1 /* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */ 2 /* 3 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 4 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 5 * Copyright (c) 2004 Intel Corporation. All rights reserved. 6 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 7 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 8 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 9 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 10 */ 11 12 #ifndef IB_VERBS_H 13 #define IB_VERBS_H 14 15 #include <linux/types.h> 16 #include <linux/device.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/kref.h> 19 #include <linux/list.h> 20 #include <linux/rwsem.h> 21 #include <linux/workqueue.h> 22 #include <linux/irq_poll.h> 23 #include <uapi/linux/if_ether.h> 24 #include <net/ipv6.h> 25 #include <net/ip.h> 26 #include <linux/string.h> 27 #include <linux/slab.h> 28 #include <linux/netdevice.h> 29 #include <linux/refcount.h> 30 #include <linux/if_link.h> 31 #include <linux/atomic.h> 32 #include <linux/mmu_notifier.h> 33 #include <linux/uaccess.h> 34 #include <linux/cgroup_rdma.h> 35 #include <linux/irqflags.h> 36 #include <linux/preempt.h> 37 #include <linux/dim.h> 38 #include <uapi/rdma/ib_user_verbs.h> 39 #include <rdma/rdma_counter.h> 40 #include <rdma/restrack.h> 41 #include <rdma/signature.h> 42 #include <uapi/rdma/rdma_user_ioctl.h> 43 #include <uapi/rdma/ib_user_ioctl_verbs.h> 44 45 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN 46 47 struct ib_umem_odp; 48 struct ib_uqp_object; 49 struct ib_usrq_object; 50 struct ib_uwq_object; 51 struct rdma_cm_id; 52 53 extern struct workqueue_struct *ib_wq; 54 extern struct workqueue_struct *ib_comp_wq; 55 extern struct workqueue_struct *ib_comp_unbound_wq; 56 57 struct ib_ucq_object; 58 59 __printf(3, 4) __cold 60 void ibdev_printk(const char *level, const struct ib_device *ibdev, 61 const char *format, ...); 62 __printf(2, 3) __cold 63 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...); 64 __printf(2, 3) __cold 65 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...); 66 __printf(2, 3) __cold 67 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...); 68 __printf(2, 3) __cold 69 void ibdev_err(const struct ib_device *ibdev, const char *format, ...); 70 __printf(2, 3) __cold 71 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...); 72 __printf(2, 3) __cold 73 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...); 74 __printf(2, 3) __cold 75 void ibdev_info(const struct ib_device *ibdev, const char *format, ...); 76 77 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 78 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 79 #define ibdev_dbg(__dev, format, args...) \ 80 dynamic_ibdev_dbg(__dev, format, ##args) 81 #else 82 __printf(2, 3) __cold 83 static inline 84 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {} 85 #endif 86 87 #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...) \ 88 do { \ 89 static DEFINE_RATELIMIT_STATE(_rs, \ 90 DEFAULT_RATELIMIT_INTERVAL, \ 91 DEFAULT_RATELIMIT_BURST); \ 92 if (__ratelimit(&_rs)) \ 93 ibdev_level(ibdev, fmt, ##__VA_ARGS__); \ 94 } while (0) 95 96 #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \ 97 ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__) 98 #define ibdev_alert_ratelimited(ibdev, fmt, ...) \ 99 ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__) 100 #define ibdev_crit_ratelimited(ibdev, fmt, ...) \ 101 ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__) 102 #define ibdev_err_ratelimited(ibdev, fmt, ...) \ 103 ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__) 104 #define ibdev_warn_ratelimited(ibdev, fmt, ...) \ 105 ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__) 106 #define ibdev_notice_ratelimited(ibdev, fmt, ...) \ 107 ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__) 108 #define ibdev_info_ratelimited(ibdev, fmt, ...) \ 109 ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__) 110 111 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 112 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 113 /* descriptor check is first to prevent flooding with "callbacks suppressed" */ 114 #define ibdev_dbg_ratelimited(ibdev, fmt, ...) \ 115 do { \ 116 static DEFINE_RATELIMIT_STATE(_rs, \ 117 DEFAULT_RATELIMIT_INTERVAL, \ 118 DEFAULT_RATELIMIT_BURST); \ 119 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \ 120 if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs)) \ 121 __dynamic_ibdev_dbg(&descriptor, ibdev, fmt, \ 122 ##__VA_ARGS__); \ 123 } while (0) 124 #else 125 __printf(2, 3) __cold 126 static inline 127 void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {} 128 #endif 129 130 union ib_gid { 131 u8 raw[16]; 132 struct { 133 __be64 subnet_prefix; 134 __be64 interface_id; 135 } global; 136 }; 137 138 extern union ib_gid zgid; 139 140 enum ib_gid_type { 141 /* If link layer is Ethernet, this is RoCE V1 */ 142 IB_GID_TYPE_IB = 0, 143 IB_GID_TYPE_ROCE = 0, 144 IB_GID_TYPE_ROCE_UDP_ENCAP = 1, 145 IB_GID_TYPE_SIZE 146 }; 147 148 #define ROCE_V2_UDP_DPORT 4791 149 struct ib_gid_attr { 150 struct net_device __rcu *ndev; 151 struct ib_device *device; 152 union ib_gid gid; 153 enum ib_gid_type gid_type; 154 u16 index; 155 u8 port_num; 156 }; 157 158 enum { 159 /* set the local administered indication */ 160 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2, 161 }; 162 163 enum rdma_transport_type { 164 RDMA_TRANSPORT_IB, 165 RDMA_TRANSPORT_IWARP, 166 RDMA_TRANSPORT_USNIC, 167 RDMA_TRANSPORT_USNIC_UDP, 168 RDMA_TRANSPORT_UNSPECIFIED, 169 }; 170 171 enum rdma_protocol_type { 172 RDMA_PROTOCOL_IB, 173 RDMA_PROTOCOL_IBOE, 174 RDMA_PROTOCOL_IWARP, 175 RDMA_PROTOCOL_USNIC_UDP 176 }; 177 178 __attribute_const__ enum rdma_transport_type 179 rdma_node_get_transport(unsigned int node_type); 180 181 enum rdma_network_type { 182 RDMA_NETWORK_IB, 183 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB, 184 RDMA_NETWORK_IPV4, 185 RDMA_NETWORK_IPV6 186 }; 187 188 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) 189 { 190 if (network_type == RDMA_NETWORK_IPV4 || 191 network_type == RDMA_NETWORK_IPV6) 192 return IB_GID_TYPE_ROCE_UDP_ENCAP; 193 194 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */ 195 return IB_GID_TYPE_IB; 196 } 197 198 static inline enum rdma_network_type 199 rdma_gid_attr_network_type(const struct ib_gid_attr *attr) 200 { 201 if (attr->gid_type == IB_GID_TYPE_IB) 202 return RDMA_NETWORK_IB; 203 204 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid)) 205 return RDMA_NETWORK_IPV4; 206 else 207 return RDMA_NETWORK_IPV6; 208 } 209 210 enum rdma_link_layer { 211 IB_LINK_LAYER_UNSPECIFIED, 212 IB_LINK_LAYER_INFINIBAND, 213 IB_LINK_LAYER_ETHERNET, 214 }; 215 216 enum ib_device_cap_flags { 217 IB_DEVICE_RESIZE_MAX_WR = (1 << 0), 218 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1), 219 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2), 220 IB_DEVICE_RAW_MULTI = (1 << 3), 221 IB_DEVICE_AUTO_PATH_MIG = (1 << 4), 222 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5), 223 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6), 224 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7), 225 IB_DEVICE_SHUTDOWN_PORT = (1 << 8), 226 /* Not in use, former INIT_TYPE = (1 << 9),*/ 227 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10), 228 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11), 229 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12), 230 IB_DEVICE_SRQ_RESIZE = (1 << 13), 231 IB_DEVICE_N_NOTIFY_CQ = (1 << 14), 232 233 /* 234 * This device supports a per-device lkey or stag that can be 235 * used without performing a memory registration for the local 236 * memory. Note that ULPs should never check this flag, but 237 * instead of use the local_dma_lkey flag in the ib_pd structure, 238 * which will always contain a usable lkey. 239 */ 240 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15), 241 /* Reserved, old SEND_W_INV = (1 << 16),*/ 242 IB_DEVICE_MEM_WINDOW = (1 << 17), 243 /* 244 * Devices should set IB_DEVICE_UD_IP_SUM if they support 245 * insertion of UDP and TCP checksum on outgoing UD IPoIB 246 * messages and can verify the validity of checksum for 247 * incoming messages. Setting this flag implies that the 248 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 249 */ 250 IB_DEVICE_UD_IP_CSUM = (1 << 18), 251 IB_DEVICE_UD_TSO = (1 << 19), 252 IB_DEVICE_XRC = (1 << 20), 253 254 /* 255 * This device supports the IB "base memory management extension", 256 * which includes support for fast registrations (IB_WR_REG_MR, 257 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should 258 * also be set by any iWarp device which must support FRs to comply 259 * to the iWarp verbs spec. iWarp devices also support the 260 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the 261 * stag. 262 */ 263 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21), 264 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22), 265 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23), 266 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24), 267 IB_DEVICE_RC_IP_CSUM = (1 << 25), 268 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */ 269 IB_DEVICE_RAW_IP_CSUM = (1 << 26), 270 /* 271 * Devices should set IB_DEVICE_CROSS_CHANNEL if they 272 * support execution of WQEs that involve synchronization 273 * of I/O operations with single completion queue managed 274 * by hardware. 275 */ 276 IB_DEVICE_CROSS_CHANNEL = (1 << 27), 277 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29), 278 IB_DEVICE_INTEGRITY_HANDOVER = (1 << 30), 279 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31), 280 IB_DEVICE_SG_GAPS_REG = (1ULL << 32), 281 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33), 282 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */ 283 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34), 284 IB_DEVICE_RDMA_NETDEV_OPA = (1ULL << 35), 285 /* The device supports padding incoming writes to cacheline. */ 286 IB_DEVICE_PCI_WRITE_END_PADDING = (1ULL << 36), 287 IB_DEVICE_ALLOW_USER_UNREG = (1ULL << 37), 288 }; 289 290 enum ib_atomic_cap { 291 IB_ATOMIC_NONE, 292 IB_ATOMIC_HCA, 293 IB_ATOMIC_GLOB 294 }; 295 296 enum ib_odp_general_cap_bits { 297 IB_ODP_SUPPORT = 1 << 0, 298 IB_ODP_SUPPORT_IMPLICIT = 1 << 1, 299 }; 300 301 enum ib_odp_transport_cap_bits { 302 IB_ODP_SUPPORT_SEND = 1 << 0, 303 IB_ODP_SUPPORT_RECV = 1 << 1, 304 IB_ODP_SUPPORT_WRITE = 1 << 2, 305 IB_ODP_SUPPORT_READ = 1 << 3, 306 IB_ODP_SUPPORT_ATOMIC = 1 << 4, 307 IB_ODP_SUPPORT_SRQ_RECV = 1 << 5, 308 }; 309 310 struct ib_odp_caps { 311 uint64_t general_caps; 312 struct { 313 uint32_t rc_odp_caps; 314 uint32_t uc_odp_caps; 315 uint32_t ud_odp_caps; 316 uint32_t xrc_odp_caps; 317 } per_transport_caps; 318 }; 319 320 struct ib_rss_caps { 321 /* Corresponding bit will be set if qp type from 322 * 'enum ib_qp_type' is supported, e.g. 323 * supported_qpts |= 1 << IB_QPT_UD 324 */ 325 u32 supported_qpts; 326 u32 max_rwq_indirection_tables; 327 u32 max_rwq_indirection_table_size; 328 }; 329 330 enum ib_tm_cap_flags { 331 /* Support tag matching with rendezvous offload for RC transport */ 332 IB_TM_CAP_RNDV_RC = 1 << 0, 333 }; 334 335 struct ib_tm_caps { 336 /* Max size of RNDV header */ 337 u32 max_rndv_hdr_size; 338 /* Max number of entries in tag matching list */ 339 u32 max_num_tags; 340 /* From enum ib_tm_cap_flags */ 341 u32 flags; 342 /* Max number of outstanding list operations */ 343 u32 max_ops; 344 /* Max number of SGE in tag matching entry */ 345 u32 max_sge; 346 }; 347 348 struct ib_cq_init_attr { 349 unsigned int cqe; 350 u32 comp_vector; 351 u32 flags; 352 }; 353 354 enum ib_cq_attr_mask { 355 IB_CQ_MODERATE = 1 << 0, 356 }; 357 358 struct ib_cq_caps { 359 u16 max_cq_moderation_count; 360 u16 max_cq_moderation_period; 361 }; 362 363 struct ib_dm_mr_attr { 364 u64 length; 365 u64 offset; 366 u32 access_flags; 367 }; 368 369 struct ib_dm_alloc_attr { 370 u64 length; 371 u32 alignment; 372 u32 flags; 373 }; 374 375 struct ib_device_attr { 376 u64 fw_ver; 377 __be64 sys_image_guid; 378 u64 max_mr_size; 379 u64 page_size_cap; 380 u32 vendor_id; 381 u32 vendor_part_id; 382 u32 hw_ver; 383 int max_qp; 384 int max_qp_wr; 385 u64 device_cap_flags; 386 int max_send_sge; 387 int max_recv_sge; 388 int max_sge_rd; 389 int max_cq; 390 int max_cqe; 391 int max_mr; 392 int max_pd; 393 int max_qp_rd_atom; 394 int max_ee_rd_atom; 395 int max_res_rd_atom; 396 int max_qp_init_rd_atom; 397 int max_ee_init_rd_atom; 398 enum ib_atomic_cap atomic_cap; 399 enum ib_atomic_cap masked_atomic_cap; 400 int max_ee; 401 int max_rdd; 402 int max_mw; 403 int max_raw_ipv6_qp; 404 int max_raw_ethy_qp; 405 int max_mcast_grp; 406 int max_mcast_qp_attach; 407 int max_total_mcast_qp_attach; 408 int max_ah; 409 int max_srq; 410 int max_srq_wr; 411 int max_srq_sge; 412 unsigned int max_fast_reg_page_list_len; 413 unsigned int max_pi_fast_reg_page_list_len; 414 u16 max_pkeys; 415 u8 local_ca_ack_delay; 416 int sig_prot_cap; 417 int sig_guard_cap; 418 struct ib_odp_caps odp_caps; 419 uint64_t timestamp_mask; 420 uint64_t hca_core_clock; /* in KHZ */ 421 struct ib_rss_caps rss_caps; 422 u32 max_wq_type_rq; 423 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */ 424 struct ib_tm_caps tm_caps; 425 struct ib_cq_caps cq_caps; 426 u64 max_dm_size; 427 /* Max entries for sgl for optimized performance per READ */ 428 u32 max_sgl_rd; 429 }; 430 431 enum ib_mtu { 432 IB_MTU_256 = 1, 433 IB_MTU_512 = 2, 434 IB_MTU_1024 = 3, 435 IB_MTU_2048 = 4, 436 IB_MTU_4096 = 5 437 }; 438 439 enum opa_mtu { 440 OPA_MTU_8192 = 6, 441 OPA_MTU_10240 = 7 442 }; 443 444 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 445 { 446 switch (mtu) { 447 case IB_MTU_256: return 256; 448 case IB_MTU_512: return 512; 449 case IB_MTU_1024: return 1024; 450 case IB_MTU_2048: return 2048; 451 case IB_MTU_4096: return 4096; 452 default: return -1; 453 } 454 } 455 456 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu) 457 { 458 if (mtu >= 4096) 459 return IB_MTU_4096; 460 else if (mtu >= 2048) 461 return IB_MTU_2048; 462 else if (mtu >= 1024) 463 return IB_MTU_1024; 464 else if (mtu >= 512) 465 return IB_MTU_512; 466 else 467 return IB_MTU_256; 468 } 469 470 static inline int opa_mtu_enum_to_int(enum opa_mtu mtu) 471 { 472 switch (mtu) { 473 case OPA_MTU_8192: 474 return 8192; 475 case OPA_MTU_10240: 476 return 10240; 477 default: 478 return(ib_mtu_enum_to_int((enum ib_mtu)mtu)); 479 } 480 } 481 482 static inline enum opa_mtu opa_mtu_int_to_enum(int mtu) 483 { 484 if (mtu >= 10240) 485 return OPA_MTU_10240; 486 else if (mtu >= 8192) 487 return OPA_MTU_8192; 488 else 489 return ((enum opa_mtu)ib_mtu_int_to_enum(mtu)); 490 } 491 492 enum ib_port_state { 493 IB_PORT_NOP = 0, 494 IB_PORT_DOWN = 1, 495 IB_PORT_INIT = 2, 496 IB_PORT_ARMED = 3, 497 IB_PORT_ACTIVE = 4, 498 IB_PORT_ACTIVE_DEFER = 5 499 }; 500 501 enum ib_port_phys_state { 502 IB_PORT_PHYS_STATE_SLEEP = 1, 503 IB_PORT_PHYS_STATE_POLLING = 2, 504 IB_PORT_PHYS_STATE_DISABLED = 3, 505 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4, 506 IB_PORT_PHYS_STATE_LINK_UP = 5, 507 IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6, 508 IB_PORT_PHYS_STATE_PHY_TEST = 7, 509 }; 510 511 enum ib_port_width { 512 IB_WIDTH_1X = 1, 513 IB_WIDTH_2X = 16, 514 IB_WIDTH_4X = 2, 515 IB_WIDTH_8X = 4, 516 IB_WIDTH_12X = 8 517 }; 518 519 static inline int ib_width_enum_to_int(enum ib_port_width width) 520 { 521 switch (width) { 522 case IB_WIDTH_1X: return 1; 523 case IB_WIDTH_2X: return 2; 524 case IB_WIDTH_4X: return 4; 525 case IB_WIDTH_8X: return 8; 526 case IB_WIDTH_12X: return 12; 527 default: return -1; 528 } 529 } 530 531 enum ib_port_speed { 532 IB_SPEED_SDR = 1, 533 IB_SPEED_DDR = 2, 534 IB_SPEED_QDR = 4, 535 IB_SPEED_FDR10 = 8, 536 IB_SPEED_FDR = 16, 537 IB_SPEED_EDR = 32, 538 IB_SPEED_HDR = 64 539 }; 540 541 /** 542 * struct rdma_hw_stats 543 * @lock - Mutex to protect parallel write access to lifespan and values 544 * of counters, which are 64bits and not guaranteeed to be written 545 * atomicaly on 32bits systems. 546 * @timestamp - Used by the core code to track when the last update was 547 * @lifespan - Used by the core code to determine how old the counters 548 * should be before being updated again. Stored in jiffies, defaults 549 * to 10 milliseconds, drivers can override the default be specifying 550 * their own value during their allocation routine. 551 * @name - Array of pointers to static names used for the counters in 552 * directory. 553 * @num_counters - How many hardware counters there are. If name is 554 * shorter than this number, a kernel oops will result. Driver authors 555 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters) 556 * in their code to prevent this. 557 * @value - Array of u64 counters that are accessed by the sysfs code and 558 * filled in by the drivers get_stats routine 559 */ 560 struct rdma_hw_stats { 561 struct mutex lock; /* Protect lifespan and values[] */ 562 unsigned long timestamp; 563 unsigned long lifespan; 564 const char * const *names; 565 int num_counters; 566 u64 value[]; 567 }; 568 569 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10 570 /** 571 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct 572 * for drivers. 573 * @names - Array of static const char * 574 * @num_counters - How many elements in array 575 * @lifespan - How many milliseconds between updates 576 */ 577 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 578 const char * const *names, int num_counters, 579 unsigned long lifespan) 580 { 581 struct rdma_hw_stats *stats; 582 583 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64), 584 GFP_KERNEL); 585 if (!stats) 586 return NULL; 587 stats->names = names; 588 stats->num_counters = num_counters; 589 stats->lifespan = msecs_to_jiffies(lifespan); 590 591 return stats; 592 } 593 594 595 /* Define bits for the various functionality this port needs to be supported by 596 * the core. 597 */ 598 /* Management 0x00000FFF */ 599 #define RDMA_CORE_CAP_IB_MAD 0x00000001 600 #define RDMA_CORE_CAP_IB_SMI 0x00000002 601 #define RDMA_CORE_CAP_IB_CM 0x00000004 602 #define RDMA_CORE_CAP_IW_CM 0x00000008 603 #define RDMA_CORE_CAP_IB_SA 0x00000010 604 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 605 606 /* Address format 0x000FF000 */ 607 #define RDMA_CORE_CAP_AF_IB 0x00001000 608 #define RDMA_CORE_CAP_ETH_AH 0x00002000 609 #define RDMA_CORE_CAP_OPA_AH 0x00004000 610 #define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000 611 612 /* Protocol 0xFFF00000 */ 613 #define RDMA_CORE_CAP_PROT_IB 0x00100000 614 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 615 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 616 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 617 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000 618 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000 619 620 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \ 621 | RDMA_CORE_CAP_PROT_ROCE \ 622 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP) 623 624 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 625 | RDMA_CORE_CAP_IB_MAD \ 626 | RDMA_CORE_CAP_IB_SMI \ 627 | RDMA_CORE_CAP_IB_CM \ 628 | RDMA_CORE_CAP_IB_SA \ 629 | RDMA_CORE_CAP_AF_IB) 630 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 631 | RDMA_CORE_CAP_IB_MAD \ 632 | RDMA_CORE_CAP_IB_CM \ 633 | RDMA_CORE_CAP_AF_IB \ 634 | RDMA_CORE_CAP_ETH_AH) 635 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ 636 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ 637 | RDMA_CORE_CAP_IB_MAD \ 638 | RDMA_CORE_CAP_IB_CM \ 639 | RDMA_CORE_CAP_AF_IB \ 640 | RDMA_CORE_CAP_ETH_AH) 641 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 642 | RDMA_CORE_CAP_IW_CM) 643 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 644 | RDMA_CORE_CAP_OPA_MAD) 645 646 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET) 647 648 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC) 649 650 struct ib_port_attr { 651 u64 subnet_prefix; 652 enum ib_port_state state; 653 enum ib_mtu max_mtu; 654 enum ib_mtu active_mtu; 655 u32 phys_mtu; 656 int gid_tbl_len; 657 unsigned int ip_gids:1; 658 /* This is the value from PortInfo CapabilityMask, defined by IBA */ 659 u32 port_cap_flags; 660 u32 max_msg_sz; 661 u32 bad_pkey_cntr; 662 u32 qkey_viol_cntr; 663 u16 pkey_tbl_len; 664 u32 sm_lid; 665 u32 lid; 666 u8 lmc; 667 u8 max_vl_num; 668 u8 sm_sl; 669 u8 subnet_timeout; 670 u8 init_type_reply; 671 u8 active_width; 672 u8 active_speed; 673 u8 phys_state; 674 u16 port_cap_flags2; 675 }; 676 677 enum ib_device_modify_flags { 678 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 679 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 680 }; 681 682 #define IB_DEVICE_NODE_DESC_MAX 64 683 684 struct ib_device_modify { 685 u64 sys_image_guid; 686 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 687 }; 688 689 enum ib_port_modify_flags { 690 IB_PORT_SHUTDOWN = 1, 691 IB_PORT_INIT_TYPE = (1<<2), 692 IB_PORT_RESET_QKEY_CNTR = (1<<3), 693 IB_PORT_OPA_MASK_CHG = (1<<4) 694 }; 695 696 struct ib_port_modify { 697 u32 set_port_cap_mask; 698 u32 clr_port_cap_mask; 699 u8 init_type; 700 }; 701 702 enum ib_event_type { 703 IB_EVENT_CQ_ERR, 704 IB_EVENT_QP_FATAL, 705 IB_EVENT_QP_REQ_ERR, 706 IB_EVENT_QP_ACCESS_ERR, 707 IB_EVENT_COMM_EST, 708 IB_EVENT_SQ_DRAINED, 709 IB_EVENT_PATH_MIG, 710 IB_EVENT_PATH_MIG_ERR, 711 IB_EVENT_DEVICE_FATAL, 712 IB_EVENT_PORT_ACTIVE, 713 IB_EVENT_PORT_ERR, 714 IB_EVENT_LID_CHANGE, 715 IB_EVENT_PKEY_CHANGE, 716 IB_EVENT_SM_CHANGE, 717 IB_EVENT_SRQ_ERR, 718 IB_EVENT_SRQ_LIMIT_REACHED, 719 IB_EVENT_QP_LAST_WQE_REACHED, 720 IB_EVENT_CLIENT_REREGISTER, 721 IB_EVENT_GID_CHANGE, 722 IB_EVENT_WQ_FATAL, 723 }; 724 725 const char *__attribute_const__ ib_event_msg(enum ib_event_type event); 726 727 struct ib_event { 728 struct ib_device *device; 729 union { 730 struct ib_cq *cq; 731 struct ib_qp *qp; 732 struct ib_srq *srq; 733 struct ib_wq *wq; 734 u8 port_num; 735 } element; 736 enum ib_event_type event; 737 }; 738 739 struct ib_event_handler { 740 struct ib_device *device; 741 void (*handler)(struct ib_event_handler *, struct ib_event *); 742 struct list_head list; 743 }; 744 745 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 746 do { \ 747 (_ptr)->device = _device; \ 748 (_ptr)->handler = _handler; \ 749 INIT_LIST_HEAD(&(_ptr)->list); \ 750 } while (0) 751 752 struct ib_global_route { 753 const struct ib_gid_attr *sgid_attr; 754 union ib_gid dgid; 755 u32 flow_label; 756 u8 sgid_index; 757 u8 hop_limit; 758 u8 traffic_class; 759 }; 760 761 struct ib_grh { 762 __be32 version_tclass_flow; 763 __be16 paylen; 764 u8 next_hdr; 765 u8 hop_limit; 766 union ib_gid sgid; 767 union ib_gid dgid; 768 }; 769 770 union rdma_network_hdr { 771 struct ib_grh ibgrh; 772 struct { 773 /* The IB spec states that if it's IPv4, the header 774 * is located in the last 20 bytes of the header. 775 */ 776 u8 reserved[20]; 777 struct iphdr roce4grh; 778 }; 779 }; 780 781 #define IB_QPN_MASK 0xFFFFFF 782 783 enum { 784 IB_MULTICAST_QPN = 0xffffff 785 }; 786 787 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 788 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000) 789 790 enum ib_ah_flags { 791 IB_AH_GRH = 1 792 }; 793 794 enum ib_rate { 795 IB_RATE_PORT_CURRENT = 0, 796 IB_RATE_2_5_GBPS = 2, 797 IB_RATE_5_GBPS = 5, 798 IB_RATE_10_GBPS = 3, 799 IB_RATE_20_GBPS = 6, 800 IB_RATE_30_GBPS = 4, 801 IB_RATE_40_GBPS = 7, 802 IB_RATE_60_GBPS = 8, 803 IB_RATE_80_GBPS = 9, 804 IB_RATE_120_GBPS = 10, 805 IB_RATE_14_GBPS = 11, 806 IB_RATE_56_GBPS = 12, 807 IB_RATE_112_GBPS = 13, 808 IB_RATE_168_GBPS = 14, 809 IB_RATE_25_GBPS = 15, 810 IB_RATE_100_GBPS = 16, 811 IB_RATE_200_GBPS = 17, 812 IB_RATE_300_GBPS = 18, 813 IB_RATE_28_GBPS = 19, 814 IB_RATE_50_GBPS = 20, 815 IB_RATE_400_GBPS = 21, 816 IB_RATE_600_GBPS = 22, 817 }; 818 819 /** 820 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 821 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 822 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 823 * @rate: rate to convert. 824 */ 825 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 826 827 /** 828 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 829 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 830 * @rate: rate to convert. 831 */ 832 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 833 834 835 /** 836 * enum ib_mr_type - memory region type 837 * @IB_MR_TYPE_MEM_REG: memory region that is used for 838 * normal registration 839 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to 840 * register any arbitrary sg lists (without 841 * the normal mr constraints - see 842 * ib_map_mr_sg) 843 * @IB_MR_TYPE_DM: memory region that is used for device 844 * memory registration 845 * @IB_MR_TYPE_USER: memory region that is used for the user-space 846 * application 847 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations 848 * without address translations (VA=PA) 849 * @IB_MR_TYPE_INTEGRITY: memory region that is used for 850 * data integrity operations 851 */ 852 enum ib_mr_type { 853 IB_MR_TYPE_MEM_REG, 854 IB_MR_TYPE_SG_GAPS, 855 IB_MR_TYPE_DM, 856 IB_MR_TYPE_USER, 857 IB_MR_TYPE_DMA, 858 IB_MR_TYPE_INTEGRITY, 859 }; 860 861 enum ib_mr_status_check { 862 IB_MR_CHECK_SIG_STATUS = 1, 863 }; 864 865 /** 866 * struct ib_mr_status - Memory region status container 867 * 868 * @fail_status: Bitmask of MR checks status. For each 869 * failed check a corresponding status bit is set. 870 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 871 * failure. 872 */ 873 struct ib_mr_status { 874 u32 fail_status; 875 struct ib_sig_err sig_err; 876 }; 877 878 /** 879 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 880 * enum. 881 * @mult: multiple to convert. 882 */ 883 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 884 885 struct rdma_ah_init_attr { 886 struct rdma_ah_attr *ah_attr; 887 u32 flags; 888 struct net_device *xmit_slave; 889 }; 890 891 enum rdma_ah_attr_type { 892 RDMA_AH_ATTR_TYPE_UNDEFINED, 893 RDMA_AH_ATTR_TYPE_IB, 894 RDMA_AH_ATTR_TYPE_ROCE, 895 RDMA_AH_ATTR_TYPE_OPA, 896 }; 897 898 struct ib_ah_attr { 899 u16 dlid; 900 u8 src_path_bits; 901 }; 902 903 struct roce_ah_attr { 904 u8 dmac[ETH_ALEN]; 905 }; 906 907 struct opa_ah_attr { 908 u32 dlid; 909 u8 src_path_bits; 910 bool make_grd; 911 }; 912 913 struct rdma_ah_attr { 914 struct ib_global_route grh; 915 u8 sl; 916 u8 static_rate; 917 u8 port_num; 918 u8 ah_flags; 919 enum rdma_ah_attr_type type; 920 union { 921 struct ib_ah_attr ib; 922 struct roce_ah_attr roce; 923 struct opa_ah_attr opa; 924 }; 925 }; 926 927 enum ib_wc_status { 928 IB_WC_SUCCESS, 929 IB_WC_LOC_LEN_ERR, 930 IB_WC_LOC_QP_OP_ERR, 931 IB_WC_LOC_EEC_OP_ERR, 932 IB_WC_LOC_PROT_ERR, 933 IB_WC_WR_FLUSH_ERR, 934 IB_WC_MW_BIND_ERR, 935 IB_WC_BAD_RESP_ERR, 936 IB_WC_LOC_ACCESS_ERR, 937 IB_WC_REM_INV_REQ_ERR, 938 IB_WC_REM_ACCESS_ERR, 939 IB_WC_REM_OP_ERR, 940 IB_WC_RETRY_EXC_ERR, 941 IB_WC_RNR_RETRY_EXC_ERR, 942 IB_WC_LOC_RDD_VIOL_ERR, 943 IB_WC_REM_INV_RD_REQ_ERR, 944 IB_WC_REM_ABORT_ERR, 945 IB_WC_INV_EECN_ERR, 946 IB_WC_INV_EEC_STATE_ERR, 947 IB_WC_FATAL_ERR, 948 IB_WC_RESP_TIMEOUT_ERR, 949 IB_WC_GENERAL_ERR 950 }; 951 952 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); 953 954 enum ib_wc_opcode { 955 IB_WC_SEND, 956 IB_WC_RDMA_WRITE, 957 IB_WC_RDMA_READ, 958 IB_WC_COMP_SWAP, 959 IB_WC_FETCH_ADD, 960 IB_WC_LSO, 961 IB_WC_LOCAL_INV, 962 IB_WC_REG_MR, 963 IB_WC_MASKED_COMP_SWAP, 964 IB_WC_MASKED_FETCH_ADD, 965 /* 966 * Set value of IB_WC_RECV so consumers can test if a completion is a 967 * receive by testing (opcode & IB_WC_RECV). 968 */ 969 IB_WC_RECV = 1 << 7, 970 IB_WC_RECV_RDMA_WITH_IMM 971 }; 972 973 enum ib_wc_flags { 974 IB_WC_GRH = 1, 975 IB_WC_WITH_IMM = (1<<1), 976 IB_WC_WITH_INVALIDATE = (1<<2), 977 IB_WC_IP_CSUM_OK = (1<<3), 978 IB_WC_WITH_SMAC = (1<<4), 979 IB_WC_WITH_VLAN = (1<<5), 980 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), 981 }; 982 983 struct ib_wc { 984 union { 985 u64 wr_id; 986 struct ib_cqe *wr_cqe; 987 }; 988 enum ib_wc_status status; 989 enum ib_wc_opcode opcode; 990 u32 vendor_err; 991 u32 byte_len; 992 struct ib_qp *qp; 993 union { 994 __be32 imm_data; 995 u32 invalidate_rkey; 996 } ex; 997 u32 src_qp; 998 u32 slid; 999 int wc_flags; 1000 u16 pkey_index; 1001 u8 sl; 1002 u8 dlid_path_bits; 1003 u8 port_num; /* valid only for DR SMPs on switches */ 1004 u8 smac[ETH_ALEN]; 1005 u16 vlan_id; 1006 u8 network_hdr_type; 1007 }; 1008 1009 enum ib_cq_notify_flags { 1010 IB_CQ_SOLICITED = 1 << 0, 1011 IB_CQ_NEXT_COMP = 1 << 1, 1012 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 1013 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 1014 }; 1015 1016 enum ib_srq_type { 1017 IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC, 1018 IB_SRQT_XRC = IB_UVERBS_SRQT_XRC, 1019 IB_SRQT_TM = IB_UVERBS_SRQT_TM, 1020 }; 1021 1022 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type) 1023 { 1024 return srq_type == IB_SRQT_XRC || 1025 srq_type == IB_SRQT_TM; 1026 } 1027 1028 enum ib_srq_attr_mask { 1029 IB_SRQ_MAX_WR = 1 << 0, 1030 IB_SRQ_LIMIT = 1 << 1, 1031 }; 1032 1033 struct ib_srq_attr { 1034 u32 max_wr; 1035 u32 max_sge; 1036 u32 srq_limit; 1037 }; 1038 1039 struct ib_srq_init_attr { 1040 void (*event_handler)(struct ib_event *, void *); 1041 void *srq_context; 1042 struct ib_srq_attr attr; 1043 enum ib_srq_type srq_type; 1044 1045 struct { 1046 struct ib_cq *cq; 1047 union { 1048 struct { 1049 struct ib_xrcd *xrcd; 1050 } xrc; 1051 1052 struct { 1053 u32 max_num_tags; 1054 } tag_matching; 1055 }; 1056 } ext; 1057 }; 1058 1059 struct ib_qp_cap { 1060 u32 max_send_wr; 1061 u32 max_recv_wr; 1062 u32 max_send_sge; 1063 u32 max_recv_sge; 1064 u32 max_inline_data; 1065 1066 /* 1067 * Maximum number of rdma_rw_ctx structures in flight at a time. 1068 * ib_create_qp() will calculate the right amount of neededed WRs 1069 * and MRs based on this. 1070 */ 1071 u32 max_rdma_ctxs; 1072 }; 1073 1074 enum ib_sig_type { 1075 IB_SIGNAL_ALL_WR, 1076 IB_SIGNAL_REQ_WR 1077 }; 1078 1079 enum ib_qp_type { 1080 /* 1081 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 1082 * here (and in that order) since the MAD layer uses them as 1083 * indices into a 2-entry table. 1084 */ 1085 IB_QPT_SMI, 1086 IB_QPT_GSI, 1087 1088 IB_QPT_RC = IB_UVERBS_QPT_RC, 1089 IB_QPT_UC = IB_UVERBS_QPT_UC, 1090 IB_QPT_UD = IB_UVERBS_QPT_UD, 1091 IB_QPT_RAW_IPV6, 1092 IB_QPT_RAW_ETHERTYPE, 1093 IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET, 1094 IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI, 1095 IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT, 1096 IB_QPT_MAX, 1097 IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER, 1098 /* Reserve a range for qp types internal to the low level driver. 1099 * These qp types will not be visible at the IB core layer, so the 1100 * IB_QPT_MAX usages should not be affected in the core layer 1101 */ 1102 IB_QPT_RESERVED1 = 0x1000, 1103 IB_QPT_RESERVED2, 1104 IB_QPT_RESERVED3, 1105 IB_QPT_RESERVED4, 1106 IB_QPT_RESERVED5, 1107 IB_QPT_RESERVED6, 1108 IB_QPT_RESERVED7, 1109 IB_QPT_RESERVED8, 1110 IB_QPT_RESERVED9, 1111 IB_QPT_RESERVED10, 1112 }; 1113 1114 enum ib_qp_create_flags { 1115 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 1116 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1117 IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK, 1118 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 1119 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 1120 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 1121 IB_QP_CREATE_NETIF_QP = 1 << 5, 1122 IB_QP_CREATE_INTEGRITY_EN = 1 << 6, 1123 IB_QP_CREATE_NETDEV_USE = 1 << 7, 1124 IB_QP_CREATE_SCATTER_FCS = 1125 IB_UVERBS_QP_CREATE_SCATTER_FCS, 1126 IB_QP_CREATE_CVLAN_STRIPPING = 1127 IB_UVERBS_QP_CREATE_CVLAN_STRIPPING, 1128 IB_QP_CREATE_SOURCE_QPN = 1 << 10, 1129 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1130 IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING, 1131 /* reserve bits 26-31 for low level drivers' internal use */ 1132 IB_QP_CREATE_RESERVED_START = 1 << 26, 1133 IB_QP_CREATE_RESERVED_END = 1 << 31, 1134 }; 1135 1136 /* 1137 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 1138 * callback to destroy the passed in QP. 1139 */ 1140 1141 struct ib_qp_init_attr { 1142 /* Consumer's event_handler callback must not block */ 1143 void (*event_handler)(struct ib_event *, void *); 1144 1145 void *qp_context; 1146 struct ib_cq *send_cq; 1147 struct ib_cq *recv_cq; 1148 struct ib_srq *srq; 1149 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1150 struct ib_qp_cap cap; 1151 enum ib_sig_type sq_sig_type; 1152 enum ib_qp_type qp_type; 1153 u32 create_flags; 1154 1155 /* 1156 * Only needed for special QP types, or when using the RW API. 1157 */ 1158 u8 port_num; 1159 struct ib_rwq_ind_table *rwq_ind_tbl; 1160 u32 source_qpn; 1161 }; 1162 1163 struct ib_qp_open_attr { 1164 void (*event_handler)(struct ib_event *, void *); 1165 void *qp_context; 1166 u32 qp_num; 1167 enum ib_qp_type qp_type; 1168 }; 1169 1170 enum ib_rnr_timeout { 1171 IB_RNR_TIMER_655_36 = 0, 1172 IB_RNR_TIMER_000_01 = 1, 1173 IB_RNR_TIMER_000_02 = 2, 1174 IB_RNR_TIMER_000_03 = 3, 1175 IB_RNR_TIMER_000_04 = 4, 1176 IB_RNR_TIMER_000_06 = 5, 1177 IB_RNR_TIMER_000_08 = 6, 1178 IB_RNR_TIMER_000_12 = 7, 1179 IB_RNR_TIMER_000_16 = 8, 1180 IB_RNR_TIMER_000_24 = 9, 1181 IB_RNR_TIMER_000_32 = 10, 1182 IB_RNR_TIMER_000_48 = 11, 1183 IB_RNR_TIMER_000_64 = 12, 1184 IB_RNR_TIMER_000_96 = 13, 1185 IB_RNR_TIMER_001_28 = 14, 1186 IB_RNR_TIMER_001_92 = 15, 1187 IB_RNR_TIMER_002_56 = 16, 1188 IB_RNR_TIMER_003_84 = 17, 1189 IB_RNR_TIMER_005_12 = 18, 1190 IB_RNR_TIMER_007_68 = 19, 1191 IB_RNR_TIMER_010_24 = 20, 1192 IB_RNR_TIMER_015_36 = 21, 1193 IB_RNR_TIMER_020_48 = 22, 1194 IB_RNR_TIMER_030_72 = 23, 1195 IB_RNR_TIMER_040_96 = 24, 1196 IB_RNR_TIMER_061_44 = 25, 1197 IB_RNR_TIMER_081_92 = 26, 1198 IB_RNR_TIMER_122_88 = 27, 1199 IB_RNR_TIMER_163_84 = 28, 1200 IB_RNR_TIMER_245_76 = 29, 1201 IB_RNR_TIMER_327_68 = 30, 1202 IB_RNR_TIMER_491_52 = 31 1203 }; 1204 1205 enum ib_qp_attr_mask { 1206 IB_QP_STATE = 1, 1207 IB_QP_CUR_STATE = (1<<1), 1208 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 1209 IB_QP_ACCESS_FLAGS = (1<<3), 1210 IB_QP_PKEY_INDEX = (1<<4), 1211 IB_QP_PORT = (1<<5), 1212 IB_QP_QKEY = (1<<6), 1213 IB_QP_AV = (1<<7), 1214 IB_QP_PATH_MTU = (1<<8), 1215 IB_QP_TIMEOUT = (1<<9), 1216 IB_QP_RETRY_CNT = (1<<10), 1217 IB_QP_RNR_RETRY = (1<<11), 1218 IB_QP_RQ_PSN = (1<<12), 1219 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 1220 IB_QP_ALT_PATH = (1<<14), 1221 IB_QP_MIN_RNR_TIMER = (1<<15), 1222 IB_QP_SQ_PSN = (1<<16), 1223 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 1224 IB_QP_PATH_MIG_STATE = (1<<18), 1225 IB_QP_CAP = (1<<19), 1226 IB_QP_DEST_QPN = (1<<20), 1227 IB_QP_RESERVED1 = (1<<21), 1228 IB_QP_RESERVED2 = (1<<22), 1229 IB_QP_RESERVED3 = (1<<23), 1230 IB_QP_RESERVED4 = (1<<24), 1231 IB_QP_RATE_LIMIT = (1<<25), 1232 }; 1233 1234 enum ib_qp_state { 1235 IB_QPS_RESET, 1236 IB_QPS_INIT, 1237 IB_QPS_RTR, 1238 IB_QPS_RTS, 1239 IB_QPS_SQD, 1240 IB_QPS_SQE, 1241 IB_QPS_ERR 1242 }; 1243 1244 enum ib_mig_state { 1245 IB_MIG_MIGRATED, 1246 IB_MIG_REARM, 1247 IB_MIG_ARMED 1248 }; 1249 1250 enum ib_mw_type { 1251 IB_MW_TYPE_1 = 1, 1252 IB_MW_TYPE_2 = 2 1253 }; 1254 1255 struct ib_qp_attr { 1256 enum ib_qp_state qp_state; 1257 enum ib_qp_state cur_qp_state; 1258 enum ib_mtu path_mtu; 1259 enum ib_mig_state path_mig_state; 1260 u32 qkey; 1261 u32 rq_psn; 1262 u32 sq_psn; 1263 u32 dest_qp_num; 1264 int qp_access_flags; 1265 struct ib_qp_cap cap; 1266 struct rdma_ah_attr ah_attr; 1267 struct rdma_ah_attr alt_ah_attr; 1268 u16 pkey_index; 1269 u16 alt_pkey_index; 1270 u8 en_sqd_async_notify; 1271 u8 sq_draining; 1272 u8 max_rd_atomic; 1273 u8 max_dest_rd_atomic; 1274 u8 min_rnr_timer; 1275 u8 port_num; 1276 u8 timeout; 1277 u8 retry_cnt; 1278 u8 rnr_retry; 1279 u8 alt_port_num; 1280 u8 alt_timeout; 1281 u32 rate_limit; 1282 struct net_device *xmit_slave; 1283 }; 1284 1285 enum ib_wr_opcode { 1286 /* These are shared with userspace */ 1287 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE, 1288 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM, 1289 IB_WR_SEND = IB_UVERBS_WR_SEND, 1290 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM, 1291 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ, 1292 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP, 1293 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD, 1294 IB_WR_LSO = IB_UVERBS_WR_TSO, 1295 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV, 1296 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV, 1297 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV, 1298 IB_WR_MASKED_ATOMIC_CMP_AND_SWP = 1299 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP, 1300 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD = 1301 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1302 1303 /* These are kernel only and can not be issued by userspace */ 1304 IB_WR_REG_MR = 0x20, 1305 IB_WR_REG_MR_INTEGRITY, 1306 1307 /* reserve values for low level drivers' internal use. 1308 * These values will not be used at all in the ib core layer. 1309 */ 1310 IB_WR_RESERVED1 = 0xf0, 1311 IB_WR_RESERVED2, 1312 IB_WR_RESERVED3, 1313 IB_WR_RESERVED4, 1314 IB_WR_RESERVED5, 1315 IB_WR_RESERVED6, 1316 IB_WR_RESERVED7, 1317 IB_WR_RESERVED8, 1318 IB_WR_RESERVED9, 1319 IB_WR_RESERVED10, 1320 }; 1321 1322 enum ib_send_flags { 1323 IB_SEND_FENCE = 1, 1324 IB_SEND_SIGNALED = (1<<1), 1325 IB_SEND_SOLICITED = (1<<2), 1326 IB_SEND_INLINE = (1<<3), 1327 IB_SEND_IP_CSUM = (1<<4), 1328 1329 /* reserve bits 26-31 for low level drivers' internal use */ 1330 IB_SEND_RESERVED_START = (1 << 26), 1331 IB_SEND_RESERVED_END = (1 << 31), 1332 }; 1333 1334 struct ib_sge { 1335 u64 addr; 1336 u32 length; 1337 u32 lkey; 1338 }; 1339 1340 struct ib_cqe { 1341 void (*done)(struct ib_cq *cq, struct ib_wc *wc); 1342 }; 1343 1344 struct ib_send_wr { 1345 struct ib_send_wr *next; 1346 union { 1347 u64 wr_id; 1348 struct ib_cqe *wr_cqe; 1349 }; 1350 struct ib_sge *sg_list; 1351 int num_sge; 1352 enum ib_wr_opcode opcode; 1353 int send_flags; 1354 union { 1355 __be32 imm_data; 1356 u32 invalidate_rkey; 1357 } ex; 1358 }; 1359 1360 struct ib_rdma_wr { 1361 struct ib_send_wr wr; 1362 u64 remote_addr; 1363 u32 rkey; 1364 }; 1365 1366 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr) 1367 { 1368 return container_of(wr, struct ib_rdma_wr, wr); 1369 } 1370 1371 struct ib_atomic_wr { 1372 struct ib_send_wr wr; 1373 u64 remote_addr; 1374 u64 compare_add; 1375 u64 swap; 1376 u64 compare_add_mask; 1377 u64 swap_mask; 1378 u32 rkey; 1379 }; 1380 1381 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr) 1382 { 1383 return container_of(wr, struct ib_atomic_wr, wr); 1384 } 1385 1386 struct ib_ud_wr { 1387 struct ib_send_wr wr; 1388 struct ib_ah *ah; 1389 void *header; 1390 int hlen; 1391 int mss; 1392 u32 remote_qpn; 1393 u32 remote_qkey; 1394 u16 pkey_index; /* valid for GSI only */ 1395 u8 port_num; /* valid for DR SMPs on switch only */ 1396 }; 1397 1398 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr) 1399 { 1400 return container_of(wr, struct ib_ud_wr, wr); 1401 } 1402 1403 struct ib_reg_wr { 1404 struct ib_send_wr wr; 1405 struct ib_mr *mr; 1406 u32 key; 1407 int access; 1408 }; 1409 1410 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr) 1411 { 1412 return container_of(wr, struct ib_reg_wr, wr); 1413 } 1414 1415 struct ib_recv_wr { 1416 struct ib_recv_wr *next; 1417 union { 1418 u64 wr_id; 1419 struct ib_cqe *wr_cqe; 1420 }; 1421 struct ib_sge *sg_list; 1422 int num_sge; 1423 }; 1424 1425 enum ib_access_flags { 1426 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE, 1427 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE, 1428 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ, 1429 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC, 1430 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND, 1431 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED, 1432 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND, 1433 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB, 1434 IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING, 1435 1436 IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE, 1437 IB_ACCESS_SUPPORTED = 1438 ((IB_ACCESS_HUGETLB << 1) - 1) | IB_ACCESS_OPTIONAL, 1439 }; 1440 1441 /* 1442 * XXX: these are apparently used for ->rereg_user_mr, no idea why they 1443 * are hidden here instead of a uapi header! 1444 */ 1445 enum ib_mr_rereg_flags { 1446 IB_MR_REREG_TRANS = 1, 1447 IB_MR_REREG_PD = (1<<1), 1448 IB_MR_REREG_ACCESS = (1<<2), 1449 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1450 }; 1451 1452 struct ib_umem; 1453 1454 enum rdma_remove_reason { 1455 /* 1456 * Userspace requested uobject deletion or initial try 1457 * to remove uobject via cleanup. Call could fail 1458 */ 1459 RDMA_REMOVE_DESTROY, 1460 /* Context deletion. This call should delete the actual object itself */ 1461 RDMA_REMOVE_CLOSE, 1462 /* Driver is being hot-unplugged. This call should delete the actual object itself */ 1463 RDMA_REMOVE_DRIVER_REMOVE, 1464 /* uobj is being cleaned-up before being committed */ 1465 RDMA_REMOVE_ABORT, 1466 /* 1467 * uobj has been fully created, with the uobj->object set, but is being 1468 * cleaned up before being comitted 1469 */ 1470 RDMA_REMOVE_ABORT_HWOBJ, 1471 }; 1472 1473 struct ib_rdmacg_object { 1474 #ifdef CONFIG_CGROUP_RDMA 1475 struct rdma_cgroup *cg; /* owner rdma cgroup */ 1476 #endif 1477 }; 1478 1479 struct ib_ucontext { 1480 struct ib_device *device; 1481 struct ib_uverbs_file *ufile; 1482 /* 1483 * 'closing' can be read by the driver only during a destroy callback, 1484 * it is set when we are closing the file descriptor and indicates 1485 * that mm_sem may be locked. 1486 */ 1487 bool closing; 1488 1489 bool cleanup_retryable; 1490 1491 struct ib_rdmacg_object cg_obj; 1492 /* 1493 * Implementation details of the RDMA core, don't use in drivers: 1494 */ 1495 struct rdma_restrack_entry res; 1496 struct xarray mmap_xa; 1497 }; 1498 1499 struct ib_uobject { 1500 u64 user_handle; /* handle given to us by userspace */ 1501 /* ufile & ucontext owning this object */ 1502 struct ib_uverbs_file *ufile; 1503 /* FIXME, save memory: ufile->context == context */ 1504 struct ib_ucontext *context; /* associated user context */ 1505 void *object; /* containing object */ 1506 struct list_head list; /* link to context's list */ 1507 struct ib_rdmacg_object cg_obj; /* rdmacg object */ 1508 int id; /* index into kernel idr */ 1509 struct kref ref; 1510 atomic_t usecnt; /* protects exclusive access */ 1511 struct rcu_head rcu; /* kfree_rcu() overhead */ 1512 1513 const struct uverbs_api_object *uapi_object; 1514 }; 1515 1516 struct ib_udata { 1517 const void __user *inbuf; 1518 void __user *outbuf; 1519 size_t inlen; 1520 size_t outlen; 1521 }; 1522 1523 struct ib_pd { 1524 u32 local_dma_lkey; 1525 u32 flags; 1526 struct ib_device *device; 1527 struct ib_uobject *uobject; 1528 atomic_t usecnt; /* count all resources */ 1529 1530 u32 unsafe_global_rkey; 1531 1532 /* 1533 * Implementation details of the RDMA core, don't use in drivers: 1534 */ 1535 struct ib_mr *__internal_mr; 1536 struct rdma_restrack_entry res; 1537 }; 1538 1539 struct ib_xrcd { 1540 struct ib_device *device; 1541 atomic_t usecnt; /* count all exposed resources */ 1542 struct inode *inode; 1543 struct rw_semaphore tgt_qps_rwsem; 1544 struct xarray tgt_qps; 1545 }; 1546 1547 struct ib_ah { 1548 struct ib_device *device; 1549 struct ib_pd *pd; 1550 struct ib_uobject *uobject; 1551 const struct ib_gid_attr *sgid_attr; 1552 enum rdma_ah_attr_type type; 1553 }; 1554 1555 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1556 1557 enum ib_poll_context { 1558 IB_POLL_SOFTIRQ, /* poll from softirq context */ 1559 IB_POLL_WORKQUEUE, /* poll from workqueue */ 1560 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */ 1561 IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE, 1562 1563 IB_POLL_DIRECT, /* caller context, no hw completions */ 1564 }; 1565 1566 struct ib_cq { 1567 struct ib_device *device; 1568 struct ib_ucq_object *uobject; 1569 ib_comp_handler comp_handler; 1570 void (*event_handler)(struct ib_event *, void *); 1571 void *cq_context; 1572 int cqe; 1573 unsigned int cqe_used; 1574 atomic_t usecnt; /* count number of work queues */ 1575 enum ib_poll_context poll_ctx; 1576 struct ib_wc *wc; 1577 struct list_head pool_entry; 1578 union { 1579 struct irq_poll iop; 1580 struct work_struct work; 1581 }; 1582 struct workqueue_struct *comp_wq; 1583 struct dim *dim; 1584 1585 /* updated only by trace points */ 1586 ktime_t timestamp; 1587 u8 interrupt:1; 1588 u8 shared:1; 1589 unsigned int comp_vector; 1590 1591 /* 1592 * Implementation details of the RDMA core, don't use in drivers: 1593 */ 1594 struct rdma_restrack_entry res; 1595 }; 1596 1597 struct ib_srq { 1598 struct ib_device *device; 1599 struct ib_pd *pd; 1600 struct ib_usrq_object *uobject; 1601 void (*event_handler)(struct ib_event *, void *); 1602 void *srq_context; 1603 enum ib_srq_type srq_type; 1604 atomic_t usecnt; 1605 1606 struct { 1607 struct ib_cq *cq; 1608 union { 1609 struct { 1610 struct ib_xrcd *xrcd; 1611 u32 srq_num; 1612 } xrc; 1613 }; 1614 } ext; 1615 }; 1616 1617 enum ib_raw_packet_caps { 1618 /* Strip cvlan from incoming packet and report it in the matching work 1619 * completion is supported. 1620 */ 1621 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0), 1622 /* Scatter FCS field of an incoming packet to host memory is supported. 1623 */ 1624 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1), 1625 /* Checksum offloads are supported (for both send and receive). */ 1626 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2), 1627 /* When a packet is received for an RQ with no receive WQEs, the 1628 * packet processing is delayed. 1629 */ 1630 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3), 1631 }; 1632 1633 enum ib_wq_type { 1634 IB_WQT_RQ = IB_UVERBS_WQT_RQ, 1635 }; 1636 1637 enum ib_wq_state { 1638 IB_WQS_RESET, 1639 IB_WQS_RDY, 1640 IB_WQS_ERR 1641 }; 1642 1643 struct ib_wq { 1644 struct ib_device *device; 1645 struct ib_uwq_object *uobject; 1646 void *wq_context; 1647 void (*event_handler)(struct ib_event *, void *); 1648 struct ib_pd *pd; 1649 struct ib_cq *cq; 1650 u32 wq_num; 1651 enum ib_wq_state state; 1652 enum ib_wq_type wq_type; 1653 atomic_t usecnt; 1654 }; 1655 1656 enum ib_wq_flags { 1657 IB_WQ_FLAGS_CVLAN_STRIPPING = IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING, 1658 IB_WQ_FLAGS_SCATTER_FCS = IB_UVERBS_WQ_FLAGS_SCATTER_FCS, 1659 IB_WQ_FLAGS_DELAY_DROP = IB_UVERBS_WQ_FLAGS_DELAY_DROP, 1660 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1661 IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING, 1662 }; 1663 1664 struct ib_wq_init_attr { 1665 void *wq_context; 1666 enum ib_wq_type wq_type; 1667 u32 max_wr; 1668 u32 max_sge; 1669 struct ib_cq *cq; 1670 void (*event_handler)(struct ib_event *, void *); 1671 u32 create_flags; /* Use enum ib_wq_flags */ 1672 }; 1673 1674 enum ib_wq_attr_mask { 1675 IB_WQ_STATE = 1 << 0, 1676 IB_WQ_CUR_STATE = 1 << 1, 1677 IB_WQ_FLAGS = 1 << 2, 1678 }; 1679 1680 struct ib_wq_attr { 1681 enum ib_wq_state wq_state; 1682 enum ib_wq_state curr_wq_state; 1683 u32 flags; /* Use enum ib_wq_flags */ 1684 u32 flags_mask; /* Use enum ib_wq_flags */ 1685 }; 1686 1687 struct ib_rwq_ind_table { 1688 struct ib_device *device; 1689 struct ib_uobject *uobject; 1690 atomic_t usecnt; 1691 u32 ind_tbl_num; 1692 u32 log_ind_tbl_size; 1693 struct ib_wq **ind_tbl; 1694 }; 1695 1696 struct ib_rwq_ind_table_init_attr { 1697 u32 log_ind_tbl_size; 1698 /* Each entry is a pointer to Receive Work Queue */ 1699 struct ib_wq **ind_tbl; 1700 }; 1701 1702 enum port_pkey_state { 1703 IB_PORT_PKEY_NOT_VALID = 0, 1704 IB_PORT_PKEY_VALID = 1, 1705 IB_PORT_PKEY_LISTED = 2, 1706 }; 1707 1708 struct ib_qp_security; 1709 1710 struct ib_port_pkey { 1711 enum port_pkey_state state; 1712 u16 pkey_index; 1713 u8 port_num; 1714 struct list_head qp_list; 1715 struct list_head to_error_list; 1716 struct ib_qp_security *sec; 1717 }; 1718 1719 struct ib_ports_pkeys { 1720 struct ib_port_pkey main; 1721 struct ib_port_pkey alt; 1722 }; 1723 1724 struct ib_qp_security { 1725 struct ib_qp *qp; 1726 struct ib_device *dev; 1727 /* Hold this mutex when changing port and pkey settings. */ 1728 struct mutex mutex; 1729 struct ib_ports_pkeys *ports_pkeys; 1730 /* A list of all open shared QP handles. Required to enforce security 1731 * properly for all users of a shared QP. 1732 */ 1733 struct list_head shared_qp_list; 1734 void *security; 1735 bool destroying; 1736 atomic_t error_list_count; 1737 struct completion error_complete; 1738 int error_comps_pending; 1739 }; 1740 1741 /* 1742 * @max_write_sge: Maximum SGE elements per RDMA WRITE request. 1743 * @max_read_sge: Maximum SGE elements per RDMA READ request. 1744 */ 1745 struct ib_qp { 1746 struct ib_device *device; 1747 struct ib_pd *pd; 1748 struct ib_cq *send_cq; 1749 struct ib_cq *recv_cq; 1750 spinlock_t mr_lock; 1751 int mrs_used; 1752 struct list_head rdma_mrs; 1753 struct list_head sig_mrs; 1754 struct ib_srq *srq; 1755 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1756 struct list_head xrcd_list; 1757 1758 /* count times opened, mcast attaches, flow attaches */ 1759 atomic_t usecnt; 1760 struct list_head open_list; 1761 struct ib_qp *real_qp; 1762 struct ib_uqp_object *uobject; 1763 void (*event_handler)(struct ib_event *, void *); 1764 void *qp_context; 1765 /* sgid_attrs associated with the AV's */ 1766 const struct ib_gid_attr *av_sgid_attr; 1767 const struct ib_gid_attr *alt_path_sgid_attr; 1768 u32 qp_num; 1769 u32 max_write_sge; 1770 u32 max_read_sge; 1771 enum ib_qp_type qp_type; 1772 struct ib_rwq_ind_table *rwq_ind_tbl; 1773 struct ib_qp_security *qp_sec; 1774 u8 port; 1775 1776 bool integrity_en; 1777 /* 1778 * Implementation details of the RDMA core, don't use in drivers: 1779 */ 1780 struct rdma_restrack_entry res; 1781 1782 /* The counter the qp is bind to */ 1783 struct rdma_counter *counter; 1784 }; 1785 1786 struct ib_dm { 1787 struct ib_device *device; 1788 u32 length; 1789 u32 flags; 1790 struct ib_uobject *uobject; 1791 atomic_t usecnt; 1792 }; 1793 1794 struct ib_mr { 1795 struct ib_device *device; 1796 struct ib_pd *pd; 1797 u32 lkey; 1798 u32 rkey; 1799 u64 iova; 1800 u64 length; 1801 unsigned int page_size; 1802 enum ib_mr_type type; 1803 bool need_inval; 1804 union { 1805 struct ib_uobject *uobject; /* user */ 1806 struct list_head qp_entry; /* FR */ 1807 }; 1808 1809 struct ib_dm *dm; 1810 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */ 1811 /* 1812 * Implementation details of the RDMA core, don't use in drivers: 1813 */ 1814 struct rdma_restrack_entry res; 1815 }; 1816 1817 struct ib_mw { 1818 struct ib_device *device; 1819 struct ib_pd *pd; 1820 struct ib_uobject *uobject; 1821 u32 rkey; 1822 enum ib_mw_type type; 1823 }; 1824 1825 /* Supported steering options */ 1826 enum ib_flow_attr_type { 1827 /* steering according to rule specifications */ 1828 IB_FLOW_ATTR_NORMAL = 0x0, 1829 /* default unicast and multicast rule - 1830 * receive all Eth traffic which isn't steered to any QP 1831 */ 1832 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1833 /* default multicast rule - 1834 * receive all Eth multicast traffic which isn't steered to any QP 1835 */ 1836 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1837 /* sniffer rule - receive all port traffic */ 1838 IB_FLOW_ATTR_SNIFFER = 0x3 1839 }; 1840 1841 /* Supported steering header types */ 1842 enum ib_flow_spec_type { 1843 /* L2 headers*/ 1844 IB_FLOW_SPEC_ETH = 0x20, 1845 IB_FLOW_SPEC_IB = 0x22, 1846 /* L3 header*/ 1847 IB_FLOW_SPEC_IPV4 = 0x30, 1848 IB_FLOW_SPEC_IPV6 = 0x31, 1849 IB_FLOW_SPEC_ESP = 0x34, 1850 /* L4 headers*/ 1851 IB_FLOW_SPEC_TCP = 0x40, 1852 IB_FLOW_SPEC_UDP = 0x41, 1853 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50, 1854 IB_FLOW_SPEC_GRE = 0x51, 1855 IB_FLOW_SPEC_MPLS = 0x60, 1856 IB_FLOW_SPEC_INNER = 0x100, 1857 /* Actions */ 1858 IB_FLOW_SPEC_ACTION_TAG = 0x1000, 1859 IB_FLOW_SPEC_ACTION_DROP = 0x1001, 1860 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002, 1861 IB_FLOW_SPEC_ACTION_COUNT = 0x1003, 1862 }; 1863 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1864 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10 1865 1866 /* Flow steering rule priority is set according to it's domain. 1867 * Lower domain value means higher priority. 1868 */ 1869 enum ib_flow_domain { 1870 IB_FLOW_DOMAIN_USER, 1871 IB_FLOW_DOMAIN_ETHTOOL, 1872 IB_FLOW_DOMAIN_RFS, 1873 IB_FLOW_DOMAIN_NIC, 1874 IB_FLOW_DOMAIN_NUM /* Must be last */ 1875 }; 1876 1877 enum ib_flow_flags { 1878 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */ 1879 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */ 1880 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */ 1881 }; 1882 1883 struct ib_flow_eth_filter { 1884 u8 dst_mac[6]; 1885 u8 src_mac[6]; 1886 __be16 ether_type; 1887 __be16 vlan_tag; 1888 /* Must be last */ 1889 u8 real_sz[]; 1890 }; 1891 1892 struct ib_flow_spec_eth { 1893 u32 type; 1894 u16 size; 1895 struct ib_flow_eth_filter val; 1896 struct ib_flow_eth_filter mask; 1897 }; 1898 1899 struct ib_flow_ib_filter { 1900 __be16 dlid; 1901 __u8 sl; 1902 /* Must be last */ 1903 u8 real_sz[]; 1904 }; 1905 1906 struct ib_flow_spec_ib { 1907 u32 type; 1908 u16 size; 1909 struct ib_flow_ib_filter val; 1910 struct ib_flow_ib_filter mask; 1911 }; 1912 1913 /* IPv4 header flags */ 1914 enum ib_ipv4_flags { 1915 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */ 1916 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the 1917 last have this flag set */ 1918 }; 1919 1920 struct ib_flow_ipv4_filter { 1921 __be32 src_ip; 1922 __be32 dst_ip; 1923 u8 proto; 1924 u8 tos; 1925 u8 ttl; 1926 u8 flags; 1927 /* Must be last */ 1928 u8 real_sz[]; 1929 }; 1930 1931 struct ib_flow_spec_ipv4 { 1932 u32 type; 1933 u16 size; 1934 struct ib_flow_ipv4_filter val; 1935 struct ib_flow_ipv4_filter mask; 1936 }; 1937 1938 struct ib_flow_ipv6_filter { 1939 u8 src_ip[16]; 1940 u8 dst_ip[16]; 1941 __be32 flow_label; 1942 u8 next_hdr; 1943 u8 traffic_class; 1944 u8 hop_limit; 1945 /* Must be last */ 1946 u8 real_sz[]; 1947 }; 1948 1949 struct ib_flow_spec_ipv6 { 1950 u32 type; 1951 u16 size; 1952 struct ib_flow_ipv6_filter val; 1953 struct ib_flow_ipv6_filter mask; 1954 }; 1955 1956 struct ib_flow_tcp_udp_filter { 1957 __be16 dst_port; 1958 __be16 src_port; 1959 /* Must be last */ 1960 u8 real_sz[]; 1961 }; 1962 1963 struct ib_flow_spec_tcp_udp { 1964 u32 type; 1965 u16 size; 1966 struct ib_flow_tcp_udp_filter val; 1967 struct ib_flow_tcp_udp_filter mask; 1968 }; 1969 1970 struct ib_flow_tunnel_filter { 1971 __be32 tunnel_id; 1972 u8 real_sz[]; 1973 }; 1974 1975 /* ib_flow_spec_tunnel describes the Vxlan tunnel 1976 * the tunnel_id from val has the vni value 1977 */ 1978 struct ib_flow_spec_tunnel { 1979 u32 type; 1980 u16 size; 1981 struct ib_flow_tunnel_filter val; 1982 struct ib_flow_tunnel_filter mask; 1983 }; 1984 1985 struct ib_flow_esp_filter { 1986 __be32 spi; 1987 __be32 seq; 1988 /* Must be last */ 1989 u8 real_sz[]; 1990 }; 1991 1992 struct ib_flow_spec_esp { 1993 u32 type; 1994 u16 size; 1995 struct ib_flow_esp_filter val; 1996 struct ib_flow_esp_filter mask; 1997 }; 1998 1999 struct ib_flow_gre_filter { 2000 __be16 c_ks_res0_ver; 2001 __be16 protocol; 2002 __be32 key; 2003 /* Must be last */ 2004 u8 real_sz[]; 2005 }; 2006 2007 struct ib_flow_spec_gre { 2008 u32 type; 2009 u16 size; 2010 struct ib_flow_gre_filter val; 2011 struct ib_flow_gre_filter mask; 2012 }; 2013 2014 struct ib_flow_mpls_filter { 2015 __be32 tag; 2016 /* Must be last */ 2017 u8 real_sz[]; 2018 }; 2019 2020 struct ib_flow_spec_mpls { 2021 u32 type; 2022 u16 size; 2023 struct ib_flow_mpls_filter val; 2024 struct ib_flow_mpls_filter mask; 2025 }; 2026 2027 struct ib_flow_spec_action_tag { 2028 enum ib_flow_spec_type type; 2029 u16 size; 2030 u32 tag_id; 2031 }; 2032 2033 struct ib_flow_spec_action_drop { 2034 enum ib_flow_spec_type type; 2035 u16 size; 2036 }; 2037 2038 struct ib_flow_spec_action_handle { 2039 enum ib_flow_spec_type type; 2040 u16 size; 2041 struct ib_flow_action *act; 2042 }; 2043 2044 enum ib_counters_description { 2045 IB_COUNTER_PACKETS, 2046 IB_COUNTER_BYTES, 2047 }; 2048 2049 struct ib_flow_spec_action_count { 2050 enum ib_flow_spec_type type; 2051 u16 size; 2052 struct ib_counters *counters; 2053 }; 2054 2055 union ib_flow_spec { 2056 struct { 2057 u32 type; 2058 u16 size; 2059 }; 2060 struct ib_flow_spec_eth eth; 2061 struct ib_flow_spec_ib ib; 2062 struct ib_flow_spec_ipv4 ipv4; 2063 struct ib_flow_spec_tcp_udp tcp_udp; 2064 struct ib_flow_spec_ipv6 ipv6; 2065 struct ib_flow_spec_tunnel tunnel; 2066 struct ib_flow_spec_esp esp; 2067 struct ib_flow_spec_gre gre; 2068 struct ib_flow_spec_mpls mpls; 2069 struct ib_flow_spec_action_tag flow_tag; 2070 struct ib_flow_spec_action_drop drop; 2071 struct ib_flow_spec_action_handle action; 2072 struct ib_flow_spec_action_count flow_count; 2073 }; 2074 2075 struct ib_flow_attr { 2076 enum ib_flow_attr_type type; 2077 u16 size; 2078 u16 priority; 2079 u32 flags; 2080 u8 num_of_specs; 2081 u8 port; 2082 union ib_flow_spec flows[]; 2083 }; 2084 2085 struct ib_flow { 2086 struct ib_qp *qp; 2087 struct ib_device *device; 2088 struct ib_uobject *uobject; 2089 }; 2090 2091 enum ib_flow_action_type { 2092 IB_FLOW_ACTION_UNSPECIFIED, 2093 IB_FLOW_ACTION_ESP = 1, 2094 }; 2095 2096 struct ib_flow_action_attrs_esp_keymats { 2097 enum ib_uverbs_flow_action_esp_keymat protocol; 2098 union { 2099 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm; 2100 } keymat; 2101 }; 2102 2103 struct ib_flow_action_attrs_esp_replays { 2104 enum ib_uverbs_flow_action_esp_replay protocol; 2105 union { 2106 struct ib_uverbs_flow_action_esp_replay_bmp bmp; 2107 } replay; 2108 }; 2109 2110 enum ib_flow_action_attrs_esp_flags { 2111 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags 2112 * This is done in order to share the same flags between user-space and 2113 * kernel and spare an unnecessary translation. 2114 */ 2115 2116 /* Kernel flags */ 2117 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32, 2118 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33, 2119 }; 2120 2121 struct ib_flow_spec_list { 2122 struct ib_flow_spec_list *next; 2123 union ib_flow_spec spec; 2124 }; 2125 2126 struct ib_flow_action_attrs_esp { 2127 struct ib_flow_action_attrs_esp_keymats *keymat; 2128 struct ib_flow_action_attrs_esp_replays *replay; 2129 struct ib_flow_spec_list *encap; 2130 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled. 2131 * Value of 0 is a valid value. 2132 */ 2133 u32 esn; 2134 u32 spi; 2135 u32 seq; 2136 u32 tfc_pad; 2137 /* Use enum ib_flow_action_attrs_esp_flags */ 2138 u64 flags; 2139 u64 hard_limit_pkts; 2140 }; 2141 2142 struct ib_flow_action { 2143 struct ib_device *device; 2144 struct ib_uobject *uobject; 2145 enum ib_flow_action_type type; 2146 atomic_t usecnt; 2147 }; 2148 2149 struct ib_mad; 2150 struct ib_grh; 2151 2152 enum ib_process_mad_flags { 2153 IB_MAD_IGNORE_MKEY = 1, 2154 IB_MAD_IGNORE_BKEY = 2, 2155 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 2156 }; 2157 2158 enum ib_mad_result { 2159 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 2160 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 2161 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 2162 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 2163 }; 2164 2165 struct ib_port_cache { 2166 u64 subnet_prefix; 2167 struct ib_pkey_cache *pkey; 2168 struct ib_gid_table *gid; 2169 u8 lmc; 2170 enum ib_port_state port_state; 2171 }; 2172 2173 struct ib_port_immutable { 2174 int pkey_tbl_len; 2175 int gid_tbl_len; 2176 u32 core_cap_flags; 2177 u32 max_mad_size; 2178 }; 2179 2180 struct ib_port_data { 2181 struct ib_device *ib_dev; 2182 2183 struct ib_port_immutable immutable; 2184 2185 spinlock_t pkey_list_lock; 2186 struct list_head pkey_list; 2187 2188 struct ib_port_cache cache; 2189 2190 spinlock_t netdev_lock; 2191 struct net_device __rcu *netdev; 2192 struct hlist_node ndev_hash_link; 2193 struct rdma_port_counter port_counter; 2194 struct rdma_hw_stats *hw_stats; 2195 }; 2196 2197 /* rdma netdev type - specifies protocol type */ 2198 enum rdma_netdev_t { 2199 RDMA_NETDEV_OPA_VNIC, 2200 RDMA_NETDEV_IPOIB, 2201 }; 2202 2203 /** 2204 * struct rdma_netdev - rdma netdev 2205 * For cases where netstack interfacing is required. 2206 */ 2207 struct rdma_netdev { 2208 void *clnt_priv; 2209 struct ib_device *hca; 2210 u8 port_num; 2211 int mtu; 2212 2213 /* 2214 * cleanup function must be specified. 2215 * FIXME: This is only used for OPA_VNIC and that usage should be 2216 * removed too. 2217 */ 2218 void (*free_rdma_netdev)(struct net_device *netdev); 2219 2220 /* control functions */ 2221 void (*set_id)(struct net_device *netdev, int id); 2222 /* send packet */ 2223 int (*send)(struct net_device *dev, struct sk_buff *skb, 2224 struct ib_ah *address, u32 dqpn); 2225 /* multicast */ 2226 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca, 2227 union ib_gid *gid, u16 mlid, 2228 int set_qkey, u32 qkey); 2229 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca, 2230 union ib_gid *gid, u16 mlid); 2231 }; 2232 2233 struct rdma_netdev_alloc_params { 2234 size_t sizeof_priv; 2235 unsigned int txqs; 2236 unsigned int rxqs; 2237 void *param; 2238 2239 int (*initialize_rdma_netdev)(struct ib_device *device, u8 port_num, 2240 struct net_device *netdev, void *param); 2241 }; 2242 2243 struct ib_odp_counters { 2244 atomic64_t faults; 2245 atomic64_t invalidations; 2246 atomic64_t prefetch; 2247 }; 2248 2249 struct ib_counters { 2250 struct ib_device *device; 2251 struct ib_uobject *uobject; 2252 /* num of objects attached */ 2253 atomic_t usecnt; 2254 }; 2255 2256 struct ib_counters_read_attr { 2257 u64 *counters_buff; 2258 u32 ncounters; 2259 u32 flags; /* use enum ib_read_counters_flags */ 2260 }; 2261 2262 struct uverbs_attr_bundle; 2263 struct iw_cm_id; 2264 struct iw_cm_conn_param; 2265 2266 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \ 2267 .size_##ib_struct = \ 2268 (sizeof(struct drv_struct) + \ 2269 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \ 2270 BUILD_BUG_ON_ZERO( \ 2271 !__same_type(((struct drv_struct *)NULL)->member, \ 2272 struct ib_struct))) 2273 2274 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \ 2275 ((struct ib_type *)kzalloc(ib_dev->ops.size_##ib_type, gfp)) 2276 2277 #define rdma_zalloc_drv_obj(ib_dev, ib_type) \ 2278 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL) 2279 2280 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct 2281 2282 struct rdma_user_mmap_entry { 2283 struct kref ref; 2284 struct ib_ucontext *ucontext; 2285 unsigned long start_pgoff; 2286 size_t npages; 2287 bool driver_removed; 2288 }; 2289 2290 /* Return the offset (in bytes) the user should pass to libc's mmap() */ 2291 static inline u64 2292 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry) 2293 { 2294 return (u64)entry->start_pgoff << PAGE_SHIFT; 2295 } 2296 2297 /** 2298 * struct ib_device_ops - InfiniBand device operations 2299 * This structure defines all the InfiniBand device operations, providers will 2300 * need to define the supported operations, otherwise they will be set to null. 2301 */ 2302 struct ib_device_ops { 2303 struct module *owner; 2304 enum rdma_driver_id driver_id; 2305 u32 uverbs_abi_ver; 2306 unsigned int uverbs_no_driver_id_binding:1; 2307 2308 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr, 2309 const struct ib_send_wr **bad_send_wr); 2310 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr, 2311 const struct ib_recv_wr **bad_recv_wr); 2312 void (*drain_rq)(struct ib_qp *qp); 2313 void (*drain_sq)(struct ib_qp *qp); 2314 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc); 2315 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 2316 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags); 2317 int (*req_ncomp_notif)(struct ib_cq *cq, int wc_cnt); 2318 int (*post_srq_recv)(struct ib_srq *srq, 2319 const struct ib_recv_wr *recv_wr, 2320 const struct ib_recv_wr **bad_recv_wr); 2321 int (*process_mad)(struct ib_device *device, int process_mad_flags, 2322 u8 port_num, const struct ib_wc *in_wc, 2323 const struct ib_grh *in_grh, 2324 const struct ib_mad *in_mad, struct ib_mad *out_mad, 2325 size_t *out_mad_size, u16 *out_mad_pkey_index); 2326 int (*query_device)(struct ib_device *device, 2327 struct ib_device_attr *device_attr, 2328 struct ib_udata *udata); 2329 int (*modify_device)(struct ib_device *device, int device_modify_mask, 2330 struct ib_device_modify *device_modify); 2331 void (*get_dev_fw_str)(struct ib_device *device, char *str); 2332 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev, 2333 int comp_vector); 2334 int (*query_port)(struct ib_device *device, u8 port_num, 2335 struct ib_port_attr *port_attr); 2336 int (*modify_port)(struct ib_device *device, u8 port_num, 2337 int port_modify_mask, 2338 struct ib_port_modify *port_modify); 2339 /** 2340 * The following mandatory functions are used only at device 2341 * registration. Keep functions such as these at the end of this 2342 * structure to avoid cache line misses when accessing struct ib_device 2343 * in fast paths. 2344 */ 2345 int (*get_port_immutable)(struct ib_device *device, u8 port_num, 2346 struct ib_port_immutable *immutable); 2347 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 2348 u8 port_num); 2349 /** 2350 * When calling get_netdev, the HW vendor's driver should return the 2351 * net device of device @device at port @port_num or NULL if such 2352 * a net device doesn't exist. The vendor driver should call dev_hold 2353 * on this net device. The HW vendor's device driver must guarantee 2354 * that this function returns NULL before the net device has finished 2355 * NETDEV_UNREGISTER state. 2356 */ 2357 struct net_device *(*get_netdev)(struct ib_device *device, u8 port_num); 2358 /** 2359 * rdma netdev operation 2360 * 2361 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params 2362 * must return -EOPNOTSUPP if it doesn't support the specified type. 2363 */ 2364 struct net_device *(*alloc_rdma_netdev)( 2365 struct ib_device *device, u8 port_num, enum rdma_netdev_t type, 2366 const char *name, unsigned char name_assign_type, 2367 void (*setup)(struct net_device *)); 2368 2369 int (*rdma_netdev_get_params)(struct ib_device *device, u8 port_num, 2370 enum rdma_netdev_t type, 2371 struct rdma_netdev_alloc_params *params); 2372 /** 2373 * query_gid should be return GID value for @device, when @port_num 2374 * link layer is either IB or iWarp. It is no-op if @port_num port 2375 * is RoCE link layer. 2376 */ 2377 int (*query_gid)(struct ib_device *device, u8 port_num, int index, 2378 union ib_gid *gid); 2379 /** 2380 * When calling add_gid, the HW vendor's driver should add the gid 2381 * of device of port at gid index available at @attr. Meta-info of 2382 * that gid (for example, the network device related to this gid) is 2383 * available at @attr. @context allows the HW vendor driver to store 2384 * extra information together with a GID entry. The HW vendor driver may 2385 * allocate memory to contain this information and store it in @context 2386 * when a new GID entry is written to. Params are consistent until the 2387 * next call of add_gid or delete_gid. The function should return 0 on 2388 * success or error otherwise. The function could be called 2389 * concurrently for different ports. This function is only called when 2390 * roce_gid_table is used. 2391 */ 2392 int (*add_gid)(const struct ib_gid_attr *attr, void **context); 2393 /** 2394 * When calling del_gid, the HW vendor's driver should delete the 2395 * gid of device @device at gid index gid_index of port port_num 2396 * available in @attr. 2397 * Upon the deletion of a GID entry, the HW vendor must free any 2398 * allocated memory. The caller will clear @context afterwards. 2399 * This function is only called when roce_gid_table is used. 2400 */ 2401 int (*del_gid)(const struct ib_gid_attr *attr, void **context); 2402 int (*query_pkey)(struct ib_device *device, u8 port_num, u16 index, 2403 u16 *pkey); 2404 int (*alloc_ucontext)(struct ib_ucontext *context, 2405 struct ib_udata *udata); 2406 void (*dealloc_ucontext)(struct ib_ucontext *context); 2407 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma); 2408 /** 2409 * This will be called once refcount of an entry in mmap_xa reaches 2410 * zero. The type of the memory that was mapped may differ between 2411 * entries and is opaque to the rdma_user_mmap interface. 2412 * Therefore needs to be implemented by the driver in mmap_free. 2413 */ 2414 void (*mmap_free)(struct rdma_user_mmap_entry *entry); 2415 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 2416 int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata); 2417 void (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata); 2418 int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr, 2419 struct ib_udata *udata); 2420 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2421 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2422 void (*destroy_ah)(struct ib_ah *ah, u32 flags); 2423 int (*create_srq)(struct ib_srq *srq, 2424 struct ib_srq_init_attr *srq_init_attr, 2425 struct ib_udata *udata); 2426 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr, 2427 enum ib_srq_attr_mask srq_attr_mask, 2428 struct ib_udata *udata); 2429 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr); 2430 void (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata); 2431 struct ib_qp *(*create_qp)(struct ib_pd *pd, 2432 struct ib_qp_init_attr *qp_init_attr, 2433 struct ib_udata *udata); 2434 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, 2435 int qp_attr_mask, struct ib_udata *udata); 2436 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, 2437 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr); 2438 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata); 2439 int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr, 2440 struct ib_udata *udata); 2441 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period); 2442 void (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata); 2443 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata); 2444 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags); 2445 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length, 2446 u64 virt_addr, int mr_access_flags, 2447 struct ib_udata *udata); 2448 int (*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start, u64 length, 2449 u64 virt_addr, int mr_access_flags, 2450 struct ib_pd *pd, struct ib_udata *udata); 2451 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata); 2452 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type, 2453 u32 max_num_sg); 2454 struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd, 2455 u32 max_num_data_sg, 2456 u32 max_num_meta_sg); 2457 int (*advise_mr)(struct ib_pd *pd, 2458 enum ib_uverbs_advise_mr_advice advice, u32 flags, 2459 struct ib_sge *sg_list, u32 num_sge, 2460 struct uverbs_attr_bundle *attrs); 2461 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 2462 unsigned int *sg_offset); 2463 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 2464 struct ib_mr_status *mr_status); 2465 struct ib_mw *(*alloc_mw)(struct ib_pd *pd, enum ib_mw_type type, 2466 struct ib_udata *udata); 2467 int (*dealloc_mw)(struct ib_mw *mw); 2468 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2469 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2470 int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata); 2471 void (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata); 2472 struct ib_flow *(*create_flow)(struct ib_qp *qp, 2473 struct ib_flow_attr *flow_attr, 2474 int domain, struct ib_udata *udata); 2475 int (*destroy_flow)(struct ib_flow *flow_id); 2476 struct ib_flow_action *(*create_flow_action_esp)( 2477 struct ib_device *device, 2478 const struct ib_flow_action_attrs_esp *attr, 2479 struct uverbs_attr_bundle *attrs); 2480 int (*destroy_flow_action)(struct ib_flow_action *action); 2481 int (*modify_flow_action_esp)( 2482 struct ib_flow_action *action, 2483 const struct ib_flow_action_attrs_esp *attr, 2484 struct uverbs_attr_bundle *attrs); 2485 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port, 2486 int state); 2487 int (*get_vf_config)(struct ib_device *device, int vf, u8 port, 2488 struct ifla_vf_info *ivf); 2489 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port, 2490 struct ifla_vf_stats *stats); 2491 int (*get_vf_guid)(struct ib_device *device, int vf, u8 port, 2492 struct ifla_vf_guid *node_guid, 2493 struct ifla_vf_guid *port_guid); 2494 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid, 2495 int type); 2496 struct ib_wq *(*create_wq)(struct ib_pd *pd, 2497 struct ib_wq_init_attr *init_attr, 2498 struct ib_udata *udata); 2499 void (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata); 2500 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr, 2501 u32 wq_attr_mask, struct ib_udata *udata); 2502 struct ib_rwq_ind_table *(*create_rwq_ind_table)( 2503 struct ib_device *device, 2504 struct ib_rwq_ind_table_init_attr *init_attr, 2505 struct ib_udata *udata); 2506 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table); 2507 struct ib_dm *(*alloc_dm)(struct ib_device *device, 2508 struct ib_ucontext *context, 2509 struct ib_dm_alloc_attr *attr, 2510 struct uverbs_attr_bundle *attrs); 2511 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs); 2512 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm, 2513 struct ib_dm_mr_attr *attr, 2514 struct uverbs_attr_bundle *attrs); 2515 int (*create_counters)(struct ib_counters *counters, 2516 struct uverbs_attr_bundle *attrs); 2517 void (*destroy_counters)(struct ib_counters *counters); 2518 int (*read_counters)(struct ib_counters *counters, 2519 struct ib_counters_read_attr *counters_read_attr, 2520 struct uverbs_attr_bundle *attrs); 2521 int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg, 2522 int data_sg_nents, unsigned int *data_sg_offset, 2523 struct scatterlist *meta_sg, int meta_sg_nents, 2524 unsigned int *meta_sg_offset); 2525 2526 /** 2527 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the 2528 * driver initialized data. The struct is kfree()'ed by the sysfs 2529 * core when the device is removed. A lifespan of -1 in the return 2530 * struct tells the core to set a default lifespan. 2531 */ 2532 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device, 2533 u8 port_num); 2534 /** 2535 * get_hw_stats - Fill in the counter value(s) in the stats struct. 2536 * @index - The index in the value array we wish to have updated, or 2537 * num_counters if we want all stats updated 2538 * Return codes - 2539 * < 0 - Error, no counters updated 2540 * index - Updated the single counter pointed to by index 2541 * num_counters - Updated all counters (will reset the timestamp 2542 * and prevent further calls for lifespan milliseconds) 2543 * Drivers are allowed to update all counters in leiu of just the 2544 * one given in index at their option 2545 */ 2546 int (*get_hw_stats)(struct ib_device *device, 2547 struct rdma_hw_stats *stats, u8 port, int index); 2548 /* 2549 * This function is called once for each port when a ib device is 2550 * registered. 2551 */ 2552 int (*init_port)(struct ib_device *device, u8 port_num, 2553 struct kobject *port_sysfs); 2554 /** 2555 * Allows rdma drivers to add their own restrack attributes. 2556 */ 2557 int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr); 2558 int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr); 2559 int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq); 2560 int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq); 2561 int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp); 2562 int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp); 2563 int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id); 2564 2565 /* Device lifecycle callbacks */ 2566 /* 2567 * Called after the device becomes registered, before clients are 2568 * attached 2569 */ 2570 int (*enable_driver)(struct ib_device *dev); 2571 /* 2572 * This is called as part of ib_dealloc_device(). 2573 */ 2574 void (*dealloc_driver)(struct ib_device *dev); 2575 2576 /* iWarp CM callbacks */ 2577 void (*iw_add_ref)(struct ib_qp *qp); 2578 void (*iw_rem_ref)(struct ib_qp *qp); 2579 struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn); 2580 int (*iw_connect)(struct iw_cm_id *cm_id, 2581 struct iw_cm_conn_param *conn_param); 2582 int (*iw_accept)(struct iw_cm_id *cm_id, 2583 struct iw_cm_conn_param *conn_param); 2584 int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata, 2585 u8 pdata_len); 2586 int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog); 2587 int (*iw_destroy_listen)(struct iw_cm_id *cm_id); 2588 /** 2589 * counter_bind_qp - Bind a QP to a counter. 2590 * @counter - The counter to be bound. If counter->id is zero then 2591 * the driver needs to allocate a new counter and set counter->id 2592 */ 2593 int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp); 2594 /** 2595 * counter_unbind_qp - Unbind the qp from the dynamically-allocated 2596 * counter and bind it onto the default one 2597 */ 2598 int (*counter_unbind_qp)(struct ib_qp *qp); 2599 /** 2600 * counter_dealloc -De-allocate the hw counter 2601 */ 2602 int (*counter_dealloc)(struct rdma_counter *counter); 2603 /** 2604 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in 2605 * the driver initialized data. 2606 */ 2607 struct rdma_hw_stats *(*counter_alloc_stats)( 2608 struct rdma_counter *counter); 2609 /** 2610 * counter_update_stats - Query the stats value of this counter 2611 */ 2612 int (*counter_update_stats)(struct rdma_counter *counter); 2613 2614 /** 2615 * Allows rdma drivers to add their own restrack attributes 2616 * dumped via 'rdma stat' iproute2 command. 2617 */ 2618 int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr); 2619 2620 /* query driver for its ucontext properties */ 2621 int (*query_ucontext)(struct ib_ucontext *context, 2622 struct uverbs_attr_bundle *attrs); 2623 2624 DECLARE_RDMA_OBJ_SIZE(ib_ah); 2625 DECLARE_RDMA_OBJ_SIZE(ib_counters); 2626 DECLARE_RDMA_OBJ_SIZE(ib_cq); 2627 DECLARE_RDMA_OBJ_SIZE(ib_pd); 2628 DECLARE_RDMA_OBJ_SIZE(ib_srq); 2629 DECLARE_RDMA_OBJ_SIZE(ib_ucontext); 2630 DECLARE_RDMA_OBJ_SIZE(ib_xrcd); 2631 }; 2632 2633 struct ib_core_device { 2634 /* device must be the first element in structure until, 2635 * union of ib_core_device and device exists in ib_device. 2636 */ 2637 struct device dev; 2638 possible_net_t rdma_net; 2639 struct kobject *ports_kobj; 2640 struct list_head port_list; 2641 struct ib_device *owner; /* reach back to owner ib_device */ 2642 }; 2643 2644 struct rdma_restrack_root; 2645 struct ib_device { 2646 /* Do not access @dma_device directly from ULP nor from HW drivers. */ 2647 struct device *dma_device; 2648 struct ib_device_ops ops; 2649 char name[IB_DEVICE_NAME_MAX]; 2650 struct rcu_head rcu_head; 2651 2652 struct list_head event_handler_list; 2653 /* Protects event_handler_list */ 2654 struct rw_semaphore event_handler_rwsem; 2655 2656 /* Protects QP's event_handler calls and open_qp list */ 2657 spinlock_t qp_open_list_lock; 2658 2659 struct rw_semaphore client_data_rwsem; 2660 struct xarray client_data; 2661 struct mutex unregistration_lock; 2662 2663 /* Synchronize GID, Pkey cache entries, subnet prefix, LMC */ 2664 rwlock_t cache_lock; 2665 /** 2666 * port_data is indexed by port number 2667 */ 2668 struct ib_port_data *port_data; 2669 2670 int num_comp_vectors; 2671 2672 union { 2673 struct device dev; 2674 struct ib_core_device coredev; 2675 }; 2676 2677 /* First group for device attributes, 2678 * Second group for driver provided attributes (optional). 2679 * It is NULL terminated array. 2680 */ 2681 const struct attribute_group *groups[3]; 2682 2683 u64 uverbs_cmd_mask; 2684 u64 uverbs_ex_cmd_mask; 2685 2686 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 2687 __be64 node_guid; 2688 u32 local_dma_lkey; 2689 u16 is_switch:1; 2690 /* Indicates kernel verbs support, should not be used in drivers */ 2691 u16 kverbs_provider:1; 2692 /* CQ adaptive moderation (RDMA DIM) */ 2693 u16 use_cq_dim:1; 2694 u8 node_type; 2695 u8 phys_port_cnt; 2696 struct ib_device_attr attrs; 2697 struct attribute_group *hw_stats_ag; 2698 struct rdma_hw_stats *hw_stats; 2699 2700 #ifdef CONFIG_CGROUP_RDMA 2701 struct rdmacg_device cg_device; 2702 #endif 2703 2704 u32 index; 2705 2706 spinlock_t cq_pools_lock; 2707 struct list_head cq_pools[IB_POLL_LAST_POOL_TYPE + 1]; 2708 2709 struct rdma_restrack_root *res; 2710 2711 const struct uapi_definition *driver_def; 2712 2713 /* 2714 * Positive refcount indicates that the device is currently 2715 * registered and cannot be unregistered. 2716 */ 2717 refcount_t refcount; 2718 struct completion unreg_completion; 2719 struct work_struct unregistration_work; 2720 2721 const struct rdma_link_ops *link_ops; 2722 2723 /* Protects compat_devs xarray modifications */ 2724 struct mutex compat_devs_mutex; 2725 /* Maintains compat devices for each net namespace */ 2726 struct xarray compat_devs; 2727 2728 /* Used by iWarp CM */ 2729 char iw_ifname[IFNAMSIZ]; 2730 u32 iw_driver_flags; 2731 u32 lag_flags; 2732 }; 2733 2734 struct ib_client_nl_info; 2735 struct ib_client { 2736 const char *name; 2737 int (*add)(struct ib_device *ibdev); 2738 void (*remove)(struct ib_device *, void *client_data); 2739 void (*rename)(struct ib_device *dev, void *client_data); 2740 int (*get_nl_info)(struct ib_device *ibdev, void *client_data, 2741 struct ib_client_nl_info *res); 2742 int (*get_global_nl_info)(struct ib_client_nl_info *res); 2743 2744 /* Returns the net_dev belonging to this ib_client and matching the 2745 * given parameters. 2746 * @dev: An RDMA device that the net_dev use for communication. 2747 * @port: A physical port number on the RDMA device. 2748 * @pkey: P_Key that the net_dev uses if applicable. 2749 * @gid: A GID that the net_dev uses to communicate. 2750 * @addr: An IP address the net_dev is configured with. 2751 * @client_data: The device's client data set by ib_set_client_data(). 2752 * 2753 * An ib_client that implements a net_dev on top of RDMA devices 2754 * (such as IP over IB) should implement this callback, allowing the 2755 * rdma_cm module to find the right net_dev for a given request. 2756 * 2757 * The caller is responsible for calling dev_put on the returned 2758 * netdev. */ 2759 struct net_device *(*get_net_dev_by_params)( 2760 struct ib_device *dev, 2761 u8 port, 2762 u16 pkey, 2763 const union ib_gid *gid, 2764 const struct sockaddr *addr, 2765 void *client_data); 2766 2767 refcount_t uses; 2768 struct completion uses_zero; 2769 u32 client_id; 2770 2771 /* kverbs are not required by the client */ 2772 u8 no_kverbs_req:1; 2773 }; 2774 2775 /* 2776 * IB block DMA iterator 2777 * 2778 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned 2779 * to a HW supported page size. 2780 */ 2781 struct ib_block_iter { 2782 /* internal states */ 2783 struct scatterlist *__sg; /* sg holding the current aligned block */ 2784 dma_addr_t __dma_addr; /* unaligned DMA address of this block */ 2785 unsigned int __sg_nents; /* number of SG entries */ 2786 unsigned int __sg_advance; /* number of bytes to advance in sg in next step */ 2787 unsigned int __pg_bit; /* alignment of current block */ 2788 }; 2789 2790 struct ib_device *_ib_alloc_device(size_t size); 2791 #define ib_alloc_device(drv_struct, member) \ 2792 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \ 2793 BUILD_BUG_ON_ZERO(offsetof( \ 2794 struct drv_struct, member))), \ 2795 struct drv_struct, member) 2796 2797 void ib_dealloc_device(struct ib_device *device); 2798 2799 void ib_get_device_fw_str(struct ib_device *device, char *str); 2800 2801 int ib_register_device(struct ib_device *device, const char *name); 2802 void ib_unregister_device(struct ib_device *device); 2803 void ib_unregister_driver(enum rdma_driver_id driver_id); 2804 void ib_unregister_device_and_put(struct ib_device *device); 2805 void ib_unregister_device_queued(struct ib_device *ib_dev); 2806 2807 int ib_register_client (struct ib_client *client); 2808 void ib_unregister_client(struct ib_client *client); 2809 2810 void __rdma_block_iter_start(struct ib_block_iter *biter, 2811 struct scatterlist *sglist, 2812 unsigned int nents, 2813 unsigned long pgsz); 2814 bool __rdma_block_iter_next(struct ib_block_iter *biter); 2815 2816 /** 2817 * rdma_block_iter_dma_address - get the aligned dma address of the current 2818 * block held by the block iterator. 2819 * @biter: block iterator holding the memory block 2820 */ 2821 static inline dma_addr_t 2822 rdma_block_iter_dma_address(struct ib_block_iter *biter) 2823 { 2824 return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1); 2825 } 2826 2827 /** 2828 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list 2829 * @sglist: sglist to iterate over 2830 * @biter: block iterator holding the memory block 2831 * @nents: maximum number of sg entries to iterate over 2832 * @pgsz: best HW supported page size to use 2833 * 2834 * Callers may use rdma_block_iter_dma_address() to get each 2835 * blocks aligned DMA address. 2836 */ 2837 #define rdma_for_each_block(sglist, biter, nents, pgsz) \ 2838 for (__rdma_block_iter_start(biter, sglist, nents, \ 2839 pgsz); \ 2840 __rdma_block_iter_next(biter);) 2841 2842 /** 2843 * ib_get_client_data - Get IB client context 2844 * @device:Device to get context for 2845 * @client:Client to get context for 2846 * 2847 * ib_get_client_data() returns the client context data set with 2848 * ib_set_client_data(). This can only be called while the client is 2849 * registered to the device, once the ib_client remove() callback returns this 2850 * cannot be called. 2851 */ 2852 static inline void *ib_get_client_data(struct ib_device *device, 2853 struct ib_client *client) 2854 { 2855 return xa_load(&device->client_data, client->client_id); 2856 } 2857 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 2858 void *data); 2859 void ib_set_device_ops(struct ib_device *device, 2860 const struct ib_device_ops *ops); 2861 2862 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma, 2863 unsigned long pfn, unsigned long size, pgprot_t prot, 2864 struct rdma_user_mmap_entry *entry); 2865 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext, 2866 struct rdma_user_mmap_entry *entry, 2867 size_t length); 2868 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext, 2869 struct rdma_user_mmap_entry *entry, 2870 size_t length, u32 min_pgoff, 2871 u32 max_pgoff); 2872 2873 struct rdma_user_mmap_entry * 2874 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext, 2875 unsigned long pgoff); 2876 struct rdma_user_mmap_entry * 2877 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext, 2878 struct vm_area_struct *vma); 2879 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry); 2880 2881 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry); 2882 2883 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 2884 { 2885 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 2886 } 2887 2888 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 2889 { 2890 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 2891 } 2892 2893 static inline bool ib_is_buffer_cleared(const void __user *p, 2894 size_t len) 2895 { 2896 bool ret; 2897 u8 *buf; 2898 2899 if (len > USHRT_MAX) 2900 return false; 2901 2902 buf = memdup_user(p, len); 2903 if (IS_ERR(buf)) 2904 return false; 2905 2906 ret = !memchr_inv(buf, 0, len); 2907 kfree(buf); 2908 return ret; 2909 } 2910 2911 static inline bool ib_is_udata_cleared(struct ib_udata *udata, 2912 size_t offset, 2913 size_t len) 2914 { 2915 return ib_is_buffer_cleared(udata->inbuf + offset, len); 2916 } 2917 2918 /** 2919 * ib_is_destroy_retryable - Check whether the uobject destruction 2920 * is retryable. 2921 * @ret: The initial destruction return code 2922 * @why: remove reason 2923 * @uobj: The uobject that is destroyed 2924 * 2925 * This function is a helper function that IB layer and low-level drivers 2926 * can use to consider whether the destruction of the given uobject is 2927 * retry-able. 2928 * It checks the original return code, if it wasn't success the destruction 2929 * is retryable according to the ucontext state (i.e. cleanup_retryable) and 2930 * the remove reason. (i.e. why). 2931 * Must be called with the object locked for destroy. 2932 */ 2933 static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why, 2934 struct ib_uobject *uobj) 2935 { 2936 return ret && (why == RDMA_REMOVE_DESTROY || 2937 uobj->context->cleanup_retryable); 2938 } 2939 2940 /** 2941 * ib_destroy_usecnt - Called during destruction to check the usecnt 2942 * @usecnt: The usecnt atomic 2943 * @why: remove reason 2944 * @uobj: The uobject that is destroyed 2945 * 2946 * Non-zero usecnts will block destruction unless destruction was triggered by 2947 * a ucontext cleanup. 2948 */ 2949 static inline int ib_destroy_usecnt(atomic_t *usecnt, 2950 enum rdma_remove_reason why, 2951 struct ib_uobject *uobj) 2952 { 2953 if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj)) 2954 return -EBUSY; 2955 return 0; 2956 } 2957 2958 /** 2959 * ib_modify_qp_is_ok - Check that the supplied attribute mask 2960 * contains all required attributes and no attributes not allowed for 2961 * the given QP state transition. 2962 * @cur_state: Current QP state 2963 * @next_state: Next QP state 2964 * @type: QP type 2965 * @mask: Mask of supplied QP attributes 2966 * 2967 * This function is a helper function that a low-level driver's 2968 * modify_qp method can use to validate the consumer's input. It 2969 * checks that cur_state and next_state are valid QP states, that a 2970 * transition from cur_state to next_state is allowed by the IB spec, 2971 * and that the attribute mask supplied is allowed for the transition. 2972 */ 2973 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 2974 enum ib_qp_type type, enum ib_qp_attr_mask mask); 2975 2976 void ib_register_event_handler(struct ib_event_handler *event_handler); 2977 void ib_unregister_event_handler(struct ib_event_handler *event_handler); 2978 void ib_dispatch_event(const struct ib_event *event); 2979 2980 int ib_query_port(struct ib_device *device, 2981 u8 port_num, struct ib_port_attr *port_attr); 2982 2983 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 2984 u8 port_num); 2985 2986 /** 2987 * rdma_cap_ib_switch - Check if the device is IB switch 2988 * @device: Device to check 2989 * 2990 * Device driver is responsible for setting is_switch bit on 2991 * in ib_device structure at init time. 2992 * 2993 * Return: true if the device is IB switch. 2994 */ 2995 static inline bool rdma_cap_ib_switch(const struct ib_device *device) 2996 { 2997 return device->is_switch; 2998 } 2999 3000 /** 3001 * rdma_start_port - Return the first valid port number for the device 3002 * specified 3003 * 3004 * @device: Device to be checked 3005 * 3006 * Return start port number 3007 */ 3008 static inline u8 rdma_start_port(const struct ib_device *device) 3009 { 3010 return rdma_cap_ib_switch(device) ? 0 : 1; 3011 } 3012 3013 /** 3014 * rdma_for_each_port - Iterate over all valid port numbers of the IB device 3015 * @device - The struct ib_device * to iterate over 3016 * @iter - The unsigned int to store the port number 3017 */ 3018 #define rdma_for_each_port(device, iter) \ 3019 for (iter = rdma_start_port(device + BUILD_BUG_ON_ZERO(!__same_type( \ 3020 unsigned int, iter))); \ 3021 iter <= rdma_end_port(device); (iter)++) 3022 3023 /** 3024 * rdma_end_port - Return the last valid port number for the device 3025 * specified 3026 * 3027 * @device: Device to be checked 3028 * 3029 * Return last port number 3030 */ 3031 static inline u8 rdma_end_port(const struct ib_device *device) 3032 { 3033 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 3034 } 3035 3036 static inline int rdma_is_port_valid(const struct ib_device *device, 3037 unsigned int port) 3038 { 3039 return (port >= rdma_start_port(device) && 3040 port <= rdma_end_port(device)); 3041 } 3042 3043 static inline bool rdma_is_grh_required(const struct ib_device *device, 3044 u8 port_num) 3045 { 3046 return device->port_data[port_num].immutable.core_cap_flags & 3047 RDMA_CORE_PORT_IB_GRH_REQUIRED; 3048 } 3049 3050 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num) 3051 { 3052 return device->port_data[port_num].immutable.core_cap_flags & 3053 RDMA_CORE_CAP_PROT_IB; 3054 } 3055 3056 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num) 3057 { 3058 return device->port_data[port_num].immutable.core_cap_flags & 3059 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); 3060 } 3061 3062 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num) 3063 { 3064 return device->port_data[port_num].immutable.core_cap_flags & 3065 RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; 3066 } 3067 3068 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num) 3069 { 3070 return device->port_data[port_num].immutable.core_cap_flags & 3071 RDMA_CORE_CAP_PROT_ROCE; 3072 } 3073 3074 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num) 3075 { 3076 return device->port_data[port_num].immutable.core_cap_flags & 3077 RDMA_CORE_CAP_PROT_IWARP; 3078 } 3079 3080 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num) 3081 { 3082 return rdma_protocol_ib(device, port_num) || 3083 rdma_protocol_roce(device, port_num); 3084 } 3085 3086 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num) 3087 { 3088 return device->port_data[port_num].immutable.core_cap_flags & 3089 RDMA_CORE_CAP_PROT_RAW_PACKET; 3090 } 3091 3092 static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num) 3093 { 3094 return device->port_data[port_num].immutable.core_cap_flags & 3095 RDMA_CORE_CAP_PROT_USNIC; 3096 } 3097 3098 /** 3099 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 3100 * Management Datagrams. 3101 * @device: Device to check 3102 * @port_num: Port number to check 3103 * 3104 * Management Datagrams (MAD) are a required part of the InfiniBand 3105 * specification and are supported on all InfiniBand devices. A slightly 3106 * extended version are also supported on OPA interfaces. 3107 * 3108 * Return: true if the port supports sending/receiving of MAD packets. 3109 */ 3110 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num) 3111 { 3112 return device->port_data[port_num].immutable.core_cap_flags & 3113 RDMA_CORE_CAP_IB_MAD; 3114 } 3115 3116 /** 3117 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 3118 * Management Datagrams. 3119 * @device: Device to check 3120 * @port_num: Port number to check 3121 * 3122 * Intel OmniPath devices extend and/or replace the InfiniBand Management 3123 * datagrams with their own versions. These OPA MADs share many but not all of 3124 * the characteristics of InfiniBand MADs. 3125 * 3126 * OPA MADs differ in the following ways: 3127 * 3128 * 1) MADs are variable size up to 2K 3129 * IBTA defined MADs remain fixed at 256 bytes 3130 * 2) OPA SMPs must carry valid PKeys 3131 * 3) OPA SMP packets are a different format 3132 * 3133 * Return: true if the port supports OPA MAD packet formats. 3134 */ 3135 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num) 3136 { 3137 return device->port_data[port_num].immutable.core_cap_flags & 3138 RDMA_CORE_CAP_OPA_MAD; 3139 } 3140 3141 /** 3142 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 3143 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 3144 * @device: Device to check 3145 * @port_num: Port number to check 3146 * 3147 * Each InfiniBand node is required to provide a Subnet Management Agent 3148 * that the subnet manager can access. Prior to the fabric being fully 3149 * configured by the subnet manager, the SMA is accessed via a well known 3150 * interface called the Subnet Management Interface (SMI). This interface 3151 * uses directed route packets to communicate with the SM to get around the 3152 * chicken and egg problem of the SM needing to know what's on the fabric 3153 * in order to configure the fabric, and needing to configure the fabric in 3154 * order to send packets to the devices on the fabric. These directed 3155 * route packets do not need the fabric fully configured in order to reach 3156 * their destination. The SMI is the only method allowed to send 3157 * directed route packets on an InfiniBand fabric. 3158 * 3159 * Return: true if the port provides an SMI. 3160 */ 3161 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num) 3162 { 3163 return device->port_data[port_num].immutable.core_cap_flags & 3164 RDMA_CORE_CAP_IB_SMI; 3165 } 3166 3167 /** 3168 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 3169 * Communication Manager. 3170 * @device: Device to check 3171 * @port_num: Port number to check 3172 * 3173 * The InfiniBand Communication Manager is one of many pre-defined General 3174 * Service Agents (GSA) that are accessed via the General Service 3175 * Interface (GSI). It's role is to facilitate establishment of connections 3176 * between nodes as well as other management related tasks for established 3177 * connections. 3178 * 3179 * Return: true if the port supports an IB CM (this does not guarantee that 3180 * a CM is actually running however). 3181 */ 3182 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num) 3183 { 3184 return device->port_data[port_num].immutable.core_cap_flags & 3185 RDMA_CORE_CAP_IB_CM; 3186 } 3187 3188 /** 3189 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 3190 * Communication Manager. 3191 * @device: Device to check 3192 * @port_num: Port number to check 3193 * 3194 * Similar to above, but specific to iWARP connections which have a different 3195 * managment protocol than InfiniBand. 3196 * 3197 * Return: true if the port supports an iWARP CM (this does not guarantee that 3198 * a CM is actually running however). 3199 */ 3200 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num) 3201 { 3202 return device->port_data[port_num].immutable.core_cap_flags & 3203 RDMA_CORE_CAP_IW_CM; 3204 } 3205 3206 /** 3207 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 3208 * Subnet Administration. 3209 * @device: Device to check 3210 * @port_num: Port number to check 3211 * 3212 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 3213 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 3214 * fabrics, devices should resolve routes to other hosts by contacting the 3215 * SA to query the proper route. 3216 * 3217 * Return: true if the port should act as a client to the fabric Subnet 3218 * Administration interface. This does not imply that the SA service is 3219 * running locally. 3220 */ 3221 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num) 3222 { 3223 return device->port_data[port_num].immutable.core_cap_flags & 3224 RDMA_CORE_CAP_IB_SA; 3225 } 3226 3227 /** 3228 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 3229 * Multicast. 3230 * @device: Device to check 3231 * @port_num: Port number to check 3232 * 3233 * InfiniBand multicast registration is more complex than normal IPv4 or 3234 * IPv6 multicast registration. Each Host Channel Adapter must register 3235 * with the Subnet Manager when it wishes to join a multicast group. It 3236 * should do so only once regardless of how many queue pairs it subscribes 3237 * to this group. And it should leave the group only after all queue pairs 3238 * attached to the group have been detached. 3239 * 3240 * Return: true if the port must undertake the additional adminstrative 3241 * overhead of registering/unregistering with the SM and tracking of the 3242 * total number of queue pairs attached to the multicast group. 3243 */ 3244 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num) 3245 { 3246 return rdma_cap_ib_sa(device, port_num); 3247 } 3248 3249 /** 3250 * rdma_cap_af_ib - Check if the port of device has the capability 3251 * Native Infiniband Address. 3252 * @device: Device to check 3253 * @port_num: Port number to check 3254 * 3255 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 3256 * GID. RoCE uses a different mechanism, but still generates a GID via 3257 * a prescribed mechanism and port specific data. 3258 * 3259 * Return: true if the port uses a GID address to identify devices on the 3260 * network. 3261 */ 3262 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num) 3263 { 3264 return device->port_data[port_num].immutable.core_cap_flags & 3265 RDMA_CORE_CAP_AF_IB; 3266 } 3267 3268 /** 3269 * rdma_cap_eth_ah - Check if the port of device has the capability 3270 * Ethernet Address Handle. 3271 * @device: Device to check 3272 * @port_num: Port number to check 3273 * 3274 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 3275 * to fabricate GIDs over Ethernet/IP specific addresses native to the 3276 * port. Normally, packet headers are generated by the sending host 3277 * adapter, but when sending connectionless datagrams, we must manually 3278 * inject the proper headers for the fabric we are communicating over. 3279 * 3280 * Return: true if we are running as a RoCE port and must force the 3281 * addition of a Global Route Header built from our Ethernet Address 3282 * Handle into our header list for connectionless packets. 3283 */ 3284 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num) 3285 { 3286 return device->port_data[port_num].immutable.core_cap_flags & 3287 RDMA_CORE_CAP_ETH_AH; 3288 } 3289 3290 /** 3291 * rdma_cap_opa_ah - Check if the port of device supports 3292 * OPA Address handles 3293 * @device: Device to check 3294 * @port_num: Port number to check 3295 * 3296 * Return: true if we are running on an OPA device which supports 3297 * the extended OPA addressing. 3298 */ 3299 static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num) 3300 { 3301 return (device->port_data[port_num].immutable.core_cap_flags & 3302 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH; 3303 } 3304 3305 /** 3306 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 3307 * 3308 * @device: Device 3309 * @port_num: Port number 3310 * 3311 * This MAD size includes the MAD headers and MAD payload. No other headers 3312 * are included. 3313 * 3314 * Return the max MAD size required by the Port. Will return 0 if the port 3315 * does not support MADs 3316 */ 3317 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num) 3318 { 3319 return device->port_data[port_num].immutable.max_mad_size; 3320 } 3321 3322 /** 3323 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 3324 * @device: Device to check 3325 * @port_num: Port number to check 3326 * 3327 * RoCE GID table mechanism manages the various GIDs for a device. 3328 * 3329 * NOTE: if allocating the port's GID table has failed, this call will still 3330 * return true, but any RoCE GID table API will fail. 3331 * 3332 * Return: true if the port uses RoCE GID table mechanism in order to manage 3333 * its GIDs. 3334 */ 3335 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 3336 u8 port_num) 3337 { 3338 return rdma_protocol_roce(device, port_num) && 3339 device->ops.add_gid && device->ops.del_gid; 3340 } 3341 3342 /* 3343 * Check if the device supports READ W/ INVALIDATE. 3344 */ 3345 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num) 3346 { 3347 /* 3348 * iWarp drivers must support READ W/ INVALIDATE. No other protocol 3349 * has support for it yet. 3350 */ 3351 return rdma_protocol_iwarp(dev, port_num); 3352 } 3353 3354 /** 3355 * rdma_find_pg_bit - Find page bit given address and HW supported page sizes 3356 * 3357 * @addr: address 3358 * @pgsz_bitmap: bitmap of HW supported page sizes 3359 */ 3360 static inline unsigned int rdma_find_pg_bit(unsigned long addr, 3361 unsigned long pgsz_bitmap) 3362 { 3363 unsigned long align; 3364 unsigned long pgsz; 3365 3366 align = addr & -addr; 3367 3368 /* Find page bit such that addr is aligned to the highest supported 3369 * HW page size 3370 */ 3371 pgsz = pgsz_bitmap & ~(-align << 1); 3372 if (!pgsz) 3373 return __ffs(pgsz_bitmap); 3374 3375 return __fls(pgsz); 3376 } 3377 3378 /** 3379 * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not. 3380 * @device: Device 3381 * @port_num: 1 based Port number 3382 * 3383 * Return true if port is an Intel OPA port , false if not 3384 */ 3385 static inline bool rdma_core_cap_opa_port(struct ib_device *device, 3386 u32 port_num) 3387 { 3388 return (device->port_data[port_num].immutable.core_cap_flags & 3389 RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA; 3390 } 3391 3392 /** 3393 * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value. 3394 * @device: Device 3395 * @port_num: Port number 3396 * @mtu: enum value of MTU 3397 * 3398 * Return the MTU size supported by the port as an integer value. Will return 3399 * -1 if enum value of mtu is not supported. 3400 */ 3401 static inline int rdma_mtu_enum_to_int(struct ib_device *device, u8 port, 3402 int mtu) 3403 { 3404 if (rdma_core_cap_opa_port(device, port)) 3405 return opa_mtu_enum_to_int((enum opa_mtu)mtu); 3406 else 3407 return ib_mtu_enum_to_int((enum ib_mtu)mtu); 3408 } 3409 3410 /** 3411 * rdma_mtu_from_attr - Return the mtu of the port from the port attribute. 3412 * @device: Device 3413 * @port_num: Port number 3414 * @attr: port attribute 3415 * 3416 * Return the MTU size supported by the port as an integer value. 3417 */ 3418 static inline int rdma_mtu_from_attr(struct ib_device *device, u8 port, 3419 struct ib_port_attr *attr) 3420 { 3421 if (rdma_core_cap_opa_port(device, port)) 3422 return attr->phys_mtu; 3423 else 3424 return ib_mtu_enum_to_int(attr->max_mtu); 3425 } 3426 3427 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 3428 int state); 3429 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 3430 struct ifla_vf_info *info); 3431 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 3432 struct ifla_vf_stats *stats); 3433 int ib_get_vf_guid(struct ib_device *device, int vf, u8 port, 3434 struct ifla_vf_guid *node_guid, 3435 struct ifla_vf_guid *port_guid); 3436 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 3437 int type); 3438 3439 int ib_query_pkey(struct ib_device *device, 3440 u8 port_num, u16 index, u16 *pkey); 3441 3442 int ib_modify_device(struct ib_device *device, 3443 int device_modify_mask, 3444 struct ib_device_modify *device_modify); 3445 3446 int ib_modify_port(struct ib_device *device, 3447 u8 port_num, int port_modify_mask, 3448 struct ib_port_modify *port_modify); 3449 3450 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 3451 u8 *port_num, u16 *index); 3452 3453 int ib_find_pkey(struct ib_device *device, 3454 u8 port_num, u16 pkey, u16 *index); 3455 3456 enum ib_pd_flags { 3457 /* 3458 * Create a memory registration for all memory in the system and place 3459 * the rkey for it into pd->unsafe_global_rkey. This can be used by 3460 * ULPs to avoid the overhead of dynamic MRs. 3461 * 3462 * This flag is generally considered unsafe and must only be used in 3463 * extremly trusted environments. Every use of it will log a warning 3464 * in the kernel log. 3465 */ 3466 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01, 3467 }; 3468 3469 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 3470 const char *caller); 3471 3472 #define ib_alloc_pd(device, flags) \ 3473 __ib_alloc_pd((device), (flags), KBUILD_MODNAME) 3474 3475 /** 3476 * ib_dealloc_pd_user - Deallocate kernel/user PD 3477 * @pd: The protection domain 3478 * @udata: Valid user data or NULL for kernel objects 3479 */ 3480 void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata); 3481 3482 /** 3483 * ib_dealloc_pd - Deallocate kernel PD 3484 * @pd: The protection domain 3485 * 3486 * NOTE: for user PD use ib_dealloc_pd_user with valid udata! 3487 */ 3488 static inline void ib_dealloc_pd(struct ib_pd *pd) 3489 { 3490 ib_dealloc_pd_user(pd, NULL); 3491 } 3492 3493 enum rdma_create_ah_flags { 3494 /* In a sleepable context */ 3495 RDMA_CREATE_AH_SLEEPABLE = BIT(0), 3496 }; 3497 3498 /** 3499 * rdma_create_ah - Creates an address handle for the given address vector. 3500 * @pd: The protection domain associated with the address handle. 3501 * @ah_attr: The attributes of the address vector. 3502 * @flags: Create address handle flags (see enum rdma_create_ah_flags). 3503 * 3504 * The address handle is used to reference a local or global destination 3505 * in all UD QP post sends. 3506 */ 3507 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr, 3508 u32 flags); 3509 3510 /** 3511 * rdma_create_user_ah - Creates an address handle for the given address vector. 3512 * It resolves destination mac address for ah attribute of RoCE type. 3513 * @pd: The protection domain associated with the address handle. 3514 * @ah_attr: The attributes of the address vector. 3515 * @udata: pointer to user's input output buffer information need by 3516 * provider driver. 3517 * 3518 * It returns 0 on success and returns appropriate error code on error. 3519 * The address handle is used to reference a local or global destination 3520 * in all UD QP post sends. 3521 */ 3522 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd, 3523 struct rdma_ah_attr *ah_attr, 3524 struct ib_udata *udata); 3525 /** 3526 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header 3527 * work completion. 3528 * @hdr: the L3 header to parse 3529 * @net_type: type of header to parse 3530 * @sgid: place to store source gid 3531 * @dgid: place to store destination gid 3532 */ 3533 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 3534 enum rdma_network_type net_type, 3535 union ib_gid *sgid, union ib_gid *dgid); 3536 3537 /** 3538 * ib_get_rdma_header_version - Get the header version 3539 * @hdr: the L3 header to parse 3540 */ 3541 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr); 3542 3543 /** 3544 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a 3545 * work completion. 3546 * @device: Device on which the received message arrived. 3547 * @port_num: Port on which the received message arrived. 3548 * @wc: Work completion associated with the received message. 3549 * @grh: References the received global route header. This parameter is 3550 * ignored unless the work completion indicates that the GRH is valid. 3551 * @ah_attr: Returned attributes that can be used when creating an address 3552 * handle for replying to the message. 3553 * When ib_init_ah_attr_from_wc() returns success, 3554 * (a) for IB link layer it optionally contains a reference to SGID attribute 3555 * when GRH is present for IB link layer. 3556 * (b) for RoCE link layer it contains a reference to SGID attribute. 3557 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID 3558 * attributes which are initialized using ib_init_ah_attr_from_wc(). 3559 * 3560 */ 3561 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num, 3562 const struct ib_wc *wc, const struct ib_grh *grh, 3563 struct rdma_ah_attr *ah_attr); 3564 3565 /** 3566 * ib_create_ah_from_wc - Creates an address handle associated with the 3567 * sender of the specified work completion. 3568 * @pd: The protection domain associated with the address handle. 3569 * @wc: Work completion information associated with a received message. 3570 * @grh: References the received global route header. This parameter is 3571 * ignored unless the work completion indicates that the GRH is valid. 3572 * @port_num: The outbound port number to associate with the address. 3573 * 3574 * The address handle is used to reference a local or global destination 3575 * in all UD QP post sends. 3576 */ 3577 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 3578 const struct ib_grh *grh, u8 port_num); 3579 3580 /** 3581 * rdma_modify_ah - Modifies the address vector associated with an address 3582 * handle. 3583 * @ah: The address handle to modify. 3584 * @ah_attr: The new address vector attributes to associate with the 3585 * address handle. 3586 */ 3587 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3588 3589 /** 3590 * rdma_query_ah - Queries the address vector associated with an address 3591 * handle. 3592 * @ah: The address handle to query. 3593 * @ah_attr: The address vector attributes associated with the address 3594 * handle. 3595 */ 3596 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3597 3598 enum rdma_destroy_ah_flags { 3599 /* In a sleepable context */ 3600 RDMA_DESTROY_AH_SLEEPABLE = BIT(0), 3601 }; 3602 3603 /** 3604 * rdma_destroy_ah_user - Destroys an address handle. 3605 * @ah: The address handle to destroy. 3606 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3607 * @udata: Valid user data or NULL for kernel objects 3608 */ 3609 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata); 3610 3611 /** 3612 * rdma_destroy_ah - Destroys an kernel address handle. 3613 * @ah: The address handle to destroy. 3614 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3615 * 3616 * NOTE: for user ah use rdma_destroy_ah_user with valid udata! 3617 */ 3618 static inline int rdma_destroy_ah(struct ib_ah *ah, u32 flags) 3619 { 3620 return rdma_destroy_ah_user(ah, flags, NULL); 3621 } 3622 3623 struct ib_srq *ib_create_srq_user(struct ib_pd *pd, 3624 struct ib_srq_init_attr *srq_init_attr, 3625 struct ib_usrq_object *uobject, 3626 struct ib_udata *udata); 3627 static inline struct ib_srq * 3628 ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr) 3629 { 3630 if (!pd->device->ops.create_srq) 3631 return ERR_PTR(-EOPNOTSUPP); 3632 3633 return ib_create_srq_user(pd, srq_init_attr, NULL, NULL); 3634 } 3635 3636 /** 3637 * ib_modify_srq - Modifies the attributes for the specified SRQ. 3638 * @srq: The SRQ to modify. 3639 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 3640 * the current values of selected SRQ attributes are returned. 3641 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 3642 * are being modified. 3643 * 3644 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 3645 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 3646 * the number of receives queued drops below the limit. 3647 */ 3648 int ib_modify_srq(struct ib_srq *srq, 3649 struct ib_srq_attr *srq_attr, 3650 enum ib_srq_attr_mask srq_attr_mask); 3651 3652 /** 3653 * ib_query_srq - Returns the attribute list and current values for the 3654 * specified SRQ. 3655 * @srq: The SRQ to query. 3656 * @srq_attr: The attributes of the specified SRQ. 3657 */ 3658 int ib_query_srq(struct ib_srq *srq, 3659 struct ib_srq_attr *srq_attr); 3660 3661 /** 3662 * ib_destroy_srq_user - Destroys the specified SRQ. 3663 * @srq: The SRQ to destroy. 3664 * @udata: Valid user data or NULL for kernel objects 3665 */ 3666 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata); 3667 3668 /** 3669 * ib_destroy_srq - Destroys the specified kernel SRQ. 3670 * @srq: The SRQ to destroy. 3671 * 3672 * NOTE: for user srq use ib_destroy_srq_user with valid udata! 3673 */ 3674 static inline int ib_destroy_srq(struct ib_srq *srq) 3675 { 3676 return ib_destroy_srq_user(srq, NULL); 3677 } 3678 3679 /** 3680 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 3681 * @srq: The SRQ to post the work request on. 3682 * @recv_wr: A list of work requests to post on the receive queue. 3683 * @bad_recv_wr: On an immediate failure, this parameter will reference 3684 * the work request that failed to be posted on the QP. 3685 */ 3686 static inline int ib_post_srq_recv(struct ib_srq *srq, 3687 const struct ib_recv_wr *recv_wr, 3688 const struct ib_recv_wr **bad_recv_wr) 3689 { 3690 const struct ib_recv_wr *dummy; 3691 3692 return srq->device->ops.post_srq_recv(srq, recv_wr, 3693 bad_recv_wr ? : &dummy); 3694 } 3695 3696 struct ib_qp *ib_create_qp(struct ib_pd *pd, 3697 struct ib_qp_init_attr *qp_init_attr); 3698 3699 /** 3700 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 3701 * @qp: The QP to modify. 3702 * @attr: On input, specifies the QP attributes to modify. On output, 3703 * the current values of selected QP attributes are returned. 3704 * @attr_mask: A bit-mask used to specify which attributes of the QP 3705 * are being modified. 3706 * @udata: pointer to user's input output buffer information 3707 * are being modified. 3708 * It returns 0 on success and returns appropriate error code on error. 3709 */ 3710 int ib_modify_qp_with_udata(struct ib_qp *qp, 3711 struct ib_qp_attr *attr, 3712 int attr_mask, 3713 struct ib_udata *udata); 3714 3715 /** 3716 * ib_modify_qp - Modifies the attributes for the specified QP and then 3717 * transitions the QP to the given state. 3718 * @qp: The QP to modify. 3719 * @qp_attr: On input, specifies the QP attributes to modify. On output, 3720 * the current values of selected QP attributes are returned. 3721 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 3722 * are being modified. 3723 */ 3724 int ib_modify_qp(struct ib_qp *qp, 3725 struct ib_qp_attr *qp_attr, 3726 int qp_attr_mask); 3727 3728 /** 3729 * ib_query_qp - Returns the attribute list and current values for the 3730 * specified QP. 3731 * @qp: The QP to query. 3732 * @qp_attr: The attributes of the specified QP. 3733 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 3734 * @qp_init_attr: Additional attributes of the selected QP. 3735 * 3736 * The qp_attr_mask may be used to limit the query to gathering only the 3737 * selected attributes. 3738 */ 3739 int ib_query_qp(struct ib_qp *qp, 3740 struct ib_qp_attr *qp_attr, 3741 int qp_attr_mask, 3742 struct ib_qp_init_attr *qp_init_attr); 3743 3744 /** 3745 * ib_destroy_qp - Destroys the specified QP. 3746 * @qp: The QP to destroy. 3747 * @udata: Valid udata or NULL for kernel objects 3748 */ 3749 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata); 3750 3751 /** 3752 * ib_destroy_qp - Destroys the specified kernel QP. 3753 * @qp: The QP to destroy. 3754 * 3755 * NOTE: for user qp use ib_destroy_qp_user with valid udata! 3756 */ 3757 static inline int ib_destroy_qp(struct ib_qp *qp) 3758 { 3759 return ib_destroy_qp_user(qp, NULL); 3760 } 3761 3762 /** 3763 * ib_open_qp - Obtain a reference to an existing sharable QP. 3764 * @xrcd - XRC domain 3765 * @qp_open_attr: Attributes identifying the QP to open. 3766 * 3767 * Returns a reference to a sharable QP. 3768 */ 3769 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 3770 struct ib_qp_open_attr *qp_open_attr); 3771 3772 /** 3773 * ib_close_qp - Release an external reference to a QP. 3774 * @qp: The QP handle to release 3775 * 3776 * The opened QP handle is released by the caller. The underlying 3777 * shared QP is not destroyed until all internal references are released. 3778 */ 3779 int ib_close_qp(struct ib_qp *qp); 3780 3781 /** 3782 * ib_post_send - Posts a list of work requests to the send queue of 3783 * the specified QP. 3784 * @qp: The QP to post the work request on. 3785 * @send_wr: A list of work requests to post on the send queue. 3786 * @bad_send_wr: On an immediate failure, this parameter will reference 3787 * the work request that failed to be posted on the QP. 3788 * 3789 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 3790 * error is returned, the QP state shall not be affected, 3791 * ib_post_send() will return an immediate error after queueing any 3792 * earlier work requests in the list. 3793 */ 3794 static inline int ib_post_send(struct ib_qp *qp, 3795 const struct ib_send_wr *send_wr, 3796 const struct ib_send_wr **bad_send_wr) 3797 { 3798 const struct ib_send_wr *dummy; 3799 3800 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy); 3801 } 3802 3803 /** 3804 * ib_post_recv - Posts a list of work requests to the receive queue of 3805 * the specified QP. 3806 * @qp: The QP to post the work request on. 3807 * @recv_wr: A list of work requests to post on the receive queue. 3808 * @bad_recv_wr: On an immediate failure, this parameter will reference 3809 * the work request that failed to be posted on the QP. 3810 */ 3811 static inline int ib_post_recv(struct ib_qp *qp, 3812 const struct ib_recv_wr *recv_wr, 3813 const struct ib_recv_wr **bad_recv_wr) 3814 { 3815 const struct ib_recv_wr *dummy; 3816 3817 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy); 3818 } 3819 3820 struct ib_cq *__ib_alloc_cq_user(struct ib_device *dev, void *private, 3821 int nr_cqe, int comp_vector, 3822 enum ib_poll_context poll_ctx, 3823 const char *caller, struct ib_udata *udata); 3824 3825 /** 3826 * ib_alloc_cq_user: Allocate kernel/user CQ 3827 * @dev: The IB device 3828 * @private: Private data attached to the CQE 3829 * @nr_cqe: Number of CQEs in the CQ 3830 * @comp_vector: Completion vector used for the IRQs 3831 * @poll_ctx: Context used for polling the CQ 3832 * @udata: Valid user data or NULL for kernel objects 3833 */ 3834 static inline struct ib_cq *ib_alloc_cq_user(struct ib_device *dev, 3835 void *private, int nr_cqe, 3836 int comp_vector, 3837 enum ib_poll_context poll_ctx, 3838 struct ib_udata *udata) 3839 { 3840 return __ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx, 3841 KBUILD_MODNAME, udata); 3842 } 3843 3844 /** 3845 * ib_alloc_cq: Allocate kernel CQ 3846 * @dev: The IB device 3847 * @private: Private data attached to the CQE 3848 * @nr_cqe: Number of CQEs in the CQ 3849 * @comp_vector: Completion vector used for the IRQs 3850 * @poll_ctx: Context used for polling the CQ 3851 * 3852 * NOTE: for user cq use ib_alloc_cq_user with valid udata! 3853 */ 3854 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private, 3855 int nr_cqe, int comp_vector, 3856 enum ib_poll_context poll_ctx) 3857 { 3858 return ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx, 3859 NULL); 3860 } 3861 3862 struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private, 3863 int nr_cqe, enum ib_poll_context poll_ctx, 3864 const char *caller); 3865 3866 /** 3867 * ib_alloc_cq_any: Allocate kernel CQ 3868 * @dev: The IB device 3869 * @private: Private data attached to the CQE 3870 * @nr_cqe: Number of CQEs in the CQ 3871 * @poll_ctx: Context used for polling the CQ 3872 */ 3873 static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev, 3874 void *private, int nr_cqe, 3875 enum ib_poll_context poll_ctx) 3876 { 3877 return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx, 3878 KBUILD_MODNAME); 3879 } 3880 3881 /** 3882 * ib_free_cq_user - Free kernel/user CQ 3883 * @cq: The CQ to free 3884 * @udata: Valid user data or NULL for kernel objects 3885 * 3886 * NOTE: This function shouldn't be called on shared CQs. 3887 */ 3888 void ib_free_cq_user(struct ib_cq *cq, struct ib_udata *udata); 3889 3890 /** 3891 * ib_free_cq - Free kernel CQ 3892 * @cq: The CQ to free 3893 * 3894 * NOTE: for user cq use ib_free_cq_user with valid udata! 3895 */ 3896 static inline void ib_free_cq(struct ib_cq *cq) 3897 { 3898 ib_free_cq_user(cq, NULL); 3899 } 3900 3901 int ib_process_cq_direct(struct ib_cq *cq, int budget); 3902 3903 /** 3904 * ib_create_cq - Creates a CQ on the specified device. 3905 * @device: The device on which to create the CQ. 3906 * @comp_handler: A user-specified callback that is invoked when a 3907 * completion event occurs on the CQ. 3908 * @event_handler: A user-specified callback that is invoked when an 3909 * asynchronous event not associated with a completion occurs on the CQ. 3910 * @cq_context: Context associated with the CQ returned to the user via 3911 * the associated completion and event handlers. 3912 * @cq_attr: The attributes the CQ should be created upon. 3913 * 3914 * Users can examine the cq structure to determine the actual CQ size. 3915 */ 3916 struct ib_cq *__ib_create_cq(struct ib_device *device, 3917 ib_comp_handler comp_handler, 3918 void (*event_handler)(struct ib_event *, void *), 3919 void *cq_context, 3920 const struct ib_cq_init_attr *cq_attr, 3921 const char *caller); 3922 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \ 3923 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME) 3924 3925 /** 3926 * ib_resize_cq - Modifies the capacity of the CQ. 3927 * @cq: The CQ to resize. 3928 * @cqe: The minimum size of the CQ. 3929 * 3930 * Users can examine the cq structure to determine the actual CQ size. 3931 */ 3932 int ib_resize_cq(struct ib_cq *cq, int cqe); 3933 3934 /** 3935 * rdma_set_cq_moderation - Modifies moderation params of the CQ 3936 * @cq: The CQ to modify. 3937 * @cq_count: number of CQEs that will trigger an event 3938 * @cq_period: max period of time in usec before triggering an event 3939 * 3940 */ 3941 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period); 3942 3943 /** 3944 * ib_destroy_cq_user - Destroys the specified CQ. 3945 * @cq: The CQ to destroy. 3946 * @udata: Valid user data or NULL for kernel objects 3947 */ 3948 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata); 3949 3950 /** 3951 * ib_destroy_cq - Destroys the specified kernel CQ. 3952 * @cq: The CQ to destroy. 3953 * 3954 * NOTE: for user cq use ib_destroy_cq_user with valid udata! 3955 */ 3956 static inline void ib_destroy_cq(struct ib_cq *cq) 3957 { 3958 ib_destroy_cq_user(cq, NULL); 3959 } 3960 3961 /** 3962 * ib_poll_cq - poll a CQ for completion(s) 3963 * @cq:the CQ being polled 3964 * @num_entries:maximum number of completions to return 3965 * @wc:array of at least @num_entries &struct ib_wc where completions 3966 * will be returned 3967 * 3968 * Poll a CQ for (possibly multiple) completions. If the return value 3969 * is < 0, an error occurred. If the return value is >= 0, it is the 3970 * number of completions returned. If the return value is 3971 * non-negative and < num_entries, then the CQ was emptied. 3972 */ 3973 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 3974 struct ib_wc *wc) 3975 { 3976 return cq->device->ops.poll_cq(cq, num_entries, wc); 3977 } 3978 3979 /** 3980 * ib_req_notify_cq - Request completion notification on a CQ. 3981 * @cq: The CQ to generate an event for. 3982 * @flags: 3983 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 3984 * to request an event on the next solicited event or next work 3985 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 3986 * may also be |ed in to request a hint about missed events, as 3987 * described below. 3988 * 3989 * Return Value: 3990 * < 0 means an error occurred while requesting notification 3991 * == 0 means notification was requested successfully, and if 3992 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 3993 * were missed and it is safe to wait for another event. In 3994 * this case is it guaranteed that any work completions added 3995 * to the CQ since the last CQ poll will trigger a completion 3996 * notification event. 3997 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 3998 * in. It means that the consumer must poll the CQ again to 3999 * make sure it is empty to avoid missing an event because of a 4000 * race between requesting notification and an entry being 4001 * added to the CQ. This return value means it is possible 4002 * (but not guaranteed) that a work completion has been added 4003 * to the CQ since the last poll without triggering a 4004 * completion notification event. 4005 */ 4006 static inline int ib_req_notify_cq(struct ib_cq *cq, 4007 enum ib_cq_notify_flags flags) 4008 { 4009 return cq->device->ops.req_notify_cq(cq, flags); 4010 } 4011 4012 struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe, 4013 int comp_vector_hint, 4014 enum ib_poll_context poll_ctx); 4015 4016 void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe); 4017 4018 /** 4019 * ib_req_ncomp_notif - Request completion notification when there are 4020 * at least the specified number of unreaped completions on the CQ. 4021 * @cq: The CQ to generate an event for. 4022 * @wc_cnt: The number of unreaped completions that should be on the 4023 * CQ before an event is generated. 4024 */ 4025 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 4026 { 4027 return cq->device->ops.req_ncomp_notif ? 4028 cq->device->ops.req_ncomp_notif(cq, wc_cnt) : 4029 -ENOSYS; 4030 } 4031 4032 /** 4033 * ib_dma_mapping_error - check a DMA addr for error 4034 * @dev: The device for which the dma_addr was created 4035 * @dma_addr: The DMA address to check 4036 */ 4037 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 4038 { 4039 return dma_mapping_error(dev->dma_device, dma_addr); 4040 } 4041 4042 /** 4043 * ib_dma_map_single - Map a kernel virtual address to DMA address 4044 * @dev: The device for which the dma_addr is to be created 4045 * @cpu_addr: The kernel virtual address 4046 * @size: The size of the region in bytes 4047 * @direction: The direction of the DMA 4048 */ 4049 static inline u64 ib_dma_map_single(struct ib_device *dev, 4050 void *cpu_addr, size_t size, 4051 enum dma_data_direction direction) 4052 { 4053 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 4054 } 4055 4056 /** 4057 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 4058 * @dev: The device for which the DMA address was created 4059 * @addr: The DMA address 4060 * @size: The size of the region in bytes 4061 * @direction: The direction of the DMA 4062 */ 4063 static inline void ib_dma_unmap_single(struct ib_device *dev, 4064 u64 addr, size_t size, 4065 enum dma_data_direction direction) 4066 { 4067 dma_unmap_single(dev->dma_device, addr, size, direction); 4068 } 4069 4070 /** 4071 * ib_dma_map_page - Map a physical page to DMA address 4072 * @dev: The device for which the dma_addr is to be created 4073 * @page: The page to be mapped 4074 * @offset: The offset within the page 4075 * @size: The size of the region in bytes 4076 * @direction: The direction of the DMA 4077 */ 4078 static inline u64 ib_dma_map_page(struct ib_device *dev, 4079 struct page *page, 4080 unsigned long offset, 4081 size_t size, 4082 enum dma_data_direction direction) 4083 { 4084 return dma_map_page(dev->dma_device, page, offset, size, direction); 4085 } 4086 4087 /** 4088 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 4089 * @dev: The device for which the DMA address was created 4090 * @addr: The DMA address 4091 * @size: The size of the region in bytes 4092 * @direction: The direction of the DMA 4093 */ 4094 static inline void ib_dma_unmap_page(struct ib_device *dev, 4095 u64 addr, size_t size, 4096 enum dma_data_direction direction) 4097 { 4098 dma_unmap_page(dev->dma_device, addr, size, direction); 4099 } 4100 4101 /** 4102 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 4103 * @dev: The device for which the DMA addresses are to be created 4104 * @sg: The array of scatter/gather entries 4105 * @nents: The number of scatter/gather entries 4106 * @direction: The direction of the DMA 4107 */ 4108 static inline int ib_dma_map_sg(struct ib_device *dev, 4109 struct scatterlist *sg, int nents, 4110 enum dma_data_direction direction) 4111 { 4112 return dma_map_sg(dev->dma_device, sg, nents, direction); 4113 } 4114 4115 /** 4116 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 4117 * @dev: The device for which the DMA addresses were created 4118 * @sg: The array of scatter/gather entries 4119 * @nents: The number of scatter/gather entries 4120 * @direction: The direction of the DMA 4121 */ 4122 static inline void ib_dma_unmap_sg(struct ib_device *dev, 4123 struct scatterlist *sg, int nents, 4124 enum dma_data_direction direction) 4125 { 4126 dma_unmap_sg(dev->dma_device, sg, nents, direction); 4127 } 4128 4129 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 4130 struct scatterlist *sg, int nents, 4131 enum dma_data_direction direction, 4132 unsigned long dma_attrs) 4133 { 4134 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, 4135 dma_attrs); 4136 } 4137 4138 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 4139 struct scatterlist *sg, int nents, 4140 enum dma_data_direction direction, 4141 unsigned long dma_attrs) 4142 { 4143 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs); 4144 } 4145 4146 /** 4147 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer 4148 * @dev: The device to query 4149 * 4150 * The returned value represents a size in bytes. 4151 */ 4152 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev) 4153 { 4154 return dma_get_max_seg_size(dev->dma_device); 4155 } 4156 4157 /** 4158 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 4159 * @dev: The device for which the DMA address was created 4160 * @addr: The DMA address 4161 * @size: The size of the region in bytes 4162 * @dir: The direction of the DMA 4163 */ 4164 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 4165 u64 addr, 4166 size_t size, 4167 enum dma_data_direction dir) 4168 { 4169 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 4170 } 4171 4172 /** 4173 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 4174 * @dev: The device for which the DMA address was created 4175 * @addr: The DMA address 4176 * @size: The size of the region in bytes 4177 * @dir: The direction of the DMA 4178 */ 4179 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 4180 u64 addr, 4181 size_t size, 4182 enum dma_data_direction dir) 4183 { 4184 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 4185 } 4186 4187 /** 4188 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 4189 * @dev: The device for which the DMA address is requested 4190 * @size: The size of the region to allocate in bytes 4191 * @dma_handle: A pointer for returning the DMA address of the region 4192 * @flag: memory allocator flags 4193 */ 4194 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 4195 size_t size, 4196 dma_addr_t *dma_handle, 4197 gfp_t flag) 4198 { 4199 return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag); 4200 } 4201 4202 /** 4203 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 4204 * @dev: The device for which the DMA addresses were allocated 4205 * @size: The size of the region 4206 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 4207 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 4208 */ 4209 static inline void ib_dma_free_coherent(struct ib_device *dev, 4210 size_t size, void *cpu_addr, 4211 dma_addr_t dma_handle) 4212 { 4213 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 4214 } 4215 4216 /* ib_reg_user_mr - register a memory region for virtual addresses from kernel 4217 * space. This function should be called when 'current' is the owning MM. 4218 */ 4219 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 4220 u64 virt_addr, int mr_access_flags); 4221 4222 /* ib_advise_mr - give an advice about an address range in a memory region */ 4223 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice, 4224 u32 flags, struct ib_sge *sg_list, u32 num_sge); 4225 /** 4226 * ib_dereg_mr_user - Deregisters a memory region and removes it from the 4227 * HCA translation table. 4228 * @mr: The memory region to deregister. 4229 * @udata: Valid user data or NULL for kernel object 4230 * 4231 * This function can fail, if the memory region has memory windows bound to it. 4232 */ 4233 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata); 4234 4235 /** 4236 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the 4237 * HCA translation table. 4238 * @mr: The memory region to deregister. 4239 * 4240 * This function can fail, if the memory region has memory windows bound to it. 4241 * 4242 * NOTE: for user mr use ib_dereg_mr_user with valid udata! 4243 */ 4244 static inline int ib_dereg_mr(struct ib_mr *mr) 4245 { 4246 return ib_dereg_mr_user(mr, NULL); 4247 } 4248 4249 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 4250 u32 max_num_sg); 4251 4252 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd, 4253 u32 max_num_data_sg, 4254 u32 max_num_meta_sg); 4255 4256 /** 4257 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 4258 * R_Key and L_Key. 4259 * @mr - struct ib_mr pointer to be updated. 4260 * @newkey - new key to be used. 4261 */ 4262 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 4263 { 4264 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 4265 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 4266 } 4267 4268 /** 4269 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 4270 * for calculating a new rkey for type 2 memory windows. 4271 * @rkey - the rkey to increment. 4272 */ 4273 static inline u32 ib_inc_rkey(u32 rkey) 4274 { 4275 const u32 mask = 0x000000ff; 4276 return ((rkey + 1) & mask) | (rkey & ~mask); 4277 } 4278 4279 /** 4280 * ib_attach_mcast - Attaches the specified QP to a multicast group. 4281 * @qp: QP to attach to the multicast group. The QP must be type 4282 * IB_QPT_UD. 4283 * @gid: Multicast group GID. 4284 * @lid: Multicast group LID in host byte order. 4285 * 4286 * In order to send and receive multicast packets, subnet 4287 * administration must have created the multicast group and configured 4288 * the fabric appropriately. The port associated with the specified 4289 * QP must also be a member of the multicast group. 4290 */ 4291 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 4292 4293 /** 4294 * ib_detach_mcast - Detaches the specified QP from a multicast group. 4295 * @qp: QP to detach from the multicast group. 4296 * @gid: Multicast group GID. 4297 * @lid: Multicast group LID in host byte order. 4298 */ 4299 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 4300 4301 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device, 4302 struct inode *inode, struct ib_udata *udata); 4303 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata); 4304 4305 static inline int ib_check_mr_access(int flags) 4306 { 4307 /* 4308 * Local write permission is required if remote write or 4309 * remote atomic permission is also requested. 4310 */ 4311 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 4312 !(flags & IB_ACCESS_LOCAL_WRITE)) 4313 return -EINVAL; 4314 4315 if (flags & ~IB_ACCESS_SUPPORTED) 4316 return -EINVAL; 4317 4318 return 0; 4319 } 4320 4321 static inline bool ib_access_writable(int access_flags) 4322 { 4323 /* 4324 * We have writable memory backing the MR if any of the following 4325 * access flags are set. "Local write" and "remote write" obviously 4326 * require write access. "Remote atomic" can do things like fetch and 4327 * add, which will modify memory, and "MW bind" can change permissions 4328 * by binding a window. 4329 */ 4330 return access_flags & 4331 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | 4332 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND); 4333 } 4334 4335 /** 4336 * ib_check_mr_status: lightweight check of MR status. 4337 * This routine may provide status checks on a selected 4338 * ib_mr. first use is for signature status check. 4339 * 4340 * @mr: A memory region. 4341 * @check_mask: Bitmask of which checks to perform from 4342 * ib_mr_status_check enumeration. 4343 * @mr_status: The container of relevant status checks. 4344 * failed checks will be indicated in the status bitmask 4345 * and the relevant info shall be in the error item. 4346 */ 4347 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 4348 struct ib_mr_status *mr_status); 4349 4350 /** 4351 * ib_device_try_get: Hold a registration lock 4352 * device: The device to lock 4353 * 4354 * A device under an active registration lock cannot become unregistered. It 4355 * is only possible to obtain a registration lock on a device that is fully 4356 * registered, otherwise this function returns false. 4357 * 4358 * The registration lock is only necessary for actions which require the 4359 * device to still be registered. Uses that only require the device pointer to 4360 * be valid should use get_device(&ibdev->dev) to hold the memory. 4361 * 4362 */ 4363 static inline bool ib_device_try_get(struct ib_device *dev) 4364 { 4365 return refcount_inc_not_zero(&dev->refcount); 4366 } 4367 4368 void ib_device_put(struct ib_device *device); 4369 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev, 4370 enum rdma_driver_id driver_id); 4371 struct ib_device *ib_device_get_by_name(const char *name, 4372 enum rdma_driver_id driver_id); 4373 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port, 4374 u16 pkey, const union ib_gid *gid, 4375 const struct sockaddr *addr); 4376 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev, 4377 unsigned int port); 4378 struct net_device *ib_device_netdev(struct ib_device *dev, u8 port); 4379 4380 struct ib_wq *ib_create_wq(struct ib_pd *pd, 4381 struct ib_wq_init_attr *init_attr); 4382 int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata); 4383 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr, 4384 u32 wq_attr_mask); 4385 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table); 4386 4387 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 4388 unsigned int *sg_offset, unsigned int page_size); 4389 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg, 4390 int data_sg_nents, unsigned int *data_sg_offset, 4391 struct scatterlist *meta_sg, int meta_sg_nents, 4392 unsigned int *meta_sg_offset, unsigned int page_size); 4393 4394 static inline int 4395 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 4396 unsigned int *sg_offset, unsigned int page_size) 4397 { 4398 int n; 4399 4400 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size); 4401 mr->iova = 0; 4402 4403 return n; 4404 } 4405 4406 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 4407 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64)); 4408 4409 void ib_drain_rq(struct ib_qp *qp); 4410 void ib_drain_sq(struct ib_qp *qp); 4411 void ib_drain_qp(struct ib_qp *qp); 4412 4413 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width); 4414 4415 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr) 4416 { 4417 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE) 4418 return attr->roce.dmac; 4419 return NULL; 4420 } 4421 4422 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid) 4423 { 4424 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4425 attr->ib.dlid = (u16)dlid; 4426 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4427 attr->opa.dlid = dlid; 4428 } 4429 4430 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr) 4431 { 4432 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4433 return attr->ib.dlid; 4434 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4435 return attr->opa.dlid; 4436 return 0; 4437 } 4438 4439 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl) 4440 { 4441 attr->sl = sl; 4442 } 4443 4444 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr) 4445 { 4446 return attr->sl; 4447 } 4448 4449 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr, 4450 u8 src_path_bits) 4451 { 4452 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4453 attr->ib.src_path_bits = src_path_bits; 4454 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4455 attr->opa.src_path_bits = src_path_bits; 4456 } 4457 4458 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr) 4459 { 4460 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4461 return attr->ib.src_path_bits; 4462 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4463 return attr->opa.src_path_bits; 4464 return 0; 4465 } 4466 4467 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr, 4468 bool make_grd) 4469 { 4470 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4471 attr->opa.make_grd = make_grd; 4472 } 4473 4474 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr) 4475 { 4476 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4477 return attr->opa.make_grd; 4478 return false; 4479 } 4480 4481 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num) 4482 { 4483 attr->port_num = port_num; 4484 } 4485 4486 static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr) 4487 { 4488 return attr->port_num; 4489 } 4490 4491 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr, 4492 u8 static_rate) 4493 { 4494 attr->static_rate = static_rate; 4495 } 4496 4497 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr) 4498 { 4499 return attr->static_rate; 4500 } 4501 4502 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr, 4503 enum ib_ah_flags flag) 4504 { 4505 attr->ah_flags = flag; 4506 } 4507 4508 static inline enum ib_ah_flags 4509 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr) 4510 { 4511 return attr->ah_flags; 4512 } 4513 4514 static inline const struct ib_global_route 4515 *rdma_ah_read_grh(const struct rdma_ah_attr *attr) 4516 { 4517 return &attr->grh; 4518 } 4519 4520 /*To retrieve and modify the grh */ 4521 static inline struct ib_global_route 4522 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr) 4523 { 4524 return &attr->grh; 4525 } 4526 4527 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid) 4528 { 4529 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4530 4531 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid)); 4532 } 4533 4534 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr, 4535 __be64 prefix) 4536 { 4537 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4538 4539 grh->dgid.global.subnet_prefix = prefix; 4540 } 4541 4542 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr, 4543 __be64 if_id) 4544 { 4545 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4546 4547 grh->dgid.global.interface_id = if_id; 4548 } 4549 4550 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr, 4551 union ib_gid *dgid, u32 flow_label, 4552 u8 sgid_index, u8 hop_limit, 4553 u8 traffic_class) 4554 { 4555 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4556 4557 attr->ah_flags = IB_AH_GRH; 4558 if (dgid) 4559 grh->dgid = *dgid; 4560 grh->flow_label = flow_label; 4561 grh->sgid_index = sgid_index; 4562 grh->hop_limit = hop_limit; 4563 grh->traffic_class = traffic_class; 4564 grh->sgid_attr = NULL; 4565 } 4566 4567 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr); 4568 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid, 4569 u32 flow_label, u8 hop_limit, u8 traffic_class, 4570 const struct ib_gid_attr *sgid_attr); 4571 void rdma_copy_ah_attr(struct rdma_ah_attr *dest, 4572 const struct rdma_ah_attr *src); 4573 void rdma_replace_ah_attr(struct rdma_ah_attr *old, 4574 const struct rdma_ah_attr *new); 4575 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src); 4576 4577 /** 4578 * rdma_ah_find_type - Return address handle type. 4579 * 4580 * @dev: Device to be checked 4581 * @port_num: Port number 4582 */ 4583 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev, 4584 u8 port_num) 4585 { 4586 if (rdma_protocol_roce(dev, port_num)) 4587 return RDMA_AH_ATTR_TYPE_ROCE; 4588 if (rdma_protocol_ib(dev, port_num)) { 4589 if (rdma_cap_opa_ah(dev, port_num)) 4590 return RDMA_AH_ATTR_TYPE_OPA; 4591 return RDMA_AH_ATTR_TYPE_IB; 4592 } 4593 4594 return RDMA_AH_ATTR_TYPE_UNDEFINED; 4595 } 4596 4597 /** 4598 * ib_lid_cpu16 - Return lid in 16bit CPU encoding. 4599 * In the current implementation the only way to get 4600 * get the 32bit lid is from other sources for OPA. 4601 * For IB, lids will always be 16bits so cast the 4602 * value accordingly. 4603 * 4604 * @lid: A 32bit LID 4605 */ 4606 static inline u16 ib_lid_cpu16(u32 lid) 4607 { 4608 WARN_ON_ONCE(lid & 0xFFFF0000); 4609 return (u16)lid; 4610 } 4611 4612 /** 4613 * ib_lid_be16 - Return lid in 16bit BE encoding. 4614 * 4615 * @lid: A 32bit LID 4616 */ 4617 static inline __be16 ib_lid_be16(u32 lid) 4618 { 4619 WARN_ON_ONCE(lid & 0xFFFF0000); 4620 return cpu_to_be16((u16)lid); 4621 } 4622 4623 /** 4624 * ib_get_vector_affinity - Get the affinity mappings of a given completion 4625 * vector 4626 * @device: the rdma device 4627 * @comp_vector: index of completion vector 4628 * 4629 * Returns NULL on failure, otherwise a corresponding cpu map of the 4630 * completion vector (returns all-cpus map if the device driver doesn't 4631 * implement get_vector_affinity). 4632 */ 4633 static inline const struct cpumask * 4634 ib_get_vector_affinity(struct ib_device *device, int comp_vector) 4635 { 4636 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors || 4637 !device->ops.get_vector_affinity) 4638 return NULL; 4639 4640 return device->ops.get_vector_affinity(device, comp_vector); 4641 4642 } 4643 4644 /** 4645 * rdma_roce_rescan_device - Rescan all of the network devices in the system 4646 * and add their gids, as needed, to the relevant RoCE devices. 4647 * 4648 * @device: the rdma device 4649 */ 4650 void rdma_roce_rescan_device(struct ib_device *ibdev); 4651 4652 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile); 4653 4654 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs); 4655 4656 struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num, 4657 enum rdma_netdev_t type, const char *name, 4658 unsigned char name_assign_type, 4659 void (*setup)(struct net_device *)); 4660 4661 int rdma_init_netdev(struct ib_device *device, u8 port_num, 4662 enum rdma_netdev_t type, const char *name, 4663 unsigned char name_assign_type, 4664 void (*setup)(struct net_device *), 4665 struct net_device *netdev); 4666 4667 /** 4668 * rdma_set_device_sysfs_group - Set device attributes group to have 4669 * driver specific sysfs entries at 4670 * for infiniband class. 4671 * 4672 * @device: device pointer for which attributes to be created 4673 * @group: Pointer to group which should be added when device 4674 * is registered with sysfs. 4675 * rdma_set_device_sysfs_group() allows existing drivers to expose one 4676 * group per device to have sysfs attributes. 4677 * 4678 * NOTE: New drivers should not make use of this API; instead new device 4679 * parameter should be exposed via netlink command. This API and mechanism 4680 * exist only for existing drivers. 4681 */ 4682 static inline void 4683 rdma_set_device_sysfs_group(struct ib_device *dev, 4684 const struct attribute_group *group) 4685 { 4686 dev->groups[1] = group; 4687 } 4688 4689 /** 4690 * rdma_device_to_ibdev - Get ib_device pointer from device pointer 4691 * 4692 * @device: device pointer for which ib_device pointer to retrieve 4693 * 4694 * rdma_device_to_ibdev() retrieves ib_device pointer from device. 4695 * 4696 */ 4697 static inline struct ib_device *rdma_device_to_ibdev(struct device *device) 4698 { 4699 struct ib_core_device *coredev = 4700 container_of(device, struct ib_core_device, dev); 4701 4702 return coredev->owner; 4703 } 4704 4705 /** 4706 * rdma_device_to_drv_device - Helper macro to reach back to driver's 4707 * ib_device holder structure from device pointer. 4708 * 4709 * NOTE: New drivers should not make use of this API; This API is only for 4710 * existing drivers who have exposed sysfs entries using 4711 * rdma_set_device_sysfs_group(). 4712 */ 4713 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \ 4714 container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member) 4715 4716 bool rdma_dev_access_netns(const struct ib_device *device, 4717 const struct net *net); 4718 4719 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000) 4720 #define IB_GRH_FLOWLABEL_MASK (0x000FFFFF) 4721 4722 /** 4723 * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based 4724 * on the flow_label 4725 * 4726 * This function will convert the 20 bit flow_label input to a valid RoCE v2 4727 * UDP src port 14 bit value. All RoCE V2 drivers should use this same 4728 * convention. 4729 */ 4730 static inline u16 rdma_flow_label_to_udp_sport(u32 fl) 4731 { 4732 u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000; 4733 4734 fl_low ^= fl_high >> 14; 4735 return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN); 4736 } 4737 4738 /** 4739 * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on 4740 * local and remote qpn values 4741 * 4742 * This function folded the multiplication results of two qpns, 24 bit each, 4743 * fields, and converts it to a 20 bit results. 4744 * 4745 * This function will create symmetric flow_label value based on the local 4746 * and remote qpn values. this will allow both the requester and responder 4747 * to calculate the same flow_label for a given connection. 4748 * 4749 * This helper function should be used by driver in case the upper layer 4750 * provide a zero flow_label value. This is to improve entropy of RDMA 4751 * traffic in the network. 4752 */ 4753 static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn) 4754 { 4755 u64 v = (u64)lqpn * rqpn; 4756 4757 v ^= v >> 20; 4758 v ^= v >> 40; 4759 4760 return (u32)(v & IB_GRH_FLOWLABEL_MASK); 4761 } 4762 #endif /* IB_VERBS_H */ 4763