1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #if !defined(IB_VERBS_H) 40 #define IB_VERBS_H 41 42 #include <linux/types.h> 43 #include <linux/device.h> 44 #include <linux/mm.h> 45 #include <linux/dma-mapping.h> 46 #include <linux/kref.h> 47 #include <linux/list.h> 48 #include <linux/rwsem.h> 49 #include <linux/scatterlist.h> 50 #include <linux/workqueue.h> 51 #include <linux/socket.h> 52 #include <linux/irq_poll.h> 53 #include <uapi/linux/if_ether.h> 54 #include <net/ipv6.h> 55 #include <net/ip.h> 56 #include <linux/string.h> 57 #include <linux/slab.h> 58 59 #include <linux/if_link.h> 60 #include <linux/atomic.h> 61 #include <linux/mmu_notifier.h> 62 #include <linux/uaccess.h> 63 #include <linux/cgroup_rdma.h> 64 65 extern struct workqueue_struct *ib_wq; 66 extern struct workqueue_struct *ib_comp_wq; 67 68 union ib_gid { 69 u8 raw[16]; 70 struct { 71 __be64 subnet_prefix; 72 __be64 interface_id; 73 } global; 74 }; 75 76 extern union ib_gid zgid; 77 78 enum ib_gid_type { 79 /* If link layer is Ethernet, this is RoCE V1 */ 80 IB_GID_TYPE_IB = 0, 81 IB_GID_TYPE_ROCE = 0, 82 IB_GID_TYPE_ROCE_UDP_ENCAP = 1, 83 IB_GID_TYPE_SIZE 84 }; 85 86 #define ROCE_V2_UDP_DPORT 4791 87 struct ib_gid_attr { 88 enum ib_gid_type gid_type; 89 struct net_device *ndev; 90 }; 91 92 enum rdma_node_type { 93 /* IB values map to NodeInfo:NodeType. */ 94 RDMA_NODE_IB_CA = 1, 95 RDMA_NODE_IB_SWITCH, 96 RDMA_NODE_IB_ROUTER, 97 RDMA_NODE_RNIC, 98 RDMA_NODE_USNIC, 99 RDMA_NODE_USNIC_UDP, 100 }; 101 102 enum { 103 /* set the local administered indication */ 104 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2, 105 }; 106 107 enum rdma_transport_type { 108 RDMA_TRANSPORT_IB, 109 RDMA_TRANSPORT_IWARP, 110 RDMA_TRANSPORT_USNIC, 111 RDMA_TRANSPORT_USNIC_UDP 112 }; 113 114 enum rdma_protocol_type { 115 RDMA_PROTOCOL_IB, 116 RDMA_PROTOCOL_IBOE, 117 RDMA_PROTOCOL_IWARP, 118 RDMA_PROTOCOL_USNIC_UDP 119 }; 120 121 __attribute_const__ enum rdma_transport_type 122 rdma_node_get_transport(enum rdma_node_type node_type); 123 124 enum rdma_network_type { 125 RDMA_NETWORK_IB, 126 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB, 127 RDMA_NETWORK_IPV4, 128 RDMA_NETWORK_IPV6 129 }; 130 131 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) 132 { 133 if (network_type == RDMA_NETWORK_IPV4 || 134 network_type == RDMA_NETWORK_IPV6) 135 return IB_GID_TYPE_ROCE_UDP_ENCAP; 136 137 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */ 138 return IB_GID_TYPE_IB; 139 } 140 141 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type, 142 union ib_gid *gid) 143 { 144 if (gid_type == IB_GID_TYPE_IB) 145 return RDMA_NETWORK_IB; 146 147 if (ipv6_addr_v4mapped((struct in6_addr *)gid)) 148 return RDMA_NETWORK_IPV4; 149 else 150 return RDMA_NETWORK_IPV6; 151 } 152 153 enum rdma_link_layer { 154 IB_LINK_LAYER_UNSPECIFIED, 155 IB_LINK_LAYER_INFINIBAND, 156 IB_LINK_LAYER_ETHERNET, 157 }; 158 159 enum ib_device_cap_flags { 160 IB_DEVICE_RESIZE_MAX_WR = (1 << 0), 161 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1), 162 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2), 163 IB_DEVICE_RAW_MULTI = (1 << 3), 164 IB_DEVICE_AUTO_PATH_MIG = (1 << 4), 165 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5), 166 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6), 167 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7), 168 IB_DEVICE_SHUTDOWN_PORT = (1 << 8), 169 IB_DEVICE_INIT_TYPE = (1 << 9), 170 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10), 171 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11), 172 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12), 173 IB_DEVICE_SRQ_RESIZE = (1 << 13), 174 IB_DEVICE_N_NOTIFY_CQ = (1 << 14), 175 176 /* 177 * This device supports a per-device lkey or stag that can be 178 * used without performing a memory registration for the local 179 * memory. Note that ULPs should never check this flag, but 180 * instead of use the local_dma_lkey flag in the ib_pd structure, 181 * which will always contain a usable lkey. 182 */ 183 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15), 184 IB_DEVICE_RESERVED /* old SEND_W_INV */ = (1 << 16), 185 IB_DEVICE_MEM_WINDOW = (1 << 17), 186 /* 187 * Devices should set IB_DEVICE_UD_IP_SUM if they support 188 * insertion of UDP and TCP checksum on outgoing UD IPoIB 189 * messages and can verify the validity of checksum for 190 * incoming messages. Setting this flag implies that the 191 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 192 */ 193 IB_DEVICE_UD_IP_CSUM = (1 << 18), 194 IB_DEVICE_UD_TSO = (1 << 19), 195 IB_DEVICE_XRC = (1 << 20), 196 197 /* 198 * This device supports the IB "base memory management extension", 199 * which includes support for fast registrations (IB_WR_REG_MR, 200 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should 201 * also be set by any iWarp device which must support FRs to comply 202 * to the iWarp verbs spec. iWarp devices also support the 203 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the 204 * stag. 205 */ 206 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21), 207 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22), 208 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23), 209 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24), 210 IB_DEVICE_RC_IP_CSUM = (1 << 25), 211 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */ 212 IB_DEVICE_RAW_IP_CSUM = (1 << 26), 213 /* 214 * Devices should set IB_DEVICE_CROSS_CHANNEL if they 215 * support execution of WQEs that involve synchronization 216 * of I/O operations with single completion queue managed 217 * by hardware. 218 */ 219 IB_DEVICE_CROSS_CHANNEL = (1 << 27), 220 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29), 221 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30), 222 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31), 223 IB_DEVICE_SG_GAPS_REG = (1ULL << 32), 224 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33), 225 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */ 226 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34), 227 }; 228 229 enum ib_signature_prot_cap { 230 IB_PROT_T10DIF_TYPE_1 = 1, 231 IB_PROT_T10DIF_TYPE_2 = 1 << 1, 232 IB_PROT_T10DIF_TYPE_3 = 1 << 2, 233 }; 234 235 enum ib_signature_guard_cap { 236 IB_GUARD_T10DIF_CRC = 1, 237 IB_GUARD_T10DIF_CSUM = 1 << 1, 238 }; 239 240 enum ib_atomic_cap { 241 IB_ATOMIC_NONE, 242 IB_ATOMIC_HCA, 243 IB_ATOMIC_GLOB 244 }; 245 246 enum ib_odp_general_cap_bits { 247 IB_ODP_SUPPORT = 1 << 0, 248 IB_ODP_SUPPORT_IMPLICIT = 1 << 1, 249 }; 250 251 enum ib_odp_transport_cap_bits { 252 IB_ODP_SUPPORT_SEND = 1 << 0, 253 IB_ODP_SUPPORT_RECV = 1 << 1, 254 IB_ODP_SUPPORT_WRITE = 1 << 2, 255 IB_ODP_SUPPORT_READ = 1 << 3, 256 IB_ODP_SUPPORT_ATOMIC = 1 << 4, 257 }; 258 259 struct ib_odp_caps { 260 uint64_t general_caps; 261 struct { 262 uint32_t rc_odp_caps; 263 uint32_t uc_odp_caps; 264 uint32_t ud_odp_caps; 265 } per_transport_caps; 266 }; 267 268 struct ib_rss_caps { 269 /* Corresponding bit will be set if qp type from 270 * 'enum ib_qp_type' is supported, e.g. 271 * supported_qpts |= 1 << IB_QPT_UD 272 */ 273 u32 supported_qpts; 274 u32 max_rwq_indirection_tables; 275 u32 max_rwq_indirection_table_size; 276 }; 277 278 enum ib_cq_creation_flags { 279 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0, 280 IB_CQ_FLAGS_IGNORE_OVERRUN = 1 << 1, 281 }; 282 283 struct ib_cq_init_attr { 284 unsigned int cqe; 285 int comp_vector; 286 u32 flags; 287 }; 288 289 struct ib_device_attr { 290 u64 fw_ver; 291 __be64 sys_image_guid; 292 u64 max_mr_size; 293 u64 page_size_cap; 294 u32 vendor_id; 295 u32 vendor_part_id; 296 u32 hw_ver; 297 int max_qp; 298 int max_qp_wr; 299 u64 device_cap_flags; 300 int max_sge; 301 int max_sge_rd; 302 int max_cq; 303 int max_cqe; 304 int max_mr; 305 int max_pd; 306 int max_qp_rd_atom; 307 int max_ee_rd_atom; 308 int max_res_rd_atom; 309 int max_qp_init_rd_atom; 310 int max_ee_init_rd_atom; 311 enum ib_atomic_cap atomic_cap; 312 enum ib_atomic_cap masked_atomic_cap; 313 int max_ee; 314 int max_rdd; 315 int max_mw; 316 int max_raw_ipv6_qp; 317 int max_raw_ethy_qp; 318 int max_mcast_grp; 319 int max_mcast_qp_attach; 320 int max_total_mcast_qp_attach; 321 int max_ah; 322 int max_fmr; 323 int max_map_per_fmr; 324 int max_srq; 325 int max_srq_wr; 326 int max_srq_sge; 327 unsigned int max_fast_reg_page_list_len; 328 u16 max_pkeys; 329 u8 local_ca_ack_delay; 330 int sig_prot_cap; 331 int sig_guard_cap; 332 struct ib_odp_caps odp_caps; 333 uint64_t timestamp_mask; 334 uint64_t hca_core_clock; /* in KHZ */ 335 struct ib_rss_caps rss_caps; 336 u32 max_wq_type_rq; 337 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */ 338 }; 339 340 enum ib_mtu { 341 IB_MTU_256 = 1, 342 IB_MTU_512 = 2, 343 IB_MTU_1024 = 3, 344 IB_MTU_2048 = 4, 345 IB_MTU_4096 = 5 346 }; 347 348 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 349 { 350 switch (mtu) { 351 case IB_MTU_256: return 256; 352 case IB_MTU_512: return 512; 353 case IB_MTU_1024: return 1024; 354 case IB_MTU_2048: return 2048; 355 case IB_MTU_4096: return 4096; 356 default: return -1; 357 } 358 } 359 360 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu) 361 { 362 if (mtu >= 4096) 363 return IB_MTU_4096; 364 else if (mtu >= 2048) 365 return IB_MTU_2048; 366 else if (mtu >= 1024) 367 return IB_MTU_1024; 368 else if (mtu >= 512) 369 return IB_MTU_512; 370 else 371 return IB_MTU_256; 372 } 373 374 enum ib_port_state { 375 IB_PORT_NOP = 0, 376 IB_PORT_DOWN = 1, 377 IB_PORT_INIT = 2, 378 IB_PORT_ARMED = 3, 379 IB_PORT_ACTIVE = 4, 380 IB_PORT_ACTIVE_DEFER = 5 381 }; 382 383 enum ib_port_cap_flags { 384 IB_PORT_SM = 1 << 1, 385 IB_PORT_NOTICE_SUP = 1 << 2, 386 IB_PORT_TRAP_SUP = 1 << 3, 387 IB_PORT_OPT_IPD_SUP = 1 << 4, 388 IB_PORT_AUTO_MIGR_SUP = 1 << 5, 389 IB_PORT_SL_MAP_SUP = 1 << 6, 390 IB_PORT_MKEY_NVRAM = 1 << 7, 391 IB_PORT_PKEY_NVRAM = 1 << 8, 392 IB_PORT_LED_INFO_SUP = 1 << 9, 393 IB_PORT_SM_DISABLED = 1 << 10, 394 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11, 395 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12, 396 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14, 397 IB_PORT_CM_SUP = 1 << 16, 398 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17, 399 IB_PORT_REINIT_SUP = 1 << 18, 400 IB_PORT_DEVICE_MGMT_SUP = 1 << 19, 401 IB_PORT_VENDOR_CLASS_SUP = 1 << 20, 402 IB_PORT_DR_NOTICE_SUP = 1 << 21, 403 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22, 404 IB_PORT_BOOT_MGMT_SUP = 1 << 23, 405 IB_PORT_LINK_LATENCY_SUP = 1 << 24, 406 IB_PORT_CLIENT_REG_SUP = 1 << 25, 407 IB_PORT_IP_BASED_GIDS = 1 << 26, 408 }; 409 410 enum ib_port_width { 411 IB_WIDTH_1X = 1, 412 IB_WIDTH_4X = 2, 413 IB_WIDTH_8X = 4, 414 IB_WIDTH_12X = 8 415 }; 416 417 static inline int ib_width_enum_to_int(enum ib_port_width width) 418 { 419 switch (width) { 420 case IB_WIDTH_1X: return 1; 421 case IB_WIDTH_4X: return 4; 422 case IB_WIDTH_8X: return 8; 423 case IB_WIDTH_12X: return 12; 424 default: return -1; 425 } 426 } 427 428 enum ib_port_speed { 429 IB_SPEED_SDR = 1, 430 IB_SPEED_DDR = 2, 431 IB_SPEED_QDR = 4, 432 IB_SPEED_FDR10 = 8, 433 IB_SPEED_FDR = 16, 434 IB_SPEED_EDR = 32 435 }; 436 437 /** 438 * struct rdma_hw_stats 439 * @timestamp - Used by the core code to track when the last update was 440 * @lifespan - Used by the core code to determine how old the counters 441 * should be before being updated again. Stored in jiffies, defaults 442 * to 10 milliseconds, drivers can override the default be specifying 443 * their own value during their allocation routine. 444 * @name - Array of pointers to static names used for the counters in 445 * directory. 446 * @num_counters - How many hardware counters there are. If name is 447 * shorter than this number, a kernel oops will result. Driver authors 448 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters) 449 * in their code to prevent this. 450 * @value - Array of u64 counters that are accessed by the sysfs code and 451 * filled in by the drivers get_stats routine 452 */ 453 struct rdma_hw_stats { 454 unsigned long timestamp; 455 unsigned long lifespan; 456 const char * const *names; 457 int num_counters; 458 u64 value[]; 459 }; 460 461 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10 462 /** 463 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct 464 * for drivers. 465 * @names - Array of static const char * 466 * @num_counters - How many elements in array 467 * @lifespan - How many milliseconds between updates 468 */ 469 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 470 const char * const *names, int num_counters, 471 unsigned long lifespan) 472 { 473 struct rdma_hw_stats *stats; 474 475 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64), 476 GFP_KERNEL); 477 if (!stats) 478 return NULL; 479 stats->names = names; 480 stats->num_counters = num_counters; 481 stats->lifespan = msecs_to_jiffies(lifespan); 482 483 return stats; 484 } 485 486 487 /* Define bits for the various functionality this port needs to be supported by 488 * the core. 489 */ 490 /* Management 0x00000FFF */ 491 #define RDMA_CORE_CAP_IB_MAD 0x00000001 492 #define RDMA_CORE_CAP_IB_SMI 0x00000002 493 #define RDMA_CORE_CAP_IB_CM 0x00000004 494 #define RDMA_CORE_CAP_IW_CM 0x00000008 495 #define RDMA_CORE_CAP_IB_SA 0x00000010 496 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 497 498 /* Address format 0x000FF000 */ 499 #define RDMA_CORE_CAP_AF_IB 0x00001000 500 #define RDMA_CORE_CAP_ETH_AH 0x00002000 501 502 /* Protocol 0xFFF00000 */ 503 #define RDMA_CORE_CAP_PROT_IB 0x00100000 504 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 505 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 506 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 507 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000 508 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000 509 510 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 511 | RDMA_CORE_CAP_IB_MAD \ 512 | RDMA_CORE_CAP_IB_SMI \ 513 | RDMA_CORE_CAP_IB_CM \ 514 | RDMA_CORE_CAP_IB_SA \ 515 | RDMA_CORE_CAP_AF_IB) 516 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 517 | RDMA_CORE_CAP_IB_MAD \ 518 | RDMA_CORE_CAP_IB_CM \ 519 | RDMA_CORE_CAP_AF_IB \ 520 | RDMA_CORE_CAP_ETH_AH) 521 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ 522 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ 523 | RDMA_CORE_CAP_IB_MAD \ 524 | RDMA_CORE_CAP_IB_CM \ 525 | RDMA_CORE_CAP_AF_IB \ 526 | RDMA_CORE_CAP_ETH_AH) 527 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 528 | RDMA_CORE_CAP_IW_CM) 529 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 530 | RDMA_CORE_CAP_OPA_MAD) 531 532 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET) 533 534 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC) 535 536 struct ib_port_attr { 537 u64 subnet_prefix; 538 enum ib_port_state state; 539 enum ib_mtu max_mtu; 540 enum ib_mtu active_mtu; 541 int gid_tbl_len; 542 u32 port_cap_flags; 543 u32 max_msg_sz; 544 u32 bad_pkey_cntr; 545 u32 qkey_viol_cntr; 546 u16 pkey_tbl_len; 547 u16 lid; 548 u16 sm_lid; 549 u8 lmc; 550 u8 max_vl_num; 551 u8 sm_sl; 552 u8 subnet_timeout; 553 u8 init_type_reply; 554 u8 active_width; 555 u8 active_speed; 556 u8 phys_state; 557 bool grh_required; 558 }; 559 560 enum ib_device_modify_flags { 561 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 562 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 563 }; 564 565 #define IB_DEVICE_NODE_DESC_MAX 64 566 567 struct ib_device_modify { 568 u64 sys_image_guid; 569 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 570 }; 571 572 enum ib_port_modify_flags { 573 IB_PORT_SHUTDOWN = 1, 574 IB_PORT_INIT_TYPE = (1<<2), 575 IB_PORT_RESET_QKEY_CNTR = (1<<3) 576 }; 577 578 struct ib_port_modify { 579 u32 set_port_cap_mask; 580 u32 clr_port_cap_mask; 581 u8 init_type; 582 }; 583 584 enum ib_event_type { 585 IB_EVENT_CQ_ERR, 586 IB_EVENT_QP_FATAL, 587 IB_EVENT_QP_REQ_ERR, 588 IB_EVENT_QP_ACCESS_ERR, 589 IB_EVENT_COMM_EST, 590 IB_EVENT_SQ_DRAINED, 591 IB_EVENT_PATH_MIG, 592 IB_EVENT_PATH_MIG_ERR, 593 IB_EVENT_DEVICE_FATAL, 594 IB_EVENT_PORT_ACTIVE, 595 IB_EVENT_PORT_ERR, 596 IB_EVENT_LID_CHANGE, 597 IB_EVENT_PKEY_CHANGE, 598 IB_EVENT_SM_CHANGE, 599 IB_EVENT_SRQ_ERR, 600 IB_EVENT_SRQ_LIMIT_REACHED, 601 IB_EVENT_QP_LAST_WQE_REACHED, 602 IB_EVENT_CLIENT_REREGISTER, 603 IB_EVENT_GID_CHANGE, 604 IB_EVENT_WQ_FATAL, 605 }; 606 607 const char *__attribute_const__ ib_event_msg(enum ib_event_type event); 608 609 struct ib_event { 610 struct ib_device *device; 611 union { 612 struct ib_cq *cq; 613 struct ib_qp *qp; 614 struct ib_srq *srq; 615 struct ib_wq *wq; 616 u8 port_num; 617 } element; 618 enum ib_event_type event; 619 }; 620 621 struct ib_event_handler { 622 struct ib_device *device; 623 void (*handler)(struct ib_event_handler *, struct ib_event *); 624 struct list_head list; 625 }; 626 627 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 628 do { \ 629 (_ptr)->device = _device; \ 630 (_ptr)->handler = _handler; \ 631 INIT_LIST_HEAD(&(_ptr)->list); \ 632 } while (0) 633 634 struct ib_global_route { 635 union ib_gid dgid; 636 u32 flow_label; 637 u8 sgid_index; 638 u8 hop_limit; 639 u8 traffic_class; 640 }; 641 642 struct ib_grh { 643 __be32 version_tclass_flow; 644 __be16 paylen; 645 u8 next_hdr; 646 u8 hop_limit; 647 union ib_gid sgid; 648 union ib_gid dgid; 649 }; 650 651 union rdma_network_hdr { 652 struct ib_grh ibgrh; 653 struct { 654 /* The IB spec states that if it's IPv4, the header 655 * is located in the last 20 bytes of the header. 656 */ 657 u8 reserved[20]; 658 struct iphdr roce4grh; 659 }; 660 }; 661 662 enum { 663 IB_MULTICAST_QPN = 0xffffff 664 }; 665 666 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 667 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000) 668 669 enum ib_ah_flags { 670 IB_AH_GRH = 1 671 }; 672 673 enum ib_rate { 674 IB_RATE_PORT_CURRENT = 0, 675 IB_RATE_2_5_GBPS = 2, 676 IB_RATE_5_GBPS = 5, 677 IB_RATE_10_GBPS = 3, 678 IB_RATE_20_GBPS = 6, 679 IB_RATE_30_GBPS = 4, 680 IB_RATE_40_GBPS = 7, 681 IB_RATE_60_GBPS = 8, 682 IB_RATE_80_GBPS = 9, 683 IB_RATE_120_GBPS = 10, 684 IB_RATE_14_GBPS = 11, 685 IB_RATE_56_GBPS = 12, 686 IB_RATE_112_GBPS = 13, 687 IB_RATE_168_GBPS = 14, 688 IB_RATE_25_GBPS = 15, 689 IB_RATE_100_GBPS = 16, 690 IB_RATE_200_GBPS = 17, 691 IB_RATE_300_GBPS = 18 692 }; 693 694 /** 695 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 696 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 697 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 698 * @rate: rate to convert. 699 */ 700 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 701 702 /** 703 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 704 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 705 * @rate: rate to convert. 706 */ 707 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 708 709 710 /** 711 * enum ib_mr_type - memory region type 712 * @IB_MR_TYPE_MEM_REG: memory region that is used for 713 * normal registration 714 * @IB_MR_TYPE_SIGNATURE: memory region that is used for 715 * signature operations (data-integrity 716 * capable regions) 717 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to 718 * register any arbitrary sg lists (without 719 * the normal mr constraints - see 720 * ib_map_mr_sg) 721 */ 722 enum ib_mr_type { 723 IB_MR_TYPE_MEM_REG, 724 IB_MR_TYPE_SIGNATURE, 725 IB_MR_TYPE_SG_GAPS, 726 }; 727 728 /** 729 * Signature types 730 * IB_SIG_TYPE_NONE: Unprotected. 731 * IB_SIG_TYPE_T10_DIF: Type T10-DIF 732 */ 733 enum ib_signature_type { 734 IB_SIG_TYPE_NONE, 735 IB_SIG_TYPE_T10_DIF, 736 }; 737 738 /** 739 * Signature T10-DIF block-guard types 740 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules. 741 * IB_T10DIF_CSUM: Corresponds to IP checksum rules. 742 */ 743 enum ib_t10_dif_bg_type { 744 IB_T10DIF_CRC, 745 IB_T10DIF_CSUM 746 }; 747 748 /** 749 * struct ib_t10_dif_domain - Parameters specific for T10-DIF 750 * domain. 751 * @bg_type: T10-DIF block guard type (CRC|CSUM) 752 * @pi_interval: protection information interval. 753 * @bg: seed of guard computation. 754 * @app_tag: application tag of guard block 755 * @ref_tag: initial guard block reference tag. 756 * @ref_remap: Indicate wethear the reftag increments each block 757 * @app_escape: Indicate to skip block check if apptag=0xffff 758 * @ref_escape: Indicate to skip block check if reftag=0xffffffff 759 * @apptag_check_mask: check bitmask of application tag. 760 */ 761 struct ib_t10_dif_domain { 762 enum ib_t10_dif_bg_type bg_type; 763 u16 pi_interval; 764 u16 bg; 765 u16 app_tag; 766 u32 ref_tag; 767 bool ref_remap; 768 bool app_escape; 769 bool ref_escape; 770 u16 apptag_check_mask; 771 }; 772 773 /** 774 * struct ib_sig_domain - Parameters for signature domain 775 * @sig_type: specific signauture type 776 * @sig: union of all signature domain attributes that may 777 * be used to set domain layout. 778 */ 779 struct ib_sig_domain { 780 enum ib_signature_type sig_type; 781 union { 782 struct ib_t10_dif_domain dif; 783 } sig; 784 }; 785 786 /** 787 * struct ib_sig_attrs - Parameters for signature handover operation 788 * @check_mask: bitmask for signature byte check (8 bytes) 789 * @mem: memory domain layout desciptor. 790 * @wire: wire domain layout desciptor. 791 */ 792 struct ib_sig_attrs { 793 u8 check_mask; 794 struct ib_sig_domain mem; 795 struct ib_sig_domain wire; 796 }; 797 798 enum ib_sig_err_type { 799 IB_SIG_BAD_GUARD, 800 IB_SIG_BAD_REFTAG, 801 IB_SIG_BAD_APPTAG, 802 }; 803 804 /** 805 * struct ib_sig_err - signature error descriptor 806 */ 807 struct ib_sig_err { 808 enum ib_sig_err_type err_type; 809 u32 expected; 810 u32 actual; 811 u64 sig_err_offset; 812 u32 key; 813 }; 814 815 enum ib_mr_status_check { 816 IB_MR_CHECK_SIG_STATUS = 1, 817 }; 818 819 /** 820 * struct ib_mr_status - Memory region status container 821 * 822 * @fail_status: Bitmask of MR checks status. For each 823 * failed check a corresponding status bit is set. 824 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 825 * failure. 826 */ 827 struct ib_mr_status { 828 u32 fail_status; 829 struct ib_sig_err sig_err; 830 }; 831 832 /** 833 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 834 * enum. 835 * @mult: multiple to convert. 836 */ 837 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 838 839 struct ib_ah_attr { 840 struct ib_global_route grh; 841 u16 dlid; 842 u8 sl; 843 u8 src_path_bits; 844 u8 static_rate; 845 u8 ah_flags; 846 u8 port_num; 847 u8 dmac[ETH_ALEN]; 848 }; 849 850 enum ib_wc_status { 851 IB_WC_SUCCESS, 852 IB_WC_LOC_LEN_ERR, 853 IB_WC_LOC_QP_OP_ERR, 854 IB_WC_LOC_EEC_OP_ERR, 855 IB_WC_LOC_PROT_ERR, 856 IB_WC_WR_FLUSH_ERR, 857 IB_WC_MW_BIND_ERR, 858 IB_WC_BAD_RESP_ERR, 859 IB_WC_LOC_ACCESS_ERR, 860 IB_WC_REM_INV_REQ_ERR, 861 IB_WC_REM_ACCESS_ERR, 862 IB_WC_REM_OP_ERR, 863 IB_WC_RETRY_EXC_ERR, 864 IB_WC_RNR_RETRY_EXC_ERR, 865 IB_WC_LOC_RDD_VIOL_ERR, 866 IB_WC_REM_INV_RD_REQ_ERR, 867 IB_WC_REM_ABORT_ERR, 868 IB_WC_INV_EECN_ERR, 869 IB_WC_INV_EEC_STATE_ERR, 870 IB_WC_FATAL_ERR, 871 IB_WC_RESP_TIMEOUT_ERR, 872 IB_WC_GENERAL_ERR 873 }; 874 875 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); 876 877 enum ib_wc_opcode { 878 IB_WC_SEND, 879 IB_WC_RDMA_WRITE, 880 IB_WC_RDMA_READ, 881 IB_WC_COMP_SWAP, 882 IB_WC_FETCH_ADD, 883 IB_WC_LSO, 884 IB_WC_LOCAL_INV, 885 IB_WC_REG_MR, 886 IB_WC_MASKED_COMP_SWAP, 887 IB_WC_MASKED_FETCH_ADD, 888 /* 889 * Set value of IB_WC_RECV so consumers can test if a completion is a 890 * receive by testing (opcode & IB_WC_RECV). 891 */ 892 IB_WC_RECV = 1 << 7, 893 IB_WC_RECV_RDMA_WITH_IMM 894 }; 895 896 enum ib_wc_flags { 897 IB_WC_GRH = 1, 898 IB_WC_WITH_IMM = (1<<1), 899 IB_WC_WITH_INVALIDATE = (1<<2), 900 IB_WC_IP_CSUM_OK = (1<<3), 901 IB_WC_WITH_SMAC = (1<<4), 902 IB_WC_WITH_VLAN = (1<<5), 903 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), 904 }; 905 906 struct ib_wc { 907 union { 908 u64 wr_id; 909 struct ib_cqe *wr_cqe; 910 }; 911 enum ib_wc_status status; 912 enum ib_wc_opcode opcode; 913 u32 vendor_err; 914 u32 byte_len; 915 struct ib_qp *qp; 916 union { 917 __be32 imm_data; 918 u32 invalidate_rkey; 919 } ex; 920 u32 src_qp; 921 int wc_flags; 922 u16 pkey_index; 923 u16 slid; 924 u8 sl; 925 u8 dlid_path_bits; 926 u8 port_num; /* valid only for DR SMPs on switches */ 927 u8 smac[ETH_ALEN]; 928 u16 vlan_id; 929 u8 network_hdr_type; 930 }; 931 932 enum ib_cq_notify_flags { 933 IB_CQ_SOLICITED = 1 << 0, 934 IB_CQ_NEXT_COMP = 1 << 1, 935 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 936 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 937 }; 938 939 enum ib_srq_type { 940 IB_SRQT_BASIC, 941 IB_SRQT_XRC 942 }; 943 944 enum ib_srq_attr_mask { 945 IB_SRQ_MAX_WR = 1 << 0, 946 IB_SRQ_LIMIT = 1 << 1, 947 }; 948 949 struct ib_srq_attr { 950 u32 max_wr; 951 u32 max_sge; 952 u32 srq_limit; 953 }; 954 955 struct ib_srq_init_attr { 956 void (*event_handler)(struct ib_event *, void *); 957 void *srq_context; 958 struct ib_srq_attr attr; 959 enum ib_srq_type srq_type; 960 961 union { 962 struct { 963 struct ib_xrcd *xrcd; 964 struct ib_cq *cq; 965 } xrc; 966 } ext; 967 }; 968 969 struct ib_qp_cap { 970 u32 max_send_wr; 971 u32 max_recv_wr; 972 u32 max_send_sge; 973 u32 max_recv_sge; 974 u32 max_inline_data; 975 976 /* 977 * Maximum number of rdma_rw_ctx structures in flight at a time. 978 * ib_create_qp() will calculate the right amount of neededed WRs 979 * and MRs based on this. 980 */ 981 u32 max_rdma_ctxs; 982 }; 983 984 enum ib_sig_type { 985 IB_SIGNAL_ALL_WR, 986 IB_SIGNAL_REQ_WR 987 }; 988 989 enum ib_qp_type { 990 /* 991 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 992 * here (and in that order) since the MAD layer uses them as 993 * indices into a 2-entry table. 994 */ 995 IB_QPT_SMI, 996 IB_QPT_GSI, 997 998 IB_QPT_RC, 999 IB_QPT_UC, 1000 IB_QPT_UD, 1001 IB_QPT_RAW_IPV6, 1002 IB_QPT_RAW_ETHERTYPE, 1003 IB_QPT_RAW_PACKET = 8, 1004 IB_QPT_XRC_INI = 9, 1005 IB_QPT_XRC_TGT, 1006 IB_QPT_MAX, 1007 /* Reserve a range for qp types internal to the low level driver. 1008 * These qp types will not be visible at the IB core layer, so the 1009 * IB_QPT_MAX usages should not be affected in the core layer 1010 */ 1011 IB_QPT_RESERVED1 = 0x1000, 1012 IB_QPT_RESERVED2, 1013 IB_QPT_RESERVED3, 1014 IB_QPT_RESERVED4, 1015 IB_QPT_RESERVED5, 1016 IB_QPT_RESERVED6, 1017 IB_QPT_RESERVED7, 1018 IB_QPT_RESERVED8, 1019 IB_QPT_RESERVED9, 1020 IB_QPT_RESERVED10, 1021 }; 1022 1023 enum ib_qp_create_flags { 1024 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 1025 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1, 1026 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 1027 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 1028 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 1029 IB_QP_CREATE_NETIF_QP = 1 << 5, 1030 IB_QP_CREATE_SIGNATURE_EN = 1 << 6, 1031 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7, 1032 IB_QP_CREATE_SCATTER_FCS = 1 << 8, 1033 IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9, 1034 /* reserve bits 26-31 for low level drivers' internal use */ 1035 IB_QP_CREATE_RESERVED_START = 1 << 26, 1036 IB_QP_CREATE_RESERVED_END = 1 << 31, 1037 }; 1038 1039 /* 1040 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 1041 * callback to destroy the passed in QP. 1042 */ 1043 1044 struct ib_qp_init_attr { 1045 void (*event_handler)(struct ib_event *, void *); 1046 void *qp_context; 1047 struct ib_cq *send_cq; 1048 struct ib_cq *recv_cq; 1049 struct ib_srq *srq; 1050 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1051 struct ib_qp_cap cap; 1052 enum ib_sig_type sq_sig_type; 1053 enum ib_qp_type qp_type; 1054 enum ib_qp_create_flags create_flags; 1055 1056 /* 1057 * Only needed for special QP types, or when using the RW API. 1058 */ 1059 u8 port_num; 1060 struct ib_rwq_ind_table *rwq_ind_tbl; 1061 }; 1062 1063 struct ib_qp_open_attr { 1064 void (*event_handler)(struct ib_event *, void *); 1065 void *qp_context; 1066 u32 qp_num; 1067 enum ib_qp_type qp_type; 1068 }; 1069 1070 enum ib_rnr_timeout { 1071 IB_RNR_TIMER_655_36 = 0, 1072 IB_RNR_TIMER_000_01 = 1, 1073 IB_RNR_TIMER_000_02 = 2, 1074 IB_RNR_TIMER_000_03 = 3, 1075 IB_RNR_TIMER_000_04 = 4, 1076 IB_RNR_TIMER_000_06 = 5, 1077 IB_RNR_TIMER_000_08 = 6, 1078 IB_RNR_TIMER_000_12 = 7, 1079 IB_RNR_TIMER_000_16 = 8, 1080 IB_RNR_TIMER_000_24 = 9, 1081 IB_RNR_TIMER_000_32 = 10, 1082 IB_RNR_TIMER_000_48 = 11, 1083 IB_RNR_TIMER_000_64 = 12, 1084 IB_RNR_TIMER_000_96 = 13, 1085 IB_RNR_TIMER_001_28 = 14, 1086 IB_RNR_TIMER_001_92 = 15, 1087 IB_RNR_TIMER_002_56 = 16, 1088 IB_RNR_TIMER_003_84 = 17, 1089 IB_RNR_TIMER_005_12 = 18, 1090 IB_RNR_TIMER_007_68 = 19, 1091 IB_RNR_TIMER_010_24 = 20, 1092 IB_RNR_TIMER_015_36 = 21, 1093 IB_RNR_TIMER_020_48 = 22, 1094 IB_RNR_TIMER_030_72 = 23, 1095 IB_RNR_TIMER_040_96 = 24, 1096 IB_RNR_TIMER_061_44 = 25, 1097 IB_RNR_TIMER_081_92 = 26, 1098 IB_RNR_TIMER_122_88 = 27, 1099 IB_RNR_TIMER_163_84 = 28, 1100 IB_RNR_TIMER_245_76 = 29, 1101 IB_RNR_TIMER_327_68 = 30, 1102 IB_RNR_TIMER_491_52 = 31 1103 }; 1104 1105 enum ib_qp_attr_mask { 1106 IB_QP_STATE = 1, 1107 IB_QP_CUR_STATE = (1<<1), 1108 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 1109 IB_QP_ACCESS_FLAGS = (1<<3), 1110 IB_QP_PKEY_INDEX = (1<<4), 1111 IB_QP_PORT = (1<<5), 1112 IB_QP_QKEY = (1<<6), 1113 IB_QP_AV = (1<<7), 1114 IB_QP_PATH_MTU = (1<<8), 1115 IB_QP_TIMEOUT = (1<<9), 1116 IB_QP_RETRY_CNT = (1<<10), 1117 IB_QP_RNR_RETRY = (1<<11), 1118 IB_QP_RQ_PSN = (1<<12), 1119 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 1120 IB_QP_ALT_PATH = (1<<14), 1121 IB_QP_MIN_RNR_TIMER = (1<<15), 1122 IB_QP_SQ_PSN = (1<<16), 1123 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 1124 IB_QP_PATH_MIG_STATE = (1<<18), 1125 IB_QP_CAP = (1<<19), 1126 IB_QP_DEST_QPN = (1<<20), 1127 IB_QP_RESERVED1 = (1<<21), 1128 IB_QP_RESERVED2 = (1<<22), 1129 IB_QP_RESERVED3 = (1<<23), 1130 IB_QP_RESERVED4 = (1<<24), 1131 IB_QP_RATE_LIMIT = (1<<25), 1132 }; 1133 1134 enum ib_qp_state { 1135 IB_QPS_RESET, 1136 IB_QPS_INIT, 1137 IB_QPS_RTR, 1138 IB_QPS_RTS, 1139 IB_QPS_SQD, 1140 IB_QPS_SQE, 1141 IB_QPS_ERR 1142 }; 1143 1144 enum ib_mig_state { 1145 IB_MIG_MIGRATED, 1146 IB_MIG_REARM, 1147 IB_MIG_ARMED 1148 }; 1149 1150 enum ib_mw_type { 1151 IB_MW_TYPE_1 = 1, 1152 IB_MW_TYPE_2 = 2 1153 }; 1154 1155 struct ib_qp_attr { 1156 enum ib_qp_state qp_state; 1157 enum ib_qp_state cur_qp_state; 1158 enum ib_mtu path_mtu; 1159 enum ib_mig_state path_mig_state; 1160 u32 qkey; 1161 u32 rq_psn; 1162 u32 sq_psn; 1163 u32 dest_qp_num; 1164 int qp_access_flags; 1165 struct ib_qp_cap cap; 1166 struct ib_ah_attr ah_attr; 1167 struct ib_ah_attr alt_ah_attr; 1168 u16 pkey_index; 1169 u16 alt_pkey_index; 1170 u8 en_sqd_async_notify; 1171 u8 sq_draining; 1172 u8 max_rd_atomic; 1173 u8 max_dest_rd_atomic; 1174 u8 min_rnr_timer; 1175 u8 port_num; 1176 u8 timeout; 1177 u8 retry_cnt; 1178 u8 rnr_retry; 1179 u8 alt_port_num; 1180 u8 alt_timeout; 1181 u32 rate_limit; 1182 }; 1183 1184 enum ib_wr_opcode { 1185 IB_WR_RDMA_WRITE, 1186 IB_WR_RDMA_WRITE_WITH_IMM, 1187 IB_WR_SEND, 1188 IB_WR_SEND_WITH_IMM, 1189 IB_WR_RDMA_READ, 1190 IB_WR_ATOMIC_CMP_AND_SWP, 1191 IB_WR_ATOMIC_FETCH_AND_ADD, 1192 IB_WR_LSO, 1193 IB_WR_SEND_WITH_INV, 1194 IB_WR_RDMA_READ_WITH_INV, 1195 IB_WR_LOCAL_INV, 1196 IB_WR_REG_MR, 1197 IB_WR_MASKED_ATOMIC_CMP_AND_SWP, 1198 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1199 IB_WR_REG_SIG_MR, 1200 /* reserve values for low level drivers' internal use. 1201 * These values will not be used at all in the ib core layer. 1202 */ 1203 IB_WR_RESERVED1 = 0xf0, 1204 IB_WR_RESERVED2, 1205 IB_WR_RESERVED3, 1206 IB_WR_RESERVED4, 1207 IB_WR_RESERVED5, 1208 IB_WR_RESERVED6, 1209 IB_WR_RESERVED7, 1210 IB_WR_RESERVED8, 1211 IB_WR_RESERVED9, 1212 IB_WR_RESERVED10, 1213 }; 1214 1215 enum ib_send_flags { 1216 IB_SEND_FENCE = 1, 1217 IB_SEND_SIGNALED = (1<<1), 1218 IB_SEND_SOLICITED = (1<<2), 1219 IB_SEND_INLINE = (1<<3), 1220 IB_SEND_IP_CSUM = (1<<4), 1221 1222 /* reserve bits 26-31 for low level drivers' internal use */ 1223 IB_SEND_RESERVED_START = (1 << 26), 1224 IB_SEND_RESERVED_END = (1 << 31), 1225 }; 1226 1227 struct ib_sge { 1228 u64 addr; 1229 u32 length; 1230 u32 lkey; 1231 }; 1232 1233 struct ib_cqe { 1234 void (*done)(struct ib_cq *cq, struct ib_wc *wc); 1235 }; 1236 1237 struct ib_send_wr { 1238 struct ib_send_wr *next; 1239 union { 1240 u64 wr_id; 1241 struct ib_cqe *wr_cqe; 1242 }; 1243 struct ib_sge *sg_list; 1244 int num_sge; 1245 enum ib_wr_opcode opcode; 1246 int send_flags; 1247 union { 1248 __be32 imm_data; 1249 u32 invalidate_rkey; 1250 } ex; 1251 }; 1252 1253 struct ib_rdma_wr { 1254 struct ib_send_wr wr; 1255 u64 remote_addr; 1256 u32 rkey; 1257 }; 1258 1259 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr) 1260 { 1261 return container_of(wr, struct ib_rdma_wr, wr); 1262 } 1263 1264 struct ib_atomic_wr { 1265 struct ib_send_wr wr; 1266 u64 remote_addr; 1267 u64 compare_add; 1268 u64 swap; 1269 u64 compare_add_mask; 1270 u64 swap_mask; 1271 u32 rkey; 1272 }; 1273 1274 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr) 1275 { 1276 return container_of(wr, struct ib_atomic_wr, wr); 1277 } 1278 1279 struct ib_ud_wr { 1280 struct ib_send_wr wr; 1281 struct ib_ah *ah; 1282 void *header; 1283 int hlen; 1284 int mss; 1285 u32 remote_qpn; 1286 u32 remote_qkey; 1287 u16 pkey_index; /* valid for GSI only */ 1288 u8 port_num; /* valid for DR SMPs on switch only */ 1289 }; 1290 1291 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr) 1292 { 1293 return container_of(wr, struct ib_ud_wr, wr); 1294 } 1295 1296 struct ib_reg_wr { 1297 struct ib_send_wr wr; 1298 struct ib_mr *mr; 1299 u32 key; 1300 int access; 1301 }; 1302 1303 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr) 1304 { 1305 return container_of(wr, struct ib_reg_wr, wr); 1306 } 1307 1308 struct ib_sig_handover_wr { 1309 struct ib_send_wr wr; 1310 struct ib_sig_attrs *sig_attrs; 1311 struct ib_mr *sig_mr; 1312 int access_flags; 1313 struct ib_sge *prot; 1314 }; 1315 1316 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr) 1317 { 1318 return container_of(wr, struct ib_sig_handover_wr, wr); 1319 } 1320 1321 struct ib_recv_wr { 1322 struct ib_recv_wr *next; 1323 union { 1324 u64 wr_id; 1325 struct ib_cqe *wr_cqe; 1326 }; 1327 struct ib_sge *sg_list; 1328 int num_sge; 1329 }; 1330 1331 enum ib_access_flags { 1332 IB_ACCESS_LOCAL_WRITE = 1, 1333 IB_ACCESS_REMOTE_WRITE = (1<<1), 1334 IB_ACCESS_REMOTE_READ = (1<<2), 1335 IB_ACCESS_REMOTE_ATOMIC = (1<<3), 1336 IB_ACCESS_MW_BIND = (1<<4), 1337 IB_ZERO_BASED = (1<<5), 1338 IB_ACCESS_ON_DEMAND = (1<<6), 1339 }; 1340 1341 /* 1342 * XXX: these are apparently used for ->rereg_user_mr, no idea why they 1343 * are hidden here instead of a uapi header! 1344 */ 1345 enum ib_mr_rereg_flags { 1346 IB_MR_REREG_TRANS = 1, 1347 IB_MR_REREG_PD = (1<<1), 1348 IB_MR_REREG_ACCESS = (1<<2), 1349 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1350 }; 1351 1352 struct ib_fmr_attr { 1353 int max_pages; 1354 int max_maps; 1355 u8 page_shift; 1356 }; 1357 1358 struct ib_umem; 1359 1360 struct ib_rdmacg_object { 1361 #ifdef CONFIG_CGROUP_RDMA 1362 struct rdma_cgroup *cg; /* owner rdma cgroup */ 1363 #endif 1364 }; 1365 1366 struct ib_ucontext { 1367 struct ib_device *device; 1368 struct list_head pd_list; 1369 struct list_head mr_list; 1370 struct list_head mw_list; 1371 struct list_head cq_list; 1372 struct list_head qp_list; 1373 struct list_head srq_list; 1374 struct list_head ah_list; 1375 struct list_head xrcd_list; 1376 struct list_head rule_list; 1377 struct list_head wq_list; 1378 struct list_head rwq_ind_tbl_list; 1379 int closing; 1380 1381 struct pid *tgid; 1382 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING 1383 struct rb_root umem_tree; 1384 /* 1385 * Protects .umem_rbroot and tree, as well as odp_mrs_count and 1386 * mmu notifiers registration. 1387 */ 1388 struct rw_semaphore umem_rwsem; 1389 void (*invalidate_range)(struct ib_umem *umem, 1390 unsigned long start, unsigned long end); 1391 1392 struct mmu_notifier mn; 1393 atomic_t notifier_count; 1394 /* A list of umems that don't have private mmu notifier counters yet. */ 1395 struct list_head no_private_counters; 1396 int odp_mrs_count; 1397 #endif 1398 1399 struct ib_rdmacg_object cg_obj; 1400 }; 1401 1402 struct ib_uobject { 1403 u64 user_handle; /* handle given to us by userspace */ 1404 struct ib_ucontext *context; /* associated user context */ 1405 void *object; /* containing object */ 1406 struct list_head list; /* link to context's list */ 1407 struct ib_rdmacg_object cg_obj; /* rdmacg object */ 1408 int id; /* index into kernel idr */ 1409 struct kref ref; 1410 struct rw_semaphore mutex; /* protects .live */ 1411 struct rcu_head rcu; /* kfree_rcu() overhead */ 1412 int live; 1413 }; 1414 1415 struct ib_udata { 1416 const void __user *inbuf; 1417 void __user *outbuf; 1418 size_t inlen; 1419 size_t outlen; 1420 }; 1421 1422 struct ib_pd { 1423 u32 local_dma_lkey; 1424 u32 flags; 1425 struct ib_device *device; 1426 struct ib_uobject *uobject; 1427 atomic_t usecnt; /* count all resources */ 1428 1429 u32 unsafe_global_rkey; 1430 1431 /* 1432 * Implementation details of the RDMA core, don't use in drivers: 1433 */ 1434 struct ib_mr *__internal_mr; 1435 }; 1436 1437 struct ib_xrcd { 1438 struct ib_device *device; 1439 atomic_t usecnt; /* count all exposed resources */ 1440 struct inode *inode; 1441 1442 struct mutex tgt_qp_mutex; 1443 struct list_head tgt_qp_list; 1444 }; 1445 1446 struct ib_ah { 1447 struct ib_device *device; 1448 struct ib_pd *pd; 1449 struct ib_uobject *uobject; 1450 }; 1451 1452 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1453 1454 enum ib_poll_context { 1455 IB_POLL_DIRECT, /* caller context, no hw completions */ 1456 IB_POLL_SOFTIRQ, /* poll from softirq context */ 1457 IB_POLL_WORKQUEUE, /* poll from workqueue */ 1458 }; 1459 1460 struct ib_cq { 1461 struct ib_device *device; 1462 struct ib_uobject *uobject; 1463 ib_comp_handler comp_handler; 1464 void (*event_handler)(struct ib_event *, void *); 1465 void *cq_context; 1466 int cqe; 1467 atomic_t usecnt; /* count number of work queues */ 1468 enum ib_poll_context poll_ctx; 1469 struct ib_wc *wc; 1470 union { 1471 struct irq_poll iop; 1472 struct work_struct work; 1473 }; 1474 }; 1475 1476 struct ib_srq { 1477 struct ib_device *device; 1478 struct ib_pd *pd; 1479 struct ib_uobject *uobject; 1480 void (*event_handler)(struct ib_event *, void *); 1481 void *srq_context; 1482 enum ib_srq_type srq_type; 1483 atomic_t usecnt; 1484 1485 union { 1486 struct { 1487 struct ib_xrcd *xrcd; 1488 struct ib_cq *cq; 1489 u32 srq_num; 1490 } xrc; 1491 } ext; 1492 }; 1493 1494 enum ib_raw_packet_caps { 1495 /* Strip cvlan from incoming packet and report it in the matching work 1496 * completion is supported. 1497 */ 1498 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0), 1499 /* Scatter FCS field of an incoming packet to host memory is supported. 1500 */ 1501 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1), 1502 /* Checksum offloads are supported (for both send and receive). */ 1503 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2), 1504 }; 1505 1506 enum ib_wq_type { 1507 IB_WQT_RQ 1508 }; 1509 1510 enum ib_wq_state { 1511 IB_WQS_RESET, 1512 IB_WQS_RDY, 1513 IB_WQS_ERR 1514 }; 1515 1516 struct ib_wq { 1517 struct ib_device *device; 1518 struct ib_uobject *uobject; 1519 void *wq_context; 1520 void (*event_handler)(struct ib_event *, void *); 1521 struct ib_pd *pd; 1522 struct ib_cq *cq; 1523 u32 wq_num; 1524 enum ib_wq_state state; 1525 enum ib_wq_type wq_type; 1526 atomic_t usecnt; 1527 }; 1528 1529 enum ib_wq_flags { 1530 IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0, 1531 IB_WQ_FLAGS_SCATTER_FCS = 1 << 1, 1532 }; 1533 1534 struct ib_wq_init_attr { 1535 void *wq_context; 1536 enum ib_wq_type wq_type; 1537 u32 max_wr; 1538 u32 max_sge; 1539 struct ib_cq *cq; 1540 void (*event_handler)(struct ib_event *, void *); 1541 u32 create_flags; /* Use enum ib_wq_flags */ 1542 }; 1543 1544 enum ib_wq_attr_mask { 1545 IB_WQ_STATE = 1 << 0, 1546 IB_WQ_CUR_STATE = 1 << 1, 1547 IB_WQ_FLAGS = 1 << 2, 1548 }; 1549 1550 struct ib_wq_attr { 1551 enum ib_wq_state wq_state; 1552 enum ib_wq_state curr_wq_state; 1553 u32 flags; /* Use enum ib_wq_flags */ 1554 u32 flags_mask; /* Use enum ib_wq_flags */ 1555 }; 1556 1557 struct ib_rwq_ind_table { 1558 struct ib_device *device; 1559 struct ib_uobject *uobject; 1560 atomic_t usecnt; 1561 u32 ind_tbl_num; 1562 u32 log_ind_tbl_size; 1563 struct ib_wq **ind_tbl; 1564 }; 1565 1566 struct ib_rwq_ind_table_init_attr { 1567 u32 log_ind_tbl_size; 1568 /* Each entry is a pointer to Receive Work Queue */ 1569 struct ib_wq **ind_tbl; 1570 }; 1571 1572 /* 1573 * @max_write_sge: Maximum SGE elements per RDMA WRITE request. 1574 * @max_read_sge: Maximum SGE elements per RDMA READ request. 1575 */ 1576 struct ib_qp { 1577 struct ib_device *device; 1578 struct ib_pd *pd; 1579 struct ib_cq *send_cq; 1580 struct ib_cq *recv_cq; 1581 spinlock_t mr_lock; 1582 int mrs_used; 1583 struct list_head rdma_mrs; 1584 struct list_head sig_mrs; 1585 struct ib_srq *srq; 1586 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1587 struct list_head xrcd_list; 1588 1589 /* count times opened, mcast attaches, flow attaches */ 1590 atomic_t usecnt; 1591 struct list_head open_list; 1592 struct ib_qp *real_qp; 1593 struct ib_uobject *uobject; 1594 void (*event_handler)(struct ib_event *, void *); 1595 void *qp_context; 1596 u32 qp_num; 1597 u32 max_write_sge; 1598 u32 max_read_sge; 1599 enum ib_qp_type qp_type; 1600 struct ib_rwq_ind_table *rwq_ind_tbl; 1601 }; 1602 1603 struct ib_mr { 1604 struct ib_device *device; 1605 struct ib_pd *pd; 1606 u32 lkey; 1607 u32 rkey; 1608 u64 iova; 1609 u32 length; 1610 unsigned int page_size; 1611 bool need_inval; 1612 union { 1613 struct ib_uobject *uobject; /* user */ 1614 struct list_head qp_entry; /* FR */ 1615 }; 1616 }; 1617 1618 struct ib_mw { 1619 struct ib_device *device; 1620 struct ib_pd *pd; 1621 struct ib_uobject *uobject; 1622 u32 rkey; 1623 enum ib_mw_type type; 1624 }; 1625 1626 struct ib_fmr { 1627 struct ib_device *device; 1628 struct ib_pd *pd; 1629 struct list_head list; 1630 u32 lkey; 1631 u32 rkey; 1632 }; 1633 1634 /* Supported steering options */ 1635 enum ib_flow_attr_type { 1636 /* steering according to rule specifications */ 1637 IB_FLOW_ATTR_NORMAL = 0x0, 1638 /* default unicast and multicast rule - 1639 * receive all Eth traffic which isn't steered to any QP 1640 */ 1641 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1642 /* default multicast rule - 1643 * receive all Eth multicast traffic which isn't steered to any QP 1644 */ 1645 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1646 /* sniffer rule - receive all port traffic */ 1647 IB_FLOW_ATTR_SNIFFER = 0x3 1648 }; 1649 1650 /* Supported steering header types */ 1651 enum ib_flow_spec_type { 1652 /* L2 headers*/ 1653 IB_FLOW_SPEC_ETH = 0x20, 1654 IB_FLOW_SPEC_IB = 0x22, 1655 /* L3 header*/ 1656 IB_FLOW_SPEC_IPV4 = 0x30, 1657 IB_FLOW_SPEC_IPV6 = 0x31, 1658 /* L4 headers*/ 1659 IB_FLOW_SPEC_TCP = 0x40, 1660 IB_FLOW_SPEC_UDP = 0x41, 1661 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50, 1662 IB_FLOW_SPEC_INNER = 0x100, 1663 /* Actions */ 1664 IB_FLOW_SPEC_ACTION_TAG = 0x1000, 1665 }; 1666 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1667 #define IB_FLOW_SPEC_SUPPORT_LAYERS 8 1668 1669 /* Flow steering rule priority is set according to it's domain. 1670 * Lower domain value means higher priority. 1671 */ 1672 enum ib_flow_domain { 1673 IB_FLOW_DOMAIN_USER, 1674 IB_FLOW_DOMAIN_ETHTOOL, 1675 IB_FLOW_DOMAIN_RFS, 1676 IB_FLOW_DOMAIN_NIC, 1677 IB_FLOW_DOMAIN_NUM /* Must be last */ 1678 }; 1679 1680 enum ib_flow_flags { 1681 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */ 1682 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */ 1683 }; 1684 1685 struct ib_flow_eth_filter { 1686 u8 dst_mac[6]; 1687 u8 src_mac[6]; 1688 __be16 ether_type; 1689 __be16 vlan_tag; 1690 /* Must be last */ 1691 u8 real_sz[0]; 1692 }; 1693 1694 struct ib_flow_spec_eth { 1695 u32 type; 1696 u16 size; 1697 struct ib_flow_eth_filter val; 1698 struct ib_flow_eth_filter mask; 1699 }; 1700 1701 struct ib_flow_ib_filter { 1702 __be16 dlid; 1703 __u8 sl; 1704 /* Must be last */ 1705 u8 real_sz[0]; 1706 }; 1707 1708 struct ib_flow_spec_ib { 1709 u32 type; 1710 u16 size; 1711 struct ib_flow_ib_filter val; 1712 struct ib_flow_ib_filter mask; 1713 }; 1714 1715 /* IPv4 header flags */ 1716 enum ib_ipv4_flags { 1717 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */ 1718 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the 1719 last have this flag set */ 1720 }; 1721 1722 struct ib_flow_ipv4_filter { 1723 __be32 src_ip; 1724 __be32 dst_ip; 1725 u8 proto; 1726 u8 tos; 1727 u8 ttl; 1728 u8 flags; 1729 /* Must be last */ 1730 u8 real_sz[0]; 1731 }; 1732 1733 struct ib_flow_spec_ipv4 { 1734 u32 type; 1735 u16 size; 1736 struct ib_flow_ipv4_filter val; 1737 struct ib_flow_ipv4_filter mask; 1738 }; 1739 1740 struct ib_flow_ipv6_filter { 1741 u8 src_ip[16]; 1742 u8 dst_ip[16]; 1743 __be32 flow_label; 1744 u8 next_hdr; 1745 u8 traffic_class; 1746 u8 hop_limit; 1747 /* Must be last */ 1748 u8 real_sz[0]; 1749 }; 1750 1751 struct ib_flow_spec_ipv6 { 1752 u32 type; 1753 u16 size; 1754 struct ib_flow_ipv6_filter val; 1755 struct ib_flow_ipv6_filter mask; 1756 }; 1757 1758 struct ib_flow_tcp_udp_filter { 1759 __be16 dst_port; 1760 __be16 src_port; 1761 /* Must be last */ 1762 u8 real_sz[0]; 1763 }; 1764 1765 struct ib_flow_spec_tcp_udp { 1766 u32 type; 1767 u16 size; 1768 struct ib_flow_tcp_udp_filter val; 1769 struct ib_flow_tcp_udp_filter mask; 1770 }; 1771 1772 struct ib_flow_tunnel_filter { 1773 __be32 tunnel_id; 1774 u8 real_sz[0]; 1775 }; 1776 1777 /* ib_flow_spec_tunnel describes the Vxlan tunnel 1778 * the tunnel_id from val has the vni value 1779 */ 1780 struct ib_flow_spec_tunnel { 1781 u32 type; 1782 u16 size; 1783 struct ib_flow_tunnel_filter val; 1784 struct ib_flow_tunnel_filter mask; 1785 }; 1786 1787 struct ib_flow_spec_action_tag { 1788 enum ib_flow_spec_type type; 1789 u16 size; 1790 u32 tag_id; 1791 }; 1792 1793 union ib_flow_spec { 1794 struct { 1795 u32 type; 1796 u16 size; 1797 }; 1798 struct ib_flow_spec_eth eth; 1799 struct ib_flow_spec_ib ib; 1800 struct ib_flow_spec_ipv4 ipv4; 1801 struct ib_flow_spec_tcp_udp tcp_udp; 1802 struct ib_flow_spec_ipv6 ipv6; 1803 struct ib_flow_spec_tunnel tunnel; 1804 struct ib_flow_spec_action_tag flow_tag; 1805 }; 1806 1807 struct ib_flow_attr { 1808 enum ib_flow_attr_type type; 1809 u16 size; 1810 u16 priority; 1811 u32 flags; 1812 u8 num_of_specs; 1813 u8 port; 1814 /* Following are the optional layers according to user request 1815 * struct ib_flow_spec_xxx 1816 * struct ib_flow_spec_yyy 1817 */ 1818 }; 1819 1820 struct ib_flow { 1821 struct ib_qp *qp; 1822 struct ib_uobject *uobject; 1823 }; 1824 1825 struct ib_mad_hdr; 1826 struct ib_grh; 1827 1828 enum ib_process_mad_flags { 1829 IB_MAD_IGNORE_MKEY = 1, 1830 IB_MAD_IGNORE_BKEY = 2, 1831 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 1832 }; 1833 1834 enum ib_mad_result { 1835 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 1836 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 1837 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 1838 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 1839 }; 1840 1841 #define IB_DEVICE_NAME_MAX 64 1842 1843 struct ib_port_cache { 1844 struct ib_pkey_cache *pkey; 1845 struct ib_gid_table *gid; 1846 u8 lmc; 1847 enum ib_port_state port_state; 1848 }; 1849 1850 struct ib_cache { 1851 rwlock_t lock; 1852 struct ib_event_handler event_handler; 1853 struct ib_port_cache *ports; 1854 }; 1855 1856 struct iw_cm_verbs; 1857 1858 struct ib_port_immutable { 1859 int pkey_tbl_len; 1860 int gid_tbl_len; 1861 u32 core_cap_flags; 1862 u32 max_mad_size; 1863 }; 1864 1865 struct ib_device { 1866 /* Do not access @dma_device directly from ULP nor from HW drivers. */ 1867 struct device *dma_device; 1868 1869 char name[IB_DEVICE_NAME_MAX]; 1870 1871 struct list_head event_handler_list; 1872 spinlock_t event_handler_lock; 1873 1874 spinlock_t client_data_lock; 1875 struct list_head core_list; 1876 /* Access to the client_data_list is protected by the client_data_lock 1877 * spinlock and the lists_rwsem read-write semaphore */ 1878 struct list_head client_data_list; 1879 1880 struct ib_cache cache; 1881 /** 1882 * port_immutable is indexed by port number 1883 */ 1884 struct ib_port_immutable *port_immutable; 1885 1886 int num_comp_vectors; 1887 1888 struct iw_cm_verbs *iwcm; 1889 1890 /** 1891 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the 1892 * driver initialized data. The struct is kfree()'ed by the sysfs 1893 * core when the device is removed. A lifespan of -1 in the return 1894 * struct tells the core to set a default lifespan. 1895 */ 1896 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device, 1897 u8 port_num); 1898 /** 1899 * get_hw_stats - Fill in the counter value(s) in the stats struct. 1900 * @index - The index in the value array we wish to have updated, or 1901 * num_counters if we want all stats updated 1902 * Return codes - 1903 * < 0 - Error, no counters updated 1904 * index - Updated the single counter pointed to by index 1905 * num_counters - Updated all counters (will reset the timestamp 1906 * and prevent further calls for lifespan milliseconds) 1907 * Drivers are allowed to update all counters in leiu of just the 1908 * one given in index at their option 1909 */ 1910 int (*get_hw_stats)(struct ib_device *device, 1911 struct rdma_hw_stats *stats, 1912 u8 port, int index); 1913 int (*query_device)(struct ib_device *device, 1914 struct ib_device_attr *device_attr, 1915 struct ib_udata *udata); 1916 int (*query_port)(struct ib_device *device, 1917 u8 port_num, 1918 struct ib_port_attr *port_attr); 1919 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 1920 u8 port_num); 1921 /* When calling get_netdev, the HW vendor's driver should return the 1922 * net device of device @device at port @port_num or NULL if such 1923 * a net device doesn't exist. The vendor driver should call dev_hold 1924 * on this net device. The HW vendor's device driver must guarantee 1925 * that this function returns NULL before the net device reaches 1926 * NETDEV_UNREGISTER_FINAL state. 1927 */ 1928 struct net_device *(*get_netdev)(struct ib_device *device, 1929 u8 port_num); 1930 int (*query_gid)(struct ib_device *device, 1931 u8 port_num, int index, 1932 union ib_gid *gid); 1933 /* When calling add_gid, the HW vendor's driver should 1934 * add the gid of device @device at gid index @index of 1935 * port @port_num to be @gid. Meta-info of that gid (for example, 1936 * the network device related to this gid is available 1937 * at @attr. @context allows the HW vendor driver to store extra 1938 * information together with a GID entry. The HW vendor may allocate 1939 * memory to contain this information and store it in @context when a 1940 * new GID entry is written to. Params are consistent until the next 1941 * call of add_gid or delete_gid. The function should return 0 on 1942 * success or error otherwise. The function could be called 1943 * concurrently for different ports. This function is only called 1944 * when roce_gid_table is used. 1945 */ 1946 int (*add_gid)(struct ib_device *device, 1947 u8 port_num, 1948 unsigned int index, 1949 const union ib_gid *gid, 1950 const struct ib_gid_attr *attr, 1951 void **context); 1952 /* When calling del_gid, the HW vendor's driver should delete the 1953 * gid of device @device at gid index @index of port @port_num. 1954 * Upon the deletion of a GID entry, the HW vendor must free any 1955 * allocated memory. The caller will clear @context afterwards. 1956 * This function is only called when roce_gid_table is used. 1957 */ 1958 int (*del_gid)(struct ib_device *device, 1959 u8 port_num, 1960 unsigned int index, 1961 void **context); 1962 int (*query_pkey)(struct ib_device *device, 1963 u8 port_num, u16 index, u16 *pkey); 1964 int (*modify_device)(struct ib_device *device, 1965 int device_modify_mask, 1966 struct ib_device_modify *device_modify); 1967 int (*modify_port)(struct ib_device *device, 1968 u8 port_num, int port_modify_mask, 1969 struct ib_port_modify *port_modify); 1970 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device, 1971 struct ib_udata *udata); 1972 int (*dealloc_ucontext)(struct ib_ucontext *context); 1973 int (*mmap)(struct ib_ucontext *context, 1974 struct vm_area_struct *vma); 1975 struct ib_pd * (*alloc_pd)(struct ib_device *device, 1976 struct ib_ucontext *context, 1977 struct ib_udata *udata); 1978 int (*dealloc_pd)(struct ib_pd *pd); 1979 struct ib_ah * (*create_ah)(struct ib_pd *pd, 1980 struct ib_ah_attr *ah_attr, 1981 struct ib_udata *udata); 1982 int (*modify_ah)(struct ib_ah *ah, 1983 struct ib_ah_attr *ah_attr); 1984 int (*query_ah)(struct ib_ah *ah, 1985 struct ib_ah_attr *ah_attr); 1986 int (*destroy_ah)(struct ib_ah *ah); 1987 struct ib_srq * (*create_srq)(struct ib_pd *pd, 1988 struct ib_srq_init_attr *srq_init_attr, 1989 struct ib_udata *udata); 1990 int (*modify_srq)(struct ib_srq *srq, 1991 struct ib_srq_attr *srq_attr, 1992 enum ib_srq_attr_mask srq_attr_mask, 1993 struct ib_udata *udata); 1994 int (*query_srq)(struct ib_srq *srq, 1995 struct ib_srq_attr *srq_attr); 1996 int (*destroy_srq)(struct ib_srq *srq); 1997 int (*post_srq_recv)(struct ib_srq *srq, 1998 struct ib_recv_wr *recv_wr, 1999 struct ib_recv_wr **bad_recv_wr); 2000 struct ib_qp * (*create_qp)(struct ib_pd *pd, 2001 struct ib_qp_init_attr *qp_init_attr, 2002 struct ib_udata *udata); 2003 int (*modify_qp)(struct ib_qp *qp, 2004 struct ib_qp_attr *qp_attr, 2005 int qp_attr_mask, 2006 struct ib_udata *udata); 2007 int (*query_qp)(struct ib_qp *qp, 2008 struct ib_qp_attr *qp_attr, 2009 int qp_attr_mask, 2010 struct ib_qp_init_attr *qp_init_attr); 2011 int (*destroy_qp)(struct ib_qp *qp); 2012 int (*post_send)(struct ib_qp *qp, 2013 struct ib_send_wr *send_wr, 2014 struct ib_send_wr **bad_send_wr); 2015 int (*post_recv)(struct ib_qp *qp, 2016 struct ib_recv_wr *recv_wr, 2017 struct ib_recv_wr **bad_recv_wr); 2018 struct ib_cq * (*create_cq)(struct ib_device *device, 2019 const struct ib_cq_init_attr *attr, 2020 struct ib_ucontext *context, 2021 struct ib_udata *udata); 2022 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, 2023 u16 cq_period); 2024 int (*destroy_cq)(struct ib_cq *cq); 2025 int (*resize_cq)(struct ib_cq *cq, int cqe, 2026 struct ib_udata *udata); 2027 int (*poll_cq)(struct ib_cq *cq, int num_entries, 2028 struct ib_wc *wc); 2029 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 2030 int (*req_notify_cq)(struct ib_cq *cq, 2031 enum ib_cq_notify_flags flags); 2032 int (*req_ncomp_notif)(struct ib_cq *cq, 2033 int wc_cnt); 2034 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, 2035 int mr_access_flags); 2036 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, 2037 u64 start, u64 length, 2038 u64 virt_addr, 2039 int mr_access_flags, 2040 struct ib_udata *udata); 2041 int (*rereg_user_mr)(struct ib_mr *mr, 2042 int flags, 2043 u64 start, u64 length, 2044 u64 virt_addr, 2045 int mr_access_flags, 2046 struct ib_pd *pd, 2047 struct ib_udata *udata); 2048 int (*dereg_mr)(struct ib_mr *mr); 2049 struct ib_mr * (*alloc_mr)(struct ib_pd *pd, 2050 enum ib_mr_type mr_type, 2051 u32 max_num_sg); 2052 int (*map_mr_sg)(struct ib_mr *mr, 2053 struct scatterlist *sg, 2054 int sg_nents, 2055 unsigned int *sg_offset); 2056 struct ib_mw * (*alloc_mw)(struct ib_pd *pd, 2057 enum ib_mw_type type, 2058 struct ib_udata *udata); 2059 int (*dealloc_mw)(struct ib_mw *mw); 2060 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, 2061 int mr_access_flags, 2062 struct ib_fmr_attr *fmr_attr); 2063 int (*map_phys_fmr)(struct ib_fmr *fmr, 2064 u64 *page_list, int list_len, 2065 u64 iova); 2066 int (*unmap_fmr)(struct list_head *fmr_list); 2067 int (*dealloc_fmr)(struct ib_fmr *fmr); 2068 int (*attach_mcast)(struct ib_qp *qp, 2069 union ib_gid *gid, 2070 u16 lid); 2071 int (*detach_mcast)(struct ib_qp *qp, 2072 union ib_gid *gid, 2073 u16 lid); 2074 int (*process_mad)(struct ib_device *device, 2075 int process_mad_flags, 2076 u8 port_num, 2077 const struct ib_wc *in_wc, 2078 const struct ib_grh *in_grh, 2079 const struct ib_mad_hdr *in_mad, 2080 size_t in_mad_size, 2081 struct ib_mad_hdr *out_mad, 2082 size_t *out_mad_size, 2083 u16 *out_mad_pkey_index); 2084 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device, 2085 struct ib_ucontext *ucontext, 2086 struct ib_udata *udata); 2087 int (*dealloc_xrcd)(struct ib_xrcd *xrcd); 2088 struct ib_flow * (*create_flow)(struct ib_qp *qp, 2089 struct ib_flow_attr 2090 *flow_attr, 2091 int domain); 2092 int (*destroy_flow)(struct ib_flow *flow_id); 2093 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 2094 struct ib_mr_status *mr_status); 2095 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 2096 void (*drain_rq)(struct ib_qp *qp); 2097 void (*drain_sq)(struct ib_qp *qp); 2098 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port, 2099 int state); 2100 int (*get_vf_config)(struct ib_device *device, int vf, u8 port, 2101 struct ifla_vf_info *ivf); 2102 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port, 2103 struct ifla_vf_stats *stats); 2104 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid, 2105 int type); 2106 struct ib_wq * (*create_wq)(struct ib_pd *pd, 2107 struct ib_wq_init_attr *init_attr, 2108 struct ib_udata *udata); 2109 int (*destroy_wq)(struct ib_wq *wq); 2110 int (*modify_wq)(struct ib_wq *wq, 2111 struct ib_wq_attr *attr, 2112 u32 wq_attr_mask, 2113 struct ib_udata *udata); 2114 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device, 2115 struct ib_rwq_ind_table_init_attr *init_attr, 2116 struct ib_udata *udata); 2117 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table); 2118 2119 struct module *owner; 2120 struct device dev; 2121 struct kobject *ports_parent; 2122 struct list_head port_list; 2123 2124 enum { 2125 IB_DEV_UNINITIALIZED, 2126 IB_DEV_REGISTERED, 2127 IB_DEV_UNREGISTERED 2128 } reg_state; 2129 2130 int uverbs_abi_ver; 2131 u64 uverbs_cmd_mask; 2132 u64 uverbs_ex_cmd_mask; 2133 2134 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 2135 __be64 node_guid; 2136 u32 local_dma_lkey; 2137 u16 is_switch:1; 2138 u8 node_type; 2139 u8 phys_port_cnt; 2140 struct ib_device_attr attrs; 2141 struct attribute_group *hw_stats_ag; 2142 struct rdma_hw_stats *hw_stats; 2143 2144 #ifdef CONFIG_CGROUP_RDMA 2145 struct rdmacg_device cg_device; 2146 #endif 2147 2148 /** 2149 * The following mandatory functions are used only at device 2150 * registration. Keep functions such as these at the end of this 2151 * structure to avoid cache line misses when accessing struct ib_device 2152 * in fast paths. 2153 */ 2154 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *); 2155 void (*get_dev_fw_str)(struct ib_device *, char *str, size_t str_len); 2156 }; 2157 2158 struct ib_client { 2159 char *name; 2160 void (*add) (struct ib_device *); 2161 void (*remove)(struct ib_device *, void *client_data); 2162 2163 /* Returns the net_dev belonging to this ib_client and matching the 2164 * given parameters. 2165 * @dev: An RDMA device that the net_dev use for communication. 2166 * @port: A physical port number on the RDMA device. 2167 * @pkey: P_Key that the net_dev uses if applicable. 2168 * @gid: A GID that the net_dev uses to communicate. 2169 * @addr: An IP address the net_dev is configured with. 2170 * @client_data: The device's client data set by ib_set_client_data(). 2171 * 2172 * An ib_client that implements a net_dev on top of RDMA devices 2173 * (such as IP over IB) should implement this callback, allowing the 2174 * rdma_cm module to find the right net_dev for a given request. 2175 * 2176 * The caller is responsible for calling dev_put on the returned 2177 * netdev. */ 2178 struct net_device *(*get_net_dev_by_params)( 2179 struct ib_device *dev, 2180 u8 port, 2181 u16 pkey, 2182 const union ib_gid *gid, 2183 const struct sockaddr *addr, 2184 void *client_data); 2185 struct list_head list; 2186 }; 2187 2188 struct ib_device *ib_alloc_device(size_t size); 2189 void ib_dealloc_device(struct ib_device *device); 2190 2191 void ib_get_device_fw_str(struct ib_device *device, char *str, size_t str_len); 2192 2193 int ib_register_device(struct ib_device *device, 2194 int (*port_callback)(struct ib_device *, 2195 u8, struct kobject *)); 2196 void ib_unregister_device(struct ib_device *device); 2197 2198 int ib_register_client (struct ib_client *client); 2199 void ib_unregister_client(struct ib_client *client); 2200 2201 void *ib_get_client_data(struct ib_device *device, struct ib_client *client); 2202 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 2203 void *data); 2204 2205 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 2206 { 2207 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 2208 } 2209 2210 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 2211 { 2212 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 2213 } 2214 2215 static inline bool ib_is_udata_cleared(struct ib_udata *udata, 2216 size_t offset, 2217 size_t len) 2218 { 2219 const void __user *p = udata->inbuf + offset; 2220 bool ret; 2221 u8 *buf; 2222 2223 if (len > USHRT_MAX) 2224 return false; 2225 2226 buf = memdup_user(p, len); 2227 if (IS_ERR(buf)) 2228 return false; 2229 2230 ret = !memchr_inv(buf, 0, len); 2231 kfree(buf); 2232 return ret; 2233 } 2234 2235 /** 2236 * ib_modify_qp_is_ok - Check that the supplied attribute mask 2237 * contains all required attributes and no attributes not allowed for 2238 * the given QP state transition. 2239 * @cur_state: Current QP state 2240 * @next_state: Next QP state 2241 * @type: QP type 2242 * @mask: Mask of supplied QP attributes 2243 * @ll : link layer of port 2244 * 2245 * This function is a helper function that a low-level driver's 2246 * modify_qp method can use to validate the consumer's input. It 2247 * checks that cur_state and next_state are valid QP states, that a 2248 * transition from cur_state to next_state is allowed by the IB spec, 2249 * and that the attribute mask supplied is allowed for the transition. 2250 */ 2251 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 2252 enum ib_qp_type type, enum ib_qp_attr_mask mask, 2253 enum rdma_link_layer ll); 2254 2255 int ib_register_event_handler (struct ib_event_handler *event_handler); 2256 int ib_unregister_event_handler(struct ib_event_handler *event_handler); 2257 void ib_dispatch_event(struct ib_event *event); 2258 2259 int ib_query_port(struct ib_device *device, 2260 u8 port_num, struct ib_port_attr *port_attr); 2261 2262 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 2263 u8 port_num); 2264 2265 /** 2266 * rdma_cap_ib_switch - Check if the device is IB switch 2267 * @device: Device to check 2268 * 2269 * Device driver is responsible for setting is_switch bit on 2270 * in ib_device structure at init time. 2271 * 2272 * Return: true if the device is IB switch. 2273 */ 2274 static inline bool rdma_cap_ib_switch(const struct ib_device *device) 2275 { 2276 return device->is_switch; 2277 } 2278 2279 /** 2280 * rdma_start_port - Return the first valid port number for the device 2281 * specified 2282 * 2283 * @device: Device to be checked 2284 * 2285 * Return start port number 2286 */ 2287 static inline u8 rdma_start_port(const struct ib_device *device) 2288 { 2289 return rdma_cap_ib_switch(device) ? 0 : 1; 2290 } 2291 2292 /** 2293 * rdma_end_port - Return the last valid port number for the device 2294 * specified 2295 * 2296 * @device: Device to be checked 2297 * 2298 * Return last port number 2299 */ 2300 static inline u8 rdma_end_port(const struct ib_device *device) 2301 { 2302 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 2303 } 2304 2305 static inline int rdma_is_port_valid(const struct ib_device *device, 2306 unsigned int port) 2307 { 2308 return (port >= rdma_start_port(device) && 2309 port <= rdma_end_port(device)); 2310 } 2311 2312 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num) 2313 { 2314 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB; 2315 } 2316 2317 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num) 2318 { 2319 return device->port_immutable[port_num].core_cap_flags & 2320 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); 2321 } 2322 2323 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num) 2324 { 2325 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; 2326 } 2327 2328 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num) 2329 { 2330 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE; 2331 } 2332 2333 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num) 2334 { 2335 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP; 2336 } 2337 2338 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num) 2339 { 2340 return rdma_protocol_ib(device, port_num) || 2341 rdma_protocol_roce(device, port_num); 2342 } 2343 2344 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num) 2345 { 2346 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_RAW_PACKET; 2347 } 2348 2349 static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num) 2350 { 2351 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_USNIC; 2352 } 2353 2354 /** 2355 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 2356 * Management Datagrams. 2357 * @device: Device to check 2358 * @port_num: Port number to check 2359 * 2360 * Management Datagrams (MAD) are a required part of the InfiniBand 2361 * specification and are supported on all InfiniBand devices. A slightly 2362 * extended version are also supported on OPA interfaces. 2363 * 2364 * Return: true if the port supports sending/receiving of MAD packets. 2365 */ 2366 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num) 2367 { 2368 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD; 2369 } 2370 2371 /** 2372 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 2373 * Management Datagrams. 2374 * @device: Device to check 2375 * @port_num: Port number to check 2376 * 2377 * Intel OmniPath devices extend and/or replace the InfiniBand Management 2378 * datagrams with their own versions. These OPA MADs share many but not all of 2379 * the characteristics of InfiniBand MADs. 2380 * 2381 * OPA MADs differ in the following ways: 2382 * 2383 * 1) MADs are variable size up to 2K 2384 * IBTA defined MADs remain fixed at 256 bytes 2385 * 2) OPA SMPs must carry valid PKeys 2386 * 3) OPA SMP packets are a different format 2387 * 2388 * Return: true if the port supports OPA MAD packet formats. 2389 */ 2390 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num) 2391 { 2392 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD) 2393 == RDMA_CORE_CAP_OPA_MAD; 2394 } 2395 2396 /** 2397 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 2398 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 2399 * @device: Device to check 2400 * @port_num: Port number to check 2401 * 2402 * Each InfiniBand node is required to provide a Subnet Management Agent 2403 * that the subnet manager can access. Prior to the fabric being fully 2404 * configured by the subnet manager, the SMA is accessed via a well known 2405 * interface called the Subnet Management Interface (SMI). This interface 2406 * uses directed route packets to communicate with the SM to get around the 2407 * chicken and egg problem of the SM needing to know what's on the fabric 2408 * in order to configure the fabric, and needing to configure the fabric in 2409 * order to send packets to the devices on the fabric. These directed 2410 * route packets do not need the fabric fully configured in order to reach 2411 * their destination. The SMI is the only method allowed to send 2412 * directed route packets on an InfiniBand fabric. 2413 * 2414 * Return: true if the port provides an SMI. 2415 */ 2416 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num) 2417 { 2418 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI; 2419 } 2420 2421 /** 2422 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 2423 * Communication Manager. 2424 * @device: Device to check 2425 * @port_num: Port number to check 2426 * 2427 * The InfiniBand Communication Manager is one of many pre-defined General 2428 * Service Agents (GSA) that are accessed via the General Service 2429 * Interface (GSI). It's role is to facilitate establishment of connections 2430 * between nodes as well as other management related tasks for established 2431 * connections. 2432 * 2433 * Return: true if the port supports an IB CM (this does not guarantee that 2434 * a CM is actually running however). 2435 */ 2436 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num) 2437 { 2438 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM; 2439 } 2440 2441 /** 2442 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 2443 * Communication Manager. 2444 * @device: Device to check 2445 * @port_num: Port number to check 2446 * 2447 * Similar to above, but specific to iWARP connections which have a different 2448 * managment protocol than InfiniBand. 2449 * 2450 * Return: true if the port supports an iWARP CM (this does not guarantee that 2451 * a CM is actually running however). 2452 */ 2453 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num) 2454 { 2455 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM; 2456 } 2457 2458 /** 2459 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 2460 * Subnet Administration. 2461 * @device: Device to check 2462 * @port_num: Port number to check 2463 * 2464 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 2465 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 2466 * fabrics, devices should resolve routes to other hosts by contacting the 2467 * SA to query the proper route. 2468 * 2469 * Return: true if the port should act as a client to the fabric Subnet 2470 * Administration interface. This does not imply that the SA service is 2471 * running locally. 2472 */ 2473 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num) 2474 { 2475 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA; 2476 } 2477 2478 /** 2479 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 2480 * Multicast. 2481 * @device: Device to check 2482 * @port_num: Port number to check 2483 * 2484 * InfiniBand multicast registration is more complex than normal IPv4 or 2485 * IPv6 multicast registration. Each Host Channel Adapter must register 2486 * with the Subnet Manager when it wishes to join a multicast group. It 2487 * should do so only once regardless of how many queue pairs it subscribes 2488 * to this group. And it should leave the group only after all queue pairs 2489 * attached to the group have been detached. 2490 * 2491 * Return: true if the port must undertake the additional adminstrative 2492 * overhead of registering/unregistering with the SM and tracking of the 2493 * total number of queue pairs attached to the multicast group. 2494 */ 2495 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num) 2496 { 2497 return rdma_cap_ib_sa(device, port_num); 2498 } 2499 2500 /** 2501 * rdma_cap_af_ib - Check if the port of device has the capability 2502 * Native Infiniband Address. 2503 * @device: Device to check 2504 * @port_num: Port number to check 2505 * 2506 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 2507 * GID. RoCE uses a different mechanism, but still generates a GID via 2508 * a prescribed mechanism and port specific data. 2509 * 2510 * Return: true if the port uses a GID address to identify devices on the 2511 * network. 2512 */ 2513 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num) 2514 { 2515 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB; 2516 } 2517 2518 /** 2519 * rdma_cap_eth_ah - Check if the port of device has the capability 2520 * Ethernet Address Handle. 2521 * @device: Device to check 2522 * @port_num: Port number to check 2523 * 2524 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 2525 * to fabricate GIDs over Ethernet/IP specific addresses native to the 2526 * port. Normally, packet headers are generated by the sending host 2527 * adapter, but when sending connectionless datagrams, we must manually 2528 * inject the proper headers for the fabric we are communicating over. 2529 * 2530 * Return: true if we are running as a RoCE port and must force the 2531 * addition of a Global Route Header built from our Ethernet Address 2532 * Handle into our header list for connectionless packets. 2533 */ 2534 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num) 2535 { 2536 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH; 2537 } 2538 2539 /** 2540 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 2541 * 2542 * @device: Device 2543 * @port_num: Port number 2544 * 2545 * This MAD size includes the MAD headers and MAD payload. No other headers 2546 * are included. 2547 * 2548 * Return the max MAD size required by the Port. Will return 0 if the port 2549 * does not support MADs 2550 */ 2551 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num) 2552 { 2553 return device->port_immutable[port_num].max_mad_size; 2554 } 2555 2556 /** 2557 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 2558 * @device: Device to check 2559 * @port_num: Port number to check 2560 * 2561 * RoCE GID table mechanism manages the various GIDs for a device. 2562 * 2563 * NOTE: if allocating the port's GID table has failed, this call will still 2564 * return true, but any RoCE GID table API will fail. 2565 * 2566 * Return: true if the port uses RoCE GID table mechanism in order to manage 2567 * its GIDs. 2568 */ 2569 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 2570 u8 port_num) 2571 { 2572 return rdma_protocol_roce(device, port_num) && 2573 device->add_gid && device->del_gid; 2574 } 2575 2576 /* 2577 * Check if the device supports READ W/ INVALIDATE. 2578 */ 2579 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num) 2580 { 2581 /* 2582 * iWarp drivers must support READ W/ INVALIDATE. No other protocol 2583 * has support for it yet. 2584 */ 2585 return rdma_protocol_iwarp(dev, port_num); 2586 } 2587 2588 int ib_query_gid(struct ib_device *device, 2589 u8 port_num, int index, union ib_gid *gid, 2590 struct ib_gid_attr *attr); 2591 2592 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 2593 int state); 2594 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 2595 struct ifla_vf_info *info); 2596 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 2597 struct ifla_vf_stats *stats); 2598 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 2599 int type); 2600 2601 int ib_query_pkey(struct ib_device *device, 2602 u8 port_num, u16 index, u16 *pkey); 2603 2604 int ib_modify_device(struct ib_device *device, 2605 int device_modify_mask, 2606 struct ib_device_modify *device_modify); 2607 2608 int ib_modify_port(struct ib_device *device, 2609 u8 port_num, int port_modify_mask, 2610 struct ib_port_modify *port_modify); 2611 2612 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 2613 enum ib_gid_type gid_type, struct net_device *ndev, 2614 u8 *port_num, u16 *index); 2615 2616 int ib_find_pkey(struct ib_device *device, 2617 u8 port_num, u16 pkey, u16 *index); 2618 2619 enum ib_pd_flags { 2620 /* 2621 * Create a memory registration for all memory in the system and place 2622 * the rkey for it into pd->unsafe_global_rkey. This can be used by 2623 * ULPs to avoid the overhead of dynamic MRs. 2624 * 2625 * This flag is generally considered unsafe and must only be used in 2626 * extremly trusted environments. Every use of it will log a warning 2627 * in the kernel log. 2628 */ 2629 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01, 2630 }; 2631 2632 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 2633 const char *caller); 2634 #define ib_alloc_pd(device, flags) \ 2635 __ib_alloc_pd((device), (flags), __func__) 2636 void ib_dealloc_pd(struct ib_pd *pd); 2637 2638 /** 2639 * ib_create_ah - Creates an address handle for the given address vector. 2640 * @pd: The protection domain associated with the address handle. 2641 * @ah_attr: The attributes of the address vector. 2642 * 2643 * The address handle is used to reference a local or global destination 2644 * in all UD QP post sends. 2645 */ 2646 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr); 2647 2648 /** 2649 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header 2650 * work completion. 2651 * @hdr: the L3 header to parse 2652 * @net_type: type of header to parse 2653 * @sgid: place to store source gid 2654 * @dgid: place to store destination gid 2655 */ 2656 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 2657 enum rdma_network_type net_type, 2658 union ib_gid *sgid, union ib_gid *dgid); 2659 2660 /** 2661 * ib_get_rdma_header_version - Get the header version 2662 * @hdr: the L3 header to parse 2663 */ 2664 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr); 2665 2666 /** 2667 * ib_init_ah_from_wc - Initializes address handle attributes from a 2668 * work completion. 2669 * @device: Device on which the received message arrived. 2670 * @port_num: Port on which the received message arrived. 2671 * @wc: Work completion associated with the received message. 2672 * @grh: References the received global route header. This parameter is 2673 * ignored unless the work completion indicates that the GRH is valid. 2674 * @ah_attr: Returned attributes that can be used when creating an address 2675 * handle for replying to the message. 2676 */ 2677 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, 2678 const struct ib_wc *wc, const struct ib_grh *grh, 2679 struct ib_ah_attr *ah_attr); 2680 2681 /** 2682 * ib_create_ah_from_wc - Creates an address handle associated with the 2683 * sender of the specified work completion. 2684 * @pd: The protection domain associated with the address handle. 2685 * @wc: Work completion information associated with a received message. 2686 * @grh: References the received global route header. This parameter is 2687 * ignored unless the work completion indicates that the GRH is valid. 2688 * @port_num: The outbound port number to associate with the address. 2689 * 2690 * The address handle is used to reference a local or global destination 2691 * in all UD QP post sends. 2692 */ 2693 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 2694 const struct ib_grh *grh, u8 port_num); 2695 2696 /** 2697 * ib_modify_ah - Modifies the address vector associated with an address 2698 * handle. 2699 * @ah: The address handle to modify. 2700 * @ah_attr: The new address vector attributes to associate with the 2701 * address handle. 2702 */ 2703 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 2704 2705 /** 2706 * ib_query_ah - Queries the address vector associated with an address 2707 * handle. 2708 * @ah: The address handle to query. 2709 * @ah_attr: The address vector attributes associated with the address 2710 * handle. 2711 */ 2712 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 2713 2714 /** 2715 * ib_destroy_ah - Destroys an address handle. 2716 * @ah: The address handle to destroy. 2717 */ 2718 int ib_destroy_ah(struct ib_ah *ah); 2719 2720 /** 2721 * ib_create_srq - Creates a SRQ associated with the specified protection 2722 * domain. 2723 * @pd: The protection domain associated with the SRQ. 2724 * @srq_init_attr: A list of initial attributes required to create the 2725 * SRQ. If SRQ creation succeeds, then the attributes are updated to 2726 * the actual capabilities of the created SRQ. 2727 * 2728 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 2729 * requested size of the SRQ, and set to the actual values allocated 2730 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 2731 * will always be at least as large as the requested values. 2732 */ 2733 struct ib_srq *ib_create_srq(struct ib_pd *pd, 2734 struct ib_srq_init_attr *srq_init_attr); 2735 2736 /** 2737 * ib_modify_srq - Modifies the attributes for the specified SRQ. 2738 * @srq: The SRQ to modify. 2739 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 2740 * the current values of selected SRQ attributes are returned. 2741 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 2742 * are being modified. 2743 * 2744 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 2745 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 2746 * the number of receives queued drops below the limit. 2747 */ 2748 int ib_modify_srq(struct ib_srq *srq, 2749 struct ib_srq_attr *srq_attr, 2750 enum ib_srq_attr_mask srq_attr_mask); 2751 2752 /** 2753 * ib_query_srq - Returns the attribute list and current values for the 2754 * specified SRQ. 2755 * @srq: The SRQ to query. 2756 * @srq_attr: The attributes of the specified SRQ. 2757 */ 2758 int ib_query_srq(struct ib_srq *srq, 2759 struct ib_srq_attr *srq_attr); 2760 2761 /** 2762 * ib_destroy_srq - Destroys the specified SRQ. 2763 * @srq: The SRQ to destroy. 2764 */ 2765 int ib_destroy_srq(struct ib_srq *srq); 2766 2767 /** 2768 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 2769 * @srq: The SRQ to post the work request on. 2770 * @recv_wr: A list of work requests to post on the receive queue. 2771 * @bad_recv_wr: On an immediate failure, this parameter will reference 2772 * the work request that failed to be posted on the QP. 2773 */ 2774 static inline int ib_post_srq_recv(struct ib_srq *srq, 2775 struct ib_recv_wr *recv_wr, 2776 struct ib_recv_wr **bad_recv_wr) 2777 { 2778 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr); 2779 } 2780 2781 /** 2782 * ib_create_qp - Creates a QP associated with the specified protection 2783 * domain. 2784 * @pd: The protection domain associated with the QP. 2785 * @qp_init_attr: A list of initial attributes required to create the 2786 * QP. If QP creation succeeds, then the attributes are updated to 2787 * the actual capabilities of the created QP. 2788 */ 2789 struct ib_qp *ib_create_qp(struct ib_pd *pd, 2790 struct ib_qp_init_attr *qp_init_attr); 2791 2792 /** 2793 * ib_modify_qp - Modifies the attributes for the specified QP and then 2794 * transitions the QP to the given state. 2795 * @qp: The QP to modify. 2796 * @qp_attr: On input, specifies the QP attributes to modify. On output, 2797 * the current values of selected QP attributes are returned. 2798 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 2799 * are being modified. 2800 */ 2801 int ib_modify_qp(struct ib_qp *qp, 2802 struct ib_qp_attr *qp_attr, 2803 int qp_attr_mask); 2804 2805 /** 2806 * ib_query_qp - Returns the attribute list and current values for the 2807 * specified QP. 2808 * @qp: The QP to query. 2809 * @qp_attr: The attributes of the specified QP. 2810 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 2811 * @qp_init_attr: Additional attributes of the selected QP. 2812 * 2813 * The qp_attr_mask may be used to limit the query to gathering only the 2814 * selected attributes. 2815 */ 2816 int ib_query_qp(struct ib_qp *qp, 2817 struct ib_qp_attr *qp_attr, 2818 int qp_attr_mask, 2819 struct ib_qp_init_attr *qp_init_attr); 2820 2821 /** 2822 * ib_destroy_qp - Destroys the specified QP. 2823 * @qp: The QP to destroy. 2824 */ 2825 int ib_destroy_qp(struct ib_qp *qp); 2826 2827 /** 2828 * ib_open_qp - Obtain a reference to an existing sharable QP. 2829 * @xrcd - XRC domain 2830 * @qp_open_attr: Attributes identifying the QP to open. 2831 * 2832 * Returns a reference to a sharable QP. 2833 */ 2834 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 2835 struct ib_qp_open_attr *qp_open_attr); 2836 2837 /** 2838 * ib_close_qp - Release an external reference to a QP. 2839 * @qp: The QP handle to release 2840 * 2841 * The opened QP handle is released by the caller. The underlying 2842 * shared QP is not destroyed until all internal references are released. 2843 */ 2844 int ib_close_qp(struct ib_qp *qp); 2845 2846 /** 2847 * ib_post_send - Posts a list of work requests to the send queue of 2848 * the specified QP. 2849 * @qp: The QP to post the work request on. 2850 * @send_wr: A list of work requests to post on the send queue. 2851 * @bad_send_wr: On an immediate failure, this parameter will reference 2852 * the work request that failed to be posted on the QP. 2853 * 2854 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 2855 * error is returned, the QP state shall not be affected, 2856 * ib_post_send() will return an immediate error after queueing any 2857 * earlier work requests in the list. 2858 */ 2859 static inline int ib_post_send(struct ib_qp *qp, 2860 struct ib_send_wr *send_wr, 2861 struct ib_send_wr **bad_send_wr) 2862 { 2863 return qp->device->post_send(qp, send_wr, bad_send_wr); 2864 } 2865 2866 /** 2867 * ib_post_recv - Posts a list of work requests to the receive queue of 2868 * the specified QP. 2869 * @qp: The QP to post the work request on. 2870 * @recv_wr: A list of work requests to post on the receive queue. 2871 * @bad_recv_wr: On an immediate failure, this parameter will reference 2872 * the work request that failed to be posted on the QP. 2873 */ 2874 static inline int ib_post_recv(struct ib_qp *qp, 2875 struct ib_recv_wr *recv_wr, 2876 struct ib_recv_wr **bad_recv_wr) 2877 { 2878 return qp->device->post_recv(qp, recv_wr, bad_recv_wr); 2879 } 2880 2881 struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private, 2882 int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx); 2883 void ib_free_cq(struct ib_cq *cq); 2884 int ib_process_cq_direct(struct ib_cq *cq, int budget); 2885 2886 /** 2887 * ib_create_cq - Creates a CQ on the specified device. 2888 * @device: The device on which to create the CQ. 2889 * @comp_handler: A user-specified callback that is invoked when a 2890 * completion event occurs on the CQ. 2891 * @event_handler: A user-specified callback that is invoked when an 2892 * asynchronous event not associated with a completion occurs on the CQ. 2893 * @cq_context: Context associated with the CQ returned to the user via 2894 * the associated completion and event handlers. 2895 * @cq_attr: The attributes the CQ should be created upon. 2896 * 2897 * Users can examine the cq structure to determine the actual CQ size. 2898 */ 2899 struct ib_cq *ib_create_cq(struct ib_device *device, 2900 ib_comp_handler comp_handler, 2901 void (*event_handler)(struct ib_event *, void *), 2902 void *cq_context, 2903 const struct ib_cq_init_attr *cq_attr); 2904 2905 /** 2906 * ib_resize_cq - Modifies the capacity of the CQ. 2907 * @cq: The CQ to resize. 2908 * @cqe: The minimum size of the CQ. 2909 * 2910 * Users can examine the cq structure to determine the actual CQ size. 2911 */ 2912 int ib_resize_cq(struct ib_cq *cq, int cqe); 2913 2914 /** 2915 * ib_modify_cq - Modifies moderation params of the CQ 2916 * @cq: The CQ to modify. 2917 * @cq_count: number of CQEs that will trigger an event 2918 * @cq_period: max period of time in usec before triggering an event 2919 * 2920 */ 2921 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period); 2922 2923 /** 2924 * ib_destroy_cq - Destroys the specified CQ. 2925 * @cq: The CQ to destroy. 2926 */ 2927 int ib_destroy_cq(struct ib_cq *cq); 2928 2929 /** 2930 * ib_poll_cq - poll a CQ for completion(s) 2931 * @cq:the CQ being polled 2932 * @num_entries:maximum number of completions to return 2933 * @wc:array of at least @num_entries &struct ib_wc where completions 2934 * will be returned 2935 * 2936 * Poll a CQ for (possibly multiple) completions. If the return value 2937 * is < 0, an error occurred. If the return value is >= 0, it is the 2938 * number of completions returned. If the return value is 2939 * non-negative and < num_entries, then the CQ was emptied. 2940 */ 2941 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 2942 struct ib_wc *wc) 2943 { 2944 return cq->device->poll_cq(cq, num_entries, wc); 2945 } 2946 2947 /** 2948 * ib_peek_cq - Returns the number of unreaped completions currently 2949 * on the specified CQ. 2950 * @cq: The CQ to peek. 2951 * @wc_cnt: A minimum number of unreaped completions to check for. 2952 * 2953 * If the number of unreaped completions is greater than or equal to wc_cnt, 2954 * this function returns wc_cnt, otherwise, it returns the actual number of 2955 * unreaped completions. 2956 */ 2957 int ib_peek_cq(struct ib_cq *cq, int wc_cnt); 2958 2959 /** 2960 * ib_req_notify_cq - Request completion notification on a CQ. 2961 * @cq: The CQ to generate an event for. 2962 * @flags: 2963 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 2964 * to request an event on the next solicited event or next work 2965 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 2966 * may also be |ed in to request a hint about missed events, as 2967 * described below. 2968 * 2969 * Return Value: 2970 * < 0 means an error occurred while requesting notification 2971 * == 0 means notification was requested successfully, and if 2972 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 2973 * were missed and it is safe to wait for another event. In 2974 * this case is it guaranteed that any work completions added 2975 * to the CQ since the last CQ poll will trigger a completion 2976 * notification event. 2977 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 2978 * in. It means that the consumer must poll the CQ again to 2979 * make sure it is empty to avoid missing an event because of a 2980 * race between requesting notification and an entry being 2981 * added to the CQ. This return value means it is possible 2982 * (but not guaranteed) that a work completion has been added 2983 * to the CQ since the last poll without triggering a 2984 * completion notification event. 2985 */ 2986 static inline int ib_req_notify_cq(struct ib_cq *cq, 2987 enum ib_cq_notify_flags flags) 2988 { 2989 return cq->device->req_notify_cq(cq, flags); 2990 } 2991 2992 /** 2993 * ib_req_ncomp_notif - Request completion notification when there are 2994 * at least the specified number of unreaped completions on the CQ. 2995 * @cq: The CQ to generate an event for. 2996 * @wc_cnt: The number of unreaped completions that should be on the 2997 * CQ before an event is generated. 2998 */ 2999 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 3000 { 3001 return cq->device->req_ncomp_notif ? 3002 cq->device->req_ncomp_notif(cq, wc_cnt) : 3003 -ENOSYS; 3004 } 3005 3006 /** 3007 * ib_dma_mapping_error - check a DMA addr for error 3008 * @dev: The device for which the dma_addr was created 3009 * @dma_addr: The DMA address to check 3010 */ 3011 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 3012 { 3013 return dma_mapping_error(dev->dma_device, dma_addr); 3014 } 3015 3016 /** 3017 * ib_dma_map_single - Map a kernel virtual address to DMA address 3018 * @dev: The device for which the dma_addr is to be created 3019 * @cpu_addr: The kernel virtual address 3020 * @size: The size of the region in bytes 3021 * @direction: The direction of the DMA 3022 */ 3023 static inline u64 ib_dma_map_single(struct ib_device *dev, 3024 void *cpu_addr, size_t size, 3025 enum dma_data_direction direction) 3026 { 3027 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 3028 } 3029 3030 /** 3031 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 3032 * @dev: The device for which the DMA address was created 3033 * @addr: The DMA address 3034 * @size: The size of the region in bytes 3035 * @direction: The direction of the DMA 3036 */ 3037 static inline void ib_dma_unmap_single(struct ib_device *dev, 3038 u64 addr, size_t size, 3039 enum dma_data_direction direction) 3040 { 3041 dma_unmap_single(dev->dma_device, addr, size, direction); 3042 } 3043 3044 /** 3045 * ib_dma_map_page - Map a physical page to DMA address 3046 * @dev: The device for which the dma_addr is to be created 3047 * @page: The page to be mapped 3048 * @offset: The offset within the page 3049 * @size: The size of the region in bytes 3050 * @direction: The direction of the DMA 3051 */ 3052 static inline u64 ib_dma_map_page(struct ib_device *dev, 3053 struct page *page, 3054 unsigned long offset, 3055 size_t size, 3056 enum dma_data_direction direction) 3057 { 3058 return dma_map_page(dev->dma_device, page, offset, size, direction); 3059 } 3060 3061 /** 3062 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 3063 * @dev: The device for which the DMA address was created 3064 * @addr: The DMA address 3065 * @size: The size of the region in bytes 3066 * @direction: The direction of the DMA 3067 */ 3068 static inline void ib_dma_unmap_page(struct ib_device *dev, 3069 u64 addr, size_t size, 3070 enum dma_data_direction direction) 3071 { 3072 dma_unmap_page(dev->dma_device, addr, size, direction); 3073 } 3074 3075 /** 3076 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 3077 * @dev: The device for which the DMA addresses are to be created 3078 * @sg: The array of scatter/gather entries 3079 * @nents: The number of scatter/gather entries 3080 * @direction: The direction of the DMA 3081 */ 3082 static inline int ib_dma_map_sg(struct ib_device *dev, 3083 struct scatterlist *sg, int nents, 3084 enum dma_data_direction direction) 3085 { 3086 return dma_map_sg(dev->dma_device, sg, nents, direction); 3087 } 3088 3089 /** 3090 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 3091 * @dev: The device for which the DMA addresses were created 3092 * @sg: The array of scatter/gather entries 3093 * @nents: The number of scatter/gather entries 3094 * @direction: The direction of the DMA 3095 */ 3096 static inline void ib_dma_unmap_sg(struct ib_device *dev, 3097 struct scatterlist *sg, int nents, 3098 enum dma_data_direction direction) 3099 { 3100 dma_unmap_sg(dev->dma_device, sg, nents, direction); 3101 } 3102 3103 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 3104 struct scatterlist *sg, int nents, 3105 enum dma_data_direction direction, 3106 unsigned long dma_attrs) 3107 { 3108 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, 3109 dma_attrs); 3110 } 3111 3112 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 3113 struct scatterlist *sg, int nents, 3114 enum dma_data_direction direction, 3115 unsigned long dma_attrs) 3116 { 3117 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs); 3118 } 3119 /** 3120 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry 3121 * @dev: The device for which the DMA addresses were created 3122 * @sg: The scatter/gather entry 3123 * 3124 * Note: this function is obsolete. To do: change all occurrences of 3125 * ib_sg_dma_address() into sg_dma_address(). 3126 */ 3127 static inline u64 ib_sg_dma_address(struct ib_device *dev, 3128 struct scatterlist *sg) 3129 { 3130 return sg_dma_address(sg); 3131 } 3132 3133 /** 3134 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry 3135 * @dev: The device for which the DMA addresses were created 3136 * @sg: The scatter/gather entry 3137 * 3138 * Note: this function is obsolete. To do: change all occurrences of 3139 * ib_sg_dma_len() into sg_dma_len(). 3140 */ 3141 static inline unsigned int ib_sg_dma_len(struct ib_device *dev, 3142 struct scatterlist *sg) 3143 { 3144 return sg_dma_len(sg); 3145 } 3146 3147 /** 3148 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 3149 * @dev: The device for which the DMA address was created 3150 * @addr: The DMA address 3151 * @size: The size of the region in bytes 3152 * @dir: The direction of the DMA 3153 */ 3154 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 3155 u64 addr, 3156 size_t size, 3157 enum dma_data_direction dir) 3158 { 3159 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 3160 } 3161 3162 /** 3163 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 3164 * @dev: The device for which the DMA address was created 3165 * @addr: The DMA address 3166 * @size: The size of the region in bytes 3167 * @dir: The direction of the DMA 3168 */ 3169 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 3170 u64 addr, 3171 size_t size, 3172 enum dma_data_direction dir) 3173 { 3174 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 3175 } 3176 3177 /** 3178 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 3179 * @dev: The device for which the DMA address is requested 3180 * @size: The size of the region to allocate in bytes 3181 * @dma_handle: A pointer for returning the DMA address of the region 3182 * @flag: memory allocator flags 3183 */ 3184 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 3185 size_t size, 3186 dma_addr_t *dma_handle, 3187 gfp_t flag) 3188 { 3189 return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag); 3190 } 3191 3192 /** 3193 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 3194 * @dev: The device for which the DMA addresses were allocated 3195 * @size: The size of the region 3196 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 3197 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 3198 */ 3199 static inline void ib_dma_free_coherent(struct ib_device *dev, 3200 size_t size, void *cpu_addr, 3201 dma_addr_t dma_handle) 3202 { 3203 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 3204 } 3205 3206 /** 3207 * ib_dereg_mr - Deregisters a memory region and removes it from the 3208 * HCA translation table. 3209 * @mr: The memory region to deregister. 3210 * 3211 * This function can fail, if the memory region has memory windows bound to it. 3212 */ 3213 int ib_dereg_mr(struct ib_mr *mr); 3214 3215 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, 3216 enum ib_mr_type mr_type, 3217 u32 max_num_sg); 3218 3219 /** 3220 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 3221 * R_Key and L_Key. 3222 * @mr - struct ib_mr pointer to be updated. 3223 * @newkey - new key to be used. 3224 */ 3225 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 3226 { 3227 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 3228 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 3229 } 3230 3231 /** 3232 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 3233 * for calculating a new rkey for type 2 memory windows. 3234 * @rkey - the rkey to increment. 3235 */ 3236 static inline u32 ib_inc_rkey(u32 rkey) 3237 { 3238 const u32 mask = 0x000000ff; 3239 return ((rkey + 1) & mask) | (rkey & ~mask); 3240 } 3241 3242 /** 3243 * ib_alloc_fmr - Allocates a unmapped fast memory region. 3244 * @pd: The protection domain associated with the unmapped region. 3245 * @mr_access_flags: Specifies the memory access rights. 3246 * @fmr_attr: Attributes of the unmapped region. 3247 * 3248 * A fast memory region must be mapped before it can be used as part of 3249 * a work request. 3250 */ 3251 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 3252 int mr_access_flags, 3253 struct ib_fmr_attr *fmr_attr); 3254 3255 /** 3256 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 3257 * @fmr: The fast memory region to associate with the pages. 3258 * @page_list: An array of physical pages to map to the fast memory region. 3259 * @list_len: The number of pages in page_list. 3260 * @iova: The I/O virtual address to use with the mapped region. 3261 */ 3262 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 3263 u64 *page_list, int list_len, 3264 u64 iova) 3265 { 3266 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); 3267 } 3268 3269 /** 3270 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 3271 * @fmr_list: A linked list of fast memory regions to unmap. 3272 */ 3273 int ib_unmap_fmr(struct list_head *fmr_list); 3274 3275 /** 3276 * ib_dealloc_fmr - Deallocates a fast memory region. 3277 * @fmr: The fast memory region to deallocate. 3278 */ 3279 int ib_dealloc_fmr(struct ib_fmr *fmr); 3280 3281 /** 3282 * ib_attach_mcast - Attaches the specified QP to a multicast group. 3283 * @qp: QP to attach to the multicast group. The QP must be type 3284 * IB_QPT_UD. 3285 * @gid: Multicast group GID. 3286 * @lid: Multicast group LID in host byte order. 3287 * 3288 * In order to send and receive multicast packets, subnet 3289 * administration must have created the multicast group and configured 3290 * the fabric appropriately. The port associated with the specified 3291 * QP must also be a member of the multicast group. 3292 */ 3293 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3294 3295 /** 3296 * ib_detach_mcast - Detaches the specified QP from a multicast group. 3297 * @qp: QP to detach from the multicast group. 3298 * @gid: Multicast group GID. 3299 * @lid: Multicast group LID in host byte order. 3300 */ 3301 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3302 3303 /** 3304 * ib_alloc_xrcd - Allocates an XRC domain. 3305 * @device: The device on which to allocate the XRC domain. 3306 */ 3307 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device); 3308 3309 /** 3310 * ib_dealloc_xrcd - Deallocates an XRC domain. 3311 * @xrcd: The XRC domain to deallocate. 3312 */ 3313 int ib_dealloc_xrcd(struct ib_xrcd *xrcd); 3314 3315 struct ib_flow *ib_create_flow(struct ib_qp *qp, 3316 struct ib_flow_attr *flow_attr, int domain); 3317 int ib_destroy_flow(struct ib_flow *flow_id); 3318 3319 static inline int ib_check_mr_access(int flags) 3320 { 3321 /* 3322 * Local write permission is required if remote write or 3323 * remote atomic permission is also requested. 3324 */ 3325 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 3326 !(flags & IB_ACCESS_LOCAL_WRITE)) 3327 return -EINVAL; 3328 3329 return 0; 3330 } 3331 3332 /** 3333 * ib_check_mr_status: lightweight check of MR status. 3334 * This routine may provide status checks on a selected 3335 * ib_mr. first use is for signature status check. 3336 * 3337 * @mr: A memory region. 3338 * @check_mask: Bitmask of which checks to perform from 3339 * ib_mr_status_check enumeration. 3340 * @mr_status: The container of relevant status checks. 3341 * failed checks will be indicated in the status bitmask 3342 * and the relevant info shall be in the error item. 3343 */ 3344 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 3345 struct ib_mr_status *mr_status); 3346 3347 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port, 3348 u16 pkey, const union ib_gid *gid, 3349 const struct sockaddr *addr); 3350 struct ib_wq *ib_create_wq(struct ib_pd *pd, 3351 struct ib_wq_init_attr *init_attr); 3352 int ib_destroy_wq(struct ib_wq *wq); 3353 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr, 3354 u32 wq_attr_mask); 3355 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device, 3356 struct ib_rwq_ind_table_init_attr* 3357 wq_ind_table_init_attr); 3358 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table); 3359 3360 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3361 unsigned int *sg_offset, unsigned int page_size); 3362 3363 static inline int 3364 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3365 unsigned int *sg_offset, unsigned int page_size) 3366 { 3367 int n; 3368 3369 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size); 3370 mr->iova = 0; 3371 3372 return n; 3373 } 3374 3375 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 3376 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64)); 3377 3378 void ib_drain_rq(struct ib_qp *qp); 3379 void ib_drain_sq(struct ib_qp *qp); 3380 void ib_drain_qp(struct ib_qp *qp); 3381 3382 int ib_resolve_eth_dmac(struct ib_device *device, 3383 struct ib_ah_attr *ah_attr); 3384 #endif /* IB_VERBS_H */ 3385