1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #if !defined(IB_VERBS_H) 40 #define IB_VERBS_H 41 42 #include <linux/types.h> 43 #include <linux/device.h> 44 #include <linux/mm.h> 45 #include <linux/dma-mapping.h> 46 #include <linux/kref.h> 47 #include <linux/list.h> 48 #include <linux/rwsem.h> 49 #include <linux/scatterlist.h> 50 #include <linux/workqueue.h> 51 52 #include <linux/atomic.h> 53 #include <asm/uaccess.h> 54 55 extern struct workqueue_struct *ib_wq; 56 57 union ib_gid { 58 u8 raw[16]; 59 struct { 60 __be64 subnet_prefix; 61 __be64 interface_id; 62 } global; 63 }; 64 65 enum rdma_node_type { 66 /* IB values map to NodeInfo:NodeType. */ 67 RDMA_NODE_IB_CA = 1, 68 RDMA_NODE_IB_SWITCH, 69 RDMA_NODE_IB_ROUTER, 70 RDMA_NODE_RNIC 71 }; 72 73 enum rdma_transport_type { 74 RDMA_TRANSPORT_IB, 75 RDMA_TRANSPORT_IWARP 76 }; 77 78 enum rdma_transport_type 79 rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__; 80 81 enum rdma_link_layer { 82 IB_LINK_LAYER_UNSPECIFIED, 83 IB_LINK_LAYER_INFINIBAND, 84 IB_LINK_LAYER_ETHERNET, 85 }; 86 87 enum ib_device_cap_flags { 88 IB_DEVICE_RESIZE_MAX_WR = 1, 89 IB_DEVICE_BAD_PKEY_CNTR = (1<<1), 90 IB_DEVICE_BAD_QKEY_CNTR = (1<<2), 91 IB_DEVICE_RAW_MULTI = (1<<3), 92 IB_DEVICE_AUTO_PATH_MIG = (1<<4), 93 IB_DEVICE_CHANGE_PHY_PORT = (1<<5), 94 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6), 95 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7), 96 IB_DEVICE_SHUTDOWN_PORT = (1<<8), 97 IB_DEVICE_INIT_TYPE = (1<<9), 98 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10), 99 IB_DEVICE_SYS_IMAGE_GUID = (1<<11), 100 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12), 101 IB_DEVICE_SRQ_RESIZE = (1<<13), 102 IB_DEVICE_N_NOTIFY_CQ = (1<<14), 103 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15), 104 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */ 105 IB_DEVICE_MEM_WINDOW = (1<<17), 106 /* 107 * Devices should set IB_DEVICE_UD_IP_SUM if they support 108 * insertion of UDP and TCP checksum on outgoing UD IPoIB 109 * messages and can verify the validity of checksum for 110 * incoming messages. Setting this flag implies that the 111 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 112 */ 113 IB_DEVICE_UD_IP_CSUM = (1<<18), 114 IB_DEVICE_UD_TSO = (1<<19), 115 IB_DEVICE_XRC = (1<<20), 116 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21), 117 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22), 118 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1<<23), 119 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1<<24) 120 }; 121 122 enum ib_atomic_cap { 123 IB_ATOMIC_NONE, 124 IB_ATOMIC_HCA, 125 IB_ATOMIC_GLOB 126 }; 127 128 struct ib_device_attr { 129 u64 fw_ver; 130 __be64 sys_image_guid; 131 u64 max_mr_size; 132 u64 page_size_cap; 133 u32 vendor_id; 134 u32 vendor_part_id; 135 u32 hw_ver; 136 int max_qp; 137 int max_qp_wr; 138 int device_cap_flags; 139 int max_sge; 140 int max_sge_rd; 141 int max_cq; 142 int max_cqe; 143 int max_mr; 144 int max_pd; 145 int max_qp_rd_atom; 146 int max_ee_rd_atom; 147 int max_res_rd_atom; 148 int max_qp_init_rd_atom; 149 int max_ee_init_rd_atom; 150 enum ib_atomic_cap atomic_cap; 151 enum ib_atomic_cap masked_atomic_cap; 152 int max_ee; 153 int max_rdd; 154 int max_mw; 155 int max_raw_ipv6_qp; 156 int max_raw_ethy_qp; 157 int max_mcast_grp; 158 int max_mcast_qp_attach; 159 int max_total_mcast_qp_attach; 160 int max_ah; 161 int max_fmr; 162 int max_map_per_fmr; 163 int max_srq; 164 int max_srq_wr; 165 int max_srq_sge; 166 unsigned int max_fast_reg_page_list_len; 167 u16 max_pkeys; 168 u8 local_ca_ack_delay; 169 }; 170 171 enum ib_mtu { 172 IB_MTU_256 = 1, 173 IB_MTU_512 = 2, 174 IB_MTU_1024 = 3, 175 IB_MTU_2048 = 4, 176 IB_MTU_4096 = 5 177 }; 178 179 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 180 { 181 switch (mtu) { 182 case IB_MTU_256: return 256; 183 case IB_MTU_512: return 512; 184 case IB_MTU_1024: return 1024; 185 case IB_MTU_2048: return 2048; 186 case IB_MTU_4096: return 4096; 187 default: return -1; 188 } 189 } 190 191 enum ib_port_state { 192 IB_PORT_NOP = 0, 193 IB_PORT_DOWN = 1, 194 IB_PORT_INIT = 2, 195 IB_PORT_ARMED = 3, 196 IB_PORT_ACTIVE = 4, 197 IB_PORT_ACTIVE_DEFER = 5 198 }; 199 200 enum ib_port_cap_flags { 201 IB_PORT_SM = 1 << 1, 202 IB_PORT_NOTICE_SUP = 1 << 2, 203 IB_PORT_TRAP_SUP = 1 << 3, 204 IB_PORT_OPT_IPD_SUP = 1 << 4, 205 IB_PORT_AUTO_MIGR_SUP = 1 << 5, 206 IB_PORT_SL_MAP_SUP = 1 << 6, 207 IB_PORT_MKEY_NVRAM = 1 << 7, 208 IB_PORT_PKEY_NVRAM = 1 << 8, 209 IB_PORT_LED_INFO_SUP = 1 << 9, 210 IB_PORT_SM_DISABLED = 1 << 10, 211 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11, 212 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12, 213 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14, 214 IB_PORT_CM_SUP = 1 << 16, 215 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17, 216 IB_PORT_REINIT_SUP = 1 << 18, 217 IB_PORT_DEVICE_MGMT_SUP = 1 << 19, 218 IB_PORT_VENDOR_CLASS_SUP = 1 << 20, 219 IB_PORT_DR_NOTICE_SUP = 1 << 21, 220 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22, 221 IB_PORT_BOOT_MGMT_SUP = 1 << 23, 222 IB_PORT_LINK_LATENCY_SUP = 1 << 24, 223 IB_PORT_CLIENT_REG_SUP = 1 << 25 224 }; 225 226 enum ib_port_width { 227 IB_WIDTH_1X = 1, 228 IB_WIDTH_4X = 2, 229 IB_WIDTH_8X = 4, 230 IB_WIDTH_12X = 8 231 }; 232 233 static inline int ib_width_enum_to_int(enum ib_port_width width) 234 { 235 switch (width) { 236 case IB_WIDTH_1X: return 1; 237 case IB_WIDTH_4X: return 4; 238 case IB_WIDTH_8X: return 8; 239 case IB_WIDTH_12X: return 12; 240 default: return -1; 241 } 242 } 243 244 enum ib_port_speed { 245 IB_SPEED_SDR = 1, 246 IB_SPEED_DDR = 2, 247 IB_SPEED_QDR = 4, 248 IB_SPEED_FDR10 = 8, 249 IB_SPEED_FDR = 16, 250 IB_SPEED_EDR = 32 251 }; 252 253 struct ib_protocol_stats { 254 /* TBD... */ 255 }; 256 257 struct iw_protocol_stats { 258 u64 ipInReceives; 259 u64 ipInHdrErrors; 260 u64 ipInTooBigErrors; 261 u64 ipInNoRoutes; 262 u64 ipInAddrErrors; 263 u64 ipInUnknownProtos; 264 u64 ipInTruncatedPkts; 265 u64 ipInDiscards; 266 u64 ipInDelivers; 267 u64 ipOutForwDatagrams; 268 u64 ipOutRequests; 269 u64 ipOutDiscards; 270 u64 ipOutNoRoutes; 271 u64 ipReasmTimeout; 272 u64 ipReasmReqds; 273 u64 ipReasmOKs; 274 u64 ipReasmFails; 275 u64 ipFragOKs; 276 u64 ipFragFails; 277 u64 ipFragCreates; 278 u64 ipInMcastPkts; 279 u64 ipOutMcastPkts; 280 u64 ipInBcastPkts; 281 u64 ipOutBcastPkts; 282 283 u64 tcpRtoAlgorithm; 284 u64 tcpRtoMin; 285 u64 tcpRtoMax; 286 u64 tcpMaxConn; 287 u64 tcpActiveOpens; 288 u64 tcpPassiveOpens; 289 u64 tcpAttemptFails; 290 u64 tcpEstabResets; 291 u64 tcpCurrEstab; 292 u64 tcpInSegs; 293 u64 tcpOutSegs; 294 u64 tcpRetransSegs; 295 u64 tcpInErrs; 296 u64 tcpOutRsts; 297 }; 298 299 union rdma_protocol_stats { 300 struct ib_protocol_stats ib; 301 struct iw_protocol_stats iw; 302 }; 303 304 struct ib_port_attr { 305 enum ib_port_state state; 306 enum ib_mtu max_mtu; 307 enum ib_mtu active_mtu; 308 int gid_tbl_len; 309 u32 port_cap_flags; 310 u32 max_msg_sz; 311 u32 bad_pkey_cntr; 312 u32 qkey_viol_cntr; 313 u16 pkey_tbl_len; 314 u16 lid; 315 u16 sm_lid; 316 u8 lmc; 317 u8 max_vl_num; 318 u8 sm_sl; 319 u8 subnet_timeout; 320 u8 init_type_reply; 321 u8 active_width; 322 u8 active_speed; 323 u8 phys_state; 324 }; 325 326 enum ib_device_modify_flags { 327 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 328 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 329 }; 330 331 struct ib_device_modify { 332 u64 sys_image_guid; 333 char node_desc[64]; 334 }; 335 336 enum ib_port_modify_flags { 337 IB_PORT_SHUTDOWN = 1, 338 IB_PORT_INIT_TYPE = (1<<2), 339 IB_PORT_RESET_QKEY_CNTR = (1<<3) 340 }; 341 342 struct ib_port_modify { 343 u32 set_port_cap_mask; 344 u32 clr_port_cap_mask; 345 u8 init_type; 346 }; 347 348 enum ib_event_type { 349 IB_EVENT_CQ_ERR, 350 IB_EVENT_QP_FATAL, 351 IB_EVENT_QP_REQ_ERR, 352 IB_EVENT_QP_ACCESS_ERR, 353 IB_EVENT_COMM_EST, 354 IB_EVENT_SQ_DRAINED, 355 IB_EVENT_PATH_MIG, 356 IB_EVENT_PATH_MIG_ERR, 357 IB_EVENT_DEVICE_FATAL, 358 IB_EVENT_PORT_ACTIVE, 359 IB_EVENT_PORT_ERR, 360 IB_EVENT_LID_CHANGE, 361 IB_EVENT_PKEY_CHANGE, 362 IB_EVENT_SM_CHANGE, 363 IB_EVENT_SRQ_ERR, 364 IB_EVENT_SRQ_LIMIT_REACHED, 365 IB_EVENT_QP_LAST_WQE_REACHED, 366 IB_EVENT_CLIENT_REREGISTER, 367 IB_EVENT_GID_CHANGE, 368 }; 369 370 struct ib_event { 371 struct ib_device *device; 372 union { 373 struct ib_cq *cq; 374 struct ib_qp *qp; 375 struct ib_srq *srq; 376 u8 port_num; 377 } element; 378 enum ib_event_type event; 379 }; 380 381 struct ib_event_handler { 382 struct ib_device *device; 383 void (*handler)(struct ib_event_handler *, struct ib_event *); 384 struct list_head list; 385 }; 386 387 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 388 do { \ 389 (_ptr)->device = _device; \ 390 (_ptr)->handler = _handler; \ 391 INIT_LIST_HEAD(&(_ptr)->list); \ 392 } while (0) 393 394 struct ib_global_route { 395 union ib_gid dgid; 396 u32 flow_label; 397 u8 sgid_index; 398 u8 hop_limit; 399 u8 traffic_class; 400 }; 401 402 struct ib_grh { 403 __be32 version_tclass_flow; 404 __be16 paylen; 405 u8 next_hdr; 406 u8 hop_limit; 407 union ib_gid sgid; 408 union ib_gid dgid; 409 }; 410 411 enum { 412 IB_MULTICAST_QPN = 0xffffff 413 }; 414 415 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 416 417 enum ib_ah_flags { 418 IB_AH_GRH = 1 419 }; 420 421 enum ib_rate { 422 IB_RATE_PORT_CURRENT = 0, 423 IB_RATE_2_5_GBPS = 2, 424 IB_RATE_5_GBPS = 5, 425 IB_RATE_10_GBPS = 3, 426 IB_RATE_20_GBPS = 6, 427 IB_RATE_30_GBPS = 4, 428 IB_RATE_40_GBPS = 7, 429 IB_RATE_60_GBPS = 8, 430 IB_RATE_80_GBPS = 9, 431 IB_RATE_120_GBPS = 10, 432 IB_RATE_14_GBPS = 11, 433 IB_RATE_56_GBPS = 12, 434 IB_RATE_112_GBPS = 13, 435 IB_RATE_168_GBPS = 14, 436 IB_RATE_25_GBPS = 15, 437 IB_RATE_100_GBPS = 16, 438 IB_RATE_200_GBPS = 17, 439 IB_RATE_300_GBPS = 18 440 }; 441 442 /** 443 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 444 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 445 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 446 * @rate: rate to convert. 447 */ 448 int ib_rate_to_mult(enum ib_rate rate) __attribute_const__; 449 450 /** 451 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 452 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 453 * @rate: rate to convert. 454 */ 455 int ib_rate_to_mbps(enum ib_rate rate) __attribute_const__; 456 457 /** 458 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 459 * enum. 460 * @mult: multiple to convert. 461 */ 462 enum ib_rate mult_to_ib_rate(int mult) __attribute_const__; 463 464 struct ib_ah_attr { 465 struct ib_global_route grh; 466 u16 dlid; 467 u8 sl; 468 u8 src_path_bits; 469 u8 static_rate; 470 u8 ah_flags; 471 u8 port_num; 472 }; 473 474 enum ib_wc_status { 475 IB_WC_SUCCESS, 476 IB_WC_LOC_LEN_ERR, 477 IB_WC_LOC_QP_OP_ERR, 478 IB_WC_LOC_EEC_OP_ERR, 479 IB_WC_LOC_PROT_ERR, 480 IB_WC_WR_FLUSH_ERR, 481 IB_WC_MW_BIND_ERR, 482 IB_WC_BAD_RESP_ERR, 483 IB_WC_LOC_ACCESS_ERR, 484 IB_WC_REM_INV_REQ_ERR, 485 IB_WC_REM_ACCESS_ERR, 486 IB_WC_REM_OP_ERR, 487 IB_WC_RETRY_EXC_ERR, 488 IB_WC_RNR_RETRY_EXC_ERR, 489 IB_WC_LOC_RDD_VIOL_ERR, 490 IB_WC_REM_INV_RD_REQ_ERR, 491 IB_WC_REM_ABORT_ERR, 492 IB_WC_INV_EECN_ERR, 493 IB_WC_INV_EEC_STATE_ERR, 494 IB_WC_FATAL_ERR, 495 IB_WC_RESP_TIMEOUT_ERR, 496 IB_WC_GENERAL_ERR 497 }; 498 499 enum ib_wc_opcode { 500 IB_WC_SEND, 501 IB_WC_RDMA_WRITE, 502 IB_WC_RDMA_READ, 503 IB_WC_COMP_SWAP, 504 IB_WC_FETCH_ADD, 505 IB_WC_BIND_MW, 506 IB_WC_LSO, 507 IB_WC_LOCAL_INV, 508 IB_WC_FAST_REG_MR, 509 IB_WC_MASKED_COMP_SWAP, 510 IB_WC_MASKED_FETCH_ADD, 511 /* 512 * Set value of IB_WC_RECV so consumers can test if a completion is a 513 * receive by testing (opcode & IB_WC_RECV). 514 */ 515 IB_WC_RECV = 1 << 7, 516 IB_WC_RECV_RDMA_WITH_IMM 517 }; 518 519 enum ib_wc_flags { 520 IB_WC_GRH = 1, 521 IB_WC_WITH_IMM = (1<<1), 522 IB_WC_WITH_INVALIDATE = (1<<2), 523 IB_WC_IP_CSUM_OK = (1<<3), 524 }; 525 526 struct ib_wc { 527 u64 wr_id; 528 enum ib_wc_status status; 529 enum ib_wc_opcode opcode; 530 u32 vendor_err; 531 u32 byte_len; 532 struct ib_qp *qp; 533 union { 534 __be32 imm_data; 535 u32 invalidate_rkey; 536 } ex; 537 u32 src_qp; 538 int wc_flags; 539 u16 pkey_index; 540 u16 slid; 541 u8 sl; 542 u8 dlid_path_bits; 543 u8 port_num; /* valid only for DR SMPs on switches */ 544 }; 545 546 enum ib_cq_notify_flags { 547 IB_CQ_SOLICITED = 1 << 0, 548 IB_CQ_NEXT_COMP = 1 << 1, 549 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 550 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 551 }; 552 553 enum ib_srq_type { 554 IB_SRQT_BASIC, 555 IB_SRQT_XRC 556 }; 557 558 enum ib_srq_attr_mask { 559 IB_SRQ_MAX_WR = 1 << 0, 560 IB_SRQ_LIMIT = 1 << 1, 561 }; 562 563 struct ib_srq_attr { 564 u32 max_wr; 565 u32 max_sge; 566 u32 srq_limit; 567 }; 568 569 struct ib_srq_init_attr { 570 void (*event_handler)(struct ib_event *, void *); 571 void *srq_context; 572 struct ib_srq_attr attr; 573 enum ib_srq_type srq_type; 574 575 union { 576 struct { 577 struct ib_xrcd *xrcd; 578 struct ib_cq *cq; 579 } xrc; 580 } ext; 581 }; 582 583 struct ib_qp_cap { 584 u32 max_send_wr; 585 u32 max_recv_wr; 586 u32 max_send_sge; 587 u32 max_recv_sge; 588 u32 max_inline_data; 589 }; 590 591 enum ib_sig_type { 592 IB_SIGNAL_ALL_WR, 593 IB_SIGNAL_REQ_WR 594 }; 595 596 enum ib_qp_type { 597 /* 598 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 599 * here (and in that order) since the MAD layer uses them as 600 * indices into a 2-entry table. 601 */ 602 IB_QPT_SMI, 603 IB_QPT_GSI, 604 605 IB_QPT_RC, 606 IB_QPT_UC, 607 IB_QPT_UD, 608 IB_QPT_RAW_IPV6, 609 IB_QPT_RAW_ETHERTYPE, 610 IB_QPT_RAW_PACKET = 8, 611 IB_QPT_XRC_INI = 9, 612 IB_QPT_XRC_TGT, 613 IB_QPT_MAX 614 }; 615 616 enum ib_qp_create_flags { 617 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 618 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1, 619 /* reserve bits 26-31 for low level drivers' internal use */ 620 IB_QP_CREATE_RESERVED_START = 1 << 26, 621 IB_QP_CREATE_RESERVED_END = 1 << 31, 622 }; 623 624 struct ib_qp_init_attr { 625 void (*event_handler)(struct ib_event *, void *); 626 void *qp_context; 627 struct ib_cq *send_cq; 628 struct ib_cq *recv_cq; 629 struct ib_srq *srq; 630 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 631 struct ib_qp_cap cap; 632 enum ib_sig_type sq_sig_type; 633 enum ib_qp_type qp_type; 634 enum ib_qp_create_flags create_flags; 635 u8 port_num; /* special QP types only */ 636 }; 637 638 struct ib_qp_open_attr { 639 void (*event_handler)(struct ib_event *, void *); 640 void *qp_context; 641 u32 qp_num; 642 enum ib_qp_type qp_type; 643 }; 644 645 enum ib_rnr_timeout { 646 IB_RNR_TIMER_655_36 = 0, 647 IB_RNR_TIMER_000_01 = 1, 648 IB_RNR_TIMER_000_02 = 2, 649 IB_RNR_TIMER_000_03 = 3, 650 IB_RNR_TIMER_000_04 = 4, 651 IB_RNR_TIMER_000_06 = 5, 652 IB_RNR_TIMER_000_08 = 6, 653 IB_RNR_TIMER_000_12 = 7, 654 IB_RNR_TIMER_000_16 = 8, 655 IB_RNR_TIMER_000_24 = 9, 656 IB_RNR_TIMER_000_32 = 10, 657 IB_RNR_TIMER_000_48 = 11, 658 IB_RNR_TIMER_000_64 = 12, 659 IB_RNR_TIMER_000_96 = 13, 660 IB_RNR_TIMER_001_28 = 14, 661 IB_RNR_TIMER_001_92 = 15, 662 IB_RNR_TIMER_002_56 = 16, 663 IB_RNR_TIMER_003_84 = 17, 664 IB_RNR_TIMER_005_12 = 18, 665 IB_RNR_TIMER_007_68 = 19, 666 IB_RNR_TIMER_010_24 = 20, 667 IB_RNR_TIMER_015_36 = 21, 668 IB_RNR_TIMER_020_48 = 22, 669 IB_RNR_TIMER_030_72 = 23, 670 IB_RNR_TIMER_040_96 = 24, 671 IB_RNR_TIMER_061_44 = 25, 672 IB_RNR_TIMER_081_92 = 26, 673 IB_RNR_TIMER_122_88 = 27, 674 IB_RNR_TIMER_163_84 = 28, 675 IB_RNR_TIMER_245_76 = 29, 676 IB_RNR_TIMER_327_68 = 30, 677 IB_RNR_TIMER_491_52 = 31 678 }; 679 680 enum ib_qp_attr_mask { 681 IB_QP_STATE = 1, 682 IB_QP_CUR_STATE = (1<<1), 683 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 684 IB_QP_ACCESS_FLAGS = (1<<3), 685 IB_QP_PKEY_INDEX = (1<<4), 686 IB_QP_PORT = (1<<5), 687 IB_QP_QKEY = (1<<6), 688 IB_QP_AV = (1<<7), 689 IB_QP_PATH_MTU = (1<<8), 690 IB_QP_TIMEOUT = (1<<9), 691 IB_QP_RETRY_CNT = (1<<10), 692 IB_QP_RNR_RETRY = (1<<11), 693 IB_QP_RQ_PSN = (1<<12), 694 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 695 IB_QP_ALT_PATH = (1<<14), 696 IB_QP_MIN_RNR_TIMER = (1<<15), 697 IB_QP_SQ_PSN = (1<<16), 698 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 699 IB_QP_PATH_MIG_STATE = (1<<18), 700 IB_QP_CAP = (1<<19), 701 IB_QP_DEST_QPN = (1<<20) 702 }; 703 704 enum ib_qp_state { 705 IB_QPS_RESET, 706 IB_QPS_INIT, 707 IB_QPS_RTR, 708 IB_QPS_RTS, 709 IB_QPS_SQD, 710 IB_QPS_SQE, 711 IB_QPS_ERR 712 }; 713 714 enum ib_mig_state { 715 IB_MIG_MIGRATED, 716 IB_MIG_REARM, 717 IB_MIG_ARMED 718 }; 719 720 enum ib_mw_type { 721 IB_MW_TYPE_1 = 1, 722 IB_MW_TYPE_2 = 2 723 }; 724 725 struct ib_qp_attr { 726 enum ib_qp_state qp_state; 727 enum ib_qp_state cur_qp_state; 728 enum ib_mtu path_mtu; 729 enum ib_mig_state path_mig_state; 730 u32 qkey; 731 u32 rq_psn; 732 u32 sq_psn; 733 u32 dest_qp_num; 734 int qp_access_flags; 735 struct ib_qp_cap cap; 736 struct ib_ah_attr ah_attr; 737 struct ib_ah_attr alt_ah_attr; 738 u16 pkey_index; 739 u16 alt_pkey_index; 740 u8 en_sqd_async_notify; 741 u8 sq_draining; 742 u8 max_rd_atomic; 743 u8 max_dest_rd_atomic; 744 u8 min_rnr_timer; 745 u8 port_num; 746 u8 timeout; 747 u8 retry_cnt; 748 u8 rnr_retry; 749 u8 alt_port_num; 750 u8 alt_timeout; 751 }; 752 753 enum ib_wr_opcode { 754 IB_WR_RDMA_WRITE, 755 IB_WR_RDMA_WRITE_WITH_IMM, 756 IB_WR_SEND, 757 IB_WR_SEND_WITH_IMM, 758 IB_WR_RDMA_READ, 759 IB_WR_ATOMIC_CMP_AND_SWP, 760 IB_WR_ATOMIC_FETCH_AND_ADD, 761 IB_WR_LSO, 762 IB_WR_SEND_WITH_INV, 763 IB_WR_RDMA_READ_WITH_INV, 764 IB_WR_LOCAL_INV, 765 IB_WR_FAST_REG_MR, 766 IB_WR_MASKED_ATOMIC_CMP_AND_SWP, 767 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD, 768 IB_WR_BIND_MW, 769 }; 770 771 enum ib_send_flags { 772 IB_SEND_FENCE = 1, 773 IB_SEND_SIGNALED = (1<<1), 774 IB_SEND_SOLICITED = (1<<2), 775 IB_SEND_INLINE = (1<<3), 776 IB_SEND_IP_CSUM = (1<<4) 777 }; 778 779 struct ib_sge { 780 u64 addr; 781 u32 length; 782 u32 lkey; 783 }; 784 785 struct ib_fast_reg_page_list { 786 struct ib_device *device; 787 u64 *page_list; 788 unsigned int max_page_list_len; 789 }; 790 791 /** 792 * struct ib_mw_bind_info - Parameters for a memory window bind operation. 793 * @mr: A memory region to bind the memory window to. 794 * @addr: The address where the memory window should begin. 795 * @length: The length of the memory window, in bytes. 796 * @mw_access_flags: Access flags from enum ib_access_flags for the window. 797 * 798 * This struct contains the shared parameters for type 1 and type 2 799 * memory window bind operations. 800 */ 801 struct ib_mw_bind_info { 802 struct ib_mr *mr; 803 u64 addr; 804 u64 length; 805 int mw_access_flags; 806 }; 807 808 struct ib_send_wr { 809 struct ib_send_wr *next; 810 u64 wr_id; 811 struct ib_sge *sg_list; 812 int num_sge; 813 enum ib_wr_opcode opcode; 814 int send_flags; 815 union { 816 __be32 imm_data; 817 u32 invalidate_rkey; 818 } ex; 819 union { 820 struct { 821 u64 remote_addr; 822 u32 rkey; 823 } rdma; 824 struct { 825 u64 remote_addr; 826 u64 compare_add; 827 u64 swap; 828 u64 compare_add_mask; 829 u64 swap_mask; 830 u32 rkey; 831 } atomic; 832 struct { 833 struct ib_ah *ah; 834 void *header; 835 int hlen; 836 int mss; 837 u32 remote_qpn; 838 u32 remote_qkey; 839 u16 pkey_index; /* valid for GSI only */ 840 u8 port_num; /* valid for DR SMPs on switch only */ 841 } ud; 842 struct { 843 u64 iova_start; 844 struct ib_fast_reg_page_list *page_list; 845 unsigned int page_shift; 846 unsigned int page_list_len; 847 u32 length; 848 int access_flags; 849 u32 rkey; 850 } fast_reg; 851 struct { 852 struct ib_mw *mw; 853 /* The new rkey for the memory window. */ 854 u32 rkey; 855 struct ib_mw_bind_info bind_info; 856 } bind_mw; 857 } wr; 858 u32 xrc_remote_srq_num; /* XRC TGT QPs only */ 859 }; 860 861 struct ib_recv_wr { 862 struct ib_recv_wr *next; 863 u64 wr_id; 864 struct ib_sge *sg_list; 865 int num_sge; 866 }; 867 868 enum ib_access_flags { 869 IB_ACCESS_LOCAL_WRITE = 1, 870 IB_ACCESS_REMOTE_WRITE = (1<<1), 871 IB_ACCESS_REMOTE_READ = (1<<2), 872 IB_ACCESS_REMOTE_ATOMIC = (1<<3), 873 IB_ACCESS_MW_BIND = (1<<4), 874 IB_ZERO_BASED = (1<<5) 875 }; 876 877 struct ib_phys_buf { 878 u64 addr; 879 u64 size; 880 }; 881 882 struct ib_mr_attr { 883 struct ib_pd *pd; 884 u64 device_virt_addr; 885 u64 size; 886 int mr_access_flags; 887 u32 lkey; 888 u32 rkey; 889 }; 890 891 enum ib_mr_rereg_flags { 892 IB_MR_REREG_TRANS = 1, 893 IB_MR_REREG_PD = (1<<1), 894 IB_MR_REREG_ACCESS = (1<<2) 895 }; 896 897 /** 898 * struct ib_mw_bind - Parameters for a type 1 memory window bind operation. 899 * @wr_id: Work request id. 900 * @send_flags: Flags from ib_send_flags enum. 901 * @bind_info: More parameters of the bind operation. 902 */ 903 struct ib_mw_bind { 904 u64 wr_id; 905 int send_flags; 906 struct ib_mw_bind_info bind_info; 907 }; 908 909 struct ib_fmr_attr { 910 int max_pages; 911 int max_maps; 912 u8 page_shift; 913 }; 914 915 struct ib_ucontext { 916 struct ib_device *device; 917 struct list_head pd_list; 918 struct list_head mr_list; 919 struct list_head mw_list; 920 struct list_head cq_list; 921 struct list_head qp_list; 922 struct list_head srq_list; 923 struct list_head ah_list; 924 struct list_head xrcd_list; 925 int closing; 926 }; 927 928 struct ib_uobject { 929 u64 user_handle; /* handle given to us by userspace */ 930 struct ib_ucontext *context; /* associated user context */ 931 void *object; /* containing object */ 932 struct list_head list; /* link to context's list */ 933 int id; /* index into kernel idr */ 934 struct kref ref; 935 struct rw_semaphore mutex; /* protects .live */ 936 int live; 937 }; 938 939 struct ib_udata { 940 void __user *inbuf; 941 void __user *outbuf; 942 size_t inlen; 943 size_t outlen; 944 }; 945 946 struct ib_pd { 947 struct ib_device *device; 948 struct ib_uobject *uobject; 949 atomic_t usecnt; /* count all resources */ 950 }; 951 952 struct ib_xrcd { 953 struct ib_device *device; 954 atomic_t usecnt; /* count all exposed resources */ 955 struct inode *inode; 956 957 struct mutex tgt_qp_mutex; 958 struct list_head tgt_qp_list; 959 }; 960 961 struct ib_ah { 962 struct ib_device *device; 963 struct ib_pd *pd; 964 struct ib_uobject *uobject; 965 }; 966 967 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 968 969 struct ib_cq { 970 struct ib_device *device; 971 struct ib_uobject *uobject; 972 ib_comp_handler comp_handler; 973 void (*event_handler)(struct ib_event *, void *); 974 void *cq_context; 975 int cqe; 976 atomic_t usecnt; /* count number of work queues */ 977 }; 978 979 struct ib_srq { 980 struct ib_device *device; 981 struct ib_pd *pd; 982 struct ib_uobject *uobject; 983 void (*event_handler)(struct ib_event *, void *); 984 void *srq_context; 985 enum ib_srq_type srq_type; 986 atomic_t usecnt; 987 988 union { 989 struct { 990 struct ib_xrcd *xrcd; 991 struct ib_cq *cq; 992 u32 srq_num; 993 } xrc; 994 } ext; 995 }; 996 997 struct ib_qp { 998 struct ib_device *device; 999 struct ib_pd *pd; 1000 struct ib_cq *send_cq; 1001 struct ib_cq *recv_cq; 1002 struct ib_srq *srq; 1003 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1004 struct list_head xrcd_list; 1005 atomic_t usecnt; /* count times opened, mcast attaches */ 1006 struct list_head open_list; 1007 struct ib_qp *real_qp; 1008 struct ib_uobject *uobject; 1009 void (*event_handler)(struct ib_event *, void *); 1010 void *qp_context; 1011 u32 qp_num; 1012 enum ib_qp_type qp_type; 1013 }; 1014 1015 struct ib_mr { 1016 struct ib_device *device; 1017 struct ib_pd *pd; 1018 struct ib_uobject *uobject; 1019 u32 lkey; 1020 u32 rkey; 1021 atomic_t usecnt; /* count number of MWs */ 1022 }; 1023 1024 struct ib_mw { 1025 struct ib_device *device; 1026 struct ib_pd *pd; 1027 struct ib_uobject *uobject; 1028 u32 rkey; 1029 enum ib_mw_type type; 1030 }; 1031 1032 struct ib_fmr { 1033 struct ib_device *device; 1034 struct ib_pd *pd; 1035 struct list_head list; 1036 u32 lkey; 1037 u32 rkey; 1038 }; 1039 1040 struct ib_mad; 1041 struct ib_grh; 1042 1043 enum ib_process_mad_flags { 1044 IB_MAD_IGNORE_MKEY = 1, 1045 IB_MAD_IGNORE_BKEY = 2, 1046 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 1047 }; 1048 1049 enum ib_mad_result { 1050 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 1051 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 1052 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 1053 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 1054 }; 1055 1056 #define IB_DEVICE_NAME_MAX 64 1057 1058 struct ib_cache { 1059 rwlock_t lock; 1060 struct ib_event_handler event_handler; 1061 struct ib_pkey_cache **pkey_cache; 1062 struct ib_gid_cache **gid_cache; 1063 u8 *lmc_cache; 1064 }; 1065 1066 struct ib_dma_mapping_ops { 1067 int (*mapping_error)(struct ib_device *dev, 1068 u64 dma_addr); 1069 u64 (*map_single)(struct ib_device *dev, 1070 void *ptr, size_t size, 1071 enum dma_data_direction direction); 1072 void (*unmap_single)(struct ib_device *dev, 1073 u64 addr, size_t size, 1074 enum dma_data_direction direction); 1075 u64 (*map_page)(struct ib_device *dev, 1076 struct page *page, unsigned long offset, 1077 size_t size, 1078 enum dma_data_direction direction); 1079 void (*unmap_page)(struct ib_device *dev, 1080 u64 addr, size_t size, 1081 enum dma_data_direction direction); 1082 int (*map_sg)(struct ib_device *dev, 1083 struct scatterlist *sg, int nents, 1084 enum dma_data_direction direction); 1085 void (*unmap_sg)(struct ib_device *dev, 1086 struct scatterlist *sg, int nents, 1087 enum dma_data_direction direction); 1088 u64 (*dma_address)(struct ib_device *dev, 1089 struct scatterlist *sg); 1090 unsigned int (*dma_len)(struct ib_device *dev, 1091 struct scatterlist *sg); 1092 void (*sync_single_for_cpu)(struct ib_device *dev, 1093 u64 dma_handle, 1094 size_t size, 1095 enum dma_data_direction dir); 1096 void (*sync_single_for_device)(struct ib_device *dev, 1097 u64 dma_handle, 1098 size_t size, 1099 enum dma_data_direction dir); 1100 void *(*alloc_coherent)(struct ib_device *dev, 1101 size_t size, 1102 u64 *dma_handle, 1103 gfp_t flag); 1104 void (*free_coherent)(struct ib_device *dev, 1105 size_t size, void *cpu_addr, 1106 u64 dma_handle); 1107 }; 1108 1109 struct iw_cm_verbs; 1110 1111 struct ib_device { 1112 struct device *dma_device; 1113 1114 char name[IB_DEVICE_NAME_MAX]; 1115 1116 struct list_head event_handler_list; 1117 spinlock_t event_handler_lock; 1118 1119 spinlock_t client_data_lock; 1120 struct list_head core_list; 1121 struct list_head client_data_list; 1122 1123 struct ib_cache cache; 1124 int *pkey_tbl_len; 1125 int *gid_tbl_len; 1126 1127 int num_comp_vectors; 1128 1129 struct iw_cm_verbs *iwcm; 1130 1131 int (*get_protocol_stats)(struct ib_device *device, 1132 union rdma_protocol_stats *stats); 1133 int (*query_device)(struct ib_device *device, 1134 struct ib_device_attr *device_attr); 1135 int (*query_port)(struct ib_device *device, 1136 u8 port_num, 1137 struct ib_port_attr *port_attr); 1138 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 1139 u8 port_num); 1140 int (*query_gid)(struct ib_device *device, 1141 u8 port_num, int index, 1142 union ib_gid *gid); 1143 int (*query_pkey)(struct ib_device *device, 1144 u8 port_num, u16 index, u16 *pkey); 1145 int (*modify_device)(struct ib_device *device, 1146 int device_modify_mask, 1147 struct ib_device_modify *device_modify); 1148 int (*modify_port)(struct ib_device *device, 1149 u8 port_num, int port_modify_mask, 1150 struct ib_port_modify *port_modify); 1151 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device, 1152 struct ib_udata *udata); 1153 int (*dealloc_ucontext)(struct ib_ucontext *context); 1154 int (*mmap)(struct ib_ucontext *context, 1155 struct vm_area_struct *vma); 1156 struct ib_pd * (*alloc_pd)(struct ib_device *device, 1157 struct ib_ucontext *context, 1158 struct ib_udata *udata); 1159 int (*dealloc_pd)(struct ib_pd *pd); 1160 struct ib_ah * (*create_ah)(struct ib_pd *pd, 1161 struct ib_ah_attr *ah_attr); 1162 int (*modify_ah)(struct ib_ah *ah, 1163 struct ib_ah_attr *ah_attr); 1164 int (*query_ah)(struct ib_ah *ah, 1165 struct ib_ah_attr *ah_attr); 1166 int (*destroy_ah)(struct ib_ah *ah); 1167 struct ib_srq * (*create_srq)(struct ib_pd *pd, 1168 struct ib_srq_init_attr *srq_init_attr, 1169 struct ib_udata *udata); 1170 int (*modify_srq)(struct ib_srq *srq, 1171 struct ib_srq_attr *srq_attr, 1172 enum ib_srq_attr_mask srq_attr_mask, 1173 struct ib_udata *udata); 1174 int (*query_srq)(struct ib_srq *srq, 1175 struct ib_srq_attr *srq_attr); 1176 int (*destroy_srq)(struct ib_srq *srq); 1177 int (*post_srq_recv)(struct ib_srq *srq, 1178 struct ib_recv_wr *recv_wr, 1179 struct ib_recv_wr **bad_recv_wr); 1180 struct ib_qp * (*create_qp)(struct ib_pd *pd, 1181 struct ib_qp_init_attr *qp_init_attr, 1182 struct ib_udata *udata); 1183 int (*modify_qp)(struct ib_qp *qp, 1184 struct ib_qp_attr *qp_attr, 1185 int qp_attr_mask, 1186 struct ib_udata *udata); 1187 int (*query_qp)(struct ib_qp *qp, 1188 struct ib_qp_attr *qp_attr, 1189 int qp_attr_mask, 1190 struct ib_qp_init_attr *qp_init_attr); 1191 int (*destroy_qp)(struct ib_qp *qp); 1192 int (*post_send)(struct ib_qp *qp, 1193 struct ib_send_wr *send_wr, 1194 struct ib_send_wr **bad_send_wr); 1195 int (*post_recv)(struct ib_qp *qp, 1196 struct ib_recv_wr *recv_wr, 1197 struct ib_recv_wr **bad_recv_wr); 1198 struct ib_cq * (*create_cq)(struct ib_device *device, int cqe, 1199 int comp_vector, 1200 struct ib_ucontext *context, 1201 struct ib_udata *udata); 1202 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, 1203 u16 cq_period); 1204 int (*destroy_cq)(struct ib_cq *cq); 1205 int (*resize_cq)(struct ib_cq *cq, int cqe, 1206 struct ib_udata *udata); 1207 int (*poll_cq)(struct ib_cq *cq, int num_entries, 1208 struct ib_wc *wc); 1209 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 1210 int (*req_notify_cq)(struct ib_cq *cq, 1211 enum ib_cq_notify_flags flags); 1212 int (*req_ncomp_notif)(struct ib_cq *cq, 1213 int wc_cnt); 1214 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, 1215 int mr_access_flags); 1216 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd, 1217 struct ib_phys_buf *phys_buf_array, 1218 int num_phys_buf, 1219 int mr_access_flags, 1220 u64 *iova_start); 1221 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, 1222 u64 start, u64 length, 1223 u64 virt_addr, 1224 int mr_access_flags, 1225 struct ib_udata *udata); 1226 int (*query_mr)(struct ib_mr *mr, 1227 struct ib_mr_attr *mr_attr); 1228 int (*dereg_mr)(struct ib_mr *mr); 1229 struct ib_mr * (*alloc_fast_reg_mr)(struct ib_pd *pd, 1230 int max_page_list_len); 1231 struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device, 1232 int page_list_len); 1233 void (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list); 1234 int (*rereg_phys_mr)(struct ib_mr *mr, 1235 int mr_rereg_mask, 1236 struct ib_pd *pd, 1237 struct ib_phys_buf *phys_buf_array, 1238 int num_phys_buf, 1239 int mr_access_flags, 1240 u64 *iova_start); 1241 struct ib_mw * (*alloc_mw)(struct ib_pd *pd, 1242 enum ib_mw_type type); 1243 int (*bind_mw)(struct ib_qp *qp, 1244 struct ib_mw *mw, 1245 struct ib_mw_bind *mw_bind); 1246 int (*dealloc_mw)(struct ib_mw *mw); 1247 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, 1248 int mr_access_flags, 1249 struct ib_fmr_attr *fmr_attr); 1250 int (*map_phys_fmr)(struct ib_fmr *fmr, 1251 u64 *page_list, int list_len, 1252 u64 iova); 1253 int (*unmap_fmr)(struct list_head *fmr_list); 1254 int (*dealloc_fmr)(struct ib_fmr *fmr); 1255 int (*attach_mcast)(struct ib_qp *qp, 1256 union ib_gid *gid, 1257 u16 lid); 1258 int (*detach_mcast)(struct ib_qp *qp, 1259 union ib_gid *gid, 1260 u16 lid); 1261 int (*process_mad)(struct ib_device *device, 1262 int process_mad_flags, 1263 u8 port_num, 1264 struct ib_wc *in_wc, 1265 struct ib_grh *in_grh, 1266 struct ib_mad *in_mad, 1267 struct ib_mad *out_mad); 1268 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device, 1269 struct ib_ucontext *ucontext, 1270 struct ib_udata *udata); 1271 int (*dealloc_xrcd)(struct ib_xrcd *xrcd); 1272 1273 struct ib_dma_mapping_ops *dma_ops; 1274 1275 struct module *owner; 1276 struct device dev; 1277 struct kobject *ports_parent; 1278 struct list_head port_list; 1279 1280 enum { 1281 IB_DEV_UNINITIALIZED, 1282 IB_DEV_REGISTERED, 1283 IB_DEV_UNREGISTERED 1284 } reg_state; 1285 1286 int uverbs_abi_ver; 1287 u64 uverbs_cmd_mask; 1288 1289 char node_desc[64]; 1290 __be64 node_guid; 1291 u32 local_dma_lkey; 1292 u8 node_type; 1293 u8 phys_port_cnt; 1294 }; 1295 1296 struct ib_client { 1297 char *name; 1298 void (*add) (struct ib_device *); 1299 void (*remove)(struct ib_device *); 1300 1301 struct list_head list; 1302 }; 1303 1304 struct ib_device *ib_alloc_device(size_t size); 1305 void ib_dealloc_device(struct ib_device *device); 1306 1307 int ib_register_device(struct ib_device *device, 1308 int (*port_callback)(struct ib_device *, 1309 u8, struct kobject *)); 1310 void ib_unregister_device(struct ib_device *device); 1311 1312 int ib_register_client (struct ib_client *client); 1313 void ib_unregister_client(struct ib_client *client); 1314 1315 void *ib_get_client_data(struct ib_device *device, struct ib_client *client); 1316 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 1317 void *data); 1318 1319 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 1320 { 1321 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 1322 } 1323 1324 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 1325 { 1326 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 1327 } 1328 1329 /** 1330 * ib_modify_qp_is_ok - Check that the supplied attribute mask 1331 * contains all required attributes and no attributes not allowed for 1332 * the given QP state transition. 1333 * @cur_state: Current QP state 1334 * @next_state: Next QP state 1335 * @type: QP type 1336 * @mask: Mask of supplied QP attributes 1337 * 1338 * This function is a helper function that a low-level driver's 1339 * modify_qp method can use to validate the consumer's input. It 1340 * checks that cur_state and next_state are valid QP states, that a 1341 * transition from cur_state to next_state is allowed by the IB spec, 1342 * and that the attribute mask supplied is allowed for the transition. 1343 */ 1344 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 1345 enum ib_qp_type type, enum ib_qp_attr_mask mask); 1346 1347 int ib_register_event_handler (struct ib_event_handler *event_handler); 1348 int ib_unregister_event_handler(struct ib_event_handler *event_handler); 1349 void ib_dispatch_event(struct ib_event *event); 1350 1351 int ib_query_device(struct ib_device *device, 1352 struct ib_device_attr *device_attr); 1353 1354 int ib_query_port(struct ib_device *device, 1355 u8 port_num, struct ib_port_attr *port_attr); 1356 1357 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 1358 u8 port_num); 1359 1360 int ib_query_gid(struct ib_device *device, 1361 u8 port_num, int index, union ib_gid *gid); 1362 1363 int ib_query_pkey(struct ib_device *device, 1364 u8 port_num, u16 index, u16 *pkey); 1365 1366 int ib_modify_device(struct ib_device *device, 1367 int device_modify_mask, 1368 struct ib_device_modify *device_modify); 1369 1370 int ib_modify_port(struct ib_device *device, 1371 u8 port_num, int port_modify_mask, 1372 struct ib_port_modify *port_modify); 1373 1374 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 1375 u8 *port_num, u16 *index); 1376 1377 int ib_find_pkey(struct ib_device *device, 1378 u8 port_num, u16 pkey, u16 *index); 1379 1380 /** 1381 * ib_alloc_pd - Allocates an unused protection domain. 1382 * @device: The device on which to allocate the protection domain. 1383 * 1384 * A protection domain object provides an association between QPs, shared 1385 * receive queues, address handles, memory regions, and memory windows. 1386 */ 1387 struct ib_pd *ib_alloc_pd(struct ib_device *device); 1388 1389 /** 1390 * ib_dealloc_pd - Deallocates a protection domain. 1391 * @pd: The protection domain to deallocate. 1392 */ 1393 int ib_dealloc_pd(struct ib_pd *pd); 1394 1395 /** 1396 * ib_create_ah - Creates an address handle for the given address vector. 1397 * @pd: The protection domain associated with the address handle. 1398 * @ah_attr: The attributes of the address vector. 1399 * 1400 * The address handle is used to reference a local or global destination 1401 * in all UD QP post sends. 1402 */ 1403 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr); 1404 1405 /** 1406 * ib_init_ah_from_wc - Initializes address handle attributes from a 1407 * work completion. 1408 * @device: Device on which the received message arrived. 1409 * @port_num: Port on which the received message arrived. 1410 * @wc: Work completion associated with the received message. 1411 * @grh: References the received global route header. This parameter is 1412 * ignored unless the work completion indicates that the GRH is valid. 1413 * @ah_attr: Returned attributes that can be used when creating an address 1414 * handle for replying to the message. 1415 */ 1416 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc, 1417 struct ib_grh *grh, struct ib_ah_attr *ah_attr); 1418 1419 /** 1420 * ib_create_ah_from_wc - Creates an address handle associated with the 1421 * sender of the specified work completion. 1422 * @pd: The protection domain associated with the address handle. 1423 * @wc: Work completion information associated with a received message. 1424 * @grh: References the received global route header. This parameter is 1425 * ignored unless the work completion indicates that the GRH is valid. 1426 * @port_num: The outbound port number to associate with the address. 1427 * 1428 * The address handle is used to reference a local or global destination 1429 * in all UD QP post sends. 1430 */ 1431 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc, 1432 struct ib_grh *grh, u8 port_num); 1433 1434 /** 1435 * ib_modify_ah - Modifies the address vector associated with an address 1436 * handle. 1437 * @ah: The address handle to modify. 1438 * @ah_attr: The new address vector attributes to associate with the 1439 * address handle. 1440 */ 1441 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 1442 1443 /** 1444 * ib_query_ah - Queries the address vector associated with an address 1445 * handle. 1446 * @ah: The address handle to query. 1447 * @ah_attr: The address vector attributes associated with the address 1448 * handle. 1449 */ 1450 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 1451 1452 /** 1453 * ib_destroy_ah - Destroys an address handle. 1454 * @ah: The address handle to destroy. 1455 */ 1456 int ib_destroy_ah(struct ib_ah *ah); 1457 1458 /** 1459 * ib_create_srq - Creates a SRQ associated with the specified protection 1460 * domain. 1461 * @pd: The protection domain associated with the SRQ. 1462 * @srq_init_attr: A list of initial attributes required to create the 1463 * SRQ. If SRQ creation succeeds, then the attributes are updated to 1464 * the actual capabilities of the created SRQ. 1465 * 1466 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 1467 * requested size of the SRQ, and set to the actual values allocated 1468 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 1469 * will always be at least as large as the requested values. 1470 */ 1471 struct ib_srq *ib_create_srq(struct ib_pd *pd, 1472 struct ib_srq_init_attr *srq_init_attr); 1473 1474 /** 1475 * ib_modify_srq - Modifies the attributes for the specified SRQ. 1476 * @srq: The SRQ to modify. 1477 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 1478 * the current values of selected SRQ attributes are returned. 1479 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 1480 * are being modified. 1481 * 1482 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 1483 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 1484 * the number of receives queued drops below the limit. 1485 */ 1486 int ib_modify_srq(struct ib_srq *srq, 1487 struct ib_srq_attr *srq_attr, 1488 enum ib_srq_attr_mask srq_attr_mask); 1489 1490 /** 1491 * ib_query_srq - Returns the attribute list and current values for the 1492 * specified SRQ. 1493 * @srq: The SRQ to query. 1494 * @srq_attr: The attributes of the specified SRQ. 1495 */ 1496 int ib_query_srq(struct ib_srq *srq, 1497 struct ib_srq_attr *srq_attr); 1498 1499 /** 1500 * ib_destroy_srq - Destroys the specified SRQ. 1501 * @srq: The SRQ to destroy. 1502 */ 1503 int ib_destroy_srq(struct ib_srq *srq); 1504 1505 /** 1506 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 1507 * @srq: The SRQ to post the work request on. 1508 * @recv_wr: A list of work requests to post on the receive queue. 1509 * @bad_recv_wr: On an immediate failure, this parameter will reference 1510 * the work request that failed to be posted on the QP. 1511 */ 1512 static inline int ib_post_srq_recv(struct ib_srq *srq, 1513 struct ib_recv_wr *recv_wr, 1514 struct ib_recv_wr **bad_recv_wr) 1515 { 1516 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr); 1517 } 1518 1519 /** 1520 * ib_create_qp - Creates a QP associated with the specified protection 1521 * domain. 1522 * @pd: The protection domain associated with the QP. 1523 * @qp_init_attr: A list of initial attributes required to create the 1524 * QP. If QP creation succeeds, then the attributes are updated to 1525 * the actual capabilities of the created QP. 1526 */ 1527 struct ib_qp *ib_create_qp(struct ib_pd *pd, 1528 struct ib_qp_init_attr *qp_init_attr); 1529 1530 /** 1531 * ib_modify_qp - Modifies the attributes for the specified QP and then 1532 * transitions the QP to the given state. 1533 * @qp: The QP to modify. 1534 * @qp_attr: On input, specifies the QP attributes to modify. On output, 1535 * the current values of selected QP attributes are returned. 1536 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 1537 * are being modified. 1538 */ 1539 int ib_modify_qp(struct ib_qp *qp, 1540 struct ib_qp_attr *qp_attr, 1541 int qp_attr_mask); 1542 1543 /** 1544 * ib_query_qp - Returns the attribute list and current values for the 1545 * specified QP. 1546 * @qp: The QP to query. 1547 * @qp_attr: The attributes of the specified QP. 1548 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 1549 * @qp_init_attr: Additional attributes of the selected QP. 1550 * 1551 * The qp_attr_mask may be used to limit the query to gathering only the 1552 * selected attributes. 1553 */ 1554 int ib_query_qp(struct ib_qp *qp, 1555 struct ib_qp_attr *qp_attr, 1556 int qp_attr_mask, 1557 struct ib_qp_init_attr *qp_init_attr); 1558 1559 /** 1560 * ib_destroy_qp - Destroys the specified QP. 1561 * @qp: The QP to destroy. 1562 */ 1563 int ib_destroy_qp(struct ib_qp *qp); 1564 1565 /** 1566 * ib_open_qp - Obtain a reference to an existing sharable QP. 1567 * @xrcd - XRC domain 1568 * @qp_open_attr: Attributes identifying the QP to open. 1569 * 1570 * Returns a reference to a sharable QP. 1571 */ 1572 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 1573 struct ib_qp_open_attr *qp_open_attr); 1574 1575 /** 1576 * ib_close_qp - Release an external reference to a QP. 1577 * @qp: The QP handle to release 1578 * 1579 * The opened QP handle is released by the caller. The underlying 1580 * shared QP is not destroyed until all internal references are released. 1581 */ 1582 int ib_close_qp(struct ib_qp *qp); 1583 1584 /** 1585 * ib_post_send - Posts a list of work requests to the send queue of 1586 * the specified QP. 1587 * @qp: The QP to post the work request on. 1588 * @send_wr: A list of work requests to post on the send queue. 1589 * @bad_send_wr: On an immediate failure, this parameter will reference 1590 * the work request that failed to be posted on the QP. 1591 * 1592 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 1593 * error is returned, the QP state shall not be affected, 1594 * ib_post_send() will return an immediate error after queueing any 1595 * earlier work requests in the list. 1596 */ 1597 static inline int ib_post_send(struct ib_qp *qp, 1598 struct ib_send_wr *send_wr, 1599 struct ib_send_wr **bad_send_wr) 1600 { 1601 return qp->device->post_send(qp, send_wr, bad_send_wr); 1602 } 1603 1604 /** 1605 * ib_post_recv - Posts a list of work requests to the receive queue of 1606 * the specified QP. 1607 * @qp: The QP to post the work request on. 1608 * @recv_wr: A list of work requests to post on the receive queue. 1609 * @bad_recv_wr: On an immediate failure, this parameter will reference 1610 * the work request that failed to be posted on the QP. 1611 */ 1612 static inline int ib_post_recv(struct ib_qp *qp, 1613 struct ib_recv_wr *recv_wr, 1614 struct ib_recv_wr **bad_recv_wr) 1615 { 1616 return qp->device->post_recv(qp, recv_wr, bad_recv_wr); 1617 } 1618 1619 /** 1620 * ib_create_cq - Creates a CQ on the specified device. 1621 * @device: The device on which to create the CQ. 1622 * @comp_handler: A user-specified callback that is invoked when a 1623 * completion event occurs on the CQ. 1624 * @event_handler: A user-specified callback that is invoked when an 1625 * asynchronous event not associated with a completion occurs on the CQ. 1626 * @cq_context: Context associated with the CQ returned to the user via 1627 * the associated completion and event handlers. 1628 * @cqe: The minimum size of the CQ. 1629 * @comp_vector - Completion vector used to signal completion events. 1630 * Must be >= 0 and < context->num_comp_vectors. 1631 * 1632 * Users can examine the cq structure to determine the actual CQ size. 1633 */ 1634 struct ib_cq *ib_create_cq(struct ib_device *device, 1635 ib_comp_handler comp_handler, 1636 void (*event_handler)(struct ib_event *, void *), 1637 void *cq_context, int cqe, int comp_vector); 1638 1639 /** 1640 * ib_resize_cq - Modifies the capacity of the CQ. 1641 * @cq: The CQ to resize. 1642 * @cqe: The minimum size of the CQ. 1643 * 1644 * Users can examine the cq structure to determine the actual CQ size. 1645 */ 1646 int ib_resize_cq(struct ib_cq *cq, int cqe); 1647 1648 /** 1649 * ib_modify_cq - Modifies moderation params of the CQ 1650 * @cq: The CQ to modify. 1651 * @cq_count: number of CQEs that will trigger an event 1652 * @cq_period: max period of time in usec before triggering an event 1653 * 1654 */ 1655 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period); 1656 1657 /** 1658 * ib_destroy_cq - Destroys the specified CQ. 1659 * @cq: The CQ to destroy. 1660 */ 1661 int ib_destroy_cq(struct ib_cq *cq); 1662 1663 /** 1664 * ib_poll_cq - poll a CQ for completion(s) 1665 * @cq:the CQ being polled 1666 * @num_entries:maximum number of completions to return 1667 * @wc:array of at least @num_entries &struct ib_wc where completions 1668 * will be returned 1669 * 1670 * Poll a CQ for (possibly multiple) completions. If the return value 1671 * is < 0, an error occurred. If the return value is >= 0, it is the 1672 * number of completions returned. If the return value is 1673 * non-negative and < num_entries, then the CQ was emptied. 1674 */ 1675 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 1676 struct ib_wc *wc) 1677 { 1678 return cq->device->poll_cq(cq, num_entries, wc); 1679 } 1680 1681 /** 1682 * ib_peek_cq - Returns the number of unreaped completions currently 1683 * on the specified CQ. 1684 * @cq: The CQ to peek. 1685 * @wc_cnt: A minimum number of unreaped completions to check for. 1686 * 1687 * If the number of unreaped completions is greater than or equal to wc_cnt, 1688 * this function returns wc_cnt, otherwise, it returns the actual number of 1689 * unreaped completions. 1690 */ 1691 int ib_peek_cq(struct ib_cq *cq, int wc_cnt); 1692 1693 /** 1694 * ib_req_notify_cq - Request completion notification on a CQ. 1695 * @cq: The CQ to generate an event for. 1696 * @flags: 1697 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 1698 * to request an event on the next solicited event or next work 1699 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 1700 * may also be |ed in to request a hint about missed events, as 1701 * described below. 1702 * 1703 * Return Value: 1704 * < 0 means an error occurred while requesting notification 1705 * == 0 means notification was requested successfully, and if 1706 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 1707 * were missed and it is safe to wait for another event. In 1708 * this case is it guaranteed that any work completions added 1709 * to the CQ since the last CQ poll will trigger a completion 1710 * notification event. 1711 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 1712 * in. It means that the consumer must poll the CQ again to 1713 * make sure it is empty to avoid missing an event because of a 1714 * race between requesting notification and an entry being 1715 * added to the CQ. This return value means it is possible 1716 * (but not guaranteed) that a work completion has been added 1717 * to the CQ since the last poll without triggering a 1718 * completion notification event. 1719 */ 1720 static inline int ib_req_notify_cq(struct ib_cq *cq, 1721 enum ib_cq_notify_flags flags) 1722 { 1723 return cq->device->req_notify_cq(cq, flags); 1724 } 1725 1726 /** 1727 * ib_req_ncomp_notif - Request completion notification when there are 1728 * at least the specified number of unreaped completions on the CQ. 1729 * @cq: The CQ to generate an event for. 1730 * @wc_cnt: The number of unreaped completions that should be on the 1731 * CQ before an event is generated. 1732 */ 1733 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 1734 { 1735 return cq->device->req_ncomp_notif ? 1736 cq->device->req_ncomp_notif(cq, wc_cnt) : 1737 -ENOSYS; 1738 } 1739 1740 /** 1741 * ib_get_dma_mr - Returns a memory region for system memory that is 1742 * usable for DMA. 1743 * @pd: The protection domain associated with the memory region. 1744 * @mr_access_flags: Specifies the memory access rights. 1745 * 1746 * Note that the ib_dma_*() functions defined below must be used 1747 * to create/destroy addresses used with the Lkey or Rkey returned 1748 * by ib_get_dma_mr(). 1749 */ 1750 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags); 1751 1752 /** 1753 * ib_dma_mapping_error - check a DMA addr for error 1754 * @dev: The device for which the dma_addr was created 1755 * @dma_addr: The DMA address to check 1756 */ 1757 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 1758 { 1759 if (dev->dma_ops) 1760 return dev->dma_ops->mapping_error(dev, dma_addr); 1761 return dma_mapping_error(dev->dma_device, dma_addr); 1762 } 1763 1764 /** 1765 * ib_dma_map_single - Map a kernel virtual address to DMA address 1766 * @dev: The device for which the dma_addr is to be created 1767 * @cpu_addr: The kernel virtual address 1768 * @size: The size of the region in bytes 1769 * @direction: The direction of the DMA 1770 */ 1771 static inline u64 ib_dma_map_single(struct ib_device *dev, 1772 void *cpu_addr, size_t size, 1773 enum dma_data_direction direction) 1774 { 1775 if (dev->dma_ops) 1776 return dev->dma_ops->map_single(dev, cpu_addr, size, direction); 1777 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 1778 } 1779 1780 /** 1781 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 1782 * @dev: The device for which the DMA address was created 1783 * @addr: The DMA address 1784 * @size: The size of the region in bytes 1785 * @direction: The direction of the DMA 1786 */ 1787 static inline void ib_dma_unmap_single(struct ib_device *dev, 1788 u64 addr, size_t size, 1789 enum dma_data_direction direction) 1790 { 1791 if (dev->dma_ops) 1792 dev->dma_ops->unmap_single(dev, addr, size, direction); 1793 else 1794 dma_unmap_single(dev->dma_device, addr, size, direction); 1795 } 1796 1797 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev, 1798 void *cpu_addr, size_t size, 1799 enum dma_data_direction direction, 1800 struct dma_attrs *attrs) 1801 { 1802 return dma_map_single_attrs(dev->dma_device, cpu_addr, size, 1803 direction, attrs); 1804 } 1805 1806 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev, 1807 u64 addr, size_t size, 1808 enum dma_data_direction direction, 1809 struct dma_attrs *attrs) 1810 { 1811 return dma_unmap_single_attrs(dev->dma_device, addr, size, 1812 direction, attrs); 1813 } 1814 1815 /** 1816 * ib_dma_map_page - Map a physical page to DMA address 1817 * @dev: The device for which the dma_addr is to be created 1818 * @page: The page to be mapped 1819 * @offset: The offset within the page 1820 * @size: The size of the region in bytes 1821 * @direction: The direction of the DMA 1822 */ 1823 static inline u64 ib_dma_map_page(struct ib_device *dev, 1824 struct page *page, 1825 unsigned long offset, 1826 size_t size, 1827 enum dma_data_direction direction) 1828 { 1829 if (dev->dma_ops) 1830 return dev->dma_ops->map_page(dev, page, offset, size, direction); 1831 return dma_map_page(dev->dma_device, page, offset, size, direction); 1832 } 1833 1834 /** 1835 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 1836 * @dev: The device for which the DMA address was created 1837 * @addr: The DMA address 1838 * @size: The size of the region in bytes 1839 * @direction: The direction of the DMA 1840 */ 1841 static inline void ib_dma_unmap_page(struct ib_device *dev, 1842 u64 addr, size_t size, 1843 enum dma_data_direction direction) 1844 { 1845 if (dev->dma_ops) 1846 dev->dma_ops->unmap_page(dev, addr, size, direction); 1847 else 1848 dma_unmap_page(dev->dma_device, addr, size, direction); 1849 } 1850 1851 /** 1852 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 1853 * @dev: The device for which the DMA addresses are to be created 1854 * @sg: The array of scatter/gather entries 1855 * @nents: The number of scatter/gather entries 1856 * @direction: The direction of the DMA 1857 */ 1858 static inline int ib_dma_map_sg(struct ib_device *dev, 1859 struct scatterlist *sg, int nents, 1860 enum dma_data_direction direction) 1861 { 1862 if (dev->dma_ops) 1863 return dev->dma_ops->map_sg(dev, sg, nents, direction); 1864 return dma_map_sg(dev->dma_device, sg, nents, direction); 1865 } 1866 1867 /** 1868 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 1869 * @dev: The device for which the DMA addresses were created 1870 * @sg: The array of scatter/gather entries 1871 * @nents: The number of scatter/gather entries 1872 * @direction: The direction of the DMA 1873 */ 1874 static inline void ib_dma_unmap_sg(struct ib_device *dev, 1875 struct scatterlist *sg, int nents, 1876 enum dma_data_direction direction) 1877 { 1878 if (dev->dma_ops) 1879 dev->dma_ops->unmap_sg(dev, sg, nents, direction); 1880 else 1881 dma_unmap_sg(dev->dma_device, sg, nents, direction); 1882 } 1883 1884 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 1885 struct scatterlist *sg, int nents, 1886 enum dma_data_direction direction, 1887 struct dma_attrs *attrs) 1888 { 1889 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs); 1890 } 1891 1892 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 1893 struct scatterlist *sg, int nents, 1894 enum dma_data_direction direction, 1895 struct dma_attrs *attrs) 1896 { 1897 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs); 1898 } 1899 /** 1900 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry 1901 * @dev: The device for which the DMA addresses were created 1902 * @sg: The scatter/gather entry 1903 */ 1904 static inline u64 ib_sg_dma_address(struct ib_device *dev, 1905 struct scatterlist *sg) 1906 { 1907 if (dev->dma_ops) 1908 return dev->dma_ops->dma_address(dev, sg); 1909 return sg_dma_address(sg); 1910 } 1911 1912 /** 1913 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry 1914 * @dev: The device for which the DMA addresses were created 1915 * @sg: The scatter/gather entry 1916 */ 1917 static inline unsigned int ib_sg_dma_len(struct ib_device *dev, 1918 struct scatterlist *sg) 1919 { 1920 if (dev->dma_ops) 1921 return dev->dma_ops->dma_len(dev, sg); 1922 return sg_dma_len(sg); 1923 } 1924 1925 /** 1926 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 1927 * @dev: The device for which the DMA address was created 1928 * @addr: The DMA address 1929 * @size: The size of the region in bytes 1930 * @dir: The direction of the DMA 1931 */ 1932 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 1933 u64 addr, 1934 size_t size, 1935 enum dma_data_direction dir) 1936 { 1937 if (dev->dma_ops) 1938 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir); 1939 else 1940 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 1941 } 1942 1943 /** 1944 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 1945 * @dev: The device for which the DMA address was created 1946 * @addr: The DMA address 1947 * @size: The size of the region in bytes 1948 * @dir: The direction of the DMA 1949 */ 1950 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 1951 u64 addr, 1952 size_t size, 1953 enum dma_data_direction dir) 1954 { 1955 if (dev->dma_ops) 1956 dev->dma_ops->sync_single_for_device(dev, addr, size, dir); 1957 else 1958 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 1959 } 1960 1961 /** 1962 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 1963 * @dev: The device for which the DMA address is requested 1964 * @size: The size of the region to allocate in bytes 1965 * @dma_handle: A pointer for returning the DMA address of the region 1966 * @flag: memory allocator flags 1967 */ 1968 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 1969 size_t size, 1970 u64 *dma_handle, 1971 gfp_t flag) 1972 { 1973 if (dev->dma_ops) 1974 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag); 1975 else { 1976 dma_addr_t handle; 1977 void *ret; 1978 1979 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag); 1980 *dma_handle = handle; 1981 return ret; 1982 } 1983 } 1984 1985 /** 1986 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 1987 * @dev: The device for which the DMA addresses were allocated 1988 * @size: The size of the region 1989 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 1990 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 1991 */ 1992 static inline void ib_dma_free_coherent(struct ib_device *dev, 1993 size_t size, void *cpu_addr, 1994 u64 dma_handle) 1995 { 1996 if (dev->dma_ops) 1997 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle); 1998 else 1999 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 2000 } 2001 2002 /** 2003 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use 2004 * by an HCA. 2005 * @pd: The protection domain associated assigned to the registered region. 2006 * @phys_buf_array: Specifies a list of physical buffers to use in the 2007 * memory region. 2008 * @num_phys_buf: Specifies the size of the phys_buf_array. 2009 * @mr_access_flags: Specifies the memory access rights. 2010 * @iova_start: The offset of the region's starting I/O virtual address. 2011 */ 2012 struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd, 2013 struct ib_phys_buf *phys_buf_array, 2014 int num_phys_buf, 2015 int mr_access_flags, 2016 u64 *iova_start); 2017 2018 /** 2019 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region. 2020 * Conceptually, this call performs the functions deregister memory region 2021 * followed by register physical memory region. Where possible, 2022 * resources are reused instead of deallocated and reallocated. 2023 * @mr: The memory region to modify. 2024 * @mr_rereg_mask: A bit-mask used to indicate which of the following 2025 * properties of the memory region are being modified. 2026 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies 2027 * the new protection domain to associated with the memory region, 2028 * otherwise, this parameter is ignored. 2029 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this 2030 * field specifies a list of physical buffers to use in the new 2031 * translation, otherwise, this parameter is ignored. 2032 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this 2033 * field specifies the size of the phys_buf_array, otherwise, this 2034 * parameter is ignored. 2035 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this 2036 * field specifies the new memory access rights, otherwise, this 2037 * parameter is ignored. 2038 * @iova_start: The offset of the region's starting I/O virtual address. 2039 */ 2040 int ib_rereg_phys_mr(struct ib_mr *mr, 2041 int mr_rereg_mask, 2042 struct ib_pd *pd, 2043 struct ib_phys_buf *phys_buf_array, 2044 int num_phys_buf, 2045 int mr_access_flags, 2046 u64 *iova_start); 2047 2048 /** 2049 * ib_query_mr - Retrieves information about a specific memory region. 2050 * @mr: The memory region to retrieve information about. 2051 * @mr_attr: The attributes of the specified memory region. 2052 */ 2053 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr); 2054 2055 /** 2056 * ib_dereg_mr - Deregisters a memory region and removes it from the 2057 * HCA translation table. 2058 * @mr: The memory region to deregister. 2059 * 2060 * This function can fail, if the memory region has memory windows bound to it. 2061 */ 2062 int ib_dereg_mr(struct ib_mr *mr); 2063 2064 /** 2065 * ib_alloc_fast_reg_mr - Allocates memory region usable with the 2066 * IB_WR_FAST_REG_MR send work request. 2067 * @pd: The protection domain associated with the region. 2068 * @max_page_list_len: requested max physical buffer list length to be 2069 * used with fast register work requests for this MR. 2070 */ 2071 struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len); 2072 2073 /** 2074 * ib_alloc_fast_reg_page_list - Allocates a page list array 2075 * @device - ib device pointer. 2076 * @page_list_len - size of the page list array to be allocated. 2077 * 2078 * This allocates and returns a struct ib_fast_reg_page_list * and a 2079 * page_list array that is at least page_list_len in size. The actual 2080 * size is returned in max_page_list_len. The caller is responsible 2081 * for initializing the contents of the page_list array before posting 2082 * a send work request with the IB_WC_FAST_REG_MR opcode. 2083 * 2084 * The page_list array entries must be translated using one of the 2085 * ib_dma_*() functions just like the addresses passed to 2086 * ib_map_phys_fmr(). Once the ib_post_send() is issued, the struct 2087 * ib_fast_reg_page_list must not be modified by the caller until the 2088 * IB_WC_FAST_REG_MR work request completes. 2089 */ 2090 struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list( 2091 struct ib_device *device, int page_list_len); 2092 2093 /** 2094 * ib_free_fast_reg_page_list - Deallocates a previously allocated 2095 * page list array. 2096 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated. 2097 */ 2098 void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list); 2099 2100 /** 2101 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 2102 * R_Key and L_Key. 2103 * @mr - struct ib_mr pointer to be updated. 2104 * @newkey - new key to be used. 2105 */ 2106 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 2107 { 2108 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 2109 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 2110 } 2111 2112 /** 2113 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 2114 * for calculating a new rkey for type 2 memory windows. 2115 * @rkey - the rkey to increment. 2116 */ 2117 static inline u32 ib_inc_rkey(u32 rkey) 2118 { 2119 const u32 mask = 0x000000ff; 2120 return ((rkey + 1) & mask) | (rkey & ~mask); 2121 } 2122 2123 /** 2124 * ib_alloc_mw - Allocates a memory window. 2125 * @pd: The protection domain associated with the memory window. 2126 * @type: The type of the memory window (1 or 2). 2127 */ 2128 struct ib_mw *ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type); 2129 2130 /** 2131 * ib_bind_mw - Posts a work request to the send queue of the specified 2132 * QP, which binds the memory window to the given address range and 2133 * remote access attributes. 2134 * @qp: QP to post the bind work request on. 2135 * @mw: The memory window to bind. 2136 * @mw_bind: Specifies information about the memory window, including 2137 * its address range, remote access rights, and associated memory region. 2138 * 2139 * If there is no immediate error, the function will update the rkey member 2140 * of the mw parameter to its new value. The bind operation can still fail 2141 * asynchronously. 2142 */ 2143 static inline int ib_bind_mw(struct ib_qp *qp, 2144 struct ib_mw *mw, 2145 struct ib_mw_bind *mw_bind) 2146 { 2147 /* XXX reference counting in corresponding MR? */ 2148 return mw->device->bind_mw ? 2149 mw->device->bind_mw(qp, mw, mw_bind) : 2150 -ENOSYS; 2151 } 2152 2153 /** 2154 * ib_dealloc_mw - Deallocates a memory window. 2155 * @mw: The memory window to deallocate. 2156 */ 2157 int ib_dealloc_mw(struct ib_mw *mw); 2158 2159 /** 2160 * ib_alloc_fmr - Allocates a unmapped fast memory region. 2161 * @pd: The protection domain associated with the unmapped region. 2162 * @mr_access_flags: Specifies the memory access rights. 2163 * @fmr_attr: Attributes of the unmapped region. 2164 * 2165 * A fast memory region must be mapped before it can be used as part of 2166 * a work request. 2167 */ 2168 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 2169 int mr_access_flags, 2170 struct ib_fmr_attr *fmr_attr); 2171 2172 /** 2173 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 2174 * @fmr: The fast memory region to associate with the pages. 2175 * @page_list: An array of physical pages to map to the fast memory region. 2176 * @list_len: The number of pages in page_list. 2177 * @iova: The I/O virtual address to use with the mapped region. 2178 */ 2179 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 2180 u64 *page_list, int list_len, 2181 u64 iova) 2182 { 2183 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); 2184 } 2185 2186 /** 2187 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 2188 * @fmr_list: A linked list of fast memory regions to unmap. 2189 */ 2190 int ib_unmap_fmr(struct list_head *fmr_list); 2191 2192 /** 2193 * ib_dealloc_fmr - Deallocates a fast memory region. 2194 * @fmr: The fast memory region to deallocate. 2195 */ 2196 int ib_dealloc_fmr(struct ib_fmr *fmr); 2197 2198 /** 2199 * ib_attach_mcast - Attaches the specified QP to a multicast group. 2200 * @qp: QP to attach to the multicast group. The QP must be type 2201 * IB_QPT_UD. 2202 * @gid: Multicast group GID. 2203 * @lid: Multicast group LID in host byte order. 2204 * 2205 * In order to send and receive multicast packets, subnet 2206 * administration must have created the multicast group and configured 2207 * the fabric appropriately. The port associated with the specified 2208 * QP must also be a member of the multicast group. 2209 */ 2210 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2211 2212 /** 2213 * ib_detach_mcast - Detaches the specified QP from a multicast group. 2214 * @qp: QP to detach from the multicast group. 2215 * @gid: Multicast group GID. 2216 * @lid: Multicast group LID in host byte order. 2217 */ 2218 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2219 2220 /** 2221 * ib_alloc_xrcd - Allocates an XRC domain. 2222 * @device: The device on which to allocate the XRC domain. 2223 */ 2224 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device); 2225 2226 /** 2227 * ib_dealloc_xrcd - Deallocates an XRC domain. 2228 * @xrcd: The XRC domain to deallocate. 2229 */ 2230 int ib_dealloc_xrcd(struct ib_xrcd *xrcd); 2231 2232 #endif /* IB_VERBS_H */ 2233