1 /* 2 * Copyright 2011 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #ifndef DRM_FOURCC_H 25 #define DRM_FOURCC_H 26 27 #include "drm.h" 28 29 #if defined(__cplusplus) 30 extern "C" { 31 #endif 32 33 /** 34 * DOC: overview 35 * 36 * In the DRM subsystem, framebuffer pixel formats are described using the 37 * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the 38 * fourcc code, a Format Modifier may optionally be provided, in order to 39 * further describe the buffer's format - for example tiling or compression. 40 * 41 * Format Modifiers 42 * ---------------- 43 * 44 * Format modifiers are used in conjunction with a fourcc code, forming a 45 * unique fourcc:modifier pair. This format:modifier pair must fully define the 46 * format and data layout of the buffer, and should be the only way to describe 47 * that particular buffer. 48 * 49 * Having multiple fourcc:modifier pairs which describe the same layout should 50 * be avoided, as such aliases run the risk of different drivers exposing 51 * different names for the same data format, forcing userspace to understand 52 * that they are aliases. 53 * 54 * Format modifiers may change any property of the buffer, including the number 55 * of planes and/or the required allocation size. Format modifiers are 56 * vendor-namespaced, and as such the relationship between a fourcc code and a 57 * modifier is specific to the modifer being used. For example, some modifiers 58 * may preserve meaning - such as number of planes - from the fourcc code, 59 * whereas others may not. 60 * 61 * Vendors should document their modifier usage in as much detail as 62 * possible, to ensure maximum compatibility across devices, drivers and 63 * applications. 64 * 65 * The authoritative list of format modifier codes is found in 66 * `include/uapi/drm/drm_fourcc.h` 67 */ 68 69 #define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \ 70 ((__u32)(c) << 16) | ((__u32)(d) << 24)) 71 72 #define DRM_FORMAT_BIG_ENDIAN (1<<31) /* format is big endian instead of little endian */ 73 74 /* Reserve 0 for the invalid format specifier */ 75 #define DRM_FORMAT_INVALID 0 76 77 /* color index */ 78 #define DRM_FORMAT_C8 fourcc_code('C', '8', ' ', ' ') /* [7:0] C */ 79 80 /* 8 bpp Red */ 81 #define DRM_FORMAT_R8 fourcc_code('R', '8', ' ', ' ') /* [7:0] R */ 82 83 /* 16 bpp Red */ 84 #define DRM_FORMAT_R16 fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */ 85 86 /* 16 bpp RG */ 87 #define DRM_FORMAT_RG88 fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */ 88 #define DRM_FORMAT_GR88 fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */ 89 90 /* 32 bpp RG */ 91 #define DRM_FORMAT_RG1616 fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */ 92 #define DRM_FORMAT_GR1616 fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */ 93 94 /* 8 bpp RGB */ 95 #define DRM_FORMAT_RGB332 fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */ 96 #define DRM_FORMAT_BGR233 fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */ 97 98 /* 16 bpp RGB */ 99 #define DRM_FORMAT_XRGB4444 fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */ 100 #define DRM_FORMAT_XBGR4444 fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */ 101 #define DRM_FORMAT_RGBX4444 fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */ 102 #define DRM_FORMAT_BGRX4444 fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */ 103 104 #define DRM_FORMAT_ARGB4444 fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */ 105 #define DRM_FORMAT_ABGR4444 fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */ 106 #define DRM_FORMAT_RGBA4444 fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */ 107 #define DRM_FORMAT_BGRA4444 fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */ 108 109 #define DRM_FORMAT_XRGB1555 fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */ 110 #define DRM_FORMAT_XBGR1555 fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */ 111 #define DRM_FORMAT_RGBX5551 fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */ 112 #define DRM_FORMAT_BGRX5551 fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */ 113 114 #define DRM_FORMAT_ARGB1555 fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */ 115 #define DRM_FORMAT_ABGR1555 fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */ 116 #define DRM_FORMAT_RGBA5551 fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */ 117 #define DRM_FORMAT_BGRA5551 fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */ 118 119 #define DRM_FORMAT_RGB565 fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */ 120 #define DRM_FORMAT_BGR565 fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */ 121 122 /* 24 bpp RGB */ 123 #define DRM_FORMAT_RGB888 fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */ 124 #define DRM_FORMAT_BGR888 fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */ 125 126 /* 32 bpp RGB */ 127 #define DRM_FORMAT_XRGB8888 fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */ 128 #define DRM_FORMAT_XBGR8888 fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */ 129 #define DRM_FORMAT_RGBX8888 fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */ 130 #define DRM_FORMAT_BGRX8888 fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */ 131 132 #define DRM_FORMAT_ARGB8888 fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */ 133 #define DRM_FORMAT_ABGR8888 fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */ 134 #define DRM_FORMAT_RGBA8888 fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */ 135 #define DRM_FORMAT_BGRA8888 fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */ 136 137 #define DRM_FORMAT_XRGB2101010 fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */ 138 #define DRM_FORMAT_XBGR2101010 fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */ 139 #define DRM_FORMAT_RGBX1010102 fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */ 140 #define DRM_FORMAT_BGRX1010102 fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */ 141 142 #define DRM_FORMAT_ARGB2101010 fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */ 143 #define DRM_FORMAT_ABGR2101010 fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */ 144 #define DRM_FORMAT_RGBA1010102 fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */ 145 #define DRM_FORMAT_BGRA1010102 fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */ 146 147 /* packed YCbCr */ 148 #define DRM_FORMAT_YUYV fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */ 149 #define DRM_FORMAT_YVYU fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */ 150 #define DRM_FORMAT_UYVY fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */ 151 #define DRM_FORMAT_VYUY fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */ 152 153 #define DRM_FORMAT_AYUV fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */ 154 #define DRM_FORMAT_XYUV8888 fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */ 155 156 /* 157 * packed YCbCr420 2x2 tiled formats 158 * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile 159 */ 160 /* [63:0] A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */ 161 #define DRM_FORMAT_Y0L0 fourcc_code('Y', '0', 'L', '0') 162 /* [63:0] X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */ 163 #define DRM_FORMAT_X0L0 fourcc_code('X', '0', 'L', '0') 164 165 /* [63:0] A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */ 166 #define DRM_FORMAT_Y0L2 fourcc_code('Y', '0', 'L', '2') 167 /* [63:0] X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */ 168 #define DRM_FORMAT_X0L2 fourcc_code('X', '0', 'L', '2') 169 170 /* 171 * 2 plane RGB + A 172 * index 0 = RGB plane, same format as the corresponding non _A8 format has 173 * index 1 = A plane, [7:0] A 174 */ 175 #define DRM_FORMAT_XRGB8888_A8 fourcc_code('X', 'R', 'A', '8') 176 #define DRM_FORMAT_XBGR8888_A8 fourcc_code('X', 'B', 'A', '8') 177 #define DRM_FORMAT_RGBX8888_A8 fourcc_code('R', 'X', 'A', '8') 178 #define DRM_FORMAT_BGRX8888_A8 fourcc_code('B', 'X', 'A', '8') 179 #define DRM_FORMAT_RGB888_A8 fourcc_code('R', '8', 'A', '8') 180 #define DRM_FORMAT_BGR888_A8 fourcc_code('B', '8', 'A', '8') 181 #define DRM_FORMAT_RGB565_A8 fourcc_code('R', '5', 'A', '8') 182 #define DRM_FORMAT_BGR565_A8 fourcc_code('B', '5', 'A', '8') 183 184 /* 185 * 2 plane YCbCr 186 * index 0 = Y plane, [7:0] Y 187 * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian 188 * or 189 * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian 190 */ 191 #define DRM_FORMAT_NV12 fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */ 192 #define DRM_FORMAT_NV21 fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */ 193 #define DRM_FORMAT_NV16 fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */ 194 #define DRM_FORMAT_NV61 fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */ 195 #define DRM_FORMAT_NV24 fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */ 196 #define DRM_FORMAT_NV42 fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */ 197 198 /* 199 * 2 plane YCbCr MSB aligned 200 * index 0 = Y plane, [15:0] Y:x [10:6] little endian 201 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian 202 */ 203 #define DRM_FORMAT_P010 fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */ 204 205 /* 206 * 2 plane YCbCr MSB aligned 207 * index 0 = Y plane, [15:0] Y:x [12:4] little endian 208 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian 209 */ 210 #define DRM_FORMAT_P012 fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */ 211 212 /* 213 * 2 plane YCbCr MSB aligned 214 * index 0 = Y plane, [15:0] Y little endian 215 * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian 216 */ 217 #define DRM_FORMAT_P016 fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */ 218 219 /* 220 * 3 plane YCbCr 221 * index 0: Y plane, [7:0] Y 222 * index 1: Cb plane, [7:0] Cb 223 * index 2: Cr plane, [7:0] Cr 224 * or 225 * index 1: Cr plane, [7:0] Cr 226 * index 2: Cb plane, [7:0] Cb 227 */ 228 #define DRM_FORMAT_YUV410 fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */ 229 #define DRM_FORMAT_YVU410 fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */ 230 #define DRM_FORMAT_YUV411 fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */ 231 #define DRM_FORMAT_YVU411 fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */ 232 #define DRM_FORMAT_YUV420 fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */ 233 #define DRM_FORMAT_YVU420 fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */ 234 #define DRM_FORMAT_YUV422 fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */ 235 #define DRM_FORMAT_YVU422 fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */ 236 #define DRM_FORMAT_YUV444 fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */ 237 #define DRM_FORMAT_YVU444 fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */ 238 239 240 /* 241 * Format Modifiers: 242 * 243 * Format modifiers describe, typically, a re-ordering or modification 244 * of the data in a plane of an FB. This can be used to express tiled/ 245 * swizzled formats, or compression, or a combination of the two. 246 * 247 * The upper 8 bits of the format modifier are a vendor-id as assigned 248 * below. The lower 56 bits are assigned as vendor sees fit. 249 */ 250 251 /* Vendor Ids: */ 252 #define DRM_FORMAT_MOD_NONE 0 253 #define DRM_FORMAT_MOD_VENDOR_NONE 0 254 #define DRM_FORMAT_MOD_VENDOR_INTEL 0x01 255 #define DRM_FORMAT_MOD_VENDOR_AMD 0x02 256 #define DRM_FORMAT_MOD_VENDOR_NVIDIA 0x03 257 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04 258 #define DRM_FORMAT_MOD_VENDOR_QCOM 0x05 259 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06 260 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07 261 #define DRM_FORMAT_MOD_VENDOR_ARM 0x08 262 #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09 263 264 /* add more to the end as needed */ 265 266 #define DRM_FORMAT_RESERVED ((1ULL << 56) - 1) 267 268 #define fourcc_mod_code(vendor, val) \ 269 ((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL)) 270 271 /* 272 * Format Modifier tokens: 273 * 274 * When adding a new token please document the layout with a code comment, 275 * similar to the fourcc codes above. drm_fourcc.h is considered the 276 * authoritative source for all of these. 277 */ 278 279 /* 280 * Invalid Modifier 281 * 282 * This modifier can be used as a sentinel to terminate the format modifiers 283 * list, or to initialize a variable with an invalid modifier. It might also be 284 * used to report an error back to userspace for certain APIs. 285 */ 286 #define DRM_FORMAT_MOD_INVALID fourcc_mod_code(NONE, DRM_FORMAT_RESERVED) 287 288 /* 289 * Linear Layout 290 * 291 * Just plain linear layout. Note that this is different from no specifying any 292 * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl), 293 * which tells the driver to also take driver-internal information into account 294 * and so might actually result in a tiled framebuffer. 295 */ 296 #define DRM_FORMAT_MOD_LINEAR fourcc_mod_code(NONE, 0) 297 298 /* Intel framebuffer modifiers */ 299 300 /* 301 * Intel X-tiling layout 302 * 303 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb) 304 * in row-major layout. Within the tile bytes are laid out row-major, with 305 * a platform-dependent stride. On top of that the memory can apply 306 * platform-depending swizzling of some higher address bits into bit6. 307 * 308 * This format is highly platforms specific and not useful for cross-driver 309 * sharing. It exists since on a given platform it does uniquely identify the 310 * layout in a simple way for i915-specific userspace. 311 */ 312 #define I915_FORMAT_MOD_X_TILED fourcc_mod_code(INTEL, 1) 313 314 /* 315 * Intel Y-tiling layout 316 * 317 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb) 318 * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes) 319 * chunks column-major, with a platform-dependent height. On top of that the 320 * memory can apply platform-depending swizzling of some higher address bits 321 * into bit6. 322 * 323 * This format is highly platforms specific and not useful for cross-driver 324 * sharing. It exists since on a given platform it does uniquely identify the 325 * layout in a simple way for i915-specific userspace. 326 */ 327 #define I915_FORMAT_MOD_Y_TILED fourcc_mod_code(INTEL, 2) 328 329 /* 330 * Intel Yf-tiling layout 331 * 332 * This is a tiled layout using 4Kb tiles in row-major layout. 333 * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which 334 * are arranged in four groups (two wide, two high) with column-major layout. 335 * Each group therefore consits out of four 256 byte units, which are also laid 336 * out as 2x2 column-major. 337 * 256 byte units are made out of four 64 byte blocks of pixels, producing 338 * either a square block or a 2:1 unit. 339 * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width 340 * in pixel depends on the pixel depth. 341 */ 342 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3) 343 344 /* 345 * Intel color control surface (CCS) for render compression 346 * 347 * The framebuffer format must be one of the 8:8:8:8 RGB formats. 348 * The main surface will be plane index 0 and must be Y/Yf-tiled, 349 * the CCS will be plane index 1. 350 * 351 * Each CCS tile matches a 1024x512 pixel area of the main surface. 352 * To match certain aspects of the 3D hardware the CCS is 353 * considered to be made up of normal 128Bx32 Y tiles, Thus 354 * the CCS pitch must be specified in multiples of 128 bytes. 355 * 356 * In reality the CCS tile appears to be a 64Bx64 Y tile, composed 357 * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks. 358 * But that fact is not relevant unless the memory is accessed 359 * directly. 360 */ 361 #define I915_FORMAT_MOD_Y_TILED_CCS fourcc_mod_code(INTEL, 4) 362 #define I915_FORMAT_MOD_Yf_TILED_CCS fourcc_mod_code(INTEL, 5) 363 364 /* 365 * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks 366 * 367 * Macroblocks are laid in a Z-shape, and each pixel data is following the 368 * standard NV12 style. 369 * As for NV12, an image is the result of two frame buffers: one for Y, 370 * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer). 371 * Alignment requirements are (for each buffer): 372 * - multiple of 128 pixels for the width 373 * - multiple of 32 pixels for the height 374 * 375 * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html 376 */ 377 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE fourcc_mod_code(SAMSUNG, 1) 378 379 /* 380 * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks 381 * 382 * This is a simple tiled layout using tiles of 16x16 pixels in a row-major 383 * layout. For YCbCr formats Cb/Cr components are taken in such a way that 384 * they correspond to their 16x16 luma block. 385 */ 386 #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE fourcc_mod_code(SAMSUNG, 2) 387 388 /* 389 * Qualcomm Compressed Format 390 * 391 * Refers to a compressed variant of the base format that is compressed. 392 * Implementation may be platform and base-format specific. 393 * 394 * Each macrotile consists of m x n (mostly 4 x 4) tiles. 395 * Pixel data pitch/stride is aligned with macrotile width. 396 * Pixel data height is aligned with macrotile height. 397 * Entire pixel data buffer is aligned with 4k(bytes). 398 */ 399 #define DRM_FORMAT_MOD_QCOM_COMPRESSED fourcc_mod_code(QCOM, 1) 400 401 /* Vivante framebuffer modifiers */ 402 403 /* 404 * Vivante 4x4 tiling layout 405 * 406 * This is a simple tiled layout using tiles of 4x4 pixels in a row-major 407 * layout. 408 */ 409 #define DRM_FORMAT_MOD_VIVANTE_TILED fourcc_mod_code(VIVANTE, 1) 410 411 /* 412 * Vivante 64x64 super-tiling layout 413 * 414 * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile 415 * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row- 416 * major layout. 417 * 418 * For more information: see 419 * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling 420 */ 421 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED fourcc_mod_code(VIVANTE, 2) 422 423 /* 424 * Vivante 4x4 tiling layout for dual-pipe 425 * 426 * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a 427 * different base address. Offsets from the base addresses are therefore halved 428 * compared to the non-split tiled layout. 429 */ 430 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED fourcc_mod_code(VIVANTE, 3) 431 432 /* 433 * Vivante 64x64 super-tiling layout for dual-pipe 434 * 435 * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile 436 * starts at a different base address. Offsets from the base addresses are 437 * therefore halved compared to the non-split super-tiled layout. 438 */ 439 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4) 440 441 /* NVIDIA frame buffer modifiers */ 442 443 /* 444 * Tegra Tiled Layout, used by Tegra 2, 3 and 4. 445 * 446 * Pixels are arranged in simple tiles of 16 x 16 bytes. 447 */ 448 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1) 449 450 /* 451 * 16Bx2 Block Linear layout, used by desktop GPUs, and Tegra K1 and later 452 * 453 * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked 454 * vertically by a power of 2 (1 to 32 GOBs) to form a block. 455 * 456 * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape. 457 * 458 * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically. 459 * Valid values are: 460 * 461 * 0 == ONE_GOB 462 * 1 == TWO_GOBS 463 * 2 == FOUR_GOBS 464 * 3 == EIGHT_GOBS 465 * 4 == SIXTEEN_GOBS 466 * 5 == THIRTYTWO_GOBS 467 * 468 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format 469 * in full detail. 470 */ 471 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \ 472 fourcc_mod_code(NVIDIA, 0x10 | ((v) & 0xf)) 473 474 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \ 475 fourcc_mod_code(NVIDIA, 0x10) 476 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \ 477 fourcc_mod_code(NVIDIA, 0x11) 478 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \ 479 fourcc_mod_code(NVIDIA, 0x12) 480 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \ 481 fourcc_mod_code(NVIDIA, 0x13) 482 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \ 483 fourcc_mod_code(NVIDIA, 0x14) 484 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \ 485 fourcc_mod_code(NVIDIA, 0x15) 486 487 /* 488 * Some Broadcom modifiers take parameters, for example the number of 489 * vertical lines in the image. Reserve the lower 32 bits for modifier 490 * type, and the next 24 bits for parameters. Top 8 bits are the 491 * vendor code. 492 */ 493 #define __fourcc_mod_broadcom_param_shift 8 494 #define __fourcc_mod_broadcom_param_bits 48 495 #define fourcc_mod_broadcom_code(val, params) \ 496 fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val)) 497 #define fourcc_mod_broadcom_param(m) \ 498 ((int)(((m) >> __fourcc_mod_broadcom_param_shift) & \ 499 ((1ULL << __fourcc_mod_broadcom_param_bits) - 1))) 500 #define fourcc_mod_broadcom_mod(m) \ 501 ((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) << \ 502 __fourcc_mod_broadcom_param_shift)) 503 504 /* 505 * Broadcom VC4 "T" format 506 * 507 * This is the primary layout that the V3D GPU can texture from (it 508 * can't do linear). The T format has: 509 * 510 * - 64b utiles of pixels in a raster-order grid according to cpp. It's 4x4 511 * pixels at 32 bit depth. 512 * 513 * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually 514 * 16x16 pixels). 515 * 516 * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels). On 517 * even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows 518 * they're (TR, BR, BL, TL), where bottom left is start of memory. 519 * 520 * - an image made of 4k tiles in rows either left-to-right (even rows of 4k 521 * tiles) or right-to-left (odd rows of 4k tiles). 522 */ 523 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1) 524 525 /* 526 * Broadcom SAND format 527 * 528 * This is the native format that the H.264 codec block uses. For VC4 529 * HVS, it is only valid for H.264 (NV12/21) and RGBA modes. 530 * 531 * The image can be considered to be split into columns, and the 532 * columns are placed consecutively into memory. The width of those 533 * columns can be either 32, 64, 128, or 256 pixels, but in practice 534 * only 128 pixel columns are used. 535 * 536 * The pitch between the start of each column is set to optimally 537 * switch between SDRAM banks. This is passed as the number of lines 538 * of column width in the modifier (we can't use the stride value due 539 * to various core checks that look at it , so you should set the 540 * stride to width*cpp). 541 * 542 * Note that the column height for this format modifier is the same 543 * for all of the planes, assuming that each column contains both Y 544 * and UV. Some SAND-using hardware stores UV in a separate tiled 545 * image from Y to reduce the column height, which is not supported 546 * with these modifiers. 547 */ 548 549 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \ 550 fourcc_mod_broadcom_code(2, v) 551 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \ 552 fourcc_mod_broadcom_code(3, v) 553 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \ 554 fourcc_mod_broadcom_code(4, v) 555 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \ 556 fourcc_mod_broadcom_code(5, v) 557 558 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \ 559 DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0) 560 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \ 561 DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0) 562 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \ 563 DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0) 564 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \ 565 DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0) 566 567 /* Broadcom UIF format 568 * 569 * This is the common format for the current Broadcom multimedia 570 * blocks, including V3D 3.x and newer, newer video codecs, and 571 * displays. 572 * 573 * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles), 574 * and macroblocks (4x4 UIF blocks). Those 4x4 UIF block groups are 575 * stored in columns, with padding between the columns to ensure that 576 * moving from one column to the next doesn't hit the same SDRAM page 577 * bank. 578 * 579 * To calculate the padding, it is assumed that each hardware block 580 * and the software driving it knows the platform's SDRAM page size, 581 * number of banks, and XOR address, and that it's identical between 582 * all blocks using the format. This tiling modifier will use XOR as 583 * necessary to reduce the padding. If a hardware block can't do XOR, 584 * the assumption is that a no-XOR tiling modifier will be created. 585 */ 586 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6) 587 588 /* 589 * Arm Framebuffer Compression (AFBC) modifiers 590 * 591 * AFBC is a proprietary lossless image compression protocol and format. 592 * It provides fine-grained random access and minimizes the amount of data 593 * transferred between IP blocks. 594 * 595 * AFBC has several features which may be supported and/or used, which are 596 * represented using bits in the modifier. Not all combinations are valid, 597 * and different devices or use-cases may support different combinations. 598 * 599 * Further information on the use of AFBC modifiers can be found in 600 * Documentation/gpu/afbc.rst 601 */ 602 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) fourcc_mod_code(ARM, __afbc_mode) 603 604 /* 605 * AFBC superblock size 606 * 607 * Indicates the superblock size(s) used for the AFBC buffer. The buffer 608 * size (in pixels) must be aligned to a multiple of the superblock size. 609 * Four lowest significant bits(LSBs) are reserved for block size. 610 * 611 * Where one superblock size is specified, it applies to all planes of the 612 * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified, 613 * the first applies to the Luma plane and the second applies to the Chroma 614 * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma). 615 * Multiple superblock sizes are only valid for multi-plane YCbCr formats. 616 */ 617 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK 0xf 618 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16 (1ULL) 619 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8 (2ULL) 620 #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4 (3ULL) 621 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL) 622 623 /* 624 * AFBC lossless colorspace transform 625 * 626 * Indicates that the buffer makes use of the AFBC lossless colorspace 627 * transform. 628 */ 629 #define AFBC_FORMAT_MOD_YTR (1ULL << 4) 630 631 /* 632 * AFBC block-split 633 * 634 * Indicates that the payload of each superblock is split. The second 635 * half of the payload is positioned at a predefined offset from the start 636 * of the superblock payload. 637 */ 638 #define AFBC_FORMAT_MOD_SPLIT (1ULL << 5) 639 640 /* 641 * AFBC sparse layout 642 * 643 * This flag indicates that the payload of each superblock must be stored at a 644 * predefined position relative to the other superblocks in the same AFBC 645 * buffer. This order is the same order used by the header buffer. In this mode 646 * each superblock is given the same amount of space as an uncompressed 647 * superblock of the particular format would require, rounding up to the next 648 * multiple of 128 bytes in size. 649 */ 650 #define AFBC_FORMAT_MOD_SPARSE (1ULL << 6) 651 652 /* 653 * AFBC copy-block restrict 654 * 655 * Buffers with this flag must obey the copy-block restriction. The restriction 656 * is such that there are no copy-blocks referring across the border of 8x8 657 * blocks. For the subsampled data the 8x8 limitation is also subsampled. 658 */ 659 #define AFBC_FORMAT_MOD_CBR (1ULL << 7) 660 661 /* 662 * AFBC tiled layout 663 * 664 * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all 665 * superblocks inside a tile are stored together in memory. 8x8 tiles are used 666 * for pixel formats up to and including 32 bpp while 4x4 tiles are used for 667 * larger bpp formats. The order between the tiles is scan line. 668 * When the tiled layout is used, the buffer size (in pixels) must be aligned 669 * to the tile size. 670 */ 671 #define AFBC_FORMAT_MOD_TILED (1ULL << 8) 672 673 /* 674 * AFBC solid color blocks 675 * 676 * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth 677 * can be reduced if a whole superblock is a single color. 678 */ 679 #define AFBC_FORMAT_MOD_SC (1ULL << 9) 680 681 /* 682 * AFBC double-buffer 683 * 684 * Indicates that the buffer is allocated in a layout safe for front-buffer 685 * rendering. 686 */ 687 #define AFBC_FORMAT_MOD_DB (1ULL << 10) 688 689 /* 690 * AFBC buffer content hints 691 * 692 * Indicates that the buffer includes per-superblock content hints. 693 */ 694 #define AFBC_FORMAT_MOD_BCH (1ULL << 11) 695 696 /* 697 * Allwinner tiled modifier 698 * 699 * This tiling mode is implemented by the VPU found on all Allwinner platforms, 700 * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3 701 * planes. 702 * 703 * With this tiling, the luminance samples are disposed in tiles representing 704 * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels. 705 * The pixel order in each tile is linear and the tiles are disposed linearly, 706 * both in row-major order. 707 */ 708 #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1) 709 710 #if defined(__cplusplus) 711 } 712 #endif 713 714 #endif /* DRM_FOURCC_H */ 715