xref: /openbmc/linux/include/uapi/drm/drm_fourcc.h (revision 2a9eb57e)
1 /*
2  * Copyright 2011 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #ifndef DRM_FOURCC_H
25 #define DRM_FOURCC_H
26 
27 #include "drm.h"
28 
29 #if defined(__cplusplus)
30 extern "C" {
31 #endif
32 
33 /**
34  * DOC: overview
35  *
36  * In the DRM subsystem, framebuffer pixel formats are described using the
37  * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
38  * fourcc code, a Format Modifier may optionally be provided, in order to
39  * further describe the buffer's format - for example tiling or compression.
40  *
41  * Format Modifiers
42  * ----------------
43  *
44  * Format modifiers are used in conjunction with a fourcc code, forming a
45  * unique fourcc:modifier pair. This format:modifier pair must fully define the
46  * format and data layout of the buffer, and should be the only way to describe
47  * that particular buffer.
48  *
49  * Having multiple fourcc:modifier pairs which describe the same layout should
50  * be avoided, as such aliases run the risk of different drivers exposing
51  * different names for the same data format, forcing userspace to understand
52  * that they are aliases.
53  *
54  * Format modifiers may change any property of the buffer, including the number
55  * of planes and/or the required allocation size. Format modifiers are
56  * vendor-namespaced, and as such the relationship between a fourcc code and a
57  * modifier is specific to the modifer being used. For example, some modifiers
58  * may preserve meaning - such as number of planes - from the fourcc code,
59  * whereas others may not.
60  *
61  * Modifiers must uniquely encode buffer layout. In other words, a buffer must
62  * match only a single modifier. A modifier must not be a subset of layouts of
63  * another modifier. For instance, it's incorrect to encode pitch alignment in
64  * a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel
65  * aligned modifier. That said, modifiers can have implicit minimal
66  * requirements.
67  *
68  * For modifiers where the combination of fourcc code and modifier can alias,
69  * a canonical pair needs to be defined and used by all drivers. Preferred
70  * combinations are also encouraged where all combinations might lead to
71  * confusion and unnecessarily reduced interoperability. An example for the
72  * latter is AFBC, where the ABGR layouts are preferred over ARGB layouts.
73  *
74  * There are two kinds of modifier users:
75  *
76  * - Kernel and user-space drivers: for drivers it's important that modifiers
77  *   don't alias, otherwise two drivers might support the same format but use
78  *   different aliases, preventing them from sharing buffers in an efficient
79  *   format.
80  * - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users
81  *   see modifiers as opaque tokens they can check for equality and intersect.
82  *   These users musn't need to know to reason about the modifier value
83  *   (i.e. they are not expected to extract information out of the modifier).
84  *
85  * Vendors should document their modifier usage in as much detail as
86  * possible, to ensure maximum compatibility across devices, drivers and
87  * applications.
88  *
89  * The authoritative list of format modifier codes is found in
90  * `include/uapi/drm/drm_fourcc.h`
91  */
92 
93 #define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \
94 				 ((__u32)(c) << 16) | ((__u32)(d) << 24))
95 
96 #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
97 
98 /* Reserve 0 for the invalid format specifier */
99 #define DRM_FORMAT_INVALID	0
100 
101 /* color index */
102 #define DRM_FORMAT_C8		fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
103 
104 /* 8 bpp Red */
105 #define DRM_FORMAT_R8		fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
106 
107 /* 10 bpp Red */
108 #define DRM_FORMAT_R10		fourcc_code('R', '1', '0', ' ') /* [15:0] x:R 6:10 little endian */
109 
110 /* 12 bpp Red */
111 #define DRM_FORMAT_R12		fourcc_code('R', '1', '2', ' ') /* [15:0] x:R 4:12 little endian */
112 
113 /* 16 bpp Red */
114 #define DRM_FORMAT_R16		fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
115 
116 /* 16 bpp RG */
117 #define DRM_FORMAT_RG88		fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
118 #define DRM_FORMAT_GR88		fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
119 
120 /* 32 bpp RG */
121 #define DRM_FORMAT_RG1616	fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
122 #define DRM_FORMAT_GR1616	fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
123 
124 /* 8 bpp RGB */
125 #define DRM_FORMAT_RGB332	fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
126 #define DRM_FORMAT_BGR233	fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
127 
128 /* 16 bpp RGB */
129 #define DRM_FORMAT_XRGB4444	fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
130 #define DRM_FORMAT_XBGR4444	fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
131 #define DRM_FORMAT_RGBX4444	fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
132 #define DRM_FORMAT_BGRX4444	fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
133 
134 #define DRM_FORMAT_ARGB4444	fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
135 #define DRM_FORMAT_ABGR4444	fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
136 #define DRM_FORMAT_RGBA4444	fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
137 #define DRM_FORMAT_BGRA4444	fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
138 
139 #define DRM_FORMAT_XRGB1555	fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
140 #define DRM_FORMAT_XBGR1555	fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
141 #define DRM_FORMAT_RGBX5551	fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
142 #define DRM_FORMAT_BGRX5551	fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
143 
144 #define DRM_FORMAT_ARGB1555	fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
145 #define DRM_FORMAT_ABGR1555	fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
146 #define DRM_FORMAT_RGBA5551	fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
147 #define DRM_FORMAT_BGRA5551	fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
148 
149 #define DRM_FORMAT_RGB565	fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
150 #define DRM_FORMAT_BGR565	fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
151 
152 /* 24 bpp RGB */
153 #define DRM_FORMAT_RGB888	fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
154 #define DRM_FORMAT_BGR888	fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
155 
156 /* 32 bpp RGB */
157 #define DRM_FORMAT_XRGB8888	fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
158 #define DRM_FORMAT_XBGR8888	fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
159 #define DRM_FORMAT_RGBX8888	fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
160 #define DRM_FORMAT_BGRX8888	fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
161 
162 #define DRM_FORMAT_ARGB8888	fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
163 #define DRM_FORMAT_ABGR8888	fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
164 #define DRM_FORMAT_RGBA8888	fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
165 #define DRM_FORMAT_BGRA8888	fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
166 
167 #define DRM_FORMAT_XRGB2101010	fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
168 #define DRM_FORMAT_XBGR2101010	fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
169 #define DRM_FORMAT_RGBX1010102	fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
170 #define DRM_FORMAT_BGRX1010102	fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
171 
172 #define DRM_FORMAT_ARGB2101010	fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
173 #define DRM_FORMAT_ABGR2101010	fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
174 #define DRM_FORMAT_RGBA1010102	fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
175 #define DRM_FORMAT_BGRA1010102	fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
176 
177 /* 64 bpp RGB */
178 #define DRM_FORMAT_XRGB16161616	fourcc_code('X', 'R', '4', '8') /* [63:0] x:R:G:B 16:16:16:16 little endian */
179 #define DRM_FORMAT_XBGR16161616	fourcc_code('X', 'B', '4', '8') /* [63:0] x:B:G:R 16:16:16:16 little endian */
180 
181 #define DRM_FORMAT_ARGB16161616	fourcc_code('A', 'R', '4', '8') /* [63:0] A:R:G:B 16:16:16:16 little endian */
182 #define DRM_FORMAT_ABGR16161616	fourcc_code('A', 'B', '4', '8') /* [63:0] A:B:G:R 16:16:16:16 little endian */
183 
184 /*
185  * Floating point 64bpp RGB
186  * IEEE 754-2008 binary16 half-precision float
187  * [15:0] sign:exponent:mantissa 1:5:10
188  */
189 #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
190 #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
191 
192 #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
193 #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
194 
195 /*
196  * RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits
197  * of unused padding per component:
198  */
199 #define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */
200 
201 /* packed YCbCr */
202 #define DRM_FORMAT_YUYV		fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
203 #define DRM_FORMAT_YVYU		fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
204 #define DRM_FORMAT_UYVY		fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
205 #define DRM_FORMAT_VYUY		fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
206 
207 #define DRM_FORMAT_AYUV		fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
208 #define DRM_FORMAT_XYUV8888	fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
209 #define DRM_FORMAT_VUY888	fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
210 #define DRM_FORMAT_VUY101010	fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
211 
212 /*
213  * packed Y2xx indicate for each component, xx valid data occupy msb
214  * 16-xx padding occupy lsb
215  */
216 #define DRM_FORMAT_Y210         fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
217 #define DRM_FORMAT_Y212         fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
218 #define DRM_FORMAT_Y216         fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
219 
220 /*
221  * packed Y4xx indicate for each component, xx valid data occupy msb
222  * 16-xx padding occupy lsb except Y410
223  */
224 #define DRM_FORMAT_Y410         fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
225 #define DRM_FORMAT_Y412         fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
226 #define DRM_FORMAT_Y416         fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
227 
228 #define DRM_FORMAT_XVYU2101010	fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
229 #define DRM_FORMAT_XVYU12_16161616	fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
230 #define DRM_FORMAT_XVYU16161616	fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
231 
232 /*
233  * packed YCbCr420 2x2 tiled formats
234  * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
235  */
236 /* [63:0]   A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
237 #define DRM_FORMAT_Y0L0		fourcc_code('Y', '0', 'L', '0')
238 /* [63:0]   X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
239 #define DRM_FORMAT_X0L0		fourcc_code('X', '0', 'L', '0')
240 
241 /* [63:0]   A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
242 #define DRM_FORMAT_Y0L2		fourcc_code('Y', '0', 'L', '2')
243 /* [63:0]   X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
244 #define DRM_FORMAT_X0L2		fourcc_code('X', '0', 'L', '2')
245 
246 /*
247  * 1-plane YUV 4:2:0
248  * In these formats, the component ordering is specified (Y, followed by U
249  * then V), but the exact Linear layout is undefined.
250  * These formats can only be used with a non-Linear modifier.
251  */
252 #define DRM_FORMAT_YUV420_8BIT	fourcc_code('Y', 'U', '0', '8')
253 #define DRM_FORMAT_YUV420_10BIT	fourcc_code('Y', 'U', '1', '0')
254 
255 /*
256  * 2 plane RGB + A
257  * index 0 = RGB plane, same format as the corresponding non _A8 format has
258  * index 1 = A plane, [7:0] A
259  */
260 #define DRM_FORMAT_XRGB8888_A8	fourcc_code('X', 'R', 'A', '8')
261 #define DRM_FORMAT_XBGR8888_A8	fourcc_code('X', 'B', 'A', '8')
262 #define DRM_FORMAT_RGBX8888_A8	fourcc_code('R', 'X', 'A', '8')
263 #define DRM_FORMAT_BGRX8888_A8	fourcc_code('B', 'X', 'A', '8')
264 #define DRM_FORMAT_RGB888_A8	fourcc_code('R', '8', 'A', '8')
265 #define DRM_FORMAT_BGR888_A8	fourcc_code('B', '8', 'A', '8')
266 #define DRM_FORMAT_RGB565_A8	fourcc_code('R', '5', 'A', '8')
267 #define DRM_FORMAT_BGR565_A8	fourcc_code('B', '5', 'A', '8')
268 
269 /*
270  * 2 plane YCbCr
271  * index 0 = Y plane, [7:0] Y
272  * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
273  * or
274  * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
275  */
276 #define DRM_FORMAT_NV12		fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
277 #define DRM_FORMAT_NV21		fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
278 #define DRM_FORMAT_NV16		fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
279 #define DRM_FORMAT_NV61		fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
280 #define DRM_FORMAT_NV24		fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
281 #define DRM_FORMAT_NV42		fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
282 /*
283  * 2 plane YCbCr
284  * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian
285  * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
286  */
287 #define DRM_FORMAT_NV15		fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
288 
289 /*
290  * 2 plane YCbCr MSB aligned
291  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
292  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
293  */
294 #define DRM_FORMAT_P210		fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
295 
296 /*
297  * 2 plane YCbCr MSB aligned
298  * index 0 = Y plane, [15:0] Y:x [10:6] little endian
299  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
300  */
301 #define DRM_FORMAT_P010		fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
302 
303 /*
304  * 2 plane YCbCr MSB aligned
305  * index 0 = Y plane, [15:0] Y:x [12:4] little endian
306  * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
307  */
308 #define DRM_FORMAT_P012		fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
309 
310 /*
311  * 2 plane YCbCr MSB aligned
312  * index 0 = Y plane, [15:0] Y little endian
313  * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
314  */
315 #define DRM_FORMAT_P016		fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
316 
317 /* 2 plane YCbCr420.
318  * 3 10 bit components and 2 padding bits packed into 4 bytes.
319  * index 0 = Y plane, [31:0] x:Y2:Y1:Y0 2:10:10:10 little endian
320  * index 1 = Cr:Cb plane, [63:0] x:Cr2:Cb2:Cr1:x:Cb1:Cr0:Cb0 [2:10:10:10:2:10:10:10] little endian
321  */
322 #define DRM_FORMAT_P030		fourcc_code('P', '0', '3', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel packed */
323 
324 /* 3 plane non-subsampled (444) YCbCr
325  * 16 bits per component, but only 10 bits are used and 6 bits are padded
326  * index 0: Y plane, [15:0] Y:x [10:6] little endian
327  * index 1: Cb plane, [15:0] Cb:x [10:6] little endian
328  * index 2: Cr plane, [15:0] Cr:x [10:6] little endian
329  */
330 #define DRM_FORMAT_Q410		fourcc_code('Q', '4', '1', '0')
331 
332 /* 3 plane non-subsampled (444) YCrCb
333  * 16 bits per component, but only 10 bits are used and 6 bits are padded
334  * index 0: Y plane, [15:0] Y:x [10:6] little endian
335  * index 1: Cr plane, [15:0] Cr:x [10:6] little endian
336  * index 2: Cb plane, [15:0] Cb:x [10:6] little endian
337  */
338 #define DRM_FORMAT_Q401		fourcc_code('Q', '4', '0', '1')
339 
340 /*
341  * 3 plane YCbCr
342  * index 0: Y plane, [7:0] Y
343  * index 1: Cb plane, [7:0] Cb
344  * index 2: Cr plane, [7:0] Cr
345  * or
346  * index 1: Cr plane, [7:0] Cr
347  * index 2: Cb plane, [7:0] Cb
348  */
349 #define DRM_FORMAT_YUV410	fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
350 #define DRM_FORMAT_YVU410	fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
351 #define DRM_FORMAT_YUV411	fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
352 #define DRM_FORMAT_YVU411	fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
353 #define DRM_FORMAT_YUV420	fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
354 #define DRM_FORMAT_YVU420	fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
355 #define DRM_FORMAT_YUV422	fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
356 #define DRM_FORMAT_YVU422	fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
357 #define DRM_FORMAT_YUV444	fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
358 #define DRM_FORMAT_YVU444	fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
359 
360 
361 /*
362  * Format Modifiers:
363  *
364  * Format modifiers describe, typically, a re-ordering or modification
365  * of the data in a plane of an FB.  This can be used to express tiled/
366  * swizzled formats, or compression, or a combination of the two.
367  *
368  * The upper 8 bits of the format modifier are a vendor-id as assigned
369  * below.  The lower 56 bits are assigned as vendor sees fit.
370  */
371 
372 /* Vendor Ids: */
373 #define DRM_FORMAT_MOD_VENDOR_NONE    0
374 #define DRM_FORMAT_MOD_VENDOR_INTEL   0x01
375 #define DRM_FORMAT_MOD_VENDOR_AMD     0x02
376 #define DRM_FORMAT_MOD_VENDOR_NVIDIA  0x03
377 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
378 #define DRM_FORMAT_MOD_VENDOR_QCOM    0x05
379 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
380 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
381 #define DRM_FORMAT_MOD_VENDOR_ARM     0x08
382 #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
383 #define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a
384 
385 /* add more to the end as needed */
386 
387 #define DRM_FORMAT_RESERVED	      ((1ULL << 56) - 1)
388 
389 #define fourcc_mod_get_vendor(modifier) \
390 	(((modifier) >> 56) & 0xff)
391 
392 #define fourcc_mod_is_vendor(modifier, vendor) \
393 	(fourcc_mod_get_vendor(modifier) == DRM_FORMAT_MOD_VENDOR_## vendor)
394 
395 #define fourcc_mod_code(vendor, val) \
396 	((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
397 
398 /*
399  * Format Modifier tokens:
400  *
401  * When adding a new token please document the layout with a code comment,
402  * similar to the fourcc codes above. drm_fourcc.h is considered the
403  * authoritative source for all of these.
404  *
405  * Generic modifier names:
406  *
407  * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
408  * for layouts which are common across multiple vendors. To preserve
409  * compatibility, in cases where a vendor-specific definition already exists and
410  * a generic name for it is desired, the common name is a purely symbolic alias
411  * and must use the same numerical value as the original definition.
412  *
413  * Note that generic names should only be used for modifiers which describe
414  * generic layouts (such as pixel re-ordering), which may have
415  * independently-developed support across multiple vendors.
416  *
417  * In future cases where a generic layout is identified before merging with a
418  * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
419  * 'NONE' could be considered. This should only be for obvious, exceptional
420  * cases to avoid polluting the 'GENERIC' namespace with modifiers which only
421  * apply to a single vendor.
422  *
423  * Generic names should not be used for cases where multiple hardware vendors
424  * have implementations of the same standardised compression scheme (such as
425  * AFBC). In those cases, all implementations should use the same format
426  * modifier(s), reflecting the vendor of the standard.
427  */
428 
429 #define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE
430 
431 /*
432  * Invalid Modifier
433  *
434  * This modifier can be used as a sentinel to terminate the format modifiers
435  * list, or to initialize a variable with an invalid modifier. It might also be
436  * used to report an error back to userspace for certain APIs.
437  */
438 #define DRM_FORMAT_MOD_INVALID	fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
439 
440 /*
441  * Linear Layout
442  *
443  * Just plain linear layout. Note that this is different from no specifying any
444  * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
445  * which tells the driver to also take driver-internal information into account
446  * and so might actually result in a tiled framebuffer.
447  */
448 #define DRM_FORMAT_MOD_LINEAR	fourcc_mod_code(NONE, 0)
449 
450 /*
451  * Deprecated: use DRM_FORMAT_MOD_LINEAR instead
452  *
453  * The "none" format modifier doesn't actually mean that the modifier is
454  * implicit, instead it means that the layout is linear. Whether modifiers are
455  * used is out-of-band information carried in an API-specific way (e.g. in a
456  * flag for drm_mode_fb_cmd2).
457  */
458 #define DRM_FORMAT_MOD_NONE	0
459 
460 /* Intel framebuffer modifiers */
461 
462 /*
463  * Intel X-tiling layout
464  *
465  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
466  * in row-major layout. Within the tile bytes are laid out row-major, with
467  * a platform-dependent stride. On top of that the memory can apply
468  * platform-depending swizzling of some higher address bits into bit6.
469  *
470  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
471  * On earlier platforms the is highly platforms specific and not useful for
472  * cross-driver sharing. It exists since on a given platform it does uniquely
473  * identify the layout in a simple way for i915-specific userspace, which
474  * facilitated conversion of userspace to modifiers. Additionally the exact
475  * format on some really old platforms is not known.
476  */
477 #define I915_FORMAT_MOD_X_TILED	fourcc_mod_code(INTEL, 1)
478 
479 /*
480  * Intel Y-tiling layout
481  *
482  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
483  * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
484  * chunks column-major, with a platform-dependent height. On top of that the
485  * memory can apply platform-depending swizzling of some higher address bits
486  * into bit6.
487  *
488  * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
489  * On earlier platforms the is highly platforms specific and not useful for
490  * cross-driver sharing. It exists since on a given platform it does uniquely
491  * identify the layout in a simple way for i915-specific userspace, which
492  * facilitated conversion of userspace to modifiers. Additionally the exact
493  * format on some really old platforms is not known.
494  */
495 #define I915_FORMAT_MOD_Y_TILED	fourcc_mod_code(INTEL, 2)
496 
497 /*
498  * Intel Yf-tiling layout
499  *
500  * This is a tiled layout using 4Kb tiles in row-major layout.
501  * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
502  * are arranged in four groups (two wide, two high) with column-major layout.
503  * Each group therefore consits out of four 256 byte units, which are also laid
504  * out as 2x2 column-major.
505  * 256 byte units are made out of four 64 byte blocks of pixels, producing
506  * either a square block or a 2:1 unit.
507  * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
508  * in pixel depends on the pixel depth.
509  */
510 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
511 
512 /*
513  * Intel color control surface (CCS) for render compression
514  *
515  * The framebuffer format must be one of the 8:8:8:8 RGB formats.
516  * The main surface will be plane index 0 and must be Y/Yf-tiled,
517  * the CCS will be plane index 1.
518  *
519  * Each CCS tile matches a 1024x512 pixel area of the main surface.
520  * To match certain aspects of the 3D hardware the CCS is
521  * considered to be made up of normal 128Bx32 Y tiles, Thus
522  * the CCS pitch must be specified in multiples of 128 bytes.
523  *
524  * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
525  * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
526  * But that fact is not relevant unless the memory is accessed
527  * directly.
528  */
529 #define I915_FORMAT_MOD_Y_TILED_CCS	fourcc_mod_code(INTEL, 4)
530 #define I915_FORMAT_MOD_Yf_TILED_CCS	fourcc_mod_code(INTEL, 5)
531 
532 /*
533  * Intel color control surfaces (CCS) for Gen-12 render compression.
534  *
535  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
536  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
537  * main surface. In other words, 4 bits in CCS map to a main surface cache
538  * line pair. The main surface pitch is required to be a multiple of four
539  * Y-tile widths.
540  */
541 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
542 
543 /*
544  * Intel color control surfaces (CCS) for Gen-12 media compression
545  *
546  * The main surface is Y-tiled and at plane index 0, the CCS is linear and
547  * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
548  * main surface. In other words, 4 bits in CCS map to a main surface cache
549  * line pair. The main surface pitch is required to be a multiple of four
550  * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
551  * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
552  * planes 2 and 3 for the respective CCS.
553  */
554 #define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
555 
556 /*
557  * Intel Color Control Surface with Clear Color (CCS) for Gen-12 render
558  * compression.
559  *
560  * The main surface is Y-tiled and is at plane index 0 whereas CCS is linear
561  * and at index 1. The clear color is stored at index 2, and the pitch should
562  * be 64 bytes aligned. The clear color structure is 256 bits. The first 128 bits
563  * represents Raw Clear Color Red, Green, Blue and Alpha color each represented
564  * by 32 bits. The raw clear color is consumed by the 3d engine and generates
565  * the converted clear color of size 64 bits. The first 32 bits store the Lower
566  * Converted Clear Color value and the next 32 bits store the Higher Converted
567  * Clear Color value when applicable. The Converted Clear Color values are
568  * consumed by the DE. The last 64 bits are used to store Color Discard Enable
569  * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
570  * corresponds to an area of 4x1 tiles in the main surface. The main surface
571  * pitch is required to be a multiple of 4 tile widths.
572  */
573 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC fourcc_mod_code(INTEL, 8)
574 
575 /*
576  * Intel Tile 4 layout
577  *
578  * This is a tiled layout using 4KB tiles in a row-major layout. It has the same
579  * shape as Tile Y at two granularities: 4KB (128B x 32) and 64B (16B x 4). It
580  * only differs from Tile Y at the 256B granularity in between. At this
581  * granularity, Tile Y has a shape of 16B x 32 rows, but this tiling has a shape
582  * of 64B x 8 rows.
583  */
584 #define I915_FORMAT_MOD_4_TILED         fourcc_mod_code(INTEL, 9)
585 
586 /*
587  * Intel color control surfaces (CCS) for DG2 render compression.
588  *
589  * The main surface is Tile 4 and at plane index 0. The CCS data is stored
590  * outside of the GEM object in a reserved memory area dedicated for the
591  * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
592  * main surface pitch is required to be a multiple of four Tile 4 widths.
593  */
594 #define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS fourcc_mod_code(INTEL, 10)
595 
596 /*
597  * Intel color control surfaces (CCS) for DG2 media compression.
598  *
599  * The main surface is Tile 4 and at plane index 0. For semi-planar formats
600  * like NV12, the Y and UV planes are Tile 4 and are located at plane indices
601  * 0 and 1, respectively. The CCS for all planes are stored outside of the
602  * GEM object in a reserved memory area dedicated for the storage of the
603  * CCS data for all RC/RC_CC/MC compressible GEM objects. The main surface
604  * pitch is required to be a multiple of four Tile 4 widths.
605  */
606 #define I915_FORMAT_MOD_4_TILED_DG2_MC_CCS fourcc_mod_code(INTEL, 11)
607 
608 /*
609  * Intel Color Control Surface with Clear Color (CCS) for DG2 render compression.
610  *
611  * The main surface is Tile 4 and at plane index 0. The CCS data is stored
612  * outside of the GEM object in a reserved memory area dedicated for the
613  * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
614  * main surface pitch is required to be a multiple of four Tile 4 widths. The
615  * clear color is stored at plane index 1 and the pitch should be 64 bytes
616  * aligned. The format of the 256 bits of clear color data matches the one used
617  * for the I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC modifier, see its description
618  * for details.
619  */
620 #define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS_CC fourcc_mod_code(INTEL, 12)
621 
622 /*
623  * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
624  *
625  * Macroblocks are laid in a Z-shape, and each pixel data is following the
626  * standard NV12 style.
627  * As for NV12, an image is the result of two frame buffers: one for Y,
628  * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
629  * Alignment requirements are (for each buffer):
630  * - multiple of 128 pixels for the width
631  * - multiple of  32 pixels for the height
632  *
633  * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
634  */
635 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE	fourcc_mod_code(SAMSUNG, 1)
636 
637 /*
638  * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
639  *
640  * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
641  * layout. For YCbCr formats Cb/Cr components are taken in such a way that
642  * they correspond to their 16x16 luma block.
643  */
644 #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE	fourcc_mod_code(SAMSUNG, 2)
645 
646 /*
647  * Qualcomm Compressed Format
648  *
649  * Refers to a compressed variant of the base format that is compressed.
650  * Implementation may be platform and base-format specific.
651  *
652  * Each macrotile consists of m x n (mostly 4 x 4) tiles.
653  * Pixel data pitch/stride is aligned with macrotile width.
654  * Pixel data height is aligned with macrotile height.
655  * Entire pixel data buffer is aligned with 4k(bytes).
656  */
657 #define DRM_FORMAT_MOD_QCOM_COMPRESSED	fourcc_mod_code(QCOM, 1)
658 
659 /*
660  * Qualcomm Tiled Format
661  *
662  * Similar to DRM_FORMAT_MOD_QCOM_COMPRESSED but not compressed.
663  * Implementation may be platform and base-format specific.
664  *
665  * Each macrotile consists of m x n (mostly 4 x 4) tiles.
666  * Pixel data pitch/stride is aligned with macrotile width.
667  * Pixel data height is aligned with macrotile height.
668  * Entire pixel data buffer is aligned with 4k(bytes).
669  */
670 #define DRM_FORMAT_MOD_QCOM_TILED3	fourcc_mod_code(QCOM, 3)
671 
672 /*
673  * Qualcomm Alternate Tiled Format
674  *
675  * Alternate tiled format typically only used within GMEM.
676  * Implementation may be platform and base-format specific.
677  */
678 #define DRM_FORMAT_MOD_QCOM_TILED2	fourcc_mod_code(QCOM, 2)
679 
680 
681 /* Vivante framebuffer modifiers */
682 
683 /*
684  * Vivante 4x4 tiling layout
685  *
686  * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
687  * layout.
688  */
689 #define DRM_FORMAT_MOD_VIVANTE_TILED		fourcc_mod_code(VIVANTE, 1)
690 
691 /*
692  * Vivante 64x64 super-tiling layout
693  *
694  * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
695  * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
696  * major layout.
697  *
698  * For more information: see
699  * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
700  */
701 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED	fourcc_mod_code(VIVANTE, 2)
702 
703 /*
704  * Vivante 4x4 tiling layout for dual-pipe
705  *
706  * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
707  * different base address. Offsets from the base addresses are therefore halved
708  * compared to the non-split tiled layout.
709  */
710 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED	fourcc_mod_code(VIVANTE, 3)
711 
712 /*
713  * Vivante 64x64 super-tiling layout for dual-pipe
714  *
715  * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
716  * starts at a different base address. Offsets from the base addresses are
717  * therefore halved compared to the non-split super-tiled layout.
718  */
719 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
720 
721 /* NVIDIA frame buffer modifiers */
722 
723 /*
724  * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
725  *
726  * Pixels are arranged in simple tiles of 16 x 16 bytes.
727  */
728 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
729 
730 /*
731  * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
732  * and Tegra GPUs starting with Tegra K1.
733  *
734  * Pixels are arranged in Groups of Bytes (GOBs).  GOB size and layout varies
735  * based on the architecture generation.  GOBs themselves are then arranged in
736  * 3D blocks, with the block dimensions (in terms of GOBs) always being a power
737  * of two, and hence expressible as their log2 equivalent (E.g., "2" represents
738  * a block depth or height of "4").
739  *
740  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
741  * in full detail.
742  *
743  *       Macro
744  * Bits  Param Description
745  * ----  ----- -----------------------------------------------------------------
746  *
747  *  3:0  h     log2(height) of each block, in GOBs.  Placed here for
748  *             compatibility with the existing
749  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
750  *
751  *  4:4  -     Must be 1, to indicate block-linear layout.  Necessary for
752  *             compatibility with the existing
753  *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
754  *
755  *  8:5  -     Reserved (To support 3D-surfaces with variable log2(depth) block
756  *             size).  Must be zero.
757  *
758  *             Note there is no log2(width) parameter.  Some portions of the
759  *             hardware support a block width of two gobs, but it is impractical
760  *             to use due to lack of support elsewhere, and has no known
761  *             benefits.
762  *
763  * 11:9  -     Reserved (To support 2D-array textures with variable array stride
764  *             in blocks, specified via log2(tile width in blocks)).  Must be
765  *             zero.
766  *
767  * 19:12 k     Page Kind.  This value directly maps to a field in the page
768  *             tables of all GPUs >= NV50.  It affects the exact layout of bits
769  *             in memory and can be derived from the tuple
770  *
771  *               (format, GPU model, compression type, samples per pixel)
772  *
773  *             Where compression type is defined below.  If GPU model were
774  *             implied by the format modifier, format, or memory buffer, page
775  *             kind would not need to be included in the modifier itself, but
776  *             since the modifier should define the layout of the associated
777  *             memory buffer independent from any device or other context, it
778  *             must be included here.
779  *
780  * 21:20 g     GOB Height and Page Kind Generation.  The height of a GOB changed
781  *             starting with Fermi GPUs.  Additionally, the mapping between page
782  *             kind and bit layout has changed at various points.
783  *
784  *               0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
785  *               1 = Gob Height 4, G80 - GT2XX Page Kind mapping
786  *               2 = Gob Height 8, Turing+ Page Kind mapping
787  *               3 = Reserved for future use.
788  *
789  * 22:22 s     Sector layout.  On Tegra GPUs prior to Xavier, there is a further
790  *             bit remapping step that occurs at an even lower level than the
791  *             page kind and block linear swizzles.  This causes the layout of
792  *             surfaces mapped in those SOC's GPUs to be incompatible with the
793  *             equivalent mapping on other GPUs in the same system.
794  *
795  *               0 = Tegra K1 - Tegra Parker/TX2 Layout.
796  *               1 = Desktop GPU and Tegra Xavier+ Layout
797  *
798  * 25:23 c     Lossless Framebuffer Compression type.
799  *
800  *               0 = none
801  *               1 = ROP/3D, layout 1, exact compression format implied by Page
802  *                   Kind field
803  *               2 = ROP/3D, layout 2, exact compression format implied by Page
804  *                   Kind field
805  *               3 = CDE horizontal
806  *               4 = CDE vertical
807  *               5 = Reserved for future use
808  *               6 = Reserved for future use
809  *               7 = Reserved for future use
810  *
811  * 55:25 -     Reserved for future use.  Must be zero.
812  */
813 #define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
814 	fourcc_mod_code(NVIDIA, (0x10 | \
815 				 ((h) & 0xf) | \
816 				 (((k) & 0xff) << 12) | \
817 				 (((g) & 0x3) << 20) | \
818 				 (((s) & 0x1) << 22) | \
819 				 (((c) & 0x7) << 23)))
820 
821 /* To grandfather in prior block linear format modifiers to the above layout,
822  * the page kind "0", which corresponds to "pitch/linear" and hence is unusable
823  * with block-linear layouts, is remapped within drivers to the value 0xfe,
824  * which corresponds to the "generic" kind used for simple single-sample
825  * uncompressed color formats on Fermi - Volta GPUs.
826  */
827 static inline __u64
828 drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)
829 {
830 	if (!(modifier & 0x10) || (modifier & (0xff << 12)))
831 		return modifier;
832 	else
833 		return modifier | (0xfe << 12);
834 }
835 
836 /*
837  * 16Bx2 Block Linear layout, used by Tegra K1 and later
838  *
839  * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
840  * vertically by a power of 2 (1 to 32 GOBs) to form a block.
841  *
842  * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
843  *
844  * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
845  * Valid values are:
846  *
847  * 0 == ONE_GOB
848  * 1 == TWO_GOBS
849  * 2 == FOUR_GOBS
850  * 3 == EIGHT_GOBS
851  * 4 == SIXTEEN_GOBS
852  * 5 == THIRTYTWO_GOBS
853  *
854  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
855  * in full detail.
856  */
857 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
858 	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
859 
860 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
861 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
862 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
863 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
864 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
865 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
866 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
867 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
868 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
869 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
870 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
871 	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
872 
873 /*
874  * Some Broadcom modifiers take parameters, for example the number of
875  * vertical lines in the image. Reserve the lower 32 bits for modifier
876  * type, and the next 24 bits for parameters. Top 8 bits are the
877  * vendor code.
878  */
879 #define __fourcc_mod_broadcom_param_shift 8
880 #define __fourcc_mod_broadcom_param_bits 48
881 #define fourcc_mod_broadcom_code(val, params) \
882 	fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val))
883 #define fourcc_mod_broadcom_param(m) \
884 	((int)(((m) >> __fourcc_mod_broadcom_param_shift) &	\
885 	       ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
886 #define fourcc_mod_broadcom_mod(m) \
887 	((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) <<	\
888 		 __fourcc_mod_broadcom_param_shift))
889 
890 /*
891  * Broadcom VC4 "T" format
892  *
893  * This is the primary layout that the V3D GPU can texture from (it
894  * can't do linear).  The T format has:
895  *
896  * - 64b utiles of pixels in a raster-order grid according to cpp.  It's 4x4
897  *   pixels at 32 bit depth.
898  *
899  * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
900  *   16x16 pixels).
901  *
902  * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels).  On
903  *   even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
904  *   they're (TR, BR, BL, TL), where bottom left is start of memory.
905  *
906  * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
907  *   tiles) or right-to-left (odd rows of 4k tiles).
908  */
909 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
910 
911 /*
912  * Broadcom SAND format
913  *
914  * This is the native format that the H.264 codec block uses.  For VC4
915  * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
916  *
917  * The image can be considered to be split into columns, and the
918  * columns are placed consecutively into memory.  The width of those
919  * columns can be either 32, 64, 128, or 256 pixels, but in practice
920  * only 128 pixel columns are used.
921  *
922  * The pitch between the start of each column is set to optimally
923  * switch between SDRAM banks. This is passed as the number of lines
924  * of column width in the modifier (we can't use the stride value due
925  * to various core checks that look at it , so you should set the
926  * stride to width*cpp).
927  *
928  * Note that the column height for this format modifier is the same
929  * for all of the planes, assuming that each column contains both Y
930  * and UV.  Some SAND-using hardware stores UV in a separate tiled
931  * image from Y to reduce the column height, which is not supported
932  * with these modifiers.
933  *
934  * The DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT modifier is also
935  * supported for DRM_FORMAT_P030 where the columns remain as 128 bytes
936  * wide, but as this is a 10 bpp format that translates to 96 pixels.
937  */
938 
939 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
940 	fourcc_mod_broadcom_code(2, v)
941 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
942 	fourcc_mod_broadcom_code(3, v)
943 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
944 	fourcc_mod_broadcom_code(4, v)
945 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
946 	fourcc_mod_broadcom_code(5, v)
947 
948 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \
949 	DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
950 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \
951 	DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
952 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \
953 	DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
954 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \
955 	DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
956 
957 /* Broadcom UIF format
958  *
959  * This is the common format for the current Broadcom multimedia
960  * blocks, including V3D 3.x and newer, newer video codecs, and
961  * displays.
962  *
963  * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
964  * and macroblocks (4x4 UIF blocks).  Those 4x4 UIF block groups are
965  * stored in columns, with padding between the columns to ensure that
966  * moving from one column to the next doesn't hit the same SDRAM page
967  * bank.
968  *
969  * To calculate the padding, it is assumed that each hardware block
970  * and the software driving it knows the platform's SDRAM page size,
971  * number of banks, and XOR address, and that it's identical between
972  * all blocks using the format.  This tiling modifier will use XOR as
973  * necessary to reduce the padding.  If a hardware block can't do XOR,
974  * the assumption is that a no-XOR tiling modifier will be created.
975  */
976 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
977 
978 /*
979  * Arm Framebuffer Compression (AFBC) modifiers
980  *
981  * AFBC is a proprietary lossless image compression protocol and format.
982  * It provides fine-grained random access and minimizes the amount of data
983  * transferred between IP blocks.
984  *
985  * AFBC has several features which may be supported and/or used, which are
986  * represented using bits in the modifier. Not all combinations are valid,
987  * and different devices or use-cases may support different combinations.
988  *
989  * Further information on the use of AFBC modifiers can be found in
990  * Documentation/gpu/afbc.rst
991  */
992 
993 /*
994  * The top 4 bits (out of the 56 bits alloted for specifying vendor specific
995  * modifiers) denote the category for modifiers. Currently we have three
996  * categories of modifiers ie AFBC, MISC and AFRC. We can have a maximum of
997  * sixteen different categories.
998  */
999 #define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
1000 	fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
1001 
1002 #define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
1003 #define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
1004 
1005 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
1006 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
1007 
1008 /*
1009  * AFBC superblock size
1010  *
1011  * Indicates the superblock size(s) used for the AFBC buffer. The buffer
1012  * size (in pixels) must be aligned to a multiple of the superblock size.
1013  * Four lowest significant bits(LSBs) are reserved for block size.
1014  *
1015  * Where one superblock size is specified, it applies to all planes of the
1016  * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
1017  * the first applies to the Luma plane and the second applies to the Chroma
1018  * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
1019  * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
1020  */
1021 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK      0xf
1022 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16     (1ULL)
1023 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8      (2ULL)
1024 #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4      (3ULL)
1025 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
1026 
1027 /*
1028  * AFBC lossless colorspace transform
1029  *
1030  * Indicates that the buffer makes use of the AFBC lossless colorspace
1031  * transform.
1032  */
1033 #define AFBC_FORMAT_MOD_YTR     (1ULL <<  4)
1034 
1035 /*
1036  * AFBC block-split
1037  *
1038  * Indicates that the payload of each superblock is split. The second
1039  * half of the payload is positioned at a predefined offset from the start
1040  * of the superblock payload.
1041  */
1042 #define AFBC_FORMAT_MOD_SPLIT   (1ULL <<  5)
1043 
1044 /*
1045  * AFBC sparse layout
1046  *
1047  * This flag indicates that the payload of each superblock must be stored at a
1048  * predefined position relative to the other superblocks in the same AFBC
1049  * buffer. This order is the same order used by the header buffer. In this mode
1050  * each superblock is given the same amount of space as an uncompressed
1051  * superblock of the particular format would require, rounding up to the next
1052  * multiple of 128 bytes in size.
1053  */
1054 #define AFBC_FORMAT_MOD_SPARSE  (1ULL <<  6)
1055 
1056 /*
1057  * AFBC copy-block restrict
1058  *
1059  * Buffers with this flag must obey the copy-block restriction. The restriction
1060  * is such that there are no copy-blocks referring across the border of 8x8
1061  * blocks. For the subsampled data the 8x8 limitation is also subsampled.
1062  */
1063 #define AFBC_FORMAT_MOD_CBR     (1ULL <<  7)
1064 
1065 /*
1066  * AFBC tiled layout
1067  *
1068  * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
1069  * superblocks inside a tile are stored together in memory. 8x8 tiles are used
1070  * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
1071  * larger bpp formats. The order between the tiles is scan line.
1072  * When the tiled layout is used, the buffer size (in pixels) must be aligned
1073  * to the tile size.
1074  */
1075 #define AFBC_FORMAT_MOD_TILED   (1ULL <<  8)
1076 
1077 /*
1078  * AFBC solid color blocks
1079  *
1080  * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
1081  * can be reduced if a whole superblock is a single color.
1082  */
1083 #define AFBC_FORMAT_MOD_SC      (1ULL <<  9)
1084 
1085 /*
1086  * AFBC double-buffer
1087  *
1088  * Indicates that the buffer is allocated in a layout safe for front-buffer
1089  * rendering.
1090  */
1091 #define AFBC_FORMAT_MOD_DB      (1ULL << 10)
1092 
1093 /*
1094  * AFBC buffer content hints
1095  *
1096  * Indicates that the buffer includes per-superblock content hints.
1097  */
1098 #define AFBC_FORMAT_MOD_BCH     (1ULL << 11)
1099 
1100 /* AFBC uncompressed storage mode
1101  *
1102  * Indicates that the buffer is using AFBC uncompressed storage mode.
1103  * In this mode all superblock payloads in the buffer use the uncompressed
1104  * storage mode, which is usually only used for data which cannot be compressed.
1105  * The buffer layout is the same as for AFBC buffers without USM set, this only
1106  * affects the storage mode of the individual superblocks. Note that even a
1107  * buffer without USM set may use uncompressed storage mode for some or all
1108  * superblocks, USM just guarantees it for all.
1109  */
1110 #define AFBC_FORMAT_MOD_USM	(1ULL << 12)
1111 
1112 /*
1113  * Arm Fixed-Rate Compression (AFRC) modifiers
1114  *
1115  * AFRC is a proprietary fixed rate image compression protocol and format,
1116  * designed to provide guaranteed bandwidth and memory footprint
1117  * reductions in graphics and media use-cases.
1118  *
1119  * AFRC buffers consist of one or more planes, with the same components
1120  * and meaning as an uncompressed buffer using the same pixel format.
1121  *
1122  * Within each plane, the pixel/luma/chroma values are grouped into
1123  * "coding unit" blocks which are individually compressed to a
1124  * fixed size (in bytes). All coding units within a given plane of a buffer
1125  * store the same number of values, and have the same compressed size.
1126  *
1127  * The coding unit size is configurable, allowing different rates of compression.
1128  *
1129  * The start of each AFRC buffer plane must be aligned to an alignment granule which
1130  * depends on the coding unit size.
1131  *
1132  * Coding Unit Size   Plane Alignment
1133  * ----------------   ---------------
1134  * 16 bytes           1024 bytes
1135  * 24 bytes           512  bytes
1136  * 32 bytes           2048 bytes
1137  *
1138  * Coding units are grouped into paging tiles. AFRC buffer dimensions must be aligned
1139  * to a multiple of the paging tile dimensions.
1140  * The dimensions of each paging tile depend on whether the buffer is optimised for
1141  * scanline (SCAN layout) or rotated (ROT layout) access.
1142  *
1143  * Layout   Paging Tile Width   Paging Tile Height
1144  * ------   -----------------   ------------------
1145  * SCAN     16 coding units     4 coding units
1146  * ROT      8  coding units     8 coding units
1147  *
1148  * The dimensions of each coding unit depend on the number of components
1149  * in the compressed plane and whether the buffer is optimised for
1150  * scanline (SCAN layout) or rotated (ROT layout) access.
1151  *
1152  * Number of Components in Plane   Layout      Coding Unit Width   Coding Unit Height
1153  * -----------------------------   ---------   -----------------   ------------------
1154  * 1                               SCAN        16 samples          4 samples
1155  * Example: 16x4 luma samples in a 'Y' plane
1156  *          16x4 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1157  * -----------------------------   ---------   -----------------   ------------------
1158  * 1                               ROT         8 samples           8 samples
1159  * Example: 8x8 luma samples in a 'Y' plane
1160  *          8x8 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1161  * -----------------------------   ---------   -----------------   ------------------
1162  * 2                               DONT CARE   8 samples           4 samples
1163  * Example: 8x4 chroma pairs in the 'UV' plane of a semi-planar YUV buffer
1164  * -----------------------------   ---------   -----------------   ------------------
1165  * 3                               DONT CARE   4 samples           4 samples
1166  * Example: 4x4 pixels in an RGB buffer without alpha
1167  * -----------------------------   ---------   -----------------   ------------------
1168  * 4                               DONT CARE   4 samples           4 samples
1169  * Example: 4x4 pixels in an RGB buffer with alpha
1170  */
1171 
1172 #define DRM_FORMAT_MOD_ARM_TYPE_AFRC 0x02
1173 
1174 #define DRM_FORMAT_MOD_ARM_AFRC(__afrc_mode) \
1175 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFRC, __afrc_mode)
1176 
1177 /*
1178  * AFRC coding unit size modifier.
1179  *
1180  * Indicates the number of bytes used to store each compressed coding unit for
1181  * one or more planes in an AFRC encoded buffer. The coding unit size for chrominance
1182  * is the same for both Cb and Cr, which may be stored in separate planes.
1183  *
1184  * AFRC_FORMAT_MOD_CU_SIZE_P0 indicates the number of bytes used to store
1185  * each compressed coding unit in the first plane of the buffer. For RGBA buffers
1186  * this is the only plane, while for semi-planar and fully-planar YUV buffers,
1187  * this corresponds to the luma plane.
1188  *
1189  * AFRC_FORMAT_MOD_CU_SIZE_P12 indicates the number of bytes used to store
1190  * each compressed coding unit in the second and third planes in the buffer.
1191  * For semi-planar and fully-planar YUV buffers, this corresponds to the chroma plane(s).
1192  *
1193  * For single-plane buffers, AFRC_FORMAT_MOD_CU_SIZE_P0 must be specified
1194  * and AFRC_FORMAT_MOD_CU_SIZE_P12 must be zero.
1195  * For semi-planar and fully-planar buffers, both AFRC_FORMAT_MOD_CU_SIZE_P0 and
1196  * AFRC_FORMAT_MOD_CU_SIZE_P12 must be specified.
1197  */
1198 #define AFRC_FORMAT_MOD_CU_SIZE_MASK 0xf
1199 #define AFRC_FORMAT_MOD_CU_SIZE_16 (1ULL)
1200 #define AFRC_FORMAT_MOD_CU_SIZE_24 (2ULL)
1201 #define AFRC_FORMAT_MOD_CU_SIZE_32 (3ULL)
1202 
1203 #define AFRC_FORMAT_MOD_CU_SIZE_P0(__afrc_cu_size) (__afrc_cu_size)
1204 #define AFRC_FORMAT_MOD_CU_SIZE_P12(__afrc_cu_size) ((__afrc_cu_size) << 4)
1205 
1206 /*
1207  * AFRC scanline memory layout.
1208  *
1209  * Indicates if the buffer uses the scanline-optimised layout
1210  * for an AFRC encoded buffer, otherwise, it uses the rotation-optimised layout.
1211  * The memory layout is the same for all planes.
1212  */
1213 #define AFRC_FORMAT_MOD_LAYOUT_SCAN (1ULL << 8)
1214 
1215 /*
1216  * Arm 16x16 Block U-Interleaved modifier
1217  *
1218  * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
1219  * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
1220  * in the block are reordered.
1221  */
1222 #define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
1223 	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
1224 
1225 /*
1226  * Allwinner tiled modifier
1227  *
1228  * This tiling mode is implemented by the VPU found on all Allwinner platforms,
1229  * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
1230  * planes.
1231  *
1232  * With this tiling, the luminance samples are disposed in tiles representing
1233  * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
1234  * The pixel order in each tile is linear and the tiles are disposed linearly,
1235  * both in row-major order.
1236  */
1237 #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
1238 
1239 /*
1240  * Amlogic Video Framebuffer Compression modifiers
1241  *
1242  * Amlogic uses a proprietary lossless image compression protocol and format
1243  * for their hardware video codec accelerators, either video decoders or
1244  * video input encoders.
1245  *
1246  * It considerably reduces memory bandwidth while writing and reading
1247  * frames in memory.
1248  *
1249  * The underlying storage is considered to be 3 components, 8bit or 10-bit
1250  * per component YCbCr 420, single plane :
1251  * - DRM_FORMAT_YUV420_8BIT
1252  * - DRM_FORMAT_YUV420_10BIT
1253  *
1254  * The first 8 bits of the mode defines the layout, then the following 8 bits
1255  * defines the options changing the layout.
1256  *
1257  * Not all combinations are valid, and different SoCs may support different
1258  * combinations of layout and options.
1259  */
1260 #define __fourcc_mod_amlogic_layout_mask 0xff
1261 #define __fourcc_mod_amlogic_options_shift 8
1262 #define __fourcc_mod_amlogic_options_mask 0xff
1263 
1264 #define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \
1265 	fourcc_mod_code(AMLOGIC, \
1266 			((__layout) & __fourcc_mod_amlogic_layout_mask) | \
1267 			(((__options) & __fourcc_mod_amlogic_options_mask) \
1268 			 << __fourcc_mod_amlogic_options_shift))
1269 
1270 /* Amlogic FBC Layouts */
1271 
1272 /*
1273  * Amlogic FBC Basic Layout
1274  *
1275  * The basic layout is composed of:
1276  * - a body content organized in 64x32 superblocks with 4096 bytes per
1277  *   superblock in default mode.
1278  * - a 32 bytes per 128x64 header block
1279  *
1280  * This layout is transferrable between Amlogic SoCs supporting this modifier.
1281  */
1282 #define AMLOGIC_FBC_LAYOUT_BASIC		(1ULL)
1283 
1284 /*
1285  * Amlogic FBC Scatter Memory layout
1286  *
1287  * Indicates the header contains IOMMU references to the compressed
1288  * frames content to optimize memory access and layout.
1289  *
1290  * In this mode, only the header memory address is needed, thus the
1291  * content memory organization is tied to the current producer
1292  * execution and cannot be saved/dumped neither transferrable between
1293  * Amlogic SoCs supporting this modifier.
1294  *
1295  * Due to the nature of the layout, these buffers are not expected to
1296  * be accessible by the user-space clients, but only accessible by the
1297  * hardware producers and consumers.
1298  *
1299  * The user-space clients should expect a failure while trying to mmap
1300  * the DMA-BUF handle returned by the producer.
1301  */
1302 #define AMLOGIC_FBC_LAYOUT_SCATTER		(2ULL)
1303 
1304 /* Amlogic FBC Layout Options Bit Mask */
1305 
1306 /*
1307  * Amlogic FBC Memory Saving mode
1308  *
1309  * Indicates the storage is packed when pixel size is multiple of word
1310  * boudaries, i.e. 8bit should be stored in this mode to save allocation
1311  * memory.
1312  *
1313  * This mode reduces body layout to 3072 bytes per 64x32 superblock with
1314  * the basic layout and 3200 bytes per 64x32 superblock combined with
1315  * the scatter layout.
1316  */
1317 #define AMLOGIC_FBC_OPTION_MEM_SAVING		(1ULL << 0)
1318 
1319 /*
1320  * AMD modifiers
1321  *
1322  * Memory layout:
1323  *
1324  * without DCC:
1325  *   - main surface
1326  *
1327  * with DCC & without DCC_RETILE:
1328  *   - main surface in plane 0
1329  *   - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set)
1330  *
1331  * with DCC & DCC_RETILE:
1332  *   - main surface in plane 0
1333  *   - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned)
1334  *   - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned)
1335  *
1336  * For multi-plane formats the above surfaces get merged into one plane for
1337  * each format plane, based on the required alignment only.
1338  *
1339  * Bits  Parameter                Notes
1340  * ----- ------------------------ ---------------------------------------------
1341  *
1342  *   7:0 TILE_VERSION             Values are AMD_FMT_MOD_TILE_VER_*
1343  *  12:8 TILE                     Values are AMD_FMT_MOD_TILE_<version>_*
1344  *    13 DCC
1345  *    14 DCC_RETILE
1346  *    15 DCC_PIPE_ALIGN
1347  *    16 DCC_INDEPENDENT_64B
1348  *    17 DCC_INDEPENDENT_128B
1349  * 19:18 DCC_MAX_COMPRESSED_BLOCK Values are AMD_FMT_MOD_DCC_BLOCK_*
1350  *    20 DCC_CONSTANT_ENCODE
1351  * 23:21 PIPE_XOR_BITS            Only for some chips
1352  * 26:24 BANK_XOR_BITS            Only for some chips
1353  * 29:27 PACKERS                  Only for some chips
1354  * 32:30 RB                       Only for some chips
1355  * 35:33 PIPE                     Only for some chips
1356  * 55:36 -                        Reserved for future use, must be zero
1357  */
1358 #define AMD_FMT_MOD fourcc_mod_code(AMD, 0)
1359 
1360 #define IS_AMD_FMT_MOD(val) (((val) >> 56) == DRM_FORMAT_MOD_VENDOR_AMD)
1361 
1362 /* Reserve 0 for GFX8 and older */
1363 #define AMD_FMT_MOD_TILE_VER_GFX9 1
1364 #define AMD_FMT_MOD_TILE_VER_GFX10 2
1365 #define AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS 3
1366 #define AMD_FMT_MOD_TILE_VER_GFX11 4
1367 
1368 /*
1369  * 64K_S is the same for GFX9/GFX10/GFX10_RBPLUS and hence has GFX9 as canonical
1370  * version.
1371  */
1372 #define AMD_FMT_MOD_TILE_GFX9_64K_S 9
1373 
1374 /*
1375  * 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has
1376  * GFX9 as canonical version.
1377  */
1378 #define AMD_FMT_MOD_TILE_GFX9_64K_D 10
1379 #define AMD_FMT_MOD_TILE_GFX9_64K_S_X 25
1380 #define AMD_FMT_MOD_TILE_GFX9_64K_D_X 26
1381 #define AMD_FMT_MOD_TILE_GFX9_64K_R_X 27
1382 #define AMD_FMT_MOD_TILE_GFX11_256K_R_X 31
1383 
1384 #define AMD_FMT_MOD_DCC_BLOCK_64B 0
1385 #define AMD_FMT_MOD_DCC_BLOCK_128B 1
1386 #define AMD_FMT_MOD_DCC_BLOCK_256B 2
1387 
1388 #define AMD_FMT_MOD_TILE_VERSION_SHIFT 0
1389 #define AMD_FMT_MOD_TILE_VERSION_MASK 0xFF
1390 #define AMD_FMT_MOD_TILE_SHIFT 8
1391 #define AMD_FMT_MOD_TILE_MASK 0x1F
1392 
1393 /* Whether DCC compression is enabled. */
1394 #define AMD_FMT_MOD_DCC_SHIFT 13
1395 #define AMD_FMT_MOD_DCC_MASK 0x1
1396 
1397 /*
1398  * Whether to include two DCC surfaces, one which is rb & pipe aligned, and
1399  * one which is not-aligned.
1400  */
1401 #define AMD_FMT_MOD_DCC_RETILE_SHIFT 14
1402 #define AMD_FMT_MOD_DCC_RETILE_MASK 0x1
1403 
1404 /* Only set if DCC_RETILE = false */
1405 #define AMD_FMT_MOD_DCC_PIPE_ALIGN_SHIFT 15
1406 #define AMD_FMT_MOD_DCC_PIPE_ALIGN_MASK 0x1
1407 
1408 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_SHIFT 16
1409 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_MASK 0x1
1410 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_SHIFT 17
1411 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_MASK 0x1
1412 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_SHIFT 18
1413 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_MASK 0x3
1414 
1415 /*
1416  * DCC supports embedding some clear colors directly in the DCC surface.
1417  * However, on older GPUs the rendering HW ignores the embedded clear color
1418  * and prefers the driver provided color. This necessitates doing a fastclear
1419  * eliminate operation before a process transfers control.
1420  *
1421  * If this bit is set that means the fastclear eliminate is not needed for these
1422  * embeddable colors.
1423  */
1424 #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_SHIFT 20
1425 #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_MASK 0x1
1426 
1427 /*
1428  * The below fields are for accounting for per GPU differences. These are only
1429  * relevant for GFX9 and later and if the tile field is *_X/_T.
1430  *
1431  * PIPE_XOR_BITS = always needed
1432  * BANK_XOR_BITS = only for TILE_VER_GFX9
1433  * PACKERS = only for TILE_VER_GFX10_RBPLUS
1434  * RB = only for TILE_VER_GFX9 & DCC
1435  * PIPE = only for TILE_VER_GFX9 & DCC & (DCC_RETILE | DCC_PIPE_ALIGN)
1436  */
1437 #define AMD_FMT_MOD_PIPE_XOR_BITS_SHIFT 21
1438 #define AMD_FMT_MOD_PIPE_XOR_BITS_MASK 0x7
1439 #define AMD_FMT_MOD_BANK_XOR_BITS_SHIFT 24
1440 #define AMD_FMT_MOD_BANK_XOR_BITS_MASK 0x7
1441 #define AMD_FMT_MOD_PACKERS_SHIFT 27
1442 #define AMD_FMT_MOD_PACKERS_MASK 0x7
1443 #define AMD_FMT_MOD_RB_SHIFT 30
1444 #define AMD_FMT_MOD_RB_MASK 0x7
1445 #define AMD_FMT_MOD_PIPE_SHIFT 33
1446 #define AMD_FMT_MOD_PIPE_MASK 0x7
1447 
1448 #define AMD_FMT_MOD_SET(field, value) \
1449 	((__u64)(value) << AMD_FMT_MOD_##field##_SHIFT)
1450 #define AMD_FMT_MOD_GET(field, value) \
1451 	(((value) >> AMD_FMT_MOD_##field##_SHIFT) & AMD_FMT_MOD_##field##_MASK)
1452 #define AMD_FMT_MOD_CLEAR(field) \
1453 	(~((__u64)AMD_FMT_MOD_##field##_MASK << AMD_FMT_MOD_##field##_SHIFT))
1454 
1455 #if defined(__cplusplus)
1456 }
1457 #endif
1458 
1459 #endif /* DRM_FOURCC_H */
1460