xref: /openbmc/linux/include/rdma/ib_verbs.h (revision f6723b56)
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38 
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41 
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
51 #include <uapi/linux/if_ether.h>
52 
53 #include <linux/atomic.h>
54 #include <asm/uaccess.h>
55 
56 extern struct workqueue_struct *ib_wq;
57 
58 union ib_gid {
59 	u8	raw[16];
60 	struct {
61 		__be64	subnet_prefix;
62 		__be64	interface_id;
63 	} global;
64 };
65 
66 enum rdma_node_type {
67 	/* IB values map to NodeInfo:NodeType. */
68 	RDMA_NODE_IB_CA 	= 1,
69 	RDMA_NODE_IB_SWITCH,
70 	RDMA_NODE_IB_ROUTER,
71 	RDMA_NODE_RNIC,
72 	RDMA_NODE_USNIC,
73 	RDMA_NODE_USNIC_UDP,
74 };
75 
76 enum rdma_transport_type {
77 	RDMA_TRANSPORT_IB,
78 	RDMA_TRANSPORT_IWARP,
79 	RDMA_TRANSPORT_USNIC,
80 	RDMA_TRANSPORT_USNIC_UDP
81 };
82 
83 enum rdma_transport_type
84 rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__;
85 
86 enum rdma_link_layer {
87 	IB_LINK_LAYER_UNSPECIFIED,
88 	IB_LINK_LAYER_INFINIBAND,
89 	IB_LINK_LAYER_ETHERNET,
90 };
91 
92 enum ib_device_cap_flags {
93 	IB_DEVICE_RESIZE_MAX_WR		= 1,
94 	IB_DEVICE_BAD_PKEY_CNTR		= (1<<1),
95 	IB_DEVICE_BAD_QKEY_CNTR		= (1<<2),
96 	IB_DEVICE_RAW_MULTI		= (1<<3),
97 	IB_DEVICE_AUTO_PATH_MIG		= (1<<4),
98 	IB_DEVICE_CHANGE_PHY_PORT	= (1<<5),
99 	IB_DEVICE_UD_AV_PORT_ENFORCE	= (1<<6),
100 	IB_DEVICE_CURR_QP_STATE_MOD	= (1<<7),
101 	IB_DEVICE_SHUTDOWN_PORT		= (1<<8),
102 	IB_DEVICE_INIT_TYPE		= (1<<9),
103 	IB_DEVICE_PORT_ACTIVE_EVENT	= (1<<10),
104 	IB_DEVICE_SYS_IMAGE_GUID	= (1<<11),
105 	IB_DEVICE_RC_RNR_NAK_GEN	= (1<<12),
106 	IB_DEVICE_SRQ_RESIZE		= (1<<13),
107 	IB_DEVICE_N_NOTIFY_CQ		= (1<<14),
108 	IB_DEVICE_LOCAL_DMA_LKEY	= (1<<15),
109 	IB_DEVICE_RESERVED		= (1<<16), /* old SEND_W_INV */
110 	IB_DEVICE_MEM_WINDOW		= (1<<17),
111 	/*
112 	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
113 	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
114 	 * messages and can verify the validity of checksum for
115 	 * incoming messages.  Setting this flag implies that the
116 	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
117 	 */
118 	IB_DEVICE_UD_IP_CSUM		= (1<<18),
119 	IB_DEVICE_UD_TSO		= (1<<19),
120 	IB_DEVICE_XRC			= (1<<20),
121 	IB_DEVICE_MEM_MGT_EXTENSIONS	= (1<<21),
122 	IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
123 	IB_DEVICE_MEM_WINDOW_TYPE_2A	= (1<<23),
124 	IB_DEVICE_MEM_WINDOW_TYPE_2B	= (1<<24),
125 	IB_DEVICE_MANAGED_FLOW_STEERING = (1<<29)
126 };
127 
128 enum ib_atomic_cap {
129 	IB_ATOMIC_NONE,
130 	IB_ATOMIC_HCA,
131 	IB_ATOMIC_GLOB
132 };
133 
134 struct ib_device_attr {
135 	u64			fw_ver;
136 	__be64			sys_image_guid;
137 	u64			max_mr_size;
138 	u64			page_size_cap;
139 	u32			vendor_id;
140 	u32			vendor_part_id;
141 	u32			hw_ver;
142 	int			max_qp;
143 	int			max_qp_wr;
144 	int			device_cap_flags;
145 	int			max_sge;
146 	int			max_sge_rd;
147 	int			max_cq;
148 	int			max_cqe;
149 	int			max_mr;
150 	int			max_pd;
151 	int			max_qp_rd_atom;
152 	int			max_ee_rd_atom;
153 	int			max_res_rd_atom;
154 	int			max_qp_init_rd_atom;
155 	int			max_ee_init_rd_atom;
156 	enum ib_atomic_cap	atomic_cap;
157 	enum ib_atomic_cap	masked_atomic_cap;
158 	int			max_ee;
159 	int			max_rdd;
160 	int			max_mw;
161 	int			max_raw_ipv6_qp;
162 	int			max_raw_ethy_qp;
163 	int			max_mcast_grp;
164 	int			max_mcast_qp_attach;
165 	int			max_total_mcast_qp_attach;
166 	int			max_ah;
167 	int			max_fmr;
168 	int			max_map_per_fmr;
169 	int			max_srq;
170 	int			max_srq_wr;
171 	int			max_srq_sge;
172 	unsigned int		max_fast_reg_page_list_len;
173 	u16			max_pkeys;
174 	u8			local_ca_ack_delay;
175 };
176 
177 enum ib_mtu {
178 	IB_MTU_256  = 1,
179 	IB_MTU_512  = 2,
180 	IB_MTU_1024 = 3,
181 	IB_MTU_2048 = 4,
182 	IB_MTU_4096 = 5
183 };
184 
185 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
186 {
187 	switch (mtu) {
188 	case IB_MTU_256:  return  256;
189 	case IB_MTU_512:  return  512;
190 	case IB_MTU_1024: return 1024;
191 	case IB_MTU_2048: return 2048;
192 	case IB_MTU_4096: return 4096;
193 	default: 	  return -1;
194 	}
195 }
196 
197 enum ib_port_state {
198 	IB_PORT_NOP		= 0,
199 	IB_PORT_DOWN		= 1,
200 	IB_PORT_INIT		= 2,
201 	IB_PORT_ARMED		= 3,
202 	IB_PORT_ACTIVE		= 4,
203 	IB_PORT_ACTIVE_DEFER	= 5
204 };
205 
206 enum ib_port_cap_flags {
207 	IB_PORT_SM				= 1 <<  1,
208 	IB_PORT_NOTICE_SUP			= 1 <<  2,
209 	IB_PORT_TRAP_SUP			= 1 <<  3,
210 	IB_PORT_OPT_IPD_SUP                     = 1 <<  4,
211 	IB_PORT_AUTO_MIGR_SUP			= 1 <<  5,
212 	IB_PORT_SL_MAP_SUP			= 1 <<  6,
213 	IB_PORT_MKEY_NVRAM			= 1 <<  7,
214 	IB_PORT_PKEY_NVRAM			= 1 <<  8,
215 	IB_PORT_LED_INFO_SUP			= 1 <<  9,
216 	IB_PORT_SM_DISABLED			= 1 << 10,
217 	IB_PORT_SYS_IMAGE_GUID_SUP		= 1 << 11,
218 	IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP	= 1 << 12,
219 	IB_PORT_EXTENDED_SPEEDS_SUP             = 1 << 14,
220 	IB_PORT_CM_SUP				= 1 << 16,
221 	IB_PORT_SNMP_TUNNEL_SUP			= 1 << 17,
222 	IB_PORT_REINIT_SUP			= 1 << 18,
223 	IB_PORT_DEVICE_MGMT_SUP			= 1 << 19,
224 	IB_PORT_VENDOR_CLASS_SUP		= 1 << 20,
225 	IB_PORT_DR_NOTICE_SUP			= 1 << 21,
226 	IB_PORT_CAP_MASK_NOTICE_SUP		= 1 << 22,
227 	IB_PORT_BOOT_MGMT_SUP			= 1 << 23,
228 	IB_PORT_LINK_LATENCY_SUP		= 1 << 24,
229 	IB_PORT_CLIENT_REG_SUP			= 1 << 25,
230 	IB_PORT_IP_BASED_GIDS			= 1 << 26
231 };
232 
233 enum ib_port_width {
234 	IB_WIDTH_1X	= 1,
235 	IB_WIDTH_4X	= 2,
236 	IB_WIDTH_8X	= 4,
237 	IB_WIDTH_12X	= 8
238 };
239 
240 static inline int ib_width_enum_to_int(enum ib_port_width width)
241 {
242 	switch (width) {
243 	case IB_WIDTH_1X:  return  1;
244 	case IB_WIDTH_4X:  return  4;
245 	case IB_WIDTH_8X:  return  8;
246 	case IB_WIDTH_12X: return 12;
247 	default: 	  return -1;
248 	}
249 }
250 
251 enum ib_port_speed {
252 	IB_SPEED_SDR	= 1,
253 	IB_SPEED_DDR	= 2,
254 	IB_SPEED_QDR	= 4,
255 	IB_SPEED_FDR10	= 8,
256 	IB_SPEED_FDR	= 16,
257 	IB_SPEED_EDR	= 32
258 };
259 
260 struct ib_protocol_stats {
261 	/* TBD... */
262 };
263 
264 struct iw_protocol_stats {
265 	u64	ipInReceives;
266 	u64	ipInHdrErrors;
267 	u64	ipInTooBigErrors;
268 	u64	ipInNoRoutes;
269 	u64	ipInAddrErrors;
270 	u64	ipInUnknownProtos;
271 	u64	ipInTruncatedPkts;
272 	u64	ipInDiscards;
273 	u64	ipInDelivers;
274 	u64	ipOutForwDatagrams;
275 	u64	ipOutRequests;
276 	u64	ipOutDiscards;
277 	u64	ipOutNoRoutes;
278 	u64	ipReasmTimeout;
279 	u64	ipReasmReqds;
280 	u64	ipReasmOKs;
281 	u64	ipReasmFails;
282 	u64	ipFragOKs;
283 	u64	ipFragFails;
284 	u64	ipFragCreates;
285 	u64	ipInMcastPkts;
286 	u64	ipOutMcastPkts;
287 	u64	ipInBcastPkts;
288 	u64	ipOutBcastPkts;
289 
290 	u64	tcpRtoAlgorithm;
291 	u64	tcpRtoMin;
292 	u64	tcpRtoMax;
293 	u64	tcpMaxConn;
294 	u64	tcpActiveOpens;
295 	u64	tcpPassiveOpens;
296 	u64	tcpAttemptFails;
297 	u64	tcpEstabResets;
298 	u64	tcpCurrEstab;
299 	u64	tcpInSegs;
300 	u64	tcpOutSegs;
301 	u64	tcpRetransSegs;
302 	u64	tcpInErrs;
303 	u64	tcpOutRsts;
304 };
305 
306 union rdma_protocol_stats {
307 	struct ib_protocol_stats	ib;
308 	struct iw_protocol_stats	iw;
309 };
310 
311 struct ib_port_attr {
312 	enum ib_port_state	state;
313 	enum ib_mtu		max_mtu;
314 	enum ib_mtu		active_mtu;
315 	int			gid_tbl_len;
316 	u32			port_cap_flags;
317 	u32			max_msg_sz;
318 	u32			bad_pkey_cntr;
319 	u32			qkey_viol_cntr;
320 	u16			pkey_tbl_len;
321 	u16			lid;
322 	u16			sm_lid;
323 	u8			lmc;
324 	u8			max_vl_num;
325 	u8			sm_sl;
326 	u8			subnet_timeout;
327 	u8			init_type_reply;
328 	u8			active_width;
329 	u8			active_speed;
330 	u8                      phys_state;
331 };
332 
333 enum ib_device_modify_flags {
334 	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
335 	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
336 };
337 
338 struct ib_device_modify {
339 	u64	sys_image_guid;
340 	char	node_desc[64];
341 };
342 
343 enum ib_port_modify_flags {
344 	IB_PORT_SHUTDOWN		= 1,
345 	IB_PORT_INIT_TYPE		= (1<<2),
346 	IB_PORT_RESET_QKEY_CNTR		= (1<<3)
347 };
348 
349 struct ib_port_modify {
350 	u32	set_port_cap_mask;
351 	u32	clr_port_cap_mask;
352 	u8	init_type;
353 };
354 
355 enum ib_event_type {
356 	IB_EVENT_CQ_ERR,
357 	IB_EVENT_QP_FATAL,
358 	IB_EVENT_QP_REQ_ERR,
359 	IB_EVENT_QP_ACCESS_ERR,
360 	IB_EVENT_COMM_EST,
361 	IB_EVENT_SQ_DRAINED,
362 	IB_EVENT_PATH_MIG,
363 	IB_EVENT_PATH_MIG_ERR,
364 	IB_EVENT_DEVICE_FATAL,
365 	IB_EVENT_PORT_ACTIVE,
366 	IB_EVENT_PORT_ERR,
367 	IB_EVENT_LID_CHANGE,
368 	IB_EVENT_PKEY_CHANGE,
369 	IB_EVENT_SM_CHANGE,
370 	IB_EVENT_SRQ_ERR,
371 	IB_EVENT_SRQ_LIMIT_REACHED,
372 	IB_EVENT_QP_LAST_WQE_REACHED,
373 	IB_EVENT_CLIENT_REREGISTER,
374 	IB_EVENT_GID_CHANGE,
375 };
376 
377 struct ib_event {
378 	struct ib_device	*device;
379 	union {
380 		struct ib_cq	*cq;
381 		struct ib_qp	*qp;
382 		struct ib_srq	*srq;
383 		u8		port_num;
384 	} element;
385 	enum ib_event_type	event;
386 };
387 
388 struct ib_event_handler {
389 	struct ib_device *device;
390 	void            (*handler)(struct ib_event_handler *, struct ib_event *);
391 	struct list_head  list;
392 };
393 
394 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
395 	do {							\
396 		(_ptr)->device  = _device;			\
397 		(_ptr)->handler = _handler;			\
398 		INIT_LIST_HEAD(&(_ptr)->list);			\
399 	} while (0)
400 
401 struct ib_global_route {
402 	union ib_gid	dgid;
403 	u32		flow_label;
404 	u8		sgid_index;
405 	u8		hop_limit;
406 	u8		traffic_class;
407 };
408 
409 struct ib_grh {
410 	__be32		version_tclass_flow;
411 	__be16		paylen;
412 	u8		next_hdr;
413 	u8		hop_limit;
414 	union ib_gid	sgid;
415 	union ib_gid	dgid;
416 };
417 
418 enum {
419 	IB_MULTICAST_QPN = 0xffffff
420 };
421 
422 #define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
423 
424 enum ib_ah_flags {
425 	IB_AH_GRH	= 1
426 };
427 
428 enum ib_rate {
429 	IB_RATE_PORT_CURRENT = 0,
430 	IB_RATE_2_5_GBPS = 2,
431 	IB_RATE_5_GBPS   = 5,
432 	IB_RATE_10_GBPS  = 3,
433 	IB_RATE_20_GBPS  = 6,
434 	IB_RATE_30_GBPS  = 4,
435 	IB_RATE_40_GBPS  = 7,
436 	IB_RATE_60_GBPS  = 8,
437 	IB_RATE_80_GBPS  = 9,
438 	IB_RATE_120_GBPS = 10,
439 	IB_RATE_14_GBPS  = 11,
440 	IB_RATE_56_GBPS  = 12,
441 	IB_RATE_112_GBPS = 13,
442 	IB_RATE_168_GBPS = 14,
443 	IB_RATE_25_GBPS  = 15,
444 	IB_RATE_100_GBPS = 16,
445 	IB_RATE_200_GBPS = 17,
446 	IB_RATE_300_GBPS = 18
447 };
448 
449 /**
450  * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
451  * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
452  * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
453  * @rate: rate to convert.
454  */
455 int ib_rate_to_mult(enum ib_rate rate) __attribute_const__;
456 
457 /**
458  * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
459  * For example, IB_RATE_2_5_GBPS will be converted to 2500.
460  * @rate: rate to convert.
461  */
462 int ib_rate_to_mbps(enum ib_rate rate) __attribute_const__;
463 
464 /**
465  * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
466  * enum.
467  * @mult: multiple to convert.
468  */
469 enum ib_rate mult_to_ib_rate(int mult) __attribute_const__;
470 
471 struct ib_ah_attr {
472 	struct ib_global_route	grh;
473 	u16			dlid;
474 	u8			sl;
475 	u8			src_path_bits;
476 	u8			static_rate;
477 	u8			ah_flags;
478 	u8			port_num;
479 	u8			dmac[ETH_ALEN];
480 	u16			vlan_id;
481 };
482 
483 enum ib_wc_status {
484 	IB_WC_SUCCESS,
485 	IB_WC_LOC_LEN_ERR,
486 	IB_WC_LOC_QP_OP_ERR,
487 	IB_WC_LOC_EEC_OP_ERR,
488 	IB_WC_LOC_PROT_ERR,
489 	IB_WC_WR_FLUSH_ERR,
490 	IB_WC_MW_BIND_ERR,
491 	IB_WC_BAD_RESP_ERR,
492 	IB_WC_LOC_ACCESS_ERR,
493 	IB_WC_REM_INV_REQ_ERR,
494 	IB_WC_REM_ACCESS_ERR,
495 	IB_WC_REM_OP_ERR,
496 	IB_WC_RETRY_EXC_ERR,
497 	IB_WC_RNR_RETRY_EXC_ERR,
498 	IB_WC_LOC_RDD_VIOL_ERR,
499 	IB_WC_REM_INV_RD_REQ_ERR,
500 	IB_WC_REM_ABORT_ERR,
501 	IB_WC_INV_EECN_ERR,
502 	IB_WC_INV_EEC_STATE_ERR,
503 	IB_WC_FATAL_ERR,
504 	IB_WC_RESP_TIMEOUT_ERR,
505 	IB_WC_GENERAL_ERR
506 };
507 
508 enum ib_wc_opcode {
509 	IB_WC_SEND,
510 	IB_WC_RDMA_WRITE,
511 	IB_WC_RDMA_READ,
512 	IB_WC_COMP_SWAP,
513 	IB_WC_FETCH_ADD,
514 	IB_WC_BIND_MW,
515 	IB_WC_LSO,
516 	IB_WC_LOCAL_INV,
517 	IB_WC_FAST_REG_MR,
518 	IB_WC_MASKED_COMP_SWAP,
519 	IB_WC_MASKED_FETCH_ADD,
520 /*
521  * Set value of IB_WC_RECV so consumers can test if a completion is a
522  * receive by testing (opcode & IB_WC_RECV).
523  */
524 	IB_WC_RECV			= 1 << 7,
525 	IB_WC_RECV_RDMA_WITH_IMM
526 };
527 
528 enum ib_wc_flags {
529 	IB_WC_GRH		= 1,
530 	IB_WC_WITH_IMM		= (1<<1),
531 	IB_WC_WITH_INVALIDATE	= (1<<2),
532 	IB_WC_IP_CSUM_OK	= (1<<3),
533 	IB_WC_WITH_SMAC		= (1<<4),
534 	IB_WC_WITH_VLAN		= (1<<5),
535 };
536 
537 struct ib_wc {
538 	u64			wr_id;
539 	enum ib_wc_status	status;
540 	enum ib_wc_opcode	opcode;
541 	u32			vendor_err;
542 	u32			byte_len;
543 	struct ib_qp	       *qp;
544 	union {
545 		__be32		imm_data;
546 		u32		invalidate_rkey;
547 	} ex;
548 	u32			src_qp;
549 	int			wc_flags;
550 	u16			pkey_index;
551 	u16			slid;
552 	u8			sl;
553 	u8			dlid_path_bits;
554 	u8			port_num;	/* valid only for DR SMPs on switches */
555 	u8			smac[ETH_ALEN];
556 	u16			vlan_id;
557 };
558 
559 enum ib_cq_notify_flags {
560 	IB_CQ_SOLICITED			= 1 << 0,
561 	IB_CQ_NEXT_COMP			= 1 << 1,
562 	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
563 	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
564 };
565 
566 enum ib_srq_type {
567 	IB_SRQT_BASIC,
568 	IB_SRQT_XRC
569 };
570 
571 enum ib_srq_attr_mask {
572 	IB_SRQ_MAX_WR	= 1 << 0,
573 	IB_SRQ_LIMIT	= 1 << 1,
574 };
575 
576 struct ib_srq_attr {
577 	u32	max_wr;
578 	u32	max_sge;
579 	u32	srq_limit;
580 };
581 
582 struct ib_srq_init_attr {
583 	void		      (*event_handler)(struct ib_event *, void *);
584 	void		       *srq_context;
585 	struct ib_srq_attr	attr;
586 	enum ib_srq_type	srq_type;
587 
588 	union {
589 		struct {
590 			struct ib_xrcd *xrcd;
591 			struct ib_cq   *cq;
592 		} xrc;
593 	} ext;
594 };
595 
596 struct ib_qp_cap {
597 	u32	max_send_wr;
598 	u32	max_recv_wr;
599 	u32	max_send_sge;
600 	u32	max_recv_sge;
601 	u32	max_inline_data;
602 };
603 
604 enum ib_sig_type {
605 	IB_SIGNAL_ALL_WR,
606 	IB_SIGNAL_REQ_WR
607 };
608 
609 enum ib_qp_type {
610 	/*
611 	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
612 	 * here (and in that order) since the MAD layer uses them as
613 	 * indices into a 2-entry table.
614 	 */
615 	IB_QPT_SMI,
616 	IB_QPT_GSI,
617 
618 	IB_QPT_RC,
619 	IB_QPT_UC,
620 	IB_QPT_UD,
621 	IB_QPT_RAW_IPV6,
622 	IB_QPT_RAW_ETHERTYPE,
623 	IB_QPT_RAW_PACKET = 8,
624 	IB_QPT_XRC_INI = 9,
625 	IB_QPT_XRC_TGT,
626 	IB_QPT_MAX,
627 	/* Reserve a range for qp types internal to the low level driver.
628 	 * These qp types will not be visible at the IB core layer, so the
629 	 * IB_QPT_MAX usages should not be affected in the core layer
630 	 */
631 	IB_QPT_RESERVED1 = 0x1000,
632 	IB_QPT_RESERVED2,
633 	IB_QPT_RESERVED3,
634 	IB_QPT_RESERVED4,
635 	IB_QPT_RESERVED5,
636 	IB_QPT_RESERVED6,
637 	IB_QPT_RESERVED7,
638 	IB_QPT_RESERVED8,
639 	IB_QPT_RESERVED9,
640 	IB_QPT_RESERVED10,
641 };
642 
643 enum ib_qp_create_flags {
644 	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
645 	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	= 1 << 1,
646 	IB_QP_CREATE_NETIF_QP			= 1 << 5,
647 	/* reserve bits 26-31 for low level drivers' internal use */
648 	IB_QP_CREATE_RESERVED_START		= 1 << 26,
649 	IB_QP_CREATE_RESERVED_END		= 1 << 31,
650 };
651 
652 
653 /*
654  * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
655  * callback to destroy the passed in QP.
656  */
657 
658 struct ib_qp_init_attr {
659 	void                  (*event_handler)(struct ib_event *, void *);
660 	void		       *qp_context;
661 	struct ib_cq	       *send_cq;
662 	struct ib_cq	       *recv_cq;
663 	struct ib_srq	       *srq;
664 	struct ib_xrcd	       *xrcd;     /* XRC TGT QPs only */
665 	struct ib_qp_cap	cap;
666 	enum ib_sig_type	sq_sig_type;
667 	enum ib_qp_type		qp_type;
668 	enum ib_qp_create_flags	create_flags;
669 	u8			port_num; /* special QP types only */
670 };
671 
672 struct ib_qp_open_attr {
673 	void                  (*event_handler)(struct ib_event *, void *);
674 	void		       *qp_context;
675 	u32			qp_num;
676 	enum ib_qp_type		qp_type;
677 };
678 
679 enum ib_rnr_timeout {
680 	IB_RNR_TIMER_655_36 =  0,
681 	IB_RNR_TIMER_000_01 =  1,
682 	IB_RNR_TIMER_000_02 =  2,
683 	IB_RNR_TIMER_000_03 =  3,
684 	IB_RNR_TIMER_000_04 =  4,
685 	IB_RNR_TIMER_000_06 =  5,
686 	IB_RNR_TIMER_000_08 =  6,
687 	IB_RNR_TIMER_000_12 =  7,
688 	IB_RNR_TIMER_000_16 =  8,
689 	IB_RNR_TIMER_000_24 =  9,
690 	IB_RNR_TIMER_000_32 = 10,
691 	IB_RNR_TIMER_000_48 = 11,
692 	IB_RNR_TIMER_000_64 = 12,
693 	IB_RNR_TIMER_000_96 = 13,
694 	IB_RNR_TIMER_001_28 = 14,
695 	IB_RNR_TIMER_001_92 = 15,
696 	IB_RNR_TIMER_002_56 = 16,
697 	IB_RNR_TIMER_003_84 = 17,
698 	IB_RNR_TIMER_005_12 = 18,
699 	IB_RNR_TIMER_007_68 = 19,
700 	IB_RNR_TIMER_010_24 = 20,
701 	IB_RNR_TIMER_015_36 = 21,
702 	IB_RNR_TIMER_020_48 = 22,
703 	IB_RNR_TIMER_030_72 = 23,
704 	IB_RNR_TIMER_040_96 = 24,
705 	IB_RNR_TIMER_061_44 = 25,
706 	IB_RNR_TIMER_081_92 = 26,
707 	IB_RNR_TIMER_122_88 = 27,
708 	IB_RNR_TIMER_163_84 = 28,
709 	IB_RNR_TIMER_245_76 = 29,
710 	IB_RNR_TIMER_327_68 = 30,
711 	IB_RNR_TIMER_491_52 = 31
712 };
713 
714 enum ib_qp_attr_mask {
715 	IB_QP_STATE			= 1,
716 	IB_QP_CUR_STATE			= (1<<1),
717 	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
718 	IB_QP_ACCESS_FLAGS		= (1<<3),
719 	IB_QP_PKEY_INDEX		= (1<<4),
720 	IB_QP_PORT			= (1<<5),
721 	IB_QP_QKEY			= (1<<6),
722 	IB_QP_AV			= (1<<7),
723 	IB_QP_PATH_MTU			= (1<<8),
724 	IB_QP_TIMEOUT			= (1<<9),
725 	IB_QP_RETRY_CNT			= (1<<10),
726 	IB_QP_RNR_RETRY			= (1<<11),
727 	IB_QP_RQ_PSN			= (1<<12),
728 	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
729 	IB_QP_ALT_PATH			= (1<<14),
730 	IB_QP_MIN_RNR_TIMER		= (1<<15),
731 	IB_QP_SQ_PSN			= (1<<16),
732 	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
733 	IB_QP_PATH_MIG_STATE		= (1<<18),
734 	IB_QP_CAP			= (1<<19),
735 	IB_QP_DEST_QPN			= (1<<20),
736 	IB_QP_SMAC			= (1<<21),
737 	IB_QP_ALT_SMAC			= (1<<22),
738 	IB_QP_VID			= (1<<23),
739 	IB_QP_ALT_VID			= (1<<24),
740 };
741 
742 enum ib_qp_state {
743 	IB_QPS_RESET,
744 	IB_QPS_INIT,
745 	IB_QPS_RTR,
746 	IB_QPS_RTS,
747 	IB_QPS_SQD,
748 	IB_QPS_SQE,
749 	IB_QPS_ERR
750 };
751 
752 enum ib_mig_state {
753 	IB_MIG_MIGRATED,
754 	IB_MIG_REARM,
755 	IB_MIG_ARMED
756 };
757 
758 enum ib_mw_type {
759 	IB_MW_TYPE_1 = 1,
760 	IB_MW_TYPE_2 = 2
761 };
762 
763 struct ib_qp_attr {
764 	enum ib_qp_state	qp_state;
765 	enum ib_qp_state	cur_qp_state;
766 	enum ib_mtu		path_mtu;
767 	enum ib_mig_state	path_mig_state;
768 	u32			qkey;
769 	u32			rq_psn;
770 	u32			sq_psn;
771 	u32			dest_qp_num;
772 	int			qp_access_flags;
773 	struct ib_qp_cap	cap;
774 	struct ib_ah_attr	ah_attr;
775 	struct ib_ah_attr	alt_ah_attr;
776 	u16			pkey_index;
777 	u16			alt_pkey_index;
778 	u8			en_sqd_async_notify;
779 	u8			sq_draining;
780 	u8			max_rd_atomic;
781 	u8			max_dest_rd_atomic;
782 	u8			min_rnr_timer;
783 	u8			port_num;
784 	u8			timeout;
785 	u8			retry_cnt;
786 	u8			rnr_retry;
787 	u8			alt_port_num;
788 	u8			alt_timeout;
789 	u8			smac[ETH_ALEN];
790 	u8			alt_smac[ETH_ALEN];
791 	u16			vlan_id;
792 	u16			alt_vlan_id;
793 };
794 
795 enum ib_wr_opcode {
796 	IB_WR_RDMA_WRITE,
797 	IB_WR_RDMA_WRITE_WITH_IMM,
798 	IB_WR_SEND,
799 	IB_WR_SEND_WITH_IMM,
800 	IB_WR_RDMA_READ,
801 	IB_WR_ATOMIC_CMP_AND_SWP,
802 	IB_WR_ATOMIC_FETCH_AND_ADD,
803 	IB_WR_LSO,
804 	IB_WR_SEND_WITH_INV,
805 	IB_WR_RDMA_READ_WITH_INV,
806 	IB_WR_LOCAL_INV,
807 	IB_WR_FAST_REG_MR,
808 	IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
809 	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
810 	IB_WR_BIND_MW,
811 	/* reserve values for low level drivers' internal use.
812 	 * These values will not be used at all in the ib core layer.
813 	 */
814 	IB_WR_RESERVED1 = 0xf0,
815 	IB_WR_RESERVED2,
816 	IB_WR_RESERVED3,
817 	IB_WR_RESERVED4,
818 	IB_WR_RESERVED5,
819 	IB_WR_RESERVED6,
820 	IB_WR_RESERVED7,
821 	IB_WR_RESERVED8,
822 	IB_WR_RESERVED9,
823 	IB_WR_RESERVED10,
824 };
825 
826 enum ib_send_flags {
827 	IB_SEND_FENCE		= 1,
828 	IB_SEND_SIGNALED	= (1<<1),
829 	IB_SEND_SOLICITED	= (1<<2),
830 	IB_SEND_INLINE		= (1<<3),
831 	IB_SEND_IP_CSUM		= (1<<4),
832 
833 	/* reserve bits 26-31 for low level drivers' internal use */
834 	IB_SEND_RESERVED_START	= (1 << 26),
835 	IB_SEND_RESERVED_END	= (1 << 31),
836 };
837 
838 struct ib_sge {
839 	u64	addr;
840 	u32	length;
841 	u32	lkey;
842 };
843 
844 struct ib_fast_reg_page_list {
845 	struct ib_device       *device;
846 	u64		       *page_list;
847 	unsigned int		max_page_list_len;
848 };
849 
850 /**
851  * struct ib_mw_bind_info - Parameters for a memory window bind operation.
852  * @mr: A memory region to bind the memory window to.
853  * @addr: The address where the memory window should begin.
854  * @length: The length of the memory window, in bytes.
855  * @mw_access_flags: Access flags from enum ib_access_flags for the window.
856  *
857  * This struct contains the shared parameters for type 1 and type 2
858  * memory window bind operations.
859  */
860 struct ib_mw_bind_info {
861 	struct ib_mr   *mr;
862 	u64		addr;
863 	u64		length;
864 	int		mw_access_flags;
865 };
866 
867 struct ib_send_wr {
868 	struct ib_send_wr      *next;
869 	u64			wr_id;
870 	struct ib_sge	       *sg_list;
871 	int			num_sge;
872 	enum ib_wr_opcode	opcode;
873 	int			send_flags;
874 	union {
875 		__be32		imm_data;
876 		u32		invalidate_rkey;
877 	} ex;
878 	union {
879 		struct {
880 			u64	remote_addr;
881 			u32	rkey;
882 		} rdma;
883 		struct {
884 			u64	remote_addr;
885 			u64	compare_add;
886 			u64	swap;
887 			u64	compare_add_mask;
888 			u64	swap_mask;
889 			u32	rkey;
890 		} atomic;
891 		struct {
892 			struct ib_ah *ah;
893 			void   *header;
894 			int     hlen;
895 			int     mss;
896 			u32	remote_qpn;
897 			u32	remote_qkey;
898 			u16	pkey_index; /* valid for GSI only */
899 			u8	port_num;   /* valid for DR SMPs on switch only */
900 		} ud;
901 		struct {
902 			u64				iova_start;
903 			struct ib_fast_reg_page_list   *page_list;
904 			unsigned int			page_shift;
905 			unsigned int			page_list_len;
906 			u32				length;
907 			int				access_flags;
908 			u32				rkey;
909 		} fast_reg;
910 		struct {
911 			struct ib_mw            *mw;
912 			/* The new rkey for the memory window. */
913 			u32                      rkey;
914 			struct ib_mw_bind_info   bind_info;
915 		} bind_mw;
916 	} wr;
917 	u32			xrc_remote_srq_num;	/* XRC TGT QPs only */
918 };
919 
920 struct ib_recv_wr {
921 	struct ib_recv_wr      *next;
922 	u64			wr_id;
923 	struct ib_sge	       *sg_list;
924 	int			num_sge;
925 };
926 
927 enum ib_access_flags {
928 	IB_ACCESS_LOCAL_WRITE	= 1,
929 	IB_ACCESS_REMOTE_WRITE	= (1<<1),
930 	IB_ACCESS_REMOTE_READ	= (1<<2),
931 	IB_ACCESS_REMOTE_ATOMIC	= (1<<3),
932 	IB_ACCESS_MW_BIND	= (1<<4),
933 	IB_ZERO_BASED		= (1<<5)
934 };
935 
936 struct ib_phys_buf {
937 	u64      addr;
938 	u64      size;
939 };
940 
941 struct ib_mr_attr {
942 	struct ib_pd	*pd;
943 	u64		device_virt_addr;
944 	u64		size;
945 	int		mr_access_flags;
946 	u32		lkey;
947 	u32		rkey;
948 };
949 
950 enum ib_mr_rereg_flags {
951 	IB_MR_REREG_TRANS	= 1,
952 	IB_MR_REREG_PD		= (1<<1),
953 	IB_MR_REREG_ACCESS	= (1<<2)
954 };
955 
956 /**
957  * struct ib_mw_bind - Parameters for a type 1 memory window bind operation.
958  * @wr_id:      Work request id.
959  * @send_flags: Flags from ib_send_flags enum.
960  * @bind_info:  More parameters of the bind operation.
961  */
962 struct ib_mw_bind {
963 	u64                    wr_id;
964 	int                    send_flags;
965 	struct ib_mw_bind_info bind_info;
966 };
967 
968 struct ib_fmr_attr {
969 	int	max_pages;
970 	int	max_maps;
971 	u8	page_shift;
972 };
973 
974 struct ib_ucontext {
975 	struct ib_device       *device;
976 	struct list_head	pd_list;
977 	struct list_head	mr_list;
978 	struct list_head	mw_list;
979 	struct list_head	cq_list;
980 	struct list_head	qp_list;
981 	struct list_head	srq_list;
982 	struct list_head	ah_list;
983 	struct list_head	xrcd_list;
984 	struct list_head	rule_list;
985 	int			closing;
986 };
987 
988 struct ib_uobject {
989 	u64			user_handle;	/* handle given to us by userspace */
990 	struct ib_ucontext     *context;	/* associated user context */
991 	void		       *object;		/* containing object */
992 	struct list_head	list;		/* link to context's list */
993 	int			id;		/* index into kernel idr */
994 	struct kref		ref;
995 	struct rw_semaphore	mutex;		/* protects .live */
996 	int			live;
997 };
998 
999 struct ib_udata {
1000 	const void __user *inbuf;
1001 	void __user *outbuf;
1002 	size_t       inlen;
1003 	size_t       outlen;
1004 };
1005 
1006 struct ib_pd {
1007 	struct ib_device       *device;
1008 	struct ib_uobject      *uobject;
1009 	atomic_t          	usecnt; /* count all resources */
1010 };
1011 
1012 struct ib_xrcd {
1013 	struct ib_device       *device;
1014 	atomic_t		usecnt; /* count all exposed resources */
1015 	struct inode	       *inode;
1016 
1017 	struct mutex		tgt_qp_mutex;
1018 	struct list_head	tgt_qp_list;
1019 };
1020 
1021 struct ib_ah {
1022 	struct ib_device	*device;
1023 	struct ib_pd		*pd;
1024 	struct ib_uobject	*uobject;
1025 };
1026 
1027 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1028 
1029 struct ib_cq {
1030 	struct ib_device       *device;
1031 	struct ib_uobject      *uobject;
1032 	ib_comp_handler   	comp_handler;
1033 	void                  (*event_handler)(struct ib_event *, void *);
1034 	void                   *cq_context;
1035 	int               	cqe;
1036 	atomic_t          	usecnt; /* count number of work queues */
1037 };
1038 
1039 struct ib_srq {
1040 	struct ib_device       *device;
1041 	struct ib_pd	       *pd;
1042 	struct ib_uobject      *uobject;
1043 	void		      (*event_handler)(struct ib_event *, void *);
1044 	void		       *srq_context;
1045 	enum ib_srq_type	srq_type;
1046 	atomic_t		usecnt;
1047 
1048 	union {
1049 		struct {
1050 			struct ib_xrcd *xrcd;
1051 			struct ib_cq   *cq;
1052 			u32		srq_num;
1053 		} xrc;
1054 	} ext;
1055 };
1056 
1057 struct ib_qp {
1058 	struct ib_device       *device;
1059 	struct ib_pd	       *pd;
1060 	struct ib_cq	       *send_cq;
1061 	struct ib_cq	       *recv_cq;
1062 	struct ib_srq	       *srq;
1063 	struct ib_xrcd	       *xrcd; /* XRC TGT QPs only */
1064 	struct list_head	xrcd_list;
1065 	/* count times opened, mcast attaches, flow attaches */
1066 	atomic_t		usecnt;
1067 	struct list_head	open_list;
1068 	struct ib_qp           *real_qp;
1069 	struct ib_uobject      *uobject;
1070 	void                  (*event_handler)(struct ib_event *, void *);
1071 	void		       *qp_context;
1072 	u32			qp_num;
1073 	enum ib_qp_type		qp_type;
1074 };
1075 
1076 struct ib_mr {
1077 	struct ib_device  *device;
1078 	struct ib_pd	  *pd;
1079 	struct ib_uobject *uobject;
1080 	u32		   lkey;
1081 	u32		   rkey;
1082 	atomic_t	   usecnt; /* count number of MWs */
1083 };
1084 
1085 struct ib_mw {
1086 	struct ib_device	*device;
1087 	struct ib_pd		*pd;
1088 	struct ib_uobject	*uobject;
1089 	u32			rkey;
1090 	enum ib_mw_type         type;
1091 };
1092 
1093 struct ib_fmr {
1094 	struct ib_device	*device;
1095 	struct ib_pd		*pd;
1096 	struct list_head	list;
1097 	u32			lkey;
1098 	u32			rkey;
1099 };
1100 
1101 /* Supported steering options */
1102 enum ib_flow_attr_type {
1103 	/* steering according to rule specifications */
1104 	IB_FLOW_ATTR_NORMAL		= 0x0,
1105 	/* default unicast and multicast rule -
1106 	 * receive all Eth traffic which isn't steered to any QP
1107 	 */
1108 	IB_FLOW_ATTR_ALL_DEFAULT	= 0x1,
1109 	/* default multicast rule -
1110 	 * receive all Eth multicast traffic which isn't steered to any QP
1111 	 */
1112 	IB_FLOW_ATTR_MC_DEFAULT		= 0x2,
1113 	/* sniffer rule - receive all port traffic */
1114 	IB_FLOW_ATTR_SNIFFER		= 0x3
1115 };
1116 
1117 /* Supported steering header types */
1118 enum ib_flow_spec_type {
1119 	/* L2 headers*/
1120 	IB_FLOW_SPEC_ETH	= 0x20,
1121 	IB_FLOW_SPEC_IB		= 0x22,
1122 	/* L3 header*/
1123 	IB_FLOW_SPEC_IPV4	= 0x30,
1124 	/* L4 headers*/
1125 	IB_FLOW_SPEC_TCP	= 0x40,
1126 	IB_FLOW_SPEC_UDP	= 0x41
1127 };
1128 #define IB_FLOW_SPEC_LAYER_MASK	0xF0
1129 #define IB_FLOW_SPEC_SUPPORT_LAYERS 4
1130 
1131 /* Flow steering rule priority is set according to it's domain.
1132  * Lower domain value means higher priority.
1133  */
1134 enum ib_flow_domain {
1135 	IB_FLOW_DOMAIN_USER,
1136 	IB_FLOW_DOMAIN_ETHTOOL,
1137 	IB_FLOW_DOMAIN_RFS,
1138 	IB_FLOW_DOMAIN_NIC,
1139 	IB_FLOW_DOMAIN_NUM /* Must be last */
1140 };
1141 
1142 struct ib_flow_eth_filter {
1143 	u8	dst_mac[6];
1144 	u8	src_mac[6];
1145 	__be16	ether_type;
1146 	__be16	vlan_tag;
1147 };
1148 
1149 struct ib_flow_spec_eth {
1150 	enum ib_flow_spec_type	  type;
1151 	u16			  size;
1152 	struct ib_flow_eth_filter val;
1153 	struct ib_flow_eth_filter mask;
1154 };
1155 
1156 struct ib_flow_ib_filter {
1157 	__be16 dlid;
1158 	__u8   sl;
1159 };
1160 
1161 struct ib_flow_spec_ib {
1162 	enum ib_flow_spec_type	 type;
1163 	u16			 size;
1164 	struct ib_flow_ib_filter val;
1165 	struct ib_flow_ib_filter mask;
1166 };
1167 
1168 struct ib_flow_ipv4_filter {
1169 	__be32	src_ip;
1170 	__be32	dst_ip;
1171 };
1172 
1173 struct ib_flow_spec_ipv4 {
1174 	enum ib_flow_spec_type	   type;
1175 	u16			   size;
1176 	struct ib_flow_ipv4_filter val;
1177 	struct ib_flow_ipv4_filter mask;
1178 };
1179 
1180 struct ib_flow_tcp_udp_filter {
1181 	__be16	dst_port;
1182 	__be16	src_port;
1183 };
1184 
1185 struct ib_flow_spec_tcp_udp {
1186 	enum ib_flow_spec_type	      type;
1187 	u16			      size;
1188 	struct ib_flow_tcp_udp_filter val;
1189 	struct ib_flow_tcp_udp_filter mask;
1190 };
1191 
1192 union ib_flow_spec {
1193 	struct {
1194 		enum ib_flow_spec_type	type;
1195 		u16			size;
1196 	};
1197 	struct ib_flow_spec_eth		eth;
1198 	struct ib_flow_spec_ib		ib;
1199 	struct ib_flow_spec_ipv4        ipv4;
1200 	struct ib_flow_spec_tcp_udp	tcp_udp;
1201 };
1202 
1203 struct ib_flow_attr {
1204 	enum ib_flow_attr_type type;
1205 	u16	     size;
1206 	u16	     priority;
1207 	u32	     flags;
1208 	u8	     num_of_specs;
1209 	u8	     port;
1210 	/* Following are the optional layers according to user request
1211 	 * struct ib_flow_spec_xxx
1212 	 * struct ib_flow_spec_yyy
1213 	 */
1214 };
1215 
1216 struct ib_flow {
1217 	struct ib_qp		*qp;
1218 	struct ib_uobject	*uobject;
1219 };
1220 
1221 struct ib_mad;
1222 struct ib_grh;
1223 
1224 enum ib_process_mad_flags {
1225 	IB_MAD_IGNORE_MKEY	= 1,
1226 	IB_MAD_IGNORE_BKEY	= 2,
1227 	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1228 };
1229 
1230 enum ib_mad_result {
1231 	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
1232 	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
1233 	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
1234 	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
1235 };
1236 
1237 #define IB_DEVICE_NAME_MAX 64
1238 
1239 struct ib_cache {
1240 	rwlock_t                lock;
1241 	struct ib_event_handler event_handler;
1242 	struct ib_pkey_cache  **pkey_cache;
1243 	struct ib_gid_cache   **gid_cache;
1244 	u8                     *lmc_cache;
1245 };
1246 
1247 struct ib_dma_mapping_ops {
1248 	int		(*mapping_error)(struct ib_device *dev,
1249 					 u64 dma_addr);
1250 	u64		(*map_single)(struct ib_device *dev,
1251 				      void *ptr, size_t size,
1252 				      enum dma_data_direction direction);
1253 	void		(*unmap_single)(struct ib_device *dev,
1254 					u64 addr, size_t size,
1255 					enum dma_data_direction direction);
1256 	u64		(*map_page)(struct ib_device *dev,
1257 				    struct page *page, unsigned long offset,
1258 				    size_t size,
1259 				    enum dma_data_direction direction);
1260 	void		(*unmap_page)(struct ib_device *dev,
1261 				      u64 addr, size_t size,
1262 				      enum dma_data_direction direction);
1263 	int		(*map_sg)(struct ib_device *dev,
1264 				  struct scatterlist *sg, int nents,
1265 				  enum dma_data_direction direction);
1266 	void		(*unmap_sg)(struct ib_device *dev,
1267 				    struct scatterlist *sg, int nents,
1268 				    enum dma_data_direction direction);
1269 	u64		(*dma_address)(struct ib_device *dev,
1270 				       struct scatterlist *sg);
1271 	unsigned int	(*dma_len)(struct ib_device *dev,
1272 				   struct scatterlist *sg);
1273 	void		(*sync_single_for_cpu)(struct ib_device *dev,
1274 					       u64 dma_handle,
1275 					       size_t size,
1276 					       enum dma_data_direction dir);
1277 	void		(*sync_single_for_device)(struct ib_device *dev,
1278 						  u64 dma_handle,
1279 						  size_t size,
1280 						  enum dma_data_direction dir);
1281 	void		*(*alloc_coherent)(struct ib_device *dev,
1282 					   size_t size,
1283 					   u64 *dma_handle,
1284 					   gfp_t flag);
1285 	void		(*free_coherent)(struct ib_device *dev,
1286 					 size_t size, void *cpu_addr,
1287 					 u64 dma_handle);
1288 };
1289 
1290 struct iw_cm_verbs;
1291 
1292 struct ib_device {
1293 	struct device                *dma_device;
1294 
1295 	char                          name[IB_DEVICE_NAME_MAX];
1296 
1297 	struct list_head              event_handler_list;
1298 	spinlock_t                    event_handler_lock;
1299 
1300 	spinlock_t                    client_data_lock;
1301 	struct list_head              core_list;
1302 	struct list_head              client_data_list;
1303 
1304 	struct ib_cache               cache;
1305 	int                          *pkey_tbl_len;
1306 	int                          *gid_tbl_len;
1307 
1308 	int			      num_comp_vectors;
1309 
1310 	struct iw_cm_verbs	     *iwcm;
1311 
1312 	int		           (*get_protocol_stats)(struct ib_device *device,
1313 							 union rdma_protocol_stats *stats);
1314 	int		           (*query_device)(struct ib_device *device,
1315 						   struct ib_device_attr *device_attr);
1316 	int		           (*query_port)(struct ib_device *device,
1317 						 u8 port_num,
1318 						 struct ib_port_attr *port_attr);
1319 	enum rdma_link_layer	   (*get_link_layer)(struct ib_device *device,
1320 						     u8 port_num);
1321 	int		           (*query_gid)(struct ib_device *device,
1322 						u8 port_num, int index,
1323 						union ib_gid *gid);
1324 	int		           (*query_pkey)(struct ib_device *device,
1325 						 u8 port_num, u16 index, u16 *pkey);
1326 	int		           (*modify_device)(struct ib_device *device,
1327 						    int device_modify_mask,
1328 						    struct ib_device_modify *device_modify);
1329 	int		           (*modify_port)(struct ib_device *device,
1330 						  u8 port_num, int port_modify_mask,
1331 						  struct ib_port_modify *port_modify);
1332 	struct ib_ucontext *       (*alloc_ucontext)(struct ib_device *device,
1333 						     struct ib_udata *udata);
1334 	int                        (*dealloc_ucontext)(struct ib_ucontext *context);
1335 	int                        (*mmap)(struct ib_ucontext *context,
1336 					   struct vm_area_struct *vma);
1337 	struct ib_pd *             (*alloc_pd)(struct ib_device *device,
1338 					       struct ib_ucontext *context,
1339 					       struct ib_udata *udata);
1340 	int                        (*dealloc_pd)(struct ib_pd *pd);
1341 	struct ib_ah *             (*create_ah)(struct ib_pd *pd,
1342 						struct ib_ah_attr *ah_attr);
1343 	int                        (*modify_ah)(struct ib_ah *ah,
1344 						struct ib_ah_attr *ah_attr);
1345 	int                        (*query_ah)(struct ib_ah *ah,
1346 					       struct ib_ah_attr *ah_attr);
1347 	int                        (*destroy_ah)(struct ib_ah *ah);
1348 	struct ib_srq *            (*create_srq)(struct ib_pd *pd,
1349 						 struct ib_srq_init_attr *srq_init_attr,
1350 						 struct ib_udata *udata);
1351 	int                        (*modify_srq)(struct ib_srq *srq,
1352 						 struct ib_srq_attr *srq_attr,
1353 						 enum ib_srq_attr_mask srq_attr_mask,
1354 						 struct ib_udata *udata);
1355 	int                        (*query_srq)(struct ib_srq *srq,
1356 						struct ib_srq_attr *srq_attr);
1357 	int                        (*destroy_srq)(struct ib_srq *srq);
1358 	int                        (*post_srq_recv)(struct ib_srq *srq,
1359 						    struct ib_recv_wr *recv_wr,
1360 						    struct ib_recv_wr **bad_recv_wr);
1361 	struct ib_qp *             (*create_qp)(struct ib_pd *pd,
1362 						struct ib_qp_init_attr *qp_init_attr,
1363 						struct ib_udata *udata);
1364 	int                        (*modify_qp)(struct ib_qp *qp,
1365 						struct ib_qp_attr *qp_attr,
1366 						int qp_attr_mask,
1367 						struct ib_udata *udata);
1368 	int                        (*query_qp)(struct ib_qp *qp,
1369 					       struct ib_qp_attr *qp_attr,
1370 					       int qp_attr_mask,
1371 					       struct ib_qp_init_attr *qp_init_attr);
1372 	int                        (*destroy_qp)(struct ib_qp *qp);
1373 	int                        (*post_send)(struct ib_qp *qp,
1374 						struct ib_send_wr *send_wr,
1375 						struct ib_send_wr **bad_send_wr);
1376 	int                        (*post_recv)(struct ib_qp *qp,
1377 						struct ib_recv_wr *recv_wr,
1378 						struct ib_recv_wr **bad_recv_wr);
1379 	struct ib_cq *             (*create_cq)(struct ib_device *device, int cqe,
1380 						int comp_vector,
1381 						struct ib_ucontext *context,
1382 						struct ib_udata *udata);
1383 	int                        (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1384 						u16 cq_period);
1385 	int                        (*destroy_cq)(struct ib_cq *cq);
1386 	int                        (*resize_cq)(struct ib_cq *cq, int cqe,
1387 						struct ib_udata *udata);
1388 	int                        (*poll_cq)(struct ib_cq *cq, int num_entries,
1389 					      struct ib_wc *wc);
1390 	int                        (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1391 	int                        (*req_notify_cq)(struct ib_cq *cq,
1392 						    enum ib_cq_notify_flags flags);
1393 	int                        (*req_ncomp_notif)(struct ib_cq *cq,
1394 						      int wc_cnt);
1395 	struct ib_mr *             (*get_dma_mr)(struct ib_pd *pd,
1396 						 int mr_access_flags);
1397 	struct ib_mr *             (*reg_phys_mr)(struct ib_pd *pd,
1398 						  struct ib_phys_buf *phys_buf_array,
1399 						  int num_phys_buf,
1400 						  int mr_access_flags,
1401 						  u64 *iova_start);
1402 	struct ib_mr *             (*reg_user_mr)(struct ib_pd *pd,
1403 						  u64 start, u64 length,
1404 						  u64 virt_addr,
1405 						  int mr_access_flags,
1406 						  struct ib_udata *udata);
1407 	int                        (*query_mr)(struct ib_mr *mr,
1408 					       struct ib_mr_attr *mr_attr);
1409 	int                        (*dereg_mr)(struct ib_mr *mr);
1410 	struct ib_mr *		   (*alloc_fast_reg_mr)(struct ib_pd *pd,
1411 					       int max_page_list_len);
1412 	struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device,
1413 								   int page_list_len);
1414 	void			   (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list);
1415 	int                        (*rereg_phys_mr)(struct ib_mr *mr,
1416 						    int mr_rereg_mask,
1417 						    struct ib_pd *pd,
1418 						    struct ib_phys_buf *phys_buf_array,
1419 						    int num_phys_buf,
1420 						    int mr_access_flags,
1421 						    u64 *iova_start);
1422 	struct ib_mw *             (*alloc_mw)(struct ib_pd *pd,
1423 					       enum ib_mw_type type);
1424 	int                        (*bind_mw)(struct ib_qp *qp,
1425 					      struct ib_mw *mw,
1426 					      struct ib_mw_bind *mw_bind);
1427 	int                        (*dealloc_mw)(struct ib_mw *mw);
1428 	struct ib_fmr *	           (*alloc_fmr)(struct ib_pd *pd,
1429 						int mr_access_flags,
1430 						struct ib_fmr_attr *fmr_attr);
1431 	int		           (*map_phys_fmr)(struct ib_fmr *fmr,
1432 						   u64 *page_list, int list_len,
1433 						   u64 iova);
1434 	int		           (*unmap_fmr)(struct list_head *fmr_list);
1435 	int		           (*dealloc_fmr)(struct ib_fmr *fmr);
1436 	int                        (*attach_mcast)(struct ib_qp *qp,
1437 						   union ib_gid *gid,
1438 						   u16 lid);
1439 	int                        (*detach_mcast)(struct ib_qp *qp,
1440 						   union ib_gid *gid,
1441 						   u16 lid);
1442 	int                        (*process_mad)(struct ib_device *device,
1443 						  int process_mad_flags,
1444 						  u8 port_num,
1445 						  struct ib_wc *in_wc,
1446 						  struct ib_grh *in_grh,
1447 						  struct ib_mad *in_mad,
1448 						  struct ib_mad *out_mad);
1449 	struct ib_xrcd *	   (*alloc_xrcd)(struct ib_device *device,
1450 						 struct ib_ucontext *ucontext,
1451 						 struct ib_udata *udata);
1452 	int			   (*dealloc_xrcd)(struct ib_xrcd *xrcd);
1453 	struct ib_flow *	   (*create_flow)(struct ib_qp *qp,
1454 						  struct ib_flow_attr
1455 						  *flow_attr,
1456 						  int domain);
1457 	int			   (*destroy_flow)(struct ib_flow *flow_id);
1458 
1459 	struct ib_dma_mapping_ops   *dma_ops;
1460 
1461 	struct module               *owner;
1462 	struct device                dev;
1463 	struct kobject               *ports_parent;
1464 	struct list_head             port_list;
1465 
1466 	enum {
1467 		IB_DEV_UNINITIALIZED,
1468 		IB_DEV_REGISTERED,
1469 		IB_DEV_UNREGISTERED
1470 	}                            reg_state;
1471 
1472 	int			     uverbs_abi_ver;
1473 	u64			     uverbs_cmd_mask;
1474 	u64			     uverbs_ex_cmd_mask;
1475 
1476 	char			     node_desc[64];
1477 	__be64			     node_guid;
1478 	u32			     local_dma_lkey;
1479 	u8                           node_type;
1480 	u8                           phys_port_cnt;
1481 };
1482 
1483 struct ib_client {
1484 	char  *name;
1485 	void (*add)   (struct ib_device *);
1486 	void (*remove)(struct ib_device *);
1487 
1488 	struct list_head list;
1489 };
1490 
1491 struct ib_device *ib_alloc_device(size_t size);
1492 void ib_dealloc_device(struct ib_device *device);
1493 
1494 int ib_register_device(struct ib_device *device,
1495 		       int (*port_callback)(struct ib_device *,
1496 					    u8, struct kobject *));
1497 void ib_unregister_device(struct ib_device *device);
1498 
1499 int ib_register_client   (struct ib_client *client);
1500 void ib_unregister_client(struct ib_client *client);
1501 
1502 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1503 void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
1504 			 void *data);
1505 
1506 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1507 {
1508 	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1509 }
1510 
1511 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1512 {
1513 	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1514 }
1515 
1516 /**
1517  * ib_modify_qp_is_ok - Check that the supplied attribute mask
1518  * contains all required attributes and no attributes not allowed for
1519  * the given QP state transition.
1520  * @cur_state: Current QP state
1521  * @next_state: Next QP state
1522  * @type: QP type
1523  * @mask: Mask of supplied QP attributes
1524  * @ll : link layer of port
1525  *
1526  * This function is a helper function that a low-level driver's
1527  * modify_qp method can use to validate the consumer's input.  It
1528  * checks that cur_state and next_state are valid QP states, that a
1529  * transition from cur_state to next_state is allowed by the IB spec,
1530  * and that the attribute mask supplied is allowed for the transition.
1531  */
1532 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1533 		       enum ib_qp_type type, enum ib_qp_attr_mask mask,
1534 		       enum rdma_link_layer ll);
1535 
1536 int ib_register_event_handler  (struct ib_event_handler *event_handler);
1537 int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1538 void ib_dispatch_event(struct ib_event *event);
1539 
1540 int ib_query_device(struct ib_device *device,
1541 		    struct ib_device_attr *device_attr);
1542 
1543 int ib_query_port(struct ib_device *device,
1544 		  u8 port_num, struct ib_port_attr *port_attr);
1545 
1546 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1547 					       u8 port_num);
1548 
1549 int ib_query_gid(struct ib_device *device,
1550 		 u8 port_num, int index, union ib_gid *gid);
1551 
1552 int ib_query_pkey(struct ib_device *device,
1553 		  u8 port_num, u16 index, u16 *pkey);
1554 
1555 int ib_modify_device(struct ib_device *device,
1556 		     int device_modify_mask,
1557 		     struct ib_device_modify *device_modify);
1558 
1559 int ib_modify_port(struct ib_device *device,
1560 		   u8 port_num, int port_modify_mask,
1561 		   struct ib_port_modify *port_modify);
1562 
1563 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
1564 		u8 *port_num, u16 *index);
1565 
1566 int ib_find_pkey(struct ib_device *device,
1567 		 u8 port_num, u16 pkey, u16 *index);
1568 
1569 /**
1570  * ib_alloc_pd - Allocates an unused protection domain.
1571  * @device: The device on which to allocate the protection domain.
1572  *
1573  * A protection domain object provides an association between QPs, shared
1574  * receive queues, address handles, memory regions, and memory windows.
1575  */
1576 struct ib_pd *ib_alloc_pd(struct ib_device *device);
1577 
1578 /**
1579  * ib_dealloc_pd - Deallocates a protection domain.
1580  * @pd: The protection domain to deallocate.
1581  */
1582 int ib_dealloc_pd(struct ib_pd *pd);
1583 
1584 /**
1585  * ib_create_ah - Creates an address handle for the given address vector.
1586  * @pd: The protection domain associated with the address handle.
1587  * @ah_attr: The attributes of the address vector.
1588  *
1589  * The address handle is used to reference a local or global destination
1590  * in all UD QP post sends.
1591  */
1592 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
1593 
1594 /**
1595  * ib_init_ah_from_wc - Initializes address handle attributes from a
1596  *   work completion.
1597  * @device: Device on which the received message arrived.
1598  * @port_num: Port on which the received message arrived.
1599  * @wc: Work completion associated with the received message.
1600  * @grh: References the received global route header.  This parameter is
1601  *   ignored unless the work completion indicates that the GRH is valid.
1602  * @ah_attr: Returned attributes that can be used when creating an address
1603  *   handle for replying to the message.
1604  */
1605 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc,
1606 		       struct ib_grh *grh, struct ib_ah_attr *ah_attr);
1607 
1608 /**
1609  * ib_create_ah_from_wc - Creates an address handle associated with the
1610  *   sender of the specified work completion.
1611  * @pd: The protection domain associated with the address handle.
1612  * @wc: Work completion information associated with a received message.
1613  * @grh: References the received global route header.  This parameter is
1614  *   ignored unless the work completion indicates that the GRH is valid.
1615  * @port_num: The outbound port number to associate with the address.
1616  *
1617  * The address handle is used to reference a local or global destination
1618  * in all UD QP post sends.
1619  */
1620 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc,
1621 				   struct ib_grh *grh, u8 port_num);
1622 
1623 /**
1624  * ib_modify_ah - Modifies the address vector associated with an address
1625  *   handle.
1626  * @ah: The address handle to modify.
1627  * @ah_attr: The new address vector attributes to associate with the
1628  *   address handle.
1629  */
1630 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1631 
1632 /**
1633  * ib_query_ah - Queries the address vector associated with an address
1634  *   handle.
1635  * @ah: The address handle to query.
1636  * @ah_attr: The address vector attributes associated with the address
1637  *   handle.
1638  */
1639 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1640 
1641 /**
1642  * ib_destroy_ah - Destroys an address handle.
1643  * @ah: The address handle to destroy.
1644  */
1645 int ib_destroy_ah(struct ib_ah *ah);
1646 
1647 /**
1648  * ib_create_srq - Creates a SRQ associated with the specified protection
1649  *   domain.
1650  * @pd: The protection domain associated with the SRQ.
1651  * @srq_init_attr: A list of initial attributes required to create the
1652  *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
1653  *   the actual capabilities of the created SRQ.
1654  *
1655  * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1656  * requested size of the SRQ, and set to the actual values allocated
1657  * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
1658  * will always be at least as large as the requested values.
1659  */
1660 struct ib_srq *ib_create_srq(struct ib_pd *pd,
1661 			     struct ib_srq_init_attr *srq_init_attr);
1662 
1663 /**
1664  * ib_modify_srq - Modifies the attributes for the specified SRQ.
1665  * @srq: The SRQ to modify.
1666  * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
1667  *   the current values of selected SRQ attributes are returned.
1668  * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
1669  *   are being modified.
1670  *
1671  * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
1672  * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
1673  * the number of receives queued drops below the limit.
1674  */
1675 int ib_modify_srq(struct ib_srq *srq,
1676 		  struct ib_srq_attr *srq_attr,
1677 		  enum ib_srq_attr_mask srq_attr_mask);
1678 
1679 /**
1680  * ib_query_srq - Returns the attribute list and current values for the
1681  *   specified SRQ.
1682  * @srq: The SRQ to query.
1683  * @srq_attr: The attributes of the specified SRQ.
1684  */
1685 int ib_query_srq(struct ib_srq *srq,
1686 		 struct ib_srq_attr *srq_attr);
1687 
1688 /**
1689  * ib_destroy_srq - Destroys the specified SRQ.
1690  * @srq: The SRQ to destroy.
1691  */
1692 int ib_destroy_srq(struct ib_srq *srq);
1693 
1694 /**
1695  * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
1696  * @srq: The SRQ to post the work request on.
1697  * @recv_wr: A list of work requests to post on the receive queue.
1698  * @bad_recv_wr: On an immediate failure, this parameter will reference
1699  *   the work request that failed to be posted on the QP.
1700  */
1701 static inline int ib_post_srq_recv(struct ib_srq *srq,
1702 				   struct ib_recv_wr *recv_wr,
1703 				   struct ib_recv_wr **bad_recv_wr)
1704 {
1705 	return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
1706 }
1707 
1708 /**
1709  * ib_create_qp - Creates a QP associated with the specified protection
1710  *   domain.
1711  * @pd: The protection domain associated with the QP.
1712  * @qp_init_attr: A list of initial attributes required to create the
1713  *   QP.  If QP creation succeeds, then the attributes are updated to
1714  *   the actual capabilities of the created QP.
1715  */
1716 struct ib_qp *ib_create_qp(struct ib_pd *pd,
1717 			   struct ib_qp_init_attr *qp_init_attr);
1718 
1719 /**
1720  * ib_modify_qp - Modifies the attributes for the specified QP and then
1721  *   transitions the QP to the given state.
1722  * @qp: The QP to modify.
1723  * @qp_attr: On input, specifies the QP attributes to modify.  On output,
1724  *   the current values of selected QP attributes are returned.
1725  * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
1726  *   are being modified.
1727  */
1728 int ib_modify_qp(struct ib_qp *qp,
1729 		 struct ib_qp_attr *qp_attr,
1730 		 int qp_attr_mask);
1731 
1732 /**
1733  * ib_query_qp - Returns the attribute list and current values for the
1734  *   specified QP.
1735  * @qp: The QP to query.
1736  * @qp_attr: The attributes of the specified QP.
1737  * @qp_attr_mask: A bit-mask used to select specific attributes to query.
1738  * @qp_init_attr: Additional attributes of the selected QP.
1739  *
1740  * The qp_attr_mask may be used to limit the query to gathering only the
1741  * selected attributes.
1742  */
1743 int ib_query_qp(struct ib_qp *qp,
1744 		struct ib_qp_attr *qp_attr,
1745 		int qp_attr_mask,
1746 		struct ib_qp_init_attr *qp_init_attr);
1747 
1748 /**
1749  * ib_destroy_qp - Destroys the specified QP.
1750  * @qp: The QP to destroy.
1751  */
1752 int ib_destroy_qp(struct ib_qp *qp);
1753 
1754 /**
1755  * ib_open_qp - Obtain a reference to an existing sharable QP.
1756  * @xrcd - XRC domain
1757  * @qp_open_attr: Attributes identifying the QP to open.
1758  *
1759  * Returns a reference to a sharable QP.
1760  */
1761 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1762 			 struct ib_qp_open_attr *qp_open_attr);
1763 
1764 /**
1765  * ib_close_qp - Release an external reference to a QP.
1766  * @qp: The QP handle to release
1767  *
1768  * The opened QP handle is released by the caller.  The underlying
1769  * shared QP is not destroyed until all internal references are released.
1770  */
1771 int ib_close_qp(struct ib_qp *qp);
1772 
1773 /**
1774  * ib_post_send - Posts a list of work requests to the send queue of
1775  *   the specified QP.
1776  * @qp: The QP to post the work request on.
1777  * @send_wr: A list of work requests to post on the send queue.
1778  * @bad_send_wr: On an immediate failure, this parameter will reference
1779  *   the work request that failed to be posted on the QP.
1780  *
1781  * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
1782  * error is returned, the QP state shall not be affected,
1783  * ib_post_send() will return an immediate error after queueing any
1784  * earlier work requests in the list.
1785  */
1786 static inline int ib_post_send(struct ib_qp *qp,
1787 			       struct ib_send_wr *send_wr,
1788 			       struct ib_send_wr **bad_send_wr)
1789 {
1790 	return qp->device->post_send(qp, send_wr, bad_send_wr);
1791 }
1792 
1793 /**
1794  * ib_post_recv - Posts a list of work requests to the receive queue of
1795  *   the specified QP.
1796  * @qp: The QP to post the work request on.
1797  * @recv_wr: A list of work requests to post on the receive queue.
1798  * @bad_recv_wr: On an immediate failure, this parameter will reference
1799  *   the work request that failed to be posted on the QP.
1800  */
1801 static inline int ib_post_recv(struct ib_qp *qp,
1802 			       struct ib_recv_wr *recv_wr,
1803 			       struct ib_recv_wr **bad_recv_wr)
1804 {
1805 	return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
1806 }
1807 
1808 /**
1809  * ib_create_cq - Creates a CQ on the specified device.
1810  * @device: The device on which to create the CQ.
1811  * @comp_handler: A user-specified callback that is invoked when a
1812  *   completion event occurs on the CQ.
1813  * @event_handler: A user-specified callback that is invoked when an
1814  *   asynchronous event not associated with a completion occurs on the CQ.
1815  * @cq_context: Context associated with the CQ returned to the user via
1816  *   the associated completion and event handlers.
1817  * @cqe: The minimum size of the CQ.
1818  * @comp_vector - Completion vector used to signal completion events.
1819  *     Must be >= 0 and < context->num_comp_vectors.
1820  *
1821  * Users can examine the cq structure to determine the actual CQ size.
1822  */
1823 struct ib_cq *ib_create_cq(struct ib_device *device,
1824 			   ib_comp_handler comp_handler,
1825 			   void (*event_handler)(struct ib_event *, void *),
1826 			   void *cq_context, int cqe, int comp_vector);
1827 
1828 /**
1829  * ib_resize_cq - Modifies the capacity of the CQ.
1830  * @cq: The CQ to resize.
1831  * @cqe: The minimum size of the CQ.
1832  *
1833  * Users can examine the cq structure to determine the actual CQ size.
1834  */
1835 int ib_resize_cq(struct ib_cq *cq, int cqe);
1836 
1837 /**
1838  * ib_modify_cq - Modifies moderation params of the CQ
1839  * @cq: The CQ to modify.
1840  * @cq_count: number of CQEs that will trigger an event
1841  * @cq_period: max period of time in usec before triggering an event
1842  *
1843  */
1844 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
1845 
1846 /**
1847  * ib_destroy_cq - Destroys the specified CQ.
1848  * @cq: The CQ to destroy.
1849  */
1850 int ib_destroy_cq(struct ib_cq *cq);
1851 
1852 /**
1853  * ib_poll_cq - poll a CQ for completion(s)
1854  * @cq:the CQ being polled
1855  * @num_entries:maximum number of completions to return
1856  * @wc:array of at least @num_entries &struct ib_wc where completions
1857  *   will be returned
1858  *
1859  * Poll a CQ for (possibly multiple) completions.  If the return value
1860  * is < 0, an error occurred.  If the return value is >= 0, it is the
1861  * number of completions returned.  If the return value is
1862  * non-negative and < num_entries, then the CQ was emptied.
1863  */
1864 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
1865 			     struct ib_wc *wc)
1866 {
1867 	return cq->device->poll_cq(cq, num_entries, wc);
1868 }
1869 
1870 /**
1871  * ib_peek_cq - Returns the number of unreaped completions currently
1872  *   on the specified CQ.
1873  * @cq: The CQ to peek.
1874  * @wc_cnt: A minimum number of unreaped completions to check for.
1875  *
1876  * If the number of unreaped completions is greater than or equal to wc_cnt,
1877  * this function returns wc_cnt, otherwise, it returns the actual number of
1878  * unreaped completions.
1879  */
1880 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
1881 
1882 /**
1883  * ib_req_notify_cq - Request completion notification on a CQ.
1884  * @cq: The CQ to generate an event for.
1885  * @flags:
1886  *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
1887  *   to request an event on the next solicited event or next work
1888  *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
1889  *   may also be |ed in to request a hint about missed events, as
1890  *   described below.
1891  *
1892  * Return Value:
1893  *    < 0 means an error occurred while requesting notification
1894  *   == 0 means notification was requested successfully, and if
1895  *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
1896  *        were missed and it is safe to wait for another event.  In
1897  *        this case is it guaranteed that any work completions added
1898  *        to the CQ since the last CQ poll will trigger a completion
1899  *        notification event.
1900  *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
1901  *        in.  It means that the consumer must poll the CQ again to
1902  *        make sure it is empty to avoid missing an event because of a
1903  *        race between requesting notification and an entry being
1904  *        added to the CQ.  This return value means it is possible
1905  *        (but not guaranteed) that a work completion has been added
1906  *        to the CQ since the last poll without triggering a
1907  *        completion notification event.
1908  */
1909 static inline int ib_req_notify_cq(struct ib_cq *cq,
1910 				   enum ib_cq_notify_flags flags)
1911 {
1912 	return cq->device->req_notify_cq(cq, flags);
1913 }
1914 
1915 /**
1916  * ib_req_ncomp_notif - Request completion notification when there are
1917  *   at least the specified number of unreaped completions on the CQ.
1918  * @cq: The CQ to generate an event for.
1919  * @wc_cnt: The number of unreaped completions that should be on the
1920  *   CQ before an event is generated.
1921  */
1922 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
1923 {
1924 	return cq->device->req_ncomp_notif ?
1925 		cq->device->req_ncomp_notif(cq, wc_cnt) :
1926 		-ENOSYS;
1927 }
1928 
1929 /**
1930  * ib_get_dma_mr - Returns a memory region for system memory that is
1931  *   usable for DMA.
1932  * @pd: The protection domain associated with the memory region.
1933  * @mr_access_flags: Specifies the memory access rights.
1934  *
1935  * Note that the ib_dma_*() functions defined below must be used
1936  * to create/destroy addresses used with the Lkey or Rkey returned
1937  * by ib_get_dma_mr().
1938  */
1939 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
1940 
1941 /**
1942  * ib_dma_mapping_error - check a DMA addr for error
1943  * @dev: The device for which the dma_addr was created
1944  * @dma_addr: The DMA address to check
1945  */
1946 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
1947 {
1948 	if (dev->dma_ops)
1949 		return dev->dma_ops->mapping_error(dev, dma_addr);
1950 	return dma_mapping_error(dev->dma_device, dma_addr);
1951 }
1952 
1953 /**
1954  * ib_dma_map_single - Map a kernel virtual address to DMA address
1955  * @dev: The device for which the dma_addr is to be created
1956  * @cpu_addr: The kernel virtual address
1957  * @size: The size of the region in bytes
1958  * @direction: The direction of the DMA
1959  */
1960 static inline u64 ib_dma_map_single(struct ib_device *dev,
1961 				    void *cpu_addr, size_t size,
1962 				    enum dma_data_direction direction)
1963 {
1964 	if (dev->dma_ops)
1965 		return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
1966 	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
1967 }
1968 
1969 /**
1970  * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
1971  * @dev: The device for which the DMA address was created
1972  * @addr: The DMA address
1973  * @size: The size of the region in bytes
1974  * @direction: The direction of the DMA
1975  */
1976 static inline void ib_dma_unmap_single(struct ib_device *dev,
1977 				       u64 addr, size_t size,
1978 				       enum dma_data_direction direction)
1979 {
1980 	if (dev->dma_ops)
1981 		dev->dma_ops->unmap_single(dev, addr, size, direction);
1982 	else
1983 		dma_unmap_single(dev->dma_device, addr, size, direction);
1984 }
1985 
1986 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
1987 					  void *cpu_addr, size_t size,
1988 					  enum dma_data_direction direction,
1989 					  struct dma_attrs *attrs)
1990 {
1991 	return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
1992 				    direction, attrs);
1993 }
1994 
1995 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
1996 					     u64 addr, size_t size,
1997 					     enum dma_data_direction direction,
1998 					     struct dma_attrs *attrs)
1999 {
2000 	return dma_unmap_single_attrs(dev->dma_device, addr, size,
2001 				      direction, attrs);
2002 }
2003 
2004 /**
2005  * ib_dma_map_page - Map a physical page to DMA address
2006  * @dev: The device for which the dma_addr is to be created
2007  * @page: The page to be mapped
2008  * @offset: The offset within the page
2009  * @size: The size of the region in bytes
2010  * @direction: The direction of the DMA
2011  */
2012 static inline u64 ib_dma_map_page(struct ib_device *dev,
2013 				  struct page *page,
2014 				  unsigned long offset,
2015 				  size_t size,
2016 					 enum dma_data_direction direction)
2017 {
2018 	if (dev->dma_ops)
2019 		return dev->dma_ops->map_page(dev, page, offset, size, direction);
2020 	return dma_map_page(dev->dma_device, page, offset, size, direction);
2021 }
2022 
2023 /**
2024  * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
2025  * @dev: The device for which the DMA address was created
2026  * @addr: The DMA address
2027  * @size: The size of the region in bytes
2028  * @direction: The direction of the DMA
2029  */
2030 static inline void ib_dma_unmap_page(struct ib_device *dev,
2031 				     u64 addr, size_t size,
2032 				     enum dma_data_direction direction)
2033 {
2034 	if (dev->dma_ops)
2035 		dev->dma_ops->unmap_page(dev, addr, size, direction);
2036 	else
2037 		dma_unmap_page(dev->dma_device, addr, size, direction);
2038 }
2039 
2040 /**
2041  * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
2042  * @dev: The device for which the DMA addresses are to be created
2043  * @sg: The array of scatter/gather entries
2044  * @nents: The number of scatter/gather entries
2045  * @direction: The direction of the DMA
2046  */
2047 static inline int ib_dma_map_sg(struct ib_device *dev,
2048 				struct scatterlist *sg, int nents,
2049 				enum dma_data_direction direction)
2050 {
2051 	if (dev->dma_ops)
2052 		return dev->dma_ops->map_sg(dev, sg, nents, direction);
2053 	return dma_map_sg(dev->dma_device, sg, nents, direction);
2054 }
2055 
2056 /**
2057  * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
2058  * @dev: The device for which the DMA addresses were created
2059  * @sg: The array of scatter/gather entries
2060  * @nents: The number of scatter/gather entries
2061  * @direction: The direction of the DMA
2062  */
2063 static inline void ib_dma_unmap_sg(struct ib_device *dev,
2064 				   struct scatterlist *sg, int nents,
2065 				   enum dma_data_direction direction)
2066 {
2067 	if (dev->dma_ops)
2068 		dev->dma_ops->unmap_sg(dev, sg, nents, direction);
2069 	else
2070 		dma_unmap_sg(dev->dma_device, sg, nents, direction);
2071 }
2072 
2073 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
2074 				      struct scatterlist *sg, int nents,
2075 				      enum dma_data_direction direction,
2076 				      struct dma_attrs *attrs)
2077 {
2078 	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2079 }
2080 
2081 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
2082 					 struct scatterlist *sg, int nents,
2083 					 enum dma_data_direction direction,
2084 					 struct dma_attrs *attrs)
2085 {
2086 	dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2087 }
2088 /**
2089  * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
2090  * @dev: The device for which the DMA addresses were created
2091  * @sg: The scatter/gather entry
2092  */
2093 static inline u64 ib_sg_dma_address(struct ib_device *dev,
2094 				    struct scatterlist *sg)
2095 {
2096 	if (dev->dma_ops)
2097 		return dev->dma_ops->dma_address(dev, sg);
2098 	return sg_dma_address(sg);
2099 }
2100 
2101 /**
2102  * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
2103  * @dev: The device for which the DMA addresses were created
2104  * @sg: The scatter/gather entry
2105  */
2106 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
2107 					 struct scatterlist *sg)
2108 {
2109 	if (dev->dma_ops)
2110 		return dev->dma_ops->dma_len(dev, sg);
2111 	return sg_dma_len(sg);
2112 }
2113 
2114 /**
2115  * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
2116  * @dev: The device for which the DMA address was created
2117  * @addr: The DMA address
2118  * @size: The size of the region in bytes
2119  * @dir: The direction of the DMA
2120  */
2121 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
2122 					      u64 addr,
2123 					      size_t size,
2124 					      enum dma_data_direction dir)
2125 {
2126 	if (dev->dma_ops)
2127 		dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
2128 	else
2129 		dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
2130 }
2131 
2132 /**
2133  * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
2134  * @dev: The device for which the DMA address was created
2135  * @addr: The DMA address
2136  * @size: The size of the region in bytes
2137  * @dir: The direction of the DMA
2138  */
2139 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
2140 						 u64 addr,
2141 						 size_t size,
2142 						 enum dma_data_direction dir)
2143 {
2144 	if (dev->dma_ops)
2145 		dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
2146 	else
2147 		dma_sync_single_for_device(dev->dma_device, addr, size, dir);
2148 }
2149 
2150 /**
2151  * ib_dma_alloc_coherent - Allocate memory and map it for DMA
2152  * @dev: The device for which the DMA address is requested
2153  * @size: The size of the region to allocate in bytes
2154  * @dma_handle: A pointer for returning the DMA address of the region
2155  * @flag: memory allocator flags
2156  */
2157 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
2158 					   size_t size,
2159 					   u64 *dma_handle,
2160 					   gfp_t flag)
2161 {
2162 	if (dev->dma_ops)
2163 		return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
2164 	else {
2165 		dma_addr_t handle;
2166 		void *ret;
2167 
2168 		ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
2169 		*dma_handle = handle;
2170 		return ret;
2171 	}
2172 }
2173 
2174 /**
2175  * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
2176  * @dev: The device for which the DMA addresses were allocated
2177  * @size: The size of the region
2178  * @cpu_addr: the address returned by ib_dma_alloc_coherent()
2179  * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
2180  */
2181 static inline void ib_dma_free_coherent(struct ib_device *dev,
2182 					size_t size, void *cpu_addr,
2183 					u64 dma_handle)
2184 {
2185 	if (dev->dma_ops)
2186 		dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
2187 	else
2188 		dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
2189 }
2190 
2191 /**
2192  * ib_reg_phys_mr - Prepares a virtually addressed memory region for use
2193  *   by an HCA.
2194  * @pd: The protection domain associated assigned to the registered region.
2195  * @phys_buf_array: Specifies a list of physical buffers to use in the
2196  *   memory region.
2197  * @num_phys_buf: Specifies the size of the phys_buf_array.
2198  * @mr_access_flags: Specifies the memory access rights.
2199  * @iova_start: The offset of the region's starting I/O virtual address.
2200  */
2201 struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
2202 			     struct ib_phys_buf *phys_buf_array,
2203 			     int num_phys_buf,
2204 			     int mr_access_flags,
2205 			     u64 *iova_start);
2206 
2207 /**
2208  * ib_rereg_phys_mr - Modifies the attributes of an existing memory region.
2209  *   Conceptually, this call performs the functions deregister memory region
2210  *   followed by register physical memory region.  Where possible,
2211  *   resources are reused instead of deallocated and reallocated.
2212  * @mr: The memory region to modify.
2213  * @mr_rereg_mask: A bit-mask used to indicate which of the following
2214  *   properties of the memory region are being modified.
2215  * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies
2216  *   the new protection domain to associated with the memory region,
2217  *   otherwise, this parameter is ignored.
2218  * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
2219  *   field specifies a list of physical buffers to use in the new
2220  *   translation, otherwise, this parameter is ignored.
2221  * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
2222  *   field specifies the size of the phys_buf_array, otherwise, this
2223  *   parameter is ignored.
2224  * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this
2225  *   field specifies the new memory access rights, otherwise, this
2226  *   parameter is ignored.
2227  * @iova_start: The offset of the region's starting I/O virtual address.
2228  */
2229 int ib_rereg_phys_mr(struct ib_mr *mr,
2230 		     int mr_rereg_mask,
2231 		     struct ib_pd *pd,
2232 		     struct ib_phys_buf *phys_buf_array,
2233 		     int num_phys_buf,
2234 		     int mr_access_flags,
2235 		     u64 *iova_start);
2236 
2237 /**
2238  * ib_query_mr - Retrieves information about a specific memory region.
2239  * @mr: The memory region to retrieve information about.
2240  * @mr_attr: The attributes of the specified memory region.
2241  */
2242 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
2243 
2244 /**
2245  * ib_dereg_mr - Deregisters a memory region and removes it from the
2246  *   HCA translation table.
2247  * @mr: The memory region to deregister.
2248  *
2249  * This function can fail, if the memory region has memory windows bound to it.
2250  */
2251 int ib_dereg_mr(struct ib_mr *mr);
2252 
2253 /**
2254  * ib_alloc_fast_reg_mr - Allocates memory region usable with the
2255  *   IB_WR_FAST_REG_MR send work request.
2256  * @pd: The protection domain associated with the region.
2257  * @max_page_list_len: requested max physical buffer list length to be
2258  *   used with fast register work requests for this MR.
2259  */
2260 struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len);
2261 
2262 /**
2263  * ib_alloc_fast_reg_page_list - Allocates a page list array
2264  * @device - ib device pointer.
2265  * @page_list_len - size of the page list array to be allocated.
2266  *
2267  * This allocates and returns a struct ib_fast_reg_page_list * and a
2268  * page_list array that is at least page_list_len in size.  The actual
2269  * size is returned in max_page_list_len.  The caller is responsible
2270  * for initializing the contents of the page_list array before posting
2271  * a send work request with the IB_WC_FAST_REG_MR opcode.
2272  *
2273  * The page_list array entries must be translated using one of the
2274  * ib_dma_*() functions just like the addresses passed to
2275  * ib_map_phys_fmr().  Once the ib_post_send() is issued, the struct
2276  * ib_fast_reg_page_list must not be modified by the caller until the
2277  * IB_WC_FAST_REG_MR work request completes.
2278  */
2279 struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(
2280 				struct ib_device *device, int page_list_len);
2281 
2282 /**
2283  * ib_free_fast_reg_page_list - Deallocates a previously allocated
2284  *   page list array.
2285  * @page_list - struct ib_fast_reg_page_list pointer to be deallocated.
2286  */
2287 void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list);
2288 
2289 /**
2290  * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
2291  *   R_Key and L_Key.
2292  * @mr - struct ib_mr pointer to be updated.
2293  * @newkey - new key to be used.
2294  */
2295 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
2296 {
2297 	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
2298 	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
2299 }
2300 
2301 /**
2302  * ib_inc_rkey - increments the key portion of the given rkey. Can be used
2303  * for calculating a new rkey for type 2 memory windows.
2304  * @rkey - the rkey to increment.
2305  */
2306 static inline u32 ib_inc_rkey(u32 rkey)
2307 {
2308 	const u32 mask = 0x000000ff;
2309 	return ((rkey + 1) & mask) | (rkey & ~mask);
2310 }
2311 
2312 /**
2313  * ib_alloc_mw - Allocates a memory window.
2314  * @pd: The protection domain associated with the memory window.
2315  * @type: The type of the memory window (1 or 2).
2316  */
2317 struct ib_mw *ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type);
2318 
2319 /**
2320  * ib_bind_mw - Posts a work request to the send queue of the specified
2321  *   QP, which binds the memory window to the given address range and
2322  *   remote access attributes.
2323  * @qp: QP to post the bind work request on.
2324  * @mw: The memory window to bind.
2325  * @mw_bind: Specifies information about the memory window, including
2326  *   its address range, remote access rights, and associated memory region.
2327  *
2328  * If there is no immediate error, the function will update the rkey member
2329  * of the mw parameter to its new value. The bind operation can still fail
2330  * asynchronously.
2331  */
2332 static inline int ib_bind_mw(struct ib_qp *qp,
2333 			     struct ib_mw *mw,
2334 			     struct ib_mw_bind *mw_bind)
2335 {
2336 	/* XXX reference counting in corresponding MR? */
2337 	return mw->device->bind_mw ?
2338 		mw->device->bind_mw(qp, mw, mw_bind) :
2339 		-ENOSYS;
2340 }
2341 
2342 /**
2343  * ib_dealloc_mw - Deallocates a memory window.
2344  * @mw: The memory window to deallocate.
2345  */
2346 int ib_dealloc_mw(struct ib_mw *mw);
2347 
2348 /**
2349  * ib_alloc_fmr - Allocates a unmapped fast memory region.
2350  * @pd: The protection domain associated with the unmapped region.
2351  * @mr_access_flags: Specifies the memory access rights.
2352  * @fmr_attr: Attributes of the unmapped region.
2353  *
2354  * A fast memory region must be mapped before it can be used as part of
2355  * a work request.
2356  */
2357 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2358 			    int mr_access_flags,
2359 			    struct ib_fmr_attr *fmr_attr);
2360 
2361 /**
2362  * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2363  * @fmr: The fast memory region to associate with the pages.
2364  * @page_list: An array of physical pages to map to the fast memory region.
2365  * @list_len: The number of pages in page_list.
2366  * @iova: The I/O virtual address to use with the mapped region.
2367  */
2368 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2369 				  u64 *page_list, int list_len,
2370 				  u64 iova)
2371 {
2372 	return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
2373 }
2374 
2375 /**
2376  * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2377  * @fmr_list: A linked list of fast memory regions to unmap.
2378  */
2379 int ib_unmap_fmr(struct list_head *fmr_list);
2380 
2381 /**
2382  * ib_dealloc_fmr - Deallocates a fast memory region.
2383  * @fmr: The fast memory region to deallocate.
2384  */
2385 int ib_dealloc_fmr(struct ib_fmr *fmr);
2386 
2387 /**
2388  * ib_attach_mcast - Attaches the specified QP to a multicast group.
2389  * @qp: QP to attach to the multicast group.  The QP must be type
2390  *   IB_QPT_UD.
2391  * @gid: Multicast group GID.
2392  * @lid: Multicast group LID in host byte order.
2393  *
2394  * In order to send and receive multicast packets, subnet
2395  * administration must have created the multicast group and configured
2396  * the fabric appropriately.  The port associated with the specified
2397  * QP must also be a member of the multicast group.
2398  */
2399 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2400 
2401 /**
2402  * ib_detach_mcast - Detaches the specified QP from a multicast group.
2403  * @qp: QP to detach from the multicast group.
2404  * @gid: Multicast group GID.
2405  * @lid: Multicast group LID in host byte order.
2406  */
2407 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2408 
2409 /**
2410  * ib_alloc_xrcd - Allocates an XRC domain.
2411  * @device: The device on which to allocate the XRC domain.
2412  */
2413 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
2414 
2415 /**
2416  * ib_dealloc_xrcd - Deallocates an XRC domain.
2417  * @xrcd: The XRC domain to deallocate.
2418  */
2419 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
2420 
2421 struct ib_flow *ib_create_flow(struct ib_qp *qp,
2422 			       struct ib_flow_attr *flow_attr, int domain);
2423 int ib_destroy_flow(struct ib_flow *flow_id);
2424 
2425 static inline int ib_check_mr_access(int flags)
2426 {
2427 	/*
2428 	 * Local write permission is required if remote write or
2429 	 * remote atomic permission is also requested.
2430 	 */
2431 	if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
2432 	    !(flags & IB_ACCESS_LOCAL_WRITE))
2433 		return -EINVAL;
2434 
2435 	return 0;
2436 }
2437 
2438 #endif /* IB_VERBS_H */
2439