xref: /openbmc/linux/include/rdma/rdmavt_qp.h (revision c4f7ac64)
1 /* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
2 /*
3  * Copyright(c) 2016 - 2020 Intel Corporation.
4  */
5 
6 #ifndef DEF_RDMAVT_INCQP_H
7 #define DEF_RDMAVT_INCQP_H
8 
9 #include <rdma/rdma_vt.h>
10 #include <rdma/ib_pack.h>
11 #include <rdma/ib_verbs.h>
12 #include <rdma/rdmavt_cq.h>
13 #include <rdma/rvt-abi.h>
14 /*
15  * Atomic bit definitions for r_aflags.
16  */
17 #define RVT_R_WRID_VALID        0
18 #define RVT_R_REWIND_SGE        1
19 
20 /*
21  * Bit definitions for r_flags.
22  */
23 #define RVT_R_REUSE_SGE 0x01
24 #define RVT_R_RDMAR_SEQ 0x02
25 #define RVT_R_RSP_NAK   0x04
26 #define RVT_R_RSP_SEND  0x08
27 #define RVT_R_COMM_EST  0x10
28 
29 /*
30  * If a packet's QP[23:16] bits match this value, then it is
31  * a PSM packet and the hardware will expect a KDETH header
32  * following the BTH.
33  */
34 #define RVT_KDETH_QP_PREFIX       0x80
35 #define RVT_KDETH_QP_SUFFIX       0xffff
36 #define RVT_KDETH_QP_PREFIX_MASK  0x00ff0000
37 #define RVT_KDETH_QP_PREFIX_SHIFT 16
38 #define RVT_KDETH_QP_BASE         (u32)(RVT_KDETH_QP_PREFIX << \
39 					RVT_KDETH_QP_PREFIX_SHIFT)
40 #define RVT_KDETH_QP_MAX          (u32)(RVT_KDETH_QP_BASE + RVT_KDETH_QP_SUFFIX)
41 
42 /*
43  * If a packet's LNH == BTH and DEST QPN[23:16] in the BTH match this
44  * prefix value, then it is an AIP packet with a DETH containing the entropy
45  * value in byte 4 following the BTH.
46  */
47 #define RVT_AIP_QP_PREFIX       0x81
48 #define RVT_AIP_QP_SUFFIX       0xffff
49 #define RVT_AIP_QP_PREFIX_MASK  0x00ff0000
50 #define RVT_AIP_QP_PREFIX_SHIFT 16
51 #define RVT_AIP_QP_BASE         (u32)(RVT_AIP_QP_PREFIX << \
52 				      RVT_AIP_QP_PREFIX_SHIFT)
53 #define RVT_AIP_QPN_MAX         BIT(RVT_AIP_QP_PREFIX_SHIFT)
54 #define RVT_AIP_QP_MAX          (u32)(RVT_AIP_QP_BASE + RVT_AIP_QPN_MAX - 1)
55 
56 /*
57  * Bit definitions for s_flags.
58  *
59  * RVT_S_SIGNAL_REQ_WR - set if QP send WRs contain completion signaled
60  * RVT_S_BUSY - send tasklet is processing the QP
61  * RVT_S_TIMER - the RC retry timer is active
62  * RVT_S_ACK_PENDING - an ACK is waiting to be sent after RDMA read/atomics
63  * RVT_S_WAIT_FENCE - waiting for all prior RDMA read or atomic SWQEs
64  *                         before processing the next SWQE
65  * RVT_S_WAIT_RDMAR - waiting for a RDMA read or atomic SWQE to complete
66  *                         before processing the next SWQE
67  * RVT_S_WAIT_RNR - waiting for RNR timeout
68  * RVT_S_WAIT_SSN_CREDIT - waiting for RC credits to process next SWQE
69  * RVT_S_WAIT_DMA - waiting for send DMA queue to drain before generating
70  *                  next send completion entry not via send DMA
71  * RVT_S_WAIT_PIO - waiting for a send buffer to be available
72  * RVT_S_WAIT_TX - waiting for a struct verbs_txreq to be available
73  * RVT_S_WAIT_DMA_DESC - waiting for DMA descriptors to be available
74  * RVT_S_WAIT_KMEM - waiting for kernel memory to be available
75  * RVT_S_WAIT_PSN - waiting for a packet to exit the send DMA queue
76  * RVT_S_WAIT_ACK - waiting for an ACK packet before sending more requests
77  * RVT_S_SEND_ONE - send one packet, request ACK, then wait for ACK
78  * RVT_S_ECN - a BECN was queued to the send engine
79  * RVT_S_MAX_BIT_MASK - The max bit that can be used by rdmavt
80  */
81 #define RVT_S_SIGNAL_REQ_WR	0x0001
82 #define RVT_S_BUSY		0x0002
83 #define RVT_S_TIMER		0x0004
84 #define RVT_S_RESP_PENDING	0x0008
85 #define RVT_S_ACK_PENDING	0x0010
86 #define RVT_S_WAIT_FENCE	0x0020
87 #define RVT_S_WAIT_RDMAR	0x0040
88 #define RVT_S_WAIT_RNR		0x0080
89 #define RVT_S_WAIT_SSN_CREDIT	0x0100
90 #define RVT_S_WAIT_DMA		0x0200
91 #define RVT_S_WAIT_PIO		0x0400
92 #define RVT_S_WAIT_TX		0x0800
93 #define RVT_S_WAIT_DMA_DESC	0x1000
94 #define RVT_S_WAIT_KMEM		0x2000
95 #define RVT_S_WAIT_PSN		0x4000
96 #define RVT_S_WAIT_ACK		0x8000
97 #define RVT_S_SEND_ONE		0x10000
98 #define RVT_S_UNLIMITED_CREDIT	0x20000
99 #define RVT_S_ECN		0x40000
100 #define RVT_S_MAX_BIT_MASK	0x800000
101 
102 /*
103  * Drivers should use s_flags starting with bit 31 down to the bit next to
104  * RVT_S_MAX_BIT_MASK
105  */
106 
107 /*
108  * Wait flags that would prevent any packet type from being sent.
109  */
110 #define RVT_S_ANY_WAIT_IO \
111 	(RVT_S_WAIT_PIO | RVT_S_WAIT_TX | \
112 	 RVT_S_WAIT_DMA_DESC | RVT_S_WAIT_KMEM)
113 
114 /*
115  * Wait flags that would prevent send work requests from making progress.
116  */
117 #define RVT_S_ANY_WAIT_SEND (RVT_S_WAIT_FENCE | RVT_S_WAIT_RDMAR | \
118 	RVT_S_WAIT_RNR | RVT_S_WAIT_SSN_CREDIT | RVT_S_WAIT_DMA | \
119 	RVT_S_WAIT_PSN | RVT_S_WAIT_ACK)
120 
121 #define RVT_S_ANY_WAIT (RVT_S_ANY_WAIT_IO | RVT_S_ANY_WAIT_SEND)
122 
123 /* Number of bits to pay attention to in the opcode for checking qp type */
124 #define RVT_OPCODE_QP_MASK 0xE0
125 
126 /* Flags for checking QP state (see ib_rvt_state_ops[]) */
127 #define RVT_POST_SEND_OK                0x01
128 #define RVT_POST_RECV_OK                0x02
129 #define RVT_PROCESS_RECV_OK             0x04
130 #define RVT_PROCESS_SEND_OK             0x08
131 #define RVT_PROCESS_NEXT_SEND_OK        0x10
132 #define RVT_FLUSH_SEND			0x20
133 #define RVT_FLUSH_RECV			0x40
134 #define RVT_PROCESS_OR_FLUSH_SEND \
135 	(RVT_PROCESS_SEND_OK | RVT_FLUSH_SEND)
136 #define RVT_SEND_OR_FLUSH_OR_RECV_OK \
137 	(RVT_PROCESS_SEND_OK | RVT_FLUSH_SEND | RVT_PROCESS_RECV_OK)
138 
139 /*
140  * Internal send flags
141  */
142 #define RVT_SEND_RESERVE_USED           IB_SEND_RESERVED_START
143 #define RVT_SEND_COMPLETION_ONLY	(IB_SEND_RESERVED_START << 1)
144 
145 /**
146  * rvt_ud_wr - IB UD work plus AH cache
147  * @wr: valid IB work request
148  * @attr: pointer to an allocated AH attribute
149  *
150  * Special case the UD WR so we can keep track of the AH attributes.
151  *
152  * NOTE: This data structure is stricly ordered wr then attr. I.e the attr
153  * MUST come after wr.  The ib_ud_wr is sized and copied in rvt_post_one_wr.
154  * The copy assumes that wr is first.
155  */
156 struct rvt_ud_wr {
157 	struct ib_ud_wr wr;
158 	struct rdma_ah_attr *attr;
159 };
160 
161 /*
162  * Send work request queue entry.
163  * The size of the sg_list is determined when the QP is created and stored
164  * in qp->s_max_sge.
165  */
166 struct rvt_swqe {
167 	union {
168 		struct ib_send_wr wr;   /* don't use wr.sg_list */
169 		struct rvt_ud_wr ud_wr;
170 		struct ib_reg_wr reg_wr;
171 		struct ib_rdma_wr rdma_wr;
172 		struct ib_atomic_wr atomic_wr;
173 	};
174 	u32 psn;                /* first packet sequence number */
175 	u32 lpsn;               /* last packet sequence number */
176 	u32 ssn;                /* send sequence number */
177 	u32 length;             /* total length of data in sg_list */
178 	void *priv;             /* driver dependent field */
179 	struct rvt_sge sg_list[];
180 };
181 
182 /**
183  * struct rvt_krwq - kernel struct receive work request
184  * @p_lock: lock to protect producer of the kernel buffer
185  * @head: index of next entry to fill
186  * @c_lock:lock to protect consumer of the kernel buffer
187  * @tail: index of next entry to pull
188  * @count: count is aproximate of total receive enteries posted
189  * @rvt_rwqe: struct of receive work request queue entry
190  *
191  * This structure is used to contain the head pointer,
192  * tail pointer and receive work queue entries for kernel
193  * mode user.
194  */
195 struct rvt_krwq {
196 	spinlock_t p_lock;	/* protect producer */
197 	u32 head;               /* new work requests posted to the head */
198 
199 	/* protect consumer */
200 	spinlock_t c_lock ____cacheline_aligned_in_smp;
201 	u32 tail;               /* receives pull requests from here. */
202 	u32 count;		/* approx count of receive entries posted */
203 	struct rvt_rwqe *curr_wq;
204 	struct rvt_rwqe wq[];
205 };
206 
207 /*
208  * rvt_get_swqe_ah - Return the pointer to the struct rvt_ah
209  * @swqe: valid Send WQE
210  *
211  */
212 static inline struct rvt_ah *rvt_get_swqe_ah(struct rvt_swqe *swqe)
213 {
214 	return ibah_to_rvtah(swqe->ud_wr.wr.ah);
215 }
216 
217 /**
218  * rvt_get_swqe_ah_attr - Return the cached ah attribute information
219  * @swqe: valid Send WQE
220  *
221  */
222 static inline struct rdma_ah_attr *rvt_get_swqe_ah_attr(struct rvt_swqe *swqe)
223 {
224 	return swqe->ud_wr.attr;
225 }
226 
227 /**
228  * rvt_get_swqe_remote_qpn - Access the remote QPN value
229  * @swqe: valid Send WQE
230  *
231  */
232 static inline u32 rvt_get_swqe_remote_qpn(struct rvt_swqe *swqe)
233 {
234 	return swqe->ud_wr.wr.remote_qpn;
235 }
236 
237 /**
238  * rvt_get_swqe_remote_qkey - Acces the remote qkey value
239  * @swqe: valid Send WQE
240  *
241  */
242 static inline u32 rvt_get_swqe_remote_qkey(struct rvt_swqe *swqe)
243 {
244 	return swqe->ud_wr.wr.remote_qkey;
245 }
246 
247 /**
248  * rvt_get_swqe_pkey_index - Access the pkey index
249  * @swqe: valid Send WQE
250  *
251  */
252 static inline u16 rvt_get_swqe_pkey_index(struct rvt_swqe *swqe)
253 {
254 	return swqe->ud_wr.wr.pkey_index;
255 }
256 
257 struct rvt_rq {
258 	struct rvt_rwq *wq;
259 	struct rvt_krwq *kwq;
260 	u32 size;               /* size of RWQE array */
261 	u8 max_sge;
262 	/* protect changes in this struct */
263 	spinlock_t lock ____cacheline_aligned_in_smp;
264 };
265 
266 /**
267  * rvt_get_rq_count - count numbers of request work queue entries
268  * in circular buffer
269  * @rq: data structure for request queue entry
270  * @head: head indices of the circular buffer
271  * @tail: tail indices of the circular buffer
272  *
273  * Return - total number of entries in the Receive Queue
274  */
275 
276 static inline u32 rvt_get_rq_count(struct rvt_rq *rq, u32 head, u32 tail)
277 {
278 	u32 count = head - tail;
279 
280 	if ((s32)count < 0)
281 		count += rq->size;
282 	return count;
283 }
284 
285 /*
286  * This structure holds the information that the send tasklet needs
287  * to send a RDMA read response or atomic operation.
288  */
289 struct rvt_ack_entry {
290 	struct rvt_sge rdma_sge;
291 	u64 atomic_data;
292 	u32 psn;
293 	u32 lpsn;
294 	u8 opcode;
295 	u8 sent;
296 	void *priv;
297 };
298 
299 #define	RC_QP_SCALING_INTERVAL	5
300 
301 #define RVT_OPERATION_PRIV        0x00000001
302 #define RVT_OPERATION_ATOMIC      0x00000002
303 #define RVT_OPERATION_ATOMIC_SGE  0x00000004
304 #define RVT_OPERATION_LOCAL       0x00000008
305 #define RVT_OPERATION_USE_RESERVE 0x00000010
306 #define RVT_OPERATION_IGN_RNR_CNT 0x00000020
307 
308 #define RVT_OPERATION_MAX (IB_WR_RESERVED10 + 1)
309 
310 /**
311  * rvt_operation_params - op table entry
312  * @length - the length to copy into the swqe entry
313  * @qpt_support - a bit mask indicating QP type support
314  * @flags - RVT_OPERATION flags (see above)
315  *
316  * This supports table driven post send so that
317  * the driver can have differing an potentially
318  * different sets of operations.
319  *
320  **/
321 
322 struct rvt_operation_params {
323 	size_t length;
324 	u32 qpt_support;
325 	u32 flags;
326 };
327 
328 /*
329  * Common variables are protected by both r_rq.lock and s_lock in that order
330  * which only happens in modify_qp() or changing the QP 'state'.
331  */
332 struct rvt_qp {
333 	struct ib_qp ibqp;
334 	void *priv; /* Driver private data */
335 	/* read mostly fields above and below */
336 	struct rdma_ah_attr remote_ah_attr;
337 	struct rdma_ah_attr alt_ah_attr;
338 	struct rvt_qp __rcu *next;           /* link list for QPN hash table */
339 	struct rvt_swqe *s_wq;  /* send work queue */
340 	struct rvt_mmap_info *ip;
341 
342 	unsigned long timeout_jiffies;  /* computed from timeout */
343 
344 	int srate_mbps;		/* s_srate (below) converted to Mbit/s */
345 	pid_t pid;		/* pid for user mode QPs */
346 	u32 remote_qpn;
347 	u32 qkey;               /* QKEY for this QP (for UD or RD) */
348 	u32 s_size;             /* send work queue size */
349 
350 	u16 pmtu;		/* decoded from path_mtu */
351 	u8 log_pmtu;		/* shift for pmtu */
352 	u8 state;               /* QP state */
353 	u8 allowed_ops;		/* high order bits of allowed opcodes */
354 	u8 qp_access_flags;
355 	u8 alt_timeout;         /* Alternate path timeout for this QP */
356 	u8 timeout;             /* Timeout for this QP */
357 	u8 s_srate;
358 	u8 s_mig_state;
359 	u8 port_num;
360 	u8 s_pkey_index;        /* PKEY index to use */
361 	u8 s_alt_pkey_index;    /* Alternate path PKEY index to use */
362 	u8 r_max_rd_atomic;     /* max number of RDMA read/atomic to receive */
363 	u8 s_max_rd_atomic;     /* max number of RDMA read/atomic to send */
364 	u8 s_retry_cnt;         /* number of times to retry */
365 	u8 s_rnr_retry_cnt;
366 	u8 r_min_rnr_timer;     /* retry timeout value for RNR NAKs */
367 	u8 s_max_sge;           /* size of s_wq->sg_list */
368 	u8 s_draining;
369 
370 	/* start of read/write fields */
371 	atomic_t refcount ____cacheline_aligned_in_smp;
372 	wait_queue_head_t wait;
373 
374 	struct rvt_ack_entry *s_ack_queue;
375 	struct rvt_sge_state s_rdma_read_sge;
376 
377 	spinlock_t r_lock ____cacheline_aligned_in_smp;      /* used for APM */
378 	u32 r_psn;              /* expected rcv packet sequence number */
379 	unsigned long r_aflags;
380 	u64 r_wr_id;            /* ID for current receive WQE */
381 	u32 r_ack_psn;          /* PSN for next ACK or atomic ACK */
382 	u32 r_len;              /* total length of r_sge */
383 	u32 r_rcv_len;          /* receive data len processed */
384 	u32 r_msn;              /* message sequence number */
385 
386 	u8 r_state;             /* opcode of last packet received */
387 	u8 r_flags;
388 	u8 r_head_ack_queue;    /* index into s_ack_queue[] */
389 	u8 r_adefered;          /* defered ack count */
390 
391 	struct list_head rspwait;       /* link for waiting to respond */
392 
393 	struct rvt_sge_state r_sge;     /* current receive data */
394 	struct rvt_rq r_rq;             /* receive work queue */
395 
396 	/* post send line */
397 	spinlock_t s_hlock ____cacheline_aligned_in_smp;
398 	u32 s_head;             /* new entries added here */
399 	u32 s_next_psn;         /* PSN for next request */
400 	u32 s_avail;            /* number of entries avail */
401 	u32 s_ssn;              /* SSN of tail entry */
402 	atomic_t s_reserved_used; /* reserved entries in use */
403 
404 	spinlock_t s_lock ____cacheline_aligned_in_smp;
405 	u32 s_flags;
406 	struct rvt_sge_state *s_cur_sge;
407 	struct rvt_swqe *s_wqe;
408 	struct rvt_sge_state s_sge;     /* current send request data */
409 	struct rvt_mregion *s_rdma_mr;
410 	u32 s_len;              /* total length of s_sge */
411 	u32 s_rdma_read_len;    /* total length of s_rdma_read_sge */
412 	u32 s_last_psn;         /* last response PSN processed */
413 	u32 s_sending_psn;      /* lowest PSN that is being sent */
414 	u32 s_sending_hpsn;     /* highest PSN that is being sent */
415 	u32 s_psn;              /* current packet sequence number */
416 	u32 s_ack_rdma_psn;     /* PSN for sending RDMA read responses */
417 	u32 s_ack_psn;          /* PSN for acking sends and RDMA writes */
418 	u32 s_tail;             /* next entry to process */
419 	u32 s_cur;              /* current work queue entry */
420 	u32 s_acked;            /* last un-ACK'ed entry */
421 	u32 s_last;             /* last completed entry */
422 	u32 s_lsn;              /* limit sequence number (credit) */
423 	u32 s_ahgpsn;           /* set to the psn in the copy of the header */
424 	u16 s_cur_size;         /* size of send packet in bytes */
425 	u16 s_rdma_ack_cnt;
426 	u8 s_hdrwords;         /* size of s_hdr in 32 bit words */
427 	s8 s_ahgidx;
428 	u8 s_state;             /* opcode of last packet sent */
429 	u8 s_ack_state;         /* opcode of packet to ACK */
430 	u8 s_nak_state;         /* non-zero if NAK is pending */
431 	u8 r_nak_state;         /* non-zero if NAK is pending */
432 	u8 s_retry;             /* requester retry counter */
433 	u8 s_rnr_retry;         /* requester RNR retry counter */
434 	u8 s_num_rd_atomic;     /* number of RDMA read/atomic pending */
435 	u8 s_tail_ack_queue;    /* index into s_ack_queue[] */
436 	u8 s_acked_ack_queue;   /* index into s_ack_queue[] */
437 
438 	struct rvt_sge_state s_ack_rdma_sge;
439 	struct timer_list s_timer;
440 	struct hrtimer s_rnr_timer;
441 
442 	atomic_t local_ops_pending; /* number of fast_reg/local_inv reqs */
443 
444 	/*
445 	 * This sge list MUST be last. Do not add anything below here.
446 	 */
447 	struct rvt_sge r_sg_list[] /* verified SGEs */
448 		____cacheline_aligned_in_smp;
449 };
450 
451 struct rvt_srq {
452 	struct ib_srq ibsrq;
453 	struct rvt_rq rq;
454 	struct rvt_mmap_info *ip;
455 	/* send signal when number of RWQEs < limit */
456 	u32 limit;
457 };
458 
459 static inline struct rvt_srq *ibsrq_to_rvtsrq(struct ib_srq *ibsrq)
460 {
461 	return container_of(ibsrq, struct rvt_srq, ibsrq);
462 }
463 
464 static inline struct rvt_qp *ibqp_to_rvtqp(struct ib_qp *ibqp)
465 {
466 	return container_of(ibqp, struct rvt_qp, ibqp);
467 }
468 
469 #define RVT_QPN_MAX                 BIT(24)
470 #define RVT_QPNMAP_ENTRIES          (RVT_QPN_MAX / PAGE_SIZE / BITS_PER_BYTE)
471 #define RVT_BITS_PER_PAGE           (PAGE_SIZE * BITS_PER_BYTE)
472 #define RVT_BITS_PER_PAGE_MASK      (RVT_BITS_PER_PAGE - 1)
473 #define RVT_QPN_MASK		    IB_QPN_MASK
474 
475 /*
476  * QPN-map pages start out as NULL, they get allocated upon
477  * first use and are never deallocated. This way,
478  * large bitmaps are not allocated unless large numbers of QPs are used.
479  */
480 struct rvt_qpn_map {
481 	void *page;
482 };
483 
484 struct rvt_qpn_table {
485 	spinlock_t lock; /* protect changes to the qp table */
486 	unsigned flags;         /* flags for QP0/1 allocated for each port */
487 	u32 last;               /* last QP number allocated */
488 	u32 nmaps;              /* size of the map table */
489 	u16 limit;
490 	u8  incr;
491 	/* bit map of free QP numbers other than 0/1 */
492 	struct rvt_qpn_map map[RVT_QPNMAP_ENTRIES];
493 };
494 
495 struct rvt_qp_ibdev {
496 	u32 qp_table_size;
497 	u32 qp_table_bits;
498 	struct rvt_qp __rcu **qp_table;
499 	spinlock_t qpt_lock; /* qptable lock */
500 	struct rvt_qpn_table qpn_table;
501 };
502 
503 /*
504  * There is one struct rvt_mcast for each multicast GID.
505  * All attached QPs are then stored as a list of
506  * struct rvt_mcast_qp.
507  */
508 struct rvt_mcast_qp {
509 	struct list_head list;
510 	struct rvt_qp *qp;
511 };
512 
513 struct rvt_mcast_addr {
514 	union ib_gid mgid;
515 	u16 lid;
516 };
517 
518 struct rvt_mcast {
519 	struct rb_node rb_node;
520 	struct rvt_mcast_addr mcast_addr;
521 	struct list_head qp_list;
522 	wait_queue_head_t wait;
523 	atomic_t refcount;
524 	int n_attached;
525 };
526 
527 /*
528  * Since struct rvt_swqe is not a fixed size, we can't simply index into
529  * struct rvt_qp.s_wq.  This function does the array index computation.
530  */
531 static inline struct rvt_swqe *rvt_get_swqe_ptr(struct rvt_qp *qp,
532 						unsigned n)
533 {
534 	return (struct rvt_swqe *)((char *)qp->s_wq +
535 				     (sizeof(struct rvt_swqe) +
536 				      qp->s_max_sge *
537 				      sizeof(struct rvt_sge)) * n);
538 }
539 
540 /*
541  * Since struct rvt_rwqe is not a fixed size, we can't simply index into
542  * struct rvt_rwq.wq.  This function does the array index computation.
543  */
544 static inline struct rvt_rwqe *rvt_get_rwqe_ptr(struct rvt_rq *rq, unsigned n)
545 {
546 	return (struct rvt_rwqe *)
547 		((char *)rq->kwq->curr_wq +
548 		 (sizeof(struct rvt_rwqe) +
549 		  rq->max_sge * sizeof(struct ib_sge)) * n);
550 }
551 
552 /**
553  * rvt_is_user_qp - return if this is user mode QP
554  * @qp - the target QP
555  */
556 static inline bool rvt_is_user_qp(struct rvt_qp *qp)
557 {
558 	return !!qp->pid;
559 }
560 
561 /**
562  * rvt_get_qp - get a QP reference
563  * @qp - the QP to hold
564  */
565 static inline void rvt_get_qp(struct rvt_qp *qp)
566 {
567 	atomic_inc(&qp->refcount);
568 }
569 
570 /**
571  * rvt_put_qp - release a QP reference
572  * @qp - the QP to release
573  */
574 static inline void rvt_put_qp(struct rvt_qp *qp)
575 {
576 	if (qp && atomic_dec_and_test(&qp->refcount))
577 		wake_up(&qp->wait);
578 }
579 
580 /**
581  * rvt_put_swqe - drop mr refs held by swqe
582  * @wqe - the send wqe
583  *
584  * This drops any mr references held by the swqe
585  */
586 static inline void rvt_put_swqe(struct rvt_swqe *wqe)
587 {
588 	int i;
589 
590 	for (i = 0; i < wqe->wr.num_sge; i++) {
591 		struct rvt_sge *sge = &wqe->sg_list[i];
592 
593 		rvt_put_mr(sge->mr);
594 	}
595 }
596 
597 /**
598  * rvt_qp_wqe_reserve - reserve operation
599  * @qp - the rvt qp
600  * @wqe - the send wqe
601  *
602  * This routine used in post send to record
603  * a wqe relative reserved operation use.
604  */
605 static inline void rvt_qp_wqe_reserve(
606 	struct rvt_qp *qp,
607 	struct rvt_swqe *wqe)
608 {
609 	atomic_inc(&qp->s_reserved_used);
610 }
611 
612 /**
613  * rvt_qp_wqe_unreserve - clean reserved operation
614  * @qp - the rvt qp
615  * @flags - send wqe flags
616  *
617  * This decrements the reserve use count.
618  *
619  * This call MUST precede the change to
620  * s_last to insure that post send sees a stable
621  * s_avail.
622  *
623  * An smp_mp__after_atomic() is used to insure
624  * the compiler does not juggle the order of the s_last
625  * ring index and the decrementing of s_reserved_used.
626  */
627 static inline void rvt_qp_wqe_unreserve(struct rvt_qp *qp, int flags)
628 {
629 	if (unlikely(flags & RVT_SEND_RESERVE_USED)) {
630 		atomic_dec(&qp->s_reserved_used);
631 		/* insure no compiler re-order up to s_last change */
632 		smp_mb__after_atomic();
633 	}
634 }
635 
636 extern const enum ib_wc_opcode ib_rvt_wc_opcode[];
637 
638 /*
639  * Compare the lower 24 bits of the msn values.
640  * Returns an integer <, ==, or > than zero.
641  */
642 static inline int rvt_cmp_msn(u32 a, u32 b)
643 {
644 	return (((int)a) - ((int)b)) << 8;
645 }
646 
647 __be32 rvt_compute_aeth(struct rvt_qp *qp);
648 
649 void rvt_get_credit(struct rvt_qp *qp, u32 aeth);
650 
651 u32 rvt_restart_sge(struct rvt_sge_state *ss, struct rvt_swqe *wqe, u32 len);
652 
653 /**
654  * rvt_div_round_up_mtu - round up divide
655  * @qp - the qp pair
656  * @len - the length
657  *
658  * Perform a shift based mtu round up divide
659  */
660 static inline u32 rvt_div_round_up_mtu(struct rvt_qp *qp, u32 len)
661 {
662 	return (len + qp->pmtu - 1) >> qp->log_pmtu;
663 }
664 
665 /**
666  * @qp - the qp pair
667  * @len - the length
668  *
669  * Perform a shift based mtu divide
670  */
671 static inline u32 rvt_div_mtu(struct rvt_qp *qp, u32 len)
672 {
673 	return len >> qp->log_pmtu;
674 }
675 
676 /**
677  * rvt_timeout_to_jiffies - Convert a ULP timeout input into jiffies
678  * @timeout - timeout input(0 - 31).
679  *
680  * Return a timeout value in jiffies.
681  */
682 static inline unsigned long rvt_timeout_to_jiffies(u8 timeout)
683 {
684 	if (timeout > 31)
685 		timeout = 31;
686 
687 	return usecs_to_jiffies(1U << timeout) * 4096UL / 1000UL;
688 }
689 
690 /**
691  * rvt_lookup_qpn - return the QP with the given QPN
692  * @ibp: the ibport
693  * @qpn: the QP number to look up
694  *
695  * The caller must hold the rcu_read_lock(), and keep the lock until
696  * the returned qp is no longer in use.
697  */
698 static inline struct rvt_qp *rvt_lookup_qpn(struct rvt_dev_info *rdi,
699 					    struct rvt_ibport *rvp,
700 					    u32 qpn) __must_hold(RCU)
701 {
702 	struct rvt_qp *qp = NULL;
703 
704 	if (unlikely(qpn <= 1)) {
705 		qp = rcu_dereference(rvp->qp[qpn]);
706 	} else {
707 		u32 n = hash_32(qpn, rdi->qp_dev->qp_table_bits);
708 
709 		for (qp = rcu_dereference(rdi->qp_dev->qp_table[n]); qp;
710 			qp = rcu_dereference(qp->next))
711 			if (qp->ibqp.qp_num == qpn)
712 				break;
713 	}
714 	return qp;
715 }
716 
717 /**
718  * rvt_mod_retry_timer - mod a retry timer
719  * @qp - the QP
720  * @shift - timeout shift to wait for multiple packets
721  * Modify a potentially already running retry timer
722  */
723 static inline void rvt_mod_retry_timer_ext(struct rvt_qp *qp, u8 shift)
724 {
725 	struct ib_qp *ibqp = &qp->ibqp;
726 	struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
727 
728 	lockdep_assert_held(&qp->s_lock);
729 	qp->s_flags |= RVT_S_TIMER;
730 	/* 4.096 usec. * (1 << qp->timeout) */
731 	mod_timer(&qp->s_timer, jiffies + rdi->busy_jiffies +
732 		  (qp->timeout_jiffies << shift));
733 }
734 
735 static inline void rvt_mod_retry_timer(struct rvt_qp *qp)
736 {
737 	return rvt_mod_retry_timer_ext(qp, 0);
738 }
739 
740 /**
741  * rvt_put_qp_swqe - drop refs held by swqe
742  * @qp: the send qp
743  * @wqe: the send wqe
744  *
745  * This drops any references held by the swqe
746  */
747 static inline void rvt_put_qp_swqe(struct rvt_qp *qp, struct rvt_swqe *wqe)
748 {
749 	rvt_put_swqe(wqe);
750 	if (qp->allowed_ops == IB_OPCODE_UD)
751 		rdma_destroy_ah_attr(wqe->ud_wr.attr);
752 }
753 
754 /**
755  * rvt_qp_sqwe_incr - increment ring index
756  * @qp: the qp
757  * @val: the starting value
758  *
759  * Return: the new value wrapping as appropriate
760  */
761 static inline u32
762 rvt_qp_swqe_incr(struct rvt_qp *qp, u32 val)
763 {
764 	if (++val >= qp->s_size)
765 		val = 0;
766 	return val;
767 }
768 
769 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err);
770 
771 /**
772  * rvt_recv_cq - add a new entry to completion queue
773  *			by receive queue
774  * @qp: receive queue
775  * @wc: work completion entry to add
776  * @solicited: true if @entry is solicited
777  *
778  * This is wrapper function for rvt_enter_cq function call by
779  * receive queue. If rvt_cq_enter return false, it means cq is
780  * full and the qp is put into error state.
781  */
782 static inline void rvt_recv_cq(struct rvt_qp *qp, struct ib_wc *wc,
783 			       bool solicited)
784 {
785 	struct rvt_cq *cq = ibcq_to_rvtcq(qp->ibqp.recv_cq);
786 
787 	if (unlikely(!rvt_cq_enter(cq, wc, solicited)))
788 		rvt_error_qp(qp, IB_WC_LOC_QP_OP_ERR);
789 }
790 
791 /**
792  * rvt_send_cq - add a new entry to completion queue
793  *                        by send queue
794  * @qp: send queue
795  * @wc: work completion entry to add
796  * @solicited: true if @entry is solicited
797  *
798  * This is wrapper function for rvt_enter_cq function call by
799  * send queue. If rvt_cq_enter return false, it means cq is
800  * full and the qp is put into error state.
801  */
802 static inline void rvt_send_cq(struct rvt_qp *qp, struct ib_wc *wc,
803 			       bool solicited)
804 {
805 	struct rvt_cq *cq = ibcq_to_rvtcq(qp->ibqp.send_cq);
806 
807 	if (unlikely(!rvt_cq_enter(cq, wc, solicited)))
808 		rvt_error_qp(qp, IB_WC_LOC_QP_OP_ERR);
809 }
810 
811 /**
812  * rvt_qp_complete_swqe - insert send completion
813  * @qp - the qp
814  * @wqe - the send wqe
815  * @opcode - wc operation (driver dependent)
816  * @status - completion status
817  *
818  * Update the s_last information, and then insert a send
819  * completion into the completion
820  * queue if the qp indicates it should be done.
821  *
822  * See IBTA 10.7.3.1 for info on completion
823  * control.
824  *
825  * Return: new last
826  */
827 static inline u32
828 rvt_qp_complete_swqe(struct rvt_qp *qp,
829 		     struct rvt_swqe *wqe,
830 		     enum ib_wc_opcode opcode,
831 		     enum ib_wc_status status)
832 {
833 	bool need_completion;
834 	u64 wr_id;
835 	u32 byte_len, last;
836 	int flags = wqe->wr.send_flags;
837 
838 	rvt_qp_wqe_unreserve(qp, flags);
839 	rvt_put_qp_swqe(qp, wqe);
840 
841 	need_completion =
842 		!(flags & RVT_SEND_RESERVE_USED) &&
843 		(!(qp->s_flags & RVT_S_SIGNAL_REQ_WR) ||
844 		(flags & IB_SEND_SIGNALED) ||
845 		status != IB_WC_SUCCESS);
846 	if (need_completion) {
847 		wr_id = wqe->wr.wr_id;
848 		byte_len = wqe->length;
849 		/* above fields required before writing s_last */
850 	}
851 	last = rvt_qp_swqe_incr(qp, qp->s_last);
852 	/* see rvt_qp_is_avail() */
853 	smp_store_release(&qp->s_last, last);
854 	if (need_completion) {
855 		struct ib_wc w = {
856 			.wr_id = wr_id,
857 			.status = status,
858 			.opcode = opcode,
859 			.qp = &qp->ibqp,
860 			.byte_len = byte_len,
861 		};
862 		rvt_send_cq(qp, &w, status != IB_WC_SUCCESS);
863 	}
864 	return last;
865 }
866 
867 extern const int  ib_rvt_state_ops[];
868 
869 struct rvt_dev_info;
870 int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only);
871 void rvt_comm_est(struct rvt_qp *qp);
872 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err);
873 unsigned long rvt_rnr_tbl_to_usec(u32 index);
874 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t);
875 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth);
876 void rvt_del_timers_sync(struct rvt_qp *qp);
877 void rvt_stop_rc_timers(struct rvt_qp *qp);
878 void rvt_add_retry_timer_ext(struct rvt_qp *qp, u8 shift);
879 static inline void rvt_add_retry_timer(struct rvt_qp *qp)
880 {
881 	rvt_add_retry_timer_ext(qp, 0);
882 }
883 
884 void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss,
885 		  void *data, u32 length,
886 		  bool release, bool copy_last);
887 void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe,
888 		       enum ib_wc_status status);
889 void rvt_ruc_loopback(struct rvt_qp *qp);
890 
891 /**
892  * struct rvt_qp_iter - the iterator for QPs
893  * @qp - the current QP
894  *
895  * This structure defines the current iterator
896  * state for sequenced access to all QPs relative
897  * to an rvt_dev_info.
898  */
899 struct rvt_qp_iter {
900 	struct rvt_qp *qp;
901 	/* private: backpointer */
902 	struct rvt_dev_info *rdi;
903 	/* private: callback routine */
904 	void (*cb)(struct rvt_qp *qp, u64 v);
905 	/* private: for arg to callback routine */
906 	u64 v;
907 	/* private: number of SMI,GSI QPs for device */
908 	int specials;
909 	/* private: current iterator index */
910 	int n;
911 };
912 
913 /**
914  * ib_cq_tail - Return tail index of cq buffer
915  * @send_cq - The cq for send
916  *
917  * This is called in qp_iter_print to get tail
918  * of cq buffer.
919  */
920 static inline u32 ib_cq_tail(struct ib_cq *send_cq)
921 {
922 	struct rvt_cq *cq = ibcq_to_rvtcq(send_cq);
923 
924 	return ibcq_to_rvtcq(send_cq)->ip ?
925 	       RDMA_READ_UAPI_ATOMIC(cq->queue->tail) :
926 	       ibcq_to_rvtcq(send_cq)->kqueue->tail;
927 }
928 
929 /**
930  * ib_cq_head - Return head index of cq buffer
931  * @send_cq - The cq for send
932  *
933  * This is called in qp_iter_print to get head
934  * of cq buffer.
935  */
936 static inline u32 ib_cq_head(struct ib_cq *send_cq)
937 {
938 	struct rvt_cq *cq = ibcq_to_rvtcq(send_cq);
939 
940 	return ibcq_to_rvtcq(send_cq)->ip ?
941 	       RDMA_READ_UAPI_ATOMIC(cq->queue->head) :
942 	       ibcq_to_rvtcq(send_cq)->kqueue->head;
943 }
944 
945 /**
946  * rvt_free_rq - free memory allocated for rvt_rq struct
947  * @rvt_rq: request queue data structure
948  *
949  * This function should only be called if the rvt_mmap_info()
950  * has not succeeded.
951  */
952 static inline void rvt_free_rq(struct rvt_rq *rq)
953 {
954 	kvfree(rq->kwq);
955 	rq->kwq = NULL;
956 	vfree(rq->wq);
957 	rq->wq = NULL;
958 }
959 
960 /**
961  * rvt_to_iport - Get the ibport pointer
962  * @qp: the qp pointer
963  *
964  * This function returns the ibport pointer from the qp pointer.
965  */
966 static inline struct rvt_ibport *rvt_to_iport(struct rvt_qp *qp)
967 {
968 	struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
969 
970 	return rdi->ports[qp->port_num - 1];
971 }
972 
973 /**
974  * rvt_rc_credit_avail - Check if there are enough RC credits for the request
975  * @qp: the qp
976  * @wqe: the request
977  *
978  * This function returns false when there are not enough credits for the given
979  * request and true otherwise.
980  */
981 static inline bool rvt_rc_credit_avail(struct rvt_qp *qp, struct rvt_swqe *wqe)
982 {
983 	lockdep_assert_held(&qp->s_lock);
984 	if (!(qp->s_flags & RVT_S_UNLIMITED_CREDIT) &&
985 	    rvt_cmp_msn(wqe->ssn, qp->s_lsn + 1) > 0) {
986 		struct rvt_ibport *rvp = rvt_to_iport(qp);
987 
988 		qp->s_flags |= RVT_S_WAIT_SSN_CREDIT;
989 		rvp->n_rc_crwaits++;
990 		return false;
991 	}
992 	return true;
993 }
994 
995 struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi,
996 				     u64 v,
997 				     void (*cb)(struct rvt_qp *qp, u64 v));
998 int rvt_qp_iter_next(struct rvt_qp_iter *iter);
999 void rvt_qp_iter(struct rvt_dev_info *rdi,
1000 		 u64 v,
1001 		 void (*cb)(struct rvt_qp *qp, u64 v));
1002 void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey);
1003 #endif          /* DEF_RDMAVT_INCQP_H */
1004