1 #ifndef DEF_RDMAVT_INCQP_H 2 #define DEF_RDMAVT_INCQP_H 3 4 /* 5 * Copyright(c) 2016 Intel Corporation. 6 * 7 * This file is provided under a dual BSD/GPLv2 license. When using or 8 * redistributing this file, you may do so under either license. 9 * 10 * GPL LICENSE SUMMARY 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of version 2 of the GNU General Public License as 14 * published by the Free Software Foundation. 15 * 16 * This program is distributed in the hope that it will be useful, but 17 * WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 19 * General Public License for more details. 20 * 21 * BSD LICENSE 22 * 23 * Redistribution and use in source and binary forms, with or without 24 * modification, are permitted provided that the following conditions 25 * are met: 26 * 27 * - Redistributions of source code must retain the above copyright 28 * notice, this list of conditions and the following disclaimer. 29 * - Redistributions in binary form must reproduce the above copyright 30 * notice, this list of conditions and the following disclaimer in 31 * the documentation and/or other materials provided with the 32 * distribution. 33 * - Neither the name of Intel Corporation nor the names of its 34 * contributors may be used to endorse or promote products derived 35 * from this software without specific prior written permission. 36 * 37 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 38 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 39 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 40 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 41 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 42 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 43 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 44 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 45 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 46 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 47 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 48 * 49 */ 50 51 #include <rdma/rdma_vt.h> 52 #include <rdma/ib_pack.h> 53 #include <rdma/ib_verbs.h> 54 #include <rdma/rdmavt_cq.h> 55 /* 56 * Atomic bit definitions for r_aflags. 57 */ 58 #define RVT_R_WRID_VALID 0 59 #define RVT_R_REWIND_SGE 1 60 61 /* 62 * Bit definitions for r_flags. 63 */ 64 #define RVT_R_REUSE_SGE 0x01 65 #define RVT_R_RDMAR_SEQ 0x02 66 #define RVT_R_RSP_NAK 0x04 67 #define RVT_R_RSP_SEND 0x08 68 #define RVT_R_COMM_EST 0x10 69 70 /* 71 * Bit definitions for s_flags. 72 * 73 * RVT_S_SIGNAL_REQ_WR - set if QP send WRs contain completion signaled 74 * RVT_S_BUSY - send tasklet is processing the QP 75 * RVT_S_TIMER - the RC retry timer is active 76 * RVT_S_ACK_PENDING - an ACK is waiting to be sent after RDMA read/atomics 77 * RVT_S_WAIT_FENCE - waiting for all prior RDMA read or atomic SWQEs 78 * before processing the next SWQE 79 * RVT_S_WAIT_RDMAR - waiting for a RDMA read or atomic SWQE to complete 80 * before processing the next SWQE 81 * RVT_S_WAIT_RNR - waiting for RNR timeout 82 * RVT_S_WAIT_SSN_CREDIT - waiting for RC credits to process next SWQE 83 * RVT_S_WAIT_DMA - waiting for send DMA queue to drain before generating 84 * next send completion entry not via send DMA 85 * RVT_S_WAIT_PIO - waiting for a send buffer to be available 86 * RVT_S_WAIT_PIO_DRAIN - waiting for a qp to drain pio packets 87 * RVT_S_WAIT_TX - waiting for a struct verbs_txreq to be available 88 * RVT_S_WAIT_DMA_DESC - waiting for DMA descriptors to be available 89 * RVT_S_WAIT_KMEM - waiting for kernel memory to be available 90 * RVT_S_WAIT_PSN - waiting for a packet to exit the send DMA queue 91 * RVT_S_WAIT_ACK - waiting for an ACK packet before sending more requests 92 * RVT_S_SEND_ONE - send one packet, request ACK, then wait for ACK 93 * RVT_S_ECN - a BECN was queued to the send engine 94 */ 95 #define RVT_S_SIGNAL_REQ_WR 0x0001 96 #define RVT_S_BUSY 0x0002 97 #define RVT_S_TIMER 0x0004 98 #define RVT_S_RESP_PENDING 0x0008 99 #define RVT_S_ACK_PENDING 0x0010 100 #define RVT_S_WAIT_FENCE 0x0020 101 #define RVT_S_WAIT_RDMAR 0x0040 102 #define RVT_S_WAIT_RNR 0x0080 103 #define RVT_S_WAIT_SSN_CREDIT 0x0100 104 #define RVT_S_WAIT_DMA 0x0200 105 #define RVT_S_WAIT_PIO 0x0400 106 #define RVT_S_WAIT_PIO_DRAIN 0x0800 107 #define RVT_S_WAIT_TX 0x1000 108 #define RVT_S_WAIT_DMA_DESC 0x2000 109 #define RVT_S_WAIT_KMEM 0x4000 110 #define RVT_S_WAIT_PSN 0x8000 111 #define RVT_S_WAIT_ACK 0x10000 112 #define RVT_S_SEND_ONE 0x20000 113 #define RVT_S_UNLIMITED_CREDIT 0x40000 114 #define RVT_S_AHG_VALID 0x80000 115 #define RVT_S_AHG_CLEAR 0x100000 116 #define RVT_S_ECN 0x200000 117 118 /* 119 * Wait flags that would prevent any packet type from being sent. 120 */ 121 #define RVT_S_ANY_WAIT_IO \ 122 (RVT_S_WAIT_PIO | RVT_S_WAIT_PIO_DRAIN | RVT_S_WAIT_TX | \ 123 RVT_S_WAIT_DMA_DESC | RVT_S_WAIT_KMEM) 124 125 /* 126 * Wait flags that would prevent send work requests from making progress. 127 */ 128 #define RVT_S_ANY_WAIT_SEND (RVT_S_WAIT_FENCE | RVT_S_WAIT_RDMAR | \ 129 RVT_S_WAIT_RNR | RVT_S_WAIT_SSN_CREDIT | RVT_S_WAIT_DMA | \ 130 RVT_S_WAIT_PSN | RVT_S_WAIT_ACK) 131 132 #define RVT_S_ANY_WAIT (RVT_S_ANY_WAIT_IO | RVT_S_ANY_WAIT_SEND) 133 134 /* Number of bits to pay attention to in the opcode for checking qp type */ 135 #define RVT_OPCODE_QP_MASK 0xE0 136 137 /* Flags for checking QP state (see ib_rvt_state_ops[]) */ 138 #define RVT_POST_SEND_OK 0x01 139 #define RVT_POST_RECV_OK 0x02 140 #define RVT_PROCESS_RECV_OK 0x04 141 #define RVT_PROCESS_SEND_OK 0x08 142 #define RVT_PROCESS_NEXT_SEND_OK 0x10 143 #define RVT_FLUSH_SEND 0x20 144 #define RVT_FLUSH_RECV 0x40 145 #define RVT_PROCESS_OR_FLUSH_SEND \ 146 (RVT_PROCESS_SEND_OK | RVT_FLUSH_SEND) 147 #define RVT_SEND_OR_FLUSH_OR_RECV_OK \ 148 (RVT_PROCESS_SEND_OK | RVT_FLUSH_SEND | RVT_PROCESS_RECV_OK) 149 150 /* 151 * Internal send flags 152 */ 153 #define RVT_SEND_RESERVE_USED IB_SEND_RESERVED_START 154 #define RVT_SEND_COMPLETION_ONLY (IB_SEND_RESERVED_START << 1) 155 156 /* 157 * Send work request queue entry. 158 * The size of the sg_list is determined when the QP is created and stored 159 * in qp->s_max_sge. 160 */ 161 struct rvt_swqe { 162 union { 163 struct ib_send_wr wr; /* don't use wr.sg_list */ 164 struct ib_ud_wr ud_wr; 165 struct ib_reg_wr reg_wr; 166 struct ib_rdma_wr rdma_wr; 167 struct ib_atomic_wr atomic_wr; 168 }; 169 u32 psn; /* first packet sequence number */ 170 u32 lpsn; /* last packet sequence number */ 171 u32 ssn; /* send sequence number */ 172 u32 length; /* total length of data in sg_list */ 173 struct rvt_sge sg_list[0]; 174 }; 175 176 /* 177 * Receive work request queue entry. 178 * The size of the sg_list is determined when the QP (or SRQ) is created 179 * and stored in qp->r_rq.max_sge (or srq->rq.max_sge). 180 */ 181 struct rvt_rwqe { 182 u64 wr_id; 183 u8 num_sge; 184 struct ib_sge sg_list[0]; 185 }; 186 187 /* 188 * This structure is used to contain the head pointer, tail pointer, 189 * and receive work queue entries as a single memory allocation so 190 * it can be mmap'ed into user space. 191 * Note that the wq array elements are variable size so you can't 192 * just index into the array to get the N'th element; 193 * use get_rwqe_ptr() instead. 194 */ 195 struct rvt_rwq { 196 u32 head; /* new work requests posted to the head */ 197 u32 tail; /* receives pull requests from here. */ 198 struct rvt_rwqe wq[0]; 199 }; 200 201 struct rvt_rq { 202 struct rvt_rwq *wq; 203 u32 size; /* size of RWQE array */ 204 u8 max_sge; 205 /* protect changes in this struct */ 206 spinlock_t lock ____cacheline_aligned_in_smp; 207 }; 208 209 /* 210 * This structure is used by rvt_mmap() to validate an offset 211 * when an mmap() request is made. The vm_area_struct then uses 212 * this as its vm_private_data. 213 */ 214 struct rvt_mmap_info { 215 struct list_head pending_mmaps; 216 struct ib_ucontext *context; 217 void *obj; 218 __u64 offset; 219 struct kref ref; 220 unsigned size; 221 }; 222 223 /* 224 * This structure holds the information that the send tasklet needs 225 * to send a RDMA read response or atomic operation. 226 */ 227 struct rvt_ack_entry { 228 struct rvt_sge rdma_sge; 229 u64 atomic_data; 230 u32 psn; 231 u32 lpsn; 232 u8 opcode; 233 u8 sent; 234 }; 235 236 #define RC_QP_SCALING_INTERVAL 5 237 238 #define RVT_OPERATION_PRIV 0x00000001 239 #define RVT_OPERATION_ATOMIC 0x00000002 240 #define RVT_OPERATION_ATOMIC_SGE 0x00000004 241 #define RVT_OPERATION_LOCAL 0x00000008 242 #define RVT_OPERATION_USE_RESERVE 0x00000010 243 244 #define RVT_OPERATION_MAX (IB_WR_RESERVED10 + 1) 245 246 /** 247 * rvt_operation_params - op table entry 248 * @length - the length to copy into the swqe entry 249 * @qpt_support - a bit mask indicating QP type support 250 * @flags - RVT_OPERATION flags (see above) 251 * 252 * This supports table driven post send so that 253 * the driver can have differing an potentially 254 * different sets of operations. 255 * 256 **/ 257 258 struct rvt_operation_params { 259 size_t length; 260 u32 qpt_support; 261 u32 flags; 262 }; 263 264 /* 265 * Common variables are protected by both r_rq.lock and s_lock in that order 266 * which only happens in modify_qp() or changing the QP 'state'. 267 */ 268 struct rvt_qp { 269 struct ib_qp ibqp; 270 void *priv; /* Driver private data */ 271 /* read mostly fields above and below */ 272 struct ib_ah_attr remote_ah_attr; 273 struct ib_ah_attr alt_ah_attr; 274 struct rvt_qp __rcu *next; /* link list for QPN hash table */ 275 struct rvt_swqe *s_wq; /* send work queue */ 276 struct rvt_mmap_info *ip; 277 278 unsigned long timeout_jiffies; /* computed from timeout */ 279 280 enum ib_mtu path_mtu; 281 int srate_mbps; /* s_srate (below) converted to Mbit/s */ 282 pid_t pid; /* pid for user mode QPs */ 283 u32 remote_qpn; 284 u32 qkey; /* QKEY for this QP (for UD or RD) */ 285 u32 s_size; /* send work queue size */ 286 u32 s_ahgpsn; /* set to the psn in the copy of the header */ 287 288 u16 pmtu; /* decoded from path_mtu */ 289 u8 log_pmtu; /* shift for pmtu */ 290 u8 state; /* QP state */ 291 u8 allowed_ops; /* high order bits of allowed opcodes */ 292 u8 qp_access_flags; 293 u8 alt_timeout; /* Alternate path timeout for this QP */ 294 u8 timeout; /* Timeout for this QP */ 295 u8 s_srate; 296 u8 s_mig_state; 297 u8 port_num; 298 u8 s_pkey_index; /* PKEY index to use */ 299 u8 s_alt_pkey_index; /* Alternate path PKEY index to use */ 300 u8 r_max_rd_atomic; /* max number of RDMA read/atomic to receive */ 301 u8 s_max_rd_atomic; /* max number of RDMA read/atomic to send */ 302 u8 s_retry_cnt; /* number of times to retry */ 303 u8 s_rnr_retry_cnt; 304 u8 r_min_rnr_timer; /* retry timeout value for RNR NAKs */ 305 u8 s_max_sge; /* size of s_wq->sg_list */ 306 u8 s_draining; 307 308 /* start of read/write fields */ 309 atomic_t refcount ____cacheline_aligned_in_smp; 310 wait_queue_head_t wait; 311 312 struct rvt_ack_entry *s_ack_queue; 313 struct rvt_sge_state s_rdma_read_sge; 314 315 spinlock_t r_lock ____cacheline_aligned_in_smp; /* used for APM */ 316 u32 r_psn; /* expected rcv packet sequence number */ 317 unsigned long r_aflags; 318 u64 r_wr_id; /* ID for current receive WQE */ 319 u32 r_ack_psn; /* PSN for next ACK or atomic ACK */ 320 u32 r_len; /* total length of r_sge */ 321 u32 r_rcv_len; /* receive data len processed */ 322 u32 r_msn; /* message sequence number */ 323 324 u8 r_state; /* opcode of last packet received */ 325 u8 r_flags; 326 u8 r_head_ack_queue; /* index into s_ack_queue[] */ 327 328 struct list_head rspwait; /* link for waiting to respond */ 329 330 struct rvt_sge_state r_sge; /* current receive data */ 331 struct rvt_rq r_rq; /* receive work queue */ 332 333 /* post send line */ 334 spinlock_t s_hlock ____cacheline_aligned_in_smp; 335 u32 s_head; /* new entries added here */ 336 u32 s_next_psn; /* PSN for next request */ 337 u32 s_avail; /* number of entries avail */ 338 u32 s_ssn; /* SSN of tail entry */ 339 atomic_t s_reserved_used; /* reserved entries in use */ 340 341 spinlock_t s_lock ____cacheline_aligned_in_smp; 342 u32 s_flags; 343 struct rvt_sge_state *s_cur_sge; 344 struct rvt_swqe *s_wqe; 345 struct rvt_sge_state s_sge; /* current send request data */ 346 struct rvt_mregion *s_rdma_mr; 347 u32 s_cur_size; /* size of send packet in bytes */ 348 u32 s_len; /* total length of s_sge */ 349 u32 s_rdma_read_len; /* total length of s_rdma_read_sge */ 350 u32 s_last_psn; /* last response PSN processed */ 351 u32 s_sending_psn; /* lowest PSN that is being sent */ 352 u32 s_sending_hpsn; /* highest PSN that is being sent */ 353 u32 s_psn; /* current packet sequence number */ 354 u32 s_ack_rdma_psn; /* PSN for sending RDMA read responses */ 355 u32 s_ack_psn; /* PSN for acking sends and RDMA writes */ 356 u32 s_tail; /* next entry to process */ 357 u32 s_cur; /* current work queue entry */ 358 u32 s_acked; /* last un-ACK'ed entry */ 359 u32 s_last; /* last completed entry */ 360 u32 s_lsn; /* limit sequence number (credit) */ 361 u16 s_hdrwords; /* size of s_hdr in 32 bit words */ 362 u16 s_rdma_ack_cnt; 363 s8 s_ahgidx; 364 u8 s_state; /* opcode of last packet sent */ 365 u8 s_ack_state; /* opcode of packet to ACK */ 366 u8 s_nak_state; /* non-zero if NAK is pending */ 367 u8 r_nak_state; /* non-zero if NAK is pending */ 368 u8 s_retry; /* requester retry counter */ 369 u8 s_rnr_retry; /* requester RNR retry counter */ 370 u8 s_num_rd_atomic; /* number of RDMA read/atomic pending */ 371 u8 s_tail_ack_queue; /* index into s_ack_queue[] */ 372 373 struct rvt_sge_state s_ack_rdma_sge; 374 struct timer_list s_timer; 375 struct hrtimer s_rnr_timer; 376 377 atomic_t local_ops_pending; /* number of fast_reg/local_inv reqs */ 378 379 /* 380 * This sge list MUST be last. Do not add anything below here. 381 */ 382 struct rvt_sge r_sg_list[0] /* verified SGEs */ 383 ____cacheline_aligned_in_smp; 384 }; 385 386 struct rvt_srq { 387 struct ib_srq ibsrq; 388 struct rvt_rq rq; 389 struct rvt_mmap_info *ip; 390 /* send signal when number of RWQEs < limit */ 391 u32 limit; 392 }; 393 394 #define RVT_QPN_MAX BIT(24) 395 #define RVT_QPNMAP_ENTRIES (RVT_QPN_MAX / PAGE_SIZE / BITS_PER_BYTE) 396 #define RVT_BITS_PER_PAGE (PAGE_SIZE * BITS_PER_BYTE) 397 #define RVT_BITS_PER_PAGE_MASK (RVT_BITS_PER_PAGE - 1) 398 #define RVT_QPN_MASK 0xFFFFFF 399 400 /* 401 * QPN-map pages start out as NULL, they get allocated upon 402 * first use and are never deallocated. This way, 403 * large bitmaps are not allocated unless large numbers of QPs are used. 404 */ 405 struct rvt_qpn_map { 406 void *page; 407 }; 408 409 struct rvt_qpn_table { 410 spinlock_t lock; /* protect changes to the qp table */ 411 unsigned flags; /* flags for QP0/1 allocated for each port */ 412 u32 last; /* last QP number allocated */ 413 u32 nmaps; /* size of the map table */ 414 u16 limit; 415 u8 incr; 416 /* bit map of free QP numbers other than 0/1 */ 417 struct rvt_qpn_map map[RVT_QPNMAP_ENTRIES]; 418 }; 419 420 struct rvt_qp_ibdev { 421 u32 qp_table_size; 422 u32 qp_table_bits; 423 struct rvt_qp __rcu **qp_table; 424 spinlock_t qpt_lock; /* qptable lock */ 425 struct rvt_qpn_table qpn_table; 426 }; 427 428 /* 429 * There is one struct rvt_mcast for each multicast GID. 430 * All attached QPs are then stored as a list of 431 * struct rvt_mcast_qp. 432 */ 433 struct rvt_mcast_qp { 434 struct list_head list; 435 struct rvt_qp *qp; 436 }; 437 438 struct rvt_mcast { 439 struct rb_node rb_node; 440 union ib_gid mgid; 441 struct list_head qp_list; 442 wait_queue_head_t wait; 443 atomic_t refcount; 444 int n_attached; 445 }; 446 447 /* 448 * Since struct rvt_swqe is not a fixed size, we can't simply index into 449 * struct rvt_qp.s_wq. This function does the array index computation. 450 */ 451 static inline struct rvt_swqe *rvt_get_swqe_ptr(struct rvt_qp *qp, 452 unsigned n) 453 { 454 return (struct rvt_swqe *)((char *)qp->s_wq + 455 (sizeof(struct rvt_swqe) + 456 qp->s_max_sge * 457 sizeof(struct rvt_sge)) * n); 458 } 459 460 /* 461 * Since struct rvt_rwqe is not a fixed size, we can't simply index into 462 * struct rvt_rwq.wq. This function does the array index computation. 463 */ 464 static inline struct rvt_rwqe *rvt_get_rwqe_ptr(struct rvt_rq *rq, unsigned n) 465 { 466 return (struct rvt_rwqe *) 467 ((char *)rq->wq->wq + 468 (sizeof(struct rvt_rwqe) + 469 rq->max_sge * sizeof(struct ib_sge)) * n); 470 } 471 472 /** 473 * rvt_is_user_qp - return if this is user mode QP 474 * @qp - the target QP 475 */ 476 static inline bool rvt_is_user_qp(struct rvt_qp *qp) 477 { 478 return !!qp->pid; 479 } 480 481 /** 482 * rvt_get_qp - get a QP reference 483 * @qp - the QP to hold 484 */ 485 static inline void rvt_get_qp(struct rvt_qp *qp) 486 { 487 atomic_inc(&qp->refcount); 488 } 489 490 /** 491 * rvt_put_qp - release a QP reference 492 * @qp - the QP to release 493 */ 494 static inline void rvt_put_qp(struct rvt_qp *qp) 495 { 496 if (qp && atomic_dec_and_test(&qp->refcount)) 497 wake_up(&qp->wait); 498 } 499 500 /** 501 * rvt_put_swqe - drop mr refs held by swqe 502 * @wqe - the send wqe 503 * 504 * This drops any mr references held by the swqe 505 */ 506 static inline void rvt_put_swqe(struct rvt_swqe *wqe) 507 { 508 int i; 509 510 for (i = 0; i < wqe->wr.num_sge; i++) { 511 struct rvt_sge *sge = &wqe->sg_list[i]; 512 513 rvt_put_mr(sge->mr); 514 } 515 } 516 517 /** 518 * rvt_qp_wqe_reserve - reserve operation 519 * @qp - the rvt qp 520 * @wqe - the send wqe 521 * 522 * This routine used in post send to record 523 * a wqe relative reserved operation use. 524 */ 525 static inline void rvt_qp_wqe_reserve( 526 struct rvt_qp *qp, 527 struct rvt_swqe *wqe) 528 { 529 wqe->wr.send_flags |= RVT_SEND_RESERVE_USED; 530 atomic_inc(&qp->s_reserved_used); 531 } 532 533 /** 534 * rvt_qp_wqe_unreserve - clean reserved operation 535 * @qp - the rvt qp 536 * @wqe - the send wqe 537 * 538 * This decrements the reserve use count. 539 * 540 * This call MUST precede the change to 541 * s_last to insure that post send sees a stable 542 * s_avail. 543 * 544 * An smp_mp__after_atomic() is used to insure 545 * the compiler does not juggle the order of the s_last 546 * ring index and the decrementing of s_reserved_used. 547 */ 548 static inline void rvt_qp_wqe_unreserve( 549 struct rvt_qp *qp, 550 struct rvt_swqe *wqe) 551 { 552 if (unlikely(wqe->wr.send_flags & RVT_SEND_RESERVE_USED)) { 553 wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED; 554 atomic_dec(&qp->s_reserved_used); 555 /* insure no compiler re-order up to s_last change */ 556 smp_mb__after_atomic(); 557 } 558 } 559 560 extern const enum ib_wc_opcode ib_rvt_wc_opcode[]; 561 562 /** 563 * rvt_qp_swqe_complete() - insert send completion 564 * @qp - the qp 565 * @wqe - the send wqe 566 * @status - completion status 567 * 568 * Insert a send completion into the completion 569 * queue if the qp indicates it should be done. 570 * 571 * See IBTA 10.7.3.1 for info on completion 572 * control. 573 */ 574 static inline void rvt_qp_swqe_complete( 575 struct rvt_qp *qp, 576 struct rvt_swqe *wqe, 577 enum ib_wc_status status) 578 { 579 if (unlikely(wqe->wr.send_flags & RVT_SEND_RESERVE_USED)) 580 return; 581 if (!(qp->s_flags & RVT_S_SIGNAL_REQ_WR) || 582 (wqe->wr.send_flags & IB_SEND_SIGNALED) || 583 status != IB_WC_SUCCESS) { 584 struct ib_wc wc; 585 586 memset(&wc, 0, sizeof(wc)); 587 wc.wr_id = wqe->wr.wr_id; 588 wc.status = status; 589 wc.opcode = ib_rvt_wc_opcode[wqe->wr.opcode]; 590 wc.qp = &qp->ibqp; 591 wc.byte_len = wqe->length; 592 rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.send_cq), &wc, 593 status != IB_WC_SUCCESS); 594 } 595 } 596 597 /* 598 * Compare the lower 24 bits of the msn values. 599 * Returns an integer <, ==, or > than zero. 600 */ 601 static inline int rvt_cmp_msn(u32 a, u32 b) 602 { 603 return (((int)a) - ((int)b)) << 8; 604 } 605 606 /** 607 * rvt_compute_aeth - compute the AETH (syndrome + MSN) 608 * @qp: the queue pair to compute the AETH for 609 * 610 * Returns the AETH. 611 */ 612 __be32 rvt_compute_aeth(struct rvt_qp *qp); 613 614 /** 615 * rvt_get_credit - flush the send work queue of a QP 616 * @qp: the qp who's send work queue to flush 617 * @aeth: the Acknowledge Extended Transport Header 618 * 619 * The QP s_lock should be held. 620 */ 621 void rvt_get_credit(struct rvt_qp *qp, u32 aeth); 622 623 /** 624 * @qp - the qp pair 625 * @len - the length 626 * 627 * Perform a shift based mtu round up divide 628 */ 629 static inline u32 rvt_div_round_up_mtu(struct rvt_qp *qp, u32 len) 630 { 631 return (len + qp->pmtu - 1) >> qp->log_pmtu; 632 } 633 634 /** 635 * @qp - the qp pair 636 * @len - the length 637 * 638 * Perform a shift based mtu divide 639 */ 640 static inline u32 rvt_div_mtu(struct rvt_qp *qp, u32 len) 641 { 642 return len >> qp->log_pmtu; 643 } 644 645 extern const int ib_rvt_state_ops[]; 646 647 struct rvt_dev_info; 648 void rvt_comm_est(struct rvt_qp *qp); 649 int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err); 650 void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err); 651 unsigned long rvt_rnr_tbl_to_usec(u32 index); 652 enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t); 653 void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth); 654 void rvt_del_timers_sync(struct rvt_qp *qp); 655 void rvt_stop_rc_timers(struct rvt_qp *qp); 656 void rvt_add_retry_timer(struct rvt_qp *qp); 657 658 #endif /* DEF_RDMAVT_INCQP_H */ 659