1 /* 2 * Copyright 2011 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #ifndef DRM_FOURCC_H 25 #define DRM_FOURCC_H 26 27 #include "drm.h" 28 29 #if defined(__cplusplus) 30 extern "C" { 31 #endif 32 33 /** 34 * DOC: overview 35 * 36 * In the DRM subsystem, framebuffer pixel formats are described using the 37 * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the 38 * fourcc code, a Format Modifier may optionally be provided, in order to 39 * further describe the buffer's format - for example tiling or compression. 40 * 41 * Format Modifiers 42 * ---------------- 43 * 44 * Format modifiers are used in conjunction with a fourcc code, forming a 45 * unique fourcc:modifier pair. This format:modifier pair must fully define the 46 * format and data layout of the buffer, and should be the only way to describe 47 * that particular buffer. 48 * 49 * Having multiple fourcc:modifier pairs which describe the same layout should 50 * be avoided, as such aliases run the risk of different drivers exposing 51 * different names for the same data format, forcing userspace to understand 52 * that they are aliases. 53 * 54 * Format modifiers may change any property of the buffer, including the number 55 * of planes and/or the required allocation size. Format modifiers are 56 * vendor-namespaced, and as such the relationship between a fourcc code and a 57 * modifier is specific to the modifer being used. For example, some modifiers 58 * may preserve meaning - such as number of planes - from the fourcc code, 59 * whereas others may not. 60 * 61 * Vendors should document their modifier usage in as much detail as 62 * possible, to ensure maximum compatibility across devices, drivers and 63 * applications. 64 * 65 * The authoritative list of format modifier codes is found in 66 * `include/uapi/drm/drm_fourcc.h` 67 */ 68 69 #define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \ 70 ((__u32)(c) << 16) | ((__u32)(d) << 24)) 71 72 #define DRM_FORMAT_BIG_ENDIAN (1<<31) /* format is big endian instead of little endian */ 73 74 /* color index */ 75 #define DRM_FORMAT_C8 fourcc_code('C', '8', ' ', ' ') /* [7:0] C */ 76 77 /* 8 bpp Red */ 78 #define DRM_FORMAT_R8 fourcc_code('R', '8', ' ', ' ') /* [7:0] R */ 79 80 /* 16 bpp Red */ 81 #define DRM_FORMAT_R16 fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */ 82 83 /* 16 bpp RG */ 84 #define DRM_FORMAT_RG88 fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */ 85 #define DRM_FORMAT_GR88 fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */ 86 87 /* 32 bpp RG */ 88 #define DRM_FORMAT_RG1616 fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */ 89 #define DRM_FORMAT_GR1616 fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */ 90 91 /* 8 bpp RGB */ 92 #define DRM_FORMAT_RGB332 fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */ 93 #define DRM_FORMAT_BGR233 fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */ 94 95 /* 16 bpp RGB */ 96 #define DRM_FORMAT_XRGB4444 fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */ 97 #define DRM_FORMAT_XBGR4444 fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */ 98 #define DRM_FORMAT_RGBX4444 fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */ 99 #define DRM_FORMAT_BGRX4444 fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */ 100 101 #define DRM_FORMAT_ARGB4444 fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */ 102 #define DRM_FORMAT_ABGR4444 fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */ 103 #define DRM_FORMAT_RGBA4444 fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */ 104 #define DRM_FORMAT_BGRA4444 fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */ 105 106 #define DRM_FORMAT_XRGB1555 fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */ 107 #define DRM_FORMAT_XBGR1555 fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */ 108 #define DRM_FORMAT_RGBX5551 fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */ 109 #define DRM_FORMAT_BGRX5551 fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */ 110 111 #define DRM_FORMAT_ARGB1555 fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */ 112 #define DRM_FORMAT_ABGR1555 fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */ 113 #define DRM_FORMAT_RGBA5551 fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */ 114 #define DRM_FORMAT_BGRA5551 fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */ 115 116 #define DRM_FORMAT_RGB565 fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */ 117 #define DRM_FORMAT_BGR565 fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */ 118 119 /* 24 bpp RGB */ 120 #define DRM_FORMAT_RGB888 fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */ 121 #define DRM_FORMAT_BGR888 fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */ 122 123 /* 32 bpp RGB */ 124 #define DRM_FORMAT_XRGB8888 fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */ 125 #define DRM_FORMAT_XBGR8888 fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */ 126 #define DRM_FORMAT_RGBX8888 fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */ 127 #define DRM_FORMAT_BGRX8888 fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */ 128 129 #define DRM_FORMAT_ARGB8888 fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */ 130 #define DRM_FORMAT_ABGR8888 fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */ 131 #define DRM_FORMAT_RGBA8888 fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */ 132 #define DRM_FORMAT_BGRA8888 fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */ 133 134 #define DRM_FORMAT_XRGB2101010 fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */ 135 #define DRM_FORMAT_XBGR2101010 fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */ 136 #define DRM_FORMAT_RGBX1010102 fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */ 137 #define DRM_FORMAT_BGRX1010102 fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */ 138 139 #define DRM_FORMAT_ARGB2101010 fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */ 140 #define DRM_FORMAT_ABGR2101010 fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */ 141 #define DRM_FORMAT_RGBA1010102 fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */ 142 #define DRM_FORMAT_BGRA1010102 fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */ 143 144 /* packed YCbCr */ 145 #define DRM_FORMAT_YUYV fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */ 146 #define DRM_FORMAT_YVYU fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */ 147 #define DRM_FORMAT_UYVY fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */ 148 #define DRM_FORMAT_VYUY fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */ 149 150 #define DRM_FORMAT_AYUV fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */ 151 152 /* 153 * 2 plane RGB + A 154 * index 0 = RGB plane, same format as the corresponding non _A8 format has 155 * index 1 = A plane, [7:0] A 156 */ 157 #define DRM_FORMAT_XRGB8888_A8 fourcc_code('X', 'R', 'A', '8') 158 #define DRM_FORMAT_XBGR8888_A8 fourcc_code('X', 'B', 'A', '8') 159 #define DRM_FORMAT_RGBX8888_A8 fourcc_code('R', 'X', 'A', '8') 160 #define DRM_FORMAT_BGRX8888_A8 fourcc_code('B', 'X', 'A', '8') 161 #define DRM_FORMAT_RGB888_A8 fourcc_code('R', '8', 'A', '8') 162 #define DRM_FORMAT_BGR888_A8 fourcc_code('B', '8', 'A', '8') 163 #define DRM_FORMAT_RGB565_A8 fourcc_code('R', '5', 'A', '8') 164 #define DRM_FORMAT_BGR565_A8 fourcc_code('B', '5', 'A', '8') 165 166 /* 167 * 2 plane YCbCr 168 * index 0 = Y plane, [7:0] Y 169 * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian 170 * or 171 * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian 172 */ 173 #define DRM_FORMAT_NV12 fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */ 174 #define DRM_FORMAT_NV21 fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */ 175 #define DRM_FORMAT_NV16 fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */ 176 #define DRM_FORMAT_NV61 fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */ 177 #define DRM_FORMAT_NV24 fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */ 178 #define DRM_FORMAT_NV42 fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */ 179 180 /* 181 * 3 plane YCbCr 182 * index 0: Y plane, [7:0] Y 183 * index 1: Cb plane, [7:0] Cb 184 * index 2: Cr plane, [7:0] Cr 185 * or 186 * index 1: Cr plane, [7:0] Cr 187 * index 2: Cb plane, [7:0] Cb 188 */ 189 #define DRM_FORMAT_YUV410 fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */ 190 #define DRM_FORMAT_YVU410 fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */ 191 #define DRM_FORMAT_YUV411 fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */ 192 #define DRM_FORMAT_YVU411 fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */ 193 #define DRM_FORMAT_YUV420 fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */ 194 #define DRM_FORMAT_YVU420 fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */ 195 #define DRM_FORMAT_YUV422 fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */ 196 #define DRM_FORMAT_YVU422 fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */ 197 #define DRM_FORMAT_YUV444 fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */ 198 #define DRM_FORMAT_YVU444 fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */ 199 200 201 /* 202 * Format Modifiers: 203 * 204 * Format modifiers describe, typically, a re-ordering or modification 205 * of the data in a plane of an FB. This can be used to express tiled/ 206 * swizzled formats, or compression, or a combination of the two. 207 * 208 * The upper 8 bits of the format modifier are a vendor-id as assigned 209 * below. The lower 56 bits are assigned as vendor sees fit. 210 */ 211 212 /* Vendor Ids: */ 213 #define DRM_FORMAT_MOD_NONE 0 214 #define DRM_FORMAT_MOD_VENDOR_NONE 0 215 #define DRM_FORMAT_MOD_VENDOR_INTEL 0x01 216 #define DRM_FORMAT_MOD_VENDOR_AMD 0x02 217 #define DRM_FORMAT_MOD_VENDOR_NVIDIA 0x03 218 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04 219 #define DRM_FORMAT_MOD_VENDOR_QCOM 0x05 220 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06 221 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07 222 #define DRM_FORMAT_MOD_VENDOR_ARM 0x08 223 /* add more to the end as needed */ 224 225 #define DRM_FORMAT_RESERVED ((1ULL << 56) - 1) 226 227 #define fourcc_mod_code(vendor, val) \ 228 ((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL)) 229 230 /* 231 * Format Modifier tokens: 232 * 233 * When adding a new token please document the layout with a code comment, 234 * similar to the fourcc codes above. drm_fourcc.h is considered the 235 * authoritative source for all of these. 236 */ 237 238 /* 239 * Invalid Modifier 240 * 241 * This modifier can be used as a sentinel to terminate the format modifiers 242 * list, or to initialize a variable with an invalid modifier. It might also be 243 * used to report an error back to userspace for certain APIs. 244 */ 245 #define DRM_FORMAT_MOD_INVALID fourcc_mod_code(NONE, DRM_FORMAT_RESERVED) 246 247 /* 248 * Linear Layout 249 * 250 * Just plain linear layout. Note that this is different from no specifying any 251 * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl), 252 * which tells the driver to also take driver-internal information into account 253 * and so might actually result in a tiled framebuffer. 254 */ 255 #define DRM_FORMAT_MOD_LINEAR fourcc_mod_code(NONE, 0) 256 257 /* Intel framebuffer modifiers */ 258 259 /* 260 * Intel X-tiling layout 261 * 262 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb) 263 * in row-major layout. Within the tile bytes are laid out row-major, with 264 * a platform-dependent stride. On top of that the memory can apply 265 * platform-depending swizzling of some higher address bits into bit6. 266 * 267 * This format is highly platforms specific and not useful for cross-driver 268 * sharing. It exists since on a given platform it does uniquely identify the 269 * layout in a simple way for i915-specific userspace. 270 */ 271 #define I915_FORMAT_MOD_X_TILED fourcc_mod_code(INTEL, 1) 272 273 /* 274 * Intel Y-tiling layout 275 * 276 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb) 277 * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes) 278 * chunks column-major, with a platform-dependent height. On top of that the 279 * memory can apply platform-depending swizzling of some higher address bits 280 * into bit6. 281 * 282 * This format is highly platforms specific and not useful for cross-driver 283 * sharing. It exists since on a given platform it does uniquely identify the 284 * layout in a simple way for i915-specific userspace. 285 */ 286 #define I915_FORMAT_MOD_Y_TILED fourcc_mod_code(INTEL, 2) 287 288 /* 289 * Intel Yf-tiling layout 290 * 291 * This is a tiled layout using 4Kb tiles in row-major layout. 292 * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which 293 * are arranged in four groups (two wide, two high) with column-major layout. 294 * Each group therefore consits out of four 256 byte units, which are also laid 295 * out as 2x2 column-major. 296 * 256 byte units are made out of four 64 byte blocks of pixels, producing 297 * either a square block or a 2:1 unit. 298 * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width 299 * in pixel depends on the pixel depth. 300 */ 301 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3) 302 303 /* 304 * Intel color control surface (CCS) for render compression 305 * 306 * The framebuffer format must be one of the 8:8:8:8 RGB formats. 307 * The main surface will be plane index 0 and must be Y/Yf-tiled, 308 * the CCS will be plane index 1. 309 * 310 * Each CCS tile matches a 1024x512 pixel area of the main surface. 311 * To match certain aspects of the 3D hardware the CCS is 312 * considered to be made up of normal 128Bx32 Y tiles, Thus 313 * the CCS pitch must be specified in multiples of 128 bytes. 314 * 315 * In reality the CCS tile appears to be a 64Bx64 Y tile, composed 316 * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks. 317 * But that fact is not relevant unless the memory is accessed 318 * directly. 319 */ 320 #define I915_FORMAT_MOD_Y_TILED_CCS fourcc_mod_code(INTEL, 4) 321 #define I915_FORMAT_MOD_Yf_TILED_CCS fourcc_mod_code(INTEL, 5) 322 323 /* 324 * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks 325 * 326 * Macroblocks are laid in a Z-shape, and each pixel data is following the 327 * standard NV12 style. 328 * As for NV12, an image is the result of two frame buffers: one for Y, 329 * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer). 330 * Alignment requirements are (for each buffer): 331 * - multiple of 128 pixels for the width 332 * - multiple of 32 pixels for the height 333 * 334 * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html 335 */ 336 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE fourcc_mod_code(SAMSUNG, 1) 337 338 /* 339 * Qualcomm Compressed Format 340 * 341 * Refers to a compressed variant of the base format that is compressed. 342 * Implementation may be platform and base-format specific. 343 * 344 * Each macrotile consists of m x n (mostly 4 x 4) tiles. 345 * Pixel data pitch/stride is aligned with macrotile width. 346 * Pixel data height is aligned with macrotile height. 347 * Entire pixel data buffer is aligned with 4k(bytes). 348 */ 349 #define DRM_FORMAT_MOD_QCOM_COMPRESSED fourcc_mod_code(QCOM, 1) 350 351 /* Vivante framebuffer modifiers */ 352 353 /* 354 * Vivante 4x4 tiling layout 355 * 356 * This is a simple tiled layout using tiles of 4x4 pixels in a row-major 357 * layout. 358 */ 359 #define DRM_FORMAT_MOD_VIVANTE_TILED fourcc_mod_code(VIVANTE, 1) 360 361 /* 362 * Vivante 64x64 super-tiling layout 363 * 364 * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile 365 * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row- 366 * major layout. 367 * 368 * For more information: see 369 * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling 370 */ 371 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED fourcc_mod_code(VIVANTE, 2) 372 373 /* 374 * Vivante 4x4 tiling layout for dual-pipe 375 * 376 * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a 377 * different base address. Offsets from the base addresses are therefore halved 378 * compared to the non-split tiled layout. 379 */ 380 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED fourcc_mod_code(VIVANTE, 3) 381 382 /* 383 * Vivante 64x64 super-tiling layout for dual-pipe 384 * 385 * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile 386 * starts at a different base address. Offsets from the base addresses are 387 * therefore halved compared to the non-split super-tiled layout. 388 */ 389 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4) 390 391 /* NVIDIA frame buffer modifiers */ 392 393 /* 394 * Tegra Tiled Layout, used by Tegra 2, 3 and 4. 395 * 396 * Pixels are arranged in simple tiles of 16 x 16 bytes. 397 */ 398 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1) 399 400 /* 401 * 16Bx2 Block Linear layout, used by desktop GPUs, and Tegra K1 and later 402 * 403 * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked 404 * vertically by a power of 2 (1 to 32 GOBs) to form a block. 405 * 406 * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape. 407 * 408 * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically. 409 * Valid values are: 410 * 411 * 0 == ONE_GOB 412 * 1 == TWO_GOBS 413 * 2 == FOUR_GOBS 414 * 3 == EIGHT_GOBS 415 * 4 == SIXTEEN_GOBS 416 * 5 == THIRTYTWO_GOBS 417 * 418 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format 419 * in full detail. 420 */ 421 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \ 422 fourcc_mod_code(NVIDIA, 0x10 | ((v) & 0xf)) 423 424 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \ 425 fourcc_mod_code(NVIDIA, 0x10) 426 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \ 427 fourcc_mod_code(NVIDIA, 0x11) 428 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \ 429 fourcc_mod_code(NVIDIA, 0x12) 430 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \ 431 fourcc_mod_code(NVIDIA, 0x13) 432 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \ 433 fourcc_mod_code(NVIDIA, 0x14) 434 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \ 435 fourcc_mod_code(NVIDIA, 0x15) 436 437 /* 438 * Some Broadcom modifiers take parameters, for example the number of 439 * vertical lines in the image. Reserve the lower 32 bits for modifier 440 * type, and the next 24 bits for parameters. Top 8 bits are the 441 * vendor code. 442 */ 443 #define __fourcc_mod_broadcom_param_shift 8 444 #define __fourcc_mod_broadcom_param_bits 48 445 #define fourcc_mod_broadcom_code(val, params) \ 446 fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val)) 447 #define fourcc_mod_broadcom_param(m) \ 448 ((int)(((m) >> __fourcc_mod_broadcom_param_shift) & \ 449 ((1ULL << __fourcc_mod_broadcom_param_bits) - 1))) 450 #define fourcc_mod_broadcom_mod(m) \ 451 ((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) << \ 452 __fourcc_mod_broadcom_param_shift)) 453 454 /* 455 * Broadcom VC4 "T" format 456 * 457 * This is the primary layout that the V3D GPU can texture from (it 458 * can't do linear). The T format has: 459 * 460 * - 64b utiles of pixels in a raster-order grid according to cpp. It's 4x4 461 * pixels at 32 bit depth. 462 * 463 * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually 464 * 16x16 pixels). 465 * 466 * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels). On 467 * even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows 468 * they're (TR, BR, BL, TL), where bottom left is start of memory. 469 * 470 * - an image made of 4k tiles in rows either left-to-right (even rows of 4k 471 * tiles) or right-to-left (odd rows of 4k tiles). 472 */ 473 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1) 474 475 /* 476 * Broadcom SAND format 477 * 478 * This is the native format that the H.264 codec block uses. For VC4 479 * HVS, it is only valid for H.264 (NV12/21) and RGBA modes. 480 * 481 * The image can be considered to be split into columns, and the 482 * columns are placed consecutively into memory. The width of those 483 * columns can be either 32, 64, 128, or 256 pixels, but in practice 484 * only 128 pixel columns are used. 485 * 486 * The pitch between the start of each column is set to optimally 487 * switch between SDRAM banks. This is passed as the number of lines 488 * of column width in the modifier (we can't use the stride value due 489 * to various core checks that look at it , so you should set the 490 * stride to width*cpp). 491 * 492 * Note that the column height for this format modifier is the same 493 * for all of the planes, assuming that each column contains both Y 494 * and UV. Some SAND-using hardware stores UV in a separate tiled 495 * image from Y to reduce the column height, which is not supported 496 * with these modifiers. 497 */ 498 499 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \ 500 fourcc_mod_broadcom_code(2, v) 501 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \ 502 fourcc_mod_broadcom_code(3, v) 503 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \ 504 fourcc_mod_broadcom_code(4, v) 505 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \ 506 fourcc_mod_broadcom_code(5, v) 507 508 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \ 509 DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0) 510 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \ 511 DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0) 512 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \ 513 DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0) 514 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \ 515 DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0) 516 517 /* Broadcom UIF format 518 * 519 * This is the common format for the current Broadcom multimedia 520 * blocks, including V3D 3.x and newer, newer video codecs, and 521 * displays. 522 * 523 * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles), 524 * and macroblocks (4x4 UIF blocks). Those 4x4 UIF block groups are 525 * stored in columns, with padding between the columns to ensure that 526 * moving from one column to the next doesn't hit the same SDRAM page 527 * bank. 528 * 529 * To calculate the padding, it is assumed that each hardware block 530 * and the software driving it knows the platform's SDRAM page size, 531 * number of banks, and XOR address, and that it's identical between 532 * all blocks using the format. This tiling modifier will use XOR as 533 * necessary to reduce the padding. If a hardware block can't do XOR, 534 * the assumption is that a no-XOR tiling modifier will be created. 535 */ 536 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6) 537 538 /* 539 * Arm Framebuffer Compression (AFBC) modifiers 540 * 541 * AFBC is a proprietary lossless image compression protocol and format. 542 * It provides fine-grained random access and minimizes the amount of data 543 * transferred between IP blocks. 544 * 545 * AFBC has several features which may be supported and/or used, which are 546 * represented using bits in the modifier. Not all combinations are valid, 547 * and different devices or use-cases may support different combinations. 548 */ 549 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) fourcc_mod_code(ARM, __afbc_mode) 550 551 /* 552 * AFBC superblock size 553 * 554 * Indicates the superblock size(s) used for the AFBC buffer. The buffer 555 * size (in pixels) must be aligned to a multiple of the superblock size. 556 * Four lowest significant bits(LSBs) are reserved for block size. 557 */ 558 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK 0xf 559 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16 (1ULL) 560 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8 (2ULL) 561 562 /* 563 * AFBC lossless colorspace transform 564 * 565 * Indicates that the buffer makes use of the AFBC lossless colorspace 566 * transform. 567 */ 568 #define AFBC_FORMAT_MOD_YTR (1ULL << 4) 569 570 /* 571 * AFBC block-split 572 * 573 * Indicates that the payload of each superblock is split. The second 574 * half of the payload is positioned at a predefined offset from the start 575 * of the superblock payload. 576 */ 577 #define AFBC_FORMAT_MOD_SPLIT (1ULL << 5) 578 579 /* 580 * AFBC sparse layout 581 * 582 * This flag indicates that the payload of each superblock must be stored at a 583 * predefined position relative to the other superblocks in the same AFBC 584 * buffer. This order is the same order used by the header buffer. In this mode 585 * each superblock is given the same amount of space as an uncompressed 586 * superblock of the particular format would require, rounding up to the next 587 * multiple of 128 bytes in size. 588 */ 589 #define AFBC_FORMAT_MOD_SPARSE (1ULL << 6) 590 591 /* 592 * AFBC copy-block restrict 593 * 594 * Buffers with this flag must obey the copy-block restriction. The restriction 595 * is such that there are no copy-blocks referring across the border of 8x8 596 * blocks. For the subsampled data the 8x8 limitation is also subsampled. 597 */ 598 #define AFBC_FORMAT_MOD_CBR (1ULL << 7) 599 600 /* 601 * AFBC tiled layout 602 * 603 * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all 604 * superblocks inside a tile are stored together in memory. 8x8 tiles are used 605 * for pixel formats up to and including 32 bpp while 4x4 tiles are used for 606 * larger bpp formats. The order between the tiles is scan line. 607 * When the tiled layout is used, the buffer size (in pixels) must be aligned 608 * to the tile size. 609 */ 610 #define AFBC_FORMAT_MOD_TILED (1ULL << 8) 611 612 /* 613 * AFBC solid color blocks 614 * 615 * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth 616 * can be reduced if a whole superblock is a single color. 617 */ 618 #define AFBC_FORMAT_MOD_SC (1ULL << 9) 619 620 #if defined(__cplusplus) 621 } 622 #endif 623 624 #endif /* DRM_FOURCC_H */ 625