1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #if !defined(IB_VERBS_H) 40 #define IB_VERBS_H 41 42 #include <linux/types.h> 43 #include <linux/device.h> 44 #include <linux/mm.h> 45 #include <linux/dma-mapping.h> 46 #include <linux/kref.h> 47 #include <linux/list.h> 48 #include <linux/rwsem.h> 49 #include <linux/scatterlist.h> 50 #include <linux/workqueue.h> 51 52 #include <linux/atomic.h> 53 #include <asm/uaccess.h> 54 55 extern struct workqueue_struct *ib_wq; 56 57 union ib_gid { 58 u8 raw[16]; 59 struct { 60 __be64 subnet_prefix; 61 __be64 interface_id; 62 } global; 63 }; 64 65 enum rdma_node_type { 66 /* IB values map to NodeInfo:NodeType. */ 67 RDMA_NODE_IB_CA = 1, 68 RDMA_NODE_IB_SWITCH, 69 RDMA_NODE_IB_ROUTER, 70 RDMA_NODE_RNIC 71 }; 72 73 enum rdma_transport_type { 74 RDMA_TRANSPORT_IB, 75 RDMA_TRANSPORT_IWARP 76 }; 77 78 enum rdma_transport_type 79 rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__; 80 81 enum rdma_link_layer { 82 IB_LINK_LAYER_UNSPECIFIED, 83 IB_LINK_LAYER_INFINIBAND, 84 IB_LINK_LAYER_ETHERNET, 85 }; 86 87 enum ib_device_cap_flags { 88 IB_DEVICE_RESIZE_MAX_WR = 1, 89 IB_DEVICE_BAD_PKEY_CNTR = (1<<1), 90 IB_DEVICE_BAD_QKEY_CNTR = (1<<2), 91 IB_DEVICE_RAW_MULTI = (1<<3), 92 IB_DEVICE_AUTO_PATH_MIG = (1<<4), 93 IB_DEVICE_CHANGE_PHY_PORT = (1<<5), 94 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6), 95 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7), 96 IB_DEVICE_SHUTDOWN_PORT = (1<<8), 97 IB_DEVICE_INIT_TYPE = (1<<9), 98 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10), 99 IB_DEVICE_SYS_IMAGE_GUID = (1<<11), 100 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12), 101 IB_DEVICE_SRQ_RESIZE = (1<<13), 102 IB_DEVICE_N_NOTIFY_CQ = (1<<14), 103 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15), 104 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */ 105 IB_DEVICE_MEM_WINDOW = (1<<17), 106 /* 107 * Devices should set IB_DEVICE_UD_IP_SUM if they support 108 * insertion of UDP and TCP checksum on outgoing UD IPoIB 109 * messages and can verify the validity of checksum for 110 * incoming messages. Setting this flag implies that the 111 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 112 */ 113 IB_DEVICE_UD_IP_CSUM = (1<<18), 114 IB_DEVICE_UD_TSO = (1<<19), 115 IB_DEVICE_XRC = (1<<20), 116 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21), 117 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22), 118 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1<<23), 119 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1<<24) 120 }; 121 122 enum ib_atomic_cap { 123 IB_ATOMIC_NONE, 124 IB_ATOMIC_HCA, 125 IB_ATOMIC_GLOB 126 }; 127 128 struct ib_device_attr { 129 u64 fw_ver; 130 __be64 sys_image_guid; 131 u64 max_mr_size; 132 u64 page_size_cap; 133 u32 vendor_id; 134 u32 vendor_part_id; 135 u32 hw_ver; 136 int max_qp; 137 int max_qp_wr; 138 int device_cap_flags; 139 int max_sge; 140 int max_sge_rd; 141 int max_cq; 142 int max_cqe; 143 int max_mr; 144 int max_pd; 145 int max_qp_rd_atom; 146 int max_ee_rd_atom; 147 int max_res_rd_atom; 148 int max_qp_init_rd_atom; 149 int max_ee_init_rd_atom; 150 enum ib_atomic_cap atomic_cap; 151 enum ib_atomic_cap masked_atomic_cap; 152 int max_ee; 153 int max_rdd; 154 int max_mw; 155 int max_raw_ipv6_qp; 156 int max_raw_ethy_qp; 157 int max_mcast_grp; 158 int max_mcast_qp_attach; 159 int max_total_mcast_qp_attach; 160 int max_ah; 161 int max_fmr; 162 int max_map_per_fmr; 163 int max_srq; 164 int max_srq_wr; 165 int max_srq_sge; 166 unsigned int max_fast_reg_page_list_len; 167 u16 max_pkeys; 168 u8 local_ca_ack_delay; 169 }; 170 171 enum ib_mtu { 172 IB_MTU_256 = 1, 173 IB_MTU_512 = 2, 174 IB_MTU_1024 = 3, 175 IB_MTU_2048 = 4, 176 IB_MTU_4096 = 5 177 }; 178 179 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 180 { 181 switch (mtu) { 182 case IB_MTU_256: return 256; 183 case IB_MTU_512: return 512; 184 case IB_MTU_1024: return 1024; 185 case IB_MTU_2048: return 2048; 186 case IB_MTU_4096: return 4096; 187 default: return -1; 188 } 189 } 190 191 enum ib_port_state { 192 IB_PORT_NOP = 0, 193 IB_PORT_DOWN = 1, 194 IB_PORT_INIT = 2, 195 IB_PORT_ARMED = 3, 196 IB_PORT_ACTIVE = 4, 197 IB_PORT_ACTIVE_DEFER = 5 198 }; 199 200 enum ib_port_cap_flags { 201 IB_PORT_SM = 1 << 1, 202 IB_PORT_NOTICE_SUP = 1 << 2, 203 IB_PORT_TRAP_SUP = 1 << 3, 204 IB_PORT_OPT_IPD_SUP = 1 << 4, 205 IB_PORT_AUTO_MIGR_SUP = 1 << 5, 206 IB_PORT_SL_MAP_SUP = 1 << 6, 207 IB_PORT_MKEY_NVRAM = 1 << 7, 208 IB_PORT_PKEY_NVRAM = 1 << 8, 209 IB_PORT_LED_INFO_SUP = 1 << 9, 210 IB_PORT_SM_DISABLED = 1 << 10, 211 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11, 212 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12, 213 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14, 214 IB_PORT_CM_SUP = 1 << 16, 215 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17, 216 IB_PORT_REINIT_SUP = 1 << 18, 217 IB_PORT_DEVICE_MGMT_SUP = 1 << 19, 218 IB_PORT_VENDOR_CLASS_SUP = 1 << 20, 219 IB_PORT_DR_NOTICE_SUP = 1 << 21, 220 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22, 221 IB_PORT_BOOT_MGMT_SUP = 1 << 23, 222 IB_PORT_LINK_LATENCY_SUP = 1 << 24, 223 IB_PORT_CLIENT_REG_SUP = 1 << 25 224 }; 225 226 enum ib_port_width { 227 IB_WIDTH_1X = 1, 228 IB_WIDTH_4X = 2, 229 IB_WIDTH_8X = 4, 230 IB_WIDTH_12X = 8 231 }; 232 233 static inline int ib_width_enum_to_int(enum ib_port_width width) 234 { 235 switch (width) { 236 case IB_WIDTH_1X: return 1; 237 case IB_WIDTH_4X: return 4; 238 case IB_WIDTH_8X: return 8; 239 case IB_WIDTH_12X: return 12; 240 default: return -1; 241 } 242 } 243 244 enum ib_port_speed { 245 IB_SPEED_SDR = 1, 246 IB_SPEED_DDR = 2, 247 IB_SPEED_QDR = 4, 248 IB_SPEED_FDR10 = 8, 249 IB_SPEED_FDR = 16, 250 IB_SPEED_EDR = 32 251 }; 252 253 struct ib_protocol_stats { 254 /* TBD... */ 255 }; 256 257 struct iw_protocol_stats { 258 u64 ipInReceives; 259 u64 ipInHdrErrors; 260 u64 ipInTooBigErrors; 261 u64 ipInNoRoutes; 262 u64 ipInAddrErrors; 263 u64 ipInUnknownProtos; 264 u64 ipInTruncatedPkts; 265 u64 ipInDiscards; 266 u64 ipInDelivers; 267 u64 ipOutForwDatagrams; 268 u64 ipOutRequests; 269 u64 ipOutDiscards; 270 u64 ipOutNoRoutes; 271 u64 ipReasmTimeout; 272 u64 ipReasmReqds; 273 u64 ipReasmOKs; 274 u64 ipReasmFails; 275 u64 ipFragOKs; 276 u64 ipFragFails; 277 u64 ipFragCreates; 278 u64 ipInMcastPkts; 279 u64 ipOutMcastPkts; 280 u64 ipInBcastPkts; 281 u64 ipOutBcastPkts; 282 283 u64 tcpRtoAlgorithm; 284 u64 tcpRtoMin; 285 u64 tcpRtoMax; 286 u64 tcpMaxConn; 287 u64 tcpActiveOpens; 288 u64 tcpPassiveOpens; 289 u64 tcpAttemptFails; 290 u64 tcpEstabResets; 291 u64 tcpCurrEstab; 292 u64 tcpInSegs; 293 u64 tcpOutSegs; 294 u64 tcpRetransSegs; 295 u64 tcpInErrs; 296 u64 tcpOutRsts; 297 }; 298 299 union rdma_protocol_stats { 300 struct ib_protocol_stats ib; 301 struct iw_protocol_stats iw; 302 }; 303 304 struct ib_port_attr { 305 enum ib_port_state state; 306 enum ib_mtu max_mtu; 307 enum ib_mtu active_mtu; 308 int gid_tbl_len; 309 u32 port_cap_flags; 310 u32 max_msg_sz; 311 u32 bad_pkey_cntr; 312 u32 qkey_viol_cntr; 313 u16 pkey_tbl_len; 314 u16 lid; 315 u16 sm_lid; 316 u8 lmc; 317 u8 max_vl_num; 318 u8 sm_sl; 319 u8 subnet_timeout; 320 u8 init_type_reply; 321 u8 active_width; 322 u8 active_speed; 323 u8 phys_state; 324 }; 325 326 enum ib_device_modify_flags { 327 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 328 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 329 }; 330 331 struct ib_device_modify { 332 u64 sys_image_guid; 333 char node_desc[64]; 334 }; 335 336 enum ib_port_modify_flags { 337 IB_PORT_SHUTDOWN = 1, 338 IB_PORT_INIT_TYPE = (1<<2), 339 IB_PORT_RESET_QKEY_CNTR = (1<<3) 340 }; 341 342 struct ib_port_modify { 343 u32 set_port_cap_mask; 344 u32 clr_port_cap_mask; 345 u8 init_type; 346 }; 347 348 enum ib_event_type { 349 IB_EVENT_CQ_ERR, 350 IB_EVENT_QP_FATAL, 351 IB_EVENT_QP_REQ_ERR, 352 IB_EVENT_QP_ACCESS_ERR, 353 IB_EVENT_COMM_EST, 354 IB_EVENT_SQ_DRAINED, 355 IB_EVENT_PATH_MIG, 356 IB_EVENT_PATH_MIG_ERR, 357 IB_EVENT_DEVICE_FATAL, 358 IB_EVENT_PORT_ACTIVE, 359 IB_EVENT_PORT_ERR, 360 IB_EVENT_LID_CHANGE, 361 IB_EVENT_PKEY_CHANGE, 362 IB_EVENT_SM_CHANGE, 363 IB_EVENT_SRQ_ERR, 364 IB_EVENT_SRQ_LIMIT_REACHED, 365 IB_EVENT_QP_LAST_WQE_REACHED, 366 IB_EVENT_CLIENT_REREGISTER, 367 IB_EVENT_GID_CHANGE, 368 }; 369 370 struct ib_event { 371 struct ib_device *device; 372 union { 373 struct ib_cq *cq; 374 struct ib_qp *qp; 375 struct ib_srq *srq; 376 u8 port_num; 377 } element; 378 enum ib_event_type event; 379 }; 380 381 struct ib_event_handler { 382 struct ib_device *device; 383 void (*handler)(struct ib_event_handler *, struct ib_event *); 384 struct list_head list; 385 }; 386 387 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 388 do { \ 389 (_ptr)->device = _device; \ 390 (_ptr)->handler = _handler; \ 391 INIT_LIST_HEAD(&(_ptr)->list); \ 392 } while (0) 393 394 struct ib_global_route { 395 union ib_gid dgid; 396 u32 flow_label; 397 u8 sgid_index; 398 u8 hop_limit; 399 u8 traffic_class; 400 }; 401 402 struct ib_grh { 403 __be32 version_tclass_flow; 404 __be16 paylen; 405 u8 next_hdr; 406 u8 hop_limit; 407 union ib_gid sgid; 408 union ib_gid dgid; 409 }; 410 411 enum { 412 IB_MULTICAST_QPN = 0xffffff 413 }; 414 415 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 416 417 enum ib_ah_flags { 418 IB_AH_GRH = 1 419 }; 420 421 enum ib_rate { 422 IB_RATE_PORT_CURRENT = 0, 423 IB_RATE_2_5_GBPS = 2, 424 IB_RATE_5_GBPS = 5, 425 IB_RATE_10_GBPS = 3, 426 IB_RATE_20_GBPS = 6, 427 IB_RATE_30_GBPS = 4, 428 IB_RATE_40_GBPS = 7, 429 IB_RATE_60_GBPS = 8, 430 IB_RATE_80_GBPS = 9, 431 IB_RATE_120_GBPS = 10, 432 IB_RATE_14_GBPS = 11, 433 IB_RATE_56_GBPS = 12, 434 IB_RATE_112_GBPS = 13, 435 IB_RATE_168_GBPS = 14, 436 IB_RATE_25_GBPS = 15, 437 IB_RATE_100_GBPS = 16, 438 IB_RATE_200_GBPS = 17, 439 IB_RATE_300_GBPS = 18 440 }; 441 442 /** 443 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 444 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 445 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 446 * @rate: rate to convert. 447 */ 448 int ib_rate_to_mult(enum ib_rate rate) __attribute_const__; 449 450 /** 451 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 452 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 453 * @rate: rate to convert. 454 */ 455 int ib_rate_to_mbps(enum ib_rate rate) __attribute_const__; 456 457 /** 458 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 459 * enum. 460 * @mult: multiple to convert. 461 */ 462 enum ib_rate mult_to_ib_rate(int mult) __attribute_const__; 463 464 struct ib_ah_attr { 465 struct ib_global_route grh; 466 u16 dlid; 467 u8 sl; 468 u8 src_path_bits; 469 u8 static_rate; 470 u8 ah_flags; 471 u8 port_num; 472 }; 473 474 enum ib_wc_status { 475 IB_WC_SUCCESS, 476 IB_WC_LOC_LEN_ERR, 477 IB_WC_LOC_QP_OP_ERR, 478 IB_WC_LOC_EEC_OP_ERR, 479 IB_WC_LOC_PROT_ERR, 480 IB_WC_WR_FLUSH_ERR, 481 IB_WC_MW_BIND_ERR, 482 IB_WC_BAD_RESP_ERR, 483 IB_WC_LOC_ACCESS_ERR, 484 IB_WC_REM_INV_REQ_ERR, 485 IB_WC_REM_ACCESS_ERR, 486 IB_WC_REM_OP_ERR, 487 IB_WC_RETRY_EXC_ERR, 488 IB_WC_RNR_RETRY_EXC_ERR, 489 IB_WC_LOC_RDD_VIOL_ERR, 490 IB_WC_REM_INV_RD_REQ_ERR, 491 IB_WC_REM_ABORT_ERR, 492 IB_WC_INV_EECN_ERR, 493 IB_WC_INV_EEC_STATE_ERR, 494 IB_WC_FATAL_ERR, 495 IB_WC_RESP_TIMEOUT_ERR, 496 IB_WC_GENERAL_ERR 497 }; 498 499 enum ib_wc_opcode { 500 IB_WC_SEND, 501 IB_WC_RDMA_WRITE, 502 IB_WC_RDMA_READ, 503 IB_WC_COMP_SWAP, 504 IB_WC_FETCH_ADD, 505 IB_WC_BIND_MW, 506 IB_WC_LSO, 507 IB_WC_LOCAL_INV, 508 IB_WC_FAST_REG_MR, 509 IB_WC_MASKED_COMP_SWAP, 510 IB_WC_MASKED_FETCH_ADD, 511 /* 512 * Set value of IB_WC_RECV so consumers can test if a completion is a 513 * receive by testing (opcode & IB_WC_RECV). 514 */ 515 IB_WC_RECV = 1 << 7, 516 IB_WC_RECV_RDMA_WITH_IMM 517 }; 518 519 enum ib_wc_flags { 520 IB_WC_GRH = 1, 521 IB_WC_WITH_IMM = (1<<1), 522 IB_WC_WITH_INVALIDATE = (1<<2), 523 IB_WC_IP_CSUM_OK = (1<<3), 524 }; 525 526 struct ib_wc { 527 u64 wr_id; 528 enum ib_wc_status status; 529 enum ib_wc_opcode opcode; 530 u32 vendor_err; 531 u32 byte_len; 532 struct ib_qp *qp; 533 union { 534 __be32 imm_data; 535 u32 invalidate_rkey; 536 } ex; 537 u32 src_qp; 538 int wc_flags; 539 u16 pkey_index; 540 u16 slid; 541 u8 sl; 542 u8 dlid_path_bits; 543 u8 port_num; /* valid only for DR SMPs on switches */ 544 }; 545 546 enum ib_cq_notify_flags { 547 IB_CQ_SOLICITED = 1 << 0, 548 IB_CQ_NEXT_COMP = 1 << 1, 549 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 550 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 551 }; 552 553 enum ib_srq_type { 554 IB_SRQT_BASIC, 555 IB_SRQT_XRC 556 }; 557 558 enum ib_srq_attr_mask { 559 IB_SRQ_MAX_WR = 1 << 0, 560 IB_SRQ_LIMIT = 1 << 1, 561 }; 562 563 struct ib_srq_attr { 564 u32 max_wr; 565 u32 max_sge; 566 u32 srq_limit; 567 }; 568 569 struct ib_srq_init_attr { 570 void (*event_handler)(struct ib_event *, void *); 571 void *srq_context; 572 struct ib_srq_attr attr; 573 enum ib_srq_type srq_type; 574 575 union { 576 struct { 577 struct ib_xrcd *xrcd; 578 struct ib_cq *cq; 579 } xrc; 580 } ext; 581 }; 582 583 struct ib_qp_cap { 584 u32 max_send_wr; 585 u32 max_recv_wr; 586 u32 max_send_sge; 587 u32 max_recv_sge; 588 u32 max_inline_data; 589 }; 590 591 enum ib_sig_type { 592 IB_SIGNAL_ALL_WR, 593 IB_SIGNAL_REQ_WR 594 }; 595 596 enum ib_qp_type { 597 /* 598 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 599 * here (and in that order) since the MAD layer uses them as 600 * indices into a 2-entry table. 601 */ 602 IB_QPT_SMI, 603 IB_QPT_GSI, 604 605 IB_QPT_RC, 606 IB_QPT_UC, 607 IB_QPT_UD, 608 IB_QPT_RAW_IPV6, 609 IB_QPT_RAW_ETHERTYPE, 610 IB_QPT_RAW_PACKET = 8, 611 IB_QPT_XRC_INI = 9, 612 IB_QPT_XRC_TGT, 613 IB_QPT_MAX, 614 /* Reserve a range for qp types internal to the low level driver. 615 * These qp types will not be visible at the IB core layer, so the 616 * IB_QPT_MAX usages should not be affected in the core layer 617 */ 618 IB_QPT_RESERVED1 = 0x1000, 619 IB_QPT_RESERVED2, 620 IB_QPT_RESERVED3, 621 IB_QPT_RESERVED4, 622 IB_QPT_RESERVED5, 623 IB_QPT_RESERVED6, 624 IB_QPT_RESERVED7, 625 IB_QPT_RESERVED8, 626 IB_QPT_RESERVED9, 627 IB_QPT_RESERVED10, 628 }; 629 630 enum ib_qp_create_flags { 631 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 632 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1, 633 /* reserve bits 26-31 for low level drivers' internal use */ 634 IB_QP_CREATE_RESERVED_START = 1 << 26, 635 IB_QP_CREATE_RESERVED_END = 1 << 31, 636 }; 637 638 struct ib_qp_init_attr { 639 void (*event_handler)(struct ib_event *, void *); 640 void *qp_context; 641 struct ib_cq *send_cq; 642 struct ib_cq *recv_cq; 643 struct ib_srq *srq; 644 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 645 struct ib_qp_cap cap; 646 enum ib_sig_type sq_sig_type; 647 enum ib_qp_type qp_type; 648 enum ib_qp_create_flags create_flags; 649 u8 port_num; /* special QP types only */ 650 }; 651 652 struct ib_qp_open_attr { 653 void (*event_handler)(struct ib_event *, void *); 654 void *qp_context; 655 u32 qp_num; 656 enum ib_qp_type qp_type; 657 }; 658 659 enum ib_rnr_timeout { 660 IB_RNR_TIMER_655_36 = 0, 661 IB_RNR_TIMER_000_01 = 1, 662 IB_RNR_TIMER_000_02 = 2, 663 IB_RNR_TIMER_000_03 = 3, 664 IB_RNR_TIMER_000_04 = 4, 665 IB_RNR_TIMER_000_06 = 5, 666 IB_RNR_TIMER_000_08 = 6, 667 IB_RNR_TIMER_000_12 = 7, 668 IB_RNR_TIMER_000_16 = 8, 669 IB_RNR_TIMER_000_24 = 9, 670 IB_RNR_TIMER_000_32 = 10, 671 IB_RNR_TIMER_000_48 = 11, 672 IB_RNR_TIMER_000_64 = 12, 673 IB_RNR_TIMER_000_96 = 13, 674 IB_RNR_TIMER_001_28 = 14, 675 IB_RNR_TIMER_001_92 = 15, 676 IB_RNR_TIMER_002_56 = 16, 677 IB_RNR_TIMER_003_84 = 17, 678 IB_RNR_TIMER_005_12 = 18, 679 IB_RNR_TIMER_007_68 = 19, 680 IB_RNR_TIMER_010_24 = 20, 681 IB_RNR_TIMER_015_36 = 21, 682 IB_RNR_TIMER_020_48 = 22, 683 IB_RNR_TIMER_030_72 = 23, 684 IB_RNR_TIMER_040_96 = 24, 685 IB_RNR_TIMER_061_44 = 25, 686 IB_RNR_TIMER_081_92 = 26, 687 IB_RNR_TIMER_122_88 = 27, 688 IB_RNR_TIMER_163_84 = 28, 689 IB_RNR_TIMER_245_76 = 29, 690 IB_RNR_TIMER_327_68 = 30, 691 IB_RNR_TIMER_491_52 = 31 692 }; 693 694 enum ib_qp_attr_mask { 695 IB_QP_STATE = 1, 696 IB_QP_CUR_STATE = (1<<1), 697 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 698 IB_QP_ACCESS_FLAGS = (1<<3), 699 IB_QP_PKEY_INDEX = (1<<4), 700 IB_QP_PORT = (1<<5), 701 IB_QP_QKEY = (1<<6), 702 IB_QP_AV = (1<<7), 703 IB_QP_PATH_MTU = (1<<8), 704 IB_QP_TIMEOUT = (1<<9), 705 IB_QP_RETRY_CNT = (1<<10), 706 IB_QP_RNR_RETRY = (1<<11), 707 IB_QP_RQ_PSN = (1<<12), 708 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 709 IB_QP_ALT_PATH = (1<<14), 710 IB_QP_MIN_RNR_TIMER = (1<<15), 711 IB_QP_SQ_PSN = (1<<16), 712 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 713 IB_QP_PATH_MIG_STATE = (1<<18), 714 IB_QP_CAP = (1<<19), 715 IB_QP_DEST_QPN = (1<<20) 716 }; 717 718 enum ib_qp_state { 719 IB_QPS_RESET, 720 IB_QPS_INIT, 721 IB_QPS_RTR, 722 IB_QPS_RTS, 723 IB_QPS_SQD, 724 IB_QPS_SQE, 725 IB_QPS_ERR 726 }; 727 728 enum ib_mig_state { 729 IB_MIG_MIGRATED, 730 IB_MIG_REARM, 731 IB_MIG_ARMED 732 }; 733 734 enum ib_mw_type { 735 IB_MW_TYPE_1 = 1, 736 IB_MW_TYPE_2 = 2 737 }; 738 739 struct ib_qp_attr { 740 enum ib_qp_state qp_state; 741 enum ib_qp_state cur_qp_state; 742 enum ib_mtu path_mtu; 743 enum ib_mig_state path_mig_state; 744 u32 qkey; 745 u32 rq_psn; 746 u32 sq_psn; 747 u32 dest_qp_num; 748 int qp_access_flags; 749 struct ib_qp_cap cap; 750 struct ib_ah_attr ah_attr; 751 struct ib_ah_attr alt_ah_attr; 752 u16 pkey_index; 753 u16 alt_pkey_index; 754 u8 en_sqd_async_notify; 755 u8 sq_draining; 756 u8 max_rd_atomic; 757 u8 max_dest_rd_atomic; 758 u8 min_rnr_timer; 759 u8 port_num; 760 u8 timeout; 761 u8 retry_cnt; 762 u8 rnr_retry; 763 u8 alt_port_num; 764 u8 alt_timeout; 765 }; 766 767 enum ib_wr_opcode { 768 IB_WR_RDMA_WRITE, 769 IB_WR_RDMA_WRITE_WITH_IMM, 770 IB_WR_SEND, 771 IB_WR_SEND_WITH_IMM, 772 IB_WR_RDMA_READ, 773 IB_WR_ATOMIC_CMP_AND_SWP, 774 IB_WR_ATOMIC_FETCH_AND_ADD, 775 IB_WR_LSO, 776 IB_WR_SEND_WITH_INV, 777 IB_WR_RDMA_READ_WITH_INV, 778 IB_WR_LOCAL_INV, 779 IB_WR_FAST_REG_MR, 780 IB_WR_MASKED_ATOMIC_CMP_AND_SWP, 781 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD, 782 IB_WR_BIND_MW, 783 /* reserve values for low level drivers' internal use. 784 * These values will not be used at all in the ib core layer. 785 */ 786 IB_WR_RESERVED1 = 0xf0, 787 IB_WR_RESERVED2, 788 IB_WR_RESERVED3, 789 IB_WR_RESERVED4, 790 IB_WR_RESERVED5, 791 IB_WR_RESERVED6, 792 IB_WR_RESERVED7, 793 IB_WR_RESERVED8, 794 IB_WR_RESERVED9, 795 IB_WR_RESERVED10, 796 }; 797 798 enum ib_send_flags { 799 IB_SEND_FENCE = 1, 800 IB_SEND_SIGNALED = (1<<1), 801 IB_SEND_SOLICITED = (1<<2), 802 IB_SEND_INLINE = (1<<3), 803 IB_SEND_IP_CSUM = (1<<4), 804 805 /* reserve bits 26-31 for low level drivers' internal use */ 806 IB_SEND_RESERVED_START = (1 << 26), 807 IB_SEND_RESERVED_END = (1 << 31), 808 }; 809 810 struct ib_sge { 811 u64 addr; 812 u32 length; 813 u32 lkey; 814 }; 815 816 struct ib_fast_reg_page_list { 817 struct ib_device *device; 818 u64 *page_list; 819 unsigned int max_page_list_len; 820 }; 821 822 /** 823 * struct ib_mw_bind_info - Parameters for a memory window bind operation. 824 * @mr: A memory region to bind the memory window to. 825 * @addr: The address where the memory window should begin. 826 * @length: The length of the memory window, in bytes. 827 * @mw_access_flags: Access flags from enum ib_access_flags for the window. 828 * 829 * This struct contains the shared parameters for type 1 and type 2 830 * memory window bind operations. 831 */ 832 struct ib_mw_bind_info { 833 struct ib_mr *mr; 834 u64 addr; 835 u64 length; 836 int mw_access_flags; 837 }; 838 839 struct ib_send_wr { 840 struct ib_send_wr *next; 841 u64 wr_id; 842 struct ib_sge *sg_list; 843 int num_sge; 844 enum ib_wr_opcode opcode; 845 int send_flags; 846 union { 847 __be32 imm_data; 848 u32 invalidate_rkey; 849 } ex; 850 union { 851 struct { 852 u64 remote_addr; 853 u32 rkey; 854 } rdma; 855 struct { 856 u64 remote_addr; 857 u64 compare_add; 858 u64 swap; 859 u64 compare_add_mask; 860 u64 swap_mask; 861 u32 rkey; 862 } atomic; 863 struct { 864 struct ib_ah *ah; 865 void *header; 866 int hlen; 867 int mss; 868 u32 remote_qpn; 869 u32 remote_qkey; 870 u16 pkey_index; /* valid for GSI only */ 871 u8 port_num; /* valid for DR SMPs on switch only */ 872 } ud; 873 struct { 874 u64 iova_start; 875 struct ib_fast_reg_page_list *page_list; 876 unsigned int page_shift; 877 unsigned int page_list_len; 878 u32 length; 879 int access_flags; 880 u32 rkey; 881 } fast_reg; 882 struct { 883 struct ib_mw *mw; 884 /* The new rkey for the memory window. */ 885 u32 rkey; 886 struct ib_mw_bind_info bind_info; 887 } bind_mw; 888 } wr; 889 u32 xrc_remote_srq_num; /* XRC TGT QPs only */ 890 }; 891 892 struct ib_recv_wr { 893 struct ib_recv_wr *next; 894 u64 wr_id; 895 struct ib_sge *sg_list; 896 int num_sge; 897 }; 898 899 enum ib_access_flags { 900 IB_ACCESS_LOCAL_WRITE = 1, 901 IB_ACCESS_REMOTE_WRITE = (1<<1), 902 IB_ACCESS_REMOTE_READ = (1<<2), 903 IB_ACCESS_REMOTE_ATOMIC = (1<<3), 904 IB_ACCESS_MW_BIND = (1<<4), 905 IB_ZERO_BASED = (1<<5) 906 }; 907 908 struct ib_phys_buf { 909 u64 addr; 910 u64 size; 911 }; 912 913 struct ib_mr_attr { 914 struct ib_pd *pd; 915 u64 device_virt_addr; 916 u64 size; 917 int mr_access_flags; 918 u32 lkey; 919 u32 rkey; 920 }; 921 922 enum ib_mr_rereg_flags { 923 IB_MR_REREG_TRANS = 1, 924 IB_MR_REREG_PD = (1<<1), 925 IB_MR_REREG_ACCESS = (1<<2) 926 }; 927 928 /** 929 * struct ib_mw_bind - Parameters for a type 1 memory window bind operation. 930 * @wr_id: Work request id. 931 * @send_flags: Flags from ib_send_flags enum. 932 * @bind_info: More parameters of the bind operation. 933 */ 934 struct ib_mw_bind { 935 u64 wr_id; 936 int send_flags; 937 struct ib_mw_bind_info bind_info; 938 }; 939 940 struct ib_fmr_attr { 941 int max_pages; 942 int max_maps; 943 u8 page_shift; 944 }; 945 946 struct ib_ucontext { 947 struct ib_device *device; 948 struct list_head pd_list; 949 struct list_head mr_list; 950 struct list_head mw_list; 951 struct list_head cq_list; 952 struct list_head qp_list; 953 struct list_head srq_list; 954 struct list_head ah_list; 955 struct list_head xrcd_list; 956 int closing; 957 }; 958 959 struct ib_uobject { 960 u64 user_handle; /* handle given to us by userspace */ 961 struct ib_ucontext *context; /* associated user context */ 962 void *object; /* containing object */ 963 struct list_head list; /* link to context's list */ 964 int id; /* index into kernel idr */ 965 struct kref ref; 966 struct rw_semaphore mutex; /* protects .live */ 967 int live; 968 }; 969 970 struct ib_udata { 971 void __user *inbuf; 972 void __user *outbuf; 973 size_t inlen; 974 size_t outlen; 975 }; 976 977 struct ib_pd { 978 struct ib_device *device; 979 struct ib_uobject *uobject; 980 atomic_t usecnt; /* count all resources */ 981 }; 982 983 struct ib_xrcd { 984 struct ib_device *device; 985 atomic_t usecnt; /* count all exposed resources */ 986 struct inode *inode; 987 988 struct mutex tgt_qp_mutex; 989 struct list_head tgt_qp_list; 990 }; 991 992 struct ib_ah { 993 struct ib_device *device; 994 struct ib_pd *pd; 995 struct ib_uobject *uobject; 996 }; 997 998 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 999 1000 struct ib_cq { 1001 struct ib_device *device; 1002 struct ib_uobject *uobject; 1003 ib_comp_handler comp_handler; 1004 void (*event_handler)(struct ib_event *, void *); 1005 void *cq_context; 1006 int cqe; 1007 atomic_t usecnt; /* count number of work queues */ 1008 }; 1009 1010 struct ib_srq { 1011 struct ib_device *device; 1012 struct ib_pd *pd; 1013 struct ib_uobject *uobject; 1014 void (*event_handler)(struct ib_event *, void *); 1015 void *srq_context; 1016 enum ib_srq_type srq_type; 1017 atomic_t usecnt; 1018 1019 union { 1020 struct { 1021 struct ib_xrcd *xrcd; 1022 struct ib_cq *cq; 1023 u32 srq_num; 1024 } xrc; 1025 } ext; 1026 }; 1027 1028 struct ib_qp { 1029 struct ib_device *device; 1030 struct ib_pd *pd; 1031 struct ib_cq *send_cq; 1032 struct ib_cq *recv_cq; 1033 struct ib_srq *srq; 1034 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1035 struct list_head xrcd_list; 1036 atomic_t usecnt; /* count times opened, mcast attaches */ 1037 struct list_head open_list; 1038 struct ib_qp *real_qp; 1039 struct ib_uobject *uobject; 1040 void (*event_handler)(struct ib_event *, void *); 1041 void *qp_context; 1042 u32 qp_num; 1043 enum ib_qp_type qp_type; 1044 }; 1045 1046 struct ib_mr { 1047 struct ib_device *device; 1048 struct ib_pd *pd; 1049 struct ib_uobject *uobject; 1050 u32 lkey; 1051 u32 rkey; 1052 atomic_t usecnt; /* count number of MWs */ 1053 }; 1054 1055 struct ib_mw { 1056 struct ib_device *device; 1057 struct ib_pd *pd; 1058 struct ib_uobject *uobject; 1059 u32 rkey; 1060 enum ib_mw_type type; 1061 }; 1062 1063 struct ib_fmr { 1064 struct ib_device *device; 1065 struct ib_pd *pd; 1066 struct list_head list; 1067 u32 lkey; 1068 u32 rkey; 1069 }; 1070 1071 struct ib_mad; 1072 struct ib_grh; 1073 1074 enum ib_process_mad_flags { 1075 IB_MAD_IGNORE_MKEY = 1, 1076 IB_MAD_IGNORE_BKEY = 2, 1077 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 1078 }; 1079 1080 enum ib_mad_result { 1081 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 1082 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 1083 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 1084 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 1085 }; 1086 1087 #define IB_DEVICE_NAME_MAX 64 1088 1089 struct ib_cache { 1090 rwlock_t lock; 1091 struct ib_event_handler event_handler; 1092 struct ib_pkey_cache **pkey_cache; 1093 struct ib_gid_cache **gid_cache; 1094 u8 *lmc_cache; 1095 }; 1096 1097 struct ib_dma_mapping_ops { 1098 int (*mapping_error)(struct ib_device *dev, 1099 u64 dma_addr); 1100 u64 (*map_single)(struct ib_device *dev, 1101 void *ptr, size_t size, 1102 enum dma_data_direction direction); 1103 void (*unmap_single)(struct ib_device *dev, 1104 u64 addr, size_t size, 1105 enum dma_data_direction direction); 1106 u64 (*map_page)(struct ib_device *dev, 1107 struct page *page, unsigned long offset, 1108 size_t size, 1109 enum dma_data_direction direction); 1110 void (*unmap_page)(struct ib_device *dev, 1111 u64 addr, size_t size, 1112 enum dma_data_direction direction); 1113 int (*map_sg)(struct ib_device *dev, 1114 struct scatterlist *sg, int nents, 1115 enum dma_data_direction direction); 1116 void (*unmap_sg)(struct ib_device *dev, 1117 struct scatterlist *sg, int nents, 1118 enum dma_data_direction direction); 1119 u64 (*dma_address)(struct ib_device *dev, 1120 struct scatterlist *sg); 1121 unsigned int (*dma_len)(struct ib_device *dev, 1122 struct scatterlist *sg); 1123 void (*sync_single_for_cpu)(struct ib_device *dev, 1124 u64 dma_handle, 1125 size_t size, 1126 enum dma_data_direction dir); 1127 void (*sync_single_for_device)(struct ib_device *dev, 1128 u64 dma_handle, 1129 size_t size, 1130 enum dma_data_direction dir); 1131 void *(*alloc_coherent)(struct ib_device *dev, 1132 size_t size, 1133 u64 *dma_handle, 1134 gfp_t flag); 1135 void (*free_coherent)(struct ib_device *dev, 1136 size_t size, void *cpu_addr, 1137 u64 dma_handle); 1138 }; 1139 1140 struct iw_cm_verbs; 1141 1142 struct ib_device { 1143 struct device *dma_device; 1144 1145 char name[IB_DEVICE_NAME_MAX]; 1146 1147 struct list_head event_handler_list; 1148 spinlock_t event_handler_lock; 1149 1150 spinlock_t client_data_lock; 1151 struct list_head core_list; 1152 struct list_head client_data_list; 1153 1154 struct ib_cache cache; 1155 int *pkey_tbl_len; 1156 int *gid_tbl_len; 1157 1158 int num_comp_vectors; 1159 1160 struct iw_cm_verbs *iwcm; 1161 1162 int (*get_protocol_stats)(struct ib_device *device, 1163 union rdma_protocol_stats *stats); 1164 int (*query_device)(struct ib_device *device, 1165 struct ib_device_attr *device_attr); 1166 int (*query_port)(struct ib_device *device, 1167 u8 port_num, 1168 struct ib_port_attr *port_attr); 1169 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 1170 u8 port_num); 1171 int (*query_gid)(struct ib_device *device, 1172 u8 port_num, int index, 1173 union ib_gid *gid); 1174 int (*query_pkey)(struct ib_device *device, 1175 u8 port_num, u16 index, u16 *pkey); 1176 int (*modify_device)(struct ib_device *device, 1177 int device_modify_mask, 1178 struct ib_device_modify *device_modify); 1179 int (*modify_port)(struct ib_device *device, 1180 u8 port_num, int port_modify_mask, 1181 struct ib_port_modify *port_modify); 1182 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device, 1183 struct ib_udata *udata); 1184 int (*dealloc_ucontext)(struct ib_ucontext *context); 1185 int (*mmap)(struct ib_ucontext *context, 1186 struct vm_area_struct *vma); 1187 struct ib_pd * (*alloc_pd)(struct ib_device *device, 1188 struct ib_ucontext *context, 1189 struct ib_udata *udata); 1190 int (*dealloc_pd)(struct ib_pd *pd); 1191 struct ib_ah * (*create_ah)(struct ib_pd *pd, 1192 struct ib_ah_attr *ah_attr); 1193 int (*modify_ah)(struct ib_ah *ah, 1194 struct ib_ah_attr *ah_attr); 1195 int (*query_ah)(struct ib_ah *ah, 1196 struct ib_ah_attr *ah_attr); 1197 int (*destroy_ah)(struct ib_ah *ah); 1198 struct ib_srq * (*create_srq)(struct ib_pd *pd, 1199 struct ib_srq_init_attr *srq_init_attr, 1200 struct ib_udata *udata); 1201 int (*modify_srq)(struct ib_srq *srq, 1202 struct ib_srq_attr *srq_attr, 1203 enum ib_srq_attr_mask srq_attr_mask, 1204 struct ib_udata *udata); 1205 int (*query_srq)(struct ib_srq *srq, 1206 struct ib_srq_attr *srq_attr); 1207 int (*destroy_srq)(struct ib_srq *srq); 1208 int (*post_srq_recv)(struct ib_srq *srq, 1209 struct ib_recv_wr *recv_wr, 1210 struct ib_recv_wr **bad_recv_wr); 1211 struct ib_qp * (*create_qp)(struct ib_pd *pd, 1212 struct ib_qp_init_attr *qp_init_attr, 1213 struct ib_udata *udata); 1214 int (*modify_qp)(struct ib_qp *qp, 1215 struct ib_qp_attr *qp_attr, 1216 int qp_attr_mask, 1217 struct ib_udata *udata); 1218 int (*query_qp)(struct ib_qp *qp, 1219 struct ib_qp_attr *qp_attr, 1220 int qp_attr_mask, 1221 struct ib_qp_init_attr *qp_init_attr); 1222 int (*destroy_qp)(struct ib_qp *qp); 1223 int (*post_send)(struct ib_qp *qp, 1224 struct ib_send_wr *send_wr, 1225 struct ib_send_wr **bad_send_wr); 1226 int (*post_recv)(struct ib_qp *qp, 1227 struct ib_recv_wr *recv_wr, 1228 struct ib_recv_wr **bad_recv_wr); 1229 struct ib_cq * (*create_cq)(struct ib_device *device, int cqe, 1230 int comp_vector, 1231 struct ib_ucontext *context, 1232 struct ib_udata *udata); 1233 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, 1234 u16 cq_period); 1235 int (*destroy_cq)(struct ib_cq *cq); 1236 int (*resize_cq)(struct ib_cq *cq, int cqe, 1237 struct ib_udata *udata); 1238 int (*poll_cq)(struct ib_cq *cq, int num_entries, 1239 struct ib_wc *wc); 1240 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 1241 int (*req_notify_cq)(struct ib_cq *cq, 1242 enum ib_cq_notify_flags flags); 1243 int (*req_ncomp_notif)(struct ib_cq *cq, 1244 int wc_cnt); 1245 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, 1246 int mr_access_flags); 1247 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd, 1248 struct ib_phys_buf *phys_buf_array, 1249 int num_phys_buf, 1250 int mr_access_flags, 1251 u64 *iova_start); 1252 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, 1253 u64 start, u64 length, 1254 u64 virt_addr, 1255 int mr_access_flags, 1256 struct ib_udata *udata); 1257 int (*query_mr)(struct ib_mr *mr, 1258 struct ib_mr_attr *mr_attr); 1259 int (*dereg_mr)(struct ib_mr *mr); 1260 struct ib_mr * (*alloc_fast_reg_mr)(struct ib_pd *pd, 1261 int max_page_list_len); 1262 struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device, 1263 int page_list_len); 1264 void (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list); 1265 int (*rereg_phys_mr)(struct ib_mr *mr, 1266 int mr_rereg_mask, 1267 struct ib_pd *pd, 1268 struct ib_phys_buf *phys_buf_array, 1269 int num_phys_buf, 1270 int mr_access_flags, 1271 u64 *iova_start); 1272 struct ib_mw * (*alloc_mw)(struct ib_pd *pd, 1273 enum ib_mw_type type); 1274 int (*bind_mw)(struct ib_qp *qp, 1275 struct ib_mw *mw, 1276 struct ib_mw_bind *mw_bind); 1277 int (*dealloc_mw)(struct ib_mw *mw); 1278 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, 1279 int mr_access_flags, 1280 struct ib_fmr_attr *fmr_attr); 1281 int (*map_phys_fmr)(struct ib_fmr *fmr, 1282 u64 *page_list, int list_len, 1283 u64 iova); 1284 int (*unmap_fmr)(struct list_head *fmr_list); 1285 int (*dealloc_fmr)(struct ib_fmr *fmr); 1286 int (*attach_mcast)(struct ib_qp *qp, 1287 union ib_gid *gid, 1288 u16 lid); 1289 int (*detach_mcast)(struct ib_qp *qp, 1290 union ib_gid *gid, 1291 u16 lid); 1292 int (*process_mad)(struct ib_device *device, 1293 int process_mad_flags, 1294 u8 port_num, 1295 struct ib_wc *in_wc, 1296 struct ib_grh *in_grh, 1297 struct ib_mad *in_mad, 1298 struct ib_mad *out_mad); 1299 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device, 1300 struct ib_ucontext *ucontext, 1301 struct ib_udata *udata); 1302 int (*dealloc_xrcd)(struct ib_xrcd *xrcd); 1303 1304 struct ib_dma_mapping_ops *dma_ops; 1305 1306 struct module *owner; 1307 struct device dev; 1308 struct kobject *ports_parent; 1309 struct list_head port_list; 1310 1311 enum { 1312 IB_DEV_UNINITIALIZED, 1313 IB_DEV_REGISTERED, 1314 IB_DEV_UNREGISTERED 1315 } reg_state; 1316 1317 int uverbs_abi_ver; 1318 u64 uverbs_cmd_mask; 1319 1320 char node_desc[64]; 1321 __be64 node_guid; 1322 u32 local_dma_lkey; 1323 u8 node_type; 1324 u8 phys_port_cnt; 1325 }; 1326 1327 struct ib_client { 1328 char *name; 1329 void (*add) (struct ib_device *); 1330 void (*remove)(struct ib_device *); 1331 1332 struct list_head list; 1333 }; 1334 1335 struct ib_device *ib_alloc_device(size_t size); 1336 void ib_dealloc_device(struct ib_device *device); 1337 1338 int ib_register_device(struct ib_device *device, 1339 int (*port_callback)(struct ib_device *, 1340 u8, struct kobject *)); 1341 void ib_unregister_device(struct ib_device *device); 1342 1343 int ib_register_client (struct ib_client *client); 1344 void ib_unregister_client(struct ib_client *client); 1345 1346 void *ib_get_client_data(struct ib_device *device, struct ib_client *client); 1347 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 1348 void *data); 1349 1350 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 1351 { 1352 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 1353 } 1354 1355 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 1356 { 1357 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 1358 } 1359 1360 /** 1361 * ib_modify_qp_is_ok - Check that the supplied attribute mask 1362 * contains all required attributes and no attributes not allowed for 1363 * the given QP state transition. 1364 * @cur_state: Current QP state 1365 * @next_state: Next QP state 1366 * @type: QP type 1367 * @mask: Mask of supplied QP attributes 1368 * 1369 * This function is a helper function that a low-level driver's 1370 * modify_qp method can use to validate the consumer's input. It 1371 * checks that cur_state and next_state are valid QP states, that a 1372 * transition from cur_state to next_state is allowed by the IB spec, 1373 * and that the attribute mask supplied is allowed for the transition. 1374 */ 1375 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 1376 enum ib_qp_type type, enum ib_qp_attr_mask mask); 1377 1378 int ib_register_event_handler (struct ib_event_handler *event_handler); 1379 int ib_unregister_event_handler(struct ib_event_handler *event_handler); 1380 void ib_dispatch_event(struct ib_event *event); 1381 1382 int ib_query_device(struct ib_device *device, 1383 struct ib_device_attr *device_attr); 1384 1385 int ib_query_port(struct ib_device *device, 1386 u8 port_num, struct ib_port_attr *port_attr); 1387 1388 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 1389 u8 port_num); 1390 1391 int ib_query_gid(struct ib_device *device, 1392 u8 port_num, int index, union ib_gid *gid); 1393 1394 int ib_query_pkey(struct ib_device *device, 1395 u8 port_num, u16 index, u16 *pkey); 1396 1397 int ib_modify_device(struct ib_device *device, 1398 int device_modify_mask, 1399 struct ib_device_modify *device_modify); 1400 1401 int ib_modify_port(struct ib_device *device, 1402 u8 port_num, int port_modify_mask, 1403 struct ib_port_modify *port_modify); 1404 1405 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 1406 u8 *port_num, u16 *index); 1407 1408 int ib_find_pkey(struct ib_device *device, 1409 u8 port_num, u16 pkey, u16 *index); 1410 1411 /** 1412 * ib_alloc_pd - Allocates an unused protection domain. 1413 * @device: The device on which to allocate the protection domain. 1414 * 1415 * A protection domain object provides an association between QPs, shared 1416 * receive queues, address handles, memory regions, and memory windows. 1417 */ 1418 struct ib_pd *ib_alloc_pd(struct ib_device *device); 1419 1420 /** 1421 * ib_dealloc_pd - Deallocates a protection domain. 1422 * @pd: The protection domain to deallocate. 1423 */ 1424 int ib_dealloc_pd(struct ib_pd *pd); 1425 1426 /** 1427 * ib_create_ah - Creates an address handle for the given address vector. 1428 * @pd: The protection domain associated with the address handle. 1429 * @ah_attr: The attributes of the address vector. 1430 * 1431 * The address handle is used to reference a local or global destination 1432 * in all UD QP post sends. 1433 */ 1434 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr); 1435 1436 /** 1437 * ib_init_ah_from_wc - Initializes address handle attributes from a 1438 * work completion. 1439 * @device: Device on which the received message arrived. 1440 * @port_num: Port on which the received message arrived. 1441 * @wc: Work completion associated with the received message. 1442 * @grh: References the received global route header. This parameter is 1443 * ignored unless the work completion indicates that the GRH is valid. 1444 * @ah_attr: Returned attributes that can be used when creating an address 1445 * handle for replying to the message. 1446 */ 1447 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc, 1448 struct ib_grh *grh, struct ib_ah_attr *ah_attr); 1449 1450 /** 1451 * ib_create_ah_from_wc - Creates an address handle associated with the 1452 * sender of the specified work completion. 1453 * @pd: The protection domain associated with the address handle. 1454 * @wc: Work completion information associated with a received message. 1455 * @grh: References the received global route header. This parameter is 1456 * ignored unless the work completion indicates that the GRH is valid. 1457 * @port_num: The outbound port number to associate with the address. 1458 * 1459 * The address handle is used to reference a local or global destination 1460 * in all UD QP post sends. 1461 */ 1462 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc, 1463 struct ib_grh *grh, u8 port_num); 1464 1465 /** 1466 * ib_modify_ah - Modifies the address vector associated with an address 1467 * handle. 1468 * @ah: The address handle to modify. 1469 * @ah_attr: The new address vector attributes to associate with the 1470 * address handle. 1471 */ 1472 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 1473 1474 /** 1475 * ib_query_ah - Queries the address vector associated with an address 1476 * handle. 1477 * @ah: The address handle to query. 1478 * @ah_attr: The address vector attributes associated with the address 1479 * handle. 1480 */ 1481 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 1482 1483 /** 1484 * ib_destroy_ah - Destroys an address handle. 1485 * @ah: The address handle to destroy. 1486 */ 1487 int ib_destroy_ah(struct ib_ah *ah); 1488 1489 /** 1490 * ib_create_srq - Creates a SRQ associated with the specified protection 1491 * domain. 1492 * @pd: The protection domain associated with the SRQ. 1493 * @srq_init_attr: A list of initial attributes required to create the 1494 * SRQ. If SRQ creation succeeds, then the attributes are updated to 1495 * the actual capabilities of the created SRQ. 1496 * 1497 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 1498 * requested size of the SRQ, and set to the actual values allocated 1499 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 1500 * will always be at least as large as the requested values. 1501 */ 1502 struct ib_srq *ib_create_srq(struct ib_pd *pd, 1503 struct ib_srq_init_attr *srq_init_attr); 1504 1505 /** 1506 * ib_modify_srq - Modifies the attributes for the specified SRQ. 1507 * @srq: The SRQ to modify. 1508 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 1509 * the current values of selected SRQ attributes are returned. 1510 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 1511 * are being modified. 1512 * 1513 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 1514 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 1515 * the number of receives queued drops below the limit. 1516 */ 1517 int ib_modify_srq(struct ib_srq *srq, 1518 struct ib_srq_attr *srq_attr, 1519 enum ib_srq_attr_mask srq_attr_mask); 1520 1521 /** 1522 * ib_query_srq - Returns the attribute list and current values for the 1523 * specified SRQ. 1524 * @srq: The SRQ to query. 1525 * @srq_attr: The attributes of the specified SRQ. 1526 */ 1527 int ib_query_srq(struct ib_srq *srq, 1528 struct ib_srq_attr *srq_attr); 1529 1530 /** 1531 * ib_destroy_srq - Destroys the specified SRQ. 1532 * @srq: The SRQ to destroy. 1533 */ 1534 int ib_destroy_srq(struct ib_srq *srq); 1535 1536 /** 1537 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 1538 * @srq: The SRQ to post the work request on. 1539 * @recv_wr: A list of work requests to post on the receive queue. 1540 * @bad_recv_wr: On an immediate failure, this parameter will reference 1541 * the work request that failed to be posted on the QP. 1542 */ 1543 static inline int ib_post_srq_recv(struct ib_srq *srq, 1544 struct ib_recv_wr *recv_wr, 1545 struct ib_recv_wr **bad_recv_wr) 1546 { 1547 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr); 1548 } 1549 1550 /** 1551 * ib_create_qp - Creates a QP associated with the specified protection 1552 * domain. 1553 * @pd: The protection domain associated with the QP. 1554 * @qp_init_attr: A list of initial attributes required to create the 1555 * QP. If QP creation succeeds, then the attributes are updated to 1556 * the actual capabilities of the created QP. 1557 */ 1558 struct ib_qp *ib_create_qp(struct ib_pd *pd, 1559 struct ib_qp_init_attr *qp_init_attr); 1560 1561 /** 1562 * ib_modify_qp - Modifies the attributes for the specified QP and then 1563 * transitions the QP to the given state. 1564 * @qp: The QP to modify. 1565 * @qp_attr: On input, specifies the QP attributes to modify. On output, 1566 * the current values of selected QP attributes are returned. 1567 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 1568 * are being modified. 1569 */ 1570 int ib_modify_qp(struct ib_qp *qp, 1571 struct ib_qp_attr *qp_attr, 1572 int qp_attr_mask); 1573 1574 /** 1575 * ib_query_qp - Returns the attribute list and current values for the 1576 * specified QP. 1577 * @qp: The QP to query. 1578 * @qp_attr: The attributes of the specified QP. 1579 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 1580 * @qp_init_attr: Additional attributes of the selected QP. 1581 * 1582 * The qp_attr_mask may be used to limit the query to gathering only the 1583 * selected attributes. 1584 */ 1585 int ib_query_qp(struct ib_qp *qp, 1586 struct ib_qp_attr *qp_attr, 1587 int qp_attr_mask, 1588 struct ib_qp_init_attr *qp_init_attr); 1589 1590 /** 1591 * ib_destroy_qp - Destroys the specified QP. 1592 * @qp: The QP to destroy. 1593 */ 1594 int ib_destroy_qp(struct ib_qp *qp); 1595 1596 /** 1597 * ib_open_qp - Obtain a reference to an existing sharable QP. 1598 * @xrcd - XRC domain 1599 * @qp_open_attr: Attributes identifying the QP to open. 1600 * 1601 * Returns a reference to a sharable QP. 1602 */ 1603 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 1604 struct ib_qp_open_attr *qp_open_attr); 1605 1606 /** 1607 * ib_close_qp - Release an external reference to a QP. 1608 * @qp: The QP handle to release 1609 * 1610 * The opened QP handle is released by the caller. The underlying 1611 * shared QP is not destroyed until all internal references are released. 1612 */ 1613 int ib_close_qp(struct ib_qp *qp); 1614 1615 /** 1616 * ib_post_send - Posts a list of work requests to the send queue of 1617 * the specified QP. 1618 * @qp: The QP to post the work request on. 1619 * @send_wr: A list of work requests to post on the send queue. 1620 * @bad_send_wr: On an immediate failure, this parameter will reference 1621 * the work request that failed to be posted on the QP. 1622 * 1623 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 1624 * error is returned, the QP state shall not be affected, 1625 * ib_post_send() will return an immediate error after queueing any 1626 * earlier work requests in the list. 1627 */ 1628 static inline int ib_post_send(struct ib_qp *qp, 1629 struct ib_send_wr *send_wr, 1630 struct ib_send_wr **bad_send_wr) 1631 { 1632 return qp->device->post_send(qp, send_wr, bad_send_wr); 1633 } 1634 1635 /** 1636 * ib_post_recv - Posts a list of work requests to the receive queue of 1637 * the specified QP. 1638 * @qp: The QP to post the work request on. 1639 * @recv_wr: A list of work requests to post on the receive queue. 1640 * @bad_recv_wr: On an immediate failure, this parameter will reference 1641 * the work request that failed to be posted on the QP. 1642 */ 1643 static inline int ib_post_recv(struct ib_qp *qp, 1644 struct ib_recv_wr *recv_wr, 1645 struct ib_recv_wr **bad_recv_wr) 1646 { 1647 return qp->device->post_recv(qp, recv_wr, bad_recv_wr); 1648 } 1649 1650 /** 1651 * ib_create_cq - Creates a CQ on the specified device. 1652 * @device: The device on which to create the CQ. 1653 * @comp_handler: A user-specified callback that is invoked when a 1654 * completion event occurs on the CQ. 1655 * @event_handler: A user-specified callback that is invoked when an 1656 * asynchronous event not associated with a completion occurs on the CQ. 1657 * @cq_context: Context associated with the CQ returned to the user via 1658 * the associated completion and event handlers. 1659 * @cqe: The minimum size of the CQ. 1660 * @comp_vector - Completion vector used to signal completion events. 1661 * Must be >= 0 and < context->num_comp_vectors. 1662 * 1663 * Users can examine the cq structure to determine the actual CQ size. 1664 */ 1665 struct ib_cq *ib_create_cq(struct ib_device *device, 1666 ib_comp_handler comp_handler, 1667 void (*event_handler)(struct ib_event *, void *), 1668 void *cq_context, int cqe, int comp_vector); 1669 1670 /** 1671 * ib_resize_cq - Modifies the capacity of the CQ. 1672 * @cq: The CQ to resize. 1673 * @cqe: The minimum size of the CQ. 1674 * 1675 * Users can examine the cq structure to determine the actual CQ size. 1676 */ 1677 int ib_resize_cq(struct ib_cq *cq, int cqe); 1678 1679 /** 1680 * ib_modify_cq - Modifies moderation params of the CQ 1681 * @cq: The CQ to modify. 1682 * @cq_count: number of CQEs that will trigger an event 1683 * @cq_period: max period of time in usec before triggering an event 1684 * 1685 */ 1686 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period); 1687 1688 /** 1689 * ib_destroy_cq - Destroys the specified CQ. 1690 * @cq: The CQ to destroy. 1691 */ 1692 int ib_destroy_cq(struct ib_cq *cq); 1693 1694 /** 1695 * ib_poll_cq - poll a CQ for completion(s) 1696 * @cq:the CQ being polled 1697 * @num_entries:maximum number of completions to return 1698 * @wc:array of at least @num_entries &struct ib_wc where completions 1699 * will be returned 1700 * 1701 * Poll a CQ for (possibly multiple) completions. If the return value 1702 * is < 0, an error occurred. If the return value is >= 0, it is the 1703 * number of completions returned. If the return value is 1704 * non-negative and < num_entries, then the CQ was emptied. 1705 */ 1706 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 1707 struct ib_wc *wc) 1708 { 1709 return cq->device->poll_cq(cq, num_entries, wc); 1710 } 1711 1712 /** 1713 * ib_peek_cq - Returns the number of unreaped completions currently 1714 * on the specified CQ. 1715 * @cq: The CQ to peek. 1716 * @wc_cnt: A minimum number of unreaped completions to check for. 1717 * 1718 * If the number of unreaped completions is greater than or equal to wc_cnt, 1719 * this function returns wc_cnt, otherwise, it returns the actual number of 1720 * unreaped completions. 1721 */ 1722 int ib_peek_cq(struct ib_cq *cq, int wc_cnt); 1723 1724 /** 1725 * ib_req_notify_cq - Request completion notification on a CQ. 1726 * @cq: The CQ to generate an event for. 1727 * @flags: 1728 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 1729 * to request an event on the next solicited event or next work 1730 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 1731 * may also be |ed in to request a hint about missed events, as 1732 * described below. 1733 * 1734 * Return Value: 1735 * < 0 means an error occurred while requesting notification 1736 * == 0 means notification was requested successfully, and if 1737 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 1738 * were missed and it is safe to wait for another event. In 1739 * this case is it guaranteed that any work completions added 1740 * to the CQ since the last CQ poll will trigger a completion 1741 * notification event. 1742 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 1743 * in. It means that the consumer must poll the CQ again to 1744 * make sure it is empty to avoid missing an event because of a 1745 * race between requesting notification and an entry being 1746 * added to the CQ. This return value means it is possible 1747 * (but not guaranteed) that a work completion has been added 1748 * to the CQ since the last poll without triggering a 1749 * completion notification event. 1750 */ 1751 static inline int ib_req_notify_cq(struct ib_cq *cq, 1752 enum ib_cq_notify_flags flags) 1753 { 1754 return cq->device->req_notify_cq(cq, flags); 1755 } 1756 1757 /** 1758 * ib_req_ncomp_notif - Request completion notification when there are 1759 * at least the specified number of unreaped completions on the CQ. 1760 * @cq: The CQ to generate an event for. 1761 * @wc_cnt: The number of unreaped completions that should be on the 1762 * CQ before an event is generated. 1763 */ 1764 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 1765 { 1766 return cq->device->req_ncomp_notif ? 1767 cq->device->req_ncomp_notif(cq, wc_cnt) : 1768 -ENOSYS; 1769 } 1770 1771 /** 1772 * ib_get_dma_mr - Returns a memory region for system memory that is 1773 * usable for DMA. 1774 * @pd: The protection domain associated with the memory region. 1775 * @mr_access_flags: Specifies the memory access rights. 1776 * 1777 * Note that the ib_dma_*() functions defined below must be used 1778 * to create/destroy addresses used with the Lkey or Rkey returned 1779 * by ib_get_dma_mr(). 1780 */ 1781 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags); 1782 1783 /** 1784 * ib_dma_mapping_error - check a DMA addr for error 1785 * @dev: The device for which the dma_addr was created 1786 * @dma_addr: The DMA address to check 1787 */ 1788 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 1789 { 1790 if (dev->dma_ops) 1791 return dev->dma_ops->mapping_error(dev, dma_addr); 1792 return dma_mapping_error(dev->dma_device, dma_addr); 1793 } 1794 1795 /** 1796 * ib_dma_map_single - Map a kernel virtual address to DMA address 1797 * @dev: The device for which the dma_addr is to be created 1798 * @cpu_addr: The kernel virtual address 1799 * @size: The size of the region in bytes 1800 * @direction: The direction of the DMA 1801 */ 1802 static inline u64 ib_dma_map_single(struct ib_device *dev, 1803 void *cpu_addr, size_t size, 1804 enum dma_data_direction direction) 1805 { 1806 if (dev->dma_ops) 1807 return dev->dma_ops->map_single(dev, cpu_addr, size, direction); 1808 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 1809 } 1810 1811 /** 1812 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 1813 * @dev: The device for which the DMA address was created 1814 * @addr: The DMA address 1815 * @size: The size of the region in bytes 1816 * @direction: The direction of the DMA 1817 */ 1818 static inline void ib_dma_unmap_single(struct ib_device *dev, 1819 u64 addr, size_t size, 1820 enum dma_data_direction direction) 1821 { 1822 if (dev->dma_ops) 1823 dev->dma_ops->unmap_single(dev, addr, size, direction); 1824 else 1825 dma_unmap_single(dev->dma_device, addr, size, direction); 1826 } 1827 1828 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev, 1829 void *cpu_addr, size_t size, 1830 enum dma_data_direction direction, 1831 struct dma_attrs *attrs) 1832 { 1833 return dma_map_single_attrs(dev->dma_device, cpu_addr, size, 1834 direction, attrs); 1835 } 1836 1837 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev, 1838 u64 addr, size_t size, 1839 enum dma_data_direction direction, 1840 struct dma_attrs *attrs) 1841 { 1842 return dma_unmap_single_attrs(dev->dma_device, addr, size, 1843 direction, attrs); 1844 } 1845 1846 /** 1847 * ib_dma_map_page - Map a physical page to DMA address 1848 * @dev: The device for which the dma_addr is to be created 1849 * @page: The page to be mapped 1850 * @offset: The offset within the page 1851 * @size: The size of the region in bytes 1852 * @direction: The direction of the DMA 1853 */ 1854 static inline u64 ib_dma_map_page(struct ib_device *dev, 1855 struct page *page, 1856 unsigned long offset, 1857 size_t size, 1858 enum dma_data_direction direction) 1859 { 1860 if (dev->dma_ops) 1861 return dev->dma_ops->map_page(dev, page, offset, size, direction); 1862 return dma_map_page(dev->dma_device, page, offset, size, direction); 1863 } 1864 1865 /** 1866 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 1867 * @dev: The device for which the DMA address was created 1868 * @addr: The DMA address 1869 * @size: The size of the region in bytes 1870 * @direction: The direction of the DMA 1871 */ 1872 static inline void ib_dma_unmap_page(struct ib_device *dev, 1873 u64 addr, size_t size, 1874 enum dma_data_direction direction) 1875 { 1876 if (dev->dma_ops) 1877 dev->dma_ops->unmap_page(dev, addr, size, direction); 1878 else 1879 dma_unmap_page(dev->dma_device, addr, size, direction); 1880 } 1881 1882 /** 1883 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 1884 * @dev: The device for which the DMA addresses are to be created 1885 * @sg: The array of scatter/gather entries 1886 * @nents: The number of scatter/gather entries 1887 * @direction: The direction of the DMA 1888 */ 1889 static inline int ib_dma_map_sg(struct ib_device *dev, 1890 struct scatterlist *sg, int nents, 1891 enum dma_data_direction direction) 1892 { 1893 if (dev->dma_ops) 1894 return dev->dma_ops->map_sg(dev, sg, nents, direction); 1895 return dma_map_sg(dev->dma_device, sg, nents, direction); 1896 } 1897 1898 /** 1899 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 1900 * @dev: The device for which the DMA addresses were created 1901 * @sg: The array of scatter/gather entries 1902 * @nents: The number of scatter/gather entries 1903 * @direction: The direction of the DMA 1904 */ 1905 static inline void ib_dma_unmap_sg(struct ib_device *dev, 1906 struct scatterlist *sg, int nents, 1907 enum dma_data_direction direction) 1908 { 1909 if (dev->dma_ops) 1910 dev->dma_ops->unmap_sg(dev, sg, nents, direction); 1911 else 1912 dma_unmap_sg(dev->dma_device, sg, nents, direction); 1913 } 1914 1915 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 1916 struct scatterlist *sg, int nents, 1917 enum dma_data_direction direction, 1918 struct dma_attrs *attrs) 1919 { 1920 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs); 1921 } 1922 1923 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 1924 struct scatterlist *sg, int nents, 1925 enum dma_data_direction direction, 1926 struct dma_attrs *attrs) 1927 { 1928 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs); 1929 } 1930 /** 1931 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry 1932 * @dev: The device for which the DMA addresses were created 1933 * @sg: The scatter/gather entry 1934 */ 1935 static inline u64 ib_sg_dma_address(struct ib_device *dev, 1936 struct scatterlist *sg) 1937 { 1938 if (dev->dma_ops) 1939 return dev->dma_ops->dma_address(dev, sg); 1940 return sg_dma_address(sg); 1941 } 1942 1943 /** 1944 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry 1945 * @dev: The device for which the DMA addresses were created 1946 * @sg: The scatter/gather entry 1947 */ 1948 static inline unsigned int ib_sg_dma_len(struct ib_device *dev, 1949 struct scatterlist *sg) 1950 { 1951 if (dev->dma_ops) 1952 return dev->dma_ops->dma_len(dev, sg); 1953 return sg_dma_len(sg); 1954 } 1955 1956 /** 1957 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 1958 * @dev: The device for which the DMA address was created 1959 * @addr: The DMA address 1960 * @size: The size of the region in bytes 1961 * @dir: The direction of the DMA 1962 */ 1963 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 1964 u64 addr, 1965 size_t size, 1966 enum dma_data_direction dir) 1967 { 1968 if (dev->dma_ops) 1969 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir); 1970 else 1971 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 1972 } 1973 1974 /** 1975 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 1976 * @dev: The device for which the DMA address was created 1977 * @addr: The DMA address 1978 * @size: The size of the region in bytes 1979 * @dir: The direction of the DMA 1980 */ 1981 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 1982 u64 addr, 1983 size_t size, 1984 enum dma_data_direction dir) 1985 { 1986 if (dev->dma_ops) 1987 dev->dma_ops->sync_single_for_device(dev, addr, size, dir); 1988 else 1989 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 1990 } 1991 1992 /** 1993 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 1994 * @dev: The device for which the DMA address is requested 1995 * @size: The size of the region to allocate in bytes 1996 * @dma_handle: A pointer for returning the DMA address of the region 1997 * @flag: memory allocator flags 1998 */ 1999 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 2000 size_t size, 2001 u64 *dma_handle, 2002 gfp_t flag) 2003 { 2004 if (dev->dma_ops) 2005 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag); 2006 else { 2007 dma_addr_t handle; 2008 void *ret; 2009 2010 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag); 2011 *dma_handle = handle; 2012 return ret; 2013 } 2014 } 2015 2016 /** 2017 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 2018 * @dev: The device for which the DMA addresses were allocated 2019 * @size: The size of the region 2020 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 2021 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 2022 */ 2023 static inline void ib_dma_free_coherent(struct ib_device *dev, 2024 size_t size, void *cpu_addr, 2025 u64 dma_handle) 2026 { 2027 if (dev->dma_ops) 2028 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle); 2029 else 2030 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 2031 } 2032 2033 /** 2034 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use 2035 * by an HCA. 2036 * @pd: The protection domain associated assigned to the registered region. 2037 * @phys_buf_array: Specifies a list of physical buffers to use in the 2038 * memory region. 2039 * @num_phys_buf: Specifies the size of the phys_buf_array. 2040 * @mr_access_flags: Specifies the memory access rights. 2041 * @iova_start: The offset of the region's starting I/O virtual address. 2042 */ 2043 struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd, 2044 struct ib_phys_buf *phys_buf_array, 2045 int num_phys_buf, 2046 int mr_access_flags, 2047 u64 *iova_start); 2048 2049 /** 2050 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region. 2051 * Conceptually, this call performs the functions deregister memory region 2052 * followed by register physical memory region. Where possible, 2053 * resources are reused instead of deallocated and reallocated. 2054 * @mr: The memory region to modify. 2055 * @mr_rereg_mask: A bit-mask used to indicate which of the following 2056 * properties of the memory region are being modified. 2057 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies 2058 * the new protection domain to associated with the memory region, 2059 * otherwise, this parameter is ignored. 2060 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this 2061 * field specifies a list of physical buffers to use in the new 2062 * translation, otherwise, this parameter is ignored. 2063 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this 2064 * field specifies the size of the phys_buf_array, otherwise, this 2065 * parameter is ignored. 2066 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this 2067 * field specifies the new memory access rights, otherwise, this 2068 * parameter is ignored. 2069 * @iova_start: The offset of the region's starting I/O virtual address. 2070 */ 2071 int ib_rereg_phys_mr(struct ib_mr *mr, 2072 int mr_rereg_mask, 2073 struct ib_pd *pd, 2074 struct ib_phys_buf *phys_buf_array, 2075 int num_phys_buf, 2076 int mr_access_flags, 2077 u64 *iova_start); 2078 2079 /** 2080 * ib_query_mr - Retrieves information about a specific memory region. 2081 * @mr: The memory region to retrieve information about. 2082 * @mr_attr: The attributes of the specified memory region. 2083 */ 2084 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr); 2085 2086 /** 2087 * ib_dereg_mr - Deregisters a memory region and removes it from the 2088 * HCA translation table. 2089 * @mr: The memory region to deregister. 2090 * 2091 * This function can fail, if the memory region has memory windows bound to it. 2092 */ 2093 int ib_dereg_mr(struct ib_mr *mr); 2094 2095 /** 2096 * ib_alloc_fast_reg_mr - Allocates memory region usable with the 2097 * IB_WR_FAST_REG_MR send work request. 2098 * @pd: The protection domain associated with the region. 2099 * @max_page_list_len: requested max physical buffer list length to be 2100 * used with fast register work requests for this MR. 2101 */ 2102 struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len); 2103 2104 /** 2105 * ib_alloc_fast_reg_page_list - Allocates a page list array 2106 * @device - ib device pointer. 2107 * @page_list_len - size of the page list array to be allocated. 2108 * 2109 * This allocates and returns a struct ib_fast_reg_page_list * and a 2110 * page_list array that is at least page_list_len in size. The actual 2111 * size is returned in max_page_list_len. The caller is responsible 2112 * for initializing the contents of the page_list array before posting 2113 * a send work request with the IB_WC_FAST_REG_MR opcode. 2114 * 2115 * The page_list array entries must be translated using one of the 2116 * ib_dma_*() functions just like the addresses passed to 2117 * ib_map_phys_fmr(). Once the ib_post_send() is issued, the struct 2118 * ib_fast_reg_page_list must not be modified by the caller until the 2119 * IB_WC_FAST_REG_MR work request completes. 2120 */ 2121 struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list( 2122 struct ib_device *device, int page_list_len); 2123 2124 /** 2125 * ib_free_fast_reg_page_list - Deallocates a previously allocated 2126 * page list array. 2127 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated. 2128 */ 2129 void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list); 2130 2131 /** 2132 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 2133 * R_Key and L_Key. 2134 * @mr - struct ib_mr pointer to be updated. 2135 * @newkey - new key to be used. 2136 */ 2137 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 2138 { 2139 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 2140 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 2141 } 2142 2143 /** 2144 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 2145 * for calculating a new rkey for type 2 memory windows. 2146 * @rkey - the rkey to increment. 2147 */ 2148 static inline u32 ib_inc_rkey(u32 rkey) 2149 { 2150 const u32 mask = 0x000000ff; 2151 return ((rkey + 1) & mask) | (rkey & ~mask); 2152 } 2153 2154 /** 2155 * ib_alloc_mw - Allocates a memory window. 2156 * @pd: The protection domain associated with the memory window. 2157 * @type: The type of the memory window (1 or 2). 2158 */ 2159 struct ib_mw *ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type); 2160 2161 /** 2162 * ib_bind_mw - Posts a work request to the send queue of the specified 2163 * QP, which binds the memory window to the given address range and 2164 * remote access attributes. 2165 * @qp: QP to post the bind work request on. 2166 * @mw: The memory window to bind. 2167 * @mw_bind: Specifies information about the memory window, including 2168 * its address range, remote access rights, and associated memory region. 2169 * 2170 * If there is no immediate error, the function will update the rkey member 2171 * of the mw parameter to its new value. The bind operation can still fail 2172 * asynchronously. 2173 */ 2174 static inline int ib_bind_mw(struct ib_qp *qp, 2175 struct ib_mw *mw, 2176 struct ib_mw_bind *mw_bind) 2177 { 2178 /* XXX reference counting in corresponding MR? */ 2179 return mw->device->bind_mw ? 2180 mw->device->bind_mw(qp, mw, mw_bind) : 2181 -ENOSYS; 2182 } 2183 2184 /** 2185 * ib_dealloc_mw - Deallocates a memory window. 2186 * @mw: The memory window to deallocate. 2187 */ 2188 int ib_dealloc_mw(struct ib_mw *mw); 2189 2190 /** 2191 * ib_alloc_fmr - Allocates a unmapped fast memory region. 2192 * @pd: The protection domain associated with the unmapped region. 2193 * @mr_access_flags: Specifies the memory access rights. 2194 * @fmr_attr: Attributes of the unmapped region. 2195 * 2196 * A fast memory region must be mapped before it can be used as part of 2197 * a work request. 2198 */ 2199 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 2200 int mr_access_flags, 2201 struct ib_fmr_attr *fmr_attr); 2202 2203 /** 2204 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 2205 * @fmr: The fast memory region to associate with the pages. 2206 * @page_list: An array of physical pages to map to the fast memory region. 2207 * @list_len: The number of pages in page_list. 2208 * @iova: The I/O virtual address to use with the mapped region. 2209 */ 2210 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 2211 u64 *page_list, int list_len, 2212 u64 iova) 2213 { 2214 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); 2215 } 2216 2217 /** 2218 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 2219 * @fmr_list: A linked list of fast memory regions to unmap. 2220 */ 2221 int ib_unmap_fmr(struct list_head *fmr_list); 2222 2223 /** 2224 * ib_dealloc_fmr - Deallocates a fast memory region. 2225 * @fmr: The fast memory region to deallocate. 2226 */ 2227 int ib_dealloc_fmr(struct ib_fmr *fmr); 2228 2229 /** 2230 * ib_attach_mcast - Attaches the specified QP to a multicast group. 2231 * @qp: QP to attach to the multicast group. The QP must be type 2232 * IB_QPT_UD. 2233 * @gid: Multicast group GID. 2234 * @lid: Multicast group LID in host byte order. 2235 * 2236 * In order to send and receive multicast packets, subnet 2237 * administration must have created the multicast group and configured 2238 * the fabric appropriately. The port associated with the specified 2239 * QP must also be a member of the multicast group. 2240 */ 2241 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2242 2243 /** 2244 * ib_detach_mcast - Detaches the specified QP from a multicast group. 2245 * @qp: QP to detach from the multicast group. 2246 * @gid: Multicast group GID. 2247 * @lid: Multicast group LID in host byte order. 2248 */ 2249 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2250 2251 /** 2252 * ib_alloc_xrcd - Allocates an XRC domain. 2253 * @device: The device on which to allocate the XRC domain. 2254 */ 2255 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device); 2256 2257 /** 2258 * ib_dealloc_xrcd - Deallocates an XRC domain. 2259 * @xrcd: The XRC domain to deallocate. 2260 */ 2261 int ib_dealloc_xrcd(struct ib_xrcd *xrcd); 2262 2263 #endif /* IB_VERBS_H */ 2264