1 /* 2 * Copyright 2011 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #ifndef DRM_FOURCC_H 25 #define DRM_FOURCC_H 26 27 #include "drm.h" 28 29 #if defined(__cplusplus) 30 extern "C" { 31 #endif 32 33 /** 34 * DOC: overview 35 * 36 * In the DRM subsystem, framebuffer pixel formats are described using the 37 * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the 38 * fourcc code, a Format Modifier may optionally be provided, in order to 39 * further describe the buffer's format - for example tiling or compression. 40 * 41 * Format Modifiers 42 * ---------------- 43 * 44 * Format modifiers are used in conjunction with a fourcc code, forming a 45 * unique fourcc:modifier pair. This format:modifier pair must fully define the 46 * format and data layout of the buffer, and should be the only way to describe 47 * that particular buffer. 48 * 49 * Having multiple fourcc:modifier pairs which describe the same layout should 50 * be avoided, as such aliases run the risk of different drivers exposing 51 * different names for the same data format, forcing userspace to understand 52 * that they are aliases. 53 * 54 * Format modifiers may change any property of the buffer, including the number 55 * of planes and/or the required allocation size. Format modifiers are 56 * vendor-namespaced, and as such the relationship between a fourcc code and a 57 * modifier is specific to the modifer being used. For example, some modifiers 58 * may preserve meaning - such as number of planes - from the fourcc code, 59 * whereas others may not. 60 * 61 * Modifiers must uniquely encode buffer layout. In other words, a buffer must 62 * match only a single modifier. A modifier must not be a subset of layouts of 63 * another modifier. For instance, it's incorrect to encode pitch alignment in 64 * a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel 65 * aligned modifier. That said, modifiers can have implicit minimal 66 * requirements. 67 * 68 * For modifiers where the combination of fourcc code and modifier can alias, 69 * a canonical pair needs to be defined and used by all drivers. Preferred 70 * combinations are also encouraged where all combinations might lead to 71 * confusion and unnecessarily reduced interoperability. An example for the 72 * latter is AFBC, where the ABGR layouts are preferred over ARGB layouts. 73 * 74 * There are two kinds of modifier users: 75 * 76 * - Kernel and user-space drivers: for drivers it's important that modifiers 77 * don't alias, otherwise two drivers might support the same format but use 78 * different aliases, preventing them from sharing buffers in an efficient 79 * format. 80 * - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users 81 * see modifiers as opaque tokens they can check for equality and intersect. 82 * These users musn't need to know to reason about the modifier value 83 * (i.e. they are not expected to extract information out of the modifier). 84 * 85 * Vendors should document their modifier usage in as much detail as 86 * possible, to ensure maximum compatibility across devices, drivers and 87 * applications. 88 * 89 * The authoritative list of format modifier codes is found in 90 * `include/uapi/drm/drm_fourcc.h` 91 */ 92 93 #define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \ 94 ((__u32)(c) << 16) | ((__u32)(d) << 24)) 95 96 #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */ 97 98 /* Reserve 0 for the invalid format specifier */ 99 #define DRM_FORMAT_INVALID 0 100 101 /* color index */ 102 #define DRM_FORMAT_C8 fourcc_code('C', '8', ' ', ' ') /* [7:0] C */ 103 104 /* 8 bpp Red */ 105 #define DRM_FORMAT_R8 fourcc_code('R', '8', ' ', ' ') /* [7:0] R */ 106 107 /* 10 bpp Red */ 108 #define DRM_FORMAT_R10 fourcc_code('R', '1', '0', ' ') /* [15:0] x:R 6:10 little endian */ 109 110 /* 12 bpp Red */ 111 #define DRM_FORMAT_R12 fourcc_code('R', '1', '2', ' ') /* [15:0] x:R 4:12 little endian */ 112 113 /* 16 bpp Red */ 114 #define DRM_FORMAT_R16 fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */ 115 116 /* 16 bpp RG */ 117 #define DRM_FORMAT_RG88 fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */ 118 #define DRM_FORMAT_GR88 fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */ 119 120 /* 32 bpp RG */ 121 #define DRM_FORMAT_RG1616 fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */ 122 #define DRM_FORMAT_GR1616 fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */ 123 124 /* 8 bpp RGB */ 125 #define DRM_FORMAT_RGB332 fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */ 126 #define DRM_FORMAT_BGR233 fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */ 127 128 /* 16 bpp RGB */ 129 #define DRM_FORMAT_XRGB4444 fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */ 130 #define DRM_FORMAT_XBGR4444 fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */ 131 #define DRM_FORMAT_RGBX4444 fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */ 132 #define DRM_FORMAT_BGRX4444 fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */ 133 134 #define DRM_FORMAT_ARGB4444 fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */ 135 #define DRM_FORMAT_ABGR4444 fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */ 136 #define DRM_FORMAT_RGBA4444 fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */ 137 #define DRM_FORMAT_BGRA4444 fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */ 138 139 #define DRM_FORMAT_XRGB1555 fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */ 140 #define DRM_FORMAT_XBGR1555 fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */ 141 #define DRM_FORMAT_RGBX5551 fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */ 142 #define DRM_FORMAT_BGRX5551 fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */ 143 144 #define DRM_FORMAT_ARGB1555 fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */ 145 #define DRM_FORMAT_ABGR1555 fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */ 146 #define DRM_FORMAT_RGBA5551 fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */ 147 #define DRM_FORMAT_BGRA5551 fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */ 148 149 #define DRM_FORMAT_RGB565 fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */ 150 #define DRM_FORMAT_BGR565 fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */ 151 152 /* 24 bpp RGB */ 153 #define DRM_FORMAT_RGB888 fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */ 154 #define DRM_FORMAT_BGR888 fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */ 155 156 /* 32 bpp RGB */ 157 #define DRM_FORMAT_XRGB8888 fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */ 158 #define DRM_FORMAT_XBGR8888 fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */ 159 #define DRM_FORMAT_RGBX8888 fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */ 160 #define DRM_FORMAT_BGRX8888 fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */ 161 162 #define DRM_FORMAT_ARGB8888 fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */ 163 #define DRM_FORMAT_ABGR8888 fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */ 164 #define DRM_FORMAT_RGBA8888 fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */ 165 #define DRM_FORMAT_BGRA8888 fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */ 166 167 #define DRM_FORMAT_XRGB2101010 fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */ 168 #define DRM_FORMAT_XBGR2101010 fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */ 169 #define DRM_FORMAT_RGBX1010102 fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */ 170 #define DRM_FORMAT_BGRX1010102 fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */ 171 172 #define DRM_FORMAT_ARGB2101010 fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */ 173 #define DRM_FORMAT_ABGR2101010 fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */ 174 #define DRM_FORMAT_RGBA1010102 fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */ 175 #define DRM_FORMAT_BGRA1010102 fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */ 176 177 /* 64 bpp RGB */ 178 #define DRM_FORMAT_XRGB16161616 fourcc_code('X', 'R', '4', '8') /* [63:0] x:R:G:B 16:16:16:16 little endian */ 179 #define DRM_FORMAT_XBGR16161616 fourcc_code('X', 'B', '4', '8') /* [63:0] x:B:G:R 16:16:16:16 little endian */ 180 181 #define DRM_FORMAT_ARGB16161616 fourcc_code('A', 'R', '4', '8') /* [63:0] A:R:G:B 16:16:16:16 little endian */ 182 #define DRM_FORMAT_ABGR16161616 fourcc_code('A', 'B', '4', '8') /* [63:0] A:B:G:R 16:16:16:16 little endian */ 183 184 /* 185 * Floating point 64bpp RGB 186 * IEEE 754-2008 binary16 half-precision float 187 * [15:0] sign:exponent:mantissa 1:5:10 188 */ 189 #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */ 190 #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */ 191 192 #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */ 193 #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */ 194 195 /* 196 * RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits 197 * of unused padding per component: 198 */ 199 #define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */ 200 201 /* packed YCbCr */ 202 #define DRM_FORMAT_YUYV fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */ 203 #define DRM_FORMAT_YVYU fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */ 204 #define DRM_FORMAT_UYVY fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */ 205 #define DRM_FORMAT_VYUY fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */ 206 207 #define DRM_FORMAT_AYUV fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */ 208 #define DRM_FORMAT_XYUV8888 fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */ 209 #define DRM_FORMAT_VUY888 fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */ 210 #define DRM_FORMAT_VUY101010 fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */ 211 212 /* 213 * packed Y2xx indicate for each component, xx valid data occupy msb 214 * 16-xx padding occupy lsb 215 */ 216 #define DRM_FORMAT_Y210 fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */ 217 #define DRM_FORMAT_Y212 fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */ 218 #define DRM_FORMAT_Y216 fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */ 219 220 /* 221 * packed Y4xx indicate for each component, xx valid data occupy msb 222 * 16-xx padding occupy lsb except Y410 223 */ 224 #define DRM_FORMAT_Y410 fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */ 225 #define DRM_FORMAT_Y412 fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */ 226 #define DRM_FORMAT_Y416 fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */ 227 228 #define DRM_FORMAT_XVYU2101010 fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */ 229 #define DRM_FORMAT_XVYU12_16161616 fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */ 230 #define DRM_FORMAT_XVYU16161616 fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */ 231 232 /* 233 * packed YCbCr420 2x2 tiled formats 234 * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile 235 */ 236 /* [63:0] A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */ 237 #define DRM_FORMAT_Y0L0 fourcc_code('Y', '0', 'L', '0') 238 /* [63:0] X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */ 239 #define DRM_FORMAT_X0L0 fourcc_code('X', '0', 'L', '0') 240 241 /* [63:0] A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */ 242 #define DRM_FORMAT_Y0L2 fourcc_code('Y', '0', 'L', '2') 243 /* [63:0] X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */ 244 #define DRM_FORMAT_X0L2 fourcc_code('X', '0', 'L', '2') 245 246 /* 247 * 1-plane YUV 4:2:0 248 * In these formats, the component ordering is specified (Y, followed by U 249 * then V), but the exact Linear layout is undefined. 250 * These formats can only be used with a non-Linear modifier. 251 */ 252 #define DRM_FORMAT_YUV420_8BIT fourcc_code('Y', 'U', '0', '8') 253 #define DRM_FORMAT_YUV420_10BIT fourcc_code('Y', 'U', '1', '0') 254 255 /* 256 * 2 plane RGB + A 257 * index 0 = RGB plane, same format as the corresponding non _A8 format has 258 * index 1 = A plane, [7:0] A 259 */ 260 #define DRM_FORMAT_XRGB8888_A8 fourcc_code('X', 'R', 'A', '8') 261 #define DRM_FORMAT_XBGR8888_A8 fourcc_code('X', 'B', 'A', '8') 262 #define DRM_FORMAT_RGBX8888_A8 fourcc_code('R', 'X', 'A', '8') 263 #define DRM_FORMAT_BGRX8888_A8 fourcc_code('B', 'X', 'A', '8') 264 #define DRM_FORMAT_RGB888_A8 fourcc_code('R', '8', 'A', '8') 265 #define DRM_FORMAT_BGR888_A8 fourcc_code('B', '8', 'A', '8') 266 #define DRM_FORMAT_RGB565_A8 fourcc_code('R', '5', 'A', '8') 267 #define DRM_FORMAT_BGR565_A8 fourcc_code('B', '5', 'A', '8') 268 269 /* 270 * 2 plane YCbCr 271 * index 0 = Y plane, [7:0] Y 272 * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian 273 * or 274 * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian 275 */ 276 #define DRM_FORMAT_NV12 fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */ 277 #define DRM_FORMAT_NV21 fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */ 278 #define DRM_FORMAT_NV16 fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */ 279 #define DRM_FORMAT_NV61 fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */ 280 #define DRM_FORMAT_NV24 fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */ 281 #define DRM_FORMAT_NV42 fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */ 282 /* 283 * 2 plane YCbCr 284 * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian 285 * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian 286 */ 287 #define DRM_FORMAT_NV15 fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */ 288 289 /* 290 * 2 plane YCbCr MSB aligned 291 * index 0 = Y plane, [15:0] Y:x [10:6] little endian 292 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian 293 */ 294 #define DRM_FORMAT_P210 fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */ 295 296 /* 297 * 2 plane YCbCr MSB aligned 298 * index 0 = Y plane, [15:0] Y:x [10:6] little endian 299 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian 300 */ 301 #define DRM_FORMAT_P010 fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */ 302 303 /* 304 * 2 plane YCbCr MSB aligned 305 * index 0 = Y plane, [15:0] Y:x [12:4] little endian 306 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian 307 */ 308 #define DRM_FORMAT_P012 fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */ 309 310 /* 311 * 2 plane YCbCr MSB aligned 312 * index 0 = Y plane, [15:0] Y little endian 313 * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian 314 */ 315 #define DRM_FORMAT_P016 fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */ 316 317 /* 2 plane YCbCr420. 318 * 3 10 bit components and 2 padding bits packed into 4 bytes. 319 * index 0 = Y plane, [31:0] x:Y2:Y1:Y0 2:10:10:10 little endian 320 * index 1 = Cr:Cb plane, [63:0] x:Cr2:Cb2:Cr1:x:Cb1:Cr0:Cb0 [2:10:10:10:2:10:10:10] little endian 321 */ 322 #define DRM_FORMAT_P030 fourcc_code('P', '0', '3', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel packed */ 323 324 /* 3 plane non-subsampled (444) YCbCr 325 * 16 bits per component, but only 10 bits are used and 6 bits are padded 326 * index 0: Y plane, [15:0] Y:x [10:6] little endian 327 * index 1: Cb plane, [15:0] Cb:x [10:6] little endian 328 * index 2: Cr plane, [15:0] Cr:x [10:6] little endian 329 */ 330 #define DRM_FORMAT_Q410 fourcc_code('Q', '4', '1', '0') 331 332 /* 3 plane non-subsampled (444) YCrCb 333 * 16 bits per component, but only 10 bits are used and 6 bits are padded 334 * index 0: Y plane, [15:0] Y:x [10:6] little endian 335 * index 1: Cr plane, [15:0] Cr:x [10:6] little endian 336 * index 2: Cb plane, [15:0] Cb:x [10:6] little endian 337 */ 338 #define DRM_FORMAT_Q401 fourcc_code('Q', '4', '0', '1') 339 340 /* 341 * 3 plane YCbCr 342 * index 0: Y plane, [7:0] Y 343 * index 1: Cb plane, [7:0] Cb 344 * index 2: Cr plane, [7:0] Cr 345 * or 346 * index 1: Cr plane, [7:0] Cr 347 * index 2: Cb plane, [7:0] Cb 348 */ 349 #define DRM_FORMAT_YUV410 fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */ 350 #define DRM_FORMAT_YVU410 fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */ 351 #define DRM_FORMAT_YUV411 fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */ 352 #define DRM_FORMAT_YVU411 fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */ 353 #define DRM_FORMAT_YUV420 fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */ 354 #define DRM_FORMAT_YVU420 fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */ 355 #define DRM_FORMAT_YUV422 fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */ 356 #define DRM_FORMAT_YVU422 fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */ 357 #define DRM_FORMAT_YUV444 fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */ 358 #define DRM_FORMAT_YVU444 fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */ 359 360 361 /* 362 * Format Modifiers: 363 * 364 * Format modifiers describe, typically, a re-ordering or modification 365 * of the data in a plane of an FB. This can be used to express tiled/ 366 * swizzled formats, or compression, or a combination of the two. 367 * 368 * The upper 8 bits of the format modifier are a vendor-id as assigned 369 * below. The lower 56 bits are assigned as vendor sees fit. 370 */ 371 372 /* Vendor Ids: */ 373 #define DRM_FORMAT_MOD_VENDOR_NONE 0 374 #define DRM_FORMAT_MOD_VENDOR_INTEL 0x01 375 #define DRM_FORMAT_MOD_VENDOR_AMD 0x02 376 #define DRM_FORMAT_MOD_VENDOR_NVIDIA 0x03 377 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04 378 #define DRM_FORMAT_MOD_VENDOR_QCOM 0x05 379 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06 380 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07 381 #define DRM_FORMAT_MOD_VENDOR_ARM 0x08 382 #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09 383 #define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a 384 385 /* add more to the end as needed */ 386 387 #define DRM_FORMAT_RESERVED ((1ULL << 56) - 1) 388 389 #define fourcc_mod_get_vendor(modifier) \ 390 (((modifier) >> 56) & 0xff) 391 392 #define fourcc_mod_is_vendor(modifier, vendor) \ 393 (fourcc_mod_get_vendor(modifier) == DRM_FORMAT_MOD_VENDOR_## vendor) 394 395 #define fourcc_mod_code(vendor, val) \ 396 ((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL)) 397 398 /* 399 * Format Modifier tokens: 400 * 401 * When adding a new token please document the layout with a code comment, 402 * similar to the fourcc codes above. drm_fourcc.h is considered the 403 * authoritative source for all of these. 404 * 405 * Generic modifier names: 406 * 407 * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names 408 * for layouts which are common across multiple vendors. To preserve 409 * compatibility, in cases where a vendor-specific definition already exists and 410 * a generic name for it is desired, the common name is a purely symbolic alias 411 * and must use the same numerical value as the original definition. 412 * 413 * Note that generic names should only be used for modifiers which describe 414 * generic layouts (such as pixel re-ordering), which may have 415 * independently-developed support across multiple vendors. 416 * 417 * In future cases where a generic layout is identified before merging with a 418 * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor 419 * 'NONE' could be considered. This should only be for obvious, exceptional 420 * cases to avoid polluting the 'GENERIC' namespace with modifiers which only 421 * apply to a single vendor. 422 * 423 * Generic names should not be used for cases where multiple hardware vendors 424 * have implementations of the same standardised compression scheme (such as 425 * AFBC). In those cases, all implementations should use the same format 426 * modifier(s), reflecting the vendor of the standard. 427 */ 428 429 #define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE 430 431 /* 432 * Invalid Modifier 433 * 434 * This modifier can be used as a sentinel to terminate the format modifiers 435 * list, or to initialize a variable with an invalid modifier. It might also be 436 * used to report an error back to userspace for certain APIs. 437 */ 438 #define DRM_FORMAT_MOD_INVALID fourcc_mod_code(NONE, DRM_FORMAT_RESERVED) 439 440 /* 441 * Linear Layout 442 * 443 * Just plain linear layout. Note that this is different from no specifying any 444 * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl), 445 * which tells the driver to also take driver-internal information into account 446 * and so might actually result in a tiled framebuffer. 447 */ 448 #define DRM_FORMAT_MOD_LINEAR fourcc_mod_code(NONE, 0) 449 450 /* 451 * Deprecated: use DRM_FORMAT_MOD_LINEAR instead 452 * 453 * The "none" format modifier doesn't actually mean that the modifier is 454 * implicit, instead it means that the layout is linear. Whether modifiers are 455 * used is out-of-band information carried in an API-specific way (e.g. in a 456 * flag for drm_mode_fb_cmd2). 457 */ 458 #define DRM_FORMAT_MOD_NONE 0 459 460 /* Intel framebuffer modifiers */ 461 462 /* 463 * Intel X-tiling layout 464 * 465 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb) 466 * in row-major layout. Within the tile bytes are laid out row-major, with 467 * a platform-dependent stride. On top of that the memory can apply 468 * platform-depending swizzling of some higher address bits into bit6. 469 * 470 * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets. 471 * On earlier platforms the is highly platforms specific and not useful for 472 * cross-driver sharing. It exists since on a given platform it does uniquely 473 * identify the layout in a simple way for i915-specific userspace, which 474 * facilitated conversion of userspace to modifiers. Additionally the exact 475 * format on some really old platforms is not known. 476 */ 477 #define I915_FORMAT_MOD_X_TILED fourcc_mod_code(INTEL, 1) 478 479 /* 480 * Intel Y-tiling layout 481 * 482 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb) 483 * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes) 484 * chunks column-major, with a platform-dependent height. On top of that the 485 * memory can apply platform-depending swizzling of some higher address bits 486 * into bit6. 487 * 488 * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets. 489 * On earlier platforms the is highly platforms specific and not useful for 490 * cross-driver sharing. It exists since on a given platform it does uniquely 491 * identify the layout in a simple way for i915-specific userspace, which 492 * facilitated conversion of userspace to modifiers. Additionally the exact 493 * format on some really old platforms is not known. 494 */ 495 #define I915_FORMAT_MOD_Y_TILED fourcc_mod_code(INTEL, 2) 496 497 /* 498 * Intel Yf-tiling layout 499 * 500 * This is a tiled layout using 4Kb tiles in row-major layout. 501 * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which 502 * are arranged in four groups (two wide, two high) with column-major layout. 503 * Each group therefore consits out of four 256 byte units, which are also laid 504 * out as 2x2 column-major. 505 * 256 byte units are made out of four 64 byte blocks of pixels, producing 506 * either a square block or a 2:1 unit. 507 * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width 508 * in pixel depends on the pixel depth. 509 */ 510 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3) 511 512 /* 513 * Intel color control surface (CCS) for render compression 514 * 515 * The framebuffer format must be one of the 8:8:8:8 RGB formats. 516 * The main surface will be plane index 0 and must be Y/Yf-tiled, 517 * the CCS will be plane index 1. 518 * 519 * Each CCS tile matches a 1024x512 pixel area of the main surface. 520 * To match certain aspects of the 3D hardware the CCS is 521 * considered to be made up of normal 128Bx32 Y tiles, Thus 522 * the CCS pitch must be specified in multiples of 128 bytes. 523 * 524 * In reality the CCS tile appears to be a 64Bx64 Y tile, composed 525 * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks. 526 * But that fact is not relevant unless the memory is accessed 527 * directly. 528 */ 529 #define I915_FORMAT_MOD_Y_TILED_CCS fourcc_mod_code(INTEL, 4) 530 #define I915_FORMAT_MOD_Yf_TILED_CCS fourcc_mod_code(INTEL, 5) 531 532 /* 533 * Intel color control surfaces (CCS) for Gen-12 render compression. 534 * 535 * The main surface is Y-tiled and at plane index 0, the CCS is linear and 536 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in 537 * main surface. In other words, 4 bits in CCS map to a main surface cache 538 * line pair. The main surface pitch is required to be a multiple of four 539 * Y-tile widths. 540 */ 541 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6) 542 543 /* 544 * Intel color control surfaces (CCS) for Gen-12 media compression 545 * 546 * The main surface is Y-tiled and at plane index 0, the CCS is linear and 547 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in 548 * main surface. In other words, 4 bits in CCS map to a main surface cache 549 * line pair. The main surface pitch is required to be a multiple of four 550 * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the 551 * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces, 552 * planes 2 and 3 for the respective CCS. 553 */ 554 #define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7) 555 556 /* 557 * Intel Color Control Surface with Clear Color (CCS) for Gen-12 render 558 * compression. 559 * 560 * The main surface is Y-tiled and is at plane index 0 whereas CCS is linear 561 * and at index 1. The clear color is stored at index 2, and the pitch should 562 * be ignored. The clear color structure is 256 bits. The first 128 bits 563 * represents Raw Clear Color Red, Green, Blue and Alpha color each represented 564 * by 32 bits. The raw clear color is consumed by the 3d engine and generates 565 * the converted clear color of size 64 bits. The first 32 bits store the Lower 566 * Converted Clear Color value and the next 32 bits store the Higher Converted 567 * Clear Color value when applicable. The Converted Clear Color values are 568 * consumed by the DE. The last 64 bits are used to store Color Discard Enable 569 * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line 570 * corresponds to an area of 4x1 tiles in the main surface. The main surface 571 * pitch is required to be a multiple of 4 tile widths. 572 */ 573 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC fourcc_mod_code(INTEL, 8) 574 575 /* 576 * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks 577 * 578 * Macroblocks are laid in a Z-shape, and each pixel data is following the 579 * standard NV12 style. 580 * As for NV12, an image is the result of two frame buffers: one for Y, 581 * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer). 582 * Alignment requirements are (for each buffer): 583 * - multiple of 128 pixels for the width 584 * - multiple of 32 pixels for the height 585 * 586 * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html 587 */ 588 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE fourcc_mod_code(SAMSUNG, 1) 589 590 /* 591 * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks 592 * 593 * This is a simple tiled layout using tiles of 16x16 pixels in a row-major 594 * layout. For YCbCr formats Cb/Cr components are taken in such a way that 595 * they correspond to their 16x16 luma block. 596 */ 597 #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE fourcc_mod_code(SAMSUNG, 2) 598 599 /* 600 * Qualcomm Compressed Format 601 * 602 * Refers to a compressed variant of the base format that is compressed. 603 * Implementation may be platform and base-format specific. 604 * 605 * Each macrotile consists of m x n (mostly 4 x 4) tiles. 606 * Pixel data pitch/stride is aligned with macrotile width. 607 * Pixel data height is aligned with macrotile height. 608 * Entire pixel data buffer is aligned with 4k(bytes). 609 */ 610 #define DRM_FORMAT_MOD_QCOM_COMPRESSED fourcc_mod_code(QCOM, 1) 611 612 /* Vivante framebuffer modifiers */ 613 614 /* 615 * Vivante 4x4 tiling layout 616 * 617 * This is a simple tiled layout using tiles of 4x4 pixels in a row-major 618 * layout. 619 */ 620 #define DRM_FORMAT_MOD_VIVANTE_TILED fourcc_mod_code(VIVANTE, 1) 621 622 /* 623 * Vivante 64x64 super-tiling layout 624 * 625 * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile 626 * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row- 627 * major layout. 628 * 629 * For more information: see 630 * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling 631 */ 632 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED fourcc_mod_code(VIVANTE, 2) 633 634 /* 635 * Vivante 4x4 tiling layout for dual-pipe 636 * 637 * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a 638 * different base address. Offsets from the base addresses are therefore halved 639 * compared to the non-split tiled layout. 640 */ 641 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED fourcc_mod_code(VIVANTE, 3) 642 643 /* 644 * Vivante 64x64 super-tiling layout for dual-pipe 645 * 646 * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile 647 * starts at a different base address. Offsets from the base addresses are 648 * therefore halved compared to the non-split super-tiled layout. 649 */ 650 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4) 651 652 /* NVIDIA frame buffer modifiers */ 653 654 /* 655 * Tegra Tiled Layout, used by Tegra 2, 3 and 4. 656 * 657 * Pixels are arranged in simple tiles of 16 x 16 bytes. 658 */ 659 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1) 660 661 /* 662 * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80, 663 * and Tegra GPUs starting with Tegra K1. 664 * 665 * Pixels are arranged in Groups of Bytes (GOBs). GOB size and layout varies 666 * based on the architecture generation. GOBs themselves are then arranged in 667 * 3D blocks, with the block dimensions (in terms of GOBs) always being a power 668 * of two, and hence expressible as their log2 equivalent (E.g., "2" represents 669 * a block depth or height of "4"). 670 * 671 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format 672 * in full detail. 673 * 674 * Macro 675 * Bits Param Description 676 * ---- ----- ----------------------------------------------------------------- 677 * 678 * 3:0 h log2(height) of each block, in GOBs. Placed here for 679 * compatibility with the existing 680 * DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers. 681 * 682 * 4:4 - Must be 1, to indicate block-linear layout. Necessary for 683 * compatibility with the existing 684 * DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers. 685 * 686 * 8:5 - Reserved (To support 3D-surfaces with variable log2(depth) block 687 * size). Must be zero. 688 * 689 * Note there is no log2(width) parameter. Some portions of the 690 * hardware support a block width of two gobs, but it is impractical 691 * to use due to lack of support elsewhere, and has no known 692 * benefits. 693 * 694 * 11:9 - Reserved (To support 2D-array textures with variable array stride 695 * in blocks, specified via log2(tile width in blocks)). Must be 696 * zero. 697 * 698 * 19:12 k Page Kind. This value directly maps to a field in the page 699 * tables of all GPUs >= NV50. It affects the exact layout of bits 700 * in memory and can be derived from the tuple 701 * 702 * (format, GPU model, compression type, samples per pixel) 703 * 704 * Where compression type is defined below. If GPU model were 705 * implied by the format modifier, format, or memory buffer, page 706 * kind would not need to be included in the modifier itself, but 707 * since the modifier should define the layout of the associated 708 * memory buffer independent from any device or other context, it 709 * must be included here. 710 * 711 * 21:20 g GOB Height and Page Kind Generation. The height of a GOB changed 712 * starting with Fermi GPUs. Additionally, the mapping between page 713 * kind and bit layout has changed at various points. 714 * 715 * 0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping 716 * 1 = Gob Height 4, G80 - GT2XX Page Kind mapping 717 * 2 = Gob Height 8, Turing+ Page Kind mapping 718 * 3 = Reserved for future use. 719 * 720 * 22:22 s Sector layout. On Tegra GPUs prior to Xavier, there is a further 721 * bit remapping step that occurs at an even lower level than the 722 * page kind and block linear swizzles. This causes the layout of 723 * surfaces mapped in those SOC's GPUs to be incompatible with the 724 * equivalent mapping on other GPUs in the same system. 725 * 726 * 0 = Tegra K1 - Tegra Parker/TX2 Layout. 727 * 1 = Desktop GPU and Tegra Xavier+ Layout 728 * 729 * 25:23 c Lossless Framebuffer Compression type. 730 * 731 * 0 = none 732 * 1 = ROP/3D, layout 1, exact compression format implied by Page 733 * Kind field 734 * 2 = ROP/3D, layout 2, exact compression format implied by Page 735 * Kind field 736 * 3 = CDE horizontal 737 * 4 = CDE vertical 738 * 5 = Reserved for future use 739 * 6 = Reserved for future use 740 * 7 = Reserved for future use 741 * 742 * 55:25 - Reserved for future use. Must be zero. 743 */ 744 #define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \ 745 fourcc_mod_code(NVIDIA, (0x10 | \ 746 ((h) & 0xf) | \ 747 (((k) & 0xff) << 12) | \ 748 (((g) & 0x3) << 20) | \ 749 (((s) & 0x1) << 22) | \ 750 (((c) & 0x7) << 23))) 751 752 /* To grandfather in prior block linear format modifiers to the above layout, 753 * the page kind "0", which corresponds to "pitch/linear" and hence is unusable 754 * with block-linear layouts, is remapped within drivers to the value 0xfe, 755 * which corresponds to the "generic" kind used for simple single-sample 756 * uncompressed color formats on Fermi - Volta GPUs. 757 */ 758 static inline __u64 759 drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier) 760 { 761 if (!(modifier & 0x10) || (modifier & (0xff << 12))) 762 return modifier; 763 else 764 return modifier | (0xfe << 12); 765 } 766 767 /* 768 * 16Bx2 Block Linear layout, used by Tegra K1 and later 769 * 770 * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked 771 * vertically by a power of 2 (1 to 32 GOBs) to form a block. 772 * 773 * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape. 774 * 775 * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically. 776 * Valid values are: 777 * 778 * 0 == ONE_GOB 779 * 1 == TWO_GOBS 780 * 2 == FOUR_GOBS 781 * 3 == EIGHT_GOBS 782 * 4 == SIXTEEN_GOBS 783 * 5 == THIRTYTWO_GOBS 784 * 785 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format 786 * in full detail. 787 */ 788 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \ 789 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v)) 790 791 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \ 792 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0) 793 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \ 794 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1) 795 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \ 796 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2) 797 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \ 798 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3) 799 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \ 800 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4) 801 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \ 802 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5) 803 804 /* 805 * Some Broadcom modifiers take parameters, for example the number of 806 * vertical lines in the image. Reserve the lower 32 bits for modifier 807 * type, and the next 24 bits for parameters. Top 8 bits are the 808 * vendor code. 809 */ 810 #define __fourcc_mod_broadcom_param_shift 8 811 #define __fourcc_mod_broadcom_param_bits 48 812 #define fourcc_mod_broadcom_code(val, params) \ 813 fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val)) 814 #define fourcc_mod_broadcom_param(m) \ 815 ((int)(((m) >> __fourcc_mod_broadcom_param_shift) & \ 816 ((1ULL << __fourcc_mod_broadcom_param_bits) - 1))) 817 #define fourcc_mod_broadcom_mod(m) \ 818 ((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) << \ 819 __fourcc_mod_broadcom_param_shift)) 820 821 /* 822 * Broadcom VC4 "T" format 823 * 824 * This is the primary layout that the V3D GPU can texture from (it 825 * can't do linear). The T format has: 826 * 827 * - 64b utiles of pixels in a raster-order grid according to cpp. It's 4x4 828 * pixels at 32 bit depth. 829 * 830 * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually 831 * 16x16 pixels). 832 * 833 * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels). On 834 * even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows 835 * they're (TR, BR, BL, TL), where bottom left is start of memory. 836 * 837 * - an image made of 4k tiles in rows either left-to-right (even rows of 4k 838 * tiles) or right-to-left (odd rows of 4k tiles). 839 */ 840 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1) 841 842 /* 843 * Broadcom SAND format 844 * 845 * This is the native format that the H.264 codec block uses. For VC4 846 * HVS, it is only valid for H.264 (NV12/21) and RGBA modes. 847 * 848 * The image can be considered to be split into columns, and the 849 * columns are placed consecutively into memory. The width of those 850 * columns can be either 32, 64, 128, or 256 pixels, but in practice 851 * only 128 pixel columns are used. 852 * 853 * The pitch between the start of each column is set to optimally 854 * switch between SDRAM banks. This is passed as the number of lines 855 * of column width in the modifier (we can't use the stride value due 856 * to various core checks that look at it , so you should set the 857 * stride to width*cpp). 858 * 859 * Note that the column height for this format modifier is the same 860 * for all of the planes, assuming that each column contains both Y 861 * and UV. Some SAND-using hardware stores UV in a separate tiled 862 * image from Y to reduce the column height, which is not supported 863 * with these modifiers. 864 * 865 * The DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT modifier is also 866 * supported for DRM_FORMAT_P030 where the columns remain as 128 bytes 867 * wide, but as this is a 10 bpp format that translates to 96 pixels. 868 */ 869 870 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \ 871 fourcc_mod_broadcom_code(2, v) 872 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \ 873 fourcc_mod_broadcom_code(3, v) 874 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \ 875 fourcc_mod_broadcom_code(4, v) 876 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \ 877 fourcc_mod_broadcom_code(5, v) 878 879 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \ 880 DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0) 881 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \ 882 DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0) 883 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \ 884 DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0) 885 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \ 886 DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0) 887 888 /* Broadcom UIF format 889 * 890 * This is the common format for the current Broadcom multimedia 891 * blocks, including V3D 3.x and newer, newer video codecs, and 892 * displays. 893 * 894 * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles), 895 * and macroblocks (4x4 UIF blocks). Those 4x4 UIF block groups are 896 * stored in columns, with padding between the columns to ensure that 897 * moving from one column to the next doesn't hit the same SDRAM page 898 * bank. 899 * 900 * To calculate the padding, it is assumed that each hardware block 901 * and the software driving it knows the platform's SDRAM page size, 902 * number of banks, and XOR address, and that it's identical between 903 * all blocks using the format. This tiling modifier will use XOR as 904 * necessary to reduce the padding. If a hardware block can't do XOR, 905 * the assumption is that a no-XOR tiling modifier will be created. 906 */ 907 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6) 908 909 /* 910 * Arm Framebuffer Compression (AFBC) modifiers 911 * 912 * AFBC is a proprietary lossless image compression protocol and format. 913 * It provides fine-grained random access and minimizes the amount of data 914 * transferred between IP blocks. 915 * 916 * AFBC has several features which may be supported and/or used, which are 917 * represented using bits in the modifier. Not all combinations are valid, 918 * and different devices or use-cases may support different combinations. 919 * 920 * Further information on the use of AFBC modifiers can be found in 921 * Documentation/gpu/afbc.rst 922 */ 923 924 /* 925 * The top 4 bits (out of the 56 bits alloted for specifying vendor specific 926 * modifiers) denote the category for modifiers. Currently we have three 927 * categories of modifiers ie AFBC, MISC and AFRC. We can have a maximum of 928 * sixteen different categories. 929 */ 930 #define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \ 931 fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL)) 932 933 #define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00 934 #define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01 935 936 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \ 937 DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode) 938 939 /* 940 * AFBC superblock size 941 * 942 * Indicates the superblock size(s) used for the AFBC buffer. The buffer 943 * size (in pixels) must be aligned to a multiple of the superblock size. 944 * Four lowest significant bits(LSBs) are reserved for block size. 945 * 946 * Where one superblock size is specified, it applies to all planes of the 947 * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified, 948 * the first applies to the Luma plane and the second applies to the Chroma 949 * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma). 950 * Multiple superblock sizes are only valid for multi-plane YCbCr formats. 951 */ 952 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK 0xf 953 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16 (1ULL) 954 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8 (2ULL) 955 #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4 (3ULL) 956 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL) 957 958 /* 959 * AFBC lossless colorspace transform 960 * 961 * Indicates that the buffer makes use of the AFBC lossless colorspace 962 * transform. 963 */ 964 #define AFBC_FORMAT_MOD_YTR (1ULL << 4) 965 966 /* 967 * AFBC block-split 968 * 969 * Indicates that the payload of each superblock is split. The second 970 * half of the payload is positioned at a predefined offset from the start 971 * of the superblock payload. 972 */ 973 #define AFBC_FORMAT_MOD_SPLIT (1ULL << 5) 974 975 /* 976 * AFBC sparse layout 977 * 978 * This flag indicates that the payload of each superblock must be stored at a 979 * predefined position relative to the other superblocks in the same AFBC 980 * buffer. This order is the same order used by the header buffer. In this mode 981 * each superblock is given the same amount of space as an uncompressed 982 * superblock of the particular format would require, rounding up to the next 983 * multiple of 128 bytes in size. 984 */ 985 #define AFBC_FORMAT_MOD_SPARSE (1ULL << 6) 986 987 /* 988 * AFBC copy-block restrict 989 * 990 * Buffers with this flag must obey the copy-block restriction. The restriction 991 * is such that there are no copy-blocks referring across the border of 8x8 992 * blocks. For the subsampled data the 8x8 limitation is also subsampled. 993 */ 994 #define AFBC_FORMAT_MOD_CBR (1ULL << 7) 995 996 /* 997 * AFBC tiled layout 998 * 999 * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all 1000 * superblocks inside a tile are stored together in memory. 8x8 tiles are used 1001 * for pixel formats up to and including 32 bpp while 4x4 tiles are used for 1002 * larger bpp formats. The order between the tiles is scan line. 1003 * When the tiled layout is used, the buffer size (in pixels) must be aligned 1004 * to the tile size. 1005 */ 1006 #define AFBC_FORMAT_MOD_TILED (1ULL << 8) 1007 1008 /* 1009 * AFBC solid color blocks 1010 * 1011 * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth 1012 * can be reduced if a whole superblock is a single color. 1013 */ 1014 #define AFBC_FORMAT_MOD_SC (1ULL << 9) 1015 1016 /* 1017 * AFBC double-buffer 1018 * 1019 * Indicates that the buffer is allocated in a layout safe for front-buffer 1020 * rendering. 1021 */ 1022 #define AFBC_FORMAT_MOD_DB (1ULL << 10) 1023 1024 /* 1025 * AFBC buffer content hints 1026 * 1027 * Indicates that the buffer includes per-superblock content hints. 1028 */ 1029 #define AFBC_FORMAT_MOD_BCH (1ULL << 11) 1030 1031 /* AFBC uncompressed storage mode 1032 * 1033 * Indicates that the buffer is using AFBC uncompressed storage mode. 1034 * In this mode all superblock payloads in the buffer use the uncompressed 1035 * storage mode, which is usually only used for data which cannot be compressed. 1036 * The buffer layout is the same as for AFBC buffers without USM set, this only 1037 * affects the storage mode of the individual superblocks. Note that even a 1038 * buffer without USM set may use uncompressed storage mode for some or all 1039 * superblocks, USM just guarantees it for all. 1040 */ 1041 #define AFBC_FORMAT_MOD_USM (1ULL << 12) 1042 1043 /* 1044 * Arm Fixed-Rate Compression (AFRC) modifiers 1045 * 1046 * AFRC is a proprietary fixed rate image compression protocol and format, 1047 * designed to provide guaranteed bandwidth and memory footprint 1048 * reductions in graphics and media use-cases. 1049 * 1050 * AFRC buffers consist of one or more planes, with the same components 1051 * and meaning as an uncompressed buffer using the same pixel format. 1052 * 1053 * Within each plane, the pixel/luma/chroma values are grouped into 1054 * "coding unit" blocks which are individually compressed to a 1055 * fixed size (in bytes). All coding units within a given plane of a buffer 1056 * store the same number of values, and have the same compressed size. 1057 * 1058 * The coding unit size is configurable, allowing different rates of compression. 1059 * 1060 * The start of each AFRC buffer plane must be aligned to an alignment granule which 1061 * depends on the coding unit size. 1062 * 1063 * Coding Unit Size Plane Alignment 1064 * ---------------- --------------- 1065 * 16 bytes 1024 bytes 1066 * 24 bytes 512 bytes 1067 * 32 bytes 2048 bytes 1068 * 1069 * Coding units are grouped into paging tiles. AFRC buffer dimensions must be aligned 1070 * to a multiple of the paging tile dimensions. 1071 * The dimensions of each paging tile depend on whether the buffer is optimised for 1072 * scanline (SCAN layout) or rotated (ROT layout) access. 1073 * 1074 * Layout Paging Tile Width Paging Tile Height 1075 * ------ ----------------- ------------------ 1076 * SCAN 16 coding units 4 coding units 1077 * ROT 8 coding units 8 coding units 1078 * 1079 * The dimensions of each coding unit depend on the number of components 1080 * in the compressed plane and whether the buffer is optimised for 1081 * scanline (SCAN layout) or rotated (ROT layout) access. 1082 * 1083 * Number of Components in Plane Layout Coding Unit Width Coding Unit Height 1084 * ----------------------------- --------- ----------------- ------------------ 1085 * 1 SCAN 16 samples 4 samples 1086 * Example: 16x4 luma samples in a 'Y' plane 1087 * 16x4 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer 1088 * ----------------------------- --------- ----------------- ------------------ 1089 * 1 ROT 8 samples 8 samples 1090 * Example: 8x8 luma samples in a 'Y' plane 1091 * 8x8 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer 1092 * ----------------------------- --------- ----------------- ------------------ 1093 * 2 DONT CARE 8 samples 4 samples 1094 * Example: 8x4 chroma pairs in the 'UV' plane of a semi-planar YUV buffer 1095 * ----------------------------- --------- ----------------- ------------------ 1096 * 3 DONT CARE 4 samples 4 samples 1097 * Example: 4x4 pixels in an RGB buffer without alpha 1098 * ----------------------------- --------- ----------------- ------------------ 1099 * 4 DONT CARE 4 samples 4 samples 1100 * Example: 4x4 pixels in an RGB buffer with alpha 1101 */ 1102 1103 #define DRM_FORMAT_MOD_ARM_TYPE_AFRC 0x02 1104 1105 #define DRM_FORMAT_MOD_ARM_AFRC(__afrc_mode) \ 1106 DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFRC, __afrc_mode) 1107 1108 /* 1109 * AFRC coding unit size modifier. 1110 * 1111 * Indicates the number of bytes used to store each compressed coding unit for 1112 * one or more planes in an AFRC encoded buffer. The coding unit size for chrominance 1113 * is the same for both Cb and Cr, which may be stored in separate planes. 1114 * 1115 * AFRC_FORMAT_MOD_CU_SIZE_P0 indicates the number of bytes used to store 1116 * each compressed coding unit in the first plane of the buffer. For RGBA buffers 1117 * this is the only plane, while for semi-planar and fully-planar YUV buffers, 1118 * this corresponds to the luma plane. 1119 * 1120 * AFRC_FORMAT_MOD_CU_SIZE_P12 indicates the number of bytes used to store 1121 * each compressed coding unit in the second and third planes in the buffer. 1122 * For semi-planar and fully-planar YUV buffers, this corresponds to the chroma plane(s). 1123 * 1124 * For single-plane buffers, AFRC_FORMAT_MOD_CU_SIZE_P0 must be specified 1125 * and AFRC_FORMAT_MOD_CU_SIZE_P12 must be zero. 1126 * For semi-planar and fully-planar buffers, both AFRC_FORMAT_MOD_CU_SIZE_P0 and 1127 * AFRC_FORMAT_MOD_CU_SIZE_P12 must be specified. 1128 */ 1129 #define AFRC_FORMAT_MOD_CU_SIZE_MASK 0xf 1130 #define AFRC_FORMAT_MOD_CU_SIZE_16 (1ULL) 1131 #define AFRC_FORMAT_MOD_CU_SIZE_24 (2ULL) 1132 #define AFRC_FORMAT_MOD_CU_SIZE_32 (3ULL) 1133 1134 #define AFRC_FORMAT_MOD_CU_SIZE_P0(__afrc_cu_size) (__afrc_cu_size) 1135 #define AFRC_FORMAT_MOD_CU_SIZE_P12(__afrc_cu_size) ((__afrc_cu_size) << 4) 1136 1137 /* 1138 * AFRC scanline memory layout. 1139 * 1140 * Indicates if the buffer uses the scanline-optimised layout 1141 * for an AFRC encoded buffer, otherwise, it uses the rotation-optimised layout. 1142 * The memory layout is the same for all planes. 1143 */ 1144 #define AFRC_FORMAT_MOD_LAYOUT_SCAN (1ULL << 8) 1145 1146 /* 1147 * Arm 16x16 Block U-Interleaved modifier 1148 * 1149 * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image 1150 * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels 1151 * in the block are reordered. 1152 */ 1153 #define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \ 1154 DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL) 1155 1156 /* 1157 * Allwinner tiled modifier 1158 * 1159 * This tiling mode is implemented by the VPU found on all Allwinner platforms, 1160 * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3 1161 * planes. 1162 * 1163 * With this tiling, the luminance samples are disposed in tiles representing 1164 * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels. 1165 * The pixel order in each tile is linear and the tiles are disposed linearly, 1166 * both in row-major order. 1167 */ 1168 #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1) 1169 1170 /* 1171 * Amlogic Video Framebuffer Compression modifiers 1172 * 1173 * Amlogic uses a proprietary lossless image compression protocol and format 1174 * for their hardware video codec accelerators, either video decoders or 1175 * video input encoders. 1176 * 1177 * It considerably reduces memory bandwidth while writing and reading 1178 * frames in memory. 1179 * 1180 * The underlying storage is considered to be 3 components, 8bit or 10-bit 1181 * per component YCbCr 420, single plane : 1182 * - DRM_FORMAT_YUV420_8BIT 1183 * - DRM_FORMAT_YUV420_10BIT 1184 * 1185 * The first 8 bits of the mode defines the layout, then the following 8 bits 1186 * defines the options changing the layout. 1187 * 1188 * Not all combinations are valid, and different SoCs may support different 1189 * combinations of layout and options. 1190 */ 1191 #define __fourcc_mod_amlogic_layout_mask 0xff 1192 #define __fourcc_mod_amlogic_options_shift 8 1193 #define __fourcc_mod_amlogic_options_mask 0xff 1194 1195 #define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \ 1196 fourcc_mod_code(AMLOGIC, \ 1197 ((__layout) & __fourcc_mod_amlogic_layout_mask) | \ 1198 (((__options) & __fourcc_mod_amlogic_options_mask) \ 1199 << __fourcc_mod_amlogic_options_shift)) 1200 1201 /* Amlogic FBC Layouts */ 1202 1203 /* 1204 * Amlogic FBC Basic Layout 1205 * 1206 * The basic layout is composed of: 1207 * - a body content organized in 64x32 superblocks with 4096 bytes per 1208 * superblock in default mode. 1209 * - a 32 bytes per 128x64 header block 1210 * 1211 * This layout is transferrable between Amlogic SoCs supporting this modifier. 1212 */ 1213 #define AMLOGIC_FBC_LAYOUT_BASIC (1ULL) 1214 1215 /* 1216 * Amlogic FBC Scatter Memory layout 1217 * 1218 * Indicates the header contains IOMMU references to the compressed 1219 * frames content to optimize memory access and layout. 1220 * 1221 * In this mode, only the header memory address is needed, thus the 1222 * content memory organization is tied to the current producer 1223 * execution and cannot be saved/dumped neither transferrable between 1224 * Amlogic SoCs supporting this modifier. 1225 * 1226 * Due to the nature of the layout, these buffers are not expected to 1227 * be accessible by the user-space clients, but only accessible by the 1228 * hardware producers and consumers. 1229 * 1230 * The user-space clients should expect a failure while trying to mmap 1231 * the DMA-BUF handle returned by the producer. 1232 */ 1233 #define AMLOGIC_FBC_LAYOUT_SCATTER (2ULL) 1234 1235 /* Amlogic FBC Layout Options Bit Mask */ 1236 1237 /* 1238 * Amlogic FBC Memory Saving mode 1239 * 1240 * Indicates the storage is packed when pixel size is multiple of word 1241 * boudaries, i.e. 8bit should be stored in this mode to save allocation 1242 * memory. 1243 * 1244 * This mode reduces body layout to 3072 bytes per 64x32 superblock with 1245 * the basic layout and 3200 bytes per 64x32 superblock combined with 1246 * the scatter layout. 1247 */ 1248 #define AMLOGIC_FBC_OPTION_MEM_SAVING (1ULL << 0) 1249 1250 /* 1251 * AMD modifiers 1252 * 1253 * Memory layout: 1254 * 1255 * without DCC: 1256 * - main surface 1257 * 1258 * with DCC & without DCC_RETILE: 1259 * - main surface in plane 0 1260 * - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set) 1261 * 1262 * with DCC & DCC_RETILE: 1263 * - main surface in plane 0 1264 * - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned) 1265 * - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned) 1266 * 1267 * For multi-plane formats the above surfaces get merged into one plane for 1268 * each format plane, based on the required alignment only. 1269 * 1270 * Bits Parameter Notes 1271 * ----- ------------------------ --------------------------------------------- 1272 * 1273 * 7:0 TILE_VERSION Values are AMD_FMT_MOD_TILE_VER_* 1274 * 12:8 TILE Values are AMD_FMT_MOD_TILE_<version>_* 1275 * 13 DCC 1276 * 14 DCC_RETILE 1277 * 15 DCC_PIPE_ALIGN 1278 * 16 DCC_INDEPENDENT_64B 1279 * 17 DCC_INDEPENDENT_128B 1280 * 19:18 DCC_MAX_COMPRESSED_BLOCK Values are AMD_FMT_MOD_DCC_BLOCK_* 1281 * 20 DCC_CONSTANT_ENCODE 1282 * 23:21 PIPE_XOR_BITS Only for some chips 1283 * 26:24 BANK_XOR_BITS Only for some chips 1284 * 29:27 PACKERS Only for some chips 1285 * 32:30 RB Only for some chips 1286 * 35:33 PIPE Only for some chips 1287 * 55:36 - Reserved for future use, must be zero 1288 */ 1289 #define AMD_FMT_MOD fourcc_mod_code(AMD, 0) 1290 1291 #define IS_AMD_FMT_MOD(val) (((val) >> 56) == DRM_FORMAT_MOD_VENDOR_AMD) 1292 1293 /* Reserve 0 for GFX8 and older */ 1294 #define AMD_FMT_MOD_TILE_VER_GFX9 1 1295 #define AMD_FMT_MOD_TILE_VER_GFX10 2 1296 #define AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS 3 1297 1298 /* 1299 * 64K_S is the same for GFX9/GFX10/GFX10_RBPLUS and hence has GFX9 as canonical 1300 * version. 1301 */ 1302 #define AMD_FMT_MOD_TILE_GFX9_64K_S 9 1303 1304 /* 1305 * 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has 1306 * GFX9 as canonical version. 1307 */ 1308 #define AMD_FMT_MOD_TILE_GFX9_64K_D 10 1309 #define AMD_FMT_MOD_TILE_GFX9_64K_S_X 25 1310 #define AMD_FMT_MOD_TILE_GFX9_64K_D_X 26 1311 #define AMD_FMT_MOD_TILE_GFX9_64K_R_X 27 1312 1313 #define AMD_FMT_MOD_DCC_BLOCK_64B 0 1314 #define AMD_FMT_MOD_DCC_BLOCK_128B 1 1315 #define AMD_FMT_MOD_DCC_BLOCK_256B 2 1316 1317 #define AMD_FMT_MOD_TILE_VERSION_SHIFT 0 1318 #define AMD_FMT_MOD_TILE_VERSION_MASK 0xFF 1319 #define AMD_FMT_MOD_TILE_SHIFT 8 1320 #define AMD_FMT_MOD_TILE_MASK 0x1F 1321 1322 /* Whether DCC compression is enabled. */ 1323 #define AMD_FMT_MOD_DCC_SHIFT 13 1324 #define AMD_FMT_MOD_DCC_MASK 0x1 1325 1326 /* 1327 * Whether to include two DCC surfaces, one which is rb & pipe aligned, and 1328 * one which is not-aligned. 1329 */ 1330 #define AMD_FMT_MOD_DCC_RETILE_SHIFT 14 1331 #define AMD_FMT_MOD_DCC_RETILE_MASK 0x1 1332 1333 /* Only set if DCC_RETILE = false */ 1334 #define AMD_FMT_MOD_DCC_PIPE_ALIGN_SHIFT 15 1335 #define AMD_FMT_MOD_DCC_PIPE_ALIGN_MASK 0x1 1336 1337 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_SHIFT 16 1338 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_MASK 0x1 1339 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_SHIFT 17 1340 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_MASK 0x1 1341 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_SHIFT 18 1342 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_MASK 0x3 1343 1344 /* 1345 * DCC supports embedding some clear colors directly in the DCC surface. 1346 * However, on older GPUs the rendering HW ignores the embedded clear color 1347 * and prefers the driver provided color. This necessitates doing a fastclear 1348 * eliminate operation before a process transfers control. 1349 * 1350 * If this bit is set that means the fastclear eliminate is not needed for these 1351 * embeddable colors. 1352 */ 1353 #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_SHIFT 20 1354 #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_MASK 0x1 1355 1356 /* 1357 * The below fields are for accounting for per GPU differences. These are only 1358 * relevant for GFX9 and later and if the tile field is *_X/_T. 1359 * 1360 * PIPE_XOR_BITS = always needed 1361 * BANK_XOR_BITS = only for TILE_VER_GFX9 1362 * PACKERS = only for TILE_VER_GFX10_RBPLUS 1363 * RB = only for TILE_VER_GFX9 & DCC 1364 * PIPE = only for TILE_VER_GFX9 & DCC & (DCC_RETILE | DCC_PIPE_ALIGN) 1365 */ 1366 #define AMD_FMT_MOD_PIPE_XOR_BITS_SHIFT 21 1367 #define AMD_FMT_MOD_PIPE_XOR_BITS_MASK 0x7 1368 #define AMD_FMT_MOD_BANK_XOR_BITS_SHIFT 24 1369 #define AMD_FMT_MOD_BANK_XOR_BITS_MASK 0x7 1370 #define AMD_FMT_MOD_PACKERS_SHIFT 27 1371 #define AMD_FMT_MOD_PACKERS_MASK 0x7 1372 #define AMD_FMT_MOD_RB_SHIFT 30 1373 #define AMD_FMT_MOD_RB_MASK 0x7 1374 #define AMD_FMT_MOD_PIPE_SHIFT 33 1375 #define AMD_FMT_MOD_PIPE_MASK 0x7 1376 1377 #define AMD_FMT_MOD_SET(field, value) \ 1378 ((uint64_t)(value) << AMD_FMT_MOD_##field##_SHIFT) 1379 #define AMD_FMT_MOD_GET(field, value) \ 1380 (((value) >> AMD_FMT_MOD_##field##_SHIFT) & AMD_FMT_MOD_##field##_MASK) 1381 #define AMD_FMT_MOD_CLEAR(field) \ 1382 (~((uint64_t)AMD_FMT_MOD_##field##_MASK << AMD_FMT_MOD_##field##_SHIFT)) 1383 1384 #if defined(__cplusplus) 1385 } 1386 #endif 1387 1388 #endif /* DRM_FOURCC_H */ 1389