xref: /openbmc/linux/include/soc/fsl/qman.h (revision a77e393c)
1 /* Copyright 2008 - 2016 Freescale Semiconductor, Inc.
2  *
3  * Redistribution and use in source and binary forms, with or without
4  * modification, are permitted provided that the following conditions are met:
5  *     * Redistributions of source code must retain the above copyright
6  *	 notice, this list of conditions and the following disclaimer.
7  *     * Redistributions in binary form must reproduce the above copyright
8  *	 notice, this list of conditions and the following disclaimer in the
9  *	 documentation and/or other materials provided with the distribution.
10  *     * Neither the name of Freescale Semiconductor nor the
11  *	 names of its contributors may be used to endorse or promote products
12  *	 derived from this software without specific prior written permission.
13  *
14  * ALTERNATIVELY, this software may be distributed under the terms of the
15  * GNU General Public License ("GPL") as published by the Free Software
16  * Foundation, either version 2 of that License or (at your option) any
17  * later version.
18  *
19  * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
20  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22  * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
23  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
28  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #ifndef __FSL_QMAN_H
32 #define __FSL_QMAN_H
33 
34 #include <linux/bitops.h>
35 
36 /* Hardware constants */
37 #define QM_CHANNEL_SWPORTAL0 0
38 #define QMAN_CHANNEL_POOL1 0x21
39 #define QMAN_CHANNEL_POOL1_REV3 0x401
40 extern u16 qm_channel_pool1;
41 
42 /* Portal processing (interrupt) sources */
43 #define QM_PIRQ_CSCI	0x00100000	/* Congestion State Change */
44 #define QM_PIRQ_EQCI	0x00080000	/* Enqueue Command Committed */
45 #define QM_PIRQ_EQRI	0x00040000	/* EQCR Ring (below threshold) */
46 #define QM_PIRQ_DQRI	0x00020000	/* DQRR Ring (non-empty) */
47 #define QM_PIRQ_MRI	0x00010000	/* MR Ring (non-empty) */
48 /*
49  * This mask contains all the interrupt sources that need handling except DQRI,
50  * ie. that if present should trigger slow-path processing.
51  */
52 #define QM_PIRQ_SLOW	(QM_PIRQ_CSCI | QM_PIRQ_EQCI | QM_PIRQ_EQRI | \
53 			 QM_PIRQ_MRI)
54 
55 /* For qman_static_dequeue_*** APIs */
56 #define QM_SDQCR_CHANNELS_POOL_MASK	0x00007fff
57 /* for n in [1,15] */
58 #define QM_SDQCR_CHANNELS_POOL(n)	(0x00008000 >> (n))
59 /* for conversion from n of qm_channel */
60 static inline u32 QM_SDQCR_CHANNELS_POOL_CONV(u16 channel)
61 {
62 	return QM_SDQCR_CHANNELS_POOL(channel + 1 - qm_channel_pool1);
63 }
64 
65 /* --- QMan data structures (and associated constants) --- */
66 
67 /* "Frame Descriptor (FD)" */
68 struct qm_fd {
69 	union {
70 		struct {
71 			u8 cfg8b_w1;
72 			u8 bpid;	/* Buffer Pool ID */
73 			u8 cfg8b_w3;
74 			u8 addr_hi;	/* high 8-bits of 40-bit address */
75 			__be32 addr_lo;	/* low 32-bits of 40-bit address */
76 		} __packed;
77 		__be64 data;
78 	};
79 	__be32 cfg;	/* format, offset, length / congestion */
80 	union {
81 		__be32 cmd;
82 		__be32 status;
83 	};
84 } __aligned(8);
85 
86 #define QM_FD_FORMAT_SG		BIT(31)
87 #define QM_FD_FORMAT_LONG	BIT(30)
88 #define QM_FD_FORMAT_COMPOUND	BIT(29)
89 #define QM_FD_FORMAT_MASK	GENMASK(31, 29)
90 #define QM_FD_OFF_SHIFT		20
91 #define QM_FD_OFF_MASK		GENMASK(28, 20)
92 #define QM_FD_LEN_MASK		GENMASK(19, 0)
93 #define QM_FD_LEN_BIG_MASK	GENMASK(28, 0)
94 
95 enum qm_fd_format {
96 	/*
97 	 * 'contig' implies a contiguous buffer, whereas 'sg' implies a
98 	 * scatter-gather table. 'big' implies a 29-bit length with no offset
99 	 * field, otherwise length is 20-bit and offset is 9-bit. 'compound'
100 	 * implies a s/g-like table, where each entry itself represents a frame
101 	 * (contiguous or scatter-gather) and the 29-bit "length" is
102 	 * interpreted purely for congestion calculations, ie. a "congestion
103 	 * weight".
104 	 */
105 	qm_fd_contig = 0,
106 	qm_fd_contig_big = QM_FD_FORMAT_LONG,
107 	qm_fd_sg = QM_FD_FORMAT_SG,
108 	qm_fd_sg_big = QM_FD_FORMAT_SG | QM_FD_FORMAT_LONG,
109 	qm_fd_compound = QM_FD_FORMAT_COMPOUND
110 };
111 
112 static inline dma_addr_t qm_fd_addr(const struct qm_fd *fd)
113 {
114 	return be64_to_cpu(fd->data) & 0xffffffffffLLU;
115 }
116 
117 static inline u64 qm_fd_addr_get64(const struct qm_fd *fd)
118 {
119 	return be64_to_cpu(fd->data) & 0xffffffffffLLU;
120 }
121 
122 static inline void qm_fd_addr_set64(struct qm_fd *fd, u64 addr)
123 {
124 	fd->addr_hi = upper_32_bits(addr);
125 	fd->addr_lo = cpu_to_be32(lower_32_bits(addr));
126 }
127 
128 /*
129  * The 'format' field indicates the interpretation of the remaining
130  * 29 bits of the 32-bit word.
131  * If 'format' is _contig or _sg, 20b length and 9b offset.
132  * If 'format' is _contig_big or _sg_big, 29b length.
133  * If 'format' is _compound, 29b "congestion weight".
134  */
135 static inline enum qm_fd_format qm_fd_get_format(const struct qm_fd *fd)
136 {
137 	return be32_to_cpu(fd->cfg) & QM_FD_FORMAT_MASK;
138 }
139 
140 static inline int qm_fd_get_offset(const struct qm_fd *fd)
141 {
142 	return (be32_to_cpu(fd->cfg) & QM_FD_OFF_MASK) >> QM_FD_OFF_SHIFT;
143 }
144 
145 static inline int qm_fd_get_length(const struct qm_fd *fd)
146 {
147 	return be32_to_cpu(fd->cfg) & QM_FD_LEN_MASK;
148 }
149 
150 static inline int qm_fd_get_len_big(const struct qm_fd *fd)
151 {
152 	return be32_to_cpu(fd->cfg) & QM_FD_LEN_BIG_MASK;
153 }
154 
155 static inline void qm_fd_set_param(struct qm_fd *fd, enum qm_fd_format fmt,
156 				   int off, int len)
157 {
158 	fd->cfg = cpu_to_be32(fmt | (len & QM_FD_LEN_BIG_MASK) |
159 			      ((off << QM_FD_OFF_SHIFT) & QM_FD_OFF_MASK));
160 }
161 
162 #define qm_fd_set_contig(fd, off, len) \
163 	qm_fd_set_param(fd, qm_fd_contig, off, len)
164 #define qm_fd_set_sg(fd, off, len) qm_fd_set_param(fd, qm_fd_sg, off, len)
165 #define qm_fd_set_contig_big(fd, len) \
166 	qm_fd_set_param(fd, qm_fd_contig_big, 0, len)
167 #define qm_fd_set_sg_big(fd, len) qm_fd_set_param(fd, qm_fd_sg_big, 0, len)
168 
169 static inline void qm_fd_clear_fd(struct qm_fd *fd)
170 {
171 	fd->data = 0;
172 	fd->cfg = 0;
173 	fd->cmd = 0;
174 }
175 
176 /* Scatter/Gather table entry */
177 struct qm_sg_entry {
178 	union {
179 		struct {
180 			u8 __reserved1[3];
181 			u8 addr_hi;	/* high 8-bits of 40-bit address */
182 			__be32 addr_lo;	/* low 32-bits of 40-bit address */
183 		};
184 		__be64 data;
185 	};
186 	__be32 cfg;	/* E bit, F bit, length */
187 	u8 __reserved2;
188 	u8 bpid;
189 	__be16 offset; /* 13-bit, _res[13-15]*/
190 } __packed;
191 
192 #define QM_SG_LEN_MASK	GENMASK(29, 0)
193 #define QM_SG_OFF_MASK	GENMASK(12, 0)
194 #define QM_SG_FIN	BIT(30)
195 #define QM_SG_EXT	BIT(31)
196 
197 static inline dma_addr_t qm_sg_addr(const struct qm_sg_entry *sg)
198 {
199 	return be64_to_cpu(sg->data) & 0xffffffffffLLU;
200 }
201 
202 static inline u64 qm_sg_entry_get64(const struct qm_sg_entry *sg)
203 {
204 	return be64_to_cpu(sg->data) & 0xffffffffffLLU;
205 }
206 
207 static inline void qm_sg_entry_set64(struct qm_sg_entry *sg, u64 addr)
208 {
209 	sg->addr_hi = upper_32_bits(addr);
210 	sg->addr_lo = cpu_to_be32(lower_32_bits(addr));
211 }
212 
213 static inline bool qm_sg_entry_is_final(const struct qm_sg_entry *sg)
214 {
215 	return be32_to_cpu(sg->cfg) & QM_SG_FIN;
216 }
217 
218 static inline bool qm_sg_entry_is_ext(const struct qm_sg_entry *sg)
219 {
220 	return be32_to_cpu(sg->cfg) & QM_SG_EXT;
221 }
222 
223 static inline int qm_sg_entry_get_len(const struct qm_sg_entry *sg)
224 {
225 	return be32_to_cpu(sg->cfg) & QM_SG_LEN_MASK;
226 }
227 
228 static inline void qm_sg_entry_set_len(struct qm_sg_entry *sg, int len)
229 {
230 	sg->cfg = cpu_to_be32(len & QM_SG_LEN_MASK);
231 }
232 
233 static inline void qm_sg_entry_set_f(struct qm_sg_entry *sg, int len)
234 {
235 	sg->cfg = cpu_to_be32(QM_SG_FIN | (len & QM_SG_LEN_MASK));
236 }
237 
238 static inline int qm_sg_entry_get_off(const struct qm_sg_entry *sg)
239 {
240 	return be32_to_cpu(sg->offset) & QM_SG_OFF_MASK;
241 }
242 
243 /* "Frame Dequeue Response" */
244 struct qm_dqrr_entry {
245 	u8 verb;
246 	u8 stat;
247 	u16 seqnum;	/* 15-bit */
248 	u8 tok;
249 	u8 __reserved2[3];
250 	u32 fqid;	/* 24-bit */
251 	u32 contextB;
252 	struct qm_fd fd;
253 	u8 __reserved4[32];
254 } __packed;
255 #define QM_DQRR_VERB_VBIT		0x80
256 #define QM_DQRR_VERB_MASK		0x7f	/* where the verb contains; */
257 #define QM_DQRR_VERB_FRAME_DEQUEUE	0x60	/* "this format" */
258 #define QM_DQRR_STAT_FQ_EMPTY		0x80	/* FQ empty */
259 #define QM_DQRR_STAT_FQ_HELDACTIVE	0x40	/* FQ held active */
260 #define QM_DQRR_STAT_FQ_FORCEELIGIBLE	0x20	/* FQ was force-eligible'd */
261 #define QM_DQRR_STAT_FD_VALID		0x10	/* has a non-NULL FD */
262 #define QM_DQRR_STAT_UNSCHEDULED	0x02	/* Unscheduled dequeue */
263 #define QM_DQRR_STAT_DQCR_EXPIRED	0x01	/* VDQCR or PDQCR expired*/
264 
265 /* "ERN Message Response" */
266 /* "FQ State Change Notification" */
267 union qm_mr_entry {
268 	struct {
269 		u8 verb;
270 		u8 __reserved[63];
271 	};
272 	struct {
273 		u8 verb;
274 		u8 dca;
275 		u16 seqnum;
276 		u8 rc;		/* Rej Code: 8-bit */
277 		u8 orp_hi;	/* ORP: 24-bit */
278 		u16 orp_lo;
279 		u32 fqid;	/* 24-bit */
280 		u32 tag;
281 		struct qm_fd fd;
282 		u8 __reserved1[32];
283 	} __packed ern;
284 	struct {
285 		u8 verb;
286 		u8 fqs;		/* Frame Queue Status */
287 		u8 __reserved1[6];
288 		u32 fqid;	/* 24-bit */
289 		u32 contextB;
290 		u8 __reserved2[48];
291 	} __packed fq;		/* FQRN/FQRNI/FQRL/FQPN */
292 };
293 #define QM_MR_VERB_VBIT			0x80
294 /*
295  * ERNs originating from direct-connect portals ("dcern") use 0x20 as a verb
296  * which would be invalid as a s/w enqueue verb. A s/w ERN can be distinguished
297  * from the other MR types by noting if the 0x20 bit is unset.
298  */
299 #define QM_MR_VERB_TYPE_MASK		0x27
300 #define QM_MR_VERB_DC_ERN		0x20
301 #define QM_MR_VERB_FQRN			0x21
302 #define QM_MR_VERB_FQRNI		0x22
303 #define QM_MR_VERB_FQRL			0x23
304 #define QM_MR_VERB_FQPN			0x24
305 #define QM_MR_RC_MASK			0xf0	/* contains one of; */
306 #define QM_MR_RC_CGR_TAILDROP		0x00
307 #define QM_MR_RC_WRED			0x10
308 #define QM_MR_RC_ERROR			0x20
309 #define QM_MR_RC_ORPWINDOW_EARLY	0x30
310 #define QM_MR_RC_ORPWINDOW_LATE		0x40
311 #define QM_MR_RC_FQ_TAILDROP		0x50
312 #define QM_MR_RC_ORPWINDOW_RETIRED	0x60
313 #define QM_MR_RC_ORP_ZERO		0x70
314 #define QM_MR_FQS_ORLPRESENT		0x02	/* ORL fragments to come */
315 #define QM_MR_FQS_NOTEMPTY		0x01	/* FQ has enqueued frames */
316 
317 /*
318  * An identical structure of FQD fields is present in the "Init FQ" command and
319  * the "Query FQ" result, it's suctioned out into the "struct qm_fqd" type.
320  * Within that, the 'stashing' and 'taildrop' pieces are also factored out, the
321  * latter has two inlines to assist with converting to/from the mant+exp
322  * representation.
323  */
324 struct qm_fqd_stashing {
325 	/* See QM_STASHING_EXCL_<...> */
326 	u8 exclusive;
327 	/* Numbers of cachelines */
328 	u8 cl; /* _res[6-7], as[4-5], ds[2-3], cs[0-1] */
329 };
330 
331 struct qm_fqd_oac {
332 	/* "Overhead Accounting Control", see QM_OAC_<...> */
333 	u8 oac; /* oac[6-7], _res[0-5] */
334 	/* Two's-complement value (-128 to +127) */
335 	s8 oal; /* "Overhead Accounting Length" */
336 };
337 
338 struct qm_fqd {
339 	/* _res[6-7], orprws[3-5], oa[2], olws[0-1] */
340 	u8 orpc;
341 	u8 cgid;
342 	__be16 fq_ctrl;	/* See QM_FQCTRL_<...> */
343 	__be16 dest_wq;	/* channel[3-15], wq[0-2] */
344 	__be16 ics_cred; /* 15-bit */
345 	/*
346 	 * For "Initialize Frame Queue" commands, the write-enable mask
347 	 * determines whether 'td' or 'oac_init' is observed. For query
348 	 * commands, this field is always 'td', and 'oac_query' (below) reflects
349 	 * the Overhead ACcounting values.
350 	 */
351 	union {
352 		__be16 td; /* "Taildrop": _res[13-15], mant[5-12], exp[0-4] */
353 		struct qm_fqd_oac oac_init;
354 	};
355 	__be32 context_b;
356 	union {
357 		/* Treat it as 64-bit opaque */
358 		__be64 opaque;
359 		struct {
360 			__be32 hi;
361 			__be32 lo;
362 		};
363 		/* Treat it as s/w portal stashing config */
364 		/* see "FQD Context_A field used for [...]" */
365 		struct {
366 			struct qm_fqd_stashing stashing;
367 			/*
368 			 * 48-bit address of FQ context to
369 			 * stash, must be cacheline-aligned
370 			 */
371 			__be16 context_hi;
372 			__be32 context_lo;
373 		} __packed;
374 	} context_a;
375 	struct qm_fqd_oac oac_query;
376 } __packed;
377 
378 #define QM_FQD_CHAN_OFF		3
379 #define QM_FQD_WQ_MASK		GENMASK(2, 0)
380 #define QM_FQD_TD_EXP_MASK	GENMASK(4, 0)
381 #define QM_FQD_TD_MANT_OFF	5
382 #define QM_FQD_TD_MANT_MASK	GENMASK(12, 5)
383 #define QM_FQD_TD_MAX		0xe0000000
384 #define QM_FQD_TD_MANT_MAX	0xff
385 #define QM_FQD_OAC_OFF		6
386 #define QM_FQD_AS_OFF		4
387 #define QM_FQD_DS_OFF		2
388 #define QM_FQD_XS_MASK		0x3
389 
390 /* 64-bit converters for context_hi/lo */
391 static inline u64 qm_fqd_stashing_get64(const struct qm_fqd *fqd)
392 {
393 	return be64_to_cpu(fqd->context_a.opaque) & 0xffffffffffffULL;
394 }
395 
396 static inline dma_addr_t qm_fqd_stashing_addr(const struct qm_fqd *fqd)
397 {
398 	return be64_to_cpu(fqd->context_a.opaque) & 0xffffffffffffULL;
399 }
400 
401 static inline u64 qm_fqd_context_a_get64(const struct qm_fqd *fqd)
402 {
403 	return qm_fqd_stashing_get64(fqd);
404 }
405 
406 static inline void qm_fqd_stashing_set64(struct qm_fqd *fqd, u64 addr)
407 {
408 	fqd->context_a.context_hi = upper_32_bits(addr);
409 	fqd->context_a.context_lo = lower_32_bits(addr);
410 }
411 
412 static inline void qm_fqd_context_a_set64(struct qm_fqd *fqd, u64 addr)
413 {
414 	fqd->context_a.hi = cpu_to_be16(upper_32_bits(addr));
415 	fqd->context_a.lo = cpu_to_be32(lower_32_bits(addr));
416 }
417 
418 /* convert a threshold value into mant+exp representation */
419 static inline int qm_fqd_set_taildrop(struct qm_fqd *fqd, u32 val,
420 				      int roundup)
421 {
422 	u32 e = 0;
423 	int td, oddbit = 0;
424 
425 	if (val > QM_FQD_TD_MAX)
426 		return -ERANGE;
427 
428 	while (val > QM_FQD_TD_MANT_MAX) {
429 		oddbit = val & 1;
430 		val >>= 1;
431 		e++;
432 		if (roundup && oddbit)
433 			val++;
434 	}
435 
436 	td = (val << QM_FQD_TD_MANT_OFF) & QM_FQD_TD_MANT_MASK;
437 	td |= (e & QM_FQD_TD_EXP_MASK);
438 	fqd->td = cpu_to_be16(td);
439 	return 0;
440 }
441 /* and the other direction */
442 static inline int qm_fqd_get_taildrop(const struct qm_fqd *fqd)
443 {
444 	int td = be16_to_cpu(fqd->td);
445 
446 	return ((td & QM_FQD_TD_MANT_MASK) >> QM_FQD_TD_MANT_OFF)
447 		<< (td & QM_FQD_TD_EXP_MASK);
448 }
449 
450 static inline void qm_fqd_set_stashing(struct qm_fqd *fqd, u8 as, u8 ds, u8 cs)
451 {
452 	struct qm_fqd_stashing *st = &fqd->context_a.stashing;
453 
454 	st->cl = ((as & QM_FQD_XS_MASK) << QM_FQD_AS_OFF) |
455 		 ((ds & QM_FQD_XS_MASK) << QM_FQD_DS_OFF) |
456 		 (cs & QM_FQD_XS_MASK);
457 }
458 
459 static inline u8 qm_fqd_get_stashing(const struct qm_fqd *fqd)
460 {
461 	return fqd->context_a.stashing.cl;
462 }
463 
464 static inline void qm_fqd_set_oac(struct qm_fqd *fqd, u8 val)
465 {
466 	fqd->oac_init.oac = val << QM_FQD_OAC_OFF;
467 }
468 
469 static inline void qm_fqd_set_oal(struct qm_fqd *fqd, s8 val)
470 {
471 	fqd->oac_init.oal = val;
472 }
473 
474 static inline void qm_fqd_set_destwq(struct qm_fqd *fqd, int ch, int wq)
475 {
476 	fqd->dest_wq = cpu_to_be16((ch << QM_FQD_CHAN_OFF) |
477 				   (wq & QM_FQD_WQ_MASK));
478 }
479 
480 static inline int qm_fqd_get_chan(const struct qm_fqd *fqd)
481 {
482 	return be16_to_cpu(fqd->dest_wq) >> QM_FQD_CHAN_OFF;
483 }
484 
485 static inline int qm_fqd_get_wq(const struct qm_fqd *fqd)
486 {
487 	return be16_to_cpu(fqd->dest_wq) & QM_FQD_WQ_MASK;
488 }
489 
490 /* See "Frame Queue Descriptor (FQD)" */
491 /* Frame Queue Descriptor (FQD) field 'fq_ctrl' uses these constants */
492 #define QM_FQCTRL_MASK		0x07ff	/* 'fq_ctrl' flags; */
493 #define QM_FQCTRL_CGE		0x0400	/* Congestion Group Enable */
494 #define QM_FQCTRL_TDE		0x0200	/* Tail-Drop Enable */
495 #define QM_FQCTRL_CTXASTASHING	0x0080	/* Context-A stashing */
496 #define QM_FQCTRL_CPCSTASH	0x0040	/* CPC Stash Enable */
497 #define QM_FQCTRL_FORCESFDR	0x0008	/* High-priority SFDRs */
498 #define QM_FQCTRL_AVOIDBLOCK	0x0004	/* Don't block active */
499 #define QM_FQCTRL_HOLDACTIVE	0x0002	/* Hold active in portal */
500 #define QM_FQCTRL_PREFERINCACHE	0x0001	/* Aggressively cache FQD */
501 #define QM_FQCTRL_LOCKINCACHE	QM_FQCTRL_PREFERINCACHE /* older naming */
502 
503 /* See "FQD Context_A field used for [...] */
504 /* Frame Queue Descriptor (FQD) field 'CONTEXT_A' uses these constants */
505 #define QM_STASHING_EXCL_ANNOTATION	0x04
506 #define QM_STASHING_EXCL_DATA		0x02
507 #define QM_STASHING_EXCL_CTX		0x01
508 
509 /* See "Intra Class Scheduling" */
510 /* FQD field 'OAC' (Overhead ACcounting) uses these constants */
511 #define QM_OAC_ICS		0x2 /* Accounting for Intra-Class Scheduling */
512 #define QM_OAC_CG		0x1 /* Accounting for Congestion Groups */
513 
514 /*
515  * This struct represents the 32-bit "WR_PARM_[GYR]" parameters in CGR fields
516  * and associated commands/responses. The WRED parameters are calculated from
517  * these fields as follows;
518  *   MaxTH = MA * (2 ^ Mn)
519  *   Slope = SA / (2 ^ Sn)
520  *    MaxP = 4 * (Pn + 1)
521  */
522 struct qm_cgr_wr_parm {
523 	/* MA[24-31], Mn[19-23], SA[12-18], Sn[6-11], Pn[0-5] */
524 	u32 word;
525 };
526 /*
527  * This struct represents the 13-bit "CS_THRES" CGR field. In the corresponding
528  * management commands, this is padded to a 16-bit structure field, so that's
529  * how we represent it here. The congestion state threshold is calculated from
530  * these fields as follows;
531  *   CS threshold = TA * (2 ^ Tn)
532  */
533 struct qm_cgr_cs_thres {
534 	/* _res[13-15], TA[5-12], Tn[0-4] */
535 	u16 word;
536 };
537 /*
538  * This identical structure of CGR fields is present in the "Init/Modify CGR"
539  * commands and the "Query CGR" result. It's suctioned out here into its own
540  * struct.
541  */
542 struct __qm_mc_cgr {
543 	struct qm_cgr_wr_parm wr_parm_g;
544 	struct qm_cgr_wr_parm wr_parm_y;
545 	struct qm_cgr_wr_parm wr_parm_r;
546 	u8 wr_en_g;	/* boolean, use QM_CGR_EN */
547 	u8 wr_en_y;	/* boolean, use QM_CGR_EN */
548 	u8 wr_en_r;	/* boolean, use QM_CGR_EN */
549 	u8 cscn_en;	/* boolean, use QM_CGR_EN */
550 	union {
551 		struct {
552 			u16 cscn_targ_upd_ctrl; /* use QM_CSCN_TARG_UDP_ */
553 			u16 cscn_targ_dcp_low;	/* CSCN_TARG_DCP low-16bits */
554 		};
555 		u32 cscn_targ;	/* use QM_CGR_TARG_* */
556 	};
557 	u8 cstd_en;	/* boolean, use QM_CGR_EN */
558 	u8 cs;		/* boolean, only used in query response */
559 	struct qm_cgr_cs_thres cs_thres; /* use qm_cgr_cs_thres_set64() */
560 	u8 mode;	/* QMAN_CGR_MODE_FRAME not supported in rev1.0 */
561 } __packed;
562 #define QM_CGR_EN		0x01 /* For wr_en_*, cscn_en, cstd_en */
563 #define QM_CGR_TARG_UDP_CTRL_WRITE_BIT	0x8000 /* value written to portal bit*/
564 #define QM_CGR_TARG_UDP_CTRL_DCP	0x4000 /* 0: SWP, 1: DCP */
565 #define QM_CGR_TARG_PORTAL(n)	(0x80000000 >> (n)) /* s/w portal, 0-9 */
566 #define QM_CGR_TARG_FMAN0	0x00200000 /* direct-connect portal: fman0 */
567 #define QM_CGR_TARG_FMAN1	0x00100000 /*			   : fman1 */
568 /* Convert CGR thresholds to/from "cs_thres" format */
569 static inline u64 qm_cgr_cs_thres_get64(const struct qm_cgr_cs_thres *th)
570 {
571 	return ((th->word >> 5) & 0xff) << (th->word & 0x1f);
572 }
573 
574 static inline int qm_cgr_cs_thres_set64(struct qm_cgr_cs_thres *th, u64 val,
575 					int roundup)
576 {
577 	u32 e = 0;
578 	int oddbit = 0;
579 
580 	while (val > 0xff) {
581 		oddbit = val & 1;
582 		val >>= 1;
583 		e++;
584 		if (roundup && oddbit)
585 			val++;
586 	}
587 	th->word = ((val & 0xff) << 5) | (e & 0x1f);
588 	return 0;
589 }
590 
591 /* "Initialize FQ" */
592 struct qm_mcc_initfq {
593 	u8 __reserved1[2];
594 	u16 we_mask;	/* Write Enable Mask */
595 	u32 fqid;	/* 24-bit */
596 	u16 count;	/* Initialises 'count+1' FQDs */
597 	struct qm_fqd fqd; /* the FQD fields go here */
598 	u8 __reserved2[30];
599 } __packed;
600 /* "Initialize/Modify CGR" */
601 struct qm_mcc_initcgr {
602 	u8 __reserve1[2];
603 	u16 we_mask;	/* Write Enable Mask */
604 	struct __qm_mc_cgr cgr;	/* CGR fields */
605 	u8 __reserved2[2];
606 	u8 cgid;
607 	u8 __reserved3[32];
608 } __packed;
609 
610 /* INITFQ-specific flags */
611 #define QM_INITFQ_WE_MASK		0x01ff	/* 'Write Enable' flags; */
612 #define QM_INITFQ_WE_OAC		0x0100
613 #define QM_INITFQ_WE_ORPC		0x0080
614 #define QM_INITFQ_WE_CGID		0x0040
615 #define QM_INITFQ_WE_FQCTRL		0x0020
616 #define QM_INITFQ_WE_DESTWQ		0x0010
617 #define QM_INITFQ_WE_ICSCRED		0x0008
618 #define QM_INITFQ_WE_TDTHRESH		0x0004
619 #define QM_INITFQ_WE_CONTEXTB		0x0002
620 #define QM_INITFQ_WE_CONTEXTA		0x0001
621 /* INITCGR/MODIFYCGR-specific flags */
622 #define QM_CGR_WE_MASK			0x07ff	/* 'Write Enable Mask'; */
623 #define QM_CGR_WE_WR_PARM_G		0x0400
624 #define QM_CGR_WE_WR_PARM_Y		0x0200
625 #define QM_CGR_WE_WR_PARM_R		0x0100
626 #define QM_CGR_WE_WR_EN_G		0x0080
627 #define QM_CGR_WE_WR_EN_Y		0x0040
628 #define QM_CGR_WE_WR_EN_R		0x0020
629 #define QM_CGR_WE_CSCN_EN		0x0010
630 #define QM_CGR_WE_CSCN_TARG		0x0008
631 #define QM_CGR_WE_CSTD_EN		0x0004
632 #define QM_CGR_WE_CS_THRES		0x0002
633 #define QM_CGR_WE_MODE			0x0001
634 
635 #define QMAN_CGR_FLAG_USE_INIT	     0x00000001
636 
637 	/* Portal and Frame Queues */
638 /* Represents a managed portal */
639 struct qman_portal;
640 
641 /*
642  * This object type represents QMan frame queue descriptors (FQD), it is
643  * cacheline-aligned, and initialised by qman_create_fq(). The structure is
644  * defined further down.
645  */
646 struct qman_fq;
647 
648 /*
649  * This object type represents a QMan congestion group, it is defined further
650  * down.
651  */
652 struct qman_cgr;
653 
654 /*
655  * This enum, and the callback type that returns it, are used when handling
656  * dequeued frames via DQRR. Note that for "null" callbacks registered with the
657  * portal object (for handling dequeues that do not demux because contextB is
658  * NULL), the return value *MUST* be qman_cb_dqrr_consume.
659  */
660 enum qman_cb_dqrr_result {
661 	/* DQRR entry can be consumed */
662 	qman_cb_dqrr_consume,
663 	/* Like _consume, but requests parking - FQ must be held-active */
664 	qman_cb_dqrr_park,
665 	/* Does not consume, for DCA mode only. */
666 	qman_cb_dqrr_defer,
667 	/*
668 	 * Stop processing without consuming this ring entry. Exits the current
669 	 * qman_p_poll_dqrr() or interrupt-handling, as appropriate. If within
670 	 * an interrupt handler, the callback would typically call
671 	 * qman_irqsource_remove(QM_PIRQ_DQRI) before returning this value,
672 	 * otherwise the interrupt will reassert immediately.
673 	 */
674 	qman_cb_dqrr_stop,
675 	/* Like qman_cb_dqrr_stop, but consumes the current entry. */
676 	qman_cb_dqrr_consume_stop
677 };
678 typedef enum qman_cb_dqrr_result (*qman_cb_dqrr)(struct qman_portal *qm,
679 					struct qman_fq *fq,
680 					const struct qm_dqrr_entry *dqrr);
681 
682 /*
683  * This callback type is used when handling ERNs, FQRNs and FQRLs via MR. They
684  * are always consumed after the callback returns.
685  */
686 typedef void (*qman_cb_mr)(struct qman_portal *qm, struct qman_fq *fq,
687 			   const union qm_mr_entry *msg);
688 
689 /*
690  * s/w-visible states. Ie. tentatively scheduled + truly scheduled + active +
691  * held-active + held-suspended are just "sched". Things like "retired" will not
692  * be assumed until it is complete (ie. QMAN_FQ_STATE_CHANGING is set until
693  * then, to indicate it's completing and to gate attempts to retry the retire
694  * command). Note, park commands do not set QMAN_FQ_STATE_CHANGING because it's
695  * technically impossible in the case of enqueue DCAs (which refer to DQRR ring
696  * index rather than the FQ that ring entry corresponds to), so repeated park
697  * commands are allowed (if you're silly enough to try) but won't change FQ
698  * state, and the resulting park notifications move FQs from "sched" to
699  * "parked".
700  */
701 enum qman_fq_state {
702 	qman_fq_state_oos,
703 	qman_fq_state_parked,
704 	qman_fq_state_sched,
705 	qman_fq_state_retired
706 };
707 
708 #define QMAN_FQ_STATE_CHANGING	     0x80000000 /* 'state' is changing */
709 #define QMAN_FQ_STATE_NE	     0x40000000 /* retired FQ isn't empty */
710 #define QMAN_FQ_STATE_ORL	     0x20000000 /* retired FQ has ORL */
711 #define QMAN_FQ_STATE_BLOCKOOS	     0xe0000000 /* if any are set, no OOS */
712 #define QMAN_FQ_STATE_CGR_EN	     0x10000000 /* CGR enabled */
713 #define QMAN_FQ_STATE_VDQCR	     0x08000000 /* being volatile dequeued */
714 
715 /*
716  * Frame queue objects (struct qman_fq) are stored within memory passed to
717  * qman_create_fq(), as this allows stashing of caller-provided demux callback
718  * pointers at no extra cost to stashing of (driver-internal) FQ state. If the
719  * caller wishes to add per-FQ state and have it benefit from dequeue-stashing,
720  * they should;
721  *
722  * (a) extend the qman_fq structure with their state; eg.
723  *
724  *     // myfq is allocated and driver_fq callbacks filled in;
725  *     struct my_fq {
726  *	   struct qman_fq base;
727  *	   int an_extra_field;
728  *	   [ ... add other fields to be associated with each FQ ...]
729  *     } *myfq = some_my_fq_allocator();
730  *     struct qman_fq *fq = qman_create_fq(fqid, flags, &myfq->base);
731  *
732  *     // in a dequeue callback, access extra fields from 'fq' via a cast;
733  *     struct my_fq *myfq = (struct my_fq *)fq;
734  *     do_something_with(myfq->an_extra_field);
735  *     [...]
736  *
737  * (b) when and if configuring the FQ for context stashing, specify how ever
738  *     many cachelines are required to stash 'struct my_fq', to accelerate not
739  *     only the QMan driver but the callback as well.
740  */
741 
742 struct qman_fq_cb {
743 	qman_cb_dqrr dqrr;	/* for dequeued frames */
744 	qman_cb_mr ern;		/* for s/w ERNs */
745 	qman_cb_mr fqs;		/* frame-queue state changes*/
746 };
747 
748 struct qman_fq {
749 	/* Caller of qman_create_fq() provides these demux callbacks */
750 	struct qman_fq_cb cb;
751 	/*
752 	 * These are internal to the driver, don't touch. In particular, they
753 	 * may change, be removed, or extended (so you shouldn't rely on
754 	 * sizeof(qman_fq) being a constant).
755 	 */
756 	u32 fqid, idx;
757 	unsigned long flags;
758 	enum qman_fq_state state;
759 	int cgr_groupid;
760 };
761 
762 /*
763  * This callback type is used when handling congestion group entry/exit.
764  * 'congested' is non-zero on congestion-entry, and zero on congestion-exit.
765  */
766 typedef void (*qman_cb_cgr)(struct qman_portal *qm,
767 			    struct qman_cgr *cgr, int congested);
768 
769 struct qman_cgr {
770 	/* Set these prior to qman_create_cgr() */
771 	u32 cgrid; /* 0..255, but u32 to allow specials like -1, 256, etc.*/
772 	qman_cb_cgr cb;
773 	/* These are private to the driver */
774 	u16 chan; /* portal channel this object is created on */
775 	struct list_head node;
776 };
777 
778 /* Flags to qman_create_fq() */
779 #define QMAN_FQ_FLAG_NO_ENQUEUE	     0x00000001 /* can't enqueue */
780 #define QMAN_FQ_FLAG_NO_MODIFY	     0x00000002 /* can only enqueue */
781 #define QMAN_FQ_FLAG_TO_DCPORTAL     0x00000004 /* consumed by CAAM/PME/Fman */
782 #define QMAN_FQ_FLAG_DYNAMIC_FQID    0x00000020 /* (de)allocate fqid */
783 
784 /* Flags to qman_init_fq() */
785 #define QMAN_INITFQ_FLAG_SCHED	     0x00000001 /* schedule rather than park */
786 #define QMAN_INITFQ_FLAG_LOCAL	     0x00000004 /* set dest portal */
787 
788 	/* Portal Management */
789 /**
790  * qman_p_irqsource_add - add processing sources to be interrupt-driven
791  * @bits: bitmask of QM_PIRQ_**I processing sources
792  *
793  * Adds processing sources that should be interrupt-driven (rather than
794  * processed via qman_poll_***() functions).
795  */
796 void qman_p_irqsource_add(struct qman_portal *p, u32 bits);
797 
798 /**
799  * qman_p_irqsource_remove - remove processing sources from being int-driven
800  * @bits: bitmask of QM_PIRQ_**I processing sources
801  *
802  * Removes processing sources from being interrupt-driven, so that they will
803  * instead be processed via qman_poll_***() functions.
804  */
805 void qman_p_irqsource_remove(struct qman_portal *p, u32 bits);
806 
807 /**
808  * qman_affine_cpus - return a mask of cpus that have affine portals
809  */
810 const cpumask_t *qman_affine_cpus(void);
811 
812 /**
813  * qman_affine_channel - return the channel ID of an portal
814  * @cpu: the cpu whose affine portal is the subject of the query
815  *
816  * If @cpu is -1, the affine portal for the current CPU will be used. It is a
817  * bug to call this function for any value of @cpu (other than -1) that is not a
818  * member of the mask returned from qman_affine_cpus().
819  */
820 u16 qman_affine_channel(int cpu);
821 
822 /**
823  * qman_get_affine_portal - return the portal pointer affine to cpu
824  * @cpu: the cpu whose affine portal is the subject of the query
825  */
826 struct qman_portal *qman_get_affine_portal(int cpu);
827 
828 /**
829  * qman_p_poll_dqrr - process DQRR (fast-path) entries
830  * @limit: the maximum number of DQRR entries to process
831  *
832  * Use of this function requires that DQRR processing not be interrupt-driven.
833  * The return value represents the number of DQRR entries processed.
834  */
835 int qman_p_poll_dqrr(struct qman_portal *p, unsigned int limit);
836 
837 /**
838  * qman_p_static_dequeue_add - Add pool channels to the portal SDQCR
839  * @pools: bit-mask of pool channels, using QM_SDQCR_CHANNELS_POOL(n)
840  *
841  * Adds a set of pool channels to the portal's static dequeue command register
842  * (SDQCR). The requested pools are limited to those the portal has dequeue
843  * access to.
844  */
845 void qman_p_static_dequeue_add(struct qman_portal *p, u32 pools);
846 
847 	/* FQ management */
848 /**
849  * qman_create_fq - Allocates a FQ
850  * @fqid: the index of the FQD to encapsulate, must be "Out of Service"
851  * @flags: bit-mask of QMAN_FQ_FLAG_*** options
852  * @fq: memory for storing the 'fq', with callbacks filled in
853  *
854  * Creates a frame queue object for the given @fqid, unless the
855  * QMAN_FQ_FLAG_DYNAMIC_FQID flag is set in @flags, in which case a FQID is
856  * dynamically allocated (or the function fails if none are available). Once
857  * created, the caller should not touch the memory at 'fq' except as extended to
858  * adjacent memory for user-defined fields (see the definition of "struct
859  * qman_fq" for more info). NO_MODIFY is only intended for enqueuing to
860  * pre-existing frame-queues that aren't to be otherwise interfered with, it
861  * prevents all other modifications to the frame queue. The TO_DCPORTAL flag
862  * causes the driver to honour any contextB modifications requested in the
863  * qm_init_fq() API, as this indicates the frame queue will be consumed by a
864  * direct-connect portal (PME, CAAM, or Fman). When frame queues are consumed by
865  * software portals, the contextB field is controlled by the driver and can't be
866  * modified by the caller.
867  */
868 int qman_create_fq(u32 fqid, u32 flags, struct qman_fq *fq);
869 
870 /**
871  * qman_destroy_fq - Deallocates a FQ
872  * @fq: the frame queue object to release
873  *
874  * The memory for this frame queue object ('fq' provided in qman_create_fq()) is
875  * not deallocated but the caller regains ownership, to do with as desired. The
876  * FQ must be in the 'out-of-service' or in the 'parked' state.
877  */
878 void qman_destroy_fq(struct qman_fq *fq);
879 
880 /**
881  * qman_fq_fqid - Queries the frame queue ID of a FQ object
882  * @fq: the frame queue object to query
883  */
884 u32 qman_fq_fqid(struct qman_fq *fq);
885 
886 /**
887  * qman_init_fq - Initialises FQ fields, leaves the FQ "parked" or "scheduled"
888  * @fq: the frame queue object to modify, must be 'parked' or new.
889  * @flags: bit-mask of QMAN_INITFQ_FLAG_*** options
890  * @opts: the FQ-modification settings, as defined in the low-level API
891  *
892  * The @opts parameter comes from the low-level portal API. Select
893  * QMAN_INITFQ_FLAG_SCHED in @flags to cause the frame queue to be scheduled
894  * rather than parked. NB, @opts can be NULL.
895  *
896  * Note that some fields and options within @opts may be ignored or overwritten
897  * by the driver;
898  * 1. the 'count' and 'fqid' fields are always ignored (this operation only
899  * affects one frame queue: @fq).
900  * 2. the QM_INITFQ_WE_CONTEXTB option of the 'we_mask' field and the associated
901  * 'fqd' structure's 'context_b' field are sometimes overwritten;
902  *   - if @fq was not created with QMAN_FQ_FLAG_TO_DCPORTAL, then context_b is
903  *     initialised to a value used by the driver for demux.
904  *   - if context_b is initialised for demux, so is context_a in case stashing
905  *     is requested (see item 4).
906  * (So caller control of context_b is only possible for TO_DCPORTAL frame queue
907  * objects.)
908  * 3. if @flags contains QMAN_INITFQ_FLAG_LOCAL, the 'fqd' structure's
909  * 'dest::channel' field will be overwritten to match the portal used to issue
910  * the command. If the WE_DESTWQ write-enable bit had already been set by the
911  * caller, the channel workqueue will be left as-is, otherwise the write-enable
912  * bit is set and the workqueue is set to a default of 4. If the "LOCAL" flag
913  * isn't set, the destination channel/workqueue fields and the write-enable bit
914  * are left as-is.
915  * 4. if the driver overwrites context_a/b for demux, then if
916  * QM_INITFQ_WE_CONTEXTA is set, the driver will only overwrite
917  * context_a.address fields and will leave the stashing fields provided by the
918  * user alone, otherwise it will zero out the context_a.stashing fields.
919  */
920 int qman_init_fq(struct qman_fq *fq, u32 flags, struct qm_mcc_initfq *opts);
921 
922 /**
923  * qman_schedule_fq - Schedules a FQ
924  * @fq: the frame queue object to schedule, must be 'parked'
925  *
926  * Schedules the frame queue, which must be Parked, which takes it to
927  * Tentatively-Scheduled or Truly-Scheduled depending on its fill-level.
928  */
929 int qman_schedule_fq(struct qman_fq *fq);
930 
931 /**
932  * qman_retire_fq - Retires a FQ
933  * @fq: the frame queue object to retire
934  * @flags: FQ flags (QMAN_FQ_STATE*) if retirement completes immediately
935  *
936  * Retires the frame queue. This returns zero if it succeeds immediately, +1 if
937  * the retirement was started asynchronously, otherwise it returns negative for
938  * failure. When this function returns zero, @flags is set to indicate whether
939  * the retired FQ is empty and/or whether it has any ORL fragments (to show up
940  * as ERNs). Otherwise the corresponding flags will be known when a subsequent
941  * FQRN message shows up on the portal's message ring.
942  *
943  * NB, if the retirement is asynchronous (the FQ was in the Truly Scheduled or
944  * Active state), the completion will be via the message ring as a FQRN - but
945  * the corresponding callback may occur before this function returns!! Ie. the
946  * caller should be prepared to accept the callback as the function is called,
947  * not only once it has returned.
948  */
949 int qman_retire_fq(struct qman_fq *fq, u32 *flags);
950 
951 /**
952  * qman_oos_fq - Puts a FQ "out of service"
953  * @fq: the frame queue object to be put out-of-service, must be 'retired'
954  *
955  * The frame queue must be retired and empty, and if any order restoration list
956  * was released as ERNs at the time of retirement, they must all be consumed.
957  */
958 int qman_oos_fq(struct qman_fq *fq);
959 
960 /**
961  * qman_enqueue - Enqueue a frame to a frame queue
962  * @fq: the frame queue object to enqueue to
963  * @fd: a descriptor of the frame to be enqueued
964  *
965  * Fills an entry in the EQCR of portal @qm to enqueue the frame described by
966  * @fd. The descriptor details are copied from @fd to the EQCR entry, the 'pid'
967  * field is ignored. The return value is non-zero on error, such as ring full.
968  */
969 int qman_enqueue(struct qman_fq *fq, const struct qm_fd *fd);
970 
971 /**
972  * qman_alloc_fqid_range - Allocate a contiguous range of FQIDs
973  * @result: is set by the API to the base FQID of the allocated range
974  * @count: the number of FQIDs required
975  *
976  * Returns 0 on success, or a negative error code.
977  */
978 int qman_alloc_fqid_range(u32 *result, u32 count);
979 #define qman_alloc_fqid(result) qman_alloc_fqid_range(result, 1)
980 
981 /**
982  * qman_release_fqid - Release the specified frame queue ID
983  * @fqid: the FQID to be released back to the resource pool
984  *
985  * This function can also be used to seed the allocator with
986  * FQID ranges that it can subsequently allocate from.
987  * Returns 0 on success, or a negative error code.
988  */
989 int qman_release_fqid(u32 fqid);
990 
991 	/* Pool-channel management */
992 /**
993  * qman_alloc_pool_range - Allocate a contiguous range of pool-channel IDs
994  * @result: is set by the API to the base pool-channel ID of the allocated range
995  * @count: the number of pool-channel IDs required
996  *
997  * Returns 0 on success, or a negative error code.
998  */
999 int qman_alloc_pool_range(u32 *result, u32 count);
1000 #define qman_alloc_pool(result) qman_alloc_pool_range(result, 1)
1001 
1002 /**
1003  * qman_release_pool - Release the specified pool-channel ID
1004  * @id: the pool-chan ID to be released back to the resource pool
1005  *
1006  * This function can also be used to seed the allocator with
1007  * pool-channel ID ranges that it can subsequently allocate from.
1008  * Returns 0 on success, or a negative error code.
1009  */
1010 int qman_release_pool(u32 id);
1011 
1012 	/* CGR management */
1013 /**
1014  * qman_create_cgr - Register a congestion group object
1015  * @cgr: the 'cgr' object, with fields filled in
1016  * @flags: QMAN_CGR_FLAG_* values
1017  * @opts: optional state of CGR settings
1018  *
1019  * Registers this object to receiving congestion entry/exit callbacks on the
1020  * portal affine to the cpu portal on which this API is executed. If opts is
1021  * NULL then only the callback (cgr->cb) function is registered. If @flags
1022  * contains QMAN_CGR_FLAG_USE_INIT, then an init hw command (which will reset
1023  * any unspecified parameters) will be used rather than a modify hw hardware
1024  * (which only modifies the specified parameters).
1025  */
1026 int qman_create_cgr(struct qman_cgr *cgr, u32 flags,
1027 		    struct qm_mcc_initcgr *opts);
1028 
1029 /**
1030  * qman_delete_cgr - Deregisters a congestion group object
1031  * @cgr: the 'cgr' object to deregister
1032  *
1033  * "Unplugs" this CGR object from the portal affine to the cpu on which this API
1034  * is executed. This must be excuted on the same affine portal on which it was
1035  * created.
1036  */
1037 int qman_delete_cgr(struct qman_cgr *cgr);
1038 
1039 /**
1040  * qman_delete_cgr_safe - Deregisters a congestion group object from any CPU
1041  * @cgr: the 'cgr' object to deregister
1042  *
1043  * This will select the proper CPU and run there qman_delete_cgr().
1044  */
1045 void qman_delete_cgr_safe(struct qman_cgr *cgr);
1046 
1047 /**
1048  * qman_query_cgr_congested - Queries CGR's congestion status
1049  * @cgr: the 'cgr' object to query
1050  * @result: returns 'cgr's congestion status, 1 (true) if congested
1051  */
1052 int qman_query_cgr_congested(struct qman_cgr *cgr, bool *result);
1053 
1054 /**
1055  * qman_alloc_cgrid_range - Allocate a contiguous range of CGR IDs
1056  * @result: is set by the API to the base CGR ID of the allocated range
1057  * @count: the number of CGR IDs required
1058  *
1059  * Returns 0 on success, or a negative error code.
1060  */
1061 int qman_alloc_cgrid_range(u32 *result, u32 count);
1062 #define qman_alloc_cgrid(result) qman_alloc_cgrid_range(result, 1)
1063 
1064 /**
1065  * qman_release_cgrid - Release the specified CGR ID
1066  * @id: the CGR ID to be released back to the resource pool
1067  *
1068  * This function can also be used to seed the allocator with
1069  * CGR ID ranges that it can subsequently allocate from.
1070  * Returns 0 on success, or a negative error code.
1071  */
1072 int qman_release_cgrid(u32 id);
1073 
1074 #endif	/* __FSL_QMAN_H */
1075