1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #if !defined(IB_VERBS_H) 40 #define IB_VERBS_H 41 42 #include <linux/types.h> 43 #include <linux/device.h> 44 #include <linux/mm.h> 45 #include <linux/dma-mapping.h> 46 #include <linux/kref.h> 47 #include <linux/list.h> 48 #include <linux/rwsem.h> 49 #include <linux/scatterlist.h> 50 #include <linux/workqueue.h> 51 #include <linux/socket.h> 52 #include <linux/irq_poll.h> 53 #include <uapi/linux/if_ether.h> 54 #include <net/ipv6.h> 55 #include <net/ip.h> 56 #include <linux/string.h> 57 #include <linux/slab.h> 58 #include <linux/netdevice.h> 59 60 #include <linux/if_link.h> 61 #include <linux/atomic.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/uaccess.h> 64 #include <linux/cgroup_rdma.h> 65 #include <uapi/rdma/ib_user_verbs.h> 66 #include <rdma/restrack.h> 67 68 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN 69 70 extern struct workqueue_struct *ib_wq; 71 extern struct workqueue_struct *ib_comp_wq; 72 73 union ib_gid { 74 u8 raw[16]; 75 struct { 76 __be64 subnet_prefix; 77 __be64 interface_id; 78 } global; 79 }; 80 81 extern union ib_gid zgid; 82 83 enum ib_gid_type { 84 /* If link layer is Ethernet, this is RoCE V1 */ 85 IB_GID_TYPE_IB = 0, 86 IB_GID_TYPE_ROCE = 0, 87 IB_GID_TYPE_ROCE_UDP_ENCAP = 1, 88 IB_GID_TYPE_SIZE 89 }; 90 91 #define ROCE_V2_UDP_DPORT 4791 92 struct ib_gid_attr { 93 enum ib_gid_type gid_type; 94 struct net_device *ndev; 95 }; 96 97 enum rdma_node_type { 98 /* IB values map to NodeInfo:NodeType. */ 99 RDMA_NODE_IB_CA = 1, 100 RDMA_NODE_IB_SWITCH, 101 RDMA_NODE_IB_ROUTER, 102 RDMA_NODE_RNIC, 103 RDMA_NODE_USNIC, 104 RDMA_NODE_USNIC_UDP, 105 }; 106 107 enum { 108 /* set the local administered indication */ 109 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2, 110 }; 111 112 enum rdma_transport_type { 113 RDMA_TRANSPORT_IB, 114 RDMA_TRANSPORT_IWARP, 115 RDMA_TRANSPORT_USNIC, 116 RDMA_TRANSPORT_USNIC_UDP 117 }; 118 119 enum rdma_protocol_type { 120 RDMA_PROTOCOL_IB, 121 RDMA_PROTOCOL_IBOE, 122 RDMA_PROTOCOL_IWARP, 123 RDMA_PROTOCOL_USNIC_UDP 124 }; 125 126 __attribute_const__ enum rdma_transport_type 127 rdma_node_get_transport(enum rdma_node_type node_type); 128 129 enum rdma_network_type { 130 RDMA_NETWORK_IB, 131 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB, 132 RDMA_NETWORK_IPV4, 133 RDMA_NETWORK_IPV6 134 }; 135 136 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) 137 { 138 if (network_type == RDMA_NETWORK_IPV4 || 139 network_type == RDMA_NETWORK_IPV6) 140 return IB_GID_TYPE_ROCE_UDP_ENCAP; 141 142 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */ 143 return IB_GID_TYPE_IB; 144 } 145 146 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type, 147 union ib_gid *gid) 148 { 149 if (gid_type == IB_GID_TYPE_IB) 150 return RDMA_NETWORK_IB; 151 152 if (ipv6_addr_v4mapped((struct in6_addr *)gid)) 153 return RDMA_NETWORK_IPV4; 154 else 155 return RDMA_NETWORK_IPV6; 156 } 157 158 enum rdma_link_layer { 159 IB_LINK_LAYER_UNSPECIFIED, 160 IB_LINK_LAYER_INFINIBAND, 161 IB_LINK_LAYER_ETHERNET, 162 }; 163 164 enum ib_device_cap_flags { 165 IB_DEVICE_RESIZE_MAX_WR = (1 << 0), 166 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1), 167 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2), 168 IB_DEVICE_RAW_MULTI = (1 << 3), 169 IB_DEVICE_AUTO_PATH_MIG = (1 << 4), 170 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5), 171 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6), 172 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7), 173 IB_DEVICE_SHUTDOWN_PORT = (1 << 8), 174 /* Not in use, former INIT_TYPE = (1 << 9),*/ 175 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10), 176 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11), 177 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12), 178 IB_DEVICE_SRQ_RESIZE = (1 << 13), 179 IB_DEVICE_N_NOTIFY_CQ = (1 << 14), 180 181 /* 182 * This device supports a per-device lkey or stag that can be 183 * used without performing a memory registration for the local 184 * memory. Note that ULPs should never check this flag, but 185 * instead of use the local_dma_lkey flag in the ib_pd structure, 186 * which will always contain a usable lkey. 187 */ 188 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15), 189 /* Reserved, old SEND_W_INV = (1 << 16),*/ 190 IB_DEVICE_MEM_WINDOW = (1 << 17), 191 /* 192 * Devices should set IB_DEVICE_UD_IP_SUM if they support 193 * insertion of UDP and TCP checksum on outgoing UD IPoIB 194 * messages and can verify the validity of checksum for 195 * incoming messages. Setting this flag implies that the 196 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 197 */ 198 IB_DEVICE_UD_IP_CSUM = (1 << 18), 199 IB_DEVICE_UD_TSO = (1 << 19), 200 IB_DEVICE_XRC = (1 << 20), 201 202 /* 203 * This device supports the IB "base memory management extension", 204 * which includes support for fast registrations (IB_WR_REG_MR, 205 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should 206 * also be set by any iWarp device which must support FRs to comply 207 * to the iWarp verbs spec. iWarp devices also support the 208 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the 209 * stag. 210 */ 211 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21), 212 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22), 213 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23), 214 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24), 215 IB_DEVICE_RC_IP_CSUM = (1 << 25), 216 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */ 217 IB_DEVICE_RAW_IP_CSUM = (1 << 26), 218 /* 219 * Devices should set IB_DEVICE_CROSS_CHANNEL if they 220 * support execution of WQEs that involve synchronization 221 * of I/O operations with single completion queue managed 222 * by hardware. 223 */ 224 IB_DEVICE_CROSS_CHANNEL = (1 << 27), 225 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29), 226 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30), 227 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31), 228 IB_DEVICE_SG_GAPS_REG = (1ULL << 32), 229 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33), 230 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */ 231 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34), 232 IB_DEVICE_RDMA_NETDEV_OPA_VNIC = (1ULL << 35), 233 /* The device supports padding incoming writes to cacheline. */ 234 IB_DEVICE_PCI_WRITE_END_PADDING = (1ULL << 36), 235 }; 236 237 enum ib_signature_prot_cap { 238 IB_PROT_T10DIF_TYPE_1 = 1, 239 IB_PROT_T10DIF_TYPE_2 = 1 << 1, 240 IB_PROT_T10DIF_TYPE_3 = 1 << 2, 241 }; 242 243 enum ib_signature_guard_cap { 244 IB_GUARD_T10DIF_CRC = 1, 245 IB_GUARD_T10DIF_CSUM = 1 << 1, 246 }; 247 248 enum ib_atomic_cap { 249 IB_ATOMIC_NONE, 250 IB_ATOMIC_HCA, 251 IB_ATOMIC_GLOB 252 }; 253 254 enum ib_odp_general_cap_bits { 255 IB_ODP_SUPPORT = 1 << 0, 256 IB_ODP_SUPPORT_IMPLICIT = 1 << 1, 257 }; 258 259 enum ib_odp_transport_cap_bits { 260 IB_ODP_SUPPORT_SEND = 1 << 0, 261 IB_ODP_SUPPORT_RECV = 1 << 1, 262 IB_ODP_SUPPORT_WRITE = 1 << 2, 263 IB_ODP_SUPPORT_READ = 1 << 3, 264 IB_ODP_SUPPORT_ATOMIC = 1 << 4, 265 }; 266 267 struct ib_odp_caps { 268 uint64_t general_caps; 269 struct { 270 uint32_t rc_odp_caps; 271 uint32_t uc_odp_caps; 272 uint32_t ud_odp_caps; 273 } per_transport_caps; 274 }; 275 276 struct ib_rss_caps { 277 /* Corresponding bit will be set if qp type from 278 * 'enum ib_qp_type' is supported, e.g. 279 * supported_qpts |= 1 << IB_QPT_UD 280 */ 281 u32 supported_qpts; 282 u32 max_rwq_indirection_tables; 283 u32 max_rwq_indirection_table_size; 284 }; 285 286 enum ib_tm_cap_flags { 287 /* Support tag matching on RC transport */ 288 IB_TM_CAP_RC = 1 << 0, 289 }; 290 291 struct ib_tm_caps { 292 /* Max size of RNDV header */ 293 u32 max_rndv_hdr_size; 294 /* Max number of entries in tag matching list */ 295 u32 max_num_tags; 296 /* From enum ib_tm_cap_flags */ 297 u32 flags; 298 /* Max number of outstanding list operations */ 299 u32 max_ops; 300 /* Max number of SGE in tag matching entry */ 301 u32 max_sge; 302 }; 303 304 struct ib_cq_init_attr { 305 unsigned int cqe; 306 int comp_vector; 307 u32 flags; 308 }; 309 310 enum ib_cq_attr_mask { 311 IB_CQ_MODERATE = 1 << 0, 312 }; 313 314 struct ib_cq_caps { 315 u16 max_cq_moderation_count; 316 u16 max_cq_moderation_period; 317 }; 318 319 struct ib_device_attr { 320 u64 fw_ver; 321 __be64 sys_image_guid; 322 u64 max_mr_size; 323 u64 page_size_cap; 324 u32 vendor_id; 325 u32 vendor_part_id; 326 u32 hw_ver; 327 int max_qp; 328 int max_qp_wr; 329 u64 device_cap_flags; 330 int max_sge; 331 int max_sge_rd; 332 int max_cq; 333 int max_cqe; 334 int max_mr; 335 int max_pd; 336 int max_qp_rd_atom; 337 int max_ee_rd_atom; 338 int max_res_rd_atom; 339 int max_qp_init_rd_atom; 340 int max_ee_init_rd_atom; 341 enum ib_atomic_cap atomic_cap; 342 enum ib_atomic_cap masked_atomic_cap; 343 int max_ee; 344 int max_rdd; 345 int max_mw; 346 int max_raw_ipv6_qp; 347 int max_raw_ethy_qp; 348 int max_mcast_grp; 349 int max_mcast_qp_attach; 350 int max_total_mcast_qp_attach; 351 int max_ah; 352 int max_fmr; 353 int max_map_per_fmr; 354 int max_srq; 355 int max_srq_wr; 356 int max_srq_sge; 357 unsigned int max_fast_reg_page_list_len; 358 u16 max_pkeys; 359 u8 local_ca_ack_delay; 360 int sig_prot_cap; 361 int sig_guard_cap; 362 struct ib_odp_caps odp_caps; 363 uint64_t timestamp_mask; 364 uint64_t hca_core_clock; /* in KHZ */ 365 struct ib_rss_caps rss_caps; 366 u32 max_wq_type_rq; 367 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */ 368 struct ib_tm_caps tm_caps; 369 struct ib_cq_caps cq_caps; 370 }; 371 372 enum ib_mtu { 373 IB_MTU_256 = 1, 374 IB_MTU_512 = 2, 375 IB_MTU_1024 = 3, 376 IB_MTU_2048 = 4, 377 IB_MTU_4096 = 5 378 }; 379 380 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 381 { 382 switch (mtu) { 383 case IB_MTU_256: return 256; 384 case IB_MTU_512: return 512; 385 case IB_MTU_1024: return 1024; 386 case IB_MTU_2048: return 2048; 387 case IB_MTU_4096: return 4096; 388 default: return -1; 389 } 390 } 391 392 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu) 393 { 394 if (mtu >= 4096) 395 return IB_MTU_4096; 396 else if (mtu >= 2048) 397 return IB_MTU_2048; 398 else if (mtu >= 1024) 399 return IB_MTU_1024; 400 else if (mtu >= 512) 401 return IB_MTU_512; 402 else 403 return IB_MTU_256; 404 } 405 406 enum ib_port_state { 407 IB_PORT_NOP = 0, 408 IB_PORT_DOWN = 1, 409 IB_PORT_INIT = 2, 410 IB_PORT_ARMED = 3, 411 IB_PORT_ACTIVE = 4, 412 IB_PORT_ACTIVE_DEFER = 5 413 }; 414 415 enum ib_port_cap_flags { 416 IB_PORT_SM = 1 << 1, 417 IB_PORT_NOTICE_SUP = 1 << 2, 418 IB_PORT_TRAP_SUP = 1 << 3, 419 IB_PORT_OPT_IPD_SUP = 1 << 4, 420 IB_PORT_AUTO_MIGR_SUP = 1 << 5, 421 IB_PORT_SL_MAP_SUP = 1 << 6, 422 IB_PORT_MKEY_NVRAM = 1 << 7, 423 IB_PORT_PKEY_NVRAM = 1 << 8, 424 IB_PORT_LED_INFO_SUP = 1 << 9, 425 IB_PORT_SM_DISABLED = 1 << 10, 426 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11, 427 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12, 428 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14, 429 IB_PORT_CM_SUP = 1 << 16, 430 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17, 431 IB_PORT_REINIT_SUP = 1 << 18, 432 IB_PORT_DEVICE_MGMT_SUP = 1 << 19, 433 IB_PORT_VENDOR_CLASS_SUP = 1 << 20, 434 IB_PORT_DR_NOTICE_SUP = 1 << 21, 435 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22, 436 IB_PORT_BOOT_MGMT_SUP = 1 << 23, 437 IB_PORT_LINK_LATENCY_SUP = 1 << 24, 438 IB_PORT_CLIENT_REG_SUP = 1 << 25, 439 IB_PORT_IP_BASED_GIDS = 1 << 26, 440 }; 441 442 enum ib_port_width { 443 IB_WIDTH_1X = 1, 444 IB_WIDTH_4X = 2, 445 IB_WIDTH_8X = 4, 446 IB_WIDTH_12X = 8 447 }; 448 449 static inline int ib_width_enum_to_int(enum ib_port_width width) 450 { 451 switch (width) { 452 case IB_WIDTH_1X: return 1; 453 case IB_WIDTH_4X: return 4; 454 case IB_WIDTH_8X: return 8; 455 case IB_WIDTH_12X: return 12; 456 default: return -1; 457 } 458 } 459 460 enum ib_port_speed { 461 IB_SPEED_SDR = 1, 462 IB_SPEED_DDR = 2, 463 IB_SPEED_QDR = 4, 464 IB_SPEED_FDR10 = 8, 465 IB_SPEED_FDR = 16, 466 IB_SPEED_EDR = 32, 467 IB_SPEED_HDR = 64 468 }; 469 470 /** 471 * struct rdma_hw_stats 472 * @timestamp - Used by the core code to track when the last update was 473 * @lifespan - Used by the core code to determine how old the counters 474 * should be before being updated again. Stored in jiffies, defaults 475 * to 10 milliseconds, drivers can override the default be specifying 476 * their own value during their allocation routine. 477 * @name - Array of pointers to static names used for the counters in 478 * directory. 479 * @num_counters - How many hardware counters there are. If name is 480 * shorter than this number, a kernel oops will result. Driver authors 481 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters) 482 * in their code to prevent this. 483 * @value - Array of u64 counters that are accessed by the sysfs code and 484 * filled in by the drivers get_stats routine 485 */ 486 struct rdma_hw_stats { 487 unsigned long timestamp; 488 unsigned long lifespan; 489 const char * const *names; 490 int num_counters; 491 u64 value[]; 492 }; 493 494 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10 495 /** 496 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct 497 * for drivers. 498 * @names - Array of static const char * 499 * @num_counters - How many elements in array 500 * @lifespan - How many milliseconds between updates 501 */ 502 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 503 const char * const *names, int num_counters, 504 unsigned long lifespan) 505 { 506 struct rdma_hw_stats *stats; 507 508 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64), 509 GFP_KERNEL); 510 if (!stats) 511 return NULL; 512 stats->names = names; 513 stats->num_counters = num_counters; 514 stats->lifespan = msecs_to_jiffies(lifespan); 515 516 return stats; 517 } 518 519 520 /* Define bits for the various functionality this port needs to be supported by 521 * the core. 522 */ 523 /* Management 0x00000FFF */ 524 #define RDMA_CORE_CAP_IB_MAD 0x00000001 525 #define RDMA_CORE_CAP_IB_SMI 0x00000002 526 #define RDMA_CORE_CAP_IB_CM 0x00000004 527 #define RDMA_CORE_CAP_IW_CM 0x00000008 528 #define RDMA_CORE_CAP_IB_SA 0x00000010 529 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 530 531 /* Address format 0x000FF000 */ 532 #define RDMA_CORE_CAP_AF_IB 0x00001000 533 #define RDMA_CORE_CAP_ETH_AH 0x00002000 534 #define RDMA_CORE_CAP_OPA_AH 0x00004000 535 536 /* Protocol 0xFFF00000 */ 537 #define RDMA_CORE_CAP_PROT_IB 0x00100000 538 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 539 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 540 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 541 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000 542 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000 543 544 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 545 | RDMA_CORE_CAP_IB_MAD \ 546 | RDMA_CORE_CAP_IB_SMI \ 547 | RDMA_CORE_CAP_IB_CM \ 548 | RDMA_CORE_CAP_IB_SA \ 549 | RDMA_CORE_CAP_AF_IB) 550 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 551 | RDMA_CORE_CAP_IB_MAD \ 552 | RDMA_CORE_CAP_IB_CM \ 553 | RDMA_CORE_CAP_AF_IB \ 554 | RDMA_CORE_CAP_ETH_AH) 555 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ 556 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ 557 | RDMA_CORE_CAP_IB_MAD \ 558 | RDMA_CORE_CAP_IB_CM \ 559 | RDMA_CORE_CAP_AF_IB \ 560 | RDMA_CORE_CAP_ETH_AH) 561 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 562 | RDMA_CORE_CAP_IW_CM) 563 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 564 | RDMA_CORE_CAP_OPA_MAD) 565 566 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET) 567 568 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC) 569 570 struct ib_port_attr { 571 u64 subnet_prefix; 572 enum ib_port_state state; 573 enum ib_mtu max_mtu; 574 enum ib_mtu active_mtu; 575 int gid_tbl_len; 576 u32 port_cap_flags; 577 u32 max_msg_sz; 578 u32 bad_pkey_cntr; 579 u32 qkey_viol_cntr; 580 u16 pkey_tbl_len; 581 u32 sm_lid; 582 u32 lid; 583 u8 lmc; 584 u8 max_vl_num; 585 u8 sm_sl; 586 u8 subnet_timeout; 587 u8 init_type_reply; 588 u8 active_width; 589 u8 active_speed; 590 u8 phys_state; 591 bool grh_required; 592 }; 593 594 enum ib_device_modify_flags { 595 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 596 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 597 }; 598 599 #define IB_DEVICE_NODE_DESC_MAX 64 600 601 struct ib_device_modify { 602 u64 sys_image_guid; 603 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 604 }; 605 606 enum ib_port_modify_flags { 607 IB_PORT_SHUTDOWN = 1, 608 IB_PORT_INIT_TYPE = (1<<2), 609 IB_PORT_RESET_QKEY_CNTR = (1<<3), 610 IB_PORT_OPA_MASK_CHG = (1<<4) 611 }; 612 613 struct ib_port_modify { 614 u32 set_port_cap_mask; 615 u32 clr_port_cap_mask; 616 u8 init_type; 617 }; 618 619 enum ib_event_type { 620 IB_EVENT_CQ_ERR, 621 IB_EVENT_QP_FATAL, 622 IB_EVENT_QP_REQ_ERR, 623 IB_EVENT_QP_ACCESS_ERR, 624 IB_EVENT_COMM_EST, 625 IB_EVENT_SQ_DRAINED, 626 IB_EVENT_PATH_MIG, 627 IB_EVENT_PATH_MIG_ERR, 628 IB_EVENT_DEVICE_FATAL, 629 IB_EVENT_PORT_ACTIVE, 630 IB_EVENT_PORT_ERR, 631 IB_EVENT_LID_CHANGE, 632 IB_EVENT_PKEY_CHANGE, 633 IB_EVENT_SM_CHANGE, 634 IB_EVENT_SRQ_ERR, 635 IB_EVENT_SRQ_LIMIT_REACHED, 636 IB_EVENT_QP_LAST_WQE_REACHED, 637 IB_EVENT_CLIENT_REREGISTER, 638 IB_EVENT_GID_CHANGE, 639 IB_EVENT_WQ_FATAL, 640 }; 641 642 const char *__attribute_const__ ib_event_msg(enum ib_event_type event); 643 644 struct ib_event { 645 struct ib_device *device; 646 union { 647 struct ib_cq *cq; 648 struct ib_qp *qp; 649 struct ib_srq *srq; 650 struct ib_wq *wq; 651 u8 port_num; 652 } element; 653 enum ib_event_type event; 654 }; 655 656 struct ib_event_handler { 657 struct ib_device *device; 658 void (*handler)(struct ib_event_handler *, struct ib_event *); 659 struct list_head list; 660 }; 661 662 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 663 do { \ 664 (_ptr)->device = _device; \ 665 (_ptr)->handler = _handler; \ 666 INIT_LIST_HEAD(&(_ptr)->list); \ 667 } while (0) 668 669 struct ib_global_route { 670 union ib_gid dgid; 671 u32 flow_label; 672 u8 sgid_index; 673 u8 hop_limit; 674 u8 traffic_class; 675 }; 676 677 struct ib_grh { 678 __be32 version_tclass_flow; 679 __be16 paylen; 680 u8 next_hdr; 681 u8 hop_limit; 682 union ib_gid sgid; 683 union ib_gid dgid; 684 }; 685 686 union rdma_network_hdr { 687 struct ib_grh ibgrh; 688 struct { 689 /* The IB spec states that if it's IPv4, the header 690 * is located in the last 20 bytes of the header. 691 */ 692 u8 reserved[20]; 693 struct iphdr roce4grh; 694 }; 695 }; 696 697 #define IB_QPN_MASK 0xFFFFFF 698 699 enum { 700 IB_MULTICAST_QPN = 0xffffff 701 }; 702 703 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 704 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000) 705 706 enum ib_ah_flags { 707 IB_AH_GRH = 1 708 }; 709 710 enum ib_rate { 711 IB_RATE_PORT_CURRENT = 0, 712 IB_RATE_2_5_GBPS = 2, 713 IB_RATE_5_GBPS = 5, 714 IB_RATE_10_GBPS = 3, 715 IB_RATE_20_GBPS = 6, 716 IB_RATE_30_GBPS = 4, 717 IB_RATE_40_GBPS = 7, 718 IB_RATE_60_GBPS = 8, 719 IB_RATE_80_GBPS = 9, 720 IB_RATE_120_GBPS = 10, 721 IB_RATE_14_GBPS = 11, 722 IB_RATE_56_GBPS = 12, 723 IB_RATE_112_GBPS = 13, 724 IB_RATE_168_GBPS = 14, 725 IB_RATE_25_GBPS = 15, 726 IB_RATE_100_GBPS = 16, 727 IB_RATE_200_GBPS = 17, 728 IB_RATE_300_GBPS = 18 729 }; 730 731 /** 732 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 733 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 734 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 735 * @rate: rate to convert. 736 */ 737 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 738 739 /** 740 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 741 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 742 * @rate: rate to convert. 743 */ 744 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 745 746 747 /** 748 * enum ib_mr_type - memory region type 749 * @IB_MR_TYPE_MEM_REG: memory region that is used for 750 * normal registration 751 * @IB_MR_TYPE_SIGNATURE: memory region that is used for 752 * signature operations (data-integrity 753 * capable regions) 754 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to 755 * register any arbitrary sg lists (without 756 * the normal mr constraints - see 757 * ib_map_mr_sg) 758 */ 759 enum ib_mr_type { 760 IB_MR_TYPE_MEM_REG, 761 IB_MR_TYPE_SIGNATURE, 762 IB_MR_TYPE_SG_GAPS, 763 }; 764 765 /** 766 * Signature types 767 * IB_SIG_TYPE_NONE: Unprotected. 768 * IB_SIG_TYPE_T10_DIF: Type T10-DIF 769 */ 770 enum ib_signature_type { 771 IB_SIG_TYPE_NONE, 772 IB_SIG_TYPE_T10_DIF, 773 }; 774 775 /** 776 * Signature T10-DIF block-guard types 777 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules. 778 * IB_T10DIF_CSUM: Corresponds to IP checksum rules. 779 */ 780 enum ib_t10_dif_bg_type { 781 IB_T10DIF_CRC, 782 IB_T10DIF_CSUM 783 }; 784 785 /** 786 * struct ib_t10_dif_domain - Parameters specific for T10-DIF 787 * domain. 788 * @bg_type: T10-DIF block guard type (CRC|CSUM) 789 * @pi_interval: protection information interval. 790 * @bg: seed of guard computation. 791 * @app_tag: application tag of guard block 792 * @ref_tag: initial guard block reference tag. 793 * @ref_remap: Indicate wethear the reftag increments each block 794 * @app_escape: Indicate to skip block check if apptag=0xffff 795 * @ref_escape: Indicate to skip block check if reftag=0xffffffff 796 * @apptag_check_mask: check bitmask of application tag. 797 */ 798 struct ib_t10_dif_domain { 799 enum ib_t10_dif_bg_type bg_type; 800 u16 pi_interval; 801 u16 bg; 802 u16 app_tag; 803 u32 ref_tag; 804 bool ref_remap; 805 bool app_escape; 806 bool ref_escape; 807 u16 apptag_check_mask; 808 }; 809 810 /** 811 * struct ib_sig_domain - Parameters for signature domain 812 * @sig_type: specific signauture type 813 * @sig: union of all signature domain attributes that may 814 * be used to set domain layout. 815 */ 816 struct ib_sig_domain { 817 enum ib_signature_type sig_type; 818 union { 819 struct ib_t10_dif_domain dif; 820 } sig; 821 }; 822 823 /** 824 * struct ib_sig_attrs - Parameters for signature handover operation 825 * @check_mask: bitmask for signature byte check (8 bytes) 826 * @mem: memory domain layout desciptor. 827 * @wire: wire domain layout desciptor. 828 */ 829 struct ib_sig_attrs { 830 u8 check_mask; 831 struct ib_sig_domain mem; 832 struct ib_sig_domain wire; 833 }; 834 835 enum ib_sig_err_type { 836 IB_SIG_BAD_GUARD, 837 IB_SIG_BAD_REFTAG, 838 IB_SIG_BAD_APPTAG, 839 }; 840 841 /** 842 * struct ib_sig_err - signature error descriptor 843 */ 844 struct ib_sig_err { 845 enum ib_sig_err_type err_type; 846 u32 expected; 847 u32 actual; 848 u64 sig_err_offset; 849 u32 key; 850 }; 851 852 enum ib_mr_status_check { 853 IB_MR_CHECK_SIG_STATUS = 1, 854 }; 855 856 /** 857 * struct ib_mr_status - Memory region status container 858 * 859 * @fail_status: Bitmask of MR checks status. For each 860 * failed check a corresponding status bit is set. 861 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 862 * failure. 863 */ 864 struct ib_mr_status { 865 u32 fail_status; 866 struct ib_sig_err sig_err; 867 }; 868 869 /** 870 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 871 * enum. 872 * @mult: multiple to convert. 873 */ 874 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 875 876 enum rdma_ah_attr_type { 877 RDMA_AH_ATTR_TYPE_UNDEFINED, 878 RDMA_AH_ATTR_TYPE_IB, 879 RDMA_AH_ATTR_TYPE_ROCE, 880 RDMA_AH_ATTR_TYPE_OPA, 881 }; 882 883 struct ib_ah_attr { 884 u16 dlid; 885 u8 src_path_bits; 886 }; 887 888 struct roce_ah_attr { 889 u8 dmac[ETH_ALEN]; 890 }; 891 892 struct opa_ah_attr { 893 u32 dlid; 894 u8 src_path_bits; 895 bool make_grd; 896 }; 897 898 struct rdma_ah_attr { 899 struct ib_global_route grh; 900 u8 sl; 901 u8 static_rate; 902 u8 port_num; 903 u8 ah_flags; 904 enum rdma_ah_attr_type type; 905 union { 906 struct ib_ah_attr ib; 907 struct roce_ah_attr roce; 908 struct opa_ah_attr opa; 909 }; 910 }; 911 912 enum ib_wc_status { 913 IB_WC_SUCCESS, 914 IB_WC_LOC_LEN_ERR, 915 IB_WC_LOC_QP_OP_ERR, 916 IB_WC_LOC_EEC_OP_ERR, 917 IB_WC_LOC_PROT_ERR, 918 IB_WC_WR_FLUSH_ERR, 919 IB_WC_MW_BIND_ERR, 920 IB_WC_BAD_RESP_ERR, 921 IB_WC_LOC_ACCESS_ERR, 922 IB_WC_REM_INV_REQ_ERR, 923 IB_WC_REM_ACCESS_ERR, 924 IB_WC_REM_OP_ERR, 925 IB_WC_RETRY_EXC_ERR, 926 IB_WC_RNR_RETRY_EXC_ERR, 927 IB_WC_LOC_RDD_VIOL_ERR, 928 IB_WC_REM_INV_RD_REQ_ERR, 929 IB_WC_REM_ABORT_ERR, 930 IB_WC_INV_EECN_ERR, 931 IB_WC_INV_EEC_STATE_ERR, 932 IB_WC_FATAL_ERR, 933 IB_WC_RESP_TIMEOUT_ERR, 934 IB_WC_GENERAL_ERR 935 }; 936 937 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); 938 939 enum ib_wc_opcode { 940 IB_WC_SEND, 941 IB_WC_RDMA_WRITE, 942 IB_WC_RDMA_READ, 943 IB_WC_COMP_SWAP, 944 IB_WC_FETCH_ADD, 945 IB_WC_LSO, 946 IB_WC_LOCAL_INV, 947 IB_WC_REG_MR, 948 IB_WC_MASKED_COMP_SWAP, 949 IB_WC_MASKED_FETCH_ADD, 950 /* 951 * Set value of IB_WC_RECV so consumers can test if a completion is a 952 * receive by testing (opcode & IB_WC_RECV). 953 */ 954 IB_WC_RECV = 1 << 7, 955 IB_WC_RECV_RDMA_WITH_IMM 956 }; 957 958 enum ib_wc_flags { 959 IB_WC_GRH = 1, 960 IB_WC_WITH_IMM = (1<<1), 961 IB_WC_WITH_INVALIDATE = (1<<2), 962 IB_WC_IP_CSUM_OK = (1<<3), 963 IB_WC_WITH_SMAC = (1<<4), 964 IB_WC_WITH_VLAN = (1<<5), 965 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), 966 }; 967 968 struct ib_wc { 969 union { 970 u64 wr_id; 971 struct ib_cqe *wr_cqe; 972 }; 973 enum ib_wc_status status; 974 enum ib_wc_opcode opcode; 975 u32 vendor_err; 976 u32 byte_len; 977 struct ib_qp *qp; 978 union { 979 __be32 imm_data; 980 u32 invalidate_rkey; 981 } ex; 982 u32 src_qp; 983 u32 slid; 984 int wc_flags; 985 u16 pkey_index; 986 u8 sl; 987 u8 dlid_path_bits; 988 u8 port_num; /* valid only for DR SMPs on switches */ 989 u8 smac[ETH_ALEN]; 990 u16 vlan_id; 991 u8 network_hdr_type; 992 }; 993 994 enum ib_cq_notify_flags { 995 IB_CQ_SOLICITED = 1 << 0, 996 IB_CQ_NEXT_COMP = 1 << 1, 997 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 998 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 999 }; 1000 1001 enum ib_srq_type { 1002 IB_SRQT_BASIC, 1003 IB_SRQT_XRC, 1004 IB_SRQT_TM, 1005 }; 1006 1007 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type) 1008 { 1009 return srq_type == IB_SRQT_XRC || 1010 srq_type == IB_SRQT_TM; 1011 } 1012 1013 enum ib_srq_attr_mask { 1014 IB_SRQ_MAX_WR = 1 << 0, 1015 IB_SRQ_LIMIT = 1 << 1, 1016 }; 1017 1018 struct ib_srq_attr { 1019 u32 max_wr; 1020 u32 max_sge; 1021 u32 srq_limit; 1022 }; 1023 1024 struct ib_srq_init_attr { 1025 void (*event_handler)(struct ib_event *, void *); 1026 void *srq_context; 1027 struct ib_srq_attr attr; 1028 enum ib_srq_type srq_type; 1029 1030 struct { 1031 struct ib_cq *cq; 1032 union { 1033 struct { 1034 struct ib_xrcd *xrcd; 1035 } xrc; 1036 1037 struct { 1038 u32 max_num_tags; 1039 } tag_matching; 1040 }; 1041 } ext; 1042 }; 1043 1044 struct ib_qp_cap { 1045 u32 max_send_wr; 1046 u32 max_recv_wr; 1047 u32 max_send_sge; 1048 u32 max_recv_sge; 1049 u32 max_inline_data; 1050 1051 /* 1052 * Maximum number of rdma_rw_ctx structures in flight at a time. 1053 * ib_create_qp() will calculate the right amount of neededed WRs 1054 * and MRs based on this. 1055 */ 1056 u32 max_rdma_ctxs; 1057 }; 1058 1059 enum ib_sig_type { 1060 IB_SIGNAL_ALL_WR, 1061 IB_SIGNAL_REQ_WR 1062 }; 1063 1064 enum ib_qp_type { 1065 /* 1066 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 1067 * here (and in that order) since the MAD layer uses them as 1068 * indices into a 2-entry table. 1069 */ 1070 IB_QPT_SMI, 1071 IB_QPT_GSI, 1072 1073 IB_QPT_RC, 1074 IB_QPT_UC, 1075 IB_QPT_UD, 1076 IB_QPT_RAW_IPV6, 1077 IB_QPT_RAW_ETHERTYPE, 1078 IB_QPT_RAW_PACKET = 8, 1079 IB_QPT_XRC_INI = 9, 1080 IB_QPT_XRC_TGT, 1081 IB_QPT_MAX, 1082 IB_QPT_DRIVER = 0xFF, 1083 /* Reserve a range for qp types internal to the low level driver. 1084 * These qp types will not be visible at the IB core layer, so the 1085 * IB_QPT_MAX usages should not be affected in the core layer 1086 */ 1087 IB_QPT_RESERVED1 = 0x1000, 1088 IB_QPT_RESERVED2, 1089 IB_QPT_RESERVED3, 1090 IB_QPT_RESERVED4, 1091 IB_QPT_RESERVED5, 1092 IB_QPT_RESERVED6, 1093 IB_QPT_RESERVED7, 1094 IB_QPT_RESERVED8, 1095 IB_QPT_RESERVED9, 1096 IB_QPT_RESERVED10, 1097 }; 1098 1099 enum ib_qp_create_flags { 1100 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 1101 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1, 1102 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 1103 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 1104 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 1105 IB_QP_CREATE_NETIF_QP = 1 << 5, 1106 IB_QP_CREATE_SIGNATURE_EN = 1 << 6, 1107 /* FREE = 1 << 7, */ 1108 IB_QP_CREATE_SCATTER_FCS = 1 << 8, 1109 IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9, 1110 IB_QP_CREATE_SOURCE_QPN = 1 << 10, 1111 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1 << 11, 1112 /* reserve bits 26-31 for low level drivers' internal use */ 1113 IB_QP_CREATE_RESERVED_START = 1 << 26, 1114 IB_QP_CREATE_RESERVED_END = 1 << 31, 1115 }; 1116 1117 /* 1118 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 1119 * callback to destroy the passed in QP. 1120 */ 1121 1122 struct ib_qp_init_attr { 1123 void (*event_handler)(struct ib_event *, void *); 1124 void *qp_context; 1125 struct ib_cq *send_cq; 1126 struct ib_cq *recv_cq; 1127 struct ib_srq *srq; 1128 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1129 struct ib_qp_cap cap; 1130 enum ib_sig_type sq_sig_type; 1131 enum ib_qp_type qp_type; 1132 enum ib_qp_create_flags create_flags; 1133 1134 /* 1135 * Only needed for special QP types, or when using the RW API. 1136 */ 1137 u8 port_num; 1138 struct ib_rwq_ind_table *rwq_ind_tbl; 1139 u32 source_qpn; 1140 }; 1141 1142 struct ib_qp_open_attr { 1143 void (*event_handler)(struct ib_event *, void *); 1144 void *qp_context; 1145 u32 qp_num; 1146 enum ib_qp_type qp_type; 1147 }; 1148 1149 enum ib_rnr_timeout { 1150 IB_RNR_TIMER_655_36 = 0, 1151 IB_RNR_TIMER_000_01 = 1, 1152 IB_RNR_TIMER_000_02 = 2, 1153 IB_RNR_TIMER_000_03 = 3, 1154 IB_RNR_TIMER_000_04 = 4, 1155 IB_RNR_TIMER_000_06 = 5, 1156 IB_RNR_TIMER_000_08 = 6, 1157 IB_RNR_TIMER_000_12 = 7, 1158 IB_RNR_TIMER_000_16 = 8, 1159 IB_RNR_TIMER_000_24 = 9, 1160 IB_RNR_TIMER_000_32 = 10, 1161 IB_RNR_TIMER_000_48 = 11, 1162 IB_RNR_TIMER_000_64 = 12, 1163 IB_RNR_TIMER_000_96 = 13, 1164 IB_RNR_TIMER_001_28 = 14, 1165 IB_RNR_TIMER_001_92 = 15, 1166 IB_RNR_TIMER_002_56 = 16, 1167 IB_RNR_TIMER_003_84 = 17, 1168 IB_RNR_TIMER_005_12 = 18, 1169 IB_RNR_TIMER_007_68 = 19, 1170 IB_RNR_TIMER_010_24 = 20, 1171 IB_RNR_TIMER_015_36 = 21, 1172 IB_RNR_TIMER_020_48 = 22, 1173 IB_RNR_TIMER_030_72 = 23, 1174 IB_RNR_TIMER_040_96 = 24, 1175 IB_RNR_TIMER_061_44 = 25, 1176 IB_RNR_TIMER_081_92 = 26, 1177 IB_RNR_TIMER_122_88 = 27, 1178 IB_RNR_TIMER_163_84 = 28, 1179 IB_RNR_TIMER_245_76 = 29, 1180 IB_RNR_TIMER_327_68 = 30, 1181 IB_RNR_TIMER_491_52 = 31 1182 }; 1183 1184 enum ib_qp_attr_mask { 1185 IB_QP_STATE = 1, 1186 IB_QP_CUR_STATE = (1<<1), 1187 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 1188 IB_QP_ACCESS_FLAGS = (1<<3), 1189 IB_QP_PKEY_INDEX = (1<<4), 1190 IB_QP_PORT = (1<<5), 1191 IB_QP_QKEY = (1<<6), 1192 IB_QP_AV = (1<<7), 1193 IB_QP_PATH_MTU = (1<<8), 1194 IB_QP_TIMEOUT = (1<<9), 1195 IB_QP_RETRY_CNT = (1<<10), 1196 IB_QP_RNR_RETRY = (1<<11), 1197 IB_QP_RQ_PSN = (1<<12), 1198 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 1199 IB_QP_ALT_PATH = (1<<14), 1200 IB_QP_MIN_RNR_TIMER = (1<<15), 1201 IB_QP_SQ_PSN = (1<<16), 1202 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 1203 IB_QP_PATH_MIG_STATE = (1<<18), 1204 IB_QP_CAP = (1<<19), 1205 IB_QP_DEST_QPN = (1<<20), 1206 IB_QP_RESERVED1 = (1<<21), 1207 IB_QP_RESERVED2 = (1<<22), 1208 IB_QP_RESERVED3 = (1<<23), 1209 IB_QP_RESERVED4 = (1<<24), 1210 IB_QP_RATE_LIMIT = (1<<25), 1211 }; 1212 1213 enum ib_qp_state { 1214 IB_QPS_RESET, 1215 IB_QPS_INIT, 1216 IB_QPS_RTR, 1217 IB_QPS_RTS, 1218 IB_QPS_SQD, 1219 IB_QPS_SQE, 1220 IB_QPS_ERR 1221 }; 1222 1223 enum ib_mig_state { 1224 IB_MIG_MIGRATED, 1225 IB_MIG_REARM, 1226 IB_MIG_ARMED 1227 }; 1228 1229 enum ib_mw_type { 1230 IB_MW_TYPE_1 = 1, 1231 IB_MW_TYPE_2 = 2 1232 }; 1233 1234 struct ib_qp_attr { 1235 enum ib_qp_state qp_state; 1236 enum ib_qp_state cur_qp_state; 1237 enum ib_mtu path_mtu; 1238 enum ib_mig_state path_mig_state; 1239 u32 qkey; 1240 u32 rq_psn; 1241 u32 sq_psn; 1242 u32 dest_qp_num; 1243 int qp_access_flags; 1244 struct ib_qp_cap cap; 1245 struct rdma_ah_attr ah_attr; 1246 struct rdma_ah_attr alt_ah_attr; 1247 u16 pkey_index; 1248 u16 alt_pkey_index; 1249 u8 en_sqd_async_notify; 1250 u8 sq_draining; 1251 u8 max_rd_atomic; 1252 u8 max_dest_rd_atomic; 1253 u8 min_rnr_timer; 1254 u8 port_num; 1255 u8 timeout; 1256 u8 retry_cnt; 1257 u8 rnr_retry; 1258 u8 alt_port_num; 1259 u8 alt_timeout; 1260 u32 rate_limit; 1261 }; 1262 1263 enum ib_wr_opcode { 1264 IB_WR_RDMA_WRITE, 1265 IB_WR_RDMA_WRITE_WITH_IMM, 1266 IB_WR_SEND, 1267 IB_WR_SEND_WITH_IMM, 1268 IB_WR_RDMA_READ, 1269 IB_WR_ATOMIC_CMP_AND_SWP, 1270 IB_WR_ATOMIC_FETCH_AND_ADD, 1271 IB_WR_LSO, 1272 IB_WR_SEND_WITH_INV, 1273 IB_WR_RDMA_READ_WITH_INV, 1274 IB_WR_LOCAL_INV, 1275 IB_WR_REG_MR, 1276 IB_WR_MASKED_ATOMIC_CMP_AND_SWP, 1277 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1278 IB_WR_REG_SIG_MR, 1279 /* reserve values for low level drivers' internal use. 1280 * These values will not be used at all in the ib core layer. 1281 */ 1282 IB_WR_RESERVED1 = 0xf0, 1283 IB_WR_RESERVED2, 1284 IB_WR_RESERVED3, 1285 IB_WR_RESERVED4, 1286 IB_WR_RESERVED5, 1287 IB_WR_RESERVED6, 1288 IB_WR_RESERVED7, 1289 IB_WR_RESERVED8, 1290 IB_WR_RESERVED9, 1291 IB_WR_RESERVED10, 1292 }; 1293 1294 enum ib_send_flags { 1295 IB_SEND_FENCE = 1, 1296 IB_SEND_SIGNALED = (1<<1), 1297 IB_SEND_SOLICITED = (1<<2), 1298 IB_SEND_INLINE = (1<<3), 1299 IB_SEND_IP_CSUM = (1<<4), 1300 1301 /* reserve bits 26-31 for low level drivers' internal use */ 1302 IB_SEND_RESERVED_START = (1 << 26), 1303 IB_SEND_RESERVED_END = (1 << 31), 1304 }; 1305 1306 struct ib_sge { 1307 u64 addr; 1308 u32 length; 1309 u32 lkey; 1310 }; 1311 1312 struct ib_cqe { 1313 void (*done)(struct ib_cq *cq, struct ib_wc *wc); 1314 }; 1315 1316 struct ib_send_wr { 1317 struct ib_send_wr *next; 1318 union { 1319 u64 wr_id; 1320 struct ib_cqe *wr_cqe; 1321 }; 1322 struct ib_sge *sg_list; 1323 int num_sge; 1324 enum ib_wr_opcode opcode; 1325 int send_flags; 1326 union { 1327 __be32 imm_data; 1328 u32 invalidate_rkey; 1329 } ex; 1330 }; 1331 1332 struct ib_rdma_wr { 1333 struct ib_send_wr wr; 1334 u64 remote_addr; 1335 u32 rkey; 1336 }; 1337 1338 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr) 1339 { 1340 return container_of(wr, struct ib_rdma_wr, wr); 1341 } 1342 1343 struct ib_atomic_wr { 1344 struct ib_send_wr wr; 1345 u64 remote_addr; 1346 u64 compare_add; 1347 u64 swap; 1348 u64 compare_add_mask; 1349 u64 swap_mask; 1350 u32 rkey; 1351 }; 1352 1353 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr) 1354 { 1355 return container_of(wr, struct ib_atomic_wr, wr); 1356 } 1357 1358 struct ib_ud_wr { 1359 struct ib_send_wr wr; 1360 struct ib_ah *ah; 1361 void *header; 1362 int hlen; 1363 int mss; 1364 u32 remote_qpn; 1365 u32 remote_qkey; 1366 u16 pkey_index; /* valid for GSI only */ 1367 u8 port_num; /* valid for DR SMPs on switch only */ 1368 }; 1369 1370 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr) 1371 { 1372 return container_of(wr, struct ib_ud_wr, wr); 1373 } 1374 1375 struct ib_reg_wr { 1376 struct ib_send_wr wr; 1377 struct ib_mr *mr; 1378 u32 key; 1379 int access; 1380 }; 1381 1382 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr) 1383 { 1384 return container_of(wr, struct ib_reg_wr, wr); 1385 } 1386 1387 struct ib_sig_handover_wr { 1388 struct ib_send_wr wr; 1389 struct ib_sig_attrs *sig_attrs; 1390 struct ib_mr *sig_mr; 1391 int access_flags; 1392 struct ib_sge *prot; 1393 }; 1394 1395 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr) 1396 { 1397 return container_of(wr, struct ib_sig_handover_wr, wr); 1398 } 1399 1400 struct ib_recv_wr { 1401 struct ib_recv_wr *next; 1402 union { 1403 u64 wr_id; 1404 struct ib_cqe *wr_cqe; 1405 }; 1406 struct ib_sge *sg_list; 1407 int num_sge; 1408 }; 1409 1410 enum ib_access_flags { 1411 IB_ACCESS_LOCAL_WRITE = 1, 1412 IB_ACCESS_REMOTE_WRITE = (1<<1), 1413 IB_ACCESS_REMOTE_READ = (1<<2), 1414 IB_ACCESS_REMOTE_ATOMIC = (1<<3), 1415 IB_ACCESS_MW_BIND = (1<<4), 1416 IB_ZERO_BASED = (1<<5), 1417 IB_ACCESS_ON_DEMAND = (1<<6), 1418 IB_ACCESS_HUGETLB = (1<<7), 1419 }; 1420 1421 /* 1422 * XXX: these are apparently used for ->rereg_user_mr, no idea why they 1423 * are hidden here instead of a uapi header! 1424 */ 1425 enum ib_mr_rereg_flags { 1426 IB_MR_REREG_TRANS = 1, 1427 IB_MR_REREG_PD = (1<<1), 1428 IB_MR_REREG_ACCESS = (1<<2), 1429 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1430 }; 1431 1432 struct ib_fmr_attr { 1433 int max_pages; 1434 int max_maps; 1435 u8 page_shift; 1436 }; 1437 1438 struct ib_umem; 1439 1440 enum rdma_remove_reason { 1441 /* Userspace requested uobject deletion. Call could fail */ 1442 RDMA_REMOVE_DESTROY, 1443 /* Context deletion. This call should delete the actual object itself */ 1444 RDMA_REMOVE_CLOSE, 1445 /* Driver is being hot-unplugged. This call should delete the actual object itself */ 1446 RDMA_REMOVE_DRIVER_REMOVE, 1447 /* Context is being cleaned-up, but commit was just completed */ 1448 RDMA_REMOVE_DURING_CLEANUP, 1449 }; 1450 1451 struct ib_rdmacg_object { 1452 #ifdef CONFIG_CGROUP_RDMA 1453 struct rdma_cgroup *cg; /* owner rdma cgroup */ 1454 #endif 1455 }; 1456 1457 struct ib_ucontext { 1458 struct ib_device *device; 1459 struct ib_uverbs_file *ufile; 1460 int closing; 1461 1462 /* locking the uobjects_list */ 1463 struct mutex uobjects_lock; 1464 struct list_head uobjects; 1465 /* protects cleanup process from other actions */ 1466 struct rw_semaphore cleanup_rwsem; 1467 enum rdma_remove_reason cleanup_reason; 1468 1469 struct pid *tgid; 1470 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING 1471 struct rb_root_cached umem_tree; 1472 /* 1473 * Protects .umem_rbroot and tree, as well as odp_mrs_count and 1474 * mmu notifiers registration. 1475 */ 1476 struct rw_semaphore umem_rwsem; 1477 void (*invalidate_range)(struct ib_umem *umem, 1478 unsigned long start, unsigned long end); 1479 1480 struct mmu_notifier mn; 1481 atomic_t notifier_count; 1482 /* A list of umems that don't have private mmu notifier counters yet. */ 1483 struct list_head no_private_counters; 1484 int odp_mrs_count; 1485 #endif 1486 1487 struct ib_rdmacg_object cg_obj; 1488 }; 1489 1490 struct ib_uobject { 1491 u64 user_handle; /* handle given to us by userspace */ 1492 struct ib_ucontext *context; /* associated user context */ 1493 void *object; /* containing object */ 1494 struct list_head list; /* link to context's list */ 1495 struct ib_rdmacg_object cg_obj; /* rdmacg object */ 1496 int id; /* index into kernel idr */ 1497 struct kref ref; 1498 atomic_t usecnt; /* protects exclusive access */ 1499 struct rcu_head rcu; /* kfree_rcu() overhead */ 1500 1501 const struct uverbs_obj_type *type; 1502 }; 1503 1504 struct ib_uobject_file { 1505 struct ib_uobject uobj; 1506 /* ufile contains the lock between context release and file close */ 1507 struct ib_uverbs_file *ufile; 1508 }; 1509 1510 struct ib_udata { 1511 const void __user *inbuf; 1512 void __user *outbuf; 1513 size_t inlen; 1514 size_t outlen; 1515 }; 1516 1517 struct ib_pd { 1518 u32 local_dma_lkey; 1519 u32 flags; 1520 struct ib_device *device; 1521 struct ib_uobject *uobject; 1522 atomic_t usecnt; /* count all resources */ 1523 1524 u32 unsafe_global_rkey; 1525 1526 /* 1527 * Implementation details of the RDMA core, don't use in drivers: 1528 */ 1529 struct ib_mr *__internal_mr; 1530 struct rdma_restrack_entry res; 1531 }; 1532 1533 struct ib_xrcd { 1534 struct ib_device *device; 1535 atomic_t usecnt; /* count all exposed resources */ 1536 struct inode *inode; 1537 1538 struct mutex tgt_qp_mutex; 1539 struct list_head tgt_qp_list; 1540 /* 1541 * Implementation details of the RDMA core, don't use in drivers: 1542 */ 1543 struct rdma_restrack_entry res; 1544 }; 1545 1546 struct ib_ah { 1547 struct ib_device *device; 1548 struct ib_pd *pd; 1549 struct ib_uobject *uobject; 1550 enum rdma_ah_attr_type type; 1551 }; 1552 1553 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1554 1555 enum ib_poll_context { 1556 IB_POLL_DIRECT, /* caller context, no hw completions */ 1557 IB_POLL_SOFTIRQ, /* poll from softirq context */ 1558 IB_POLL_WORKQUEUE, /* poll from workqueue */ 1559 }; 1560 1561 struct ib_cq { 1562 struct ib_device *device; 1563 struct ib_uobject *uobject; 1564 ib_comp_handler comp_handler; 1565 void (*event_handler)(struct ib_event *, void *); 1566 void *cq_context; 1567 int cqe; 1568 atomic_t usecnt; /* count number of work queues */ 1569 enum ib_poll_context poll_ctx; 1570 struct ib_wc *wc; 1571 union { 1572 struct irq_poll iop; 1573 struct work_struct work; 1574 }; 1575 /* 1576 * Implementation details of the RDMA core, don't use in drivers: 1577 */ 1578 struct rdma_restrack_entry res; 1579 }; 1580 1581 struct ib_srq { 1582 struct ib_device *device; 1583 struct ib_pd *pd; 1584 struct ib_uobject *uobject; 1585 void (*event_handler)(struct ib_event *, void *); 1586 void *srq_context; 1587 enum ib_srq_type srq_type; 1588 atomic_t usecnt; 1589 1590 struct { 1591 struct ib_cq *cq; 1592 union { 1593 struct { 1594 struct ib_xrcd *xrcd; 1595 u32 srq_num; 1596 } xrc; 1597 }; 1598 } ext; 1599 }; 1600 1601 enum ib_raw_packet_caps { 1602 /* Strip cvlan from incoming packet and report it in the matching work 1603 * completion is supported. 1604 */ 1605 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0), 1606 /* Scatter FCS field of an incoming packet to host memory is supported. 1607 */ 1608 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1), 1609 /* Checksum offloads are supported (for both send and receive). */ 1610 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2), 1611 /* When a packet is received for an RQ with no receive WQEs, the 1612 * packet processing is delayed. 1613 */ 1614 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3), 1615 }; 1616 1617 enum ib_wq_type { 1618 IB_WQT_RQ 1619 }; 1620 1621 enum ib_wq_state { 1622 IB_WQS_RESET, 1623 IB_WQS_RDY, 1624 IB_WQS_ERR 1625 }; 1626 1627 struct ib_wq { 1628 struct ib_device *device; 1629 struct ib_uobject *uobject; 1630 void *wq_context; 1631 void (*event_handler)(struct ib_event *, void *); 1632 struct ib_pd *pd; 1633 struct ib_cq *cq; 1634 u32 wq_num; 1635 enum ib_wq_state state; 1636 enum ib_wq_type wq_type; 1637 atomic_t usecnt; 1638 }; 1639 1640 enum ib_wq_flags { 1641 IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0, 1642 IB_WQ_FLAGS_SCATTER_FCS = 1 << 1, 1643 IB_WQ_FLAGS_DELAY_DROP = 1 << 2, 1644 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3, 1645 }; 1646 1647 struct ib_wq_init_attr { 1648 void *wq_context; 1649 enum ib_wq_type wq_type; 1650 u32 max_wr; 1651 u32 max_sge; 1652 struct ib_cq *cq; 1653 void (*event_handler)(struct ib_event *, void *); 1654 u32 create_flags; /* Use enum ib_wq_flags */ 1655 }; 1656 1657 enum ib_wq_attr_mask { 1658 IB_WQ_STATE = 1 << 0, 1659 IB_WQ_CUR_STATE = 1 << 1, 1660 IB_WQ_FLAGS = 1 << 2, 1661 }; 1662 1663 struct ib_wq_attr { 1664 enum ib_wq_state wq_state; 1665 enum ib_wq_state curr_wq_state; 1666 u32 flags; /* Use enum ib_wq_flags */ 1667 u32 flags_mask; /* Use enum ib_wq_flags */ 1668 }; 1669 1670 struct ib_rwq_ind_table { 1671 struct ib_device *device; 1672 struct ib_uobject *uobject; 1673 atomic_t usecnt; 1674 u32 ind_tbl_num; 1675 u32 log_ind_tbl_size; 1676 struct ib_wq **ind_tbl; 1677 }; 1678 1679 struct ib_rwq_ind_table_init_attr { 1680 u32 log_ind_tbl_size; 1681 /* Each entry is a pointer to Receive Work Queue */ 1682 struct ib_wq **ind_tbl; 1683 }; 1684 1685 enum port_pkey_state { 1686 IB_PORT_PKEY_NOT_VALID = 0, 1687 IB_PORT_PKEY_VALID = 1, 1688 IB_PORT_PKEY_LISTED = 2, 1689 }; 1690 1691 struct ib_qp_security; 1692 1693 struct ib_port_pkey { 1694 enum port_pkey_state state; 1695 u16 pkey_index; 1696 u8 port_num; 1697 struct list_head qp_list; 1698 struct list_head to_error_list; 1699 struct ib_qp_security *sec; 1700 }; 1701 1702 struct ib_ports_pkeys { 1703 struct ib_port_pkey main; 1704 struct ib_port_pkey alt; 1705 }; 1706 1707 struct ib_qp_security { 1708 struct ib_qp *qp; 1709 struct ib_device *dev; 1710 /* Hold this mutex when changing port and pkey settings. */ 1711 struct mutex mutex; 1712 struct ib_ports_pkeys *ports_pkeys; 1713 /* A list of all open shared QP handles. Required to enforce security 1714 * properly for all users of a shared QP. 1715 */ 1716 struct list_head shared_qp_list; 1717 void *security; 1718 bool destroying; 1719 atomic_t error_list_count; 1720 struct completion error_complete; 1721 int error_comps_pending; 1722 }; 1723 1724 /* 1725 * @max_write_sge: Maximum SGE elements per RDMA WRITE request. 1726 * @max_read_sge: Maximum SGE elements per RDMA READ request. 1727 */ 1728 struct ib_qp { 1729 struct ib_device *device; 1730 struct ib_pd *pd; 1731 struct ib_cq *send_cq; 1732 struct ib_cq *recv_cq; 1733 spinlock_t mr_lock; 1734 int mrs_used; 1735 struct list_head rdma_mrs; 1736 struct list_head sig_mrs; 1737 struct ib_srq *srq; 1738 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1739 struct list_head xrcd_list; 1740 1741 /* count times opened, mcast attaches, flow attaches */ 1742 atomic_t usecnt; 1743 struct list_head open_list; 1744 struct ib_qp *real_qp; 1745 struct ib_uobject *uobject; 1746 void (*event_handler)(struct ib_event *, void *); 1747 void *qp_context; 1748 u32 qp_num; 1749 u32 max_write_sge; 1750 u32 max_read_sge; 1751 enum ib_qp_type qp_type; 1752 struct ib_rwq_ind_table *rwq_ind_tbl; 1753 struct ib_qp_security *qp_sec; 1754 u8 port; 1755 1756 /* 1757 * Implementation details of the RDMA core, don't use in drivers: 1758 */ 1759 struct rdma_restrack_entry res; 1760 }; 1761 1762 struct ib_mr { 1763 struct ib_device *device; 1764 struct ib_pd *pd; 1765 u32 lkey; 1766 u32 rkey; 1767 u64 iova; 1768 u64 length; 1769 unsigned int page_size; 1770 bool need_inval; 1771 union { 1772 struct ib_uobject *uobject; /* user */ 1773 struct list_head qp_entry; /* FR */ 1774 }; 1775 }; 1776 1777 struct ib_mw { 1778 struct ib_device *device; 1779 struct ib_pd *pd; 1780 struct ib_uobject *uobject; 1781 u32 rkey; 1782 enum ib_mw_type type; 1783 }; 1784 1785 struct ib_fmr { 1786 struct ib_device *device; 1787 struct ib_pd *pd; 1788 struct list_head list; 1789 u32 lkey; 1790 u32 rkey; 1791 }; 1792 1793 /* Supported steering options */ 1794 enum ib_flow_attr_type { 1795 /* steering according to rule specifications */ 1796 IB_FLOW_ATTR_NORMAL = 0x0, 1797 /* default unicast and multicast rule - 1798 * receive all Eth traffic which isn't steered to any QP 1799 */ 1800 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1801 /* default multicast rule - 1802 * receive all Eth multicast traffic which isn't steered to any QP 1803 */ 1804 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1805 /* sniffer rule - receive all port traffic */ 1806 IB_FLOW_ATTR_SNIFFER = 0x3 1807 }; 1808 1809 /* Supported steering header types */ 1810 enum ib_flow_spec_type { 1811 /* L2 headers*/ 1812 IB_FLOW_SPEC_ETH = 0x20, 1813 IB_FLOW_SPEC_IB = 0x22, 1814 /* L3 header*/ 1815 IB_FLOW_SPEC_IPV4 = 0x30, 1816 IB_FLOW_SPEC_IPV6 = 0x31, 1817 /* L4 headers*/ 1818 IB_FLOW_SPEC_TCP = 0x40, 1819 IB_FLOW_SPEC_UDP = 0x41, 1820 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50, 1821 IB_FLOW_SPEC_INNER = 0x100, 1822 /* Actions */ 1823 IB_FLOW_SPEC_ACTION_TAG = 0x1000, 1824 IB_FLOW_SPEC_ACTION_DROP = 0x1001, 1825 }; 1826 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1827 #define IB_FLOW_SPEC_SUPPORT_LAYERS 8 1828 1829 /* Flow steering rule priority is set according to it's domain. 1830 * Lower domain value means higher priority. 1831 */ 1832 enum ib_flow_domain { 1833 IB_FLOW_DOMAIN_USER, 1834 IB_FLOW_DOMAIN_ETHTOOL, 1835 IB_FLOW_DOMAIN_RFS, 1836 IB_FLOW_DOMAIN_NIC, 1837 IB_FLOW_DOMAIN_NUM /* Must be last */ 1838 }; 1839 1840 enum ib_flow_flags { 1841 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */ 1842 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */ 1843 }; 1844 1845 struct ib_flow_eth_filter { 1846 u8 dst_mac[6]; 1847 u8 src_mac[6]; 1848 __be16 ether_type; 1849 __be16 vlan_tag; 1850 /* Must be last */ 1851 u8 real_sz[0]; 1852 }; 1853 1854 struct ib_flow_spec_eth { 1855 u32 type; 1856 u16 size; 1857 struct ib_flow_eth_filter val; 1858 struct ib_flow_eth_filter mask; 1859 }; 1860 1861 struct ib_flow_ib_filter { 1862 __be16 dlid; 1863 __u8 sl; 1864 /* Must be last */ 1865 u8 real_sz[0]; 1866 }; 1867 1868 struct ib_flow_spec_ib { 1869 u32 type; 1870 u16 size; 1871 struct ib_flow_ib_filter val; 1872 struct ib_flow_ib_filter mask; 1873 }; 1874 1875 /* IPv4 header flags */ 1876 enum ib_ipv4_flags { 1877 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */ 1878 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the 1879 last have this flag set */ 1880 }; 1881 1882 struct ib_flow_ipv4_filter { 1883 __be32 src_ip; 1884 __be32 dst_ip; 1885 u8 proto; 1886 u8 tos; 1887 u8 ttl; 1888 u8 flags; 1889 /* Must be last */ 1890 u8 real_sz[0]; 1891 }; 1892 1893 struct ib_flow_spec_ipv4 { 1894 u32 type; 1895 u16 size; 1896 struct ib_flow_ipv4_filter val; 1897 struct ib_flow_ipv4_filter mask; 1898 }; 1899 1900 struct ib_flow_ipv6_filter { 1901 u8 src_ip[16]; 1902 u8 dst_ip[16]; 1903 __be32 flow_label; 1904 u8 next_hdr; 1905 u8 traffic_class; 1906 u8 hop_limit; 1907 /* Must be last */ 1908 u8 real_sz[0]; 1909 }; 1910 1911 struct ib_flow_spec_ipv6 { 1912 u32 type; 1913 u16 size; 1914 struct ib_flow_ipv6_filter val; 1915 struct ib_flow_ipv6_filter mask; 1916 }; 1917 1918 struct ib_flow_tcp_udp_filter { 1919 __be16 dst_port; 1920 __be16 src_port; 1921 /* Must be last */ 1922 u8 real_sz[0]; 1923 }; 1924 1925 struct ib_flow_spec_tcp_udp { 1926 u32 type; 1927 u16 size; 1928 struct ib_flow_tcp_udp_filter val; 1929 struct ib_flow_tcp_udp_filter mask; 1930 }; 1931 1932 struct ib_flow_tunnel_filter { 1933 __be32 tunnel_id; 1934 u8 real_sz[0]; 1935 }; 1936 1937 /* ib_flow_spec_tunnel describes the Vxlan tunnel 1938 * the tunnel_id from val has the vni value 1939 */ 1940 struct ib_flow_spec_tunnel { 1941 u32 type; 1942 u16 size; 1943 struct ib_flow_tunnel_filter val; 1944 struct ib_flow_tunnel_filter mask; 1945 }; 1946 1947 struct ib_flow_spec_action_tag { 1948 enum ib_flow_spec_type type; 1949 u16 size; 1950 u32 tag_id; 1951 }; 1952 1953 struct ib_flow_spec_action_drop { 1954 enum ib_flow_spec_type type; 1955 u16 size; 1956 }; 1957 1958 union ib_flow_spec { 1959 struct { 1960 u32 type; 1961 u16 size; 1962 }; 1963 struct ib_flow_spec_eth eth; 1964 struct ib_flow_spec_ib ib; 1965 struct ib_flow_spec_ipv4 ipv4; 1966 struct ib_flow_spec_tcp_udp tcp_udp; 1967 struct ib_flow_spec_ipv6 ipv6; 1968 struct ib_flow_spec_tunnel tunnel; 1969 struct ib_flow_spec_action_tag flow_tag; 1970 struct ib_flow_spec_action_drop drop; 1971 }; 1972 1973 struct ib_flow_attr { 1974 enum ib_flow_attr_type type; 1975 u16 size; 1976 u16 priority; 1977 u32 flags; 1978 u8 num_of_specs; 1979 u8 port; 1980 /* Following are the optional layers according to user request 1981 * struct ib_flow_spec_xxx 1982 * struct ib_flow_spec_yyy 1983 */ 1984 }; 1985 1986 struct ib_flow { 1987 struct ib_qp *qp; 1988 struct ib_uobject *uobject; 1989 }; 1990 1991 struct ib_mad_hdr; 1992 struct ib_grh; 1993 1994 enum ib_process_mad_flags { 1995 IB_MAD_IGNORE_MKEY = 1, 1996 IB_MAD_IGNORE_BKEY = 2, 1997 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 1998 }; 1999 2000 enum ib_mad_result { 2001 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 2002 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 2003 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 2004 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 2005 }; 2006 2007 struct ib_port_cache { 2008 u64 subnet_prefix; 2009 struct ib_pkey_cache *pkey; 2010 struct ib_gid_table *gid; 2011 u8 lmc; 2012 enum ib_port_state port_state; 2013 }; 2014 2015 struct ib_cache { 2016 rwlock_t lock; 2017 struct ib_event_handler event_handler; 2018 struct ib_port_cache *ports; 2019 }; 2020 2021 struct iw_cm_verbs; 2022 2023 struct ib_port_immutable { 2024 int pkey_tbl_len; 2025 int gid_tbl_len; 2026 u32 core_cap_flags; 2027 u32 max_mad_size; 2028 }; 2029 2030 /* rdma netdev type - specifies protocol type */ 2031 enum rdma_netdev_t { 2032 RDMA_NETDEV_OPA_VNIC, 2033 RDMA_NETDEV_IPOIB, 2034 }; 2035 2036 /** 2037 * struct rdma_netdev - rdma netdev 2038 * For cases where netstack interfacing is required. 2039 */ 2040 struct rdma_netdev { 2041 void *clnt_priv; 2042 struct ib_device *hca; 2043 u8 port_num; 2044 2045 /* cleanup function must be specified */ 2046 void (*free_rdma_netdev)(struct net_device *netdev); 2047 2048 /* control functions */ 2049 void (*set_id)(struct net_device *netdev, int id); 2050 /* send packet */ 2051 int (*send)(struct net_device *dev, struct sk_buff *skb, 2052 struct ib_ah *address, u32 dqpn); 2053 /* multicast */ 2054 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca, 2055 union ib_gid *gid, u16 mlid, 2056 int set_qkey, u32 qkey); 2057 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca, 2058 union ib_gid *gid, u16 mlid); 2059 }; 2060 2061 struct ib_port_pkey_list { 2062 /* Lock to hold while modifying the list. */ 2063 spinlock_t list_lock; 2064 struct list_head pkey_list; 2065 }; 2066 2067 struct ib_device { 2068 /* Do not access @dma_device directly from ULP nor from HW drivers. */ 2069 struct device *dma_device; 2070 2071 char name[IB_DEVICE_NAME_MAX]; 2072 2073 struct list_head event_handler_list; 2074 spinlock_t event_handler_lock; 2075 2076 spinlock_t client_data_lock; 2077 struct list_head core_list; 2078 /* Access to the client_data_list is protected by the client_data_lock 2079 * spinlock and the lists_rwsem read-write semaphore */ 2080 struct list_head client_data_list; 2081 2082 struct ib_cache cache; 2083 /** 2084 * port_immutable is indexed by port number 2085 */ 2086 struct ib_port_immutable *port_immutable; 2087 2088 int num_comp_vectors; 2089 2090 struct ib_port_pkey_list *port_pkey_list; 2091 2092 struct iw_cm_verbs *iwcm; 2093 2094 /** 2095 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the 2096 * driver initialized data. The struct is kfree()'ed by the sysfs 2097 * core when the device is removed. A lifespan of -1 in the return 2098 * struct tells the core to set a default lifespan. 2099 */ 2100 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device, 2101 u8 port_num); 2102 /** 2103 * get_hw_stats - Fill in the counter value(s) in the stats struct. 2104 * @index - The index in the value array we wish to have updated, or 2105 * num_counters if we want all stats updated 2106 * Return codes - 2107 * < 0 - Error, no counters updated 2108 * index - Updated the single counter pointed to by index 2109 * num_counters - Updated all counters (will reset the timestamp 2110 * and prevent further calls for lifespan milliseconds) 2111 * Drivers are allowed to update all counters in leiu of just the 2112 * one given in index at their option 2113 */ 2114 int (*get_hw_stats)(struct ib_device *device, 2115 struct rdma_hw_stats *stats, 2116 u8 port, int index); 2117 int (*query_device)(struct ib_device *device, 2118 struct ib_device_attr *device_attr, 2119 struct ib_udata *udata); 2120 int (*query_port)(struct ib_device *device, 2121 u8 port_num, 2122 struct ib_port_attr *port_attr); 2123 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 2124 u8 port_num); 2125 /* When calling get_netdev, the HW vendor's driver should return the 2126 * net device of device @device at port @port_num or NULL if such 2127 * a net device doesn't exist. The vendor driver should call dev_hold 2128 * on this net device. The HW vendor's device driver must guarantee 2129 * that this function returns NULL before the net device reaches 2130 * NETDEV_UNREGISTER_FINAL state. 2131 */ 2132 struct net_device *(*get_netdev)(struct ib_device *device, 2133 u8 port_num); 2134 int (*query_gid)(struct ib_device *device, 2135 u8 port_num, int index, 2136 union ib_gid *gid); 2137 /* When calling add_gid, the HW vendor's driver should 2138 * add the gid of device @device at gid index @index of 2139 * port @port_num to be @gid. Meta-info of that gid (for example, 2140 * the network device related to this gid is available 2141 * at @attr. @context allows the HW vendor driver to store extra 2142 * information together with a GID entry. The HW vendor may allocate 2143 * memory to contain this information and store it in @context when a 2144 * new GID entry is written to. Params are consistent until the next 2145 * call of add_gid or delete_gid. The function should return 0 on 2146 * success or error otherwise. The function could be called 2147 * concurrently for different ports. This function is only called 2148 * when roce_gid_table is used. 2149 */ 2150 int (*add_gid)(struct ib_device *device, 2151 u8 port_num, 2152 unsigned int index, 2153 const union ib_gid *gid, 2154 const struct ib_gid_attr *attr, 2155 void **context); 2156 /* When calling del_gid, the HW vendor's driver should delete the 2157 * gid of device @device at gid index @index of port @port_num. 2158 * Upon the deletion of a GID entry, the HW vendor must free any 2159 * allocated memory. The caller will clear @context afterwards. 2160 * This function is only called when roce_gid_table is used. 2161 */ 2162 int (*del_gid)(struct ib_device *device, 2163 u8 port_num, 2164 unsigned int index, 2165 void **context); 2166 int (*query_pkey)(struct ib_device *device, 2167 u8 port_num, u16 index, u16 *pkey); 2168 int (*modify_device)(struct ib_device *device, 2169 int device_modify_mask, 2170 struct ib_device_modify *device_modify); 2171 int (*modify_port)(struct ib_device *device, 2172 u8 port_num, int port_modify_mask, 2173 struct ib_port_modify *port_modify); 2174 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device, 2175 struct ib_udata *udata); 2176 int (*dealloc_ucontext)(struct ib_ucontext *context); 2177 int (*mmap)(struct ib_ucontext *context, 2178 struct vm_area_struct *vma); 2179 struct ib_pd * (*alloc_pd)(struct ib_device *device, 2180 struct ib_ucontext *context, 2181 struct ib_udata *udata); 2182 int (*dealloc_pd)(struct ib_pd *pd); 2183 struct ib_ah * (*create_ah)(struct ib_pd *pd, 2184 struct rdma_ah_attr *ah_attr, 2185 struct ib_udata *udata); 2186 int (*modify_ah)(struct ib_ah *ah, 2187 struct rdma_ah_attr *ah_attr); 2188 int (*query_ah)(struct ib_ah *ah, 2189 struct rdma_ah_attr *ah_attr); 2190 int (*destroy_ah)(struct ib_ah *ah); 2191 struct ib_srq * (*create_srq)(struct ib_pd *pd, 2192 struct ib_srq_init_attr *srq_init_attr, 2193 struct ib_udata *udata); 2194 int (*modify_srq)(struct ib_srq *srq, 2195 struct ib_srq_attr *srq_attr, 2196 enum ib_srq_attr_mask srq_attr_mask, 2197 struct ib_udata *udata); 2198 int (*query_srq)(struct ib_srq *srq, 2199 struct ib_srq_attr *srq_attr); 2200 int (*destroy_srq)(struct ib_srq *srq); 2201 int (*post_srq_recv)(struct ib_srq *srq, 2202 struct ib_recv_wr *recv_wr, 2203 struct ib_recv_wr **bad_recv_wr); 2204 struct ib_qp * (*create_qp)(struct ib_pd *pd, 2205 struct ib_qp_init_attr *qp_init_attr, 2206 struct ib_udata *udata); 2207 int (*modify_qp)(struct ib_qp *qp, 2208 struct ib_qp_attr *qp_attr, 2209 int qp_attr_mask, 2210 struct ib_udata *udata); 2211 int (*query_qp)(struct ib_qp *qp, 2212 struct ib_qp_attr *qp_attr, 2213 int qp_attr_mask, 2214 struct ib_qp_init_attr *qp_init_attr); 2215 int (*destroy_qp)(struct ib_qp *qp); 2216 int (*post_send)(struct ib_qp *qp, 2217 struct ib_send_wr *send_wr, 2218 struct ib_send_wr **bad_send_wr); 2219 int (*post_recv)(struct ib_qp *qp, 2220 struct ib_recv_wr *recv_wr, 2221 struct ib_recv_wr **bad_recv_wr); 2222 struct ib_cq * (*create_cq)(struct ib_device *device, 2223 const struct ib_cq_init_attr *attr, 2224 struct ib_ucontext *context, 2225 struct ib_udata *udata); 2226 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, 2227 u16 cq_period); 2228 int (*destroy_cq)(struct ib_cq *cq); 2229 int (*resize_cq)(struct ib_cq *cq, int cqe, 2230 struct ib_udata *udata); 2231 int (*poll_cq)(struct ib_cq *cq, int num_entries, 2232 struct ib_wc *wc); 2233 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 2234 int (*req_notify_cq)(struct ib_cq *cq, 2235 enum ib_cq_notify_flags flags); 2236 int (*req_ncomp_notif)(struct ib_cq *cq, 2237 int wc_cnt); 2238 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, 2239 int mr_access_flags); 2240 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, 2241 u64 start, u64 length, 2242 u64 virt_addr, 2243 int mr_access_flags, 2244 struct ib_udata *udata); 2245 int (*rereg_user_mr)(struct ib_mr *mr, 2246 int flags, 2247 u64 start, u64 length, 2248 u64 virt_addr, 2249 int mr_access_flags, 2250 struct ib_pd *pd, 2251 struct ib_udata *udata); 2252 int (*dereg_mr)(struct ib_mr *mr); 2253 struct ib_mr * (*alloc_mr)(struct ib_pd *pd, 2254 enum ib_mr_type mr_type, 2255 u32 max_num_sg); 2256 int (*map_mr_sg)(struct ib_mr *mr, 2257 struct scatterlist *sg, 2258 int sg_nents, 2259 unsigned int *sg_offset); 2260 struct ib_mw * (*alloc_mw)(struct ib_pd *pd, 2261 enum ib_mw_type type, 2262 struct ib_udata *udata); 2263 int (*dealloc_mw)(struct ib_mw *mw); 2264 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, 2265 int mr_access_flags, 2266 struct ib_fmr_attr *fmr_attr); 2267 int (*map_phys_fmr)(struct ib_fmr *fmr, 2268 u64 *page_list, int list_len, 2269 u64 iova); 2270 int (*unmap_fmr)(struct list_head *fmr_list); 2271 int (*dealloc_fmr)(struct ib_fmr *fmr); 2272 int (*attach_mcast)(struct ib_qp *qp, 2273 union ib_gid *gid, 2274 u16 lid); 2275 int (*detach_mcast)(struct ib_qp *qp, 2276 union ib_gid *gid, 2277 u16 lid); 2278 int (*process_mad)(struct ib_device *device, 2279 int process_mad_flags, 2280 u8 port_num, 2281 const struct ib_wc *in_wc, 2282 const struct ib_grh *in_grh, 2283 const struct ib_mad_hdr *in_mad, 2284 size_t in_mad_size, 2285 struct ib_mad_hdr *out_mad, 2286 size_t *out_mad_size, 2287 u16 *out_mad_pkey_index); 2288 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device, 2289 struct ib_ucontext *ucontext, 2290 struct ib_udata *udata); 2291 int (*dealloc_xrcd)(struct ib_xrcd *xrcd); 2292 struct ib_flow * (*create_flow)(struct ib_qp *qp, 2293 struct ib_flow_attr 2294 *flow_attr, 2295 int domain); 2296 int (*destroy_flow)(struct ib_flow *flow_id); 2297 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 2298 struct ib_mr_status *mr_status); 2299 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 2300 void (*drain_rq)(struct ib_qp *qp); 2301 void (*drain_sq)(struct ib_qp *qp); 2302 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port, 2303 int state); 2304 int (*get_vf_config)(struct ib_device *device, int vf, u8 port, 2305 struct ifla_vf_info *ivf); 2306 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port, 2307 struct ifla_vf_stats *stats); 2308 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid, 2309 int type); 2310 struct ib_wq * (*create_wq)(struct ib_pd *pd, 2311 struct ib_wq_init_attr *init_attr, 2312 struct ib_udata *udata); 2313 int (*destroy_wq)(struct ib_wq *wq); 2314 int (*modify_wq)(struct ib_wq *wq, 2315 struct ib_wq_attr *attr, 2316 u32 wq_attr_mask, 2317 struct ib_udata *udata); 2318 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device, 2319 struct ib_rwq_ind_table_init_attr *init_attr, 2320 struct ib_udata *udata); 2321 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table); 2322 /** 2323 * rdma netdev operation 2324 * 2325 * Driver implementing alloc_rdma_netdev must return -EOPNOTSUPP if it 2326 * doesn't support the specified rdma netdev type. 2327 */ 2328 struct net_device *(*alloc_rdma_netdev)( 2329 struct ib_device *device, 2330 u8 port_num, 2331 enum rdma_netdev_t type, 2332 const char *name, 2333 unsigned char name_assign_type, 2334 void (*setup)(struct net_device *)); 2335 2336 struct module *owner; 2337 struct device dev; 2338 struct kobject *ports_parent; 2339 struct list_head port_list; 2340 2341 enum { 2342 IB_DEV_UNINITIALIZED, 2343 IB_DEV_REGISTERED, 2344 IB_DEV_UNREGISTERED 2345 } reg_state; 2346 2347 int uverbs_abi_ver; 2348 u64 uverbs_cmd_mask; 2349 u64 uverbs_ex_cmd_mask; 2350 2351 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 2352 __be64 node_guid; 2353 u32 local_dma_lkey; 2354 u16 is_switch:1; 2355 u8 node_type; 2356 u8 phys_port_cnt; 2357 struct ib_device_attr attrs; 2358 struct attribute_group *hw_stats_ag; 2359 struct rdma_hw_stats *hw_stats; 2360 2361 #ifdef CONFIG_CGROUP_RDMA 2362 struct rdmacg_device cg_device; 2363 #endif 2364 2365 u32 index; 2366 /* 2367 * Implementation details of the RDMA core, don't use in drivers 2368 */ 2369 struct rdma_restrack_root res; 2370 2371 /** 2372 * The following mandatory functions are used only at device 2373 * registration. Keep functions such as these at the end of this 2374 * structure to avoid cache line misses when accessing struct ib_device 2375 * in fast paths. 2376 */ 2377 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *); 2378 void (*get_dev_fw_str)(struct ib_device *, char *str); 2379 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev, 2380 int comp_vector); 2381 2382 struct uverbs_root_spec *specs_root; 2383 }; 2384 2385 struct ib_client { 2386 char *name; 2387 void (*add) (struct ib_device *); 2388 void (*remove)(struct ib_device *, void *client_data); 2389 2390 /* Returns the net_dev belonging to this ib_client and matching the 2391 * given parameters. 2392 * @dev: An RDMA device that the net_dev use for communication. 2393 * @port: A physical port number on the RDMA device. 2394 * @pkey: P_Key that the net_dev uses if applicable. 2395 * @gid: A GID that the net_dev uses to communicate. 2396 * @addr: An IP address the net_dev is configured with. 2397 * @client_data: The device's client data set by ib_set_client_data(). 2398 * 2399 * An ib_client that implements a net_dev on top of RDMA devices 2400 * (such as IP over IB) should implement this callback, allowing the 2401 * rdma_cm module to find the right net_dev for a given request. 2402 * 2403 * The caller is responsible for calling dev_put on the returned 2404 * netdev. */ 2405 struct net_device *(*get_net_dev_by_params)( 2406 struct ib_device *dev, 2407 u8 port, 2408 u16 pkey, 2409 const union ib_gid *gid, 2410 const struct sockaddr *addr, 2411 void *client_data); 2412 struct list_head list; 2413 }; 2414 2415 struct ib_device *ib_alloc_device(size_t size); 2416 void ib_dealloc_device(struct ib_device *device); 2417 2418 void ib_get_device_fw_str(struct ib_device *device, char *str); 2419 2420 int ib_register_device(struct ib_device *device, 2421 int (*port_callback)(struct ib_device *, 2422 u8, struct kobject *)); 2423 void ib_unregister_device(struct ib_device *device); 2424 2425 int ib_register_client (struct ib_client *client); 2426 void ib_unregister_client(struct ib_client *client); 2427 2428 void *ib_get_client_data(struct ib_device *device, struct ib_client *client); 2429 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 2430 void *data); 2431 2432 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 2433 { 2434 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 2435 } 2436 2437 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 2438 { 2439 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 2440 } 2441 2442 static inline bool ib_is_udata_cleared(struct ib_udata *udata, 2443 size_t offset, 2444 size_t len) 2445 { 2446 const void __user *p = udata->inbuf + offset; 2447 bool ret; 2448 u8 *buf; 2449 2450 if (len > USHRT_MAX) 2451 return false; 2452 2453 buf = memdup_user(p, len); 2454 if (IS_ERR(buf)) 2455 return false; 2456 2457 ret = !memchr_inv(buf, 0, len); 2458 kfree(buf); 2459 return ret; 2460 } 2461 2462 /** 2463 * ib_modify_qp_is_ok - Check that the supplied attribute mask 2464 * contains all required attributes and no attributes not allowed for 2465 * the given QP state transition. 2466 * @cur_state: Current QP state 2467 * @next_state: Next QP state 2468 * @type: QP type 2469 * @mask: Mask of supplied QP attributes 2470 * @ll : link layer of port 2471 * 2472 * This function is a helper function that a low-level driver's 2473 * modify_qp method can use to validate the consumer's input. It 2474 * checks that cur_state and next_state are valid QP states, that a 2475 * transition from cur_state to next_state is allowed by the IB spec, 2476 * and that the attribute mask supplied is allowed for the transition. 2477 */ 2478 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 2479 enum ib_qp_type type, enum ib_qp_attr_mask mask, 2480 enum rdma_link_layer ll); 2481 2482 void ib_register_event_handler(struct ib_event_handler *event_handler); 2483 void ib_unregister_event_handler(struct ib_event_handler *event_handler); 2484 void ib_dispatch_event(struct ib_event *event); 2485 2486 int ib_query_port(struct ib_device *device, 2487 u8 port_num, struct ib_port_attr *port_attr); 2488 2489 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 2490 u8 port_num); 2491 2492 /** 2493 * rdma_cap_ib_switch - Check if the device is IB switch 2494 * @device: Device to check 2495 * 2496 * Device driver is responsible for setting is_switch bit on 2497 * in ib_device structure at init time. 2498 * 2499 * Return: true if the device is IB switch. 2500 */ 2501 static inline bool rdma_cap_ib_switch(const struct ib_device *device) 2502 { 2503 return device->is_switch; 2504 } 2505 2506 /** 2507 * rdma_start_port - Return the first valid port number for the device 2508 * specified 2509 * 2510 * @device: Device to be checked 2511 * 2512 * Return start port number 2513 */ 2514 static inline u8 rdma_start_port(const struct ib_device *device) 2515 { 2516 return rdma_cap_ib_switch(device) ? 0 : 1; 2517 } 2518 2519 /** 2520 * rdma_end_port - Return the last valid port number for the device 2521 * specified 2522 * 2523 * @device: Device to be checked 2524 * 2525 * Return last port number 2526 */ 2527 static inline u8 rdma_end_port(const struct ib_device *device) 2528 { 2529 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 2530 } 2531 2532 static inline int rdma_is_port_valid(const struct ib_device *device, 2533 unsigned int port) 2534 { 2535 return (port >= rdma_start_port(device) && 2536 port <= rdma_end_port(device)); 2537 } 2538 2539 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num) 2540 { 2541 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB; 2542 } 2543 2544 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num) 2545 { 2546 return device->port_immutable[port_num].core_cap_flags & 2547 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); 2548 } 2549 2550 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num) 2551 { 2552 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; 2553 } 2554 2555 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num) 2556 { 2557 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE; 2558 } 2559 2560 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num) 2561 { 2562 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP; 2563 } 2564 2565 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num) 2566 { 2567 return rdma_protocol_ib(device, port_num) || 2568 rdma_protocol_roce(device, port_num); 2569 } 2570 2571 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num) 2572 { 2573 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_RAW_PACKET; 2574 } 2575 2576 static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num) 2577 { 2578 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_USNIC; 2579 } 2580 2581 /** 2582 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 2583 * Management Datagrams. 2584 * @device: Device to check 2585 * @port_num: Port number to check 2586 * 2587 * Management Datagrams (MAD) are a required part of the InfiniBand 2588 * specification and are supported on all InfiniBand devices. A slightly 2589 * extended version are also supported on OPA interfaces. 2590 * 2591 * Return: true if the port supports sending/receiving of MAD packets. 2592 */ 2593 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num) 2594 { 2595 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD; 2596 } 2597 2598 /** 2599 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 2600 * Management Datagrams. 2601 * @device: Device to check 2602 * @port_num: Port number to check 2603 * 2604 * Intel OmniPath devices extend and/or replace the InfiniBand Management 2605 * datagrams with their own versions. These OPA MADs share many but not all of 2606 * the characteristics of InfiniBand MADs. 2607 * 2608 * OPA MADs differ in the following ways: 2609 * 2610 * 1) MADs are variable size up to 2K 2611 * IBTA defined MADs remain fixed at 256 bytes 2612 * 2) OPA SMPs must carry valid PKeys 2613 * 3) OPA SMP packets are a different format 2614 * 2615 * Return: true if the port supports OPA MAD packet formats. 2616 */ 2617 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num) 2618 { 2619 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD) 2620 == RDMA_CORE_CAP_OPA_MAD; 2621 } 2622 2623 /** 2624 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 2625 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 2626 * @device: Device to check 2627 * @port_num: Port number to check 2628 * 2629 * Each InfiniBand node is required to provide a Subnet Management Agent 2630 * that the subnet manager can access. Prior to the fabric being fully 2631 * configured by the subnet manager, the SMA is accessed via a well known 2632 * interface called the Subnet Management Interface (SMI). This interface 2633 * uses directed route packets to communicate with the SM to get around the 2634 * chicken and egg problem of the SM needing to know what's on the fabric 2635 * in order to configure the fabric, and needing to configure the fabric in 2636 * order to send packets to the devices on the fabric. These directed 2637 * route packets do not need the fabric fully configured in order to reach 2638 * their destination. The SMI is the only method allowed to send 2639 * directed route packets on an InfiniBand fabric. 2640 * 2641 * Return: true if the port provides an SMI. 2642 */ 2643 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num) 2644 { 2645 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI; 2646 } 2647 2648 /** 2649 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 2650 * Communication Manager. 2651 * @device: Device to check 2652 * @port_num: Port number to check 2653 * 2654 * The InfiniBand Communication Manager is one of many pre-defined General 2655 * Service Agents (GSA) that are accessed via the General Service 2656 * Interface (GSI). It's role is to facilitate establishment of connections 2657 * between nodes as well as other management related tasks for established 2658 * connections. 2659 * 2660 * Return: true if the port supports an IB CM (this does not guarantee that 2661 * a CM is actually running however). 2662 */ 2663 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num) 2664 { 2665 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM; 2666 } 2667 2668 /** 2669 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 2670 * Communication Manager. 2671 * @device: Device to check 2672 * @port_num: Port number to check 2673 * 2674 * Similar to above, but specific to iWARP connections which have a different 2675 * managment protocol than InfiniBand. 2676 * 2677 * Return: true if the port supports an iWARP CM (this does not guarantee that 2678 * a CM is actually running however). 2679 */ 2680 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num) 2681 { 2682 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM; 2683 } 2684 2685 /** 2686 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 2687 * Subnet Administration. 2688 * @device: Device to check 2689 * @port_num: Port number to check 2690 * 2691 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 2692 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 2693 * fabrics, devices should resolve routes to other hosts by contacting the 2694 * SA to query the proper route. 2695 * 2696 * Return: true if the port should act as a client to the fabric Subnet 2697 * Administration interface. This does not imply that the SA service is 2698 * running locally. 2699 */ 2700 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num) 2701 { 2702 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA; 2703 } 2704 2705 /** 2706 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 2707 * Multicast. 2708 * @device: Device to check 2709 * @port_num: Port number to check 2710 * 2711 * InfiniBand multicast registration is more complex than normal IPv4 or 2712 * IPv6 multicast registration. Each Host Channel Adapter must register 2713 * with the Subnet Manager when it wishes to join a multicast group. It 2714 * should do so only once regardless of how many queue pairs it subscribes 2715 * to this group. And it should leave the group only after all queue pairs 2716 * attached to the group have been detached. 2717 * 2718 * Return: true if the port must undertake the additional adminstrative 2719 * overhead of registering/unregistering with the SM and tracking of the 2720 * total number of queue pairs attached to the multicast group. 2721 */ 2722 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num) 2723 { 2724 return rdma_cap_ib_sa(device, port_num); 2725 } 2726 2727 /** 2728 * rdma_cap_af_ib - Check if the port of device has the capability 2729 * Native Infiniband Address. 2730 * @device: Device to check 2731 * @port_num: Port number to check 2732 * 2733 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 2734 * GID. RoCE uses a different mechanism, but still generates a GID via 2735 * a prescribed mechanism and port specific data. 2736 * 2737 * Return: true if the port uses a GID address to identify devices on the 2738 * network. 2739 */ 2740 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num) 2741 { 2742 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB; 2743 } 2744 2745 /** 2746 * rdma_cap_eth_ah - Check if the port of device has the capability 2747 * Ethernet Address Handle. 2748 * @device: Device to check 2749 * @port_num: Port number to check 2750 * 2751 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 2752 * to fabricate GIDs over Ethernet/IP specific addresses native to the 2753 * port. Normally, packet headers are generated by the sending host 2754 * adapter, but when sending connectionless datagrams, we must manually 2755 * inject the proper headers for the fabric we are communicating over. 2756 * 2757 * Return: true if we are running as a RoCE port and must force the 2758 * addition of a Global Route Header built from our Ethernet Address 2759 * Handle into our header list for connectionless packets. 2760 */ 2761 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num) 2762 { 2763 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH; 2764 } 2765 2766 /** 2767 * rdma_cap_opa_ah - Check if the port of device supports 2768 * OPA Address handles 2769 * @device: Device to check 2770 * @port_num: Port number to check 2771 * 2772 * Return: true if we are running on an OPA device which supports 2773 * the extended OPA addressing. 2774 */ 2775 static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num) 2776 { 2777 return (device->port_immutable[port_num].core_cap_flags & 2778 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH; 2779 } 2780 2781 /** 2782 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 2783 * 2784 * @device: Device 2785 * @port_num: Port number 2786 * 2787 * This MAD size includes the MAD headers and MAD payload. No other headers 2788 * are included. 2789 * 2790 * Return the max MAD size required by the Port. Will return 0 if the port 2791 * does not support MADs 2792 */ 2793 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num) 2794 { 2795 return device->port_immutable[port_num].max_mad_size; 2796 } 2797 2798 /** 2799 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 2800 * @device: Device to check 2801 * @port_num: Port number to check 2802 * 2803 * RoCE GID table mechanism manages the various GIDs for a device. 2804 * 2805 * NOTE: if allocating the port's GID table has failed, this call will still 2806 * return true, but any RoCE GID table API will fail. 2807 * 2808 * Return: true if the port uses RoCE GID table mechanism in order to manage 2809 * its GIDs. 2810 */ 2811 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 2812 u8 port_num) 2813 { 2814 return rdma_protocol_roce(device, port_num) && 2815 device->add_gid && device->del_gid; 2816 } 2817 2818 /* 2819 * Check if the device supports READ W/ INVALIDATE. 2820 */ 2821 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num) 2822 { 2823 /* 2824 * iWarp drivers must support READ W/ INVALIDATE. No other protocol 2825 * has support for it yet. 2826 */ 2827 return rdma_protocol_iwarp(dev, port_num); 2828 } 2829 2830 int ib_query_gid(struct ib_device *device, 2831 u8 port_num, int index, union ib_gid *gid, 2832 struct ib_gid_attr *attr); 2833 2834 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 2835 int state); 2836 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 2837 struct ifla_vf_info *info); 2838 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 2839 struct ifla_vf_stats *stats); 2840 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 2841 int type); 2842 2843 int ib_query_pkey(struct ib_device *device, 2844 u8 port_num, u16 index, u16 *pkey); 2845 2846 int ib_modify_device(struct ib_device *device, 2847 int device_modify_mask, 2848 struct ib_device_modify *device_modify); 2849 2850 int ib_modify_port(struct ib_device *device, 2851 u8 port_num, int port_modify_mask, 2852 struct ib_port_modify *port_modify); 2853 2854 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 2855 struct net_device *ndev, u8 *port_num, u16 *index); 2856 2857 int ib_find_pkey(struct ib_device *device, 2858 u8 port_num, u16 pkey, u16 *index); 2859 2860 enum ib_pd_flags { 2861 /* 2862 * Create a memory registration for all memory in the system and place 2863 * the rkey for it into pd->unsafe_global_rkey. This can be used by 2864 * ULPs to avoid the overhead of dynamic MRs. 2865 * 2866 * This flag is generally considered unsafe and must only be used in 2867 * extremly trusted environments. Every use of it will log a warning 2868 * in the kernel log. 2869 */ 2870 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01, 2871 }; 2872 2873 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 2874 const char *caller); 2875 #define ib_alloc_pd(device, flags) \ 2876 __ib_alloc_pd((device), (flags), KBUILD_MODNAME) 2877 void ib_dealloc_pd(struct ib_pd *pd); 2878 2879 /** 2880 * rdma_create_ah - Creates an address handle for the given address vector. 2881 * @pd: The protection domain associated with the address handle. 2882 * @ah_attr: The attributes of the address vector. 2883 * 2884 * The address handle is used to reference a local or global destination 2885 * in all UD QP post sends. 2886 */ 2887 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr); 2888 2889 /** 2890 * rdma_create_user_ah - Creates an address handle for the given address vector. 2891 * It resolves destination mac address for ah attribute of RoCE type. 2892 * @pd: The protection domain associated with the address handle. 2893 * @ah_attr: The attributes of the address vector. 2894 * @udata: pointer to user's input output buffer information need by 2895 * provider driver. 2896 * 2897 * It returns 0 on success and returns appropriate error code on error. 2898 * The address handle is used to reference a local or global destination 2899 * in all UD QP post sends. 2900 */ 2901 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd, 2902 struct rdma_ah_attr *ah_attr, 2903 struct ib_udata *udata); 2904 /** 2905 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header 2906 * work completion. 2907 * @hdr: the L3 header to parse 2908 * @net_type: type of header to parse 2909 * @sgid: place to store source gid 2910 * @dgid: place to store destination gid 2911 */ 2912 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 2913 enum rdma_network_type net_type, 2914 union ib_gid *sgid, union ib_gid *dgid); 2915 2916 /** 2917 * ib_get_rdma_header_version - Get the header version 2918 * @hdr: the L3 header to parse 2919 */ 2920 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr); 2921 2922 /** 2923 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a 2924 * work completion. 2925 * @device: Device on which the received message arrived. 2926 * @port_num: Port on which the received message arrived. 2927 * @wc: Work completion associated with the received message. 2928 * @grh: References the received global route header. This parameter is 2929 * ignored unless the work completion indicates that the GRH is valid. 2930 * @ah_attr: Returned attributes that can be used when creating an address 2931 * handle for replying to the message. 2932 */ 2933 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num, 2934 const struct ib_wc *wc, const struct ib_grh *grh, 2935 struct rdma_ah_attr *ah_attr); 2936 2937 /** 2938 * ib_create_ah_from_wc - Creates an address handle associated with the 2939 * sender of the specified work completion. 2940 * @pd: The protection domain associated with the address handle. 2941 * @wc: Work completion information associated with a received message. 2942 * @grh: References the received global route header. This parameter is 2943 * ignored unless the work completion indicates that the GRH is valid. 2944 * @port_num: The outbound port number to associate with the address. 2945 * 2946 * The address handle is used to reference a local or global destination 2947 * in all UD QP post sends. 2948 */ 2949 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 2950 const struct ib_grh *grh, u8 port_num); 2951 2952 /** 2953 * rdma_modify_ah - Modifies the address vector associated with an address 2954 * handle. 2955 * @ah: The address handle to modify. 2956 * @ah_attr: The new address vector attributes to associate with the 2957 * address handle. 2958 */ 2959 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2960 2961 /** 2962 * rdma_query_ah - Queries the address vector associated with an address 2963 * handle. 2964 * @ah: The address handle to query. 2965 * @ah_attr: The address vector attributes associated with the address 2966 * handle. 2967 */ 2968 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2969 2970 /** 2971 * rdma_destroy_ah - Destroys an address handle. 2972 * @ah: The address handle to destroy. 2973 */ 2974 int rdma_destroy_ah(struct ib_ah *ah); 2975 2976 /** 2977 * ib_create_srq - Creates a SRQ associated with the specified protection 2978 * domain. 2979 * @pd: The protection domain associated with the SRQ. 2980 * @srq_init_attr: A list of initial attributes required to create the 2981 * SRQ. If SRQ creation succeeds, then the attributes are updated to 2982 * the actual capabilities of the created SRQ. 2983 * 2984 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 2985 * requested size of the SRQ, and set to the actual values allocated 2986 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 2987 * will always be at least as large as the requested values. 2988 */ 2989 struct ib_srq *ib_create_srq(struct ib_pd *pd, 2990 struct ib_srq_init_attr *srq_init_attr); 2991 2992 /** 2993 * ib_modify_srq - Modifies the attributes for the specified SRQ. 2994 * @srq: The SRQ to modify. 2995 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 2996 * the current values of selected SRQ attributes are returned. 2997 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 2998 * are being modified. 2999 * 3000 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 3001 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 3002 * the number of receives queued drops below the limit. 3003 */ 3004 int ib_modify_srq(struct ib_srq *srq, 3005 struct ib_srq_attr *srq_attr, 3006 enum ib_srq_attr_mask srq_attr_mask); 3007 3008 /** 3009 * ib_query_srq - Returns the attribute list and current values for the 3010 * specified SRQ. 3011 * @srq: The SRQ to query. 3012 * @srq_attr: The attributes of the specified SRQ. 3013 */ 3014 int ib_query_srq(struct ib_srq *srq, 3015 struct ib_srq_attr *srq_attr); 3016 3017 /** 3018 * ib_destroy_srq - Destroys the specified SRQ. 3019 * @srq: The SRQ to destroy. 3020 */ 3021 int ib_destroy_srq(struct ib_srq *srq); 3022 3023 /** 3024 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 3025 * @srq: The SRQ to post the work request on. 3026 * @recv_wr: A list of work requests to post on the receive queue. 3027 * @bad_recv_wr: On an immediate failure, this parameter will reference 3028 * the work request that failed to be posted on the QP. 3029 */ 3030 static inline int ib_post_srq_recv(struct ib_srq *srq, 3031 struct ib_recv_wr *recv_wr, 3032 struct ib_recv_wr **bad_recv_wr) 3033 { 3034 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr); 3035 } 3036 3037 /** 3038 * ib_create_qp - Creates a QP associated with the specified protection 3039 * domain. 3040 * @pd: The protection domain associated with the QP. 3041 * @qp_init_attr: A list of initial attributes required to create the 3042 * QP. If QP creation succeeds, then the attributes are updated to 3043 * the actual capabilities of the created QP. 3044 */ 3045 struct ib_qp *ib_create_qp(struct ib_pd *pd, 3046 struct ib_qp_init_attr *qp_init_attr); 3047 3048 /** 3049 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 3050 * @qp: The QP to modify. 3051 * @attr: On input, specifies the QP attributes to modify. On output, 3052 * the current values of selected QP attributes are returned. 3053 * @attr_mask: A bit-mask used to specify which attributes of the QP 3054 * are being modified. 3055 * @udata: pointer to user's input output buffer information 3056 * are being modified. 3057 * It returns 0 on success and returns appropriate error code on error. 3058 */ 3059 int ib_modify_qp_with_udata(struct ib_qp *qp, 3060 struct ib_qp_attr *attr, 3061 int attr_mask, 3062 struct ib_udata *udata); 3063 3064 /** 3065 * ib_modify_qp - Modifies the attributes for the specified QP and then 3066 * transitions the QP to the given state. 3067 * @qp: The QP to modify. 3068 * @qp_attr: On input, specifies the QP attributes to modify. On output, 3069 * the current values of selected QP attributes are returned. 3070 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 3071 * are being modified. 3072 */ 3073 int ib_modify_qp(struct ib_qp *qp, 3074 struct ib_qp_attr *qp_attr, 3075 int qp_attr_mask); 3076 3077 /** 3078 * ib_query_qp - Returns the attribute list and current values for the 3079 * specified QP. 3080 * @qp: The QP to query. 3081 * @qp_attr: The attributes of the specified QP. 3082 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 3083 * @qp_init_attr: Additional attributes of the selected QP. 3084 * 3085 * The qp_attr_mask may be used to limit the query to gathering only the 3086 * selected attributes. 3087 */ 3088 int ib_query_qp(struct ib_qp *qp, 3089 struct ib_qp_attr *qp_attr, 3090 int qp_attr_mask, 3091 struct ib_qp_init_attr *qp_init_attr); 3092 3093 /** 3094 * ib_destroy_qp - Destroys the specified QP. 3095 * @qp: The QP to destroy. 3096 */ 3097 int ib_destroy_qp(struct ib_qp *qp); 3098 3099 /** 3100 * ib_open_qp - Obtain a reference to an existing sharable QP. 3101 * @xrcd - XRC domain 3102 * @qp_open_attr: Attributes identifying the QP to open. 3103 * 3104 * Returns a reference to a sharable QP. 3105 */ 3106 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 3107 struct ib_qp_open_attr *qp_open_attr); 3108 3109 /** 3110 * ib_close_qp - Release an external reference to a QP. 3111 * @qp: The QP handle to release 3112 * 3113 * The opened QP handle is released by the caller. The underlying 3114 * shared QP is not destroyed until all internal references are released. 3115 */ 3116 int ib_close_qp(struct ib_qp *qp); 3117 3118 /** 3119 * ib_post_send - Posts a list of work requests to the send queue of 3120 * the specified QP. 3121 * @qp: The QP to post the work request on. 3122 * @send_wr: A list of work requests to post on the send queue. 3123 * @bad_send_wr: On an immediate failure, this parameter will reference 3124 * the work request that failed to be posted on the QP. 3125 * 3126 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 3127 * error is returned, the QP state shall not be affected, 3128 * ib_post_send() will return an immediate error after queueing any 3129 * earlier work requests in the list. 3130 */ 3131 static inline int ib_post_send(struct ib_qp *qp, 3132 struct ib_send_wr *send_wr, 3133 struct ib_send_wr **bad_send_wr) 3134 { 3135 return qp->device->post_send(qp, send_wr, bad_send_wr); 3136 } 3137 3138 /** 3139 * ib_post_recv - Posts a list of work requests to the receive queue of 3140 * the specified QP. 3141 * @qp: The QP to post the work request on. 3142 * @recv_wr: A list of work requests to post on the receive queue. 3143 * @bad_recv_wr: On an immediate failure, this parameter will reference 3144 * the work request that failed to be posted on the QP. 3145 */ 3146 static inline int ib_post_recv(struct ib_qp *qp, 3147 struct ib_recv_wr *recv_wr, 3148 struct ib_recv_wr **bad_recv_wr) 3149 { 3150 return qp->device->post_recv(qp, recv_wr, bad_recv_wr); 3151 } 3152 3153 struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, 3154 int nr_cqe, int comp_vector, 3155 enum ib_poll_context poll_ctx, const char *caller); 3156 #define ib_alloc_cq(device, priv, nr_cqe, comp_vect, poll_ctx) \ 3157 __ib_alloc_cq((device), (priv), (nr_cqe), (comp_vect), (poll_ctx), KBUILD_MODNAME) 3158 3159 void ib_free_cq(struct ib_cq *cq); 3160 int ib_process_cq_direct(struct ib_cq *cq, int budget); 3161 3162 /** 3163 * ib_create_cq - Creates a CQ on the specified device. 3164 * @device: The device on which to create the CQ. 3165 * @comp_handler: A user-specified callback that is invoked when a 3166 * completion event occurs on the CQ. 3167 * @event_handler: A user-specified callback that is invoked when an 3168 * asynchronous event not associated with a completion occurs on the CQ. 3169 * @cq_context: Context associated with the CQ returned to the user via 3170 * the associated completion and event handlers. 3171 * @cq_attr: The attributes the CQ should be created upon. 3172 * 3173 * Users can examine the cq structure to determine the actual CQ size. 3174 */ 3175 struct ib_cq *ib_create_cq(struct ib_device *device, 3176 ib_comp_handler comp_handler, 3177 void (*event_handler)(struct ib_event *, void *), 3178 void *cq_context, 3179 const struct ib_cq_init_attr *cq_attr); 3180 3181 /** 3182 * ib_resize_cq - Modifies the capacity of the CQ. 3183 * @cq: The CQ to resize. 3184 * @cqe: The minimum size of the CQ. 3185 * 3186 * Users can examine the cq structure to determine the actual CQ size. 3187 */ 3188 int ib_resize_cq(struct ib_cq *cq, int cqe); 3189 3190 /** 3191 * rdma_set_cq_moderation - Modifies moderation params of the CQ 3192 * @cq: The CQ to modify. 3193 * @cq_count: number of CQEs that will trigger an event 3194 * @cq_period: max period of time in usec before triggering an event 3195 * 3196 */ 3197 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period); 3198 3199 /** 3200 * ib_destroy_cq - Destroys the specified CQ. 3201 * @cq: The CQ to destroy. 3202 */ 3203 int ib_destroy_cq(struct ib_cq *cq); 3204 3205 /** 3206 * ib_poll_cq - poll a CQ for completion(s) 3207 * @cq:the CQ being polled 3208 * @num_entries:maximum number of completions to return 3209 * @wc:array of at least @num_entries &struct ib_wc where completions 3210 * will be returned 3211 * 3212 * Poll a CQ for (possibly multiple) completions. If the return value 3213 * is < 0, an error occurred. If the return value is >= 0, it is the 3214 * number of completions returned. If the return value is 3215 * non-negative and < num_entries, then the CQ was emptied. 3216 */ 3217 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 3218 struct ib_wc *wc) 3219 { 3220 return cq->device->poll_cq(cq, num_entries, wc); 3221 } 3222 3223 /** 3224 * ib_peek_cq - Returns the number of unreaped completions currently 3225 * on the specified CQ. 3226 * @cq: The CQ to peek. 3227 * @wc_cnt: A minimum number of unreaped completions to check for. 3228 * 3229 * If the number of unreaped completions is greater than or equal to wc_cnt, 3230 * this function returns wc_cnt, otherwise, it returns the actual number of 3231 * unreaped completions. 3232 */ 3233 int ib_peek_cq(struct ib_cq *cq, int wc_cnt); 3234 3235 /** 3236 * ib_req_notify_cq - Request completion notification on a CQ. 3237 * @cq: The CQ to generate an event for. 3238 * @flags: 3239 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 3240 * to request an event on the next solicited event or next work 3241 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 3242 * may also be |ed in to request a hint about missed events, as 3243 * described below. 3244 * 3245 * Return Value: 3246 * < 0 means an error occurred while requesting notification 3247 * == 0 means notification was requested successfully, and if 3248 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 3249 * were missed and it is safe to wait for another event. In 3250 * this case is it guaranteed that any work completions added 3251 * to the CQ since the last CQ poll will trigger a completion 3252 * notification event. 3253 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 3254 * in. It means that the consumer must poll the CQ again to 3255 * make sure it is empty to avoid missing an event because of a 3256 * race between requesting notification and an entry being 3257 * added to the CQ. This return value means it is possible 3258 * (but not guaranteed) that a work completion has been added 3259 * to the CQ since the last poll without triggering a 3260 * completion notification event. 3261 */ 3262 static inline int ib_req_notify_cq(struct ib_cq *cq, 3263 enum ib_cq_notify_flags flags) 3264 { 3265 return cq->device->req_notify_cq(cq, flags); 3266 } 3267 3268 /** 3269 * ib_req_ncomp_notif - Request completion notification when there are 3270 * at least the specified number of unreaped completions on the CQ. 3271 * @cq: The CQ to generate an event for. 3272 * @wc_cnt: The number of unreaped completions that should be on the 3273 * CQ before an event is generated. 3274 */ 3275 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 3276 { 3277 return cq->device->req_ncomp_notif ? 3278 cq->device->req_ncomp_notif(cq, wc_cnt) : 3279 -ENOSYS; 3280 } 3281 3282 /** 3283 * ib_dma_mapping_error - check a DMA addr for error 3284 * @dev: The device for which the dma_addr was created 3285 * @dma_addr: The DMA address to check 3286 */ 3287 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 3288 { 3289 return dma_mapping_error(dev->dma_device, dma_addr); 3290 } 3291 3292 /** 3293 * ib_dma_map_single - Map a kernel virtual address to DMA address 3294 * @dev: The device for which the dma_addr is to be created 3295 * @cpu_addr: The kernel virtual address 3296 * @size: The size of the region in bytes 3297 * @direction: The direction of the DMA 3298 */ 3299 static inline u64 ib_dma_map_single(struct ib_device *dev, 3300 void *cpu_addr, size_t size, 3301 enum dma_data_direction direction) 3302 { 3303 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 3304 } 3305 3306 /** 3307 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 3308 * @dev: The device for which the DMA address was created 3309 * @addr: The DMA address 3310 * @size: The size of the region in bytes 3311 * @direction: The direction of the DMA 3312 */ 3313 static inline void ib_dma_unmap_single(struct ib_device *dev, 3314 u64 addr, size_t size, 3315 enum dma_data_direction direction) 3316 { 3317 dma_unmap_single(dev->dma_device, addr, size, direction); 3318 } 3319 3320 /** 3321 * ib_dma_map_page - Map a physical page to DMA address 3322 * @dev: The device for which the dma_addr is to be created 3323 * @page: The page to be mapped 3324 * @offset: The offset within the page 3325 * @size: The size of the region in bytes 3326 * @direction: The direction of the DMA 3327 */ 3328 static inline u64 ib_dma_map_page(struct ib_device *dev, 3329 struct page *page, 3330 unsigned long offset, 3331 size_t size, 3332 enum dma_data_direction direction) 3333 { 3334 return dma_map_page(dev->dma_device, page, offset, size, direction); 3335 } 3336 3337 /** 3338 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 3339 * @dev: The device for which the DMA address was created 3340 * @addr: The DMA address 3341 * @size: The size of the region in bytes 3342 * @direction: The direction of the DMA 3343 */ 3344 static inline void ib_dma_unmap_page(struct ib_device *dev, 3345 u64 addr, size_t size, 3346 enum dma_data_direction direction) 3347 { 3348 dma_unmap_page(dev->dma_device, addr, size, direction); 3349 } 3350 3351 /** 3352 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 3353 * @dev: The device for which the DMA addresses are to be created 3354 * @sg: The array of scatter/gather entries 3355 * @nents: The number of scatter/gather entries 3356 * @direction: The direction of the DMA 3357 */ 3358 static inline int ib_dma_map_sg(struct ib_device *dev, 3359 struct scatterlist *sg, int nents, 3360 enum dma_data_direction direction) 3361 { 3362 return dma_map_sg(dev->dma_device, sg, nents, direction); 3363 } 3364 3365 /** 3366 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 3367 * @dev: The device for which the DMA addresses were created 3368 * @sg: The array of scatter/gather entries 3369 * @nents: The number of scatter/gather entries 3370 * @direction: The direction of the DMA 3371 */ 3372 static inline void ib_dma_unmap_sg(struct ib_device *dev, 3373 struct scatterlist *sg, int nents, 3374 enum dma_data_direction direction) 3375 { 3376 dma_unmap_sg(dev->dma_device, sg, nents, direction); 3377 } 3378 3379 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 3380 struct scatterlist *sg, int nents, 3381 enum dma_data_direction direction, 3382 unsigned long dma_attrs) 3383 { 3384 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, 3385 dma_attrs); 3386 } 3387 3388 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 3389 struct scatterlist *sg, int nents, 3390 enum dma_data_direction direction, 3391 unsigned long dma_attrs) 3392 { 3393 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs); 3394 } 3395 /** 3396 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry 3397 * @dev: The device for which the DMA addresses were created 3398 * @sg: The scatter/gather entry 3399 * 3400 * Note: this function is obsolete. To do: change all occurrences of 3401 * ib_sg_dma_address() into sg_dma_address(). 3402 */ 3403 static inline u64 ib_sg_dma_address(struct ib_device *dev, 3404 struct scatterlist *sg) 3405 { 3406 return sg_dma_address(sg); 3407 } 3408 3409 /** 3410 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry 3411 * @dev: The device for which the DMA addresses were created 3412 * @sg: The scatter/gather entry 3413 * 3414 * Note: this function is obsolete. To do: change all occurrences of 3415 * ib_sg_dma_len() into sg_dma_len(). 3416 */ 3417 static inline unsigned int ib_sg_dma_len(struct ib_device *dev, 3418 struct scatterlist *sg) 3419 { 3420 return sg_dma_len(sg); 3421 } 3422 3423 /** 3424 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 3425 * @dev: The device for which the DMA address was created 3426 * @addr: The DMA address 3427 * @size: The size of the region in bytes 3428 * @dir: The direction of the DMA 3429 */ 3430 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 3431 u64 addr, 3432 size_t size, 3433 enum dma_data_direction dir) 3434 { 3435 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 3436 } 3437 3438 /** 3439 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 3440 * @dev: The device for which the DMA address was created 3441 * @addr: The DMA address 3442 * @size: The size of the region in bytes 3443 * @dir: The direction of the DMA 3444 */ 3445 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 3446 u64 addr, 3447 size_t size, 3448 enum dma_data_direction dir) 3449 { 3450 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 3451 } 3452 3453 /** 3454 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 3455 * @dev: The device for which the DMA address is requested 3456 * @size: The size of the region to allocate in bytes 3457 * @dma_handle: A pointer for returning the DMA address of the region 3458 * @flag: memory allocator flags 3459 */ 3460 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 3461 size_t size, 3462 dma_addr_t *dma_handle, 3463 gfp_t flag) 3464 { 3465 return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag); 3466 } 3467 3468 /** 3469 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 3470 * @dev: The device for which the DMA addresses were allocated 3471 * @size: The size of the region 3472 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 3473 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 3474 */ 3475 static inline void ib_dma_free_coherent(struct ib_device *dev, 3476 size_t size, void *cpu_addr, 3477 dma_addr_t dma_handle) 3478 { 3479 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 3480 } 3481 3482 /** 3483 * ib_dereg_mr - Deregisters a memory region and removes it from the 3484 * HCA translation table. 3485 * @mr: The memory region to deregister. 3486 * 3487 * This function can fail, if the memory region has memory windows bound to it. 3488 */ 3489 int ib_dereg_mr(struct ib_mr *mr); 3490 3491 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, 3492 enum ib_mr_type mr_type, 3493 u32 max_num_sg); 3494 3495 /** 3496 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 3497 * R_Key and L_Key. 3498 * @mr - struct ib_mr pointer to be updated. 3499 * @newkey - new key to be used. 3500 */ 3501 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 3502 { 3503 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 3504 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 3505 } 3506 3507 /** 3508 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 3509 * for calculating a new rkey for type 2 memory windows. 3510 * @rkey - the rkey to increment. 3511 */ 3512 static inline u32 ib_inc_rkey(u32 rkey) 3513 { 3514 const u32 mask = 0x000000ff; 3515 return ((rkey + 1) & mask) | (rkey & ~mask); 3516 } 3517 3518 /** 3519 * ib_alloc_fmr - Allocates a unmapped fast memory region. 3520 * @pd: The protection domain associated with the unmapped region. 3521 * @mr_access_flags: Specifies the memory access rights. 3522 * @fmr_attr: Attributes of the unmapped region. 3523 * 3524 * A fast memory region must be mapped before it can be used as part of 3525 * a work request. 3526 */ 3527 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 3528 int mr_access_flags, 3529 struct ib_fmr_attr *fmr_attr); 3530 3531 /** 3532 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 3533 * @fmr: The fast memory region to associate with the pages. 3534 * @page_list: An array of physical pages to map to the fast memory region. 3535 * @list_len: The number of pages in page_list. 3536 * @iova: The I/O virtual address to use with the mapped region. 3537 */ 3538 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 3539 u64 *page_list, int list_len, 3540 u64 iova) 3541 { 3542 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); 3543 } 3544 3545 /** 3546 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 3547 * @fmr_list: A linked list of fast memory regions to unmap. 3548 */ 3549 int ib_unmap_fmr(struct list_head *fmr_list); 3550 3551 /** 3552 * ib_dealloc_fmr - Deallocates a fast memory region. 3553 * @fmr: The fast memory region to deallocate. 3554 */ 3555 int ib_dealloc_fmr(struct ib_fmr *fmr); 3556 3557 /** 3558 * ib_attach_mcast - Attaches the specified QP to a multicast group. 3559 * @qp: QP to attach to the multicast group. The QP must be type 3560 * IB_QPT_UD. 3561 * @gid: Multicast group GID. 3562 * @lid: Multicast group LID in host byte order. 3563 * 3564 * In order to send and receive multicast packets, subnet 3565 * administration must have created the multicast group and configured 3566 * the fabric appropriately. The port associated with the specified 3567 * QP must also be a member of the multicast group. 3568 */ 3569 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3570 3571 /** 3572 * ib_detach_mcast - Detaches the specified QP from a multicast group. 3573 * @qp: QP to detach from the multicast group. 3574 * @gid: Multicast group GID. 3575 * @lid: Multicast group LID in host byte order. 3576 */ 3577 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3578 3579 /** 3580 * ib_alloc_xrcd - Allocates an XRC domain. 3581 * @device: The device on which to allocate the XRC domain. 3582 * @caller: Module name for kernel consumers 3583 */ 3584 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller); 3585 #define ib_alloc_xrcd(device) \ 3586 __ib_alloc_xrcd((device), KBUILD_MODNAME) 3587 3588 /** 3589 * ib_dealloc_xrcd - Deallocates an XRC domain. 3590 * @xrcd: The XRC domain to deallocate. 3591 */ 3592 int ib_dealloc_xrcd(struct ib_xrcd *xrcd); 3593 3594 struct ib_flow *ib_create_flow(struct ib_qp *qp, 3595 struct ib_flow_attr *flow_attr, int domain); 3596 int ib_destroy_flow(struct ib_flow *flow_id); 3597 3598 static inline int ib_check_mr_access(int flags) 3599 { 3600 /* 3601 * Local write permission is required if remote write or 3602 * remote atomic permission is also requested. 3603 */ 3604 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 3605 !(flags & IB_ACCESS_LOCAL_WRITE)) 3606 return -EINVAL; 3607 3608 return 0; 3609 } 3610 3611 /** 3612 * ib_check_mr_status: lightweight check of MR status. 3613 * This routine may provide status checks on a selected 3614 * ib_mr. first use is for signature status check. 3615 * 3616 * @mr: A memory region. 3617 * @check_mask: Bitmask of which checks to perform from 3618 * ib_mr_status_check enumeration. 3619 * @mr_status: The container of relevant status checks. 3620 * failed checks will be indicated in the status bitmask 3621 * and the relevant info shall be in the error item. 3622 */ 3623 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 3624 struct ib_mr_status *mr_status); 3625 3626 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port, 3627 u16 pkey, const union ib_gid *gid, 3628 const struct sockaddr *addr); 3629 struct ib_wq *ib_create_wq(struct ib_pd *pd, 3630 struct ib_wq_init_attr *init_attr); 3631 int ib_destroy_wq(struct ib_wq *wq); 3632 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr, 3633 u32 wq_attr_mask); 3634 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device, 3635 struct ib_rwq_ind_table_init_attr* 3636 wq_ind_table_init_attr); 3637 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table); 3638 3639 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3640 unsigned int *sg_offset, unsigned int page_size); 3641 3642 static inline int 3643 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3644 unsigned int *sg_offset, unsigned int page_size) 3645 { 3646 int n; 3647 3648 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size); 3649 mr->iova = 0; 3650 3651 return n; 3652 } 3653 3654 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 3655 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64)); 3656 3657 void ib_drain_rq(struct ib_qp *qp); 3658 void ib_drain_sq(struct ib_qp *qp); 3659 void ib_drain_qp(struct ib_qp *qp); 3660 3661 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width); 3662 3663 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr) 3664 { 3665 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE) 3666 return attr->roce.dmac; 3667 return NULL; 3668 } 3669 3670 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid) 3671 { 3672 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 3673 attr->ib.dlid = (u16)dlid; 3674 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 3675 attr->opa.dlid = dlid; 3676 } 3677 3678 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr) 3679 { 3680 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 3681 return attr->ib.dlid; 3682 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 3683 return attr->opa.dlid; 3684 return 0; 3685 } 3686 3687 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl) 3688 { 3689 attr->sl = sl; 3690 } 3691 3692 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr) 3693 { 3694 return attr->sl; 3695 } 3696 3697 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr, 3698 u8 src_path_bits) 3699 { 3700 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 3701 attr->ib.src_path_bits = src_path_bits; 3702 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 3703 attr->opa.src_path_bits = src_path_bits; 3704 } 3705 3706 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr) 3707 { 3708 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 3709 return attr->ib.src_path_bits; 3710 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 3711 return attr->opa.src_path_bits; 3712 return 0; 3713 } 3714 3715 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr, 3716 bool make_grd) 3717 { 3718 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 3719 attr->opa.make_grd = make_grd; 3720 } 3721 3722 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr) 3723 { 3724 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 3725 return attr->opa.make_grd; 3726 return false; 3727 } 3728 3729 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num) 3730 { 3731 attr->port_num = port_num; 3732 } 3733 3734 static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr) 3735 { 3736 return attr->port_num; 3737 } 3738 3739 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr, 3740 u8 static_rate) 3741 { 3742 attr->static_rate = static_rate; 3743 } 3744 3745 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr) 3746 { 3747 return attr->static_rate; 3748 } 3749 3750 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr, 3751 enum ib_ah_flags flag) 3752 { 3753 attr->ah_flags = flag; 3754 } 3755 3756 static inline enum ib_ah_flags 3757 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr) 3758 { 3759 return attr->ah_flags; 3760 } 3761 3762 static inline const struct ib_global_route 3763 *rdma_ah_read_grh(const struct rdma_ah_attr *attr) 3764 { 3765 return &attr->grh; 3766 } 3767 3768 /*To retrieve and modify the grh */ 3769 static inline struct ib_global_route 3770 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr) 3771 { 3772 return &attr->grh; 3773 } 3774 3775 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid) 3776 { 3777 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 3778 3779 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid)); 3780 } 3781 3782 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr, 3783 __be64 prefix) 3784 { 3785 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 3786 3787 grh->dgid.global.subnet_prefix = prefix; 3788 } 3789 3790 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr, 3791 __be64 if_id) 3792 { 3793 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 3794 3795 grh->dgid.global.interface_id = if_id; 3796 } 3797 3798 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr, 3799 union ib_gid *dgid, u32 flow_label, 3800 u8 sgid_index, u8 hop_limit, 3801 u8 traffic_class) 3802 { 3803 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 3804 3805 attr->ah_flags = IB_AH_GRH; 3806 if (dgid) 3807 grh->dgid = *dgid; 3808 grh->flow_label = flow_label; 3809 grh->sgid_index = sgid_index; 3810 grh->hop_limit = hop_limit; 3811 grh->traffic_class = traffic_class; 3812 } 3813 3814 /** 3815 * rdma_ah_find_type - Return address handle type. 3816 * 3817 * @dev: Device to be checked 3818 * @port_num: Port number 3819 */ 3820 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev, 3821 u8 port_num) 3822 { 3823 if (rdma_protocol_roce(dev, port_num)) 3824 return RDMA_AH_ATTR_TYPE_ROCE; 3825 if (rdma_protocol_ib(dev, port_num)) { 3826 if (rdma_cap_opa_ah(dev, port_num)) 3827 return RDMA_AH_ATTR_TYPE_OPA; 3828 return RDMA_AH_ATTR_TYPE_IB; 3829 } 3830 3831 return RDMA_AH_ATTR_TYPE_UNDEFINED; 3832 } 3833 3834 /** 3835 * ib_lid_cpu16 - Return lid in 16bit CPU encoding. 3836 * In the current implementation the only way to get 3837 * get the 32bit lid is from other sources for OPA. 3838 * For IB, lids will always be 16bits so cast the 3839 * value accordingly. 3840 * 3841 * @lid: A 32bit LID 3842 */ 3843 static inline u16 ib_lid_cpu16(u32 lid) 3844 { 3845 WARN_ON_ONCE(lid & 0xFFFF0000); 3846 return (u16)lid; 3847 } 3848 3849 /** 3850 * ib_lid_be16 - Return lid in 16bit BE encoding. 3851 * 3852 * @lid: A 32bit LID 3853 */ 3854 static inline __be16 ib_lid_be16(u32 lid) 3855 { 3856 WARN_ON_ONCE(lid & 0xFFFF0000); 3857 return cpu_to_be16((u16)lid); 3858 } 3859 3860 /** 3861 * ib_get_vector_affinity - Get the affinity mappings of a given completion 3862 * vector 3863 * @device: the rdma device 3864 * @comp_vector: index of completion vector 3865 * 3866 * Returns NULL on failure, otherwise a corresponding cpu map of the 3867 * completion vector (returns all-cpus map if the device driver doesn't 3868 * implement get_vector_affinity). 3869 */ 3870 static inline const struct cpumask * 3871 ib_get_vector_affinity(struct ib_device *device, int comp_vector) 3872 { 3873 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors || 3874 !device->get_vector_affinity) 3875 return NULL; 3876 3877 return device->get_vector_affinity(device, comp_vector); 3878 3879 } 3880 3881 /** 3882 * rdma_roce_rescan_device - Rescan all of the network devices in the system 3883 * and add their gids, as needed, to the relevant RoCE devices. 3884 * 3885 * @device: the rdma device 3886 */ 3887 void rdma_roce_rescan_device(struct ib_device *ibdev); 3888 3889 #endif /* IB_VERBS_H */ 3890