /* [63:0] x:B:G:R 16:16:16:16 little endian */
180 
181 #define DRM_FORMAT_ARGB16161616	fourcc_code('A', 'R', '4', '8') /* [63:0] A:R:G:B 16:16:16:16 little endian */
182 #define DRM_FORMAT_ABGR16161616	fourcc_code('A', 'B', '4', '8') /* [63:0] A:B:G:R 16:16:16:16 little endian */
183 
184 /*
185  * Floating point 64bpp RGB
186  * IEEE 754-2008 binary16 half-precision float
187  * [15:0] sign:exponent:mantissa 1:5:10
188  */
189 #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
190 #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
191 
192 #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
193 #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
194 
195 /*
196  * RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits
197  * of unused padding per component:
198  */
199 #define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */
200 
201 /* packed YCbCr */
202 #define DRM_FORMAT_YUYV		fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
203 #define DRM_FORMAT_YVYU		fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
204 #define DRM_FORMAT_UYVY		fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
205 #define DRM_FORMAT_VYUY		fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
206 
207 #define DRM_FORMAT_AYUV		fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
208 #define DRM_FORMAT_XYUV8888	fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
209 #define DRM_FORMAT_VUY888	fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
210 #define DRM_FORMAT_VUY101010	fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
211 
212 /*
213  * packed Y2xx indicate for each component, xx valid data occupy msb
214  * 16-xx padding occupy lsb
215  */
216 #define DRM_FORMAT_Y210         fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
217 #define DRM_FORMAT_Y212         fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
218 #define DRM_FORMAT_Y216         fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
219 
220 /*
221  * packed Y4xx indicate for each component, xx valid data occupy msb
222  * 16-xx padding occupy lsb except Y410
223  */
224 #define DRM_FORMAT_Y410         fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
225 #define DRM_FORMAT_Y412         fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
226 #define DRM_FORMAT_Y416         fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
227 
228 #define DRM_FORMAT_XVYU2101010	fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
229 #define DRM_FORMAT_XVYU12_16161616	fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
230 #define DRM_FORMAT_XVYU16161616	fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
231 
232 /*
233  * packed YCbCr420 2x2 tiled formats
234  * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
235  */
236 /* [63:0]   A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
237 #define DRM_FORMAT_Y0L0		fourcc_code('Y', '0', 'L', '0')
238 /* [63:0]   X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
239 #define DRM_FORMAT_X0L0		fourcc_code('X', '0', 'L', '0')
240 
241 /* [63:0]   A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
242 #define DRM_FORMAT_Y0L2		fourcc_code('Y', '0', 'L', '2')
243 /* [63:0]   X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
244 #define DRM_FORMAT_X0L2		fourcc_code('X', '0', 'L', '2')
245 
246 /*
247  * 1-plane YUV 4:2:0
248  * In these formats, the component ordering is specified (Y, followed by U
249  * then V), but the exact Linear layout is undefined.
250  * These formats can only be used with a non-Linear modifier.
251  */
252 #define DRM_FORMAT_YUV420_8BIT	fourcc_code('Y', 'U', '0', '8')
253 #define DRM_FORMAT_YUV420_10BIT	fourcc_code('Y', 'U', '1', '0')
254 
255 /*
256  * 2 plane RGB + A
257  * index 0 = RGB plane, same format as the corresponding non _A8 format has
258  * index 1 = A plane, [7:0] A
259  */
260 #define DRM_FORMAT_XRGB8888_A8	fourcc_code('X', 'R', 'A', '8')
261 #define DRM_FORMAT_XBGR8888_A8	fourcc_code('X', 'B', 'A', '8')
262 #define DRM_FORMAT_RGBX8888_A8	fourcc_code('R', 'X', 'A', '8')
263 #define DRM_FORMAT_BGRX8888_A8	fourcc_code('B', 'X', 'A', '8')
264 #define DRM_FORMAT_RGB888_A8	fourcc_code('R', '8', 'A', '8')
265 #define DRM_FORMAT_BGR888_A8	fourcc_code('B', '8', 'A', '8')
266 #define DRM_FORMAT_RGB565_A8	fourcc_code('R', '5', 'A', '8')
267 #define DRM_FORMAT_BGR565_A8	fourcc_code('B', '5', 'A', '8')
268 
269 /*
270  * 2 plane YCbCr
271  * index 0 = Y plane, [7:0] Y
272  * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
273  * or
274  * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
275  */
276 #define DRM_FORMAT_NV12		fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
277 #define DRM_FORMAT_NV21		fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
278 #define DRM_FORMAT_NV16		fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
279 #define DRM_FORMAT_NV61		fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
280 #define DRM_FORMAT_NV24		fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
281 #define DRM_FORMAT_NV42		fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
282 /*
283  * 2 plane YCbCr
284  * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian
285  * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
286  */
287 #define DRM_FORMAT_NV15		fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
288 
289 /*
290  * 2 plane YCbCr MSB aligned
291  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
292  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
293  */
294 #define DRM_FORMAT_P210		fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
295 
296 /*
297  * 2 plane YCbCr MSB aligned
298  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
299  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
300  */
301 #define DRM_FORMAT_P010		fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
302 
303 /*
304  * 2 plane YCbCr MSB aligned
305  * index 0 = Y plane, [15:0] Y:x [12:4] little endian
306  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
307  */
308 #define DRM_FORMAT_P012		fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
309 
310 /*
311  * 2 plane YCbCr MSB aligned
312  * index 0 = Y plane, [15:0] Y little endian
313  * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
314  */
315 #define DRM_FORMAT_P016		fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
316 
317 /* 2 plane YCbCr420.
318  * 3 10 bit components and 2 padding bits packed into 4 bytes.
319  * index 0 = Y plane, [31:0] x:Y2:Y1:Y0 2:10:10:10 little endian
320  * index 1 = Cr:Cb plane, [63:0] x:Cr2:Cb2:Cr1:x:Cb1:Cr0:Cb0 [2:10:10:10:2:10:10:10] little endian
321  */
322 #define DRM_FORMAT_P030		fourcc_code('P', '0', '3', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel packed */
323 
324 /* 3 plane non-subsampled (444) YCbCr
325  * 16 bits per component, but only 10 bits are used and 6 bits are padded
326  * index 0: Y plane, [15:0] Y:x [10:6] little endian
327  * index 1: Cb plane, [15:0] Cb:x [10:6] little endian
328  * index 2: Cr plane, [15:0] Cr:x [10:6] little endian
329  */
330 #define DRM_FORMAT_Q410		fourcc_code('Q', '4', '1', '0')
331 
332 /* 3 plane non-subsampled (444) YCrCb
333  * 16 bits per component, but only 10 bits are used and 6 bits are padded
334  * index 0: Y plane, [15:0] Y:x [10:6] little endian
335  * index 1: Cr plane, [15:0] Cr:x [10:6] little endian
336  * index 2: Cb plane, [15:0] Cb:x [10:6] little endian
337  */
338 #define DRM_FORMAT_Q401		fourcc_code('Q', '4', '0', '1')
339 
340 /*
341  * 3 plane YCbCr
342  * index 0: Y plane, [7:0] Y
343  * index 1: Cb plane, [7:0] Cb
344  * index 2: Cr plane, [7:0] Cr
345  * or
346  * index 1: Cr plane, [7:0] Cr
347  * index 2: Cb plane, [7:0] Cb
348  */
349 #define DRM_FORMAT_YUV410	fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
350 #define DRM_FORMAT_YVU410	fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
351 #define DRM_FORMAT_YUV411	fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
352 #define DRM_FORMAT_YVU411	fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
353 #define DRM_FORMAT_YUV420	fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
354 #define DRM_FORMAT_YVU420	fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
355 #define DRM_FORMAT_YUV422	fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
356 #define DRM_FORMAT_YVU422	fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
357 #define DRM_FORMAT_YUV444	fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
358 #define DRM_FORMAT_YVU444	fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
359 
360 
361 /*
362  * Format Modifiers:
363  *
364  * Format modifiers describe, typically, a re-ordering or modification
365  * of the data in a plane of an FB.  This can be used to express tiled/
366  * swizzled formats, or compression, or a combination of the two.
367  *
368  * The upper 8 bits of the format modifier are a vendor-id as assigned
369  * below.  The lower 56 bits are assigned as vendor sees fit.
370  */
371 
372 /* Vendor Ids: */
373 #define DRM_FORMAT_MOD_VENDOR_NONE    0
374 #define DRM_FORMAT_MOD_VENDOR_INTEL   0x01
375 #define DRM_FORMAT_MOD_VENDOR_AMD     0x02
376 #define DRM_FORMAT_MOD_VENDOR_NVIDIA  0x03
377 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
378 #define DRM_FORMAT_MOD_VENDOR_QCOM    0x05
379 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
380 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
381 #define DRM_FORMAT_MOD_VENDOR_ARM     0x08
382 #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
383 #define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a
384 
385 /* add more to the end as needed */
386 
387 #define DRM_FORMAT_RESERVED	      ((1ULL << 56) - 1)
388 
389 #define fourcc_mod_get_vendor(modifier) \
390 	(((modifier) >> 56) & 0xff)
391 
392 #define fourcc_mod_is_vendor(modifier, vendor) \
393 	(fourcc_mod_get_vendor(modifier) == DRM_FORMAT_MOD_VENDOR_## vendor)
394 
395 #define fourcc_mod_code(vendor, val) \
396 	((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
397 
398 /*
399  * Format Modifier tokens:
400  *
401  * When adding a new token please document the layout with a code comment,
402  * similar to the fourcc codes above. drm_fourcc.h is considered the
403  * authoritative source for all of these.
404  *
405  * Generic modifier names:
406  *
407  * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
408  * for layouts which are common across multiple vendors. To preserve
409  * compatibility, in cases where a vendor-specific definition already exists and
410  * a generic name for it is desired, the common name is a purely symbolic alias
411  * and must use the same numerical value as the original definition.
412  *
413  * Note that generic names should only be used for modifiers which describe
414  * generic layouts (such as pixel re-ordering), which may have
415  * independently-developed support across multiple vendors.
416  *
417  * In future cases where a generic layout is identified before merging with a
418  * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
419  * 'NONE' could be considered. This should only be for obvious, exceptional
420  * cases to avoid polluting the 'GENERIC' namespace with modifiers which only
421  * apply to a single vendor.
422  *
423  * Generic names should not be used for cases where multiple hardware vendors
424  * have implementations of the same standardised compression scheme (such as
425  * AFBC). In those cases, all implementations should use the same format
426  * modifier(s), reflecting the vendor of the standard.
427  */
428 
429 #define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE
430 
431 /*
432  * Invalid Modifier
433  *
434  * This modifier can be used as a sentinel to terminate the format modifiers
435  * list, or to initialize a variable with an invalid modifier. It might also be
436  * used to report an error back to userspace for certain APIs.
437  */
438 #define DRM_FORMAT_MOD_INVALID	fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
439 
440 /*
441  * Linear Layout
442  *
443  * Just plain linear layout. Note that this is different from no specifying any
444  * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
445  * which tells the driver to also take driver-internal information into account
446  * and so might actually result in a tiled framebuffer.
447  */
448 #define DRM_FORMAT_MOD_LINEAR	fourcc_mod_code(NONE, 0)
449 
450 /*
451  * Deprecated: use DRM_FORMAT_MOD_LINEAR instead
452  *
453  * The "none" format modifier doesn't actually mean that the modifier is
454  * implicit, instead it means that the layout is linear. Whether modifiers are
455  * used is out-of-band information carried in an API-specific way (e.g. in a
456  * flag for drm_mode_fb_cmd2).
457  */
458 #define DRM_FORMAT_MOD_NONE	0
459 
460 /* Intel framebuffer modifiers */
461 
462 /*
463  * Intel X-tiling layout
464  *
465  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
466  * in row-major layout. Within the tile bytes are laid out row-major, with
467  * a platform-dependent stride. On top of that the memory can apply
468  * platform-depending swizzling of some higher address bits into bit6.
469  *
470  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
471  * On earlier platforms the is highly platforms specific and not useful for
472  * cross-driver sharing. It exists since on a given platform it does uniquely
473  * identify the layout in a simple way for i915-specific userspace, which
474  * facilitated conversion of userspace to modifiers. Additionally the exact
475  * format on some really old platforms is not known.
476  */
477 #define I915_FORMAT_MOD_X_TILED	fourcc_mod_code(INTEL, 1)
478 
479 /*
480  * Intel Y-tiling layout
481  *
482  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
483  * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
484  * chunks column-major, with a platform-dependent height. On top of that the
485  * memory can apply platform-depending swizzling of some higher address bits
486  * into bit6.
487  *
488  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
489  * On earlier platforms the is highly platforms specific and not useful for
490  * cross-driver sharing. It exists since on a given platform it does uniquely
491  * identify the layout in a simple way for i915-specific userspace, which
492  * facilitated conversion of userspace to modifiers. Additionally the exact
493  * format on some really old platforms is not known.
494  */
495 #define I915_FORMAT_MOD_Y_TILED	fourcc_mod_code(INTEL, 2)
496 
497 /*
498  * Intel Yf-tiling layout
499  *
500  * This is a tiled layout using 4Kb tiles in row-major layout.
501  * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
502  * are arranged in four groups (two wide, two high) with column-major layout.
503  * Each group therefore consits out of four 256 byte units, which are also laid
504  * out as 2x2 column-major.
505  * 256 byte units are made out of four 64 byte blocks of pixels, producing
506  * either a square block or a 2:1 unit.
507  * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
508  * in pixel depends on the pixel depth.
509  */
510 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
511 
512 /*
513  * Intel color control surface (CCS) for render compression
514  *
515  * The framebuffer format must be one of the 8:8:8:8 RGB formats.
516  * The main surface will be plane index 0 and must be Y/Yf-tiled,
517  * the CCS will be plane index 1.
518  *
519  * Each CCS tile matches a 1024x512 pixel area of the main surface.
520  * To match certain aspects of the 3D hardware the CCS is
521  * considered to be made up of normal 128Bx32 Y tiles, Thus
522  * the CCS pitch must be specified in multiples of 128 bytes.
523  *
524  * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
525  * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
526  * But that fact is not relevant unless the memory is accessed
527  * directly.
528  */
529 #define I915_FORMAT_MOD_Y_TILED_CCS	fourcc_mod_code(INTEL, 4)
530 #define I915_FORMAT_MOD_Yf_TILED_CCS	fourcc_mod_code(INTEL, 5)
531 
532 /*
533  * Intel color control surfaces (CCS) for Gen-12 render compression.
534  *
535  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
536  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
537  * main surface. In other words, 4 bits in CCS map to a main surface cache
538  * line pair. The main surface pitch is required to be a multiple of four
539  * Y-tile widths.
540  */
541 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
542 
543 /*
544  * Intel color control surfaces (CCS) for Gen-12 media compression
545  *
546  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
547  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
548  * main surface. In other words, 4 bits in CCS map to a main surface cache
549  * line pair. The main surface pitch is required to be a multiple of four
550  * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
551  * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
552  * planes 2 and 3 for the respective CCS.
553  */
554 #define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
555 
556 /*
557  * Intel Color Control Surface with Clear Color (CCS) for Gen-12 render
558  * compression.
559  *
560  * The main surface is Y-tiled and is at plane index 0 whereas CCS is linear
561  * and at index 1. The clear color is stored at index 2, and the pitch should
562  * be ignored. The clear color structure is 256 bits. The first 128 bits
563  * represents Raw Clear Color Red, Green, Blue and Alpha color each represented
564  * by 32 bits. The raw clear color is consumed by the 3d engine and generates
565  * the converted clear color of size 64 bits. The first 32 bits store the Lower
566  * Converted Clear Color value and the next 32 bits store the Higher Converted
567  * Clear Color value when applicable. The Converted Clear Color values are
568  * consumed by the DE. The last 64 bits are used to store Color Discard Enable
569  * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
570  * corresponds to an area of 4x1 tiles in the main surface. The main surface
571  * pitch is required to be a multiple of 4 tile widths.
572  */
573 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC fourcc_mod_code(INTEL, 8)
574 
575 /*
576  * Intel Tile 4 layout
577  *
578  * This is a tiled layout using 4KB tiles in a row-major layout. It has the same
579  * shape as Tile Y at two granularities: 4KB (128B x 32) and 64B (16B x 4). It
580  * only differs from Tile Y at the 256B granularity in between. At this
581  * granularity, Tile Y has a shape of 16B x 32 rows, but this tiling has a shape
582  * of 64B x 8 rows.
583  */
584 #define I915_FORMAT_MOD_4_TILED         fourcc_mod_code(INTEL, 9)
585 
586 /*
587  * Intel color control surfaces (CCS) for DG2 render compression.
588  *
589  * The main surface is Tile 4 and at plane index 0. The CCS data is stored
590  * outside of the GEM object in a reserved memory area dedicated for the
591  * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
592  * main surface pitch is required to be a multiple of four Tile 4 widths.
593  */
594 #define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS fourcc_mod_code(INTEL, 10)
595 
596 /*
597  * Intel color control surfaces (CCS) for DG2 media compression.
598  *
599  * The main surface is Tile 4 and at plane index 0. For semi-planar formats
600  * like NV12, the Y and UV planes are Tile 4 and are located at plane indices
601  * 0 and 1, respectively. The CCS for all planes are stored outside of the
602  * GEM object in a reserved memory area dedicated for the storage of the
603  * CCS data for all RC/RC_CC/MC compressible GEM objects. The main surface
604  * pitch is required to be a multiple of four Tile 4 widths.
605  */
606 #define I915_FORMAT_MOD_4_TILED_DG2_MC_CCS fourcc_mod_code(INTEL, 11)
607 
608 /*
609  * Intel Color Control Surface with Clear Color (CCS) for DG2 render compression.
610  *
611  * The main surface is Tile 4 and at plane index 0. The CCS data is stored
612  * outside of the GEM object in a reserved memory area dedicated for the
613  * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
614  * main surface pitch is required to be a multiple of four Tile 4 widths. The
615  * clear color is stored at plane index 1 and the pitch should be ignored. The
616  * format of the 256 bits of clear color data matches the one used for the
617  * I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC modifier, see its description
618  * for details.
619  */
620 #define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS_CC fourcc_mod_code(INTEL, 12)
621 
622 /*
623  * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
624  *
625  * Macroblocks are laid in a Z-shape, and each pixel data is following the
626  * standard NV12 style.
627  * As for NV12, an image is the result of two frame buffers: one for Y,
628  * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
629  * Alignment requirements are (for each buffer):
630  * - multiple of 128 pixels for the width
631  * - multiple of  32 pixels for the height
632  *
633  * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
634  */
635 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE	fourcc_mod_code(SAMSUNG, 1)
636 
637 /*
638  * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
639  *
640  * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
641  * layout. For YCbCr formats Cb/Cr components are taken in such a way that
642  * they correspond to their 16x16 luma block.
643  */
644 #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE	fourcc_mod_code(SAMSUNG, 2)
645 
646 /*
647  * Qualcomm Compressed Format
648  *
649  * Refers to a compressed variant of the base format that is compressed.
650  * Implementation may be platform and base-format specific.
651  *
652  * Each macrotile consists of m x n (mostly 4 x 4) tiles.
653  * Pixel data pitch/stride is aligned with macrotile width.
654  * Pixel data height is aligned with macrotile height.
655  * Entire pixel data buffer is aligned with 4k(bytes).
656  */
657 #define DRM_FORMAT_MOD_QCOM_COMPRESSED	fourcc_mod_code(QCOM, 1)
658 
659 /* Vivante framebuffer modifiers */
660 
661 /*
662  * Vivante 4x4 tiling layout
663  *
664  * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
665  * layout.
666  */
667 #define DRM_FORMAT_MOD_VIVANTE_TILED		fourcc_mod_code(VIVANTE, 1)
668 
669 /*
670  * Vivante 64x64 super-tiling layout
671  *
672  * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
673  * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
674  * major layout.
675  *
676  * For more information: see
677  * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
678  */
679 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED	fourcc_mod_code(VIVANTE, 2)
680 
681 /*
682  * Vivante 4x4 tiling layout for dual-pipe
683  *
684  * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
685  * different base address. Offsets from the base addresses are therefore halved
686  * compared to the non-split tiled layout.
687  */
688 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED	fourcc_mod_code(VIVANTE, 3)
689 
690 /*
691  * Vivante 64x64 super-tiling layout for dual-pipe
692  *
693  * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
694  * starts at a different base address. Offsets from the base addresses are
695  * therefore halved compared to the non-split super-tiled layout.
696  */
697 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
698 
699 /* NVIDIA frame buffer modifiers */
700 
701 /*
702  * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
703  *
704  * Pixels are arranged in simple tiles of 16 x 16 bytes.
705  */
706 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
707 
708 /*
709  * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
710  * and Tegra GPUs starting with Tegra K1.
711  *
712  * Pixels are arranged in Groups of Bytes (GOBs).  GOB size and layout varies
713  * based on the architecture generation.  GOBs themselves are then arranged in
714  * 3D blocks, with the block dimensions (in terms of GOBs) always being a power
715  * of two, and hence expressible as their log2 equivalent (E.g., "2" represents
716  * a block depth or height of "4").
717  *
718  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
719  * in full detail.
720  *
721  *       Macro
722  * Bits  Param Description
723  * ----  ----- -----------------------------------------------------------------
724  *
725  *  3:0  h     log2(height) of each block, in GOBs.  Placed here for
726  *             compatibility with the existing
727  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
728  *
729  *  4:4  -     Must be 1, to indicate block-linear layout.  Necessary for
730  *             compatibility with the existing
731  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
732  *
733  *  8:5  -     Reserved (To support 3D-surfaces with variable log2(depth) block
734  *             size).  Must be zero.
735  *
736  *             Note there is no log2(width) parameter.  Some portions of the
737  *             hardware support a block width of two gobs, but it is impractical
738  *             to use due to lack of support elsewhere, and has no known
739  *             benefits.
740  *
741  * 11:9  -     Reserved (To support 2D-array textures with variable array stride
742  *             in blocks, specified via log2(tile width in blocks)).  Must be
743  *             zero.
744  *
745  * 19:12 k     Page Kind.  This value directly maps to a field in the page
746  *             tables of all GPUs >= NV50.  It affects the exact layout of bits
747  *             in memory and can be derived from the tuple
748  *
749  *               (format, GPU model, compression type, samples per pixel)
750  *
751  *             Where compression type is defined below.  If GPU model were
752  *             implied by the format modifier, format, or memory buffer, page
753  *             kind would not need to be included in the modifier itself, but
754  *             since the modifier should define the layout of the associated
755  *             memory buffer independent from any device or other context, it
756  *             must be included here.
757  *
758  * 21:20 g     GOB Height and Page Kind Generation.  The height of a GOB changed
759  *             starting with Fermi GPUs.  Additionally, the mapping between page
760  *             kind and bit layout has changed at various points.
761  *
762  *               0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
763  *               1 = Gob Height 4, G80 - GT2XX Page Kind mapping
764  *               2 = Gob Height 8, Turing+ Page Kind mapping
765  *               3 = Reserved for future use.
766  *
767  * 22:22 s     Sector layout.  On Tegra GPUs prior to Xavier, there is a further
768  *             bit remapping step that occurs at an even lower level than the
769  *             page kind and block linear swizzles.  This causes the layout of
770  *             surfaces mapped in those SOC's GPUs to be incompatible with the
771  *             equivalent mapping on other GPUs in the same system.
772  *
773  *               0 = Tegra K1 - Tegra Parker/TX2 Layout.
774  *               1 = Desktop GPU and Tegra Xavier+ Layout
775  *
776  * 25:23 c     Lossless Framebuffer Compression type.
777  *
778  *               0 = none
779  *               1 = ROP/3D, layout 1, exact compression format implied by Page
780  *                   Kind field
781  *               2 = ROP/3D, layout 2, exact compression format implied by Page
782  *                   Kind field
783  *               3 = CDE horizontal
784  *               4 = CDE vertical
785  *               5 = Reserved for future use
786  *               6 = Reserved for future use
787  *               7 = Reserved for future use
788  *
789  * 55:25 -     Reserved for future use.  Must be zero.
790  */
791 #define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
792 	fourcc_mod_code(NVIDIA, (0x10 | \
793 				 ((h) & 0xf) | \
794 				 (((k) & 0xff) << 12) | \
795 				 (((g) & 0x3) << 20) | \
796 				 (((s) & 0x1) << 22) | \
797 				 (((c) & 0x7) << 23)))
798 
799 /* To grandfather in prior block linear format modifiers to the above layout,
800  * the page kind "0", which corresponds to "pitch/linear" and hence is unusable
801  * with block-linear layouts, is remapped within drivers to the value 0xfe,
802  * which corresponds to the "generic" kind used for simple single-sample
803  * uncompressed color formats on Fermi - Volta GPUs.
804  */
805 static inline __u64
806 drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)
807 {
808 	if (!(modifier & 0x10) || (modifier & (0xff << 12)))
809 		return modifier;
810 	else
811 		return modifier | (0xfe << 12);
812 }
813 
814 /*
815  * 16Bx2 Block Linear layout, used by Tegra K1 and later
816  *
817  * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
818  * vertically by a power of 2 (1 to 32 GOBs) to form a block.
819  *
820  * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
821  *
822  * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
823  * Valid values are:
824  *
825  * 0 == ONE_GOB
826  * 1 == TWO_GOBS
827  * 2 == FOUR_GOBS
828  * 3 == EIGHT_GOBS
829  * 4 == SIXTEEN_GOBS
830  * 5 == THIRTYTWO_GOBS
831  *
832  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
833  * in full detail.
834  */
835 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
836 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
837 
838 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
839 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
840 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
841 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
842 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
843 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
844 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
845 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
846 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
847 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
848 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
849 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
850 
851 /*
852  * Some Broadcom modifiers take parameters, for example the number of
853  * vertical lines in the image. Reserve the lower 32 bits for modifier
854  * type, and the next 24 bits for parameters. Top 8 bits are the
855  * vendor code.
856  */
857 #define __fourcc_mod_broadcom_param_shift 8
858 #define __fourcc_mod_broadcom_param_bits 48
859 #define fourcc_mod_broadcom_code(val, params) \
860 	fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val))
861 #define fourcc_mod_broadcom_param(m) \
862 	((int)(((m) >> __fourcc_mod_broadcom_param_shift) &	\
863 	       ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
864 #define fourcc_mod_broadcom_mod(m) \
865 	((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) <<	\
866 		 __fourcc_mod_broadcom_param_shift))
867 
868 /*
869  * Broadcom VC4 "T" format
870  *
871  * This is the primary layout that the V3D GPU can texture from (it
872  * can't do linear).  The T format has:
873  *
874  * - 64b utiles of pixels in a raster-order grid according to cpp.  It's 4x4
875  *   pixels at 32 bit depth.
876  *
877  * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
878  *   16x16 pixels).
879  *
880  * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels).  On
881  *   even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
882  *   they're (TR, BR, BL, TL), where bottom left is start of memory.
883  *
884  * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
885  *   tiles) or right-to-left (odd rows of 4k tiles).
886  */
887 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
888 
889 /*
890  * Broadcom SAND format
891  *
892  * This is the native format that the H.264 codec block uses.  For VC4
893  * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
894  *
895  * The image can be considered to be split into columns, and the
896  * columns are placed consecutively into memory.  The width of those
897  * columns can be either 32, 64, 128, or 256 pixels, but in practice
898  * only 128 pixel columns are used.
899  *
900  * The pitch between the start of each column is set to optimally
901  * switch between SDRAM banks. This is passed as the number of lines
902  * of column width in the modifier (we can't use the stride value due
903  * to various core checks that look at it , so you should set the
904  * stride to width*cpp).
905  *
906  * Note that the column height for this format modifier is the same
907  * for all of the planes, assuming that each column contains both Y
908  * and UV.  Some SAND-using hardware stores UV in a separate tiled
909  * image from Y to reduce the column height, which is not supported
910  * with these modifiers.
911  *
912  * The DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT modifier is also
913  * supported for DRM_FORMAT_P030 where the columns remain as 128 bytes
914  * wide, but as this is a 10 bpp format that translates to 96 pixels.
915  */
916 
917 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
918 	fourcc_mod_broadcom_code(2, v)
919 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
920 	fourcc_mod_broadcom_code(3, v)
921 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
922 	fourcc_mod_broadcom_code(4, v)
923 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
924 	fourcc_mod_broadcom_code(5, v)
925 
926 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \
927 	DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
928 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \
929 	DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
930 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \
931 	DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
932 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \
933 	DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
934 
935 /* Broadcom UIF format
936  *
937  * This is the common format for the current Broadcom multimedia
938  * blocks, including V3D 3.x and newer, newer video codecs, and
939  * displays.
940  *
941  * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
942  * and macroblocks (4x4 UIF blocks).  Those 4x4 UIF block groups are
943  * stored in columns, with padding between the columns to ensure that
944  * moving from one column to the next doesn't hit the same SDRAM page
945  * bank.
946  *
947  * To calculate the padding, it is assumed that each hardware block
948  * and the software driving it knows the platform's SDRAM page size,
949  * number of banks, and XOR address, and that it's identical between
950  * all blocks using the format.  This tiling modifier will use XOR as
951  * necessary to reduce the padding.  If a hardware block can't do XOR,
952  * the assumption is that a no-XOR tiling modifier will be created.
953  */
954 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
955 
956 /*
957  * Arm Framebuffer Compression (AFBC) modifiers
958  *
959  * AFBC is a proprietary lossless image compression protocol and format.
960  * It provides fine-grained random access and minimizes the amount of data
961  * transferred between IP blocks.
962  *
963  * AFBC has several features which may be supported and/or used, which are
964  * represented using bits in the modifier. Not all combinations are valid,
965  * and different devices or use-cases may support different combinations.
966  *
967  * Further information on the use of AFBC modifiers can be found in
968  * Documentation/gpu/afbc.rst
969  */
970 
971 /*
972  * The top 4 bits (out of the 56 bits alloted for specifying vendor specific
973  * modifiers) denote the category for modifiers. Currently we have three
974  * categories of modifiers ie AFBC, MISC and AFRC. We can have a maximum of
975  * sixteen different categories.
976  */
977 #define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
978 	fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
979 
980 #define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
981 #define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
982 
983 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
984 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
985 
986 /*
987  * AFBC superblock size
988  *
989  * Indicates the superblock size(s) used for the AFBC buffer. The buffer
990  * size (in pixels) must be aligned to a multiple of the superblock size.
991  * Four lowest significant bits(LSBs) are reserved for block size.
992  *
993  * Where one superblock size is specified, it applies to all planes of the
994  * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
995  * the first applies to the Luma plane and the second applies to the Chroma
996  * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
997  * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
998  */
999 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK      0xf
1000 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16     (1ULL)
1001 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8      (2ULL)
1002 #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4      (3ULL)
1003 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
1004 
1005 /*
1006  * AFBC lossless colorspace transform
1007  *
1008  * Indicates that the buffer makes use of the AFBC lossless colorspace
1009  * transform.
1010  */
1011 #define AFBC_FORMAT_MOD_YTR     (1ULL <<  4)
1012 
1013 /*
1014  * AFBC block-split
1015  *
1016  * Indicates that the payload of each superblock is split. The second
1017  * half of the payload is positioned at a predefined offset from the start
1018  * of the superblock payload.
1019  */
1020 #define AFBC_FORMAT_MOD_SPLIT   (1ULL <<  5)
1021 
1022 /*
1023  * AFBC sparse layout
1024  *
1025  * This flag indicates that the payload of each superblock must be stored at a
1026  * predefined position relative to the other superblocks in the same AFBC
1027  * buffer. This order is the same order used by the header buffer. In this mode
1028  * each superblock is given the same amount of space as an uncompressed
1029  * superblock of the particular format would require, rounding up to the next
1030  * multiple of 128 bytes in size.
1031  */
1032 #define AFBC_FORMAT_MOD_SPARSE  (1ULL <<  6)
1033 
1034 /*
1035  * AFBC copy-block restrict
1036  *
1037  * Buffers with this flag must obey the copy-block restriction. The restriction
1038  * is such that there are no copy-blocks referring across the border of 8x8
1039  * blocks. For the subsampled data the 8x8 limitation is also subsampled.
1040  */
1041 #define AFBC_FORMAT_MOD_CBR     (1ULL <<  7)
1042 
1043 /*
1044  * AFBC tiled layout
1045  *
1046  * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
1047  * superblocks inside a tile are stored together in memory. 8x8 tiles are used
1048  * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
1049  * larger bpp formats. The order between the tiles is scan line.
1050  * When the tiled layout is used, the buffer size (in pixels) must be aligned
1051  * to the tile size.
1052  */
1053 #define AFBC_FORMAT_MOD_TILED   (1ULL <<  8)
1054 
1055 /*
1056  * AFBC solid color blocks
1057  *
1058  * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
1059  * can be reduced if a whole superblock is a single color.
1060  */
1061 #define AFBC_FORMAT_MOD_SC      (1ULL <<  9)
1062 
1063 /*
1064  * AFBC double-buffer
1065  *
1066  * Indicates that the buffer is allocated in a layout safe for front-buffer
1067  * rendering.
1068  */
1069 #define AFBC_FORMAT_MOD_DB      (1ULL << 10)
1070 
1071 /*
1072  * AFBC buffer content hints
1073  *
1074  * Indicates that the buffer includes per-superblock content hints.
1075  */
1076 #define AFBC_FORMAT_MOD_BCH     (1ULL << 11)
1077 
1078 /* AFBC uncompressed storage mode
1079  *
1080  * Indicates that the buffer is using AFBC uncompressed storage mode.
1081  * In this mode all superblock payloads in the buffer use the uncompressed
1082  * storage mode, which is usually only used for data which cannot be compressed.
1083  * The buffer layout is the same as for AFBC buffers without USM set, this only
1084  * affects the storage mode of the individual superblocks. Note that even a
1085  * buffer without USM set may use uncompressed storage mode for some or all
1086  * superblocks, USM just guarantees it for all.
1087  */
1088 #define AFBC_FORMAT_MOD_USM	(1ULL << 12)
1089 
1090 /*
1091  * Arm Fixed-Rate Compression (AFRC) modifiers
1092  *
1093  * AFRC is a proprietary fixed rate image compression protocol and format,
1094  * designed to provide guaranteed bandwidth and memory footprint
1095  * reductions in graphics and media use-cases.
1096  *
1097  * AFRC buffers consist of one or more planes, with the same components
1098  * and meaning as an uncompressed buffer using the same pixel format.
1099  *
1100  * Within each plane, the pixel/luma/chroma values are grouped into
1101  * "coding unit" blocks which are individually compressed to a
1102  * fixed size (in bytes). All coding units within a given plane of a buffer
1103  * store the same number of values, and have the same compressed size.
1104  *
1105  * The coding unit size is configurable, allowing different rates of compression.
1106  *
1107  * The start of each AFRC buffer plane must be aligned to an alignment granule which
1108  * depends on the coding unit size.
1109  *
1110  * Coding Unit Size   Plane Alignment
1111  * ----------------   ---------------
1112  * 16 bytes           1024 bytes
1113  * 24 bytes           512  bytes
1114  * 32 bytes           2048 bytes
1115  *
1116  * Coding units are grouped into paging tiles. AFRC buffer dimensions must be aligned
1117  * to a multiple of the paging tile dimensions.
1118  * The dimensions of each paging tile depend on whether the buffer is optimised for
1119  * scanline (SCAN layout) or rotated (ROT layout) access.
1120  *
1121  * Layout   Paging Tile Width   Paging Tile Height
1122  * ------   -----------------   ------------------
1123  * SCAN     16 coding units     4 coding units
1124  * ROT      8  coding units     8 coding units
1125  *
1126  * The dimensions of each coding unit depend on the number of components
1127  * in the compressed plane and whether the buffer is optimised for
1128  * scanline (SCAN layout) or rotated (ROT layout) access.
1129  *
1130  * Number of Components in Plane   Layout      Coding Unit Width   Coding Unit Height
1131  * -----------------------------   ---------   -----------------   ------------------
1132  * 1                               SCAN        16 samples          4 samples
1133  * Example: 16x4 luma samples in a 'Y' plane
1134  *          16x4 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1135  * -----------------------------   ---------   -----------------   ------------------
1136  * 1                               ROT         8 samples           8 samples
1137  * Example: 8x8 luma samples in a 'Y' plane
1138  *          8x8 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1139  * -----------------------------   ---------   -----------------   ------------------
1140  * 2                               DONT CARE   8 samples           4 samples
1141  * Example: 8x4 chroma pairs in the 'UV' plane of a semi-planar YUV buffer
1142  * -----------------------------   ---------   -----------------   ------------------
1143  * 3                               DONT CARE   4 samples           4 samples
1144  * Example: 4x4 pixels in an RGB buffer without alpha
1145  * -----------------------------   ---------   -----------------   ------------------
1146  * 4                               DONT CARE   4 samples           4 samples
1147  * Example: 4x4 pixels in an RGB buffer with alpha
1148  */
1149 
1150 #define DRM_FORMAT_MOD_ARM_TYPE_AFRC 0x02
1151 
1152 #define DRM_FORMAT_MOD_ARM_AFRC(__afrc_mode) \
1153 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFRC, __afrc_mode)
1154 
1155 /*
1156  * AFRC coding unit size modifier.
1157  *
1158  * Indicates the number of bytes used to store each compressed coding unit for
1159  * one or more planes in an AFRC encoded buffer. The coding unit size for chrominance
1160  * is the same for both Cb and Cr, which may be stored in separate planes.
1161  *
1162  * AFRC_FORMAT_MOD_CU_SIZE_P0 indicates the number of bytes used to store
1163  * each compressed coding unit in the first plane of the buffer. For RGBA buffers
1164  * this is the only plane, while for semi-planar and fully-planar YUV buffers,
1165  * this corresponds to the luma plane.
1166  *
1167  * AFRC_FORMAT_MOD_CU_SIZE_P12 indicates the number of bytes used to store
1168  * each compressed coding unit in the second and third planes in the buffer.
1169  * For semi-planar and fully-planar YUV buffers, this corresponds to the chroma plane(s).
1170  *
1171  * For single-plane buffers, AFRC_FORMAT_MOD_CU_SIZE_P0 must be specified
1172  * and AFRC_FORMAT_MOD_CU_SIZE_P12 must be zero.
1173  * For semi-planar and fully-planar buffers, both AFRC_FORMAT_MOD_CU_SIZE_P0 and
1174  * AFRC_FORMAT_MOD_CU_SIZE_P12 must be specified.
1175  */
1176 #define AFRC_FORMAT_MOD_CU_SIZE_MASK 0xf
1177 #define AFRC_FORMAT_MOD_CU_SIZE_16 (1ULL)
1178 #define AFRC_FORMAT_MOD_CU_SIZE_24 (2ULL)
1179 #define AFRC_FORMAT_MOD_CU_SIZE_32 (3ULL)
1180 
1181 #define AFRC_FORMAT_MOD_CU_SIZE_P0(__afrc_cu_size) (__afrc_cu_size)
1182 #define AFRC_FORMAT_MOD_CU_SIZE_P12(__afrc_cu_size) ((__afrc_cu_size) << 4)
1183 
1184 /*
1185  * AFRC scanline memory layout.
1186  *
1187  * Indicates if the buffer uses the scanline-optimised layout
1188  * for an AFRC encoded buffer, otherwise, it uses the rotation-optimised layout.
1189  * The memory layout is the same for all planes.
1190  */
1191 #define AFRC_FORMAT_MOD_LAYOUT_SCAN (1ULL << 8)
1192 
1193 /*
1194  * Arm 16x16 Block U-Interleaved modifier
1195  *
1196  * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
1197  * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
1198  * in the block are reordered.
1199  */
1200 #define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
1201 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
1202 
1203 /*
1204  * Allwinner tiled modifier
1205  *
1206  * This tiling mode is implemented by the VPU found on all Allwinner platforms,
1207  * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
1208  * planes.
1209  *
1210  * With this tiling, the luminance samples are disposed in tiles representing
1211  * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
1212  * The pixel order in each tile is linear and the tiles are disposed linearly,
1213  * both in row-major order.
1214  */
1215 #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
1216 
1217 /*
1218  * Amlogic Video Framebuffer Compression modifiers
1219  *
1220  * Amlogic uses a proprietary lossless image compression protocol and format
1221  * for their hardware video codec accelerators, either video decoders or
1222  * video input encoders.
1223  *
1224  * It considerably reduces memory bandwidth while writing and reading
1225  * frames in memory.
1226  *
1227  * The underlying storage is considered to be 3 components, 8bit or 10-bit
1228  * per component YCbCr 420, single plane :
1229  * - DRM_FORMAT_YUV420_8BIT
1230  * - DRM_FORMAT_YUV420_10BIT
1231  *
1232  * The first 8 bits of the mode defines the layout, then the following 8 bits
1233  * defines the options changing the layout.
1234  *
1235  * Not all combinations are valid, and different SoCs may support different
1236  * combinations of layout and options.
1237  */
1238 #define __fourcc_mod_amlogic_layout_mask 0xff
1239 #define __fourcc_mod_amlogic_options_shift 8
1240 #define __fourcc_mod_amlogic_options_mask 0xff
1241 
1242 #define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \
1243 	fourcc_mod_code(AMLOGIC, \
1244 			((__layout) & __fourcc_mod_amlogic_layout_mask) | \
1245 			(((__options) & __fourcc_mod_amlogic_options_mask) \
1246 			 << __fourcc_mod_amlogic_options_shift))
1247 
1248 /* Amlogic FBC Layouts */
1249 
1250 /*
1251  * Amlogic FBC Basic Layout
1252  *
1253  * The basic layout is composed of:
1254  * - a body content organized in 64x32 superblocks with 4096 bytes per
1255  *   superblock in default mode.
1256  * - a 32 bytes per 128x64 header block
1257  *
1258  * This layout is transferrable between Amlogic SoCs supporting this modifier.
1259  */
1260 #define AMLOGIC_FBC_LAYOUT_BASIC		(1ULL)
1261 
1262 /*
1263  * Amlogic FBC Scatter Memory layout
1264  *
1265  * Indicates the header contains IOMMU references to the compressed
1266  * frames content to optimize memory access and layout.
1267  *
1268  * In this mode, only the header memory address is needed, thus the
1269  * content memory organization is tied to the current producer
1270  * execution and cannot be saved/dumped neither transferrable between
1271  * Amlogic SoCs supporting this modifier.
1272  *
1273  * Due to the nature of the layout, these buffers are not expected to
1274  * be accessible by the user-space clients, but only accessible by the
1275  * hardware producers and consumers.
1276  *
1277  * The user-space clients should expect a failure while trying to mmap
1278  * the DMA-BUF handle returned by the producer.
1279  */
1280 #define AMLOGIC_FBC_LAYOUT_SCATTER		(2ULL)
1281 
1282 /* Amlogic FBC Layout Options Bit Mask */
1283 
1284 /*
1285  * Amlogic FBC Memory Saving mode
1286  *
1287  * Indicates the storage is packed when pixel size is multiple of word
1288  * boudaries, i.e. 8bit should be stored in this mode to save allocation
1289  * memory.
1290  *
1291  * This mode reduces body layout to 3072 bytes per 64x32 superblock with
1292  * the basic layout and 3200 bytes per 64x32 superblock combined with
1293  * the scatter layout.
1294  */
1295 #define AMLOGIC_FBC_OPTION_MEM_SAVING		(1ULL << 0)
1296 
1297 /*
1298  * AMD modifiers
1299  *
1300  * Memory layout:
1301  *
1302  * without DCC:
1303  *   - main surface
1304  *
1305  * with DCC & without DCC_RETILE:
1306  *   - main surface in plane 0
1307  *   - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set)
1308  *
1309  * with DCC & DCC_RETILE:
1310  *   - main surface in plane 0
1311  *   - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned)
1312  *   - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned)
1313  *
1314  * For multi-plane formats the above surfaces get merged into one plane for
1315  * each format plane, based on the required alignment only.
1316  *
1317  * Bits  Parameter                Notes
1318  * ----- ------------------------ ---------------------------------------------
1319  *
1320  *   7:0 TILE_VERSION             Values are AMD_FMT_MOD_TILE_VER_*
1321  *  12:8 TILE                     Values are AMD_FMT_MOD_TILE_<version>_*
1322  *    13 DCC
1323  *    14 DCC_RETILE
1324  *    15 DCC_PIPE_ALIGN
1325  *    16 DCC_INDEPENDENT_64B
1326  *    17 DCC_INDEPENDENT_128B
1327  * 19:18 DCC_MAX_COMPRESSED_BLOCK Values are AMD_FMT_MOD_DCC_BLOCK_*
1328  *    20 DCC_CONSTANT_ENCODE
1329  * 23:21 PIPE_XOR_BITS            Only for some chips
1330  * 26:24 BANK_XOR_BITS            Only for some chips
1331  * 29:27 PACKERS                  Only for some chips
1332  * 32:30 RB                       Only for some chips
1333  * 35:33 PIPE                     Only for some chips
1334  * 55:36 -                        Reserved for future use, must be zero
1335  */
1336 #define AMD_FMT_MOD fourcc_mod_code(AMD, 0)
1337 
1338 #define IS_AMD_FMT_MOD(val) (((val) >> 56) == DRM_FORMAT_MOD_VENDOR_AMD)
1339 
1340 /* Reserve 0 for GFX8 and older */
1341 #define AMD_FMT_MOD_TILE_VER_GFX9 1
1342 #define AMD_FMT_MOD_TILE_VER_GFX10 2
1343 #define AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS 3
1344 
1345 /*
1346  * 64K_S is the same for GFX9/GFX10/GFX10_RBPLUS and hence has GFX9 as canonical
1347  * version.
1348  */
1349 #define AMD_FMT_MOD_TILE_GFX9_64K_S 9
1350 
1351 /*
1352  * 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has
1353  * GFX9 as canonical version.
1354  */
1355 #define AMD_FMT_MOD_TILE_GFX9_64K_D 10
1356 #define AMD_FMT_MOD_TILE_GFX9_64K_S_X 25
1357 #define AMD_FMT_MOD_TILE_GFX9_64K_D_X 26
1358 #define AMD_FMT_MOD_TILE_GFX9_64K_R_X 27
1359 
1360 #define AMD_FMT_MOD_DCC_BLOCK_64B 0
1361 #define AMD_FMT_MOD_DCC_BLOCK_128B 1
1362 #define AMD_FMT_MOD_DCC_BLOCK_256B 2
1363 
1364 #define AMD_FMT_MOD_TILE_VERSION_SHIFT 0
1365 #define AMD_FMT_MOD_TILE_VERSION_MASK 0xFF
1366 #define AMD_FMT_MOD_TILE_SHIFT 8
1367 #define AMD_FMT_MOD_TILE_MASK 0x1F
1368 
1369 /* Whether DCC compression is enabled. */
1370 #define AMD_FMT_MOD_DCC_SHIFT 13
1371 #define AMD_FMT_MOD_DCC_MASK 0x1
1372 
1373 /*
1374  * Whether to include two DCC surfaces, one which is rb & pipe aligned, and
1375  * one which is not-aligned.
1376  */
1377 #define AMD_FMT_MOD_DCC_RETILE_SHIFT 14
1378 #define AMD_FMT_MOD_DCC_RETILE_MASK 0x1
1379 
1380 /* Only set if DCC_RETILE = false */
1381 #define AMD_FMT_MOD_DCC_PIPE_ALIGN_SHIFT 15
1382 #define AMD_FMT_MOD_DCC_PIPE_ALIGN_MASK 0x1
1383 
1384 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_SHIFT 16
1385 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_MASK 0x1
1386 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_SHIFT 17
1387 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_MASK 0x1
1388 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_SHIFT 18
1389 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_MASK 0x3
1390 
1391 /*
1392  * DCC supports embedding some clear colors directly in the DCC surface.
1393  * However, on older GPUs the rendering HW ignores the embedded clear color
1394  * and prefers the driver provided color. This necessitates doing a fastclear
1395  * eliminate operation before a process transfers control.
1396  *
1397  * If this bit is set that means the fastclear eliminate is not needed for these
1398  * embeddable colors.
1399  */
1400 #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_SHIFT 20
1401 #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_MASK 0x1
1402 
1403 /*
1404  * The below fields are for accounting for per GPU differences. These are only
1405  * relevant for GFX9 and later and if the tile field is *_X/_T.
1406  *
1407  * PIPE_XOR_BITS = always needed
1408  * BANK_XOR_BITS = only for TILE_VER_GFX9
1409  * PACKERS = only for TILE_VER_GFX10_RBPLUS
1410  * RB = only for TILE_VER_GFX9 & DCC
1411  * PIPE = only for TILE_VER_GFX9 & DCC & (DCC_RETILE | DCC_PIPE_ALIGN)
1412  */
1413 #define AMD_FMT_MOD_PIPE_XOR_BITS_SHIFT 21
1414 #define AMD_FMT_MOD_PIPE_XOR_BITS_MASK 0x7
1415 #define AMD_FMT_MOD_BANK_XOR_BITS_SHIFT 24
1416 #define AMD_FMT_MOD_BANK_XOR_BITS_MASK 0x7
1417 #define AMD_FMT_MOD_PACKERS_SHIFT 27
1418 #define AMD_FMT_MOD_PACKERS_MASK 0x7
1419 #define AMD_FMT_MOD_RB_SHIFT 30
1420 #define AMD_FMT_MOD_RB_MASK 0x7
1421 #define AMD_FMT_MOD_PIPE_SHIFT 33
1422 #define AMD_FMT_MOD_PIPE_MASK 0x7
1423 
1424 #define AMD_FMT_MOD_SET(field, value) \
1425 	((uint64_t)(value) << AMD_FMT_MOD_##field##_SHIFT)
1426 #define AMD_FMT_MOD_GET(field, value) \
1427 	(((value) >> AMD_FMT_MOD_##field##_SHIFT) & AMD_FMT_MOD_##field##_MASK)
1428 #define AMD_FMT_MOD_CLEAR(field) \
1429 	(~((uint64_t)AMD_FMT_MOD_##field##_MASK << AMD_FMT_MOD_##field##_SHIFT))
1430 
1431 #if defined(__cplusplus)
1432 }
1433 #endif
1434 
1435 #endif /* DRM_FOURCC_H */
1436