1 #ifndef DEF_RDMAVT_INCQP_H 2 #define DEF_RDMAVT_INCQP_H 3 4 /* 5 * Copyright(c) 2016 - 2020 Intel Corporation. 6 * 7 * This file is provided under a dual BSD/GPLv2 license. When using or 8 * redistributing this file, you may do so under either license. 9 * 10 * GPL LICENSE SUMMARY 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of version 2 of the GNU General Public License as 14 * published by the Free Software Foundation. 15 * 16 * This program is distributed in the hope that it will be useful, but 17 * WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 19 * General Public License for more details. 20 * 21 * BSD LICENSE 22 * 23 * Redistribution and use in source and binary forms, with or without 24 * modification, are permitted provided that the following conditions 25 * are met: 26 * 27 * - Redistributions of source code must retain the above copyright 28 * notice, this list of conditions and the following disclaimer. 29 * - Redistributions in binary form must reproduce the above copyright 30 * notice, this list of conditions and the following disclaimer in 31 * the documentation and/or other materials provided with the 32 * distribution. 33 * - Neither the name of Intel Corporation nor the names of its 34 * contributors may be used to endorse or promote products derived 35 * from this software without specific prior written permission. 36 * 37 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 38 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 39 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 40 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 41 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 42 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 43 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 44 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 45 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 46 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 47 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 48 * 49 */ 50 51 #include <rdma/rdma_vt.h> 52 #include <rdma/ib_pack.h> 53 #include <rdma/ib_verbs.h> 54 #include <rdma/rdmavt_cq.h> 55 #include <rdma/rvt-abi.h> 56 /* 57 * Atomic bit definitions for r_aflags. 58 */ 59 #define RVT_R_WRID_VALID 0 60 #define RVT_R_REWIND_SGE 1 61 62 /* 63 * Bit definitions for r_flags. 64 */ 65 #define RVT_R_REUSE_SGE 0x01 66 #define RVT_R_RDMAR_SEQ 0x02 67 #define RVT_R_RSP_NAK 0x04 68 #define RVT_R_RSP_SEND 0x08 69 #define RVT_R_COMM_EST 0x10 70 71 /* 72 * If a packet's QP[23:16] bits match this value, then it is 73 * a PSM packet and the hardware will expect a KDETH header 74 * following the BTH. 75 */ 76 #define RVT_KDETH_QP_PREFIX 0x80 77 #define RVT_KDETH_QP_SUFFIX 0xffff 78 #define RVT_KDETH_QP_PREFIX_MASK 0x00ff0000 79 #define RVT_KDETH_QP_PREFIX_SHIFT 16 80 #define RVT_KDETH_QP_BASE (u32)(RVT_KDETH_QP_PREFIX << \ 81 RVT_KDETH_QP_PREFIX_SHIFT) 82 #define RVT_KDETH_QP_MAX (u32)(RVT_KDETH_QP_BASE + RVT_KDETH_QP_SUFFIX) 83 84 /* 85 * If a packet's LNH == BTH and DEST QPN[23:16] in the BTH match this 86 * prefix value, then it is an AIP packet with a DETH containing the entropy 87 * value in byte 4 following the BTH. 88 */ 89 #define RVT_AIP_QP_PREFIX 0x81 90 #define RVT_AIP_QP_SUFFIX 0xffff 91 #define RVT_AIP_QP_PREFIX_MASK 0x00ff0000 92 #define RVT_AIP_QP_PREFIX_SHIFT 16 93 #define RVT_AIP_QP_BASE (u32)(RVT_AIP_QP_PREFIX << \ 94 RVT_AIP_QP_PREFIX_SHIFT) 95 #define RVT_AIP_QPN_MAX BIT(RVT_AIP_QP_PREFIX_SHIFT) 96 #define RVT_AIP_QP_MAX (u32)(RVT_AIP_QP_BASE + RVT_AIP_QPN_MAX - 1) 97 98 /* 99 * Bit definitions for s_flags. 100 * 101 * RVT_S_SIGNAL_REQ_WR - set if QP send WRs contain completion signaled 102 * RVT_S_BUSY - send tasklet is processing the QP 103 * RVT_S_TIMER - the RC retry timer is active 104 * RVT_S_ACK_PENDING - an ACK is waiting to be sent after RDMA read/atomics 105 * RVT_S_WAIT_FENCE - waiting for all prior RDMA read or atomic SWQEs 106 * before processing the next SWQE 107 * RVT_S_WAIT_RDMAR - waiting for a RDMA read or atomic SWQE to complete 108 * before processing the next SWQE 109 * RVT_S_WAIT_RNR - waiting for RNR timeout 110 * RVT_S_WAIT_SSN_CREDIT - waiting for RC credits to process next SWQE 111 * RVT_S_WAIT_DMA - waiting for send DMA queue to drain before generating 112 * next send completion entry not via send DMA 113 * RVT_S_WAIT_PIO - waiting for a send buffer to be available 114 * RVT_S_WAIT_TX - waiting for a struct verbs_txreq to be available 115 * RVT_S_WAIT_DMA_DESC - waiting for DMA descriptors to be available 116 * RVT_S_WAIT_KMEM - waiting for kernel memory to be available 117 * RVT_S_WAIT_PSN - waiting for a packet to exit the send DMA queue 118 * RVT_S_WAIT_ACK - waiting for an ACK packet before sending more requests 119 * RVT_S_SEND_ONE - send one packet, request ACK, then wait for ACK 120 * RVT_S_ECN - a BECN was queued to the send engine 121 * RVT_S_MAX_BIT_MASK - The max bit that can be used by rdmavt 122 */ 123 #define RVT_S_SIGNAL_REQ_WR 0x0001 124 #define RVT_S_BUSY 0x0002 125 #define RVT_S_TIMER 0x0004 126 #define RVT_S_RESP_PENDING 0x0008 127 #define RVT_S_ACK_PENDING 0x0010 128 #define RVT_S_WAIT_FENCE 0x0020 129 #define RVT_S_WAIT_RDMAR 0x0040 130 #define RVT_S_WAIT_RNR 0x0080 131 #define RVT_S_WAIT_SSN_CREDIT 0x0100 132 #define RVT_S_WAIT_DMA 0x0200 133 #define RVT_S_WAIT_PIO 0x0400 134 #define RVT_S_WAIT_TX 0x0800 135 #define RVT_S_WAIT_DMA_DESC 0x1000 136 #define RVT_S_WAIT_KMEM 0x2000 137 #define RVT_S_WAIT_PSN 0x4000 138 #define RVT_S_WAIT_ACK 0x8000 139 #define RVT_S_SEND_ONE 0x10000 140 #define RVT_S_UNLIMITED_CREDIT 0x20000 141 #define RVT_S_ECN 0x40000 142 #define RVT_S_MAX_BIT_MASK 0x800000 143 144 /* 145 * Drivers should use s_flags starting with bit 31 down to the bit next to 146 * RVT_S_MAX_BIT_MASK 147 */ 148 149 /* 150 * Wait flags that would prevent any packet type from being sent. 151 */ 152 #define RVT_S_ANY_WAIT_IO \ 153 (RVT_S_WAIT_PIO | RVT_S_WAIT_TX | \ 154 RVT_S_WAIT_DMA_DESC | RVT_S_WAIT_KMEM) 155 156 /* 157 * Wait flags that would prevent send work requests from making progress. 158 */ 159 #define RVT_S_ANY_WAIT_SEND (RVT_S_WAIT_FENCE | RVT_S_WAIT_RDMAR | \ 160 RVT_S_WAIT_RNR | RVT_S_WAIT_SSN_CREDIT | RVT_S_WAIT_DMA | \ 161 RVT_S_WAIT_PSN | RVT_S_WAIT_ACK) 162 163 #define RVT_S_ANY_WAIT (RVT_S_ANY_WAIT_IO | RVT_S_ANY_WAIT_SEND) 164 165 /* Number of bits to pay attention to in the opcode for checking qp type */ 166 #define RVT_OPCODE_QP_MASK 0xE0 167 168 /* Flags for checking QP state (see ib_rvt_state_ops[]) */ 169 #define RVT_POST_SEND_OK 0x01 170 #define RVT_POST_RECV_OK 0x02 171 #define RVT_PROCESS_RECV_OK 0x04 172 #define RVT_PROCESS_SEND_OK 0x08 173 #define RVT_PROCESS_NEXT_SEND_OK 0x10 174 #define RVT_FLUSH_SEND 0x20 175 #define RVT_FLUSH_RECV 0x40 176 #define RVT_PROCESS_OR_FLUSH_SEND \ 177 (RVT_PROCESS_SEND_OK | RVT_FLUSH_SEND) 178 #define RVT_SEND_OR_FLUSH_OR_RECV_OK \ 179 (RVT_PROCESS_SEND_OK | RVT_FLUSH_SEND | RVT_PROCESS_RECV_OK) 180 181 /* 182 * Internal send flags 183 */ 184 #define RVT_SEND_RESERVE_USED IB_SEND_RESERVED_START 185 #define RVT_SEND_COMPLETION_ONLY (IB_SEND_RESERVED_START << 1) 186 187 /** 188 * rvt_ud_wr - IB UD work plus AH cache 189 * @wr: valid IB work request 190 * @attr: pointer to an allocated AH attribute 191 * 192 * Special case the UD WR so we can keep track of the AH attributes. 193 * 194 * NOTE: This data structure is stricly ordered wr then attr. I.e the attr 195 * MUST come after wr. The ib_ud_wr is sized and copied in rvt_post_one_wr. 196 * The copy assumes that wr is first. 197 */ 198 struct rvt_ud_wr { 199 struct ib_ud_wr wr; 200 struct rdma_ah_attr *attr; 201 }; 202 203 /* 204 * Send work request queue entry. 205 * The size of the sg_list is determined when the QP is created and stored 206 * in qp->s_max_sge. 207 */ 208 struct rvt_swqe { 209 union { 210 struct ib_send_wr wr; /* don't use wr.sg_list */ 211 struct rvt_ud_wr ud_wr; 212 struct ib_reg_wr reg_wr; 213 struct ib_rdma_wr rdma_wr; 214 struct ib_atomic_wr atomic_wr; 215 }; 216 u32 psn; /* first packet sequence number */ 217 u32 lpsn; /* last packet sequence number */ 218 u32 ssn; /* send sequence number */ 219 u32 length; /* total length of data in sg_list */ 220 void *priv; /* driver dependent field */ 221 struct rvt_sge sg_list[]; 222 }; 223 224 /** 225 * struct rvt_krwq - kernel struct receive work request 226 * @p_lock: lock to protect producer of the kernel buffer 227 * @head: index of next entry to fill 228 * @c_lock:lock to protect consumer of the kernel buffer 229 * @tail: index of next entry to pull 230 * @count: count is aproximate of total receive enteries posted 231 * @rvt_rwqe: struct of receive work request queue entry 232 * 233 * This structure is used to contain the head pointer, 234 * tail pointer and receive work queue entries for kernel 235 * mode user. 236 */ 237 struct rvt_krwq { 238 spinlock_t p_lock; /* protect producer */ 239 u32 head; /* new work requests posted to the head */ 240 241 /* protect consumer */ 242 spinlock_t c_lock ____cacheline_aligned_in_smp; 243 u32 tail; /* receives pull requests from here. */ 244 u32 count; /* approx count of receive entries posted */ 245 struct rvt_rwqe *curr_wq; 246 struct rvt_rwqe wq[]; 247 }; 248 249 /* 250 * rvt_get_swqe_ah - Return the pointer to the struct rvt_ah 251 * @swqe: valid Send WQE 252 * 253 */ 254 static inline struct rvt_ah *rvt_get_swqe_ah(struct rvt_swqe *swqe) 255 { 256 return ibah_to_rvtah(swqe->ud_wr.wr.ah); 257 } 258 259 /** 260 * rvt_get_swqe_ah_attr - Return the cached ah attribute information 261 * @swqe: valid Send WQE 262 * 263 */ 264 static inline struct rdma_ah_attr *rvt_get_swqe_ah_attr(struct rvt_swqe *swqe) 265 { 266 return swqe->ud_wr.attr; 267 } 268 269 /** 270 * rvt_get_swqe_remote_qpn - Access the remote QPN value 271 * @swqe: valid Send WQE 272 * 273 */ 274 static inline u32 rvt_get_swqe_remote_qpn(struct rvt_swqe *swqe) 275 { 276 return swqe->ud_wr.wr.remote_qpn; 277 } 278 279 /** 280 * rvt_get_swqe_remote_qkey - Acces the remote qkey value 281 * @swqe: valid Send WQE 282 * 283 */ 284 static inline u32 rvt_get_swqe_remote_qkey(struct rvt_swqe *swqe) 285 { 286 return swqe->ud_wr.wr.remote_qkey; 287 } 288 289 /** 290 * rvt_get_swqe_pkey_index - Access the pkey index 291 * @swqe: valid Send WQE 292 * 293 */ 294 static inline u16 rvt_get_swqe_pkey_index(struct rvt_swqe *swqe) 295 { 296 return swqe->ud_wr.wr.pkey_index; 297 } 298 299 struct rvt_rq { 300 struct rvt_rwq *wq; 301 struct rvt_krwq *kwq; 302 u32 size; /* size of RWQE array */ 303 u8 max_sge; 304 /* protect changes in this struct */ 305 spinlock_t lock ____cacheline_aligned_in_smp; 306 }; 307 308 /* 309 * This structure holds the information that the send tasklet needs 310 * to send a RDMA read response or atomic operation. 311 */ 312 struct rvt_ack_entry { 313 struct rvt_sge rdma_sge; 314 u64 atomic_data; 315 u32 psn; 316 u32 lpsn; 317 u8 opcode; 318 u8 sent; 319 void *priv; 320 }; 321 322 #define RC_QP_SCALING_INTERVAL 5 323 324 #define RVT_OPERATION_PRIV 0x00000001 325 #define RVT_OPERATION_ATOMIC 0x00000002 326 #define RVT_OPERATION_ATOMIC_SGE 0x00000004 327 #define RVT_OPERATION_LOCAL 0x00000008 328 #define RVT_OPERATION_USE_RESERVE 0x00000010 329 #define RVT_OPERATION_IGN_RNR_CNT 0x00000020 330 331 #define RVT_OPERATION_MAX (IB_WR_RESERVED10 + 1) 332 333 /** 334 * rvt_operation_params - op table entry 335 * @length - the length to copy into the swqe entry 336 * @qpt_support - a bit mask indicating QP type support 337 * @flags - RVT_OPERATION flags (see above) 338 * 339 * This supports table driven post send so that 340 * the driver can have differing an potentially 341 * different sets of operations. 342 * 343 **/ 344 345 struct rvt_operation_params { 346 size_t length; 347 u32 qpt_support; 348 u32 flags; 349 }; 350 351 /* 352 * Common variables are protected by both r_rq.lock and s_lock in that order 353 * which only happens in modify_qp() or changing the QP 'state'. 354 */ 355 struct rvt_qp { 356 struct ib_qp ibqp; 357 void *priv; /* Driver private data */ 358 /* read mostly fields above and below */ 359 struct rdma_ah_attr remote_ah_attr; 360 struct rdma_ah_attr alt_ah_attr; 361 struct rvt_qp __rcu *next; /* link list for QPN hash table */ 362 struct rvt_swqe *s_wq; /* send work queue */ 363 struct rvt_mmap_info *ip; 364 365 unsigned long timeout_jiffies; /* computed from timeout */ 366 367 int srate_mbps; /* s_srate (below) converted to Mbit/s */ 368 pid_t pid; /* pid for user mode QPs */ 369 u32 remote_qpn; 370 u32 qkey; /* QKEY for this QP (for UD or RD) */ 371 u32 s_size; /* send work queue size */ 372 373 u16 pmtu; /* decoded from path_mtu */ 374 u8 log_pmtu; /* shift for pmtu */ 375 u8 state; /* QP state */ 376 u8 allowed_ops; /* high order bits of allowed opcodes */ 377 u8 qp_access_flags; 378 u8 alt_timeout; /* Alternate path timeout for this QP */ 379 u8 timeout; /* Timeout for this QP */ 380 u8 s_srate; 381 u8 s_mig_state; 382 u8 port_num; 383 u8 s_pkey_index; /* PKEY index to use */ 384 u8 s_alt_pkey_index; /* Alternate path PKEY index to use */ 385 u8 r_max_rd_atomic; /* max number of RDMA read/atomic to receive */ 386 u8 s_max_rd_atomic; /* max number of RDMA read/atomic to send */ 387 u8 s_retry_cnt; /* number of times to retry */ 388 u8 s_rnr_retry_cnt; 389 u8 r_min_rnr_timer; /* retry timeout value for RNR NAKs */ 390 u8 s_max_sge; /* size of s_wq->sg_list */ 391 u8 s_draining; 392 393 /* start of read/write fields */ 394 atomic_t refcount ____cacheline_aligned_in_smp; 395 wait_queue_head_t wait; 396 397 struct rvt_ack_entry *s_ack_queue; 398 struct rvt_sge_state s_rdma_read_sge; 399 400 spinlock_t r_lock ____cacheline_aligned_in_smp; /* used for APM */ 401 u32 r_psn; /* expected rcv packet sequence number */ 402 unsigned long r_aflags; 403 u64 r_wr_id; /* ID for current receive WQE */ 404 u32 r_ack_psn; /* PSN for next ACK or atomic ACK */ 405 u32 r_len; /* total length of r_sge */ 406 u32 r_rcv_len; /* receive data len processed */ 407 u32 r_msn; /* message sequence number */ 408 409 u8 r_state; /* opcode of last packet received */ 410 u8 r_flags; 411 u8 r_head_ack_queue; /* index into s_ack_queue[] */ 412 u8 r_adefered; /* defered ack count */ 413 414 struct list_head rspwait; /* link for waiting to respond */ 415 416 struct rvt_sge_state r_sge; /* current receive data */ 417 struct rvt_rq r_rq; /* receive work queue */ 418 419 /* post send line */ 420 spinlock_t s_hlock ____cacheline_aligned_in_smp; 421 u32 s_head; /* new entries added here */ 422 u32 s_next_psn; /* PSN for next request */ 423 u32 s_avail; /* number of entries avail */ 424 u32 s_ssn; /* SSN of tail entry */ 425 atomic_t s_reserved_used; /* reserved entries in use */ 426 427 spinlock_t s_lock ____cacheline_aligned_in_smp; 428 u32 s_flags; 429 struct rvt_sge_state *s_cur_sge; 430 struct rvt_swqe *s_wqe; 431 struct rvt_sge_state s_sge; /* current send request data */ 432 struct rvt_mregion *s_rdma_mr; 433 u32 s_len; /* total length of s_sge */ 434 u32 s_rdma_read_len; /* total length of s_rdma_read_sge */ 435 u32 s_last_psn; /* last response PSN processed */ 436 u32 s_sending_psn; /* lowest PSN that is being sent */ 437 u32 s_sending_hpsn; /* highest PSN that is being sent */ 438 u32 s_psn; /* current packet sequence number */ 439 u32 s_ack_rdma_psn; /* PSN for sending RDMA read responses */ 440 u32 s_ack_psn; /* PSN for acking sends and RDMA writes */ 441 u32 s_tail; /* next entry to process */ 442 u32 s_cur; /* current work queue entry */ 443 u32 s_acked; /* last un-ACK'ed entry */ 444 u32 s_last; /* last completed entry */ 445 u32 s_lsn; /* limit sequence number (credit) */ 446 u32 s_ahgpsn; /* set to the psn in the copy of the header */ 447 u16 s_cur_size; /* size of send packet in bytes */ 448 u16 s_rdma_ack_cnt; 449 u8 s_hdrwords; /* size of s_hdr in 32 bit words */ 450 s8 s_ahgidx; 451 u8 s_state; /* opcode of last packet sent */ 452 u8 s_ack_state; /* opcode of packet to ACK */ 453 u8 s_nak_state; /* non-zero if NAK is pending */ 454 u8 r_nak_state; /* non-zero if NAK is pending */ 455 u8 s_retry; /* requester retry counter */ 456 u8 s_rnr_retry; /* requester RNR retry counter */ 457 u8 s_num_rd_atomic; /* number of RDMA read/atomic pending */ 458 u8 s_tail_ack_queue; /* index into s_ack_queue[] */ 459 u8 s_acked_ack_queue; /* index into s_ack_queue[] */ 460 461 struct rvt_sge_state s_ack_rdma_sge; 462 struct timer_list s_timer; 463 struct hrtimer s_rnr_timer; 464 465 atomic_t local_ops_pending; /* number of fast_reg/local_inv reqs */ 466 467 /* 468 * This sge list MUST be last. Do not add anything below here. 469 */ 470 struct rvt_sge r_sg_list[] /* verified SGEs */ 471 ____cacheline_aligned_in_smp; 472 }; 473 474 struct rvt_srq { 475 struct ib_srq ibsrq; 476 struct rvt_rq rq; 477 struct rvt_mmap_info *ip; 478 /* send signal when number of RWQEs < limit */ 479 u32 limit; 480 }; 481 482 static inline struct rvt_srq *ibsrq_to_rvtsrq(struct ib_srq *ibsrq) 483 { 484 return container_of(ibsrq, struct rvt_srq, ibsrq); 485 } 486 487 static inline struct rvt_qp *ibqp_to_rvtqp(struct ib_qp *ibqp) 488 { 489 return container_of(ibqp, struct rvt_qp, ibqp); 490 } 491 492 #define RVT_QPN_MAX BIT(24) 493 #define RVT_QPNMAP_ENTRIES (RVT_QPN_MAX / PAGE_SIZE / BITS_PER_BYTE) 494 #define RVT_BITS_PER_PAGE (PAGE_SIZE * BITS_PER_BYTE) 495 #define RVT_BITS_PER_PAGE_MASK (RVT_BITS_PER_PAGE - 1) 496 #define RVT_QPN_MASK IB_QPN_MASK 497 498 /* 499 * QPN-map pages start out as NULL, they get allocated upon 500 * first use and are never deallocated. This way, 501 * large bitmaps are not allocated unless large numbers of QPs are used. 502 */ 503 struct rvt_qpn_map { 504 void *page; 505 }; 506 507 struct rvt_qpn_table { 508 spinlock_t lock; /* protect changes to the qp table */ 509 unsigned flags; /* flags for QP0/1 allocated for each port */ 510 u32 last; /* last QP number allocated */ 511 u32 nmaps; /* size of the map table */ 512 u16 limit; 513 u8 incr; 514 /* bit map of free QP numbers other than 0/1 */ 515 struct rvt_qpn_map map[RVT_QPNMAP_ENTRIES]; 516 }; 517 518 struct rvt_qp_ibdev { 519 u32 qp_table_size; 520 u32 qp_table_bits; 521 struct rvt_qp __rcu **qp_table; 522 spinlock_t qpt_lock; /* qptable lock */ 523 struct rvt_qpn_table qpn_table; 524 }; 525 526 /* 527 * There is one struct rvt_mcast for each multicast GID. 528 * All attached QPs are then stored as a list of 529 * struct rvt_mcast_qp. 530 */ 531 struct rvt_mcast_qp { 532 struct list_head list; 533 struct rvt_qp *qp; 534 }; 535 536 struct rvt_mcast_addr { 537 union ib_gid mgid; 538 u16 lid; 539 }; 540 541 struct rvt_mcast { 542 struct rb_node rb_node; 543 struct rvt_mcast_addr mcast_addr; 544 struct list_head qp_list; 545 wait_queue_head_t wait; 546 atomic_t refcount; 547 int n_attached; 548 }; 549 550 /* 551 * Since struct rvt_swqe is not a fixed size, we can't simply index into 552 * struct rvt_qp.s_wq. This function does the array index computation. 553 */ 554 static inline struct rvt_swqe *rvt_get_swqe_ptr(struct rvt_qp *qp, 555 unsigned n) 556 { 557 return (struct rvt_swqe *)((char *)qp->s_wq + 558 (sizeof(struct rvt_swqe) + 559 qp->s_max_sge * 560 sizeof(struct rvt_sge)) * n); 561 } 562 563 /* 564 * Since struct rvt_rwqe is not a fixed size, we can't simply index into 565 * struct rvt_rwq.wq. This function does the array index computation. 566 */ 567 static inline struct rvt_rwqe *rvt_get_rwqe_ptr(struct rvt_rq *rq, unsigned n) 568 { 569 return (struct rvt_rwqe *) 570 ((char *)rq->kwq->curr_wq + 571 (sizeof(struct rvt_rwqe) + 572 rq->max_sge * sizeof(struct ib_sge)) * n); 573 } 574 575 /** 576 * rvt_is_user_qp - return if this is user mode QP 577 * @qp - the target QP 578 */ 579 static inline bool rvt_is_user_qp(struct rvt_qp *qp) 580 { 581 return !!qp->pid; 582 } 583 584 /** 585 * rvt_get_qp - get a QP reference 586 * @qp - the QP to hold 587 */ 588 static inline void rvt_get_qp(struct rvt_qp *qp) 589 { 590 atomic_inc(&qp->refcount); 591 } 592 593 /** 594 * rvt_put_qp - release a QP reference 595 * @qp - the QP to release 596 */ 597 static inline void rvt_put_qp(struct rvt_qp *qp) 598 { 599 if (qp && atomic_dec_and_test(&qp->refcount)) 600 wake_up(&qp->wait); 601 } 602 603 /** 604 * rvt_put_swqe - drop mr refs held by swqe 605 * @wqe - the send wqe 606 * 607 * This drops any mr references held by the swqe 608 */ 609 static inline void rvt_put_swqe(struct rvt_swqe *wqe) 610 { 611 int i; 612 613 for (i = 0; i < wqe->wr.num_sge; i++) { 614 struct rvt_sge *sge = &wqe->sg_list[i]; 615 616 rvt_put_mr(sge->mr); 617 } 618 } 619 620 /** 621 * rvt_qp_wqe_reserve - reserve operation 622 * @qp - the rvt qp 623 * @wqe - the send wqe 624 * 625 * This routine used in post send to record 626 * a wqe relative reserved operation use. 627 */ 628 static inline void rvt_qp_wqe_reserve( 629 struct rvt_qp *qp, 630 struct rvt_swqe *wqe) 631 { 632 atomic_inc(&qp->s_reserved_used); 633 } 634 635 /** 636 * rvt_qp_wqe_unreserve - clean reserved operation 637 * @qp - the rvt qp 638 * @flags - send wqe flags 639 * 640 * This decrements the reserve use count. 641 * 642 * This call MUST precede the change to 643 * s_last to insure that post send sees a stable 644 * s_avail. 645 * 646 * An smp_mp__after_atomic() is used to insure 647 * the compiler does not juggle the order of the s_last 648 * ring index and the decrementing of s_reserved_used. 649 */ 650 static inline void rvt_qp_wqe_unreserve(struct rvt_qp *qp, int flags) 651 { 652 if (unlikely(flags & RVT_SEND_RESERVE_USED)) { 653 atomic_dec(&qp->s_reserved_used); 654 /* insure no compiler re-order up to s_last change */ 655 smp_mb__after_atomic(); 656 } 657 } 658 659 extern const enum ib_wc_opcode ib_rvt_wc_opcode[]; 660 661 /* 662 * Compare the lower 24 bits of the msn values. 663 * Returns an integer <, ==, or > than zero. 664 */ 665 static inline int rvt_cmp_msn(u32 a, u32 b) 666 { 667 return (((int)a) - ((int)b)) << 8; 668 } 669 670 __be32 rvt_compute_aeth(struct rvt_qp *qp); 671 672 void rvt_get_credit(struct rvt_qp *qp, u32 aeth); 673 674 u32 rvt_restart_sge(struct rvt_sge_state *ss, struct rvt_swqe *wqe, u32 len); 675 676 /** 677 * rvt_div_round_up_mtu - round up divide 678 * @qp - the qp pair 679 * @len - the length 680 * 681 * Perform a shift based mtu round up divide 682 */ 683 static inline u32 rvt_div_round_up_mtu(struct rvt_qp *qp, u32 len) 684 { 685 return (len + qp->pmtu - 1) >> qp->log_pmtu; 686 } 687 688 /** 689 * @qp - the qp pair 690 * @len - the length 691 * 692 * Perform a shift based mtu divide 693 */ 694 static inline u32 rvt_div_mtu(struct rvt_qp *qp, u32 len) 695 { 696 return len >> qp->log_pmtu; 697 } 698 699 /** 700 * rvt_timeout_to_jiffies - Convert a ULP timeout input into jiffies 701 * @timeout - timeout input(0 - 31). 702 * 703 * Return a timeout value in jiffies. 704 */ 705 static inline unsigned long rvt_timeout_to_jiffies(u8 timeout) 706 { 707 if (timeout > 31) 708 timeout = 31; 709 710 return usecs_to_jiffies(1U << timeout) * 4096UL / 1000UL; 711 } 712 713 /** 714 * rvt_lookup_qpn - return the QP with the given QPN 715 * @ibp: the ibport 716 * @qpn: the QP number to look up 717 * 718 * The caller must hold the rcu_read_lock(), and keep the lock until 719 * the returned qp is no longer in use. 720 */ 721 static inline struct rvt_qp *rvt_lookup_qpn(struct rvt_dev_info *rdi, 722 struct rvt_ibport *rvp, 723 u32 qpn) __must_hold(RCU) 724 { 725 struct rvt_qp *qp = NULL; 726 727 if (unlikely(qpn <= 1)) { 728 qp = rcu_dereference(rvp->qp[qpn]); 729 } else { 730 u32 n = hash_32(qpn, rdi->qp_dev->qp_table_bits); 731 732 for (qp = rcu_dereference(rdi->qp_dev->qp_table[n]); qp; 733 qp = rcu_dereference(qp->next)) 734 if (qp->ibqp.qp_num == qpn) 735 break; 736 } 737 return qp; 738 } 739 740 /** 741 * rvt_mod_retry_timer - mod a retry timer 742 * @qp - the QP 743 * @shift - timeout shift to wait for multiple packets 744 * Modify a potentially already running retry timer 745 */ 746 static inline void rvt_mod_retry_timer_ext(struct rvt_qp *qp, u8 shift) 747 { 748 struct ib_qp *ibqp = &qp->ibqp; 749 struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device); 750 751 lockdep_assert_held(&qp->s_lock); 752 qp->s_flags |= RVT_S_TIMER; 753 /* 4.096 usec. * (1 << qp->timeout) */ 754 mod_timer(&qp->s_timer, jiffies + rdi->busy_jiffies + 755 (qp->timeout_jiffies << shift)); 756 } 757 758 static inline void rvt_mod_retry_timer(struct rvt_qp *qp) 759 { 760 return rvt_mod_retry_timer_ext(qp, 0); 761 } 762 763 /** 764 * rvt_put_qp_swqe - drop refs held by swqe 765 * @qp: the send qp 766 * @wqe: the send wqe 767 * 768 * This drops any references held by the swqe 769 */ 770 static inline void rvt_put_qp_swqe(struct rvt_qp *qp, struct rvt_swqe *wqe) 771 { 772 rvt_put_swqe(wqe); 773 if (qp->allowed_ops == IB_OPCODE_UD) 774 rdma_destroy_ah_attr(wqe->ud_wr.attr); 775 } 776 777 /** 778 * rvt_qp_sqwe_incr - increment ring index 779 * @qp: the qp 780 * @val: the starting value 781 * 782 * Return: the new value wrapping as appropriate 783 */ 784 static inline u32 785 rvt_qp_swqe_incr(struct rvt_qp *qp, u32 val) 786 { 787 if (++val >= qp->s_size) 788 val = 0; 789 return val; 790 } 791 792 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err); 793 794 /** 795 * rvt_recv_cq - add a new entry to completion queue 796 * by receive queue 797 * @qp: receive queue 798 * @wc: work completion entry to add 799 * @solicited: true if @entry is solicited 800 * 801 * This is wrapper function for rvt_enter_cq function call by 802 * receive queue. If rvt_cq_enter return false, it means cq is 803 * full and the qp is put into error state. 804 */ 805 static inline void rvt_recv_cq(struct rvt_qp *qp, struct ib_wc *wc, 806 bool solicited) 807 { 808 struct rvt_cq *cq = ibcq_to_rvtcq(qp->ibqp.recv_cq); 809 810 if (unlikely(!rvt_cq_enter(cq, wc, solicited))) 811 rvt_error_qp(qp, IB_WC_LOC_QP_OP_ERR); 812 } 813 814 /** 815 * rvt_send_cq - add a new entry to completion queue 816 * by send queue 817 * @qp: send queue 818 * @wc: work completion entry to add 819 * @solicited: true if @entry is solicited 820 * 821 * This is wrapper function for rvt_enter_cq function call by 822 * send queue. If rvt_cq_enter return false, it means cq is 823 * full and the qp is put into error state. 824 */ 825 static inline void rvt_send_cq(struct rvt_qp *qp, struct ib_wc *wc, 826 bool solicited) 827 { 828 struct rvt_cq *cq = ibcq_to_rvtcq(qp->ibqp.send_cq); 829 830 if (unlikely(!rvt_cq_enter(cq, wc, solicited))) 831 rvt_error_qp(qp, IB_WC_LOC_QP_OP_ERR); 832 } 833 834 /** 835 * rvt_qp_complete_swqe - insert send completion 836 * @qp - the qp 837 * @wqe - the send wqe 838 * @opcode - wc operation (driver dependent) 839 * @status - completion status 840 * 841 * Update the s_last information, and then insert a send 842 * completion into the completion 843 * queue if the qp indicates it should be done. 844 * 845 * See IBTA 10.7.3.1 for info on completion 846 * control. 847 * 848 * Return: new last 849 */ 850 static inline u32 851 rvt_qp_complete_swqe(struct rvt_qp *qp, 852 struct rvt_swqe *wqe, 853 enum ib_wc_opcode opcode, 854 enum ib_wc_status status) 855 { 856 bool need_completion; 857 u64 wr_id; 858 u32 byte_len, last; 859 int flags = wqe->wr.send_flags; 860 861 rvt_qp_wqe_unreserve(qp, flags); 862 rvt_put_qp_swqe(qp, wqe); 863 864 need_completion = 865 !(flags & RVT_SEND_RESERVE_USED) && 866 (!(qp->s_flags & RVT_S_SIGNAL_REQ_WR) || 867 (flags & IB_SEND_SIGNALED) || 868 status != IB_WC_SUCCESS); 869 if (need_completion) { 870 wr_id = wqe->wr.wr_id; 871 byte_len = wqe->length; 872 /* above fields required before writing s_last */ 873 } 874 last = rvt_qp_swqe_incr(qp, qp->s_last); 875 /* see rvt_qp_is_avail() */ 876 smp_store_release(&qp->s_last, last); 877 if (need_completion) { 878 struct ib_wc w = { 879 .wr_id = wr_id, 880 .status = status, 881 .opcode = opcode, 882 .qp = &qp->ibqp, 883 .byte_len = byte_len, 884 }; 885 rvt_send_cq(qp, &w, status != IB_WC_SUCCESS); 886 } 887 return last; 888 } 889 890 extern const int ib_rvt_state_ops[]; 891 892 struct rvt_dev_info; 893 int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only); 894 void rvt_comm_est(struct rvt_qp *qp); 895 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err); 896 unsigned long rvt_rnr_tbl_to_usec(u32 index); 897 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t); 898 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth); 899 void rvt_del_timers_sync(struct rvt_qp *qp); 900 void rvt_stop_rc_timers(struct rvt_qp *qp); 901 void rvt_add_retry_timer_ext(struct rvt_qp *qp, u8 shift); 902 static inline void rvt_add_retry_timer(struct rvt_qp *qp) 903 { 904 rvt_add_retry_timer_ext(qp, 0); 905 } 906 907 void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss, 908 void *data, u32 length, 909 bool release, bool copy_last); 910 void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe, 911 enum ib_wc_status status); 912 void rvt_ruc_loopback(struct rvt_qp *qp); 913 914 /** 915 * struct rvt_qp_iter - the iterator for QPs 916 * @qp - the current QP 917 * 918 * This structure defines the current iterator 919 * state for sequenced access to all QPs relative 920 * to an rvt_dev_info. 921 */ 922 struct rvt_qp_iter { 923 struct rvt_qp *qp; 924 /* private: backpointer */ 925 struct rvt_dev_info *rdi; 926 /* private: callback routine */ 927 void (*cb)(struct rvt_qp *qp, u64 v); 928 /* private: for arg to callback routine */ 929 u64 v; 930 /* private: number of SMI,GSI QPs for device */ 931 int specials; 932 /* private: current iterator index */ 933 int n; 934 }; 935 936 /** 937 * ib_cq_tail - Return tail index of cq buffer 938 * @send_cq - The cq for send 939 * 940 * This is called in qp_iter_print to get tail 941 * of cq buffer. 942 */ 943 static inline u32 ib_cq_tail(struct ib_cq *send_cq) 944 { 945 struct rvt_cq *cq = ibcq_to_rvtcq(send_cq); 946 947 return ibcq_to_rvtcq(send_cq)->ip ? 948 RDMA_READ_UAPI_ATOMIC(cq->queue->tail) : 949 ibcq_to_rvtcq(send_cq)->kqueue->tail; 950 } 951 952 /** 953 * ib_cq_head - Return head index of cq buffer 954 * @send_cq - The cq for send 955 * 956 * This is called in qp_iter_print to get head 957 * of cq buffer. 958 */ 959 static inline u32 ib_cq_head(struct ib_cq *send_cq) 960 { 961 struct rvt_cq *cq = ibcq_to_rvtcq(send_cq); 962 963 return ibcq_to_rvtcq(send_cq)->ip ? 964 RDMA_READ_UAPI_ATOMIC(cq->queue->head) : 965 ibcq_to_rvtcq(send_cq)->kqueue->head; 966 } 967 968 /** 969 * rvt_free_rq - free memory allocated for rvt_rq struct 970 * @rvt_rq: request queue data structure 971 * 972 * This function should only be called if the rvt_mmap_info() 973 * has not succeeded. 974 */ 975 static inline void rvt_free_rq(struct rvt_rq *rq) 976 { 977 kvfree(rq->kwq); 978 rq->kwq = NULL; 979 vfree(rq->wq); 980 rq->wq = NULL; 981 } 982 983 /** 984 * rvt_to_iport - Get the ibport pointer 985 * @qp: the qp pointer 986 * 987 * This function returns the ibport pointer from the qp pointer. 988 */ 989 static inline struct rvt_ibport *rvt_to_iport(struct rvt_qp *qp) 990 { 991 struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device); 992 993 return rdi->ports[qp->port_num - 1]; 994 } 995 996 /** 997 * rvt_rc_credit_avail - Check if there are enough RC credits for the request 998 * @qp: the qp 999 * @wqe: the request 1000 * 1001 * This function returns false when there are not enough credits for the given 1002 * request and true otherwise. 1003 */ 1004 static inline bool rvt_rc_credit_avail(struct rvt_qp *qp, struct rvt_swqe *wqe) 1005 { 1006 lockdep_assert_held(&qp->s_lock); 1007 if (!(qp->s_flags & RVT_S_UNLIMITED_CREDIT) && 1008 rvt_cmp_msn(wqe->ssn, qp->s_lsn + 1) > 0) { 1009 struct rvt_ibport *rvp = rvt_to_iport(qp); 1010 1011 qp->s_flags |= RVT_S_WAIT_SSN_CREDIT; 1012 rvp->n_rc_crwaits++; 1013 return false; 1014 } 1015 return true; 1016 } 1017 1018 struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi, 1019 u64 v, 1020 void (*cb)(struct rvt_qp *qp, u64 v)); 1021 int rvt_qp_iter_next(struct rvt_qp_iter *iter); 1022 void rvt_qp_iter(struct rvt_dev_info *rdi, 1023 u64 v, 1024 void (*cb)(struct rvt_qp *qp, u64 v)); 1025 void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey); 1026 #endif /* DEF_RDMAVT_INCQP_H */ 1027