xref: /openbmc/linux/include/soc/fsl/qman.h (revision 4da722ca19f30f7db250db808d1ab1703607a932)
1 /* Copyright 2008 - 2016 Freescale Semiconductor, Inc.
2  *
3  * Redistribution and use in source and binary forms, with or without
4  * modification, are permitted provided that the following conditions are met:
5  *     * Redistributions of source code must retain the above copyright
6  *	 notice, this list of conditions and the following disclaimer.
7  *     * Redistributions in binary form must reproduce the above copyright
8  *	 notice, this list of conditions and the following disclaimer in the
9  *	 documentation and/or other materials provided with the distribution.
10  *     * Neither the name of Freescale Semiconductor nor the
11  *	 names of its contributors may be used to endorse or promote products
12  *	 derived from this software without specific prior written permission.
13  *
14  * ALTERNATIVELY, this software may be distributed under the terms of the
15  * GNU General Public License ("GPL") as published by the Free Software
16  * Foundation, either version 2 of that License or (at your option) any
17  * later version.
18  *
19  * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
20  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22  * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
23  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
28  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #ifndef __FSL_QMAN_H
32 #define __FSL_QMAN_H
33 
34 #include <linux/bitops.h>
35 
36 /* Hardware constants */
37 #define QM_CHANNEL_SWPORTAL0 0
38 #define QMAN_CHANNEL_POOL1 0x21
39 #define QMAN_CHANNEL_CAAM 0x80
40 #define QMAN_CHANNEL_POOL1_REV3 0x401
41 #define QMAN_CHANNEL_CAAM_REV3 0x840
42 extern u16 qm_channel_pool1;
43 extern u16 qm_channel_caam;
44 
45 /* Portal processing (interrupt) sources */
46 #define QM_PIRQ_CSCI	0x00100000	/* Congestion State Change */
47 #define QM_PIRQ_EQCI	0x00080000	/* Enqueue Command Committed */
48 #define QM_PIRQ_EQRI	0x00040000	/* EQCR Ring (below threshold) */
49 #define QM_PIRQ_DQRI	0x00020000	/* DQRR Ring (non-empty) */
50 #define QM_PIRQ_MRI	0x00010000	/* MR Ring (non-empty) */
51 /*
52  * This mask contains all the interrupt sources that need handling except DQRI,
53  * ie. that if present should trigger slow-path processing.
54  */
55 #define QM_PIRQ_SLOW	(QM_PIRQ_CSCI | QM_PIRQ_EQCI | QM_PIRQ_EQRI | \
56 			 QM_PIRQ_MRI)
57 
58 /* For qman_static_dequeue_*** APIs */
59 #define QM_SDQCR_CHANNELS_POOL_MASK	0x00007fff
60 /* for n in [1,15] */
61 #define QM_SDQCR_CHANNELS_POOL(n)	(0x00008000 >> (n))
62 /* for conversion from n of qm_channel */
63 static inline u32 QM_SDQCR_CHANNELS_POOL_CONV(u16 channel)
64 {
65 	return QM_SDQCR_CHANNELS_POOL(channel + 1 - qm_channel_pool1);
66 }
67 
68 /* --- QMan data structures (and associated constants) --- */
69 
70 /* "Frame Descriptor (FD)" */
71 struct qm_fd {
72 	union {
73 		struct {
74 			u8 cfg8b_w1;
75 			u8 bpid;	/* Buffer Pool ID */
76 			u8 cfg8b_w3;
77 			u8 addr_hi;	/* high 8-bits of 40-bit address */
78 			__be32 addr_lo;	/* low 32-bits of 40-bit address */
79 		} __packed;
80 		__be64 data;
81 	};
82 	__be32 cfg;	/* format, offset, length / congestion */
83 	union {
84 		__be32 cmd;
85 		__be32 status;
86 	};
87 } __aligned(8);
88 
89 #define QM_FD_FORMAT_SG		BIT(31)
90 #define QM_FD_FORMAT_LONG	BIT(30)
91 #define QM_FD_FORMAT_COMPOUND	BIT(29)
92 #define QM_FD_FORMAT_MASK	GENMASK(31, 29)
93 #define QM_FD_OFF_SHIFT		20
94 #define QM_FD_OFF_MASK		GENMASK(28, 20)
95 #define QM_FD_LEN_MASK		GENMASK(19, 0)
96 #define QM_FD_LEN_BIG_MASK	GENMASK(28, 0)
97 
98 enum qm_fd_format {
99 	/*
100 	 * 'contig' implies a contiguous buffer, whereas 'sg' implies a
101 	 * scatter-gather table. 'big' implies a 29-bit length with no offset
102 	 * field, otherwise length is 20-bit and offset is 9-bit. 'compound'
103 	 * implies a s/g-like table, where each entry itself represents a frame
104 	 * (contiguous or scatter-gather) and the 29-bit "length" is
105 	 * interpreted purely for congestion calculations, ie. a "congestion
106 	 * weight".
107 	 */
108 	qm_fd_contig = 0,
109 	qm_fd_contig_big = QM_FD_FORMAT_LONG,
110 	qm_fd_sg = QM_FD_FORMAT_SG,
111 	qm_fd_sg_big = QM_FD_FORMAT_SG | QM_FD_FORMAT_LONG,
112 	qm_fd_compound = QM_FD_FORMAT_COMPOUND
113 };
114 
115 static inline dma_addr_t qm_fd_addr(const struct qm_fd *fd)
116 {
117 	return be64_to_cpu(fd->data) & 0xffffffffffLLU;
118 }
119 
120 static inline u64 qm_fd_addr_get64(const struct qm_fd *fd)
121 {
122 	return be64_to_cpu(fd->data) & 0xffffffffffLLU;
123 }
124 
125 static inline void qm_fd_addr_set64(struct qm_fd *fd, u64 addr)
126 {
127 	fd->addr_hi = upper_32_bits(addr);
128 	fd->addr_lo = cpu_to_be32(lower_32_bits(addr));
129 }
130 
131 /*
132  * The 'format' field indicates the interpretation of the remaining
133  * 29 bits of the 32-bit word.
134  * If 'format' is _contig or _sg, 20b length and 9b offset.
135  * If 'format' is _contig_big or _sg_big, 29b length.
136  * If 'format' is _compound, 29b "congestion weight".
137  */
138 static inline enum qm_fd_format qm_fd_get_format(const struct qm_fd *fd)
139 {
140 	return be32_to_cpu(fd->cfg) & QM_FD_FORMAT_MASK;
141 }
142 
143 static inline int qm_fd_get_offset(const struct qm_fd *fd)
144 {
145 	return (be32_to_cpu(fd->cfg) & QM_FD_OFF_MASK) >> QM_FD_OFF_SHIFT;
146 }
147 
148 static inline int qm_fd_get_length(const struct qm_fd *fd)
149 {
150 	return be32_to_cpu(fd->cfg) & QM_FD_LEN_MASK;
151 }
152 
153 static inline int qm_fd_get_len_big(const struct qm_fd *fd)
154 {
155 	return be32_to_cpu(fd->cfg) & QM_FD_LEN_BIG_MASK;
156 }
157 
158 static inline void qm_fd_set_param(struct qm_fd *fd, enum qm_fd_format fmt,
159 				   int off, int len)
160 {
161 	fd->cfg = cpu_to_be32(fmt | (len & QM_FD_LEN_BIG_MASK) |
162 			      ((off << QM_FD_OFF_SHIFT) & QM_FD_OFF_MASK));
163 }
164 
165 #define qm_fd_set_contig(fd, off, len) \
166 	qm_fd_set_param(fd, qm_fd_contig, off, len)
167 #define qm_fd_set_sg(fd, off, len) qm_fd_set_param(fd, qm_fd_sg, off, len)
168 #define qm_fd_set_contig_big(fd, len) \
169 	qm_fd_set_param(fd, qm_fd_contig_big, 0, len)
170 #define qm_fd_set_sg_big(fd, len) qm_fd_set_param(fd, qm_fd_sg_big, 0, len)
171 #define qm_fd_set_compound(fd, len) qm_fd_set_param(fd, qm_fd_compound, 0, len)
172 
173 static inline void qm_fd_clear_fd(struct qm_fd *fd)
174 {
175 	fd->data = 0;
176 	fd->cfg = 0;
177 	fd->cmd = 0;
178 }
179 
180 /* Scatter/Gather table entry */
181 struct qm_sg_entry {
182 	union {
183 		struct {
184 			u8 __reserved1[3];
185 			u8 addr_hi;	/* high 8-bits of 40-bit address */
186 			__be32 addr_lo;	/* low 32-bits of 40-bit address */
187 		};
188 		__be64 data;
189 	};
190 	__be32 cfg;	/* E bit, F bit, length */
191 	u8 __reserved2;
192 	u8 bpid;
193 	__be16 offset; /* 13-bit, _res[13-15]*/
194 } __packed;
195 
196 #define QM_SG_LEN_MASK	GENMASK(29, 0)
197 #define QM_SG_OFF_MASK	GENMASK(12, 0)
198 #define QM_SG_FIN	BIT(30)
199 #define QM_SG_EXT	BIT(31)
200 
201 static inline dma_addr_t qm_sg_addr(const struct qm_sg_entry *sg)
202 {
203 	return be64_to_cpu(sg->data) & 0xffffffffffLLU;
204 }
205 
206 static inline u64 qm_sg_entry_get64(const struct qm_sg_entry *sg)
207 {
208 	return be64_to_cpu(sg->data) & 0xffffffffffLLU;
209 }
210 
211 static inline void qm_sg_entry_set64(struct qm_sg_entry *sg, u64 addr)
212 {
213 	sg->addr_hi = upper_32_bits(addr);
214 	sg->addr_lo = cpu_to_be32(lower_32_bits(addr));
215 }
216 
217 static inline bool qm_sg_entry_is_final(const struct qm_sg_entry *sg)
218 {
219 	return be32_to_cpu(sg->cfg) & QM_SG_FIN;
220 }
221 
222 static inline bool qm_sg_entry_is_ext(const struct qm_sg_entry *sg)
223 {
224 	return be32_to_cpu(sg->cfg) & QM_SG_EXT;
225 }
226 
227 static inline int qm_sg_entry_get_len(const struct qm_sg_entry *sg)
228 {
229 	return be32_to_cpu(sg->cfg) & QM_SG_LEN_MASK;
230 }
231 
232 static inline void qm_sg_entry_set_len(struct qm_sg_entry *sg, int len)
233 {
234 	sg->cfg = cpu_to_be32(len & QM_SG_LEN_MASK);
235 }
236 
237 static inline void qm_sg_entry_set_f(struct qm_sg_entry *sg, int len)
238 {
239 	sg->cfg = cpu_to_be32(QM_SG_FIN | (len & QM_SG_LEN_MASK));
240 }
241 
242 static inline int qm_sg_entry_get_off(const struct qm_sg_entry *sg)
243 {
244 	return be32_to_cpu(sg->offset) & QM_SG_OFF_MASK;
245 }
246 
247 /* "Frame Dequeue Response" */
248 struct qm_dqrr_entry {
249 	u8 verb;
250 	u8 stat;
251 	__be16 seqnum;	/* 15-bit */
252 	u8 tok;
253 	u8 __reserved2[3];
254 	__be32 fqid;	/* 24-bit */
255 	__be32 context_b;
256 	struct qm_fd fd;
257 	u8 __reserved4[32];
258 } __packed;
259 #define QM_DQRR_VERB_VBIT		0x80
260 #define QM_DQRR_VERB_MASK		0x7f	/* where the verb contains; */
261 #define QM_DQRR_VERB_FRAME_DEQUEUE	0x60	/* "this format" */
262 #define QM_DQRR_STAT_FQ_EMPTY		0x80	/* FQ empty */
263 #define QM_DQRR_STAT_FQ_HELDACTIVE	0x40	/* FQ held active */
264 #define QM_DQRR_STAT_FQ_FORCEELIGIBLE	0x20	/* FQ was force-eligible'd */
265 #define QM_DQRR_STAT_FD_VALID		0x10	/* has a non-NULL FD */
266 #define QM_DQRR_STAT_UNSCHEDULED	0x02	/* Unscheduled dequeue */
267 #define QM_DQRR_STAT_DQCR_EXPIRED	0x01	/* VDQCR or PDQCR expired*/
268 
269 /* 'fqid' is a 24-bit field in every h/w descriptor */
270 #define QM_FQID_MASK	GENMASK(23, 0)
271 #define qm_fqid_set(p, v) ((p)->fqid = cpu_to_be32((v) & QM_FQID_MASK))
272 #define qm_fqid_get(p)    (be32_to_cpu((p)->fqid) & QM_FQID_MASK)
273 
274 /* "ERN Message Response" */
275 /* "FQ State Change Notification" */
276 union qm_mr_entry {
277 	struct {
278 		u8 verb;
279 		u8 __reserved[63];
280 	};
281 	struct {
282 		u8 verb;
283 		u8 dca;
284 		__be16 seqnum;
285 		u8 rc;		/* Rej Code: 8-bit */
286 		u8 __reserved[3];
287 		__be32 fqid;	/* 24-bit */
288 		__be32 tag;
289 		struct qm_fd fd;
290 		u8 __reserved1[32];
291 	} __packed ern;
292 	struct {
293 		u8 verb;
294 		u8 fqs;		/* Frame Queue Status */
295 		u8 __reserved1[6];
296 		__be32 fqid;	/* 24-bit */
297 		__be32 context_b;
298 		u8 __reserved2[48];
299 	} __packed fq;		/* FQRN/FQRNI/FQRL/FQPN */
300 };
301 #define QM_MR_VERB_VBIT			0x80
302 /*
303  * ERNs originating from direct-connect portals ("dcern") use 0x20 as a verb
304  * which would be invalid as a s/w enqueue verb. A s/w ERN can be distinguished
305  * from the other MR types by noting if the 0x20 bit is unset.
306  */
307 #define QM_MR_VERB_TYPE_MASK		0x27
308 #define QM_MR_VERB_DC_ERN		0x20
309 #define QM_MR_VERB_FQRN			0x21
310 #define QM_MR_VERB_FQRNI		0x22
311 #define QM_MR_VERB_FQRL			0x23
312 #define QM_MR_VERB_FQPN			0x24
313 #define QM_MR_RC_MASK			0xf0	/* contains one of; */
314 #define QM_MR_RC_CGR_TAILDROP		0x00
315 #define QM_MR_RC_WRED			0x10
316 #define QM_MR_RC_ERROR			0x20
317 #define QM_MR_RC_ORPWINDOW_EARLY	0x30
318 #define QM_MR_RC_ORPWINDOW_LATE		0x40
319 #define QM_MR_RC_FQ_TAILDROP		0x50
320 #define QM_MR_RC_ORPWINDOW_RETIRED	0x60
321 #define QM_MR_RC_ORP_ZERO		0x70
322 #define QM_MR_FQS_ORLPRESENT		0x02	/* ORL fragments to come */
323 #define QM_MR_FQS_NOTEMPTY		0x01	/* FQ has enqueued frames */
324 
325 /*
326  * An identical structure of FQD fields is present in the "Init FQ" command and
327  * the "Query FQ" result, it's suctioned out into the "struct qm_fqd" type.
328  * Within that, the 'stashing' and 'taildrop' pieces are also factored out, the
329  * latter has two inlines to assist with converting to/from the mant+exp
330  * representation.
331  */
332 struct qm_fqd_stashing {
333 	/* See QM_STASHING_EXCL_<...> */
334 	u8 exclusive;
335 	/* Numbers of cachelines */
336 	u8 cl; /* _res[6-7], as[4-5], ds[2-3], cs[0-1] */
337 };
338 
339 struct qm_fqd_oac {
340 	/* "Overhead Accounting Control", see QM_OAC_<...> */
341 	u8 oac; /* oac[6-7], _res[0-5] */
342 	/* Two's-complement value (-128 to +127) */
343 	s8 oal; /* "Overhead Accounting Length" */
344 };
345 
346 struct qm_fqd {
347 	/* _res[6-7], orprws[3-5], oa[2], olws[0-1] */
348 	u8 orpc;
349 	u8 cgid;
350 	__be16 fq_ctrl;	/* See QM_FQCTRL_<...> */
351 	__be16 dest_wq;	/* channel[3-15], wq[0-2] */
352 	__be16 ics_cred; /* 15-bit */
353 	/*
354 	 * For "Initialize Frame Queue" commands, the write-enable mask
355 	 * determines whether 'td' or 'oac_init' is observed. For query
356 	 * commands, this field is always 'td', and 'oac_query' (below) reflects
357 	 * the Overhead ACcounting values.
358 	 */
359 	union {
360 		__be16 td; /* "Taildrop": _res[13-15], mant[5-12], exp[0-4] */
361 		struct qm_fqd_oac oac_init;
362 	};
363 	__be32 context_b;
364 	union {
365 		/* Treat it as 64-bit opaque */
366 		__be64 opaque;
367 		struct {
368 			__be32 hi;
369 			__be32 lo;
370 		};
371 		/* Treat it as s/w portal stashing config */
372 		/* see "FQD Context_A field used for [...]" */
373 		struct {
374 			struct qm_fqd_stashing stashing;
375 			/*
376 			 * 48-bit address of FQ context to
377 			 * stash, must be cacheline-aligned
378 			 */
379 			__be16 context_hi;
380 			__be32 context_lo;
381 		} __packed;
382 	} context_a;
383 	struct qm_fqd_oac oac_query;
384 } __packed;
385 
386 #define QM_FQD_CHAN_OFF		3
387 #define QM_FQD_WQ_MASK		GENMASK(2, 0)
388 #define QM_FQD_TD_EXP_MASK	GENMASK(4, 0)
389 #define QM_FQD_TD_MANT_OFF	5
390 #define QM_FQD_TD_MANT_MASK	GENMASK(12, 5)
391 #define QM_FQD_TD_MAX		0xe0000000
392 #define QM_FQD_TD_MANT_MAX	0xff
393 #define QM_FQD_OAC_OFF		6
394 #define QM_FQD_AS_OFF		4
395 #define QM_FQD_DS_OFF		2
396 #define QM_FQD_XS_MASK		0x3
397 
398 /* 64-bit converters for context_hi/lo */
399 static inline u64 qm_fqd_stashing_get64(const struct qm_fqd *fqd)
400 {
401 	return be64_to_cpu(fqd->context_a.opaque) & 0xffffffffffffULL;
402 }
403 
404 static inline dma_addr_t qm_fqd_stashing_addr(const struct qm_fqd *fqd)
405 {
406 	return be64_to_cpu(fqd->context_a.opaque) & 0xffffffffffffULL;
407 }
408 
409 static inline u64 qm_fqd_context_a_get64(const struct qm_fqd *fqd)
410 {
411 	return qm_fqd_stashing_get64(fqd);
412 }
413 
414 static inline void qm_fqd_stashing_set64(struct qm_fqd *fqd, u64 addr)
415 {
416 	fqd->context_a.context_hi = cpu_to_be16(upper_32_bits(addr));
417 	fqd->context_a.context_lo = cpu_to_be32(lower_32_bits(addr));
418 }
419 
420 static inline void qm_fqd_context_a_set64(struct qm_fqd *fqd, u64 addr)
421 {
422 	fqd->context_a.hi = cpu_to_be32(upper_32_bits(addr));
423 	fqd->context_a.lo = cpu_to_be32(lower_32_bits(addr));
424 }
425 
426 /* convert a threshold value into mant+exp representation */
427 static inline int qm_fqd_set_taildrop(struct qm_fqd *fqd, u32 val,
428 				      int roundup)
429 {
430 	u32 e = 0;
431 	int td, oddbit = 0;
432 
433 	if (val > QM_FQD_TD_MAX)
434 		return -ERANGE;
435 
436 	while (val > QM_FQD_TD_MANT_MAX) {
437 		oddbit = val & 1;
438 		val >>= 1;
439 		e++;
440 		if (roundup && oddbit)
441 			val++;
442 	}
443 
444 	td = (val << QM_FQD_TD_MANT_OFF) & QM_FQD_TD_MANT_MASK;
445 	td |= (e & QM_FQD_TD_EXP_MASK);
446 	fqd->td = cpu_to_be16(td);
447 	return 0;
448 }
449 /* and the other direction */
450 static inline int qm_fqd_get_taildrop(const struct qm_fqd *fqd)
451 {
452 	int td = be16_to_cpu(fqd->td);
453 
454 	return ((td & QM_FQD_TD_MANT_MASK) >> QM_FQD_TD_MANT_OFF)
455 		<< (td & QM_FQD_TD_EXP_MASK);
456 }
457 
458 static inline void qm_fqd_set_stashing(struct qm_fqd *fqd, u8 as, u8 ds, u8 cs)
459 {
460 	struct qm_fqd_stashing *st = &fqd->context_a.stashing;
461 
462 	st->cl = ((as & QM_FQD_XS_MASK) << QM_FQD_AS_OFF) |
463 		 ((ds & QM_FQD_XS_MASK) << QM_FQD_DS_OFF) |
464 		 (cs & QM_FQD_XS_MASK);
465 }
466 
467 static inline u8 qm_fqd_get_stashing(const struct qm_fqd *fqd)
468 {
469 	return fqd->context_a.stashing.cl;
470 }
471 
472 static inline void qm_fqd_set_oac(struct qm_fqd *fqd, u8 val)
473 {
474 	fqd->oac_init.oac = val << QM_FQD_OAC_OFF;
475 }
476 
477 static inline void qm_fqd_set_oal(struct qm_fqd *fqd, s8 val)
478 {
479 	fqd->oac_init.oal = val;
480 }
481 
482 static inline void qm_fqd_set_destwq(struct qm_fqd *fqd, int ch, int wq)
483 {
484 	fqd->dest_wq = cpu_to_be16((ch << QM_FQD_CHAN_OFF) |
485 				   (wq & QM_FQD_WQ_MASK));
486 }
487 
488 static inline int qm_fqd_get_chan(const struct qm_fqd *fqd)
489 {
490 	return be16_to_cpu(fqd->dest_wq) >> QM_FQD_CHAN_OFF;
491 }
492 
493 static inline int qm_fqd_get_wq(const struct qm_fqd *fqd)
494 {
495 	return be16_to_cpu(fqd->dest_wq) & QM_FQD_WQ_MASK;
496 }
497 
498 /* See "Frame Queue Descriptor (FQD)" */
499 /* Frame Queue Descriptor (FQD) field 'fq_ctrl' uses these constants */
500 #define QM_FQCTRL_MASK		0x07ff	/* 'fq_ctrl' flags; */
501 #define QM_FQCTRL_CGE		0x0400	/* Congestion Group Enable */
502 #define QM_FQCTRL_TDE		0x0200	/* Tail-Drop Enable */
503 #define QM_FQCTRL_CTXASTASHING	0x0080	/* Context-A stashing */
504 #define QM_FQCTRL_CPCSTASH	0x0040	/* CPC Stash Enable */
505 #define QM_FQCTRL_FORCESFDR	0x0008	/* High-priority SFDRs */
506 #define QM_FQCTRL_AVOIDBLOCK	0x0004	/* Don't block active */
507 #define QM_FQCTRL_HOLDACTIVE	0x0002	/* Hold active in portal */
508 #define QM_FQCTRL_PREFERINCACHE	0x0001	/* Aggressively cache FQD */
509 #define QM_FQCTRL_LOCKINCACHE	QM_FQCTRL_PREFERINCACHE /* older naming */
510 
511 /* See "FQD Context_A field used for [...] */
512 /* Frame Queue Descriptor (FQD) field 'CONTEXT_A' uses these constants */
513 #define QM_STASHING_EXCL_ANNOTATION	0x04
514 #define QM_STASHING_EXCL_DATA		0x02
515 #define QM_STASHING_EXCL_CTX		0x01
516 
517 /* See "Intra Class Scheduling" */
518 /* FQD field 'OAC' (Overhead ACcounting) uses these constants */
519 #define QM_OAC_ICS		0x2 /* Accounting for Intra-Class Scheduling */
520 #define QM_OAC_CG		0x1 /* Accounting for Congestion Groups */
521 
522 /*
523  * This struct represents the 32-bit "WR_PARM_[GYR]" parameters in CGR fields
524  * and associated commands/responses. The WRED parameters are calculated from
525  * these fields as follows;
526  *   MaxTH = MA * (2 ^ Mn)
527  *   Slope = SA / (2 ^ Sn)
528  *    MaxP = 4 * (Pn + 1)
529  */
530 struct qm_cgr_wr_parm {
531 	/* MA[24-31], Mn[19-23], SA[12-18], Sn[6-11], Pn[0-5] */
532 	__be32 word;
533 };
534 /*
535  * This struct represents the 13-bit "CS_THRES" CGR field. In the corresponding
536  * management commands, this is padded to a 16-bit structure field, so that's
537  * how we represent it here. The congestion state threshold is calculated from
538  * these fields as follows;
539  *   CS threshold = TA * (2 ^ Tn)
540  */
541 struct qm_cgr_cs_thres {
542 	/* _res[13-15], TA[5-12], Tn[0-4] */
543 	__be16 word;
544 };
545 /*
546  * This identical structure of CGR fields is present in the "Init/Modify CGR"
547  * commands and the "Query CGR" result. It's suctioned out here into its own
548  * struct.
549  */
550 struct __qm_mc_cgr {
551 	struct qm_cgr_wr_parm wr_parm_g;
552 	struct qm_cgr_wr_parm wr_parm_y;
553 	struct qm_cgr_wr_parm wr_parm_r;
554 	u8 wr_en_g;	/* boolean, use QM_CGR_EN */
555 	u8 wr_en_y;	/* boolean, use QM_CGR_EN */
556 	u8 wr_en_r;	/* boolean, use QM_CGR_EN */
557 	u8 cscn_en;	/* boolean, use QM_CGR_EN */
558 	union {
559 		struct {
560 			__be16 cscn_targ_upd_ctrl; /* use QM_CGR_TARG_UDP_* */
561 			__be16 cscn_targ_dcp_low;
562 		};
563 		__be32 cscn_targ;	/* use QM_CGR_TARG_* */
564 	};
565 	u8 cstd_en;	/* boolean, use QM_CGR_EN */
566 	u8 cs;		/* boolean, only used in query response */
567 	struct qm_cgr_cs_thres cs_thres; /* use qm_cgr_cs_thres_set64() */
568 	u8 mode;	/* QMAN_CGR_MODE_FRAME not supported in rev1.0 */
569 } __packed;
570 #define QM_CGR_EN		0x01 /* For wr_en_*, cscn_en, cstd_en */
571 #define QM_CGR_TARG_UDP_CTRL_WRITE_BIT	0x8000 /* value written to portal bit*/
572 #define QM_CGR_TARG_UDP_CTRL_DCP	0x4000 /* 0: SWP, 1: DCP */
573 #define QM_CGR_TARG_PORTAL(n)	(0x80000000 >> (n)) /* s/w portal, 0-9 */
574 #define QM_CGR_TARG_FMAN0	0x00200000 /* direct-connect portal: fman0 */
575 #define QM_CGR_TARG_FMAN1	0x00100000 /*			   : fman1 */
576 /* Convert CGR thresholds to/from "cs_thres" format */
577 static inline u64 qm_cgr_cs_thres_get64(const struct qm_cgr_cs_thres *th)
578 {
579 	int thres = be16_to_cpu(th->word);
580 
581 	return ((thres >> 5) & 0xff) << (thres & 0x1f);
582 }
583 
584 static inline int qm_cgr_cs_thres_set64(struct qm_cgr_cs_thres *th, u64 val,
585 					int roundup)
586 {
587 	u32 e = 0;
588 	int oddbit = 0;
589 
590 	while (val > 0xff) {
591 		oddbit = val & 1;
592 		val >>= 1;
593 		e++;
594 		if (roundup && oddbit)
595 			val++;
596 	}
597 	th->word = cpu_to_be16(((val & 0xff) << 5) | (e & 0x1f));
598 	return 0;
599 }
600 
601 /* "Initialize FQ" */
602 struct qm_mcc_initfq {
603 	u8 __reserved1[2];
604 	__be16 we_mask;	/* Write Enable Mask */
605 	__be32 fqid;	/* 24-bit */
606 	__be16 count;	/* Initialises 'count+1' FQDs */
607 	struct qm_fqd fqd; /* the FQD fields go here */
608 	u8 __reserved2[30];
609 } __packed;
610 /* "Initialize/Modify CGR" */
611 struct qm_mcc_initcgr {
612 	u8 __reserve1[2];
613 	__be16 we_mask;	/* Write Enable Mask */
614 	struct __qm_mc_cgr cgr;	/* CGR fields */
615 	u8 __reserved2[2];
616 	u8 cgid;
617 	u8 __reserved3[32];
618 } __packed;
619 
620 /* INITFQ-specific flags */
621 #define QM_INITFQ_WE_MASK		0x01ff	/* 'Write Enable' flags; */
622 #define QM_INITFQ_WE_OAC		0x0100
623 #define QM_INITFQ_WE_ORPC		0x0080
624 #define QM_INITFQ_WE_CGID		0x0040
625 #define QM_INITFQ_WE_FQCTRL		0x0020
626 #define QM_INITFQ_WE_DESTWQ		0x0010
627 #define QM_INITFQ_WE_ICSCRED		0x0008
628 #define QM_INITFQ_WE_TDTHRESH		0x0004
629 #define QM_INITFQ_WE_CONTEXTB		0x0002
630 #define QM_INITFQ_WE_CONTEXTA		0x0001
631 /* INITCGR/MODIFYCGR-specific flags */
632 #define QM_CGR_WE_MASK			0x07ff	/* 'Write Enable Mask'; */
633 #define QM_CGR_WE_WR_PARM_G		0x0400
634 #define QM_CGR_WE_WR_PARM_Y		0x0200
635 #define QM_CGR_WE_WR_PARM_R		0x0100
636 #define QM_CGR_WE_WR_EN_G		0x0080
637 #define QM_CGR_WE_WR_EN_Y		0x0040
638 #define QM_CGR_WE_WR_EN_R		0x0020
639 #define QM_CGR_WE_CSCN_EN		0x0010
640 #define QM_CGR_WE_CSCN_TARG		0x0008
641 #define QM_CGR_WE_CSTD_EN		0x0004
642 #define QM_CGR_WE_CS_THRES		0x0002
643 #define QM_CGR_WE_MODE			0x0001
644 
645 #define QMAN_CGR_FLAG_USE_INIT	     0x00000001
646 #define QMAN_CGR_MODE_FRAME          0x00000001
647 
648 	/* Portal and Frame Queues */
649 /* Represents a managed portal */
650 struct qman_portal;
651 
652 /*
653  * This object type represents QMan frame queue descriptors (FQD), it is
654  * cacheline-aligned, and initialised by qman_create_fq(). The structure is
655  * defined further down.
656  */
657 struct qman_fq;
658 
659 /*
660  * This object type represents a QMan congestion group, it is defined further
661  * down.
662  */
663 struct qman_cgr;
664 
665 /*
666  * This enum, and the callback type that returns it, are used when handling
667  * dequeued frames via DQRR. Note that for "null" callbacks registered with the
668  * portal object (for handling dequeues that do not demux because context_b is
669  * NULL), the return value *MUST* be qman_cb_dqrr_consume.
670  */
671 enum qman_cb_dqrr_result {
672 	/* DQRR entry can be consumed */
673 	qman_cb_dqrr_consume,
674 	/* Like _consume, but requests parking - FQ must be held-active */
675 	qman_cb_dqrr_park,
676 	/* Does not consume, for DCA mode only. */
677 	qman_cb_dqrr_defer,
678 	/*
679 	 * Stop processing without consuming this ring entry. Exits the current
680 	 * qman_p_poll_dqrr() or interrupt-handling, as appropriate. If within
681 	 * an interrupt handler, the callback would typically call
682 	 * qman_irqsource_remove(QM_PIRQ_DQRI) before returning this value,
683 	 * otherwise the interrupt will reassert immediately.
684 	 */
685 	qman_cb_dqrr_stop,
686 	/* Like qman_cb_dqrr_stop, but consumes the current entry. */
687 	qman_cb_dqrr_consume_stop
688 };
689 typedef enum qman_cb_dqrr_result (*qman_cb_dqrr)(struct qman_portal *qm,
690 					struct qman_fq *fq,
691 					const struct qm_dqrr_entry *dqrr);
692 
693 /*
694  * This callback type is used when handling ERNs, FQRNs and FQRLs via MR. They
695  * are always consumed after the callback returns.
696  */
697 typedef void (*qman_cb_mr)(struct qman_portal *qm, struct qman_fq *fq,
698 			   const union qm_mr_entry *msg);
699 
700 /*
701  * s/w-visible states. Ie. tentatively scheduled + truly scheduled + active +
702  * held-active + held-suspended are just "sched". Things like "retired" will not
703  * be assumed until it is complete (ie. QMAN_FQ_STATE_CHANGING is set until
704  * then, to indicate it's completing and to gate attempts to retry the retire
705  * command). Note, park commands do not set QMAN_FQ_STATE_CHANGING because it's
706  * technically impossible in the case of enqueue DCAs (which refer to DQRR ring
707  * index rather than the FQ that ring entry corresponds to), so repeated park
708  * commands are allowed (if you're silly enough to try) but won't change FQ
709  * state, and the resulting park notifications move FQs from "sched" to
710  * "parked".
711  */
712 enum qman_fq_state {
713 	qman_fq_state_oos,
714 	qman_fq_state_parked,
715 	qman_fq_state_sched,
716 	qman_fq_state_retired
717 };
718 
719 #define QMAN_FQ_STATE_CHANGING	     0x80000000 /* 'state' is changing */
720 #define QMAN_FQ_STATE_NE	     0x40000000 /* retired FQ isn't empty */
721 #define QMAN_FQ_STATE_ORL	     0x20000000 /* retired FQ has ORL */
722 #define QMAN_FQ_STATE_BLOCKOOS	     0xe0000000 /* if any are set, no OOS */
723 #define QMAN_FQ_STATE_CGR_EN	     0x10000000 /* CGR enabled */
724 #define QMAN_FQ_STATE_VDQCR	     0x08000000 /* being volatile dequeued */
725 
726 /*
727  * Frame queue objects (struct qman_fq) are stored within memory passed to
728  * qman_create_fq(), as this allows stashing of caller-provided demux callback
729  * pointers at no extra cost to stashing of (driver-internal) FQ state. If the
730  * caller wishes to add per-FQ state and have it benefit from dequeue-stashing,
731  * they should;
732  *
733  * (a) extend the qman_fq structure with their state; eg.
734  *
735  *     // myfq is allocated and driver_fq callbacks filled in;
736  *     struct my_fq {
737  *	   struct qman_fq base;
738  *	   int an_extra_field;
739  *	   [ ... add other fields to be associated with each FQ ...]
740  *     } *myfq = some_my_fq_allocator();
741  *     struct qman_fq *fq = qman_create_fq(fqid, flags, &myfq->base);
742  *
743  *     // in a dequeue callback, access extra fields from 'fq' via a cast;
744  *     struct my_fq *myfq = (struct my_fq *)fq;
745  *     do_something_with(myfq->an_extra_field);
746  *     [...]
747  *
748  * (b) when and if configuring the FQ for context stashing, specify how ever
749  *     many cachelines are required to stash 'struct my_fq', to accelerate not
750  *     only the QMan driver but the callback as well.
751  */
752 
753 struct qman_fq_cb {
754 	qman_cb_dqrr dqrr;	/* for dequeued frames */
755 	qman_cb_mr ern;		/* for s/w ERNs */
756 	qman_cb_mr fqs;		/* frame-queue state changes*/
757 };
758 
759 struct qman_fq {
760 	/* Caller of qman_create_fq() provides these demux callbacks */
761 	struct qman_fq_cb cb;
762 	/*
763 	 * These are internal to the driver, don't touch. In particular, they
764 	 * may change, be removed, or extended (so you shouldn't rely on
765 	 * sizeof(qman_fq) being a constant).
766 	 */
767 	u32 fqid, idx;
768 	unsigned long flags;
769 	enum qman_fq_state state;
770 	int cgr_groupid;
771 };
772 
773 /*
774  * This callback type is used when handling congestion group entry/exit.
775  * 'congested' is non-zero on congestion-entry, and zero on congestion-exit.
776  */
777 typedef void (*qman_cb_cgr)(struct qman_portal *qm,
778 			    struct qman_cgr *cgr, int congested);
779 
780 struct qman_cgr {
781 	/* Set these prior to qman_create_cgr() */
782 	u32 cgrid; /* 0..255, but u32 to allow specials like -1, 256, etc.*/
783 	qman_cb_cgr cb;
784 	/* These are private to the driver */
785 	u16 chan; /* portal channel this object is created on */
786 	struct list_head node;
787 };
788 
789 /* Flags to qman_create_fq() */
790 #define QMAN_FQ_FLAG_NO_ENQUEUE	     0x00000001 /* can't enqueue */
791 #define QMAN_FQ_FLAG_NO_MODIFY	     0x00000002 /* can only enqueue */
792 #define QMAN_FQ_FLAG_TO_DCPORTAL     0x00000004 /* consumed by CAAM/PME/Fman */
793 #define QMAN_FQ_FLAG_DYNAMIC_FQID    0x00000020 /* (de)allocate fqid */
794 
795 /* Flags to qman_init_fq() */
796 #define QMAN_INITFQ_FLAG_SCHED	     0x00000001 /* schedule rather than park */
797 #define QMAN_INITFQ_FLAG_LOCAL	     0x00000004 /* set dest portal */
798 
799 /*
800  * For qman_volatile_dequeue(); Choose one PRECEDENCE. EXACT is optional. Use
801  * NUMFRAMES(n) (6-bit) or NUMFRAMES_TILLEMPTY to fill in the frame-count. Use
802  * FQID(n) to fill in the frame queue ID.
803  */
804 #define QM_VDQCR_PRECEDENCE_VDQCR	0x0
805 #define QM_VDQCR_PRECEDENCE_SDQCR	0x80000000
806 #define QM_VDQCR_EXACT			0x40000000
807 #define QM_VDQCR_NUMFRAMES_MASK		0x3f000000
808 #define QM_VDQCR_NUMFRAMES_SET(n)	(((n) & 0x3f) << 24)
809 #define QM_VDQCR_NUMFRAMES_GET(n)	(((n) >> 24) & 0x3f)
810 #define QM_VDQCR_NUMFRAMES_TILLEMPTY	QM_VDQCR_NUMFRAMES_SET(0)
811 
812 #define QMAN_VOLATILE_FLAG_WAIT	     0x00000001 /* wait if VDQCR is in use */
813 #define QMAN_VOLATILE_FLAG_WAIT_INT  0x00000002 /* if wait, interruptible? */
814 #define QMAN_VOLATILE_FLAG_FINISH    0x00000004 /* wait till VDQCR completes */
815 
816 /* "Query FQ Non-Programmable Fields" */
817 struct qm_mcr_queryfq_np {
818 	u8 verb;
819 	u8 result;
820 	u8 __reserved1;
821 	u8 state;		/* QM_MCR_NP_STATE_*** */
822 	u32 fqd_link;		/* 24-bit, _res2[24-31] */
823 	u16 odp_seq;		/* 14-bit, _res3[14-15] */
824 	u16 orp_nesn;		/* 14-bit, _res4[14-15] */
825 	u16 orp_ea_hseq;	/* 15-bit, _res5[15] */
826 	u16 orp_ea_tseq;	/* 15-bit, _res6[15] */
827 	u32 orp_ea_hptr;	/* 24-bit, _res7[24-31] */
828 	u32 orp_ea_tptr;	/* 24-bit, _res8[24-31] */
829 	u32 pfdr_hptr;		/* 24-bit, _res9[24-31] */
830 	u32 pfdr_tptr;		/* 24-bit, _res10[24-31] */
831 	u8 __reserved2[5];
832 	u8 is;			/* 1-bit, _res12[1-7] */
833 	u16 ics_surp;
834 	u32 byte_cnt;
835 	u32 frm_cnt;		/* 24-bit, _res13[24-31] */
836 	u32 __reserved3;
837 	u16 ra1_sfdr;		/* QM_MCR_NP_RA1_*** */
838 	u16 ra2_sfdr;		/* QM_MCR_NP_RA2_*** */
839 	u16 __reserved4;
840 	u16 od1_sfdr;		/* QM_MCR_NP_OD1_*** */
841 	u16 od2_sfdr;		/* QM_MCR_NP_OD2_*** */
842 	u16 od3_sfdr;		/* QM_MCR_NP_OD3_*** */
843 } __packed;
844 
845 #define QM_MCR_NP_STATE_FE		0x10
846 #define QM_MCR_NP_STATE_R		0x08
847 #define QM_MCR_NP_STATE_MASK		0x07	/* Reads FQD::STATE; */
848 #define QM_MCR_NP_STATE_OOS		0x00
849 #define QM_MCR_NP_STATE_RETIRED		0x01
850 #define QM_MCR_NP_STATE_TEN_SCHED	0x02
851 #define QM_MCR_NP_STATE_TRU_SCHED	0x03
852 #define QM_MCR_NP_STATE_PARKED		0x04
853 #define QM_MCR_NP_STATE_ACTIVE		0x05
854 #define QM_MCR_NP_PTR_MASK		0x07ff	/* for RA[12] & OD[123] */
855 #define QM_MCR_NP_RA1_NRA(v)		(((v) >> 14) & 0x3)	/* FQD::NRA */
856 #define QM_MCR_NP_RA2_IT(v)		(((v) >> 14) & 0x1)	/* FQD::IT */
857 #define QM_MCR_NP_OD1_NOD(v)		(((v) >> 14) & 0x3)	/* FQD::NOD */
858 #define QM_MCR_NP_OD3_NPC(v)		(((v) >> 14) & 0x3)	/* FQD::NPC */
859 
860 enum qm_mcr_queryfq_np_masks {
861 	qm_mcr_fqd_link_mask = BIT(24) - 1,
862 	qm_mcr_odp_seq_mask = BIT(14) - 1,
863 	qm_mcr_orp_nesn_mask = BIT(14) - 1,
864 	qm_mcr_orp_ea_hseq_mask = BIT(15) - 1,
865 	qm_mcr_orp_ea_tseq_mask = BIT(15) - 1,
866 	qm_mcr_orp_ea_hptr_mask = BIT(24) - 1,
867 	qm_mcr_orp_ea_tptr_mask = BIT(24) - 1,
868 	qm_mcr_pfdr_hptr_mask = BIT(24) - 1,
869 	qm_mcr_pfdr_tptr_mask = BIT(24) - 1,
870 	qm_mcr_is_mask = BIT(1) - 1,
871 	qm_mcr_frm_cnt_mask = BIT(24) - 1,
872 };
873 
874 #define qm_mcr_np_get(np, field) \
875 	((np)->field & (qm_mcr_##field##_mask))
876 
877 	/* Portal Management */
878 /**
879  * qman_p_irqsource_add - add processing sources to be interrupt-driven
880  * @bits: bitmask of QM_PIRQ_**I processing sources
881  *
882  * Adds processing sources that should be interrupt-driven (rather than
883  * processed via qman_poll_***() functions).
884  */
885 void qman_p_irqsource_add(struct qman_portal *p, u32 bits);
886 
887 /**
888  * qman_p_irqsource_remove - remove processing sources from being int-driven
889  * @bits: bitmask of QM_PIRQ_**I processing sources
890  *
891  * Removes processing sources from being interrupt-driven, so that they will
892  * instead be processed via qman_poll_***() functions.
893  */
894 void qman_p_irqsource_remove(struct qman_portal *p, u32 bits);
895 
896 /**
897  * qman_affine_cpus - return a mask of cpus that have affine portals
898  */
899 const cpumask_t *qman_affine_cpus(void);
900 
901 /**
902  * qman_affine_channel - return the channel ID of an portal
903  * @cpu: the cpu whose affine portal is the subject of the query
904  *
905  * If @cpu is -1, the affine portal for the current CPU will be used. It is a
906  * bug to call this function for any value of @cpu (other than -1) that is not a
907  * member of the mask returned from qman_affine_cpus().
908  */
909 u16 qman_affine_channel(int cpu);
910 
911 /**
912  * qman_get_affine_portal - return the portal pointer affine to cpu
913  * @cpu: the cpu whose affine portal is the subject of the query
914  */
915 struct qman_portal *qman_get_affine_portal(int cpu);
916 
917 /**
918  * qman_p_poll_dqrr - process DQRR (fast-path) entries
919  * @limit: the maximum number of DQRR entries to process
920  *
921  * Use of this function requires that DQRR processing not be interrupt-driven.
922  * The return value represents the number of DQRR entries processed.
923  */
924 int qman_p_poll_dqrr(struct qman_portal *p, unsigned int limit);
925 
926 /**
927  * qman_p_static_dequeue_add - Add pool channels to the portal SDQCR
928  * @pools: bit-mask of pool channels, using QM_SDQCR_CHANNELS_POOL(n)
929  *
930  * Adds a set of pool channels to the portal's static dequeue command register
931  * (SDQCR). The requested pools are limited to those the portal has dequeue
932  * access to.
933  */
934 void qman_p_static_dequeue_add(struct qman_portal *p, u32 pools);
935 
936 	/* FQ management */
937 /**
938  * qman_create_fq - Allocates a FQ
939  * @fqid: the index of the FQD to encapsulate, must be "Out of Service"
940  * @flags: bit-mask of QMAN_FQ_FLAG_*** options
941  * @fq: memory for storing the 'fq', with callbacks filled in
942  *
943  * Creates a frame queue object for the given @fqid, unless the
944  * QMAN_FQ_FLAG_DYNAMIC_FQID flag is set in @flags, in which case a FQID is
945  * dynamically allocated (or the function fails if none are available). Once
946  * created, the caller should not touch the memory at 'fq' except as extended to
947  * adjacent memory for user-defined fields (see the definition of "struct
948  * qman_fq" for more info). NO_MODIFY is only intended for enqueuing to
949  * pre-existing frame-queues that aren't to be otherwise interfered with, it
950  * prevents all other modifications to the frame queue. The TO_DCPORTAL flag
951  * causes the driver to honour any context_b modifications requested in the
952  * qm_init_fq() API, as this indicates the frame queue will be consumed by a
953  * direct-connect portal (PME, CAAM, or Fman). When frame queues are consumed by
954  * software portals, the context_b field is controlled by the driver and can't
955  * be modified by the caller.
956  */
957 int qman_create_fq(u32 fqid, u32 flags, struct qman_fq *fq);
958 
959 /**
960  * qman_destroy_fq - Deallocates a FQ
961  * @fq: the frame queue object to release
962  *
963  * The memory for this frame queue object ('fq' provided in qman_create_fq()) is
964  * not deallocated but the caller regains ownership, to do with as desired. The
965  * FQ must be in the 'out-of-service' or in the 'parked' state.
966  */
967 void qman_destroy_fq(struct qman_fq *fq);
968 
969 /**
970  * qman_fq_fqid - Queries the frame queue ID of a FQ object
971  * @fq: the frame queue object to query
972  */
973 u32 qman_fq_fqid(struct qman_fq *fq);
974 
975 /**
976  * qman_init_fq - Initialises FQ fields, leaves the FQ "parked" or "scheduled"
977  * @fq: the frame queue object to modify, must be 'parked' or new.
978  * @flags: bit-mask of QMAN_INITFQ_FLAG_*** options
979  * @opts: the FQ-modification settings, as defined in the low-level API
980  *
981  * The @opts parameter comes from the low-level portal API. Select
982  * QMAN_INITFQ_FLAG_SCHED in @flags to cause the frame queue to be scheduled
983  * rather than parked. NB, @opts can be NULL.
984  *
985  * Note that some fields and options within @opts may be ignored or overwritten
986  * by the driver;
987  * 1. the 'count' and 'fqid' fields are always ignored (this operation only
988  * affects one frame queue: @fq).
989  * 2. the QM_INITFQ_WE_CONTEXTB option of the 'we_mask' field and the associated
990  * 'fqd' structure's 'context_b' field are sometimes overwritten;
991  *   - if @fq was not created with QMAN_FQ_FLAG_TO_DCPORTAL, then context_b is
992  *     initialised to a value used by the driver for demux.
993  *   - if context_b is initialised for demux, so is context_a in case stashing
994  *     is requested (see item 4).
995  * (So caller control of context_b is only possible for TO_DCPORTAL frame queue
996  * objects.)
997  * 3. if @flags contains QMAN_INITFQ_FLAG_LOCAL, the 'fqd' structure's
998  * 'dest::channel' field will be overwritten to match the portal used to issue
999  * the command. If the WE_DESTWQ write-enable bit had already been set by the
1000  * caller, the channel workqueue will be left as-is, otherwise the write-enable
1001  * bit is set and the workqueue is set to a default of 4. If the "LOCAL" flag
1002  * isn't set, the destination channel/workqueue fields and the write-enable bit
1003  * are left as-is.
1004  * 4. if the driver overwrites context_a/b for demux, then if
1005  * QM_INITFQ_WE_CONTEXTA is set, the driver will only overwrite
1006  * context_a.address fields and will leave the stashing fields provided by the
1007  * user alone, otherwise it will zero out the context_a.stashing fields.
1008  */
1009 int qman_init_fq(struct qman_fq *fq, u32 flags, struct qm_mcc_initfq *opts);
1010 
1011 /**
1012  * qman_schedule_fq - Schedules a FQ
1013  * @fq: the frame queue object to schedule, must be 'parked'
1014  *
1015  * Schedules the frame queue, which must be Parked, which takes it to
1016  * Tentatively-Scheduled or Truly-Scheduled depending on its fill-level.
1017  */
1018 int qman_schedule_fq(struct qman_fq *fq);
1019 
1020 /**
1021  * qman_retire_fq - Retires a FQ
1022  * @fq: the frame queue object to retire
1023  * @flags: FQ flags (QMAN_FQ_STATE*) if retirement completes immediately
1024  *
1025  * Retires the frame queue. This returns zero if it succeeds immediately, +1 if
1026  * the retirement was started asynchronously, otherwise it returns negative for
1027  * failure. When this function returns zero, @flags is set to indicate whether
1028  * the retired FQ is empty and/or whether it has any ORL fragments (to show up
1029  * as ERNs). Otherwise the corresponding flags will be known when a subsequent
1030  * FQRN message shows up on the portal's message ring.
1031  *
1032  * NB, if the retirement is asynchronous (the FQ was in the Truly Scheduled or
1033  * Active state), the completion will be via the message ring as a FQRN - but
1034  * the corresponding callback may occur before this function returns!! Ie. the
1035  * caller should be prepared to accept the callback as the function is called,
1036  * not only once it has returned.
1037  */
1038 int qman_retire_fq(struct qman_fq *fq, u32 *flags);
1039 
1040 /**
1041  * qman_oos_fq - Puts a FQ "out of service"
1042  * @fq: the frame queue object to be put out-of-service, must be 'retired'
1043  *
1044  * The frame queue must be retired and empty, and if any order restoration list
1045  * was released as ERNs at the time of retirement, they must all be consumed.
1046  */
1047 int qman_oos_fq(struct qman_fq *fq);
1048 
1049 /*
1050  * qman_volatile_dequeue - Issue a volatile dequeue command
1051  * @fq: the frame queue object to dequeue from
1052  * @flags: a bit-mask of QMAN_VOLATILE_FLAG_*** options
1053  * @vdqcr: bit mask of QM_VDQCR_*** options, as per qm_dqrr_vdqcr_set()
1054  *
1055  * Attempts to lock access to the portal's VDQCR volatile dequeue functionality.
1056  * The function will block and sleep if QMAN_VOLATILE_FLAG_WAIT is specified and
1057  * the VDQCR is already in use, otherwise returns non-zero for failure. If
1058  * QMAN_VOLATILE_FLAG_FINISH is specified, the function will only return once
1059  * the VDQCR command has finished executing (ie. once the callback for the last
1060  * DQRR entry resulting from the VDQCR command has been called). If not using
1061  * the FINISH flag, completion can be determined either by detecting the
1062  * presence of the QM_DQRR_STAT_UNSCHEDULED and QM_DQRR_STAT_DQCR_EXPIRED bits
1063  * in the "stat" parameter passed to the FQ's dequeue callback, or by waiting
1064  * for the QMAN_FQ_STATE_VDQCR bit to disappear.
1065  */
1066 int qman_volatile_dequeue(struct qman_fq *fq, u32 flags, u32 vdqcr);
1067 
1068 /**
1069  * qman_enqueue - Enqueue a frame to a frame queue
1070  * @fq: the frame queue object to enqueue to
1071  * @fd: a descriptor of the frame to be enqueued
1072  *
1073  * Fills an entry in the EQCR of portal @qm to enqueue the frame described by
1074  * @fd. The descriptor details are copied from @fd to the EQCR entry, the 'pid'
1075  * field is ignored. The return value is non-zero on error, such as ring full.
1076  */
1077 int qman_enqueue(struct qman_fq *fq, const struct qm_fd *fd);
1078 
1079 /**
1080  * qman_alloc_fqid_range - Allocate a contiguous range of FQIDs
1081  * @result: is set by the API to the base FQID of the allocated range
1082  * @count: the number of FQIDs required
1083  *
1084  * Returns 0 on success, or a negative error code.
1085  */
1086 int qman_alloc_fqid_range(u32 *result, u32 count);
1087 #define qman_alloc_fqid(result) qman_alloc_fqid_range(result, 1)
1088 
1089 /**
1090  * qman_release_fqid - Release the specified frame queue ID
1091  * @fqid: the FQID to be released back to the resource pool
1092  *
1093  * This function can also be used to seed the allocator with
1094  * FQID ranges that it can subsequently allocate from.
1095  * Returns 0 on success, or a negative error code.
1096  */
1097 int qman_release_fqid(u32 fqid);
1098 
1099 /**
1100  * qman_query_fq_np - Queries non-programmable FQD fields
1101  * @fq: the frame queue object to be queried
1102  * @np: storage for the queried FQD fields
1103  */
1104 int qman_query_fq_np(struct qman_fq *fq, struct qm_mcr_queryfq_np *np);
1105 
1106 	/* Pool-channel management */
1107 /**
1108  * qman_alloc_pool_range - Allocate a contiguous range of pool-channel IDs
1109  * @result: is set by the API to the base pool-channel ID of the allocated range
1110  * @count: the number of pool-channel IDs required
1111  *
1112  * Returns 0 on success, or a negative error code.
1113  */
1114 int qman_alloc_pool_range(u32 *result, u32 count);
1115 #define qman_alloc_pool(result) qman_alloc_pool_range(result, 1)
1116 
1117 /**
1118  * qman_release_pool - Release the specified pool-channel ID
1119  * @id: the pool-chan ID to be released back to the resource pool
1120  *
1121  * This function can also be used to seed the allocator with
1122  * pool-channel ID ranges that it can subsequently allocate from.
1123  * Returns 0 on success, or a negative error code.
1124  */
1125 int qman_release_pool(u32 id);
1126 
1127 	/* CGR management */
1128 /**
1129  * qman_create_cgr - Register a congestion group object
1130  * @cgr: the 'cgr' object, with fields filled in
1131  * @flags: QMAN_CGR_FLAG_* values
1132  * @opts: optional state of CGR settings
1133  *
1134  * Registers this object to receiving congestion entry/exit callbacks on the
1135  * portal affine to the cpu portal on which this API is executed. If opts is
1136  * NULL then only the callback (cgr->cb) function is registered. If @flags
1137  * contains QMAN_CGR_FLAG_USE_INIT, then an init hw command (which will reset
1138  * any unspecified parameters) will be used rather than a modify hw hardware
1139  * (which only modifies the specified parameters).
1140  */
1141 int qman_create_cgr(struct qman_cgr *cgr, u32 flags,
1142 		    struct qm_mcc_initcgr *opts);
1143 
1144 /**
1145  * qman_delete_cgr - Deregisters a congestion group object
1146  * @cgr: the 'cgr' object to deregister
1147  *
1148  * "Unplugs" this CGR object from the portal affine to the cpu on which this API
1149  * is executed. This must be excuted on the same affine portal on which it was
1150  * created.
1151  */
1152 int qman_delete_cgr(struct qman_cgr *cgr);
1153 
1154 /**
1155  * qman_delete_cgr_safe - Deregisters a congestion group object from any CPU
1156  * @cgr: the 'cgr' object to deregister
1157  *
1158  * This will select the proper CPU and run there qman_delete_cgr().
1159  */
1160 void qman_delete_cgr_safe(struct qman_cgr *cgr);
1161 
1162 /**
1163  * qman_query_cgr_congested - Queries CGR's congestion status
1164  * @cgr: the 'cgr' object to query
1165  * @result: returns 'cgr's congestion status, 1 (true) if congested
1166  */
1167 int qman_query_cgr_congested(struct qman_cgr *cgr, bool *result);
1168 
1169 /**
1170  * qman_alloc_cgrid_range - Allocate a contiguous range of CGR IDs
1171  * @result: is set by the API to the base CGR ID of the allocated range
1172  * @count: the number of CGR IDs required
1173  *
1174  * Returns 0 on success, or a negative error code.
1175  */
1176 int qman_alloc_cgrid_range(u32 *result, u32 count);
1177 #define qman_alloc_cgrid(result) qman_alloc_cgrid_range(result, 1)
1178 
1179 /**
1180  * qman_release_cgrid - Release the specified CGR ID
1181  * @id: the CGR ID to be released back to the resource pool
1182  *
1183  * This function can also be used to seed the allocator with
1184  * CGR ID ranges that it can subsequently allocate from.
1185  * Returns 0 on success, or a negative error code.
1186  */
1187 int qman_release_cgrid(u32 id);
1188 
1189 #endif	/* __FSL_QMAN_H */
1190