xref: /openbmc/linux/include/soc/fsl/qman.h (revision f7c35abe)
1 /* Copyright 2008 - 2016 Freescale Semiconductor, Inc.
2  *
3  * Redistribution and use in source and binary forms, with or without
4  * modification, are permitted provided that the following conditions are met:
5  *     * Redistributions of source code must retain the above copyright
6  *	 notice, this list of conditions and the following disclaimer.
7  *     * Redistributions in binary form must reproduce the above copyright
8  *	 notice, this list of conditions and the following disclaimer in the
9  *	 documentation and/or other materials provided with the distribution.
10  *     * Neither the name of Freescale Semiconductor nor the
11  *	 names of its contributors may be used to endorse or promote products
12  *	 derived from this software without specific prior written permission.
13  *
14  * ALTERNATIVELY, this software may be distributed under the terms of the
15  * GNU General Public License ("GPL") as published by the Free Software
16  * Foundation, either version 2 of that License or (at your option) any
17  * later version.
18  *
19  * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
20  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22  * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
23  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
28  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #ifndef __FSL_QMAN_H
32 #define __FSL_QMAN_H
33 
34 #include <linux/bitops.h>
35 
36 /* Hardware constants */
37 #define QM_CHANNEL_SWPORTAL0 0
38 #define QMAN_CHANNEL_POOL1 0x21
39 #define QMAN_CHANNEL_POOL1_REV3 0x401
40 extern u16 qm_channel_pool1;
41 
42 /* Portal processing (interrupt) sources */
43 #define QM_PIRQ_CSCI	0x00100000	/* Congestion State Change */
44 #define QM_PIRQ_EQCI	0x00080000	/* Enqueue Command Committed */
45 #define QM_PIRQ_EQRI	0x00040000	/* EQCR Ring (below threshold) */
46 #define QM_PIRQ_DQRI	0x00020000	/* DQRR Ring (non-empty) */
47 #define QM_PIRQ_MRI	0x00010000	/* MR Ring (non-empty) */
48 /*
49  * This mask contains all the interrupt sources that need handling except DQRI,
50  * ie. that if present should trigger slow-path processing.
51  */
52 #define QM_PIRQ_SLOW	(QM_PIRQ_CSCI | QM_PIRQ_EQCI | QM_PIRQ_EQRI | \
53 			 QM_PIRQ_MRI)
54 
55 /* For qman_static_dequeue_*** APIs */
56 #define QM_SDQCR_CHANNELS_POOL_MASK	0x00007fff
57 /* for n in [1,15] */
58 #define QM_SDQCR_CHANNELS_POOL(n)	(0x00008000 >> (n))
59 /* for conversion from n of qm_channel */
60 static inline u32 QM_SDQCR_CHANNELS_POOL_CONV(u16 channel)
61 {
62 	return QM_SDQCR_CHANNELS_POOL(channel + 1 - qm_channel_pool1);
63 }
64 
65 /* --- QMan data structures (and associated constants) --- */
66 
67 /* "Frame Descriptor (FD)" */
68 struct qm_fd {
69 	union {
70 		struct {
71 			u8 cfg8b_w1;
72 			u8 bpid;	/* Buffer Pool ID */
73 			u8 cfg8b_w3;
74 			u8 addr_hi;	/* high 8-bits of 40-bit address */
75 			__be32 addr_lo;	/* low 32-bits of 40-bit address */
76 		} __packed;
77 		__be64 data;
78 	};
79 	__be32 cfg;	/* format, offset, length / congestion */
80 	union {
81 		__be32 cmd;
82 		__be32 status;
83 	};
84 } __aligned(8);
85 
86 #define QM_FD_FORMAT_SG		BIT(31)
87 #define QM_FD_FORMAT_LONG	BIT(30)
88 #define QM_FD_FORMAT_COMPOUND	BIT(29)
89 #define QM_FD_FORMAT_MASK	GENMASK(31, 29)
90 #define QM_FD_OFF_SHIFT		20
91 #define QM_FD_OFF_MASK		GENMASK(28, 20)
92 #define QM_FD_LEN_MASK		GENMASK(19, 0)
93 #define QM_FD_LEN_BIG_MASK	GENMASK(28, 0)
94 
95 enum qm_fd_format {
96 	/*
97 	 * 'contig' implies a contiguous buffer, whereas 'sg' implies a
98 	 * scatter-gather table. 'big' implies a 29-bit length with no offset
99 	 * field, otherwise length is 20-bit and offset is 9-bit. 'compound'
100 	 * implies a s/g-like table, where each entry itself represents a frame
101 	 * (contiguous or scatter-gather) and the 29-bit "length" is
102 	 * interpreted purely for congestion calculations, ie. a "congestion
103 	 * weight".
104 	 */
105 	qm_fd_contig = 0,
106 	qm_fd_contig_big = QM_FD_FORMAT_LONG,
107 	qm_fd_sg = QM_FD_FORMAT_SG,
108 	qm_fd_sg_big = QM_FD_FORMAT_SG | QM_FD_FORMAT_LONG,
109 	qm_fd_compound = QM_FD_FORMAT_COMPOUND
110 };
111 
112 static inline dma_addr_t qm_fd_addr(const struct qm_fd *fd)
113 {
114 	return be64_to_cpu(fd->data) & 0xffffffffffLLU;
115 }
116 
117 static inline u64 qm_fd_addr_get64(const struct qm_fd *fd)
118 {
119 	return be64_to_cpu(fd->data) & 0xffffffffffLLU;
120 }
121 
122 static inline void qm_fd_addr_set64(struct qm_fd *fd, u64 addr)
123 {
124 	fd->addr_hi = upper_32_bits(addr);
125 	fd->addr_lo = cpu_to_be32(lower_32_bits(addr));
126 }
127 
128 /*
129  * The 'format' field indicates the interpretation of the remaining
130  * 29 bits of the 32-bit word.
131  * If 'format' is _contig or _sg, 20b length and 9b offset.
132  * If 'format' is _contig_big or _sg_big, 29b length.
133  * If 'format' is _compound, 29b "congestion weight".
134  */
135 static inline enum qm_fd_format qm_fd_get_format(const struct qm_fd *fd)
136 {
137 	return be32_to_cpu(fd->cfg) & QM_FD_FORMAT_MASK;
138 }
139 
140 static inline int qm_fd_get_offset(const struct qm_fd *fd)
141 {
142 	return (be32_to_cpu(fd->cfg) & QM_FD_OFF_MASK) >> QM_FD_OFF_SHIFT;
143 }
144 
145 static inline int qm_fd_get_length(const struct qm_fd *fd)
146 {
147 	return be32_to_cpu(fd->cfg) & QM_FD_LEN_MASK;
148 }
149 
150 static inline int qm_fd_get_len_big(const struct qm_fd *fd)
151 {
152 	return be32_to_cpu(fd->cfg) & QM_FD_LEN_BIG_MASK;
153 }
154 
155 static inline void qm_fd_set_param(struct qm_fd *fd, enum qm_fd_format fmt,
156 				   int off, int len)
157 {
158 	fd->cfg = cpu_to_be32(fmt | (len & QM_FD_LEN_BIG_MASK) |
159 			      ((off << QM_FD_OFF_SHIFT) & QM_FD_OFF_MASK));
160 }
161 
162 #define qm_fd_set_contig(fd, off, len) \
163 	qm_fd_set_param(fd, qm_fd_contig, off, len)
164 #define qm_fd_set_sg(fd, off, len) qm_fd_set_param(fd, qm_fd_sg, off, len)
165 #define qm_fd_set_contig_big(fd, len) \
166 	qm_fd_set_param(fd, qm_fd_contig_big, 0, len)
167 #define qm_fd_set_sg_big(fd, len) qm_fd_set_param(fd, qm_fd_sg_big, 0, len)
168 
169 static inline void qm_fd_clear_fd(struct qm_fd *fd)
170 {
171 	fd->data = 0;
172 	fd->cfg = 0;
173 	fd->cmd = 0;
174 }
175 
176 /* Scatter/Gather table entry */
177 struct qm_sg_entry {
178 	union {
179 		struct {
180 			u8 __reserved1[3];
181 			u8 addr_hi;	/* high 8-bits of 40-bit address */
182 			__be32 addr_lo;	/* low 32-bits of 40-bit address */
183 		};
184 		__be64 data;
185 	};
186 	__be32 cfg;	/* E bit, F bit, length */
187 	u8 __reserved2;
188 	u8 bpid;
189 	__be16 offset; /* 13-bit, _res[13-15]*/
190 } __packed;
191 
192 #define QM_SG_LEN_MASK	GENMASK(29, 0)
193 #define QM_SG_OFF_MASK	GENMASK(12, 0)
194 #define QM_SG_FIN	BIT(30)
195 #define QM_SG_EXT	BIT(31)
196 
197 static inline dma_addr_t qm_sg_addr(const struct qm_sg_entry *sg)
198 {
199 	return be64_to_cpu(sg->data) & 0xffffffffffLLU;
200 }
201 
202 static inline u64 qm_sg_entry_get64(const struct qm_sg_entry *sg)
203 {
204 	return be64_to_cpu(sg->data) & 0xffffffffffLLU;
205 }
206 
207 static inline void qm_sg_entry_set64(struct qm_sg_entry *sg, u64 addr)
208 {
209 	sg->addr_hi = upper_32_bits(addr);
210 	sg->addr_lo = cpu_to_be32(lower_32_bits(addr));
211 }
212 
213 static inline bool qm_sg_entry_is_final(const struct qm_sg_entry *sg)
214 {
215 	return be32_to_cpu(sg->cfg) & QM_SG_FIN;
216 }
217 
218 static inline bool qm_sg_entry_is_ext(const struct qm_sg_entry *sg)
219 {
220 	return be32_to_cpu(sg->cfg) & QM_SG_EXT;
221 }
222 
223 static inline int qm_sg_entry_get_len(const struct qm_sg_entry *sg)
224 {
225 	return be32_to_cpu(sg->cfg) & QM_SG_LEN_MASK;
226 }
227 
228 static inline void qm_sg_entry_set_len(struct qm_sg_entry *sg, int len)
229 {
230 	sg->cfg = cpu_to_be32(len & QM_SG_LEN_MASK);
231 }
232 
233 static inline void qm_sg_entry_set_f(struct qm_sg_entry *sg, int len)
234 {
235 	sg->cfg = cpu_to_be32(QM_SG_FIN | (len & QM_SG_LEN_MASK));
236 }
237 
238 static inline int qm_sg_entry_get_off(const struct qm_sg_entry *sg)
239 {
240 	return be32_to_cpu(sg->offset) & QM_SG_OFF_MASK;
241 }
242 
243 /* "Frame Dequeue Response" */
244 struct qm_dqrr_entry {
245 	u8 verb;
246 	u8 stat;
247 	__be16 seqnum;	/* 15-bit */
248 	u8 tok;
249 	u8 __reserved2[3];
250 	__be32 fqid;	/* 24-bit */
251 	__be32 context_b;
252 	struct qm_fd fd;
253 	u8 __reserved4[32];
254 } __packed;
255 #define QM_DQRR_VERB_VBIT		0x80
256 #define QM_DQRR_VERB_MASK		0x7f	/* where the verb contains; */
257 #define QM_DQRR_VERB_FRAME_DEQUEUE	0x60	/* "this format" */
258 #define QM_DQRR_STAT_FQ_EMPTY		0x80	/* FQ empty */
259 #define QM_DQRR_STAT_FQ_HELDACTIVE	0x40	/* FQ held active */
260 #define QM_DQRR_STAT_FQ_FORCEELIGIBLE	0x20	/* FQ was force-eligible'd */
261 #define QM_DQRR_STAT_FD_VALID		0x10	/* has a non-NULL FD */
262 #define QM_DQRR_STAT_UNSCHEDULED	0x02	/* Unscheduled dequeue */
263 #define QM_DQRR_STAT_DQCR_EXPIRED	0x01	/* VDQCR or PDQCR expired*/
264 
265 /* 'fqid' is a 24-bit field in every h/w descriptor */
266 #define QM_FQID_MASK	GENMASK(23, 0)
267 #define qm_fqid_set(p, v) ((p)->fqid = cpu_to_be32((v) & QM_FQID_MASK))
268 #define qm_fqid_get(p)    (be32_to_cpu((p)->fqid) & QM_FQID_MASK)
269 
270 /* "ERN Message Response" */
271 /* "FQ State Change Notification" */
272 union qm_mr_entry {
273 	struct {
274 		u8 verb;
275 		u8 __reserved[63];
276 	};
277 	struct {
278 		u8 verb;
279 		u8 dca;
280 		__be16 seqnum;
281 		u8 rc;		/* Rej Code: 8-bit */
282 		u8 __reserved[3];
283 		__be32 fqid;	/* 24-bit */
284 		__be32 tag;
285 		struct qm_fd fd;
286 		u8 __reserved1[32];
287 	} __packed ern;
288 	struct {
289 		u8 verb;
290 		u8 fqs;		/* Frame Queue Status */
291 		u8 __reserved1[6];
292 		__be32 fqid;	/* 24-bit */
293 		__be32 context_b;
294 		u8 __reserved2[48];
295 	} __packed fq;		/* FQRN/FQRNI/FQRL/FQPN */
296 };
297 #define QM_MR_VERB_VBIT			0x80
298 /*
299  * ERNs originating from direct-connect portals ("dcern") use 0x20 as a verb
300  * which would be invalid as a s/w enqueue verb. A s/w ERN can be distinguished
301  * from the other MR types by noting if the 0x20 bit is unset.
302  */
303 #define QM_MR_VERB_TYPE_MASK		0x27
304 #define QM_MR_VERB_DC_ERN		0x20
305 #define QM_MR_VERB_FQRN			0x21
306 #define QM_MR_VERB_FQRNI		0x22
307 #define QM_MR_VERB_FQRL			0x23
308 #define QM_MR_VERB_FQPN			0x24
309 #define QM_MR_RC_MASK			0xf0	/* contains one of; */
310 #define QM_MR_RC_CGR_TAILDROP		0x00
311 #define QM_MR_RC_WRED			0x10
312 #define QM_MR_RC_ERROR			0x20
313 #define QM_MR_RC_ORPWINDOW_EARLY	0x30
314 #define QM_MR_RC_ORPWINDOW_LATE		0x40
315 #define QM_MR_RC_FQ_TAILDROP		0x50
316 #define QM_MR_RC_ORPWINDOW_RETIRED	0x60
317 #define QM_MR_RC_ORP_ZERO		0x70
318 #define QM_MR_FQS_ORLPRESENT		0x02	/* ORL fragments to come */
319 #define QM_MR_FQS_NOTEMPTY		0x01	/* FQ has enqueued frames */
320 
321 /*
322  * An identical structure of FQD fields is present in the "Init FQ" command and
323  * the "Query FQ" result, it's suctioned out into the "struct qm_fqd" type.
324  * Within that, the 'stashing' and 'taildrop' pieces are also factored out, the
325  * latter has two inlines to assist with converting to/from the mant+exp
326  * representation.
327  */
328 struct qm_fqd_stashing {
329 	/* See QM_STASHING_EXCL_<...> */
330 	u8 exclusive;
331 	/* Numbers of cachelines */
332 	u8 cl; /* _res[6-7], as[4-5], ds[2-3], cs[0-1] */
333 };
334 
335 struct qm_fqd_oac {
336 	/* "Overhead Accounting Control", see QM_OAC_<...> */
337 	u8 oac; /* oac[6-7], _res[0-5] */
338 	/* Two's-complement value (-128 to +127) */
339 	s8 oal; /* "Overhead Accounting Length" */
340 };
341 
342 struct qm_fqd {
343 	/* _res[6-7], orprws[3-5], oa[2], olws[0-1] */
344 	u8 orpc;
345 	u8 cgid;
346 	__be16 fq_ctrl;	/* See QM_FQCTRL_<...> */
347 	__be16 dest_wq;	/* channel[3-15], wq[0-2] */
348 	__be16 ics_cred; /* 15-bit */
349 	/*
350 	 * For "Initialize Frame Queue" commands, the write-enable mask
351 	 * determines whether 'td' or 'oac_init' is observed. For query
352 	 * commands, this field is always 'td', and 'oac_query' (below) reflects
353 	 * the Overhead ACcounting values.
354 	 */
355 	union {
356 		__be16 td; /* "Taildrop": _res[13-15], mant[5-12], exp[0-4] */
357 		struct qm_fqd_oac oac_init;
358 	};
359 	__be32 context_b;
360 	union {
361 		/* Treat it as 64-bit opaque */
362 		__be64 opaque;
363 		struct {
364 			__be32 hi;
365 			__be32 lo;
366 		};
367 		/* Treat it as s/w portal stashing config */
368 		/* see "FQD Context_A field used for [...]" */
369 		struct {
370 			struct qm_fqd_stashing stashing;
371 			/*
372 			 * 48-bit address of FQ context to
373 			 * stash, must be cacheline-aligned
374 			 */
375 			__be16 context_hi;
376 			__be32 context_lo;
377 		} __packed;
378 	} context_a;
379 	struct qm_fqd_oac oac_query;
380 } __packed;
381 
382 #define QM_FQD_CHAN_OFF		3
383 #define QM_FQD_WQ_MASK		GENMASK(2, 0)
384 #define QM_FQD_TD_EXP_MASK	GENMASK(4, 0)
385 #define QM_FQD_TD_MANT_OFF	5
386 #define QM_FQD_TD_MANT_MASK	GENMASK(12, 5)
387 #define QM_FQD_TD_MAX		0xe0000000
388 #define QM_FQD_TD_MANT_MAX	0xff
389 #define QM_FQD_OAC_OFF		6
390 #define QM_FQD_AS_OFF		4
391 #define QM_FQD_DS_OFF		2
392 #define QM_FQD_XS_MASK		0x3
393 
394 /* 64-bit converters for context_hi/lo */
395 static inline u64 qm_fqd_stashing_get64(const struct qm_fqd *fqd)
396 {
397 	return be64_to_cpu(fqd->context_a.opaque) & 0xffffffffffffULL;
398 }
399 
400 static inline dma_addr_t qm_fqd_stashing_addr(const struct qm_fqd *fqd)
401 {
402 	return be64_to_cpu(fqd->context_a.opaque) & 0xffffffffffffULL;
403 }
404 
405 static inline u64 qm_fqd_context_a_get64(const struct qm_fqd *fqd)
406 {
407 	return qm_fqd_stashing_get64(fqd);
408 }
409 
410 static inline void qm_fqd_stashing_set64(struct qm_fqd *fqd, u64 addr)
411 {
412 	fqd->context_a.context_hi = cpu_to_be16(upper_32_bits(addr));
413 	fqd->context_a.context_lo = cpu_to_be32(lower_32_bits(addr));
414 }
415 
416 static inline void qm_fqd_context_a_set64(struct qm_fqd *fqd, u64 addr)
417 {
418 	fqd->context_a.hi = cpu_to_be32(upper_32_bits(addr));
419 	fqd->context_a.lo = cpu_to_be32(lower_32_bits(addr));
420 }
421 
422 /* convert a threshold value into mant+exp representation */
423 static inline int qm_fqd_set_taildrop(struct qm_fqd *fqd, u32 val,
424 				      int roundup)
425 {
426 	u32 e = 0;
427 	int td, oddbit = 0;
428 
429 	if (val > QM_FQD_TD_MAX)
430 		return -ERANGE;
431 
432 	while (val > QM_FQD_TD_MANT_MAX) {
433 		oddbit = val & 1;
434 		val >>= 1;
435 		e++;
436 		if (roundup && oddbit)
437 			val++;
438 	}
439 
440 	td = (val << QM_FQD_TD_MANT_OFF) & QM_FQD_TD_MANT_MASK;
441 	td |= (e & QM_FQD_TD_EXP_MASK);
442 	fqd->td = cpu_to_be16(td);
443 	return 0;
444 }
445 /* and the other direction */
446 static inline int qm_fqd_get_taildrop(const struct qm_fqd *fqd)
447 {
448 	int td = be16_to_cpu(fqd->td);
449 
450 	return ((td & QM_FQD_TD_MANT_MASK) >> QM_FQD_TD_MANT_OFF)
451 		<< (td & QM_FQD_TD_EXP_MASK);
452 }
453 
454 static inline void qm_fqd_set_stashing(struct qm_fqd *fqd, u8 as, u8 ds, u8 cs)
455 {
456 	struct qm_fqd_stashing *st = &fqd->context_a.stashing;
457 
458 	st->cl = ((as & QM_FQD_XS_MASK) << QM_FQD_AS_OFF) |
459 		 ((ds & QM_FQD_XS_MASK) << QM_FQD_DS_OFF) |
460 		 (cs & QM_FQD_XS_MASK);
461 }
462 
463 static inline u8 qm_fqd_get_stashing(const struct qm_fqd *fqd)
464 {
465 	return fqd->context_a.stashing.cl;
466 }
467 
468 static inline void qm_fqd_set_oac(struct qm_fqd *fqd, u8 val)
469 {
470 	fqd->oac_init.oac = val << QM_FQD_OAC_OFF;
471 }
472 
473 static inline void qm_fqd_set_oal(struct qm_fqd *fqd, s8 val)
474 {
475 	fqd->oac_init.oal = val;
476 }
477 
478 static inline void qm_fqd_set_destwq(struct qm_fqd *fqd, int ch, int wq)
479 {
480 	fqd->dest_wq = cpu_to_be16((ch << QM_FQD_CHAN_OFF) |
481 				   (wq & QM_FQD_WQ_MASK));
482 }
483 
484 static inline int qm_fqd_get_chan(const struct qm_fqd *fqd)
485 {
486 	return be16_to_cpu(fqd->dest_wq) >> QM_FQD_CHAN_OFF;
487 }
488 
489 static inline int qm_fqd_get_wq(const struct qm_fqd *fqd)
490 {
491 	return be16_to_cpu(fqd->dest_wq) & QM_FQD_WQ_MASK;
492 }
493 
494 /* See "Frame Queue Descriptor (FQD)" */
495 /* Frame Queue Descriptor (FQD) field 'fq_ctrl' uses these constants */
496 #define QM_FQCTRL_MASK		0x07ff	/* 'fq_ctrl' flags; */
497 #define QM_FQCTRL_CGE		0x0400	/* Congestion Group Enable */
498 #define QM_FQCTRL_TDE		0x0200	/* Tail-Drop Enable */
499 #define QM_FQCTRL_CTXASTASHING	0x0080	/* Context-A stashing */
500 #define QM_FQCTRL_CPCSTASH	0x0040	/* CPC Stash Enable */
501 #define QM_FQCTRL_FORCESFDR	0x0008	/* High-priority SFDRs */
502 #define QM_FQCTRL_AVOIDBLOCK	0x0004	/* Don't block active */
503 #define QM_FQCTRL_HOLDACTIVE	0x0002	/* Hold active in portal */
504 #define QM_FQCTRL_PREFERINCACHE	0x0001	/* Aggressively cache FQD */
505 #define QM_FQCTRL_LOCKINCACHE	QM_FQCTRL_PREFERINCACHE /* older naming */
506 
507 /* See "FQD Context_A field used for [...] */
508 /* Frame Queue Descriptor (FQD) field 'CONTEXT_A' uses these constants */
509 #define QM_STASHING_EXCL_ANNOTATION	0x04
510 #define QM_STASHING_EXCL_DATA		0x02
511 #define QM_STASHING_EXCL_CTX		0x01
512 
513 /* See "Intra Class Scheduling" */
514 /* FQD field 'OAC' (Overhead ACcounting) uses these constants */
515 #define QM_OAC_ICS		0x2 /* Accounting for Intra-Class Scheduling */
516 #define QM_OAC_CG		0x1 /* Accounting for Congestion Groups */
517 
518 /*
519  * This struct represents the 32-bit "WR_PARM_[GYR]" parameters in CGR fields
520  * and associated commands/responses. The WRED parameters are calculated from
521  * these fields as follows;
522  *   MaxTH = MA * (2 ^ Mn)
523  *   Slope = SA / (2 ^ Sn)
524  *    MaxP = 4 * (Pn + 1)
525  */
526 struct qm_cgr_wr_parm {
527 	/* MA[24-31], Mn[19-23], SA[12-18], Sn[6-11], Pn[0-5] */
528 	__be32 word;
529 };
530 /*
531  * This struct represents the 13-bit "CS_THRES" CGR field. In the corresponding
532  * management commands, this is padded to a 16-bit structure field, so that's
533  * how we represent it here. The congestion state threshold is calculated from
534  * these fields as follows;
535  *   CS threshold = TA * (2 ^ Tn)
536  */
537 struct qm_cgr_cs_thres {
538 	/* _res[13-15], TA[5-12], Tn[0-4] */
539 	__be16 word;
540 };
541 /*
542  * This identical structure of CGR fields is present in the "Init/Modify CGR"
543  * commands and the "Query CGR" result. It's suctioned out here into its own
544  * struct.
545  */
546 struct __qm_mc_cgr {
547 	struct qm_cgr_wr_parm wr_parm_g;
548 	struct qm_cgr_wr_parm wr_parm_y;
549 	struct qm_cgr_wr_parm wr_parm_r;
550 	u8 wr_en_g;	/* boolean, use QM_CGR_EN */
551 	u8 wr_en_y;	/* boolean, use QM_CGR_EN */
552 	u8 wr_en_r;	/* boolean, use QM_CGR_EN */
553 	u8 cscn_en;	/* boolean, use QM_CGR_EN */
554 	union {
555 		struct {
556 			__be16 cscn_targ_upd_ctrl; /* use QM_CGR_TARG_UDP_* */
557 			__be16 cscn_targ_dcp_low;
558 		};
559 		__be32 cscn_targ;	/* use QM_CGR_TARG_* */
560 	};
561 	u8 cstd_en;	/* boolean, use QM_CGR_EN */
562 	u8 cs;		/* boolean, only used in query response */
563 	struct qm_cgr_cs_thres cs_thres; /* use qm_cgr_cs_thres_set64() */
564 	u8 mode;	/* QMAN_CGR_MODE_FRAME not supported in rev1.0 */
565 } __packed;
566 #define QM_CGR_EN		0x01 /* For wr_en_*, cscn_en, cstd_en */
567 #define QM_CGR_TARG_UDP_CTRL_WRITE_BIT	0x8000 /* value written to portal bit*/
568 #define QM_CGR_TARG_UDP_CTRL_DCP	0x4000 /* 0: SWP, 1: DCP */
569 #define QM_CGR_TARG_PORTAL(n)	(0x80000000 >> (n)) /* s/w portal, 0-9 */
570 #define QM_CGR_TARG_FMAN0	0x00200000 /* direct-connect portal: fman0 */
571 #define QM_CGR_TARG_FMAN1	0x00100000 /*			   : fman1 */
572 /* Convert CGR thresholds to/from "cs_thres" format */
573 static inline u64 qm_cgr_cs_thres_get64(const struct qm_cgr_cs_thres *th)
574 {
575 	int thres = be16_to_cpu(th->word);
576 
577 	return ((thres >> 5) & 0xff) << (thres & 0x1f);
578 }
579 
580 static inline int qm_cgr_cs_thres_set64(struct qm_cgr_cs_thres *th, u64 val,
581 					int roundup)
582 {
583 	u32 e = 0;
584 	int oddbit = 0;
585 
586 	while (val > 0xff) {
587 		oddbit = val & 1;
588 		val >>= 1;
589 		e++;
590 		if (roundup && oddbit)
591 			val++;
592 	}
593 	th->word = cpu_to_be16(((val & 0xff) << 5) | (e & 0x1f));
594 	return 0;
595 }
596 
597 /* "Initialize FQ" */
598 struct qm_mcc_initfq {
599 	u8 __reserved1[2];
600 	__be16 we_mask;	/* Write Enable Mask */
601 	__be32 fqid;	/* 24-bit */
602 	__be16 count;	/* Initialises 'count+1' FQDs */
603 	struct qm_fqd fqd; /* the FQD fields go here */
604 	u8 __reserved2[30];
605 } __packed;
606 /* "Initialize/Modify CGR" */
607 struct qm_mcc_initcgr {
608 	u8 __reserve1[2];
609 	__be16 we_mask;	/* Write Enable Mask */
610 	struct __qm_mc_cgr cgr;	/* CGR fields */
611 	u8 __reserved2[2];
612 	u8 cgid;
613 	u8 __reserved3[32];
614 } __packed;
615 
616 /* INITFQ-specific flags */
617 #define QM_INITFQ_WE_MASK		0x01ff	/* 'Write Enable' flags; */
618 #define QM_INITFQ_WE_OAC		0x0100
619 #define QM_INITFQ_WE_ORPC		0x0080
620 #define QM_INITFQ_WE_CGID		0x0040
621 #define QM_INITFQ_WE_FQCTRL		0x0020
622 #define QM_INITFQ_WE_DESTWQ		0x0010
623 #define QM_INITFQ_WE_ICSCRED		0x0008
624 #define QM_INITFQ_WE_TDTHRESH		0x0004
625 #define QM_INITFQ_WE_CONTEXTB		0x0002
626 #define QM_INITFQ_WE_CONTEXTA		0x0001
627 /* INITCGR/MODIFYCGR-specific flags */
628 #define QM_CGR_WE_MASK			0x07ff	/* 'Write Enable Mask'; */
629 #define QM_CGR_WE_WR_PARM_G		0x0400
630 #define QM_CGR_WE_WR_PARM_Y		0x0200
631 #define QM_CGR_WE_WR_PARM_R		0x0100
632 #define QM_CGR_WE_WR_EN_G		0x0080
633 #define QM_CGR_WE_WR_EN_Y		0x0040
634 #define QM_CGR_WE_WR_EN_R		0x0020
635 #define QM_CGR_WE_CSCN_EN		0x0010
636 #define QM_CGR_WE_CSCN_TARG		0x0008
637 #define QM_CGR_WE_CSTD_EN		0x0004
638 #define QM_CGR_WE_CS_THRES		0x0002
639 #define QM_CGR_WE_MODE			0x0001
640 
641 #define QMAN_CGR_FLAG_USE_INIT	     0x00000001
642 
643 	/* Portal and Frame Queues */
644 /* Represents a managed portal */
645 struct qman_portal;
646 
647 /*
648  * This object type represents QMan frame queue descriptors (FQD), it is
649  * cacheline-aligned, and initialised by qman_create_fq(). The structure is
650  * defined further down.
651  */
652 struct qman_fq;
653 
654 /*
655  * This object type represents a QMan congestion group, it is defined further
656  * down.
657  */
658 struct qman_cgr;
659 
660 /*
661  * This enum, and the callback type that returns it, are used when handling
662  * dequeued frames via DQRR. Note that for "null" callbacks registered with the
663  * portal object (for handling dequeues that do not demux because context_b is
664  * NULL), the return value *MUST* be qman_cb_dqrr_consume.
665  */
666 enum qman_cb_dqrr_result {
667 	/* DQRR entry can be consumed */
668 	qman_cb_dqrr_consume,
669 	/* Like _consume, but requests parking - FQ must be held-active */
670 	qman_cb_dqrr_park,
671 	/* Does not consume, for DCA mode only. */
672 	qman_cb_dqrr_defer,
673 	/*
674 	 * Stop processing without consuming this ring entry. Exits the current
675 	 * qman_p_poll_dqrr() or interrupt-handling, as appropriate. If within
676 	 * an interrupt handler, the callback would typically call
677 	 * qman_irqsource_remove(QM_PIRQ_DQRI) before returning this value,
678 	 * otherwise the interrupt will reassert immediately.
679 	 */
680 	qman_cb_dqrr_stop,
681 	/* Like qman_cb_dqrr_stop, but consumes the current entry. */
682 	qman_cb_dqrr_consume_stop
683 };
684 typedef enum qman_cb_dqrr_result (*qman_cb_dqrr)(struct qman_portal *qm,
685 					struct qman_fq *fq,
686 					const struct qm_dqrr_entry *dqrr);
687 
688 /*
689  * This callback type is used when handling ERNs, FQRNs and FQRLs via MR. They
690  * are always consumed after the callback returns.
691  */
692 typedef void (*qman_cb_mr)(struct qman_portal *qm, struct qman_fq *fq,
693 			   const union qm_mr_entry *msg);
694 
695 /*
696  * s/w-visible states. Ie. tentatively scheduled + truly scheduled + active +
697  * held-active + held-suspended are just "sched". Things like "retired" will not
698  * be assumed until it is complete (ie. QMAN_FQ_STATE_CHANGING is set until
699  * then, to indicate it's completing and to gate attempts to retry the retire
700  * command). Note, park commands do not set QMAN_FQ_STATE_CHANGING because it's
701  * technically impossible in the case of enqueue DCAs (which refer to DQRR ring
702  * index rather than the FQ that ring entry corresponds to), so repeated park
703  * commands are allowed (if you're silly enough to try) but won't change FQ
704  * state, and the resulting park notifications move FQs from "sched" to
705  * "parked".
706  */
707 enum qman_fq_state {
708 	qman_fq_state_oos,
709 	qman_fq_state_parked,
710 	qman_fq_state_sched,
711 	qman_fq_state_retired
712 };
713 
714 #define QMAN_FQ_STATE_CHANGING	     0x80000000 /* 'state' is changing */
715 #define QMAN_FQ_STATE_NE	     0x40000000 /* retired FQ isn't empty */
716 #define QMAN_FQ_STATE_ORL	     0x20000000 /* retired FQ has ORL */
717 #define QMAN_FQ_STATE_BLOCKOOS	     0xe0000000 /* if any are set, no OOS */
718 #define QMAN_FQ_STATE_CGR_EN	     0x10000000 /* CGR enabled */
719 #define QMAN_FQ_STATE_VDQCR	     0x08000000 /* being volatile dequeued */
720 
721 /*
722  * Frame queue objects (struct qman_fq) are stored within memory passed to
723  * qman_create_fq(), as this allows stashing of caller-provided demux callback
724  * pointers at no extra cost to stashing of (driver-internal) FQ state. If the
725  * caller wishes to add per-FQ state and have it benefit from dequeue-stashing,
726  * they should;
727  *
728  * (a) extend the qman_fq structure with their state; eg.
729  *
730  *     // myfq is allocated and driver_fq callbacks filled in;
731  *     struct my_fq {
732  *	   struct qman_fq base;
733  *	   int an_extra_field;
734  *	   [ ... add other fields to be associated with each FQ ...]
735  *     } *myfq = some_my_fq_allocator();
736  *     struct qman_fq *fq = qman_create_fq(fqid, flags, &myfq->base);
737  *
738  *     // in a dequeue callback, access extra fields from 'fq' via a cast;
739  *     struct my_fq *myfq = (struct my_fq *)fq;
740  *     do_something_with(myfq->an_extra_field);
741  *     [...]
742  *
743  * (b) when and if configuring the FQ for context stashing, specify how ever
744  *     many cachelines are required to stash 'struct my_fq', to accelerate not
745  *     only the QMan driver but the callback as well.
746  */
747 
748 struct qman_fq_cb {
749 	qman_cb_dqrr dqrr;	/* for dequeued frames */
750 	qman_cb_mr ern;		/* for s/w ERNs */
751 	qman_cb_mr fqs;		/* frame-queue state changes*/
752 };
753 
754 struct qman_fq {
755 	/* Caller of qman_create_fq() provides these demux callbacks */
756 	struct qman_fq_cb cb;
757 	/*
758 	 * These are internal to the driver, don't touch. In particular, they
759 	 * may change, be removed, or extended (so you shouldn't rely on
760 	 * sizeof(qman_fq) being a constant).
761 	 */
762 	u32 fqid, idx;
763 	unsigned long flags;
764 	enum qman_fq_state state;
765 	int cgr_groupid;
766 };
767 
768 /*
769  * This callback type is used when handling congestion group entry/exit.
770  * 'congested' is non-zero on congestion-entry, and zero on congestion-exit.
771  */
772 typedef void (*qman_cb_cgr)(struct qman_portal *qm,
773 			    struct qman_cgr *cgr, int congested);
774 
775 struct qman_cgr {
776 	/* Set these prior to qman_create_cgr() */
777 	u32 cgrid; /* 0..255, but u32 to allow specials like -1, 256, etc.*/
778 	qman_cb_cgr cb;
779 	/* These are private to the driver */
780 	u16 chan; /* portal channel this object is created on */
781 	struct list_head node;
782 };
783 
784 /* Flags to qman_create_fq() */
785 #define QMAN_FQ_FLAG_NO_ENQUEUE	     0x00000001 /* can't enqueue */
786 #define QMAN_FQ_FLAG_NO_MODIFY	     0x00000002 /* can only enqueue */
787 #define QMAN_FQ_FLAG_TO_DCPORTAL     0x00000004 /* consumed by CAAM/PME/Fman */
788 #define QMAN_FQ_FLAG_DYNAMIC_FQID    0x00000020 /* (de)allocate fqid */
789 
790 /* Flags to qman_init_fq() */
791 #define QMAN_INITFQ_FLAG_SCHED	     0x00000001 /* schedule rather than park */
792 #define QMAN_INITFQ_FLAG_LOCAL	     0x00000004 /* set dest portal */
793 
794 	/* Portal Management */
795 /**
796  * qman_p_irqsource_add - add processing sources to be interrupt-driven
797  * @bits: bitmask of QM_PIRQ_**I processing sources
798  *
799  * Adds processing sources that should be interrupt-driven (rather than
800  * processed via qman_poll_***() functions).
801  */
802 void qman_p_irqsource_add(struct qman_portal *p, u32 bits);
803 
804 /**
805  * qman_p_irqsource_remove - remove processing sources from being int-driven
806  * @bits: bitmask of QM_PIRQ_**I processing sources
807  *
808  * Removes processing sources from being interrupt-driven, so that they will
809  * instead be processed via qman_poll_***() functions.
810  */
811 void qman_p_irqsource_remove(struct qman_portal *p, u32 bits);
812 
813 /**
814  * qman_affine_cpus - return a mask of cpus that have affine portals
815  */
816 const cpumask_t *qman_affine_cpus(void);
817 
818 /**
819  * qman_affine_channel - return the channel ID of an portal
820  * @cpu: the cpu whose affine portal is the subject of the query
821  *
822  * If @cpu is -1, the affine portal for the current CPU will be used. It is a
823  * bug to call this function for any value of @cpu (other than -1) that is not a
824  * member of the mask returned from qman_affine_cpus().
825  */
826 u16 qman_affine_channel(int cpu);
827 
828 /**
829  * qman_get_affine_portal - return the portal pointer affine to cpu
830  * @cpu: the cpu whose affine portal is the subject of the query
831  */
832 struct qman_portal *qman_get_affine_portal(int cpu);
833 
834 /**
835  * qman_p_poll_dqrr - process DQRR (fast-path) entries
836  * @limit: the maximum number of DQRR entries to process
837  *
838  * Use of this function requires that DQRR processing not be interrupt-driven.
839  * The return value represents the number of DQRR entries processed.
840  */
841 int qman_p_poll_dqrr(struct qman_portal *p, unsigned int limit);
842 
843 /**
844  * qman_p_static_dequeue_add - Add pool channels to the portal SDQCR
845  * @pools: bit-mask of pool channels, using QM_SDQCR_CHANNELS_POOL(n)
846  *
847  * Adds a set of pool channels to the portal's static dequeue command register
848  * (SDQCR). The requested pools are limited to those the portal has dequeue
849  * access to.
850  */
851 void qman_p_static_dequeue_add(struct qman_portal *p, u32 pools);
852 
853 	/* FQ management */
854 /**
855  * qman_create_fq - Allocates a FQ
856  * @fqid: the index of the FQD to encapsulate, must be "Out of Service"
857  * @flags: bit-mask of QMAN_FQ_FLAG_*** options
858  * @fq: memory for storing the 'fq', with callbacks filled in
859  *
860  * Creates a frame queue object for the given @fqid, unless the
861  * QMAN_FQ_FLAG_DYNAMIC_FQID flag is set in @flags, in which case a FQID is
862  * dynamically allocated (or the function fails if none are available). Once
863  * created, the caller should not touch the memory at 'fq' except as extended to
864  * adjacent memory for user-defined fields (see the definition of "struct
865  * qman_fq" for more info). NO_MODIFY is only intended for enqueuing to
866  * pre-existing frame-queues that aren't to be otherwise interfered with, it
867  * prevents all other modifications to the frame queue. The TO_DCPORTAL flag
868  * causes the driver to honour any context_b modifications requested in the
869  * qm_init_fq() API, as this indicates the frame queue will be consumed by a
870  * direct-connect portal (PME, CAAM, or Fman). When frame queues are consumed by
871  * software portals, the context_b field is controlled by the driver and can't
872  * be modified by the caller.
873  */
874 int qman_create_fq(u32 fqid, u32 flags, struct qman_fq *fq);
875 
876 /**
877  * qman_destroy_fq - Deallocates a FQ
878  * @fq: the frame queue object to release
879  *
880  * The memory for this frame queue object ('fq' provided in qman_create_fq()) is
881  * not deallocated but the caller regains ownership, to do with as desired. The
882  * FQ must be in the 'out-of-service' or in the 'parked' state.
883  */
884 void qman_destroy_fq(struct qman_fq *fq);
885 
886 /**
887  * qman_fq_fqid - Queries the frame queue ID of a FQ object
888  * @fq: the frame queue object to query
889  */
890 u32 qman_fq_fqid(struct qman_fq *fq);
891 
892 /**
893  * qman_init_fq - Initialises FQ fields, leaves the FQ "parked" or "scheduled"
894  * @fq: the frame queue object to modify, must be 'parked' or new.
895  * @flags: bit-mask of QMAN_INITFQ_FLAG_*** options
896  * @opts: the FQ-modification settings, as defined in the low-level API
897  *
898  * The @opts parameter comes from the low-level portal API. Select
899  * QMAN_INITFQ_FLAG_SCHED in @flags to cause the frame queue to be scheduled
900  * rather than parked. NB, @opts can be NULL.
901  *
902  * Note that some fields and options within @opts may be ignored or overwritten
903  * by the driver;
904  * 1. the 'count' and 'fqid' fields are always ignored (this operation only
905  * affects one frame queue: @fq).
906  * 2. the QM_INITFQ_WE_CONTEXTB option of the 'we_mask' field and the associated
907  * 'fqd' structure's 'context_b' field are sometimes overwritten;
908  *   - if @fq was not created with QMAN_FQ_FLAG_TO_DCPORTAL, then context_b is
909  *     initialised to a value used by the driver for demux.
910  *   - if context_b is initialised for demux, so is context_a in case stashing
911  *     is requested (see item 4).
912  * (So caller control of context_b is only possible for TO_DCPORTAL frame queue
913  * objects.)
914  * 3. if @flags contains QMAN_INITFQ_FLAG_LOCAL, the 'fqd' structure's
915  * 'dest::channel' field will be overwritten to match the portal used to issue
916  * the command. If the WE_DESTWQ write-enable bit had already been set by the
917  * caller, the channel workqueue will be left as-is, otherwise the write-enable
918  * bit is set and the workqueue is set to a default of 4. If the "LOCAL" flag
919  * isn't set, the destination channel/workqueue fields and the write-enable bit
920  * are left as-is.
921  * 4. if the driver overwrites context_a/b for demux, then if
922  * QM_INITFQ_WE_CONTEXTA is set, the driver will only overwrite
923  * context_a.address fields and will leave the stashing fields provided by the
924  * user alone, otherwise it will zero out the context_a.stashing fields.
925  */
926 int qman_init_fq(struct qman_fq *fq, u32 flags, struct qm_mcc_initfq *opts);
927 
928 /**
929  * qman_schedule_fq - Schedules a FQ
930  * @fq: the frame queue object to schedule, must be 'parked'
931  *
932  * Schedules the frame queue, which must be Parked, which takes it to
933  * Tentatively-Scheduled or Truly-Scheduled depending on its fill-level.
934  */
935 int qman_schedule_fq(struct qman_fq *fq);
936 
937 /**
938  * qman_retire_fq - Retires a FQ
939  * @fq: the frame queue object to retire
940  * @flags: FQ flags (QMAN_FQ_STATE*) if retirement completes immediately
941  *
942  * Retires the frame queue. This returns zero if it succeeds immediately, +1 if
943  * the retirement was started asynchronously, otherwise it returns negative for
944  * failure. When this function returns zero, @flags is set to indicate whether
945  * the retired FQ is empty and/or whether it has any ORL fragments (to show up
946  * as ERNs). Otherwise the corresponding flags will be known when a subsequent
947  * FQRN message shows up on the portal's message ring.
948  *
949  * NB, if the retirement is asynchronous (the FQ was in the Truly Scheduled or
950  * Active state), the completion will be via the message ring as a FQRN - but
951  * the corresponding callback may occur before this function returns!! Ie. the
952  * caller should be prepared to accept the callback as the function is called,
953  * not only once it has returned.
954  */
955 int qman_retire_fq(struct qman_fq *fq, u32 *flags);
956 
957 /**
958  * qman_oos_fq - Puts a FQ "out of service"
959  * @fq: the frame queue object to be put out-of-service, must be 'retired'
960  *
961  * The frame queue must be retired and empty, and if any order restoration list
962  * was released as ERNs at the time of retirement, they must all be consumed.
963  */
964 int qman_oos_fq(struct qman_fq *fq);
965 
966 /**
967  * qman_enqueue - Enqueue a frame to a frame queue
968  * @fq: the frame queue object to enqueue to
969  * @fd: a descriptor of the frame to be enqueued
970  *
971  * Fills an entry in the EQCR of portal @qm to enqueue the frame described by
972  * @fd. The descriptor details are copied from @fd to the EQCR entry, the 'pid'
973  * field is ignored. The return value is non-zero on error, such as ring full.
974  */
975 int qman_enqueue(struct qman_fq *fq, const struct qm_fd *fd);
976 
977 /**
978  * qman_alloc_fqid_range - Allocate a contiguous range of FQIDs
979  * @result: is set by the API to the base FQID of the allocated range
980  * @count: the number of FQIDs required
981  *
982  * Returns 0 on success, or a negative error code.
983  */
984 int qman_alloc_fqid_range(u32 *result, u32 count);
985 #define qman_alloc_fqid(result) qman_alloc_fqid_range(result, 1)
986 
987 /**
988  * qman_release_fqid - Release the specified frame queue ID
989  * @fqid: the FQID to be released back to the resource pool
990  *
991  * This function can also be used to seed the allocator with
992  * FQID ranges that it can subsequently allocate from.
993  * Returns 0 on success, or a negative error code.
994  */
995 int qman_release_fqid(u32 fqid);
996 
997 	/* Pool-channel management */
998 /**
999  * qman_alloc_pool_range - Allocate a contiguous range of pool-channel IDs
1000  * @result: is set by the API to the base pool-channel ID of the allocated range
1001  * @count: the number of pool-channel IDs required
1002  *
1003  * Returns 0 on success, or a negative error code.
1004  */
1005 int qman_alloc_pool_range(u32 *result, u32 count);
1006 #define qman_alloc_pool(result) qman_alloc_pool_range(result, 1)
1007 
1008 /**
1009  * qman_release_pool - Release the specified pool-channel ID
1010  * @id: the pool-chan ID to be released back to the resource pool
1011  *
1012  * This function can also be used to seed the allocator with
1013  * pool-channel ID ranges that it can subsequently allocate from.
1014  * Returns 0 on success, or a negative error code.
1015  */
1016 int qman_release_pool(u32 id);
1017 
1018 	/* CGR management */
1019 /**
1020  * qman_create_cgr - Register a congestion group object
1021  * @cgr: the 'cgr' object, with fields filled in
1022  * @flags: QMAN_CGR_FLAG_* values
1023  * @opts: optional state of CGR settings
1024  *
1025  * Registers this object to receiving congestion entry/exit callbacks on the
1026  * portal affine to the cpu portal on which this API is executed. If opts is
1027  * NULL then only the callback (cgr->cb) function is registered. If @flags
1028  * contains QMAN_CGR_FLAG_USE_INIT, then an init hw command (which will reset
1029  * any unspecified parameters) will be used rather than a modify hw hardware
1030  * (which only modifies the specified parameters).
1031  */
1032 int qman_create_cgr(struct qman_cgr *cgr, u32 flags,
1033 		    struct qm_mcc_initcgr *opts);
1034 
1035 /**
1036  * qman_delete_cgr - Deregisters a congestion group object
1037  * @cgr: the 'cgr' object to deregister
1038  *
1039  * "Unplugs" this CGR object from the portal affine to the cpu on which this API
1040  * is executed. This must be excuted on the same affine portal on which it was
1041  * created.
1042  */
1043 int qman_delete_cgr(struct qman_cgr *cgr);
1044 
1045 /**
1046  * qman_delete_cgr_safe - Deregisters a congestion group object from any CPU
1047  * @cgr: the 'cgr' object to deregister
1048  *
1049  * This will select the proper CPU and run there qman_delete_cgr().
1050  */
1051 void qman_delete_cgr_safe(struct qman_cgr *cgr);
1052 
1053 /**
1054  * qman_query_cgr_congested - Queries CGR's congestion status
1055  * @cgr: the 'cgr' object to query
1056  * @result: returns 'cgr's congestion status, 1 (true) if congested
1057  */
1058 int qman_query_cgr_congested(struct qman_cgr *cgr, bool *result);
1059 
1060 /**
1061  * qman_alloc_cgrid_range - Allocate a contiguous range of CGR IDs
1062  * @result: is set by the API to the base CGR ID of the allocated range
1063  * @count: the number of CGR IDs required
1064  *
1065  * Returns 0 on success, or a negative error code.
1066  */
1067 int qman_alloc_cgrid_range(u32 *result, u32 count);
1068 #define qman_alloc_cgrid(result) qman_alloc_cgrid_range(result, 1)
1069 
1070 /**
1071  * qman_release_cgrid - Release the specified CGR ID
1072  * @id: the CGR ID to be released back to the resource pool
1073  *
1074  * This function can also be used to seed the allocator with
1075  * CGR ID ranges that it can subsequently allocate from.
1076  * Returns 0 on success, or a negative error code.
1077  */
1078 int qman_release_cgrid(u32 id);
1079 
1080 #endif	/* __FSL_QMAN_H */
1081