1 /* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */ 2 /* 3 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 4 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 5 * Copyright (c) 2004, 2020 Intel Corporation. All rights reserved. 6 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 7 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 8 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 9 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 10 */ 11 12 #ifndef IB_VERBS_H 13 #define IB_VERBS_H 14 15 #include <linux/ethtool.h> 16 #include <linux/types.h> 17 #include <linux/device.h> 18 #include <linux/dma-mapping.h> 19 #include <linux/kref.h> 20 #include <linux/list.h> 21 #include <linux/rwsem.h> 22 #include <linux/workqueue.h> 23 #include <linux/irq_poll.h> 24 #include <uapi/linux/if_ether.h> 25 #include <net/ipv6.h> 26 #include <net/ip.h> 27 #include <linux/string.h> 28 #include <linux/slab.h> 29 #include <linux/netdevice.h> 30 #include <linux/refcount.h> 31 #include <linux/if_link.h> 32 #include <linux/atomic.h> 33 #include <linux/mmu_notifier.h> 34 #include <linux/uaccess.h> 35 #include <linux/cgroup_rdma.h> 36 #include <linux/irqflags.h> 37 #include <linux/preempt.h> 38 #include <linux/dim.h> 39 #include <uapi/rdma/ib_user_verbs.h> 40 #include <rdma/rdma_counter.h> 41 #include <rdma/restrack.h> 42 #include <rdma/signature.h> 43 #include <uapi/rdma/rdma_user_ioctl.h> 44 #include <uapi/rdma/ib_user_ioctl_verbs.h> 45 46 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN 47 48 struct ib_umem_odp; 49 struct ib_uqp_object; 50 struct ib_usrq_object; 51 struct ib_uwq_object; 52 struct rdma_cm_id; 53 54 extern struct workqueue_struct *ib_wq; 55 extern struct workqueue_struct *ib_comp_wq; 56 extern struct workqueue_struct *ib_comp_unbound_wq; 57 58 struct ib_ucq_object; 59 60 __printf(3, 4) __cold 61 void ibdev_printk(const char *level, const struct ib_device *ibdev, 62 const char *format, ...); 63 __printf(2, 3) __cold 64 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...); 65 __printf(2, 3) __cold 66 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...); 67 __printf(2, 3) __cold 68 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...); 69 __printf(2, 3) __cold 70 void ibdev_err(const struct ib_device *ibdev, const char *format, ...); 71 __printf(2, 3) __cold 72 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...); 73 __printf(2, 3) __cold 74 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...); 75 __printf(2, 3) __cold 76 void ibdev_info(const struct ib_device *ibdev, const char *format, ...); 77 78 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 79 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 80 #define ibdev_dbg(__dev, format, args...) \ 81 dynamic_ibdev_dbg(__dev, format, ##args) 82 #else 83 __printf(2, 3) __cold 84 static inline 85 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {} 86 #endif 87 88 #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...) \ 89 do { \ 90 static DEFINE_RATELIMIT_STATE(_rs, \ 91 DEFAULT_RATELIMIT_INTERVAL, \ 92 DEFAULT_RATELIMIT_BURST); \ 93 if (__ratelimit(&_rs)) \ 94 ibdev_level(ibdev, fmt, ##__VA_ARGS__); \ 95 } while (0) 96 97 #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \ 98 ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__) 99 #define ibdev_alert_ratelimited(ibdev, fmt, ...) \ 100 ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__) 101 #define ibdev_crit_ratelimited(ibdev, fmt, ...) \ 102 ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__) 103 #define ibdev_err_ratelimited(ibdev, fmt, ...) \ 104 ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__) 105 #define ibdev_warn_ratelimited(ibdev, fmt, ...) \ 106 ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__) 107 #define ibdev_notice_ratelimited(ibdev, fmt, ...) \ 108 ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__) 109 #define ibdev_info_ratelimited(ibdev, fmt, ...) \ 110 ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__) 111 112 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 113 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 114 /* descriptor check is first to prevent flooding with "callbacks suppressed" */ 115 #define ibdev_dbg_ratelimited(ibdev, fmt, ...) \ 116 do { \ 117 static DEFINE_RATELIMIT_STATE(_rs, \ 118 DEFAULT_RATELIMIT_INTERVAL, \ 119 DEFAULT_RATELIMIT_BURST); \ 120 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \ 121 if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs)) \ 122 __dynamic_ibdev_dbg(&descriptor, ibdev, fmt, \ 123 ##__VA_ARGS__); \ 124 } while (0) 125 #else 126 __printf(2, 3) __cold 127 static inline 128 void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {} 129 #endif 130 131 union ib_gid { 132 u8 raw[16]; 133 struct { 134 __be64 subnet_prefix; 135 __be64 interface_id; 136 } global; 137 }; 138 139 extern union ib_gid zgid; 140 141 enum ib_gid_type { 142 IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB, 143 IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1, 144 IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2, 145 IB_GID_TYPE_SIZE 146 }; 147 148 #define ROCE_V2_UDP_DPORT 4791 149 struct ib_gid_attr { 150 struct net_device __rcu *ndev; 151 struct ib_device *device; 152 union ib_gid gid; 153 enum ib_gid_type gid_type; 154 u16 index; 155 u8 port_num; 156 }; 157 158 enum { 159 /* set the local administered indication */ 160 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2, 161 }; 162 163 enum rdma_transport_type { 164 RDMA_TRANSPORT_IB, 165 RDMA_TRANSPORT_IWARP, 166 RDMA_TRANSPORT_USNIC, 167 RDMA_TRANSPORT_USNIC_UDP, 168 RDMA_TRANSPORT_UNSPECIFIED, 169 }; 170 171 enum rdma_protocol_type { 172 RDMA_PROTOCOL_IB, 173 RDMA_PROTOCOL_IBOE, 174 RDMA_PROTOCOL_IWARP, 175 RDMA_PROTOCOL_USNIC_UDP 176 }; 177 178 __attribute_const__ enum rdma_transport_type 179 rdma_node_get_transport(unsigned int node_type); 180 181 enum rdma_network_type { 182 RDMA_NETWORK_IB, 183 RDMA_NETWORK_ROCE_V1, 184 RDMA_NETWORK_IPV4, 185 RDMA_NETWORK_IPV6 186 }; 187 188 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) 189 { 190 if (network_type == RDMA_NETWORK_IPV4 || 191 network_type == RDMA_NETWORK_IPV6) 192 return IB_GID_TYPE_ROCE_UDP_ENCAP; 193 else if (network_type == RDMA_NETWORK_ROCE_V1) 194 return IB_GID_TYPE_ROCE; 195 else 196 return IB_GID_TYPE_IB; 197 } 198 199 static inline enum rdma_network_type 200 rdma_gid_attr_network_type(const struct ib_gid_attr *attr) 201 { 202 if (attr->gid_type == IB_GID_TYPE_IB) 203 return RDMA_NETWORK_IB; 204 205 if (attr->gid_type == IB_GID_TYPE_ROCE) 206 return RDMA_NETWORK_ROCE_V1; 207 208 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid)) 209 return RDMA_NETWORK_IPV4; 210 else 211 return RDMA_NETWORK_IPV6; 212 } 213 214 enum rdma_link_layer { 215 IB_LINK_LAYER_UNSPECIFIED, 216 IB_LINK_LAYER_INFINIBAND, 217 IB_LINK_LAYER_ETHERNET, 218 }; 219 220 enum ib_device_cap_flags { 221 IB_DEVICE_RESIZE_MAX_WR = (1 << 0), 222 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1), 223 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2), 224 IB_DEVICE_RAW_MULTI = (1 << 3), 225 IB_DEVICE_AUTO_PATH_MIG = (1 << 4), 226 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5), 227 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6), 228 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7), 229 IB_DEVICE_SHUTDOWN_PORT = (1 << 8), 230 /* Not in use, former INIT_TYPE = (1 << 9),*/ 231 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10), 232 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11), 233 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12), 234 IB_DEVICE_SRQ_RESIZE = (1 << 13), 235 IB_DEVICE_N_NOTIFY_CQ = (1 << 14), 236 237 /* 238 * This device supports a per-device lkey or stag that can be 239 * used without performing a memory registration for the local 240 * memory. Note that ULPs should never check this flag, but 241 * instead of use the local_dma_lkey flag in the ib_pd structure, 242 * which will always contain a usable lkey. 243 */ 244 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15), 245 /* Reserved, old SEND_W_INV = (1 << 16),*/ 246 IB_DEVICE_MEM_WINDOW = (1 << 17), 247 /* 248 * Devices should set IB_DEVICE_UD_IP_SUM if they support 249 * insertion of UDP and TCP checksum on outgoing UD IPoIB 250 * messages and can verify the validity of checksum for 251 * incoming messages. Setting this flag implies that the 252 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 253 */ 254 IB_DEVICE_UD_IP_CSUM = (1 << 18), 255 IB_DEVICE_UD_TSO = (1 << 19), 256 IB_DEVICE_XRC = (1 << 20), 257 258 /* 259 * This device supports the IB "base memory management extension", 260 * which includes support for fast registrations (IB_WR_REG_MR, 261 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should 262 * also be set by any iWarp device which must support FRs to comply 263 * to the iWarp verbs spec. iWarp devices also support the 264 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the 265 * stag. 266 */ 267 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21), 268 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22), 269 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23), 270 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24), 271 IB_DEVICE_RC_IP_CSUM = (1 << 25), 272 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */ 273 IB_DEVICE_RAW_IP_CSUM = (1 << 26), 274 /* 275 * Devices should set IB_DEVICE_CROSS_CHANNEL if they 276 * support execution of WQEs that involve synchronization 277 * of I/O operations with single completion queue managed 278 * by hardware. 279 */ 280 IB_DEVICE_CROSS_CHANNEL = (1 << 27), 281 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29), 282 IB_DEVICE_INTEGRITY_HANDOVER = (1 << 30), 283 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31), 284 IB_DEVICE_SG_GAPS_REG = (1ULL << 32), 285 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33), 286 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */ 287 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34), 288 IB_DEVICE_RDMA_NETDEV_OPA = (1ULL << 35), 289 /* The device supports padding incoming writes to cacheline. */ 290 IB_DEVICE_PCI_WRITE_END_PADDING = (1ULL << 36), 291 IB_DEVICE_ALLOW_USER_UNREG = (1ULL << 37), 292 }; 293 294 enum ib_atomic_cap { 295 IB_ATOMIC_NONE, 296 IB_ATOMIC_HCA, 297 IB_ATOMIC_GLOB 298 }; 299 300 enum ib_odp_general_cap_bits { 301 IB_ODP_SUPPORT = 1 << 0, 302 IB_ODP_SUPPORT_IMPLICIT = 1 << 1, 303 }; 304 305 enum ib_odp_transport_cap_bits { 306 IB_ODP_SUPPORT_SEND = 1 << 0, 307 IB_ODP_SUPPORT_RECV = 1 << 1, 308 IB_ODP_SUPPORT_WRITE = 1 << 2, 309 IB_ODP_SUPPORT_READ = 1 << 3, 310 IB_ODP_SUPPORT_ATOMIC = 1 << 4, 311 IB_ODP_SUPPORT_SRQ_RECV = 1 << 5, 312 }; 313 314 struct ib_odp_caps { 315 uint64_t general_caps; 316 struct { 317 uint32_t rc_odp_caps; 318 uint32_t uc_odp_caps; 319 uint32_t ud_odp_caps; 320 uint32_t xrc_odp_caps; 321 } per_transport_caps; 322 }; 323 324 struct ib_rss_caps { 325 /* Corresponding bit will be set if qp type from 326 * 'enum ib_qp_type' is supported, e.g. 327 * supported_qpts |= 1 << IB_QPT_UD 328 */ 329 u32 supported_qpts; 330 u32 max_rwq_indirection_tables; 331 u32 max_rwq_indirection_table_size; 332 }; 333 334 enum ib_tm_cap_flags { 335 /* Support tag matching with rendezvous offload for RC transport */ 336 IB_TM_CAP_RNDV_RC = 1 << 0, 337 }; 338 339 struct ib_tm_caps { 340 /* Max size of RNDV header */ 341 u32 max_rndv_hdr_size; 342 /* Max number of entries in tag matching list */ 343 u32 max_num_tags; 344 /* From enum ib_tm_cap_flags */ 345 u32 flags; 346 /* Max number of outstanding list operations */ 347 u32 max_ops; 348 /* Max number of SGE in tag matching entry */ 349 u32 max_sge; 350 }; 351 352 struct ib_cq_init_attr { 353 unsigned int cqe; 354 u32 comp_vector; 355 u32 flags; 356 }; 357 358 enum ib_cq_attr_mask { 359 IB_CQ_MODERATE = 1 << 0, 360 }; 361 362 struct ib_cq_caps { 363 u16 max_cq_moderation_count; 364 u16 max_cq_moderation_period; 365 }; 366 367 struct ib_dm_mr_attr { 368 u64 length; 369 u64 offset; 370 u32 access_flags; 371 }; 372 373 struct ib_dm_alloc_attr { 374 u64 length; 375 u32 alignment; 376 u32 flags; 377 }; 378 379 struct ib_device_attr { 380 u64 fw_ver; 381 __be64 sys_image_guid; 382 u64 max_mr_size; 383 u64 page_size_cap; 384 u32 vendor_id; 385 u32 vendor_part_id; 386 u32 hw_ver; 387 int max_qp; 388 int max_qp_wr; 389 u64 device_cap_flags; 390 int max_send_sge; 391 int max_recv_sge; 392 int max_sge_rd; 393 int max_cq; 394 int max_cqe; 395 int max_mr; 396 int max_pd; 397 int max_qp_rd_atom; 398 int max_ee_rd_atom; 399 int max_res_rd_atom; 400 int max_qp_init_rd_atom; 401 int max_ee_init_rd_atom; 402 enum ib_atomic_cap atomic_cap; 403 enum ib_atomic_cap masked_atomic_cap; 404 int max_ee; 405 int max_rdd; 406 int max_mw; 407 int max_raw_ipv6_qp; 408 int max_raw_ethy_qp; 409 int max_mcast_grp; 410 int max_mcast_qp_attach; 411 int max_total_mcast_qp_attach; 412 int max_ah; 413 int max_srq; 414 int max_srq_wr; 415 int max_srq_sge; 416 unsigned int max_fast_reg_page_list_len; 417 unsigned int max_pi_fast_reg_page_list_len; 418 u16 max_pkeys; 419 u8 local_ca_ack_delay; 420 int sig_prot_cap; 421 int sig_guard_cap; 422 struct ib_odp_caps odp_caps; 423 uint64_t timestamp_mask; 424 uint64_t hca_core_clock; /* in KHZ */ 425 struct ib_rss_caps rss_caps; 426 u32 max_wq_type_rq; 427 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */ 428 struct ib_tm_caps tm_caps; 429 struct ib_cq_caps cq_caps; 430 u64 max_dm_size; 431 /* Max entries for sgl for optimized performance per READ */ 432 u32 max_sgl_rd; 433 }; 434 435 enum ib_mtu { 436 IB_MTU_256 = 1, 437 IB_MTU_512 = 2, 438 IB_MTU_1024 = 3, 439 IB_MTU_2048 = 4, 440 IB_MTU_4096 = 5 441 }; 442 443 enum opa_mtu { 444 OPA_MTU_8192 = 6, 445 OPA_MTU_10240 = 7 446 }; 447 448 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 449 { 450 switch (mtu) { 451 case IB_MTU_256: return 256; 452 case IB_MTU_512: return 512; 453 case IB_MTU_1024: return 1024; 454 case IB_MTU_2048: return 2048; 455 case IB_MTU_4096: return 4096; 456 default: return -1; 457 } 458 } 459 460 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu) 461 { 462 if (mtu >= 4096) 463 return IB_MTU_4096; 464 else if (mtu >= 2048) 465 return IB_MTU_2048; 466 else if (mtu >= 1024) 467 return IB_MTU_1024; 468 else if (mtu >= 512) 469 return IB_MTU_512; 470 else 471 return IB_MTU_256; 472 } 473 474 static inline int opa_mtu_enum_to_int(enum opa_mtu mtu) 475 { 476 switch (mtu) { 477 case OPA_MTU_8192: 478 return 8192; 479 case OPA_MTU_10240: 480 return 10240; 481 default: 482 return(ib_mtu_enum_to_int((enum ib_mtu)mtu)); 483 } 484 } 485 486 static inline enum opa_mtu opa_mtu_int_to_enum(int mtu) 487 { 488 if (mtu >= 10240) 489 return OPA_MTU_10240; 490 else if (mtu >= 8192) 491 return OPA_MTU_8192; 492 else 493 return ((enum opa_mtu)ib_mtu_int_to_enum(mtu)); 494 } 495 496 enum ib_port_state { 497 IB_PORT_NOP = 0, 498 IB_PORT_DOWN = 1, 499 IB_PORT_INIT = 2, 500 IB_PORT_ARMED = 3, 501 IB_PORT_ACTIVE = 4, 502 IB_PORT_ACTIVE_DEFER = 5 503 }; 504 505 enum ib_port_phys_state { 506 IB_PORT_PHYS_STATE_SLEEP = 1, 507 IB_PORT_PHYS_STATE_POLLING = 2, 508 IB_PORT_PHYS_STATE_DISABLED = 3, 509 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4, 510 IB_PORT_PHYS_STATE_LINK_UP = 5, 511 IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6, 512 IB_PORT_PHYS_STATE_PHY_TEST = 7, 513 }; 514 515 enum ib_port_width { 516 IB_WIDTH_1X = 1, 517 IB_WIDTH_2X = 16, 518 IB_WIDTH_4X = 2, 519 IB_WIDTH_8X = 4, 520 IB_WIDTH_12X = 8 521 }; 522 523 static inline int ib_width_enum_to_int(enum ib_port_width width) 524 { 525 switch (width) { 526 case IB_WIDTH_1X: return 1; 527 case IB_WIDTH_2X: return 2; 528 case IB_WIDTH_4X: return 4; 529 case IB_WIDTH_8X: return 8; 530 case IB_WIDTH_12X: return 12; 531 default: return -1; 532 } 533 } 534 535 enum ib_port_speed { 536 IB_SPEED_SDR = 1, 537 IB_SPEED_DDR = 2, 538 IB_SPEED_QDR = 4, 539 IB_SPEED_FDR10 = 8, 540 IB_SPEED_FDR = 16, 541 IB_SPEED_EDR = 32, 542 IB_SPEED_HDR = 64, 543 IB_SPEED_NDR = 128, 544 }; 545 546 /** 547 * struct rdma_hw_stats 548 * @lock - Mutex to protect parallel write access to lifespan and values 549 * of counters, which are 64bits and not guaranteeed to be written 550 * atomicaly on 32bits systems. 551 * @timestamp - Used by the core code to track when the last update was 552 * @lifespan - Used by the core code to determine how old the counters 553 * should be before being updated again. Stored in jiffies, defaults 554 * to 10 milliseconds, drivers can override the default be specifying 555 * their own value during their allocation routine. 556 * @name - Array of pointers to static names used for the counters in 557 * directory. 558 * @num_counters - How many hardware counters there are. If name is 559 * shorter than this number, a kernel oops will result. Driver authors 560 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters) 561 * in their code to prevent this. 562 * @value - Array of u64 counters that are accessed by the sysfs code and 563 * filled in by the drivers get_stats routine 564 */ 565 struct rdma_hw_stats { 566 struct mutex lock; /* Protect lifespan and values[] */ 567 unsigned long timestamp; 568 unsigned long lifespan; 569 const char * const *names; 570 int num_counters; 571 u64 value[]; 572 }; 573 574 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10 575 /** 576 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct 577 * for drivers. 578 * @names - Array of static const char * 579 * @num_counters - How many elements in array 580 * @lifespan - How many milliseconds between updates 581 */ 582 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 583 const char * const *names, int num_counters, 584 unsigned long lifespan) 585 { 586 struct rdma_hw_stats *stats; 587 588 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64), 589 GFP_KERNEL); 590 if (!stats) 591 return NULL; 592 stats->names = names; 593 stats->num_counters = num_counters; 594 stats->lifespan = msecs_to_jiffies(lifespan); 595 596 return stats; 597 } 598 599 600 /* Define bits for the various functionality this port needs to be supported by 601 * the core. 602 */ 603 /* Management 0x00000FFF */ 604 #define RDMA_CORE_CAP_IB_MAD 0x00000001 605 #define RDMA_CORE_CAP_IB_SMI 0x00000002 606 #define RDMA_CORE_CAP_IB_CM 0x00000004 607 #define RDMA_CORE_CAP_IW_CM 0x00000008 608 #define RDMA_CORE_CAP_IB_SA 0x00000010 609 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 610 611 /* Address format 0x000FF000 */ 612 #define RDMA_CORE_CAP_AF_IB 0x00001000 613 #define RDMA_CORE_CAP_ETH_AH 0x00002000 614 #define RDMA_CORE_CAP_OPA_AH 0x00004000 615 #define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000 616 617 /* Protocol 0xFFF00000 */ 618 #define RDMA_CORE_CAP_PROT_IB 0x00100000 619 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 620 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 621 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 622 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000 623 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000 624 625 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \ 626 | RDMA_CORE_CAP_PROT_ROCE \ 627 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP) 628 629 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 630 | RDMA_CORE_CAP_IB_MAD \ 631 | RDMA_CORE_CAP_IB_SMI \ 632 | RDMA_CORE_CAP_IB_CM \ 633 | RDMA_CORE_CAP_IB_SA \ 634 | RDMA_CORE_CAP_AF_IB) 635 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 636 | RDMA_CORE_CAP_IB_MAD \ 637 | RDMA_CORE_CAP_IB_CM \ 638 | RDMA_CORE_CAP_AF_IB \ 639 | RDMA_CORE_CAP_ETH_AH) 640 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ 641 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ 642 | RDMA_CORE_CAP_IB_MAD \ 643 | RDMA_CORE_CAP_IB_CM \ 644 | RDMA_CORE_CAP_AF_IB \ 645 | RDMA_CORE_CAP_ETH_AH) 646 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 647 | RDMA_CORE_CAP_IW_CM) 648 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 649 | RDMA_CORE_CAP_OPA_MAD) 650 651 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET) 652 653 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC) 654 655 struct ib_port_attr { 656 u64 subnet_prefix; 657 enum ib_port_state state; 658 enum ib_mtu max_mtu; 659 enum ib_mtu active_mtu; 660 u32 phys_mtu; 661 int gid_tbl_len; 662 unsigned int ip_gids:1; 663 /* This is the value from PortInfo CapabilityMask, defined by IBA */ 664 u32 port_cap_flags; 665 u32 max_msg_sz; 666 u32 bad_pkey_cntr; 667 u32 qkey_viol_cntr; 668 u16 pkey_tbl_len; 669 u32 sm_lid; 670 u32 lid; 671 u8 lmc; 672 u8 max_vl_num; 673 u8 sm_sl; 674 u8 subnet_timeout; 675 u8 init_type_reply; 676 u8 active_width; 677 u16 active_speed; 678 u8 phys_state; 679 u16 port_cap_flags2; 680 }; 681 682 enum ib_device_modify_flags { 683 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 684 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 685 }; 686 687 #define IB_DEVICE_NODE_DESC_MAX 64 688 689 struct ib_device_modify { 690 u64 sys_image_guid; 691 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 692 }; 693 694 enum ib_port_modify_flags { 695 IB_PORT_SHUTDOWN = 1, 696 IB_PORT_INIT_TYPE = (1<<2), 697 IB_PORT_RESET_QKEY_CNTR = (1<<3), 698 IB_PORT_OPA_MASK_CHG = (1<<4) 699 }; 700 701 struct ib_port_modify { 702 u32 set_port_cap_mask; 703 u32 clr_port_cap_mask; 704 u8 init_type; 705 }; 706 707 enum ib_event_type { 708 IB_EVENT_CQ_ERR, 709 IB_EVENT_QP_FATAL, 710 IB_EVENT_QP_REQ_ERR, 711 IB_EVENT_QP_ACCESS_ERR, 712 IB_EVENT_COMM_EST, 713 IB_EVENT_SQ_DRAINED, 714 IB_EVENT_PATH_MIG, 715 IB_EVENT_PATH_MIG_ERR, 716 IB_EVENT_DEVICE_FATAL, 717 IB_EVENT_PORT_ACTIVE, 718 IB_EVENT_PORT_ERR, 719 IB_EVENT_LID_CHANGE, 720 IB_EVENT_PKEY_CHANGE, 721 IB_EVENT_SM_CHANGE, 722 IB_EVENT_SRQ_ERR, 723 IB_EVENT_SRQ_LIMIT_REACHED, 724 IB_EVENT_QP_LAST_WQE_REACHED, 725 IB_EVENT_CLIENT_REREGISTER, 726 IB_EVENT_GID_CHANGE, 727 IB_EVENT_WQ_FATAL, 728 }; 729 730 const char *__attribute_const__ ib_event_msg(enum ib_event_type event); 731 732 struct ib_event { 733 struct ib_device *device; 734 union { 735 struct ib_cq *cq; 736 struct ib_qp *qp; 737 struct ib_srq *srq; 738 struct ib_wq *wq; 739 u8 port_num; 740 } element; 741 enum ib_event_type event; 742 }; 743 744 struct ib_event_handler { 745 struct ib_device *device; 746 void (*handler)(struct ib_event_handler *, struct ib_event *); 747 struct list_head list; 748 }; 749 750 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 751 do { \ 752 (_ptr)->device = _device; \ 753 (_ptr)->handler = _handler; \ 754 INIT_LIST_HEAD(&(_ptr)->list); \ 755 } while (0) 756 757 struct ib_global_route { 758 const struct ib_gid_attr *sgid_attr; 759 union ib_gid dgid; 760 u32 flow_label; 761 u8 sgid_index; 762 u8 hop_limit; 763 u8 traffic_class; 764 }; 765 766 struct ib_grh { 767 __be32 version_tclass_flow; 768 __be16 paylen; 769 u8 next_hdr; 770 u8 hop_limit; 771 union ib_gid sgid; 772 union ib_gid dgid; 773 }; 774 775 union rdma_network_hdr { 776 struct ib_grh ibgrh; 777 struct { 778 /* The IB spec states that if it's IPv4, the header 779 * is located in the last 20 bytes of the header. 780 */ 781 u8 reserved[20]; 782 struct iphdr roce4grh; 783 }; 784 }; 785 786 #define IB_QPN_MASK 0xFFFFFF 787 788 enum { 789 IB_MULTICAST_QPN = 0xffffff 790 }; 791 792 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 793 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000) 794 795 enum ib_ah_flags { 796 IB_AH_GRH = 1 797 }; 798 799 enum ib_rate { 800 IB_RATE_PORT_CURRENT = 0, 801 IB_RATE_2_5_GBPS = 2, 802 IB_RATE_5_GBPS = 5, 803 IB_RATE_10_GBPS = 3, 804 IB_RATE_20_GBPS = 6, 805 IB_RATE_30_GBPS = 4, 806 IB_RATE_40_GBPS = 7, 807 IB_RATE_60_GBPS = 8, 808 IB_RATE_80_GBPS = 9, 809 IB_RATE_120_GBPS = 10, 810 IB_RATE_14_GBPS = 11, 811 IB_RATE_56_GBPS = 12, 812 IB_RATE_112_GBPS = 13, 813 IB_RATE_168_GBPS = 14, 814 IB_RATE_25_GBPS = 15, 815 IB_RATE_100_GBPS = 16, 816 IB_RATE_200_GBPS = 17, 817 IB_RATE_300_GBPS = 18, 818 IB_RATE_28_GBPS = 19, 819 IB_RATE_50_GBPS = 20, 820 IB_RATE_400_GBPS = 21, 821 IB_RATE_600_GBPS = 22, 822 }; 823 824 /** 825 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 826 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 827 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 828 * @rate: rate to convert. 829 */ 830 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 831 832 /** 833 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 834 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 835 * @rate: rate to convert. 836 */ 837 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 838 839 840 /** 841 * enum ib_mr_type - memory region type 842 * @IB_MR_TYPE_MEM_REG: memory region that is used for 843 * normal registration 844 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to 845 * register any arbitrary sg lists (without 846 * the normal mr constraints - see 847 * ib_map_mr_sg) 848 * @IB_MR_TYPE_DM: memory region that is used for device 849 * memory registration 850 * @IB_MR_TYPE_USER: memory region that is used for the user-space 851 * application 852 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations 853 * without address translations (VA=PA) 854 * @IB_MR_TYPE_INTEGRITY: memory region that is used for 855 * data integrity operations 856 */ 857 enum ib_mr_type { 858 IB_MR_TYPE_MEM_REG, 859 IB_MR_TYPE_SG_GAPS, 860 IB_MR_TYPE_DM, 861 IB_MR_TYPE_USER, 862 IB_MR_TYPE_DMA, 863 IB_MR_TYPE_INTEGRITY, 864 }; 865 866 enum ib_mr_status_check { 867 IB_MR_CHECK_SIG_STATUS = 1, 868 }; 869 870 /** 871 * struct ib_mr_status - Memory region status container 872 * 873 * @fail_status: Bitmask of MR checks status. For each 874 * failed check a corresponding status bit is set. 875 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 876 * failure. 877 */ 878 struct ib_mr_status { 879 u32 fail_status; 880 struct ib_sig_err sig_err; 881 }; 882 883 /** 884 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 885 * enum. 886 * @mult: multiple to convert. 887 */ 888 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 889 890 struct rdma_ah_init_attr { 891 struct rdma_ah_attr *ah_attr; 892 u32 flags; 893 struct net_device *xmit_slave; 894 }; 895 896 enum rdma_ah_attr_type { 897 RDMA_AH_ATTR_TYPE_UNDEFINED, 898 RDMA_AH_ATTR_TYPE_IB, 899 RDMA_AH_ATTR_TYPE_ROCE, 900 RDMA_AH_ATTR_TYPE_OPA, 901 }; 902 903 struct ib_ah_attr { 904 u16 dlid; 905 u8 src_path_bits; 906 }; 907 908 struct roce_ah_attr { 909 u8 dmac[ETH_ALEN]; 910 }; 911 912 struct opa_ah_attr { 913 u32 dlid; 914 u8 src_path_bits; 915 bool make_grd; 916 }; 917 918 struct rdma_ah_attr { 919 struct ib_global_route grh; 920 u8 sl; 921 u8 static_rate; 922 u8 port_num; 923 u8 ah_flags; 924 enum rdma_ah_attr_type type; 925 union { 926 struct ib_ah_attr ib; 927 struct roce_ah_attr roce; 928 struct opa_ah_attr opa; 929 }; 930 }; 931 932 enum ib_wc_status { 933 IB_WC_SUCCESS, 934 IB_WC_LOC_LEN_ERR, 935 IB_WC_LOC_QP_OP_ERR, 936 IB_WC_LOC_EEC_OP_ERR, 937 IB_WC_LOC_PROT_ERR, 938 IB_WC_WR_FLUSH_ERR, 939 IB_WC_MW_BIND_ERR, 940 IB_WC_BAD_RESP_ERR, 941 IB_WC_LOC_ACCESS_ERR, 942 IB_WC_REM_INV_REQ_ERR, 943 IB_WC_REM_ACCESS_ERR, 944 IB_WC_REM_OP_ERR, 945 IB_WC_RETRY_EXC_ERR, 946 IB_WC_RNR_RETRY_EXC_ERR, 947 IB_WC_LOC_RDD_VIOL_ERR, 948 IB_WC_REM_INV_RD_REQ_ERR, 949 IB_WC_REM_ABORT_ERR, 950 IB_WC_INV_EECN_ERR, 951 IB_WC_INV_EEC_STATE_ERR, 952 IB_WC_FATAL_ERR, 953 IB_WC_RESP_TIMEOUT_ERR, 954 IB_WC_GENERAL_ERR 955 }; 956 957 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); 958 959 enum ib_wc_opcode { 960 IB_WC_SEND = IB_UVERBS_WC_SEND, 961 IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE, 962 IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ, 963 IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP, 964 IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD, 965 IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW, 966 IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV, 967 IB_WC_LSO = IB_UVERBS_WC_TSO, 968 IB_WC_REG_MR, 969 IB_WC_MASKED_COMP_SWAP, 970 IB_WC_MASKED_FETCH_ADD, 971 /* 972 * Set value of IB_WC_RECV so consumers can test if a completion is a 973 * receive by testing (opcode & IB_WC_RECV). 974 */ 975 IB_WC_RECV = 1 << 7, 976 IB_WC_RECV_RDMA_WITH_IMM 977 }; 978 979 enum ib_wc_flags { 980 IB_WC_GRH = 1, 981 IB_WC_WITH_IMM = (1<<1), 982 IB_WC_WITH_INVALIDATE = (1<<2), 983 IB_WC_IP_CSUM_OK = (1<<3), 984 IB_WC_WITH_SMAC = (1<<4), 985 IB_WC_WITH_VLAN = (1<<5), 986 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), 987 }; 988 989 struct ib_wc { 990 union { 991 u64 wr_id; 992 struct ib_cqe *wr_cqe; 993 }; 994 enum ib_wc_status status; 995 enum ib_wc_opcode opcode; 996 u32 vendor_err; 997 u32 byte_len; 998 struct ib_qp *qp; 999 union { 1000 __be32 imm_data; 1001 u32 invalidate_rkey; 1002 } ex; 1003 u32 src_qp; 1004 u32 slid; 1005 int wc_flags; 1006 u16 pkey_index; 1007 u8 sl; 1008 u8 dlid_path_bits; 1009 u8 port_num; /* valid only for DR SMPs on switches */ 1010 u8 smac[ETH_ALEN]; 1011 u16 vlan_id; 1012 u8 network_hdr_type; 1013 }; 1014 1015 enum ib_cq_notify_flags { 1016 IB_CQ_SOLICITED = 1 << 0, 1017 IB_CQ_NEXT_COMP = 1 << 1, 1018 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 1019 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 1020 }; 1021 1022 enum ib_srq_type { 1023 IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC, 1024 IB_SRQT_XRC = IB_UVERBS_SRQT_XRC, 1025 IB_SRQT_TM = IB_UVERBS_SRQT_TM, 1026 }; 1027 1028 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type) 1029 { 1030 return srq_type == IB_SRQT_XRC || 1031 srq_type == IB_SRQT_TM; 1032 } 1033 1034 enum ib_srq_attr_mask { 1035 IB_SRQ_MAX_WR = 1 << 0, 1036 IB_SRQ_LIMIT = 1 << 1, 1037 }; 1038 1039 struct ib_srq_attr { 1040 u32 max_wr; 1041 u32 max_sge; 1042 u32 srq_limit; 1043 }; 1044 1045 struct ib_srq_init_attr { 1046 void (*event_handler)(struct ib_event *, void *); 1047 void *srq_context; 1048 struct ib_srq_attr attr; 1049 enum ib_srq_type srq_type; 1050 1051 struct { 1052 struct ib_cq *cq; 1053 union { 1054 struct { 1055 struct ib_xrcd *xrcd; 1056 } xrc; 1057 1058 struct { 1059 u32 max_num_tags; 1060 } tag_matching; 1061 }; 1062 } ext; 1063 }; 1064 1065 struct ib_qp_cap { 1066 u32 max_send_wr; 1067 u32 max_recv_wr; 1068 u32 max_send_sge; 1069 u32 max_recv_sge; 1070 u32 max_inline_data; 1071 1072 /* 1073 * Maximum number of rdma_rw_ctx structures in flight at a time. 1074 * ib_create_qp() will calculate the right amount of neededed WRs 1075 * and MRs based on this. 1076 */ 1077 u32 max_rdma_ctxs; 1078 }; 1079 1080 enum ib_sig_type { 1081 IB_SIGNAL_ALL_WR, 1082 IB_SIGNAL_REQ_WR 1083 }; 1084 1085 enum ib_qp_type { 1086 /* 1087 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 1088 * here (and in that order) since the MAD layer uses them as 1089 * indices into a 2-entry table. 1090 */ 1091 IB_QPT_SMI, 1092 IB_QPT_GSI, 1093 1094 IB_QPT_RC = IB_UVERBS_QPT_RC, 1095 IB_QPT_UC = IB_UVERBS_QPT_UC, 1096 IB_QPT_UD = IB_UVERBS_QPT_UD, 1097 IB_QPT_RAW_IPV6, 1098 IB_QPT_RAW_ETHERTYPE, 1099 IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET, 1100 IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI, 1101 IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT, 1102 IB_QPT_MAX, 1103 IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER, 1104 /* Reserve a range for qp types internal to the low level driver. 1105 * These qp types will not be visible at the IB core layer, so the 1106 * IB_QPT_MAX usages should not be affected in the core layer 1107 */ 1108 IB_QPT_RESERVED1 = 0x1000, 1109 IB_QPT_RESERVED2, 1110 IB_QPT_RESERVED3, 1111 IB_QPT_RESERVED4, 1112 IB_QPT_RESERVED5, 1113 IB_QPT_RESERVED6, 1114 IB_QPT_RESERVED7, 1115 IB_QPT_RESERVED8, 1116 IB_QPT_RESERVED9, 1117 IB_QPT_RESERVED10, 1118 }; 1119 1120 enum ib_qp_create_flags { 1121 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 1122 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1123 IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK, 1124 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 1125 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 1126 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 1127 IB_QP_CREATE_NETIF_QP = 1 << 5, 1128 IB_QP_CREATE_INTEGRITY_EN = 1 << 6, 1129 IB_QP_CREATE_NETDEV_USE = 1 << 7, 1130 IB_QP_CREATE_SCATTER_FCS = 1131 IB_UVERBS_QP_CREATE_SCATTER_FCS, 1132 IB_QP_CREATE_CVLAN_STRIPPING = 1133 IB_UVERBS_QP_CREATE_CVLAN_STRIPPING, 1134 IB_QP_CREATE_SOURCE_QPN = 1 << 10, 1135 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1136 IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING, 1137 /* reserve bits 26-31 for low level drivers' internal use */ 1138 IB_QP_CREATE_RESERVED_START = 1 << 26, 1139 IB_QP_CREATE_RESERVED_END = 1 << 31, 1140 }; 1141 1142 /* 1143 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 1144 * callback to destroy the passed in QP. 1145 */ 1146 1147 struct ib_qp_init_attr { 1148 /* Consumer's event_handler callback must not block */ 1149 void (*event_handler)(struct ib_event *, void *); 1150 1151 void *qp_context; 1152 struct ib_cq *send_cq; 1153 struct ib_cq *recv_cq; 1154 struct ib_srq *srq; 1155 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1156 struct ib_qp_cap cap; 1157 enum ib_sig_type sq_sig_type; 1158 enum ib_qp_type qp_type; 1159 u32 create_flags; 1160 1161 /* 1162 * Only needed for special QP types, or when using the RW API. 1163 */ 1164 u8 port_num; 1165 struct ib_rwq_ind_table *rwq_ind_tbl; 1166 u32 source_qpn; 1167 }; 1168 1169 struct ib_qp_open_attr { 1170 void (*event_handler)(struct ib_event *, void *); 1171 void *qp_context; 1172 u32 qp_num; 1173 enum ib_qp_type qp_type; 1174 }; 1175 1176 enum ib_rnr_timeout { 1177 IB_RNR_TIMER_655_36 = 0, 1178 IB_RNR_TIMER_000_01 = 1, 1179 IB_RNR_TIMER_000_02 = 2, 1180 IB_RNR_TIMER_000_03 = 3, 1181 IB_RNR_TIMER_000_04 = 4, 1182 IB_RNR_TIMER_000_06 = 5, 1183 IB_RNR_TIMER_000_08 = 6, 1184 IB_RNR_TIMER_000_12 = 7, 1185 IB_RNR_TIMER_000_16 = 8, 1186 IB_RNR_TIMER_000_24 = 9, 1187 IB_RNR_TIMER_000_32 = 10, 1188 IB_RNR_TIMER_000_48 = 11, 1189 IB_RNR_TIMER_000_64 = 12, 1190 IB_RNR_TIMER_000_96 = 13, 1191 IB_RNR_TIMER_001_28 = 14, 1192 IB_RNR_TIMER_001_92 = 15, 1193 IB_RNR_TIMER_002_56 = 16, 1194 IB_RNR_TIMER_003_84 = 17, 1195 IB_RNR_TIMER_005_12 = 18, 1196 IB_RNR_TIMER_007_68 = 19, 1197 IB_RNR_TIMER_010_24 = 20, 1198 IB_RNR_TIMER_015_36 = 21, 1199 IB_RNR_TIMER_020_48 = 22, 1200 IB_RNR_TIMER_030_72 = 23, 1201 IB_RNR_TIMER_040_96 = 24, 1202 IB_RNR_TIMER_061_44 = 25, 1203 IB_RNR_TIMER_081_92 = 26, 1204 IB_RNR_TIMER_122_88 = 27, 1205 IB_RNR_TIMER_163_84 = 28, 1206 IB_RNR_TIMER_245_76 = 29, 1207 IB_RNR_TIMER_327_68 = 30, 1208 IB_RNR_TIMER_491_52 = 31 1209 }; 1210 1211 enum ib_qp_attr_mask { 1212 IB_QP_STATE = 1, 1213 IB_QP_CUR_STATE = (1<<1), 1214 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 1215 IB_QP_ACCESS_FLAGS = (1<<3), 1216 IB_QP_PKEY_INDEX = (1<<4), 1217 IB_QP_PORT = (1<<5), 1218 IB_QP_QKEY = (1<<6), 1219 IB_QP_AV = (1<<7), 1220 IB_QP_PATH_MTU = (1<<8), 1221 IB_QP_TIMEOUT = (1<<9), 1222 IB_QP_RETRY_CNT = (1<<10), 1223 IB_QP_RNR_RETRY = (1<<11), 1224 IB_QP_RQ_PSN = (1<<12), 1225 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 1226 IB_QP_ALT_PATH = (1<<14), 1227 IB_QP_MIN_RNR_TIMER = (1<<15), 1228 IB_QP_SQ_PSN = (1<<16), 1229 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 1230 IB_QP_PATH_MIG_STATE = (1<<18), 1231 IB_QP_CAP = (1<<19), 1232 IB_QP_DEST_QPN = (1<<20), 1233 IB_QP_RESERVED1 = (1<<21), 1234 IB_QP_RESERVED2 = (1<<22), 1235 IB_QP_RESERVED3 = (1<<23), 1236 IB_QP_RESERVED4 = (1<<24), 1237 IB_QP_RATE_LIMIT = (1<<25), 1238 1239 IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0), 1240 }; 1241 1242 enum ib_qp_state { 1243 IB_QPS_RESET, 1244 IB_QPS_INIT, 1245 IB_QPS_RTR, 1246 IB_QPS_RTS, 1247 IB_QPS_SQD, 1248 IB_QPS_SQE, 1249 IB_QPS_ERR 1250 }; 1251 1252 enum ib_mig_state { 1253 IB_MIG_MIGRATED, 1254 IB_MIG_REARM, 1255 IB_MIG_ARMED 1256 }; 1257 1258 enum ib_mw_type { 1259 IB_MW_TYPE_1 = 1, 1260 IB_MW_TYPE_2 = 2 1261 }; 1262 1263 struct ib_qp_attr { 1264 enum ib_qp_state qp_state; 1265 enum ib_qp_state cur_qp_state; 1266 enum ib_mtu path_mtu; 1267 enum ib_mig_state path_mig_state; 1268 u32 qkey; 1269 u32 rq_psn; 1270 u32 sq_psn; 1271 u32 dest_qp_num; 1272 int qp_access_flags; 1273 struct ib_qp_cap cap; 1274 struct rdma_ah_attr ah_attr; 1275 struct rdma_ah_attr alt_ah_attr; 1276 u16 pkey_index; 1277 u16 alt_pkey_index; 1278 u8 en_sqd_async_notify; 1279 u8 sq_draining; 1280 u8 max_rd_atomic; 1281 u8 max_dest_rd_atomic; 1282 u8 min_rnr_timer; 1283 u8 port_num; 1284 u8 timeout; 1285 u8 retry_cnt; 1286 u8 rnr_retry; 1287 u8 alt_port_num; 1288 u8 alt_timeout; 1289 u32 rate_limit; 1290 struct net_device *xmit_slave; 1291 }; 1292 1293 enum ib_wr_opcode { 1294 /* These are shared with userspace */ 1295 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE, 1296 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM, 1297 IB_WR_SEND = IB_UVERBS_WR_SEND, 1298 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM, 1299 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ, 1300 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP, 1301 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD, 1302 IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW, 1303 IB_WR_LSO = IB_UVERBS_WR_TSO, 1304 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV, 1305 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV, 1306 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV, 1307 IB_WR_MASKED_ATOMIC_CMP_AND_SWP = 1308 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP, 1309 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD = 1310 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1311 1312 /* These are kernel only and can not be issued by userspace */ 1313 IB_WR_REG_MR = 0x20, 1314 IB_WR_REG_MR_INTEGRITY, 1315 1316 /* reserve values for low level drivers' internal use. 1317 * These values will not be used at all in the ib core layer. 1318 */ 1319 IB_WR_RESERVED1 = 0xf0, 1320 IB_WR_RESERVED2, 1321 IB_WR_RESERVED3, 1322 IB_WR_RESERVED4, 1323 IB_WR_RESERVED5, 1324 IB_WR_RESERVED6, 1325 IB_WR_RESERVED7, 1326 IB_WR_RESERVED8, 1327 IB_WR_RESERVED9, 1328 IB_WR_RESERVED10, 1329 }; 1330 1331 enum ib_send_flags { 1332 IB_SEND_FENCE = 1, 1333 IB_SEND_SIGNALED = (1<<1), 1334 IB_SEND_SOLICITED = (1<<2), 1335 IB_SEND_INLINE = (1<<3), 1336 IB_SEND_IP_CSUM = (1<<4), 1337 1338 /* reserve bits 26-31 for low level drivers' internal use */ 1339 IB_SEND_RESERVED_START = (1 << 26), 1340 IB_SEND_RESERVED_END = (1 << 31), 1341 }; 1342 1343 struct ib_sge { 1344 u64 addr; 1345 u32 length; 1346 u32 lkey; 1347 }; 1348 1349 struct ib_cqe { 1350 void (*done)(struct ib_cq *cq, struct ib_wc *wc); 1351 }; 1352 1353 struct ib_send_wr { 1354 struct ib_send_wr *next; 1355 union { 1356 u64 wr_id; 1357 struct ib_cqe *wr_cqe; 1358 }; 1359 struct ib_sge *sg_list; 1360 int num_sge; 1361 enum ib_wr_opcode opcode; 1362 int send_flags; 1363 union { 1364 __be32 imm_data; 1365 u32 invalidate_rkey; 1366 } ex; 1367 }; 1368 1369 struct ib_rdma_wr { 1370 struct ib_send_wr wr; 1371 u64 remote_addr; 1372 u32 rkey; 1373 }; 1374 1375 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr) 1376 { 1377 return container_of(wr, struct ib_rdma_wr, wr); 1378 } 1379 1380 struct ib_atomic_wr { 1381 struct ib_send_wr wr; 1382 u64 remote_addr; 1383 u64 compare_add; 1384 u64 swap; 1385 u64 compare_add_mask; 1386 u64 swap_mask; 1387 u32 rkey; 1388 }; 1389 1390 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr) 1391 { 1392 return container_of(wr, struct ib_atomic_wr, wr); 1393 } 1394 1395 struct ib_ud_wr { 1396 struct ib_send_wr wr; 1397 struct ib_ah *ah; 1398 void *header; 1399 int hlen; 1400 int mss; 1401 u32 remote_qpn; 1402 u32 remote_qkey; 1403 u16 pkey_index; /* valid for GSI only */ 1404 u8 port_num; /* valid for DR SMPs on switch only */ 1405 }; 1406 1407 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr) 1408 { 1409 return container_of(wr, struct ib_ud_wr, wr); 1410 } 1411 1412 struct ib_reg_wr { 1413 struct ib_send_wr wr; 1414 struct ib_mr *mr; 1415 u32 key; 1416 int access; 1417 }; 1418 1419 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr) 1420 { 1421 return container_of(wr, struct ib_reg_wr, wr); 1422 } 1423 1424 struct ib_recv_wr { 1425 struct ib_recv_wr *next; 1426 union { 1427 u64 wr_id; 1428 struct ib_cqe *wr_cqe; 1429 }; 1430 struct ib_sge *sg_list; 1431 int num_sge; 1432 }; 1433 1434 enum ib_access_flags { 1435 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE, 1436 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE, 1437 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ, 1438 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC, 1439 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND, 1440 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED, 1441 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND, 1442 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB, 1443 IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING, 1444 1445 IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE, 1446 IB_ACCESS_SUPPORTED = 1447 ((IB_ACCESS_HUGETLB << 1) - 1) | IB_ACCESS_OPTIONAL, 1448 }; 1449 1450 /* 1451 * XXX: these are apparently used for ->rereg_user_mr, no idea why they 1452 * are hidden here instead of a uapi header! 1453 */ 1454 enum ib_mr_rereg_flags { 1455 IB_MR_REREG_TRANS = 1, 1456 IB_MR_REREG_PD = (1<<1), 1457 IB_MR_REREG_ACCESS = (1<<2), 1458 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1459 }; 1460 1461 struct ib_umem; 1462 1463 enum rdma_remove_reason { 1464 /* 1465 * Userspace requested uobject deletion or initial try 1466 * to remove uobject via cleanup. Call could fail 1467 */ 1468 RDMA_REMOVE_DESTROY, 1469 /* Context deletion. This call should delete the actual object itself */ 1470 RDMA_REMOVE_CLOSE, 1471 /* Driver is being hot-unplugged. This call should delete the actual object itself */ 1472 RDMA_REMOVE_DRIVER_REMOVE, 1473 /* uobj is being cleaned-up before being committed */ 1474 RDMA_REMOVE_ABORT, 1475 /* The driver failed to destroy the uobject and is being disconnected */ 1476 RDMA_REMOVE_DRIVER_FAILURE, 1477 }; 1478 1479 struct ib_rdmacg_object { 1480 #ifdef CONFIG_CGROUP_RDMA 1481 struct rdma_cgroup *cg; /* owner rdma cgroup */ 1482 #endif 1483 }; 1484 1485 struct ib_ucontext { 1486 struct ib_device *device; 1487 struct ib_uverbs_file *ufile; 1488 1489 struct ib_rdmacg_object cg_obj; 1490 /* 1491 * Implementation details of the RDMA core, don't use in drivers: 1492 */ 1493 struct rdma_restrack_entry res; 1494 struct xarray mmap_xa; 1495 }; 1496 1497 struct ib_uobject { 1498 u64 user_handle; /* handle given to us by userspace */ 1499 /* ufile & ucontext owning this object */ 1500 struct ib_uverbs_file *ufile; 1501 /* FIXME, save memory: ufile->context == context */ 1502 struct ib_ucontext *context; /* associated user context */ 1503 void *object; /* containing object */ 1504 struct list_head list; /* link to context's list */ 1505 struct ib_rdmacg_object cg_obj; /* rdmacg object */ 1506 int id; /* index into kernel idr */ 1507 struct kref ref; 1508 atomic_t usecnt; /* protects exclusive access */ 1509 struct rcu_head rcu; /* kfree_rcu() overhead */ 1510 1511 const struct uverbs_api_object *uapi_object; 1512 }; 1513 1514 struct ib_udata { 1515 const void __user *inbuf; 1516 void __user *outbuf; 1517 size_t inlen; 1518 size_t outlen; 1519 }; 1520 1521 struct ib_pd { 1522 u32 local_dma_lkey; 1523 u32 flags; 1524 struct ib_device *device; 1525 struct ib_uobject *uobject; 1526 atomic_t usecnt; /* count all resources */ 1527 1528 u32 unsafe_global_rkey; 1529 1530 /* 1531 * Implementation details of the RDMA core, don't use in drivers: 1532 */ 1533 struct ib_mr *__internal_mr; 1534 struct rdma_restrack_entry res; 1535 }; 1536 1537 struct ib_xrcd { 1538 struct ib_device *device; 1539 atomic_t usecnt; /* count all exposed resources */ 1540 struct inode *inode; 1541 struct rw_semaphore tgt_qps_rwsem; 1542 struct xarray tgt_qps; 1543 }; 1544 1545 struct ib_ah { 1546 struct ib_device *device; 1547 struct ib_pd *pd; 1548 struct ib_uobject *uobject; 1549 const struct ib_gid_attr *sgid_attr; 1550 enum rdma_ah_attr_type type; 1551 }; 1552 1553 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1554 1555 enum ib_poll_context { 1556 IB_POLL_SOFTIRQ, /* poll from softirq context */ 1557 IB_POLL_WORKQUEUE, /* poll from workqueue */ 1558 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */ 1559 IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE, 1560 1561 IB_POLL_DIRECT, /* caller context, no hw completions */ 1562 }; 1563 1564 struct ib_cq { 1565 struct ib_device *device; 1566 struct ib_ucq_object *uobject; 1567 ib_comp_handler comp_handler; 1568 void (*event_handler)(struct ib_event *, void *); 1569 void *cq_context; 1570 int cqe; 1571 unsigned int cqe_used; 1572 atomic_t usecnt; /* count number of work queues */ 1573 enum ib_poll_context poll_ctx; 1574 struct ib_wc *wc; 1575 struct list_head pool_entry; 1576 union { 1577 struct irq_poll iop; 1578 struct work_struct work; 1579 }; 1580 struct workqueue_struct *comp_wq; 1581 struct dim *dim; 1582 1583 /* updated only by trace points */ 1584 ktime_t timestamp; 1585 u8 interrupt:1; 1586 u8 shared:1; 1587 unsigned int comp_vector; 1588 1589 /* 1590 * Implementation details of the RDMA core, don't use in drivers: 1591 */ 1592 struct rdma_restrack_entry res; 1593 }; 1594 1595 struct ib_srq { 1596 struct ib_device *device; 1597 struct ib_pd *pd; 1598 struct ib_usrq_object *uobject; 1599 void (*event_handler)(struct ib_event *, void *); 1600 void *srq_context; 1601 enum ib_srq_type srq_type; 1602 atomic_t usecnt; 1603 1604 struct { 1605 struct ib_cq *cq; 1606 union { 1607 struct { 1608 struct ib_xrcd *xrcd; 1609 u32 srq_num; 1610 } xrc; 1611 }; 1612 } ext; 1613 }; 1614 1615 enum ib_raw_packet_caps { 1616 /* Strip cvlan from incoming packet and report it in the matching work 1617 * completion is supported. 1618 */ 1619 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0), 1620 /* Scatter FCS field of an incoming packet to host memory is supported. 1621 */ 1622 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1), 1623 /* Checksum offloads are supported (for both send and receive). */ 1624 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2), 1625 /* When a packet is received for an RQ with no receive WQEs, the 1626 * packet processing is delayed. 1627 */ 1628 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3), 1629 }; 1630 1631 enum ib_wq_type { 1632 IB_WQT_RQ = IB_UVERBS_WQT_RQ, 1633 }; 1634 1635 enum ib_wq_state { 1636 IB_WQS_RESET, 1637 IB_WQS_RDY, 1638 IB_WQS_ERR 1639 }; 1640 1641 struct ib_wq { 1642 struct ib_device *device; 1643 struct ib_uwq_object *uobject; 1644 void *wq_context; 1645 void (*event_handler)(struct ib_event *, void *); 1646 struct ib_pd *pd; 1647 struct ib_cq *cq; 1648 u32 wq_num; 1649 enum ib_wq_state state; 1650 enum ib_wq_type wq_type; 1651 atomic_t usecnt; 1652 }; 1653 1654 enum ib_wq_flags { 1655 IB_WQ_FLAGS_CVLAN_STRIPPING = IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING, 1656 IB_WQ_FLAGS_SCATTER_FCS = IB_UVERBS_WQ_FLAGS_SCATTER_FCS, 1657 IB_WQ_FLAGS_DELAY_DROP = IB_UVERBS_WQ_FLAGS_DELAY_DROP, 1658 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1659 IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING, 1660 }; 1661 1662 struct ib_wq_init_attr { 1663 void *wq_context; 1664 enum ib_wq_type wq_type; 1665 u32 max_wr; 1666 u32 max_sge; 1667 struct ib_cq *cq; 1668 void (*event_handler)(struct ib_event *, void *); 1669 u32 create_flags; /* Use enum ib_wq_flags */ 1670 }; 1671 1672 enum ib_wq_attr_mask { 1673 IB_WQ_STATE = 1 << 0, 1674 IB_WQ_CUR_STATE = 1 << 1, 1675 IB_WQ_FLAGS = 1 << 2, 1676 }; 1677 1678 struct ib_wq_attr { 1679 enum ib_wq_state wq_state; 1680 enum ib_wq_state curr_wq_state; 1681 u32 flags; /* Use enum ib_wq_flags */ 1682 u32 flags_mask; /* Use enum ib_wq_flags */ 1683 }; 1684 1685 struct ib_rwq_ind_table { 1686 struct ib_device *device; 1687 struct ib_uobject *uobject; 1688 atomic_t usecnt; 1689 u32 ind_tbl_num; 1690 u32 log_ind_tbl_size; 1691 struct ib_wq **ind_tbl; 1692 }; 1693 1694 struct ib_rwq_ind_table_init_attr { 1695 u32 log_ind_tbl_size; 1696 /* Each entry is a pointer to Receive Work Queue */ 1697 struct ib_wq **ind_tbl; 1698 }; 1699 1700 enum port_pkey_state { 1701 IB_PORT_PKEY_NOT_VALID = 0, 1702 IB_PORT_PKEY_VALID = 1, 1703 IB_PORT_PKEY_LISTED = 2, 1704 }; 1705 1706 struct ib_qp_security; 1707 1708 struct ib_port_pkey { 1709 enum port_pkey_state state; 1710 u16 pkey_index; 1711 u8 port_num; 1712 struct list_head qp_list; 1713 struct list_head to_error_list; 1714 struct ib_qp_security *sec; 1715 }; 1716 1717 struct ib_ports_pkeys { 1718 struct ib_port_pkey main; 1719 struct ib_port_pkey alt; 1720 }; 1721 1722 struct ib_qp_security { 1723 struct ib_qp *qp; 1724 struct ib_device *dev; 1725 /* Hold this mutex when changing port and pkey settings. */ 1726 struct mutex mutex; 1727 struct ib_ports_pkeys *ports_pkeys; 1728 /* A list of all open shared QP handles. Required to enforce security 1729 * properly for all users of a shared QP. 1730 */ 1731 struct list_head shared_qp_list; 1732 void *security; 1733 bool destroying; 1734 atomic_t error_list_count; 1735 struct completion error_complete; 1736 int error_comps_pending; 1737 }; 1738 1739 /* 1740 * @max_write_sge: Maximum SGE elements per RDMA WRITE request. 1741 * @max_read_sge: Maximum SGE elements per RDMA READ request. 1742 */ 1743 struct ib_qp { 1744 struct ib_device *device; 1745 struct ib_pd *pd; 1746 struct ib_cq *send_cq; 1747 struct ib_cq *recv_cq; 1748 spinlock_t mr_lock; 1749 int mrs_used; 1750 struct list_head rdma_mrs; 1751 struct list_head sig_mrs; 1752 struct ib_srq *srq; 1753 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1754 struct list_head xrcd_list; 1755 1756 /* count times opened, mcast attaches, flow attaches */ 1757 atomic_t usecnt; 1758 struct list_head open_list; 1759 struct ib_qp *real_qp; 1760 struct ib_uqp_object *uobject; 1761 void (*event_handler)(struct ib_event *, void *); 1762 void *qp_context; 1763 /* sgid_attrs associated with the AV's */ 1764 const struct ib_gid_attr *av_sgid_attr; 1765 const struct ib_gid_attr *alt_path_sgid_attr; 1766 u32 qp_num; 1767 u32 max_write_sge; 1768 u32 max_read_sge; 1769 enum ib_qp_type qp_type; 1770 struct ib_rwq_ind_table *rwq_ind_tbl; 1771 struct ib_qp_security *qp_sec; 1772 u8 port; 1773 1774 bool integrity_en; 1775 /* 1776 * Implementation details of the RDMA core, don't use in drivers: 1777 */ 1778 struct rdma_restrack_entry res; 1779 1780 /* The counter the qp is bind to */ 1781 struct rdma_counter *counter; 1782 }; 1783 1784 struct ib_dm { 1785 struct ib_device *device; 1786 u32 length; 1787 u32 flags; 1788 struct ib_uobject *uobject; 1789 atomic_t usecnt; 1790 }; 1791 1792 struct ib_mr { 1793 struct ib_device *device; 1794 struct ib_pd *pd; 1795 u32 lkey; 1796 u32 rkey; 1797 u64 iova; 1798 u64 length; 1799 unsigned int page_size; 1800 enum ib_mr_type type; 1801 bool need_inval; 1802 union { 1803 struct ib_uobject *uobject; /* user */ 1804 struct list_head qp_entry; /* FR */ 1805 }; 1806 1807 struct ib_dm *dm; 1808 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */ 1809 /* 1810 * Implementation details of the RDMA core, don't use in drivers: 1811 */ 1812 struct rdma_restrack_entry res; 1813 }; 1814 1815 struct ib_mw { 1816 struct ib_device *device; 1817 struct ib_pd *pd; 1818 struct ib_uobject *uobject; 1819 u32 rkey; 1820 enum ib_mw_type type; 1821 }; 1822 1823 /* Supported steering options */ 1824 enum ib_flow_attr_type { 1825 /* steering according to rule specifications */ 1826 IB_FLOW_ATTR_NORMAL = 0x0, 1827 /* default unicast and multicast rule - 1828 * receive all Eth traffic which isn't steered to any QP 1829 */ 1830 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1831 /* default multicast rule - 1832 * receive all Eth multicast traffic which isn't steered to any QP 1833 */ 1834 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1835 /* sniffer rule - receive all port traffic */ 1836 IB_FLOW_ATTR_SNIFFER = 0x3 1837 }; 1838 1839 /* Supported steering header types */ 1840 enum ib_flow_spec_type { 1841 /* L2 headers*/ 1842 IB_FLOW_SPEC_ETH = 0x20, 1843 IB_FLOW_SPEC_IB = 0x22, 1844 /* L3 header*/ 1845 IB_FLOW_SPEC_IPV4 = 0x30, 1846 IB_FLOW_SPEC_IPV6 = 0x31, 1847 IB_FLOW_SPEC_ESP = 0x34, 1848 /* L4 headers*/ 1849 IB_FLOW_SPEC_TCP = 0x40, 1850 IB_FLOW_SPEC_UDP = 0x41, 1851 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50, 1852 IB_FLOW_SPEC_GRE = 0x51, 1853 IB_FLOW_SPEC_MPLS = 0x60, 1854 IB_FLOW_SPEC_INNER = 0x100, 1855 /* Actions */ 1856 IB_FLOW_SPEC_ACTION_TAG = 0x1000, 1857 IB_FLOW_SPEC_ACTION_DROP = 0x1001, 1858 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002, 1859 IB_FLOW_SPEC_ACTION_COUNT = 0x1003, 1860 }; 1861 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1862 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10 1863 1864 enum ib_flow_flags { 1865 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */ 1866 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */ 1867 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */ 1868 }; 1869 1870 struct ib_flow_eth_filter { 1871 u8 dst_mac[6]; 1872 u8 src_mac[6]; 1873 __be16 ether_type; 1874 __be16 vlan_tag; 1875 /* Must be last */ 1876 u8 real_sz[]; 1877 }; 1878 1879 struct ib_flow_spec_eth { 1880 u32 type; 1881 u16 size; 1882 struct ib_flow_eth_filter val; 1883 struct ib_flow_eth_filter mask; 1884 }; 1885 1886 struct ib_flow_ib_filter { 1887 __be16 dlid; 1888 __u8 sl; 1889 /* Must be last */ 1890 u8 real_sz[]; 1891 }; 1892 1893 struct ib_flow_spec_ib { 1894 u32 type; 1895 u16 size; 1896 struct ib_flow_ib_filter val; 1897 struct ib_flow_ib_filter mask; 1898 }; 1899 1900 /* IPv4 header flags */ 1901 enum ib_ipv4_flags { 1902 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */ 1903 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the 1904 last have this flag set */ 1905 }; 1906 1907 struct ib_flow_ipv4_filter { 1908 __be32 src_ip; 1909 __be32 dst_ip; 1910 u8 proto; 1911 u8 tos; 1912 u8 ttl; 1913 u8 flags; 1914 /* Must be last */ 1915 u8 real_sz[]; 1916 }; 1917 1918 struct ib_flow_spec_ipv4 { 1919 u32 type; 1920 u16 size; 1921 struct ib_flow_ipv4_filter val; 1922 struct ib_flow_ipv4_filter mask; 1923 }; 1924 1925 struct ib_flow_ipv6_filter { 1926 u8 src_ip[16]; 1927 u8 dst_ip[16]; 1928 __be32 flow_label; 1929 u8 next_hdr; 1930 u8 traffic_class; 1931 u8 hop_limit; 1932 /* Must be last */ 1933 u8 real_sz[]; 1934 }; 1935 1936 struct ib_flow_spec_ipv6 { 1937 u32 type; 1938 u16 size; 1939 struct ib_flow_ipv6_filter val; 1940 struct ib_flow_ipv6_filter mask; 1941 }; 1942 1943 struct ib_flow_tcp_udp_filter { 1944 __be16 dst_port; 1945 __be16 src_port; 1946 /* Must be last */ 1947 u8 real_sz[]; 1948 }; 1949 1950 struct ib_flow_spec_tcp_udp { 1951 u32 type; 1952 u16 size; 1953 struct ib_flow_tcp_udp_filter val; 1954 struct ib_flow_tcp_udp_filter mask; 1955 }; 1956 1957 struct ib_flow_tunnel_filter { 1958 __be32 tunnel_id; 1959 u8 real_sz[]; 1960 }; 1961 1962 /* ib_flow_spec_tunnel describes the Vxlan tunnel 1963 * the tunnel_id from val has the vni value 1964 */ 1965 struct ib_flow_spec_tunnel { 1966 u32 type; 1967 u16 size; 1968 struct ib_flow_tunnel_filter val; 1969 struct ib_flow_tunnel_filter mask; 1970 }; 1971 1972 struct ib_flow_esp_filter { 1973 __be32 spi; 1974 __be32 seq; 1975 /* Must be last */ 1976 u8 real_sz[]; 1977 }; 1978 1979 struct ib_flow_spec_esp { 1980 u32 type; 1981 u16 size; 1982 struct ib_flow_esp_filter val; 1983 struct ib_flow_esp_filter mask; 1984 }; 1985 1986 struct ib_flow_gre_filter { 1987 __be16 c_ks_res0_ver; 1988 __be16 protocol; 1989 __be32 key; 1990 /* Must be last */ 1991 u8 real_sz[]; 1992 }; 1993 1994 struct ib_flow_spec_gre { 1995 u32 type; 1996 u16 size; 1997 struct ib_flow_gre_filter val; 1998 struct ib_flow_gre_filter mask; 1999 }; 2000 2001 struct ib_flow_mpls_filter { 2002 __be32 tag; 2003 /* Must be last */ 2004 u8 real_sz[]; 2005 }; 2006 2007 struct ib_flow_spec_mpls { 2008 u32 type; 2009 u16 size; 2010 struct ib_flow_mpls_filter val; 2011 struct ib_flow_mpls_filter mask; 2012 }; 2013 2014 struct ib_flow_spec_action_tag { 2015 enum ib_flow_spec_type type; 2016 u16 size; 2017 u32 tag_id; 2018 }; 2019 2020 struct ib_flow_spec_action_drop { 2021 enum ib_flow_spec_type type; 2022 u16 size; 2023 }; 2024 2025 struct ib_flow_spec_action_handle { 2026 enum ib_flow_spec_type type; 2027 u16 size; 2028 struct ib_flow_action *act; 2029 }; 2030 2031 enum ib_counters_description { 2032 IB_COUNTER_PACKETS, 2033 IB_COUNTER_BYTES, 2034 }; 2035 2036 struct ib_flow_spec_action_count { 2037 enum ib_flow_spec_type type; 2038 u16 size; 2039 struct ib_counters *counters; 2040 }; 2041 2042 union ib_flow_spec { 2043 struct { 2044 u32 type; 2045 u16 size; 2046 }; 2047 struct ib_flow_spec_eth eth; 2048 struct ib_flow_spec_ib ib; 2049 struct ib_flow_spec_ipv4 ipv4; 2050 struct ib_flow_spec_tcp_udp tcp_udp; 2051 struct ib_flow_spec_ipv6 ipv6; 2052 struct ib_flow_spec_tunnel tunnel; 2053 struct ib_flow_spec_esp esp; 2054 struct ib_flow_spec_gre gre; 2055 struct ib_flow_spec_mpls mpls; 2056 struct ib_flow_spec_action_tag flow_tag; 2057 struct ib_flow_spec_action_drop drop; 2058 struct ib_flow_spec_action_handle action; 2059 struct ib_flow_spec_action_count flow_count; 2060 }; 2061 2062 struct ib_flow_attr { 2063 enum ib_flow_attr_type type; 2064 u16 size; 2065 u16 priority; 2066 u32 flags; 2067 u8 num_of_specs; 2068 u8 port; 2069 union ib_flow_spec flows[]; 2070 }; 2071 2072 struct ib_flow { 2073 struct ib_qp *qp; 2074 struct ib_device *device; 2075 struct ib_uobject *uobject; 2076 }; 2077 2078 enum ib_flow_action_type { 2079 IB_FLOW_ACTION_UNSPECIFIED, 2080 IB_FLOW_ACTION_ESP = 1, 2081 }; 2082 2083 struct ib_flow_action_attrs_esp_keymats { 2084 enum ib_uverbs_flow_action_esp_keymat protocol; 2085 union { 2086 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm; 2087 } keymat; 2088 }; 2089 2090 struct ib_flow_action_attrs_esp_replays { 2091 enum ib_uverbs_flow_action_esp_replay protocol; 2092 union { 2093 struct ib_uverbs_flow_action_esp_replay_bmp bmp; 2094 } replay; 2095 }; 2096 2097 enum ib_flow_action_attrs_esp_flags { 2098 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags 2099 * This is done in order to share the same flags between user-space and 2100 * kernel and spare an unnecessary translation. 2101 */ 2102 2103 /* Kernel flags */ 2104 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32, 2105 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33, 2106 }; 2107 2108 struct ib_flow_spec_list { 2109 struct ib_flow_spec_list *next; 2110 union ib_flow_spec spec; 2111 }; 2112 2113 struct ib_flow_action_attrs_esp { 2114 struct ib_flow_action_attrs_esp_keymats *keymat; 2115 struct ib_flow_action_attrs_esp_replays *replay; 2116 struct ib_flow_spec_list *encap; 2117 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled. 2118 * Value of 0 is a valid value. 2119 */ 2120 u32 esn; 2121 u32 spi; 2122 u32 seq; 2123 u32 tfc_pad; 2124 /* Use enum ib_flow_action_attrs_esp_flags */ 2125 u64 flags; 2126 u64 hard_limit_pkts; 2127 }; 2128 2129 struct ib_flow_action { 2130 struct ib_device *device; 2131 struct ib_uobject *uobject; 2132 enum ib_flow_action_type type; 2133 atomic_t usecnt; 2134 }; 2135 2136 struct ib_mad; 2137 struct ib_grh; 2138 2139 enum ib_process_mad_flags { 2140 IB_MAD_IGNORE_MKEY = 1, 2141 IB_MAD_IGNORE_BKEY = 2, 2142 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 2143 }; 2144 2145 enum ib_mad_result { 2146 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 2147 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 2148 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 2149 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 2150 }; 2151 2152 struct ib_port_cache { 2153 u64 subnet_prefix; 2154 struct ib_pkey_cache *pkey; 2155 struct ib_gid_table *gid; 2156 u8 lmc; 2157 enum ib_port_state port_state; 2158 }; 2159 2160 struct ib_port_immutable { 2161 int pkey_tbl_len; 2162 int gid_tbl_len; 2163 u32 core_cap_flags; 2164 u32 max_mad_size; 2165 }; 2166 2167 struct ib_port_data { 2168 struct ib_device *ib_dev; 2169 2170 struct ib_port_immutable immutable; 2171 2172 spinlock_t pkey_list_lock; 2173 struct list_head pkey_list; 2174 2175 struct ib_port_cache cache; 2176 2177 spinlock_t netdev_lock; 2178 struct net_device __rcu *netdev; 2179 struct hlist_node ndev_hash_link; 2180 struct rdma_port_counter port_counter; 2181 struct rdma_hw_stats *hw_stats; 2182 }; 2183 2184 /* rdma netdev type - specifies protocol type */ 2185 enum rdma_netdev_t { 2186 RDMA_NETDEV_OPA_VNIC, 2187 RDMA_NETDEV_IPOIB, 2188 }; 2189 2190 /** 2191 * struct rdma_netdev - rdma netdev 2192 * For cases where netstack interfacing is required. 2193 */ 2194 struct rdma_netdev { 2195 void *clnt_priv; 2196 struct ib_device *hca; 2197 u8 port_num; 2198 int mtu; 2199 2200 /* 2201 * cleanup function must be specified. 2202 * FIXME: This is only used for OPA_VNIC and that usage should be 2203 * removed too. 2204 */ 2205 void (*free_rdma_netdev)(struct net_device *netdev); 2206 2207 /* control functions */ 2208 void (*set_id)(struct net_device *netdev, int id); 2209 /* send packet */ 2210 int (*send)(struct net_device *dev, struct sk_buff *skb, 2211 struct ib_ah *address, u32 dqpn); 2212 /* multicast */ 2213 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca, 2214 union ib_gid *gid, u16 mlid, 2215 int set_qkey, u32 qkey); 2216 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca, 2217 union ib_gid *gid, u16 mlid); 2218 }; 2219 2220 struct rdma_netdev_alloc_params { 2221 size_t sizeof_priv; 2222 unsigned int txqs; 2223 unsigned int rxqs; 2224 void *param; 2225 2226 int (*initialize_rdma_netdev)(struct ib_device *device, u8 port_num, 2227 struct net_device *netdev, void *param); 2228 }; 2229 2230 struct ib_odp_counters { 2231 atomic64_t faults; 2232 atomic64_t invalidations; 2233 atomic64_t prefetch; 2234 }; 2235 2236 struct ib_counters { 2237 struct ib_device *device; 2238 struct ib_uobject *uobject; 2239 /* num of objects attached */ 2240 atomic_t usecnt; 2241 }; 2242 2243 struct ib_counters_read_attr { 2244 u64 *counters_buff; 2245 u32 ncounters; 2246 u32 flags; /* use enum ib_read_counters_flags */ 2247 }; 2248 2249 struct uverbs_attr_bundle; 2250 struct iw_cm_id; 2251 struct iw_cm_conn_param; 2252 2253 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \ 2254 .size_##ib_struct = \ 2255 (sizeof(struct drv_struct) + \ 2256 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \ 2257 BUILD_BUG_ON_ZERO( \ 2258 !__same_type(((struct drv_struct *)NULL)->member, \ 2259 struct ib_struct))) 2260 2261 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \ 2262 ((struct ib_type *)kzalloc(ib_dev->ops.size_##ib_type, gfp)) 2263 2264 #define rdma_zalloc_drv_obj(ib_dev, ib_type) \ 2265 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL) 2266 2267 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct 2268 2269 struct rdma_user_mmap_entry { 2270 struct kref ref; 2271 struct ib_ucontext *ucontext; 2272 unsigned long start_pgoff; 2273 size_t npages; 2274 bool driver_removed; 2275 }; 2276 2277 /* Return the offset (in bytes) the user should pass to libc's mmap() */ 2278 static inline u64 2279 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry) 2280 { 2281 return (u64)entry->start_pgoff << PAGE_SHIFT; 2282 } 2283 2284 /** 2285 * struct ib_device_ops - InfiniBand device operations 2286 * This structure defines all the InfiniBand device operations, providers will 2287 * need to define the supported operations, otherwise they will be set to null. 2288 */ 2289 struct ib_device_ops { 2290 struct module *owner; 2291 enum rdma_driver_id driver_id; 2292 u32 uverbs_abi_ver; 2293 unsigned int uverbs_no_driver_id_binding:1; 2294 2295 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr, 2296 const struct ib_send_wr **bad_send_wr); 2297 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr, 2298 const struct ib_recv_wr **bad_recv_wr); 2299 void (*drain_rq)(struct ib_qp *qp); 2300 void (*drain_sq)(struct ib_qp *qp); 2301 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc); 2302 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 2303 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags); 2304 int (*req_ncomp_notif)(struct ib_cq *cq, int wc_cnt); 2305 int (*post_srq_recv)(struct ib_srq *srq, 2306 const struct ib_recv_wr *recv_wr, 2307 const struct ib_recv_wr **bad_recv_wr); 2308 int (*process_mad)(struct ib_device *device, int process_mad_flags, 2309 u8 port_num, const struct ib_wc *in_wc, 2310 const struct ib_grh *in_grh, 2311 const struct ib_mad *in_mad, struct ib_mad *out_mad, 2312 size_t *out_mad_size, u16 *out_mad_pkey_index); 2313 int (*query_device)(struct ib_device *device, 2314 struct ib_device_attr *device_attr, 2315 struct ib_udata *udata); 2316 int (*modify_device)(struct ib_device *device, int device_modify_mask, 2317 struct ib_device_modify *device_modify); 2318 void (*get_dev_fw_str)(struct ib_device *device, char *str); 2319 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev, 2320 int comp_vector); 2321 int (*query_port)(struct ib_device *device, u8 port_num, 2322 struct ib_port_attr *port_attr); 2323 int (*modify_port)(struct ib_device *device, u8 port_num, 2324 int port_modify_mask, 2325 struct ib_port_modify *port_modify); 2326 /** 2327 * The following mandatory functions are used only at device 2328 * registration. Keep functions such as these at the end of this 2329 * structure to avoid cache line misses when accessing struct ib_device 2330 * in fast paths. 2331 */ 2332 int (*get_port_immutable)(struct ib_device *device, u8 port_num, 2333 struct ib_port_immutable *immutable); 2334 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 2335 u8 port_num); 2336 /** 2337 * When calling get_netdev, the HW vendor's driver should return the 2338 * net device of device @device at port @port_num or NULL if such 2339 * a net device doesn't exist. The vendor driver should call dev_hold 2340 * on this net device. The HW vendor's device driver must guarantee 2341 * that this function returns NULL before the net device has finished 2342 * NETDEV_UNREGISTER state. 2343 */ 2344 struct net_device *(*get_netdev)(struct ib_device *device, u8 port_num); 2345 /** 2346 * rdma netdev operation 2347 * 2348 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params 2349 * must return -EOPNOTSUPP if it doesn't support the specified type. 2350 */ 2351 struct net_device *(*alloc_rdma_netdev)( 2352 struct ib_device *device, u8 port_num, enum rdma_netdev_t type, 2353 const char *name, unsigned char name_assign_type, 2354 void (*setup)(struct net_device *)); 2355 2356 int (*rdma_netdev_get_params)(struct ib_device *device, u8 port_num, 2357 enum rdma_netdev_t type, 2358 struct rdma_netdev_alloc_params *params); 2359 /** 2360 * query_gid should be return GID value for @device, when @port_num 2361 * link layer is either IB or iWarp. It is no-op if @port_num port 2362 * is RoCE link layer. 2363 */ 2364 int (*query_gid)(struct ib_device *device, u8 port_num, int index, 2365 union ib_gid *gid); 2366 /** 2367 * When calling add_gid, the HW vendor's driver should add the gid 2368 * of device of port at gid index available at @attr. Meta-info of 2369 * that gid (for example, the network device related to this gid) is 2370 * available at @attr. @context allows the HW vendor driver to store 2371 * extra information together with a GID entry. The HW vendor driver may 2372 * allocate memory to contain this information and store it in @context 2373 * when a new GID entry is written to. Params are consistent until the 2374 * next call of add_gid or delete_gid. The function should return 0 on 2375 * success or error otherwise. The function could be called 2376 * concurrently for different ports. This function is only called when 2377 * roce_gid_table is used. 2378 */ 2379 int (*add_gid)(const struct ib_gid_attr *attr, void **context); 2380 /** 2381 * When calling del_gid, the HW vendor's driver should delete the 2382 * gid of device @device at gid index gid_index of port port_num 2383 * available in @attr. 2384 * Upon the deletion of a GID entry, the HW vendor must free any 2385 * allocated memory. The caller will clear @context afterwards. 2386 * This function is only called when roce_gid_table is used. 2387 */ 2388 int (*del_gid)(const struct ib_gid_attr *attr, void **context); 2389 int (*query_pkey)(struct ib_device *device, u8 port_num, u16 index, 2390 u16 *pkey); 2391 int (*alloc_ucontext)(struct ib_ucontext *context, 2392 struct ib_udata *udata); 2393 void (*dealloc_ucontext)(struct ib_ucontext *context); 2394 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma); 2395 /** 2396 * This will be called once refcount of an entry in mmap_xa reaches 2397 * zero. The type of the memory that was mapped may differ between 2398 * entries and is opaque to the rdma_user_mmap interface. 2399 * Therefore needs to be implemented by the driver in mmap_free. 2400 */ 2401 void (*mmap_free)(struct rdma_user_mmap_entry *entry); 2402 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 2403 int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata); 2404 int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata); 2405 int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr, 2406 struct ib_udata *udata); 2407 int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr, 2408 struct ib_udata *udata); 2409 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2410 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2411 int (*destroy_ah)(struct ib_ah *ah, u32 flags); 2412 int (*create_srq)(struct ib_srq *srq, 2413 struct ib_srq_init_attr *srq_init_attr, 2414 struct ib_udata *udata); 2415 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr, 2416 enum ib_srq_attr_mask srq_attr_mask, 2417 struct ib_udata *udata); 2418 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr); 2419 int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata); 2420 struct ib_qp *(*create_qp)(struct ib_pd *pd, 2421 struct ib_qp_init_attr *qp_init_attr, 2422 struct ib_udata *udata); 2423 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, 2424 int qp_attr_mask, struct ib_udata *udata); 2425 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, 2426 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr); 2427 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata); 2428 int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr, 2429 struct ib_udata *udata); 2430 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period); 2431 int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata); 2432 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata); 2433 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags); 2434 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length, 2435 u64 virt_addr, int mr_access_flags, 2436 struct ib_udata *udata); 2437 struct ib_mr *(*reg_user_mr_dmabuf)(struct ib_pd *pd, u64 offset, 2438 u64 length, u64 virt_addr, int fd, 2439 int mr_access_flags, 2440 struct ib_udata *udata); 2441 struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start, 2442 u64 length, u64 virt_addr, 2443 int mr_access_flags, struct ib_pd *pd, 2444 struct ib_udata *udata); 2445 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata); 2446 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type, 2447 u32 max_num_sg); 2448 struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd, 2449 u32 max_num_data_sg, 2450 u32 max_num_meta_sg); 2451 int (*advise_mr)(struct ib_pd *pd, 2452 enum ib_uverbs_advise_mr_advice advice, u32 flags, 2453 struct ib_sge *sg_list, u32 num_sge, 2454 struct uverbs_attr_bundle *attrs); 2455 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 2456 unsigned int *sg_offset); 2457 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 2458 struct ib_mr_status *mr_status); 2459 int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata); 2460 int (*dealloc_mw)(struct ib_mw *mw); 2461 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2462 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2463 int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata); 2464 int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata); 2465 struct ib_flow *(*create_flow)(struct ib_qp *qp, 2466 struct ib_flow_attr *flow_attr, 2467 struct ib_udata *udata); 2468 int (*destroy_flow)(struct ib_flow *flow_id); 2469 struct ib_flow_action *(*create_flow_action_esp)( 2470 struct ib_device *device, 2471 const struct ib_flow_action_attrs_esp *attr, 2472 struct uverbs_attr_bundle *attrs); 2473 int (*destroy_flow_action)(struct ib_flow_action *action); 2474 int (*modify_flow_action_esp)( 2475 struct ib_flow_action *action, 2476 const struct ib_flow_action_attrs_esp *attr, 2477 struct uverbs_attr_bundle *attrs); 2478 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port, 2479 int state); 2480 int (*get_vf_config)(struct ib_device *device, int vf, u8 port, 2481 struct ifla_vf_info *ivf); 2482 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port, 2483 struct ifla_vf_stats *stats); 2484 int (*get_vf_guid)(struct ib_device *device, int vf, u8 port, 2485 struct ifla_vf_guid *node_guid, 2486 struct ifla_vf_guid *port_guid); 2487 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid, 2488 int type); 2489 struct ib_wq *(*create_wq)(struct ib_pd *pd, 2490 struct ib_wq_init_attr *init_attr, 2491 struct ib_udata *udata); 2492 int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata); 2493 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr, 2494 u32 wq_attr_mask, struct ib_udata *udata); 2495 int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table, 2496 struct ib_rwq_ind_table_init_attr *init_attr, 2497 struct ib_udata *udata); 2498 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table); 2499 struct ib_dm *(*alloc_dm)(struct ib_device *device, 2500 struct ib_ucontext *context, 2501 struct ib_dm_alloc_attr *attr, 2502 struct uverbs_attr_bundle *attrs); 2503 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs); 2504 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm, 2505 struct ib_dm_mr_attr *attr, 2506 struct uverbs_attr_bundle *attrs); 2507 int (*create_counters)(struct ib_counters *counters, 2508 struct uverbs_attr_bundle *attrs); 2509 int (*destroy_counters)(struct ib_counters *counters); 2510 int (*read_counters)(struct ib_counters *counters, 2511 struct ib_counters_read_attr *counters_read_attr, 2512 struct uverbs_attr_bundle *attrs); 2513 int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg, 2514 int data_sg_nents, unsigned int *data_sg_offset, 2515 struct scatterlist *meta_sg, int meta_sg_nents, 2516 unsigned int *meta_sg_offset); 2517 2518 /** 2519 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the 2520 * driver initialized data. The struct is kfree()'ed by the sysfs 2521 * core when the device is removed. A lifespan of -1 in the return 2522 * struct tells the core to set a default lifespan. 2523 */ 2524 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device, 2525 u8 port_num); 2526 /** 2527 * get_hw_stats - Fill in the counter value(s) in the stats struct. 2528 * @index - The index in the value array we wish to have updated, or 2529 * num_counters if we want all stats updated 2530 * Return codes - 2531 * < 0 - Error, no counters updated 2532 * index - Updated the single counter pointed to by index 2533 * num_counters - Updated all counters (will reset the timestamp 2534 * and prevent further calls for lifespan milliseconds) 2535 * Drivers are allowed to update all counters in leiu of just the 2536 * one given in index at their option 2537 */ 2538 int (*get_hw_stats)(struct ib_device *device, 2539 struct rdma_hw_stats *stats, u8 port, int index); 2540 /* 2541 * This function is called once for each port when a ib device is 2542 * registered. 2543 */ 2544 int (*init_port)(struct ib_device *device, u8 port_num, 2545 struct kobject *port_sysfs); 2546 /** 2547 * Allows rdma drivers to add their own restrack attributes. 2548 */ 2549 int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr); 2550 int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr); 2551 int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq); 2552 int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq); 2553 int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp); 2554 int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp); 2555 int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id); 2556 2557 /* Device lifecycle callbacks */ 2558 /* 2559 * Called after the device becomes registered, before clients are 2560 * attached 2561 */ 2562 int (*enable_driver)(struct ib_device *dev); 2563 /* 2564 * This is called as part of ib_dealloc_device(). 2565 */ 2566 void (*dealloc_driver)(struct ib_device *dev); 2567 2568 /* iWarp CM callbacks */ 2569 void (*iw_add_ref)(struct ib_qp *qp); 2570 void (*iw_rem_ref)(struct ib_qp *qp); 2571 struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn); 2572 int (*iw_connect)(struct iw_cm_id *cm_id, 2573 struct iw_cm_conn_param *conn_param); 2574 int (*iw_accept)(struct iw_cm_id *cm_id, 2575 struct iw_cm_conn_param *conn_param); 2576 int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata, 2577 u8 pdata_len); 2578 int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog); 2579 int (*iw_destroy_listen)(struct iw_cm_id *cm_id); 2580 /** 2581 * counter_bind_qp - Bind a QP to a counter. 2582 * @counter - The counter to be bound. If counter->id is zero then 2583 * the driver needs to allocate a new counter and set counter->id 2584 */ 2585 int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp); 2586 /** 2587 * counter_unbind_qp - Unbind the qp from the dynamically-allocated 2588 * counter and bind it onto the default one 2589 */ 2590 int (*counter_unbind_qp)(struct ib_qp *qp); 2591 /** 2592 * counter_dealloc -De-allocate the hw counter 2593 */ 2594 int (*counter_dealloc)(struct rdma_counter *counter); 2595 /** 2596 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in 2597 * the driver initialized data. 2598 */ 2599 struct rdma_hw_stats *(*counter_alloc_stats)( 2600 struct rdma_counter *counter); 2601 /** 2602 * counter_update_stats - Query the stats value of this counter 2603 */ 2604 int (*counter_update_stats)(struct rdma_counter *counter); 2605 2606 /** 2607 * Allows rdma drivers to add their own restrack attributes 2608 * dumped via 'rdma stat' iproute2 command. 2609 */ 2610 int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr); 2611 2612 /* query driver for its ucontext properties */ 2613 int (*query_ucontext)(struct ib_ucontext *context, 2614 struct uverbs_attr_bundle *attrs); 2615 2616 DECLARE_RDMA_OBJ_SIZE(ib_ah); 2617 DECLARE_RDMA_OBJ_SIZE(ib_counters); 2618 DECLARE_RDMA_OBJ_SIZE(ib_cq); 2619 DECLARE_RDMA_OBJ_SIZE(ib_mw); 2620 DECLARE_RDMA_OBJ_SIZE(ib_pd); 2621 DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table); 2622 DECLARE_RDMA_OBJ_SIZE(ib_srq); 2623 DECLARE_RDMA_OBJ_SIZE(ib_ucontext); 2624 DECLARE_RDMA_OBJ_SIZE(ib_xrcd); 2625 }; 2626 2627 struct ib_core_device { 2628 /* device must be the first element in structure until, 2629 * union of ib_core_device and device exists in ib_device. 2630 */ 2631 struct device dev; 2632 possible_net_t rdma_net; 2633 struct kobject *ports_kobj; 2634 struct list_head port_list; 2635 struct ib_device *owner; /* reach back to owner ib_device */ 2636 }; 2637 2638 struct rdma_restrack_root; 2639 struct ib_device { 2640 /* Do not access @dma_device directly from ULP nor from HW drivers. */ 2641 struct device *dma_device; 2642 struct ib_device_ops ops; 2643 char name[IB_DEVICE_NAME_MAX]; 2644 struct rcu_head rcu_head; 2645 2646 struct list_head event_handler_list; 2647 /* Protects event_handler_list */ 2648 struct rw_semaphore event_handler_rwsem; 2649 2650 /* Protects QP's event_handler calls and open_qp list */ 2651 spinlock_t qp_open_list_lock; 2652 2653 struct rw_semaphore client_data_rwsem; 2654 struct xarray client_data; 2655 struct mutex unregistration_lock; 2656 2657 /* Synchronize GID, Pkey cache entries, subnet prefix, LMC */ 2658 rwlock_t cache_lock; 2659 /** 2660 * port_data is indexed by port number 2661 */ 2662 struct ib_port_data *port_data; 2663 2664 int num_comp_vectors; 2665 2666 union { 2667 struct device dev; 2668 struct ib_core_device coredev; 2669 }; 2670 2671 /* First group for device attributes, 2672 * Second group for driver provided attributes (optional). 2673 * It is NULL terminated array. 2674 */ 2675 const struct attribute_group *groups[3]; 2676 2677 u64 uverbs_cmd_mask; 2678 2679 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 2680 __be64 node_guid; 2681 u32 local_dma_lkey; 2682 u16 is_switch:1; 2683 /* Indicates kernel verbs support, should not be used in drivers */ 2684 u16 kverbs_provider:1; 2685 /* CQ adaptive moderation (RDMA DIM) */ 2686 u16 use_cq_dim:1; 2687 u8 node_type; 2688 u8 phys_port_cnt; 2689 struct ib_device_attr attrs; 2690 struct attribute_group *hw_stats_ag; 2691 struct rdma_hw_stats *hw_stats; 2692 2693 #ifdef CONFIG_CGROUP_RDMA 2694 struct rdmacg_device cg_device; 2695 #endif 2696 2697 u32 index; 2698 2699 spinlock_t cq_pools_lock; 2700 struct list_head cq_pools[IB_POLL_LAST_POOL_TYPE + 1]; 2701 2702 struct rdma_restrack_root *res; 2703 2704 const struct uapi_definition *driver_def; 2705 2706 /* 2707 * Positive refcount indicates that the device is currently 2708 * registered and cannot be unregistered. 2709 */ 2710 refcount_t refcount; 2711 struct completion unreg_completion; 2712 struct work_struct unregistration_work; 2713 2714 const struct rdma_link_ops *link_ops; 2715 2716 /* Protects compat_devs xarray modifications */ 2717 struct mutex compat_devs_mutex; 2718 /* Maintains compat devices for each net namespace */ 2719 struct xarray compat_devs; 2720 2721 /* Used by iWarp CM */ 2722 char iw_ifname[IFNAMSIZ]; 2723 u32 iw_driver_flags; 2724 u32 lag_flags; 2725 }; 2726 2727 struct ib_client_nl_info; 2728 struct ib_client { 2729 const char *name; 2730 int (*add)(struct ib_device *ibdev); 2731 void (*remove)(struct ib_device *, void *client_data); 2732 void (*rename)(struct ib_device *dev, void *client_data); 2733 int (*get_nl_info)(struct ib_device *ibdev, void *client_data, 2734 struct ib_client_nl_info *res); 2735 int (*get_global_nl_info)(struct ib_client_nl_info *res); 2736 2737 /* Returns the net_dev belonging to this ib_client and matching the 2738 * given parameters. 2739 * @dev: An RDMA device that the net_dev use for communication. 2740 * @port: A physical port number on the RDMA device. 2741 * @pkey: P_Key that the net_dev uses if applicable. 2742 * @gid: A GID that the net_dev uses to communicate. 2743 * @addr: An IP address the net_dev is configured with. 2744 * @client_data: The device's client data set by ib_set_client_data(). 2745 * 2746 * An ib_client that implements a net_dev on top of RDMA devices 2747 * (such as IP over IB) should implement this callback, allowing the 2748 * rdma_cm module to find the right net_dev for a given request. 2749 * 2750 * The caller is responsible for calling dev_put on the returned 2751 * netdev. */ 2752 struct net_device *(*get_net_dev_by_params)( 2753 struct ib_device *dev, 2754 u8 port, 2755 u16 pkey, 2756 const union ib_gid *gid, 2757 const struct sockaddr *addr, 2758 void *client_data); 2759 2760 refcount_t uses; 2761 struct completion uses_zero; 2762 u32 client_id; 2763 2764 /* kverbs are not required by the client */ 2765 u8 no_kverbs_req:1; 2766 }; 2767 2768 /* 2769 * IB block DMA iterator 2770 * 2771 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned 2772 * to a HW supported page size. 2773 */ 2774 struct ib_block_iter { 2775 /* internal states */ 2776 struct scatterlist *__sg; /* sg holding the current aligned block */ 2777 dma_addr_t __dma_addr; /* unaligned DMA address of this block */ 2778 unsigned int __sg_nents; /* number of SG entries */ 2779 unsigned int __sg_advance; /* number of bytes to advance in sg in next step */ 2780 unsigned int __pg_bit; /* alignment of current block */ 2781 }; 2782 2783 struct ib_device *_ib_alloc_device(size_t size); 2784 #define ib_alloc_device(drv_struct, member) \ 2785 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \ 2786 BUILD_BUG_ON_ZERO(offsetof( \ 2787 struct drv_struct, member))), \ 2788 struct drv_struct, member) 2789 2790 void ib_dealloc_device(struct ib_device *device); 2791 2792 void ib_get_device_fw_str(struct ib_device *device, char *str); 2793 2794 int ib_register_device(struct ib_device *device, const char *name, 2795 struct device *dma_device); 2796 void ib_unregister_device(struct ib_device *device); 2797 void ib_unregister_driver(enum rdma_driver_id driver_id); 2798 void ib_unregister_device_and_put(struct ib_device *device); 2799 void ib_unregister_device_queued(struct ib_device *ib_dev); 2800 2801 int ib_register_client (struct ib_client *client); 2802 void ib_unregister_client(struct ib_client *client); 2803 2804 void __rdma_block_iter_start(struct ib_block_iter *biter, 2805 struct scatterlist *sglist, 2806 unsigned int nents, 2807 unsigned long pgsz); 2808 bool __rdma_block_iter_next(struct ib_block_iter *biter); 2809 2810 /** 2811 * rdma_block_iter_dma_address - get the aligned dma address of the current 2812 * block held by the block iterator. 2813 * @biter: block iterator holding the memory block 2814 */ 2815 static inline dma_addr_t 2816 rdma_block_iter_dma_address(struct ib_block_iter *biter) 2817 { 2818 return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1); 2819 } 2820 2821 /** 2822 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list 2823 * @sglist: sglist to iterate over 2824 * @biter: block iterator holding the memory block 2825 * @nents: maximum number of sg entries to iterate over 2826 * @pgsz: best HW supported page size to use 2827 * 2828 * Callers may use rdma_block_iter_dma_address() to get each 2829 * blocks aligned DMA address. 2830 */ 2831 #define rdma_for_each_block(sglist, biter, nents, pgsz) \ 2832 for (__rdma_block_iter_start(biter, sglist, nents, \ 2833 pgsz); \ 2834 __rdma_block_iter_next(biter);) 2835 2836 /** 2837 * ib_get_client_data - Get IB client context 2838 * @device:Device to get context for 2839 * @client:Client to get context for 2840 * 2841 * ib_get_client_data() returns the client context data set with 2842 * ib_set_client_data(). This can only be called while the client is 2843 * registered to the device, once the ib_client remove() callback returns this 2844 * cannot be called. 2845 */ 2846 static inline void *ib_get_client_data(struct ib_device *device, 2847 struct ib_client *client) 2848 { 2849 return xa_load(&device->client_data, client->client_id); 2850 } 2851 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 2852 void *data); 2853 void ib_set_device_ops(struct ib_device *device, 2854 const struct ib_device_ops *ops); 2855 2856 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma, 2857 unsigned long pfn, unsigned long size, pgprot_t prot, 2858 struct rdma_user_mmap_entry *entry); 2859 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext, 2860 struct rdma_user_mmap_entry *entry, 2861 size_t length); 2862 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext, 2863 struct rdma_user_mmap_entry *entry, 2864 size_t length, u32 min_pgoff, 2865 u32 max_pgoff); 2866 2867 struct rdma_user_mmap_entry * 2868 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext, 2869 unsigned long pgoff); 2870 struct rdma_user_mmap_entry * 2871 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext, 2872 struct vm_area_struct *vma); 2873 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry); 2874 2875 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry); 2876 2877 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 2878 { 2879 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 2880 } 2881 2882 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 2883 { 2884 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 2885 } 2886 2887 static inline bool ib_is_buffer_cleared(const void __user *p, 2888 size_t len) 2889 { 2890 bool ret; 2891 u8 *buf; 2892 2893 if (len > USHRT_MAX) 2894 return false; 2895 2896 buf = memdup_user(p, len); 2897 if (IS_ERR(buf)) 2898 return false; 2899 2900 ret = !memchr_inv(buf, 0, len); 2901 kfree(buf); 2902 return ret; 2903 } 2904 2905 static inline bool ib_is_udata_cleared(struct ib_udata *udata, 2906 size_t offset, 2907 size_t len) 2908 { 2909 return ib_is_buffer_cleared(udata->inbuf + offset, len); 2910 } 2911 2912 /** 2913 * ib_modify_qp_is_ok - Check that the supplied attribute mask 2914 * contains all required attributes and no attributes not allowed for 2915 * the given QP state transition. 2916 * @cur_state: Current QP state 2917 * @next_state: Next QP state 2918 * @type: QP type 2919 * @mask: Mask of supplied QP attributes 2920 * 2921 * This function is a helper function that a low-level driver's 2922 * modify_qp method can use to validate the consumer's input. It 2923 * checks that cur_state and next_state are valid QP states, that a 2924 * transition from cur_state to next_state is allowed by the IB spec, 2925 * and that the attribute mask supplied is allowed for the transition. 2926 */ 2927 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 2928 enum ib_qp_type type, enum ib_qp_attr_mask mask); 2929 2930 void ib_register_event_handler(struct ib_event_handler *event_handler); 2931 void ib_unregister_event_handler(struct ib_event_handler *event_handler); 2932 void ib_dispatch_event(const struct ib_event *event); 2933 2934 int ib_query_port(struct ib_device *device, 2935 u8 port_num, struct ib_port_attr *port_attr); 2936 2937 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 2938 u8 port_num); 2939 2940 /** 2941 * rdma_cap_ib_switch - Check if the device is IB switch 2942 * @device: Device to check 2943 * 2944 * Device driver is responsible for setting is_switch bit on 2945 * in ib_device structure at init time. 2946 * 2947 * Return: true if the device is IB switch. 2948 */ 2949 static inline bool rdma_cap_ib_switch(const struct ib_device *device) 2950 { 2951 return device->is_switch; 2952 } 2953 2954 /** 2955 * rdma_start_port - Return the first valid port number for the device 2956 * specified 2957 * 2958 * @device: Device to be checked 2959 * 2960 * Return start port number 2961 */ 2962 static inline u8 rdma_start_port(const struct ib_device *device) 2963 { 2964 return rdma_cap_ib_switch(device) ? 0 : 1; 2965 } 2966 2967 /** 2968 * rdma_for_each_port - Iterate over all valid port numbers of the IB device 2969 * @device - The struct ib_device * to iterate over 2970 * @iter - The unsigned int to store the port number 2971 */ 2972 #define rdma_for_each_port(device, iter) \ 2973 for (iter = rdma_start_port(device + BUILD_BUG_ON_ZERO(!__same_type( \ 2974 unsigned int, iter))); \ 2975 iter <= rdma_end_port(device); (iter)++) 2976 2977 /** 2978 * rdma_end_port - Return the last valid port number for the device 2979 * specified 2980 * 2981 * @device: Device to be checked 2982 * 2983 * Return last port number 2984 */ 2985 static inline u8 rdma_end_port(const struct ib_device *device) 2986 { 2987 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 2988 } 2989 2990 static inline int rdma_is_port_valid(const struct ib_device *device, 2991 unsigned int port) 2992 { 2993 return (port >= rdma_start_port(device) && 2994 port <= rdma_end_port(device)); 2995 } 2996 2997 static inline bool rdma_is_grh_required(const struct ib_device *device, 2998 u8 port_num) 2999 { 3000 return device->port_data[port_num].immutable.core_cap_flags & 3001 RDMA_CORE_PORT_IB_GRH_REQUIRED; 3002 } 3003 3004 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num) 3005 { 3006 return device->port_data[port_num].immutable.core_cap_flags & 3007 RDMA_CORE_CAP_PROT_IB; 3008 } 3009 3010 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num) 3011 { 3012 return device->port_data[port_num].immutable.core_cap_flags & 3013 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); 3014 } 3015 3016 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num) 3017 { 3018 return device->port_data[port_num].immutable.core_cap_flags & 3019 RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; 3020 } 3021 3022 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num) 3023 { 3024 return device->port_data[port_num].immutable.core_cap_flags & 3025 RDMA_CORE_CAP_PROT_ROCE; 3026 } 3027 3028 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num) 3029 { 3030 return device->port_data[port_num].immutable.core_cap_flags & 3031 RDMA_CORE_CAP_PROT_IWARP; 3032 } 3033 3034 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num) 3035 { 3036 return rdma_protocol_ib(device, port_num) || 3037 rdma_protocol_roce(device, port_num); 3038 } 3039 3040 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num) 3041 { 3042 return device->port_data[port_num].immutable.core_cap_flags & 3043 RDMA_CORE_CAP_PROT_RAW_PACKET; 3044 } 3045 3046 static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num) 3047 { 3048 return device->port_data[port_num].immutable.core_cap_flags & 3049 RDMA_CORE_CAP_PROT_USNIC; 3050 } 3051 3052 /** 3053 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 3054 * Management Datagrams. 3055 * @device: Device to check 3056 * @port_num: Port number to check 3057 * 3058 * Management Datagrams (MAD) are a required part of the InfiniBand 3059 * specification and are supported on all InfiniBand devices. A slightly 3060 * extended version are also supported on OPA interfaces. 3061 * 3062 * Return: true if the port supports sending/receiving of MAD packets. 3063 */ 3064 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num) 3065 { 3066 return device->port_data[port_num].immutable.core_cap_flags & 3067 RDMA_CORE_CAP_IB_MAD; 3068 } 3069 3070 /** 3071 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 3072 * Management Datagrams. 3073 * @device: Device to check 3074 * @port_num: Port number to check 3075 * 3076 * Intel OmniPath devices extend and/or replace the InfiniBand Management 3077 * datagrams with their own versions. These OPA MADs share many but not all of 3078 * the characteristics of InfiniBand MADs. 3079 * 3080 * OPA MADs differ in the following ways: 3081 * 3082 * 1) MADs are variable size up to 2K 3083 * IBTA defined MADs remain fixed at 256 bytes 3084 * 2) OPA SMPs must carry valid PKeys 3085 * 3) OPA SMP packets are a different format 3086 * 3087 * Return: true if the port supports OPA MAD packet formats. 3088 */ 3089 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num) 3090 { 3091 return device->port_data[port_num].immutable.core_cap_flags & 3092 RDMA_CORE_CAP_OPA_MAD; 3093 } 3094 3095 /** 3096 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 3097 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 3098 * @device: Device to check 3099 * @port_num: Port number to check 3100 * 3101 * Each InfiniBand node is required to provide a Subnet Management Agent 3102 * that the subnet manager can access. Prior to the fabric being fully 3103 * configured by the subnet manager, the SMA is accessed via a well known 3104 * interface called the Subnet Management Interface (SMI). This interface 3105 * uses directed route packets to communicate with the SM to get around the 3106 * chicken and egg problem of the SM needing to know what's on the fabric 3107 * in order to configure the fabric, and needing to configure the fabric in 3108 * order to send packets to the devices on the fabric. These directed 3109 * route packets do not need the fabric fully configured in order to reach 3110 * their destination. The SMI is the only method allowed to send 3111 * directed route packets on an InfiniBand fabric. 3112 * 3113 * Return: true if the port provides an SMI. 3114 */ 3115 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num) 3116 { 3117 return device->port_data[port_num].immutable.core_cap_flags & 3118 RDMA_CORE_CAP_IB_SMI; 3119 } 3120 3121 /** 3122 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 3123 * Communication Manager. 3124 * @device: Device to check 3125 * @port_num: Port number to check 3126 * 3127 * The InfiniBand Communication Manager is one of many pre-defined General 3128 * Service Agents (GSA) that are accessed via the General Service 3129 * Interface (GSI). It's role is to facilitate establishment of connections 3130 * between nodes as well as other management related tasks for established 3131 * connections. 3132 * 3133 * Return: true if the port supports an IB CM (this does not guarantee that 3134 * a CM is actually running however). 3135 */ 3136 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num) 3137 { 3138 return device->port_data[port_num].immutable.core_cap_flags & 3139 RDMA_CORE_CAP_IB_CM; 3140 } 3141 3142 /** 3143 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 3144 * Communication Manager. 3145 * @device: Device to check 3146 * @port_num: Port number to check 3147 * 3148 * Similar to above, but specific to iWARP connections which have a different 3149 * managment protocol than InfiniBand. 3150 * 3151 * Return: true if the port supports an iWARP CM (this does not guarantee that 3152 * a CM is actually running however). 3153 */ 3154 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num) 3155 { 3156 return device->port_data[port_num].immutable.core_cap_flags & 3157 RDMA_CORE_CAP_IW_CM; 3158 } 3159 3160 /** 3161 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 3162 * Subnet Administration. 3163 * @device: Device to check 3164 * @port_num: Port number to check 3165 * 3166 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 3167 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 3168 * fabrics, devices should resolve routes to other hosts by contacting the 3169 * SA to query the proper route. 3170 * 3171 * Return: true if the port should act as a client to the fabric Subnet 3172 * Administration interface. This does not imply that the SA service is 3173 * running locally. 3174 */ 3175 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num) 3176 { 3177 return device->port_data[port_num].immutable.core_cap_flags & 3178 RDMA_CORE_CAP_IB_SA; 3179 } 3180 3181 /** 3182 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 3183 * Multicast. 3184 * @device: Device to check 3185 * @port_num: Port number to check 3186 * 3187 * InfiniBand multicast registration is more complex than normal IPv4 or 3188 * IPv6 multicast registration. Each Host Channel Adapter must register 3189 * with the Subnet Manager when it wishes to join a multicast group. It 3190 * should do so only once regardless of how many queue pairs it subscribes 3191 * to this group. And it should leave the group only after all queue pairs 3192 * attached to the group have been detached. 3193 * 3194 * Return: true if the port must undertake the additional adminstrative 3195 * overhead of registering/unregistering with the SM and tracking of the 3196 * total number of queue pairs attached to the multicast group. 3197 */ 3198 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num) 3199 { 3200 return rdma_cap_ib_sa(device, port_num); 3201 } 3202 3203 /** 3204 * rdma_cap_af_ib - Check if the port of device has the capability 3205 * Native Infiniband Address. 3206 * @device: Device to check 3207 * @port_num: Port number to check 3208 * 3209 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 3210 * GID. RoCE uses a different mechanism, but still generates a GID via 3211 * a prescribed mechanism and port specific data. 3212 * 3213 * Return: true if the port uses a GID address to identify devices on the 3214 * network. 3215 */ 3216 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num) 3217 { 3218 return device->port_data[port_num].immutable.core_cap_flags & 3219 RDMA_CORE_CAP_AF_IB; 3220 } 3221 3222 /** 3223 * rdma_cap_eth_ah - Check if the port of device has the capability 3224 * Ethernet Address Handle. 3225 * @device: Device to check 3226 * @port_num: Port number to check 3227 * 3228 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 3229 * to fabricate GIDs over Ethernet/IP specific addresses native to the 3230 * port. Normally, packet headers are generated by the sending host 3231 * adapter, but when sending connectionless datagrams, we must manually 3232 * inject the proper headers for the fabric we are communicating over. 3233 * 3234 * Return: true if we are running as a RoCE port and must force the 3235 * addition of a Global Route Header built from our Ethernet Address 3236 * Handle into our header list for connectionless packets. 3237 */ 3238 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num) 3239 { 3240 return device->port_data[port_num].immutable.core_cap_flags & 3241 RDMA_CORE_CAP_ETH_AH; 3242 } 3243 3244 /** 3245 * rdma_cap_opa_ah - Check if the port of device supports 3246 * OPA Address handles 3247 * @device: Device to check 3248 * @port_num: Port number to check 3249 * 3250 * Return: true if we are running on an OPA device which supports 3251 * the extended OPA addressing. 3252 */ 3253 static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num) 3254 { 3255 return (device->port_data[port_num].immutable.core_cap_flags & 3256 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH; 3257 } 3258 3259 /** 3260 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 3261 * 3262 * @device: Device 3263 * @port_num: Port number 3264 * 3265 * This MAD size includes the MAD headers and MAD payload. No other headers 3266 * are included. 3267 * 3268 * Return the max MAD size required by the Port. Will return 0 if the port 3269 * does not support MADs 3270 */ 3271 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num) 3272 { 3273 return device->port_data[port_num].immutable.max_mad_size; 3274 } 3275 3276 /** 3277 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 3278 * @device: Device to check 3279 * @port_num: Port number to check 3280 * 3281 * RoCE GID table mechanism manages the various GIDs for a device. 3282 * 3283 * NOTE: if allocating the port's GID table has failed, this call will still 3284 * return true, but any RoCE GID table API will fail. 3285 * 3286 * Return: true if the port uses RoCE GID table mechanism in order to manage 3287 * its GIDs. 3288 */ 3289 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 3290 u8 port_num) 3291 { 3292 return rdma_protocol_roce(device, port_num) && 3293 device->ops.add_gid && device->ops.del_gid; 3294 } 3295 3296 /* 3297 * Check if the device supports READ W/ INVALIDATE. 3298 */ 3299 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num) 3300 { 3301 /* 3302 * iWarp drivers must support READ W/ INVALIDATE. No other protocol 3303 * has support for it yet. 3304 */ 3305 return rdma_protocol_iwarp(dev, port_num); 3306 } 3307 3308 /** 3309 * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not. 3310 * @device: Device 3311 * @port_num: 1 based Port number 3312 * 3313 * Return true if port is an Intel OPA port , false if not 3314 */ 3315 static inline bool rdma_core_cap_opa_port(struct ib_device *device, 3316 u32 port_num) 3317 { 3318 return (device->port_data[port_num].immutable.core_cap_flags & 3319 RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA; 3320 } 3321 3322 /** 3323 * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value. 3324 * @device: Device 3325 * @port_num: Port number 3326 * @mtu: enum value of MTU 3327 * 3328 * Return the MTU size supported by the port as an integer value. Will return 3329 * -1 if enum value of mtu is not supported. 3330 */ 3331 static inline int rdma_mtu_enum_to_int(struct ib_device *device, u8 port, 3332 int mtu) 3333 { 3334 if (rdma_core_cap_opa_port(device, port)) 3335 return opa_mtu_enum_to_int((enum opa_mtu)mtu); 3336 else 3337 return ib_mtu_enum_to_int((enum ib_mtu)mtu); 3338 } 3339 3340 /** 3341 * rdma_mtu_from_attr - Return the mtu of the port from the port attribute. 3342 * @device: Device 3343 * @port_num: Port number 3344 * @attr: port attribute 3345 * 3346 * Return the MTU size supported by the port as an integer value. 3347 */ 3348 static inline int rdma_mtu_from_attr(struct ib_device *device, u8 port, 3349 struct ib_port_attr *attr) 3350 { 3351 if (rdma_core_cap_opa_port(device, port)) 3352 return attr->phys_mtu; 3353 else 3354 return ib_mtu_enum_to_int(attr->max_mtu); 3355 } 3356 3357 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 3358 int state); 3359 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 3360 struct ifla_vf_info *info); 3361 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 3362 struct ifla_vf_stats *stats); 3363 int ib_get_vf_guid(struct ib_device *device, int vf, u8 port, 3364 struct ifla_vf_guid *node_guid, 3365 struct ifla_vf_guid *port_guid); 3366 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 3367 int type); 3368 3369 int ib_query_pkey(struct ib_device *device, 3370 u8 port_num, u16 index, u16 *pkey); 3371 3372 int ib_modify_device(struct ib_device *device, 3373 int device_modify_mask, 3374 struct ib_device_modify *device_modify); 3375 3376 int ib_modify_port(struct ib_device *device, 3377 u8 port_num, int port_modify_mask, 3378 struct ib_port_modify *port_modify); 3379 3380 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 3381 u8 *port_num, u16 *index); 3382 3383 int ib_find_pkey(struct ib_device *device, 3384 u8 port_num, u16 pkey, u16 *index); 3385 3386 enum ib_pd_flags { 3387 /* 3388 * Create a memory registration for all memory in the system and place 3389 * the rkey for it into pd->unsafe_global_rkey. This can be used by 3390 * ULPs to avoid the overhead of dynamic MRs. 3391 * 3392 * This flag is generally considered unsafe and must only be used in 3393 * extremly trusted environments. Every use of it will log a warning 3394 * in the kernel log. 3395 */ 3396 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01, 3397 }; 3398 3399 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 3400 const char *caller); 3401 3402 /** 3403 * ib_alloc_pd - Allocates an unused protection domain. 3404 * @device: The device on which to allocate the protection domain. 3405 * @flags: protection domain flags 3406 * 3407 * A protection domain object provides an association between QPs, shared 3408 * receive queues, address handles, memory regions, and memory windows. 3409 * 3410 * Every PD has a local_dma_lkey which can be used as the lkey value for local 3411 * memory operations. 3412 */ 3413 #define ib_alloc_pd(device, flags) \ 3414 __ib_alloc_pd((device), (flags), KBUILD_MODNAME) 3415 3416 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata); 3417 3418 /** 3419 * ib_dealloc_pd - Deallocate kernel PD 3420 * @pd: The protection domain 3421 * 3422 * NOTE: for user PD use ib_dealloc_pd_user with valid udata! 3423 */ 3424 static inline void ib_dealloc_pd(struct ib_pd *pd) 3425 { 3426 int ret = ib_dealloc_pd_user(pd, NULL); 3427 3428 WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail"); 3429 } 3430 3431 enum rdma_create_ah_flags { 3432 /* In a sleepable context */ 3433 RDMA_CREATE_AH_SLEEPABLE = BIT(0), 3434 }; 3435 3436 /** 3437 * rdma_create_ah - Creates an address handle for the given address vector. 3438 * @pd: The protection domain associated with the address handle. 3439 * @ah_attr: The attributes of the address vector. 3440 * @flags: Create address handle flags (see enum rdma_create_ah_flags). 3441 * 3442 * The address handle is used to reference a local or global destination 3443 * in all UD QP post sends. 3444 */ 3445 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr, 3446 u32 flags); 3447 3448 /** 3449 * rdma_create_user_ah - Creates an address handle for the given address vector. 3450 * It resolves destination mac address for ah attribute of RoCE type. 3451 * @pd: The protection domain associated with the address handle. 3452 * @ah_attr: The attributes of the address vector. 3453 * @udata: pointer to user's input output buffer information need by 3454 * provider driver. 3455 * 3456 * It returns 0 on success and returns appropriate error code on error. 3457 * The address handle is used to reference a local or global destination 3458 * in all UD QP post sends. 3459 */ 3460 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd, 3461 struct rdma_ah_attr *ah_attr, 3462 struct ib_udata *udata); 3463 /** 3464 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header 3465 * work completion. 3466 * @hdr: the L3 header to parse 3467 * @net_type: type of header to parse 3468 * @sgid: place to store source gid 3469 * @dgid: place to store destination gid 3470 */ 3471 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 3472 enum rdma_network_type net_type, 3473 union ib_gid *sgid, union ib_gid *dgid); 3474 3475 /** 3476 * ib_get_rdma_header_version - Get the header version 3477 * @hdr: the L3 header to parse 3478 */ 3479 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr); 3480 3481 /** 3482 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a 3483 * work completion. 3484 * @device: Device on which the received message arrived. 3485 * @port_num: Port on which the received message arrived. 3486 * @wc: Work completion associated with the received message. 3487 * @grh: References the received global route header. This parameter is 3488 * ignored unless the work completion indicates that the GRH is valid. 3489 * @ah_attr: Returned attributes that can be used when creating an address 3490 * handle for replying to the message. 3491 * When ib_init_ah_attr_from_wc() returns success, 3492 * (a) for IB link layer it optionally contains a reference to SGID attribute 3493 * when GRH is present for IB link layer. 3494 * (b) for RoCE link layer it contains a reference to SGID attribute. 3495 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID 3496 * attributes which are initialized using ib_init_ah_attr_from_wc(). 3497 * 3498 */ 3499 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num, 3500 const struct ib_wc *wc, const struct ib_grh *grh, 3501 struct rdma_ah_attr *ah_attr); 3502 3503 /** 3504 * ib_create_ah_from_wc - Creates an address handle associated with the 3505 * sender of the specified work completion. 3506 * @pd: The protection domain associated with the address handle. 3507 * @wc: Work completion information associated with a received message. 3508 * @grh: References the received global route header. This parameter is 3509 * ignored unless the work completion indicates that the GRH is valid. 3510 * @port_num: The outbound port number to associate with the address. 3511 * 3512 * The address handle is used to reference a local or global destination 3513 * in all UD QP post sends. 3514 */ 3515 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 3516 const struct ib_grh *grh, u8 port_num); 3517 3518 /** 3519 * rdma_modify_ah - Modifies the address vector associated with an address 3520 * handle. 3521 * @ah: The address handle to modify. 3522 * @ah_attr: The new address vector attributes to associate with the 3523 * address handle. 3524 */ 3525 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3526 3527 /** 3528 * rdma_query_ah - Queries the address vector associated with an address 3529 * handle. 3530 * @ah: The address handle to query. 3531 * @ah_attr: The address vector attributes associated with the address 3532 * handle. 3533 */ 3534 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3535 3536 enum rdma_destroy_ah_flags { 3537 /* In a sleepable context */ 3538 RDMA_DESTROY_AH_SLEEPABLE = BIT(0), 3539 }; 3540 3541 /** 3542 * rdma_destroy_ah_user - Destroys an address handle. 3543 * @ah: The address handle to destroy. 3544 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3545 * @udata: Valid user data or NULL for kernel objects 3546 */ 3547 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata); 3548 3549 /** 3550 * rdma_destroy_ah - Destroys an kernel address handle. 3551 * @ah: The address handle to destroy. 3552 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3553 * 3554 * NOTE: for user ah use rdma_destroy_ah_user with valid udata! 3555 */ 3556 static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags) 3557 { 3558 int ret = rdma_destroy_ah_user(ah, flags, NULL); 3559 3560 WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail"); 3561 } 3562 3563 struct ib_srq *ib_create_srq_user(struct ib_pd *pd, 3564 struct ib_srq_init_attr *srq_init_attr, 3565 struct ib_usrq_object *uobject, 3566 struct ib_udata *udata); 3567 static inline struct ib_srq * 3568 ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr) 3569 { 3570 if (!pd->device->ops.create_srq) 3571 return ERR_PTR(-EOPNOTSUPP); 3572 3573 return ib_create_srq_user(pd, srq_init_attr, NULL, NULL); 3574 } 3575 3576 /** 3577 * ib_modify_srq - Modifies the attributes for the specified SRQ. 3578 * @srq: The SRQ to modify. 3579 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 3580 * the current values of selected SRQ attributes are returned. 3581 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 3582 * are being modified. 3583 * 3584 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 3585 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 3586 * the number of receives queued drops below the limit. 3587 */ 3588 int ib_modify_srq(struct ib_srq *srq, 3589 struct ib_srq_attr *srq_attr, 3590 enum ib_srq_attr_mask srq_attr_mask); 3591 3592 /** 3593 * ib_query_srq - Returns the attribute list and current values for the 3594 * specified SRQ. 3595 * @srq: The SRQ to query. 3596 * @srq_attr: The attributes of the specified SRQ. 3597 */ 3598 int ib_query_srq(struct ib_srq *srq, 3599 struct ib_srq_attr *srq_attr); 3600 3601 /** 3602 * ib_destroy_srq_user - Destroys the specified SRQ. 3603 * @srq: The SRQ to destroy. 3604 * @udata: Valid user data or NULL for kernel objects 3605 */ 3606 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata); 3607 3608 /** 3609 * ib_destroy_srq - Destroys the specified kernel SRQ. 3610 * @srq: The SRQ to destroy. 3611 * 3612 * NOTE: for user srq use ib_destroy_srq_user with valid udata! 3613 */ 3614 static inline void ib_destroy_srq(struct ib_srq *srq) 3615 { 3616 int ret = ib_destroy_srq_user(srq, NULL); 3617 3618 WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail"); 3619 } 3620 3621 /** 3622 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 3623 * @srq: The SRQ to post the work request on. 3624 * @recv_wr: A list of work requests to post on the receive queue. 3625 * @bad_recv_wr: On an immediate failure, this parameter will reference 3626 * the work request that failed to be posted on the QP. 3627 */ 3628 static inline int ib_post_srq_recv(struct ib_srq *srq, 3629 const struct ib_recv_wr *recv_wr, 3630 const struct ib_recv_wr **bad_recv_wr) 3631 { 3632 const struct ib_recv_wr *dummy; 3633 3634 return srq->device->ops.post_srq_recv(srq, recv_wr, 3635 bad_recv_wr ? : &dummy); 3636 } 3637 3638 struct ib_qp *ib_create_named_qp(struct ib_pd *pd, 3639 struct ib_qp_init_attr *qp_init_attr, 3640 const char *caller); 3641 static inline struct ib_qp *ib_create_qp(struct ib_pd *pd, 3642 struct ib_qp_init_attr *init_attr) 3643 { 3644 return ib_create_named_qp(pd, init_attr, KBUILD_MODNAME); 3645 } 3646 3647 /** 3648 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 3649 * @qp: The QP to modify. 3650 * @attr: On input, specifies the QP attributes to modify. On output, 3651 * the current values of selected QP attributes are returned. 3652 * @attr_mask: A bit-mask used to specify which attributes of the QP 3653 * are being modified. 3654 * @udata: pointer to user's input output buffer information 3655 * are being modified. 3656 * It returns 0 on success and returns appropriate error code on error. 3657 */ 3658 int ib_modify_qp_with_udata(struct ib_qp *qp, 3659 struct ib_qp_attr *attr, 3660 int attr_mask, 3661 struct ib_udata *udata); 3662 3663 /** 3664 * ib_modify_qp - Modifies the attributes for the specified QP and then 3665 * transitions the QP to the given state. 3666 * @qp: The QP to modify. 3667 * @qp_attr: On input, specifies the QP attributes to modify. On output, 3668 * the current values of selected QP attributes are returned. 3669 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 3670 * are being modified. 3671 */ 3672 int ib_modify_qp(struct ib_qp *qp, 3673 struct ib_qp_attr *qp_attr, 3674 int qp_attr_mask); 3675 3676 /** 3677 * ib_query_qp - Returns the attribute list and current values for the 3678 * specified QP. 3679 * @qp: The QP to query. 3680 * @qp_attr: The attributes of the specified QP. 3681 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 3682 * @qp_init_attr: Additional attributes of the selected QP. 3683 * 3684 * The qp_attr_mask may be used to limit the query to gathering only the 3685 * selected attributes. 3686 */ 3687 int ib_query_qp(struct ib_qp *qp, 3688 struct ib_qp_attr *qp_attr, 3689 int qp_attr_mask, 3690 struct ib_qp_init_attr *qp_init_attr); 3691 3692 /** 3693 * ib_destroy_qp - Destroys the specified QP. 3694 * @qp: The QP to destroy. 3695 * @udata: Valid udata or NULL for kernel objects 3696 */ 3697 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata); 3698 3699 /** 3700 * ib_destroy_qp - Destroys the specified kernel QP. 3701 * @qp: The QP to destroy. 3702 * 3703 * NOTE: for user qp use ib_destroy_qp_user with valid udata! 3704 */ 3705 static inline int ib_destroy_qp(struct ib_qp *qp) 3706 { 3707 return ib_destroy_qp_user(qp, NULL); 3708 } 3709 3710 /** 3711 * ib_open_qp - Obtain a reference to an existing sharable QP. 3712 * @xrcd - XRC domain 3713 * @qp_open_attr: Attributes identifying the QP to open. 3714 * 3715 * Returns a reference to a sharable QP. 3716 */ 3717 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 3718 struct ib_qp_open_attr *qp_open_attr); 3719 3720 /** 3721 * ib_close_qp - Release an external reference to a QP. 3722 * @qp: The QP handle to release 3723 * 3724 * The opened QP handle is released by the caller. The underlying 3725 * shared QP is not destroyed until all internal references are released. 3726 */ 3727 int ib_close_qp(struct ib_qp *qp); 3728 3729 /** 3730 * ib_post_send - Posts a list of work requests to the send queue of 3731 * the specified QP. 3732 * @qp: The QP to post the work request on. 3733 * @send_wr: A list of work requests to post on the send queue. 3734 * @bad_send_wr: On an immediate failure, this parameter will reference 3735 * the work request that failed to be posted on the QP. 3736 * 3737 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 3738 * error is returned, the QP state shall not be affected, 3739 * ib_post_send() will return an immediate error after queueing any 3740 * earlier work requests in the list. 3741 */ 3742 static inline int ib_post_send(struct ib_qp *qp, 3743 const struct ib_send_wr *send_wr, 3744 const struct ib_send_wr **bad_send_wr) 3745 { 3746 const struct ib_send_wr *dummy; 3747 3748 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy); 3749 } 3750 3751 /** 3752 * ib_post_recv - Posts a list of work requests to the receive queue of 3753 * the specified QP. 3754 * @qp: The QP to post the work request on. 3755 * @recv_wr: A list of work requests to post on the receive queue. 3756 * @bad_recv_wr: On an immediate failure, this parameter will reference 3757 * the work request that failed to be posted on the QP. 3758 */ 3759 static inline int ib_post_recv(struct ib_qp *qp, 3760 const struct ib_recv_wr *recv_wr, 3761 const struct ib_recv_wr **bad_recv_wr) 3762 { 3763 const struct ib_recv_wr *dummy; 3764 3765 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy); 3766 } 3767 3768 struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe, 3769 int comp_vector, enum ib_poll_context poll_ctx, 3770 const char *caller); 3771 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private, 3772 int nr_cqe, int comp_vector, 3773 enum ib_poll_context poll_ctx) 3774 { 3775 return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx, 3776 KBUILD_MODNAME); 3777 } 3778 3779 struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private, 3780 int nr_cqe, enum ib_poll_context poll_ctx, 3781 const char *caller); 3782 3783 /** 3784 * ib_alloc_cq_any: Allocate kernel CQ 3785 * @dev: The IB device 3786 * @private: Private data attached to the CQE 3787 * @nr_cqe: Number of CQEs in the CQ 3788 * @poll_ctx: Context used for polling the CQ 3789 */ 3790 static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev, 3791 void *private, int nr_cqe, 3792 enum ib_poll_context poll_ctx) 3793 { 3794 return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx, 3795 KBUILD_MODNAME); 3796 } 3797 3798 void ib_free_cq(struct ib_cq *cq); 3799 int ib_process_cq_direct(struct ib_cq *cq, int budget); 3800 3801 /** 3802 * ib_create_cq - Creates a CQ on the specified device. 3803 * @device: The device on which to create the CQ. 3804 * @comp_handler: A user-specified callback that is invoked when a 3805 * completion event occurs on the CQ. 3806 * @event_handler: A user-specified callback that is invoked when an 3807 * asynchronous event not associated with a completion occurs on the CQ. 3808 * @cq_context: Context associated with the CQ returned to the user via 3809 * the associated completion and event handlers. 3810 * @cq_attr: The attributes the CQ should be created upon. 3811 * 3812 * Users can examine the cq structure to determine the actual CQ size. 3813 */ 3814 struct ib_cq *__ib_create_cq(struct ib_device *device, 3815 ib_comp_handler comp_handler, 3816 void (*event_handler)(struct ib_event *, void *), 3817 void *cq_context, 3818 const struct ib_cq_init_attr *cq_attr, 3819 const char *caller); 3820 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \ 3821 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME) 3822 3823 /** 3824 * ib_resize_cq - Modifies the capacity of the CQ. 3825 * @cq: The CQ to resize. 3826 * @cqe: The minimum size of the CQ. 3827 * 3828 * Users can examine the cq structure to determine the actual CQ size. 3829 */ 3830 int ib_resize_cq(struct ib_cq *cq, int cqe); 3831 3832 /** 3833 * rdma_set_cq_moderation - Modifies moderation params of the CQ 3834 * @cq: The CQ to modify. 3835 * @cq_count: number of CQEs that will trigger an event 3836 * @cq_period: max period of time in usec before triggering an event 3837 * 3838 */ 3839 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period); 3840 3841 /** 3842 * ib_destroy_cq_user - Destroys the specified CQ. 3843 * @cq: The CQ to destroy. 3844 * @udata: Valid user data or NULL for kernel objects 3845 */ 3846 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata); 3847 3848 /** 3849 * ib_destroy_cq - Destroys the specified kernel CQ. 3850 * @cq: The CQ to destroy. 3851 * 3852 * NOTE: for user cq use ib_destroy_cq_user with valid udata! 3853 */ 3854 static inline void ib_destroy_cq(struct ib_cq *cq) 3855 { 3856 int ret = ib_destroy_cq_user(cq, NULL); 3857 3858 WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail"); 3859 } 3860 3861 /** 3862 * ib_poll_cq - poll a CQ for completion(s) 3863 * @cq:the CQ being polled 3864 * @num_entries:maximum number of completions to return 3865 * @wc:array of at least @num_entries &struct ib_wc where completions 3866 * will be returned 3867 * 3868 * Poll a CQ for (possibly multiple) completions. If the return value 3869 * is < 0, an error occurred. If the return value is >= 0, it is the 3870 * number of completions returned. If the return value is 3871 * non-negative and < num_entries, then the CQ was emptied. 3872 */ 3873 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 3874 struct ib_wc *wc) 3875 { 3876 return cq->device->ops.poll_cq(cq, num_entries, wc); 3877 } 3878 3879 /** 3880 * ib_req_notify_cq - Request completion notification on a CQ. 3881 * @cq: The CQ to generate an event for. 3882 * @flags: 3883 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 3884 * to request an event on the next solicited event or next work 3885 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 3886 * may also be |ed in to request a hint about missed events, as 3887 * described below. 3888 * 3889 * Return Value: 3890 * < 0 means an error occurred while requesting notification 3891 * == 0 means notification was requested successfully, and if 3892 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 3893 * were missed and it is safe to wait for another event. In 3894 * this case is it guaranteed that any work completions added 3895 * to the CQ since the last CQ poll will trigger a completion 3896 * notification event. 3897 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 3898 * in. It means that the consumer must poll the CQ again to 3899 * make sure it is empty to avoid missing an event because of a 3900 * race between requesting notification and an entry being 3901 * added to the CQ. This return value means it is possible 3902 * (but not guaranteed) that a work completion has been added 3903 * to the CQ since the last poll without triggering a 3904 * completion notification event. 3905 */ 3906 static inline int ib_req_notify_cq(struct ib_cq *cq, 3907 enum ib_cq_notify_flags flags) 3908 { 3909 return cq->device->ops.req_notify_cq(cq, flags); 3910 } 3911 3912 struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe, 3913 int comp_vector_hint, 3914 enum ib_poll_context poll_ctx); 3915 3916 void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe); 3917 3918 /** 3919 * ib_req_ncomp_notif - Request completion notification when there are 3920 * at least the specified number of unreaped completions on the CQ. 3921 * @cq: The CQ to generate an event for. 3922 * @wc_cnt: The number of unreaped completions that should be on the 3923 * CQ before an event is generated. 3924 */ 3925 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 3926 { 3927 return cq->device->ops.req_ncomp_notif ? 3928 cq->device->ops.req_ncomp_notif(cq, wc_cnt) : 3929 -ENOSYS; 3930 } 3931 3932 /* 3933 * Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to 3934 * NULL. This causes the ib_dma* helpers to just stash the kernel virtual 3935 * address into the dma address. 3936 */ 3937 static inline bool ib_uses_virt_dma(struct ib_device *dev) 3938 { 3939 return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device; 3940 } 3941 3942 /** 3943 * ib_dma_mapping_error - check a DMA addr for error 3944 * @dev: The device for which the dma_addr was created 3945 * @dma_addr: The DMA address to check 3946 */ 3947 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 3948 { 3949 if (ib_uses_virt_dma(dev)) 3950 return 0; 3951 return dma_mapping_error(dev->dma_device, dma_addr); 3952 } 3953 3954 /** 3955 * ib_dma_map_single - Map a kernel virtual address to DMA address 3956 * @dev: The device for which the dma_addr is to be created 3957 * @cpu_addr: The kernel virtual address 3958 * @size: The size of the region in bytes 3959 * @direction: The direction of the DMA 3960 */ 3961 static inline u64 ib_dma_map_single(struct ib_device *dev, 3962 void *cpu_addr, size_t size, 3963 enum dma_data_direction direction) 3964 { 3965 if (ib_uses_virt_dma(dev)) 3966 return (uintptr_t)cpu_addr; 3967 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 3968 } 3969 3970 /** 3971 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 3972 * @dev: The device for which the DMA address was created 3973 * @addr: The DMA address 3974 * @size: The size of the region in bytes 3975 * @direction: The direction of the DMA 3976 */ 3977 static inline void ib_dma_unmap_single(struct ib_device *dev, 3978 u64 addr, size_t size, 3979 enum dma_data_direction direction) 3980 { 3981 if (!ib_uses_virt_dma(dev)) 3982 dma_unmap_single(dev->dma_device, addr, size, direction); 3983 } 3984 3985 /** 3986 * ib_dma_map_page - Map a physical page to DMA address 3987 * @dev: The device for which the dma_addr is to be created 3988 * @page: The page to be mapped 3989 * @offset: The offset within the page 3990 * @size: The size of the region in bytes 3991 * @direction: The direction of the DMA 3992 */ 3993 static inline u64 ib_dma_map_page(struct ib_device *dev, 3994 struct page *page, 3995 unsigned long offset, 3996 size_t size, 3997 enum dma_data_direction direction) 3998 { 3999 if (ib_uses_virt_dma(dev)) 4000 return (uintptr_t)(page_address(page) + offset); 4001 return dma_map_page(dev->dma_device, page, offset, size, direction); 4002 } 4003 4004 /** 4005 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 4006 * @dev: The device for which the DMA address was created 4007 * @addr: The DMA address 4008 * @size: The size of the region in bytes 4009 * @direction: The direction of the DMA 4010 */ 4011 static inline void ib_dma_unmap_page(struct ib_device *dev, 4012 u64 addr, size_t size, 4013 enum dma_data_direction direction) 4014 { 4015 if (!ib_uses_virt_dma(dev)) 4016 dma_unmap_page(dev->dma_device, addr, size, direction); 4017 } 4018 4019 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents); 4020 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 4021 struct scatterlist *sg, int nents, 4022 enum dma_data_direction direction, 4023 unsigned long dma_attrs) 4024 { 4025 if (ib_uses_virt_dma(dev)) 4026 return ib_dma_virt_map_sg(dev, sg, nents); 4027 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, 4028 dma_attrs); 4029 } 4030 4031 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 4032 struct scatterlist *sg, int nents, 4033 enum dma_data_direction direction, 4034 unsigned long dma_attrs) 4035 { 4036 if (!ib_uses_virt_dma(dev)) 4037 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, 4038 dma_attrs); 4039 } 4040 4041 /** 4042 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 4043 * @dev: The device for which the DMA addresses are to be created 4044 * @sg: The array of scatter/gather entries 4045 * @nents: The number of scatter/gather entries 4046 * @direction: The direction of the DMA 4047 */ 4048 static inline int ib_dma_map_sg(struct ib_device *dev, 4049 struct scatterlist *sg, int nents, 4050 enum dma_data_direction direction) 4051 { 4052 return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0); 4053 } 4054 4055 /** 4056 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 4057 * @dev: The device for which the DMA addresses were created 4058 * @sg: The array of scatter/gather entries 4059 * @nents: The number of scatter/gather entries 4060 * @direction: The direction of the DMA 4061 */ 4062 static inline void ib_dma_unmap_sg(struct ib_device *dev, 4063 struct scatterlist *sg, int nents, 4064 enum dma_data_direction direction) 4065 { 4066 ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0); 4067 } 4068 4069 /** 4070 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer 4071 * @dev: The device to query 4072 * 4073 * The returned value represents a size in bytes. 4074 */ 4075 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev) 4076 { 4077 if (ib_uses_virt_dma(dev)) 4078 return UINT_MAX; 4079 return dma_get_max_seg_size(dev->dma_device); 4080 } 4081 4082 /** 4083 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 4084 * @dev: The device for which the DMA address was created 4085 * @addr: The DMA address 4086 * @size: The size of the region in bytes 4087 * @dir: The direction of the DMA 4088 */ 4089 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 4090 u64 addr, 4091 size_t size, 4092 enum dma_data_direction dir) 4093 { 4094 if (!ib_uses_virt_dma(dev)) 4095 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 4096 } 4097 4098 /** 4099 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 4100 * @dev: The device for which the DMA address was created 4101 * @addr: The DMA address 4102 * @size: The size of the region in bytes 4103 * @dir: The direction of the DMA 4104 */ 4105 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 4106 u64 addr, 4107 size_t size, 4108 enum dma_data_direction dir) 4109 { 4110 if (!ib_uses_virt_dma(dev)) 4111 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 4112 } 4113 4114 /* ib_reg_user_mr - register a memory region for virtual addresses from kernel 4115 * space. This function should be called when 'current' is the owning MM. 4116 */ 4117 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 4118 u64 virt_addr, int mr_access_flags); 4119 4120 /* ib_advise_mr - give an advice about an address range in a memory region */ 4121 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice, 4122 u32 flags, struct ib_sge *sg_list, u32 num_sge); 4123 /** 4124 * ib_dereg_mr_user - Deregisters a memory region and removes it from the 4125 * HCA translation table. 4126 * @mr: The memory region to deregister. 4127 * @udata: Valid user data or NULL for kernel object 4128 * 4129 * This function can fail, if the memory region has memory windows bound to it. 4130 */ 4131 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata); 4132 4133 /** 4134 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the 4135 * HCA translation table. 4136 * @mr: The memory region to deregister. 4137 * 4138 * This function can fail, if the memory region has memory windows bound to it. 4139 * 4140 * NOTE: for user mr use ib_dereg_mr_user with valid udata! 4141 */ 4142 static inline int ib_dereg_mr(struct ib_mr *mr) 4143 { 4144 return ib_dereg_mr_user(mr, NULL); 4145 } 4146 4147 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 4148 u32 max_num_sg); 4149 4150 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd, 4151 u32 max_num_data_sg, 4152 u32 max_num_meta_sg); 4153 4154 /** 4155 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 4156 * R_Key and L_Key. 4157 * @mr - struct ib_mr pointer to be updated. 4158 * @newkey - new key to be used. 4159 */ 4160 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 4161 { 4162 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 4163 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 4164 } 4165 4166 /** 4167 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 4168 * for calculating a new rkey for type 2 memory windows. 4169 * @rkey - the rkey to increment. 4170 */ 4171 static inline u32 ib_inc_rkey(u32 rkey) 4172 { 4173 const u32 mask = 0x000000ff; 4174 return ((rkey + 1) & mask) | (rkey & ~mask); 4175 } 4176 4177 /** 4178 * ib_attach_mcast - Attaches the specified QP to a multicast group. 4179 * @qp: QP to attach to the multicast group. The QP must be type 4180 * IB_QPT_UD. 4181 * @gid: Multicast group GID. 4182 * @lid: Multicast group LID in host byte order. 4183 * 4184 * In order to send and receive multicast packets, subnet 4185 * administration must have created the multicast group and configured 4186 * the fabric appropriately. The port associated with the specified 4187 * QP must also be a member of the multicast group. 4188 */ 4189 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 4190 4191 /** 4192 * ib_detach_mcast - Detaches the specified QP from a multicast group. 4193 * @qp: QP to detach from the multicast group. 4194 * @gid: Multicast group GID. 4195 * @lid: Multicast group LID in host byte order. 4196 */ 4197 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 4198 4199 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device, 4200 struct inode *inode, struct ib_udata *udata); 4201 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata); 4202 4203 static inline int ib_check_mr_access(struct ib_device *ib_dev, 4204 unsigned int flags) 4205 { 4206 /* 4207 * Local write permission is required if remote write or 4208 * remote atomic permission is also requested. 4209 */ 4210 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 4211 !(flags & IB_ACCESS_LOCAL_WRITE)) 4212 return -EINVAL; 4213 4214 if (flags & ~IB_ACCESS_SUPPORTED) 4215 return -EINVAL; 4216 4217 if (flags & IB_ACCESS_ON_DEMAND && 4218 !(ib_dev->attrs.device_cap_flags & IB_DEVICE_ON_DEMAND_PAGING)) 4219 return -EINVAL; 4220 return 0; 4221 } 4222 4223 static inline bool ib_access_writable(int access_flags) 4224 { 4225 /* 4226 * We have writable memory backing the MR if any of the following 4227 * access flags are set. "Local write" and "remote write" obviously 4228 * require write access. "Remote atomic" can do things like fetch and 4229 * add, which will modify memory, and "MW bind" can change permissions 4230 * by binding a window. 4231 */ 4232 return access_flags & 4233 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | 4234 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND); 4235 } 4236 4237 /** 4238 * ib_check_mr_status: lightweight check of MR status. 4239 * This routine may provide status checks on a selected 4240 * ib_mr. first use is for signature status check. 4241 * 4242 * @mr: A memory region. 4243 * @check_mask: Bitmask of which checks to perform from 4244 * ib_mr_status_check enumeration. 4245 * @mr_status: The container of relevant status checks. 4246 * failed checks will be indicated in the status bitmask 4247 * and the relevant info shall be in the error item. 4248 */ 4249 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 4250 struct ib_mr_status *mr_status); 4251 4252 /** 4253 * ib_device_try_get: Hold a registration lock 4254 * device: The device to lock 4255 * 4256 * A device under an active registration lock cannot become unregistered. It 4257 * is only possible to obtain a registration lock on a device that is fully 4258 * registered, otherwise this function returns false. 4259 * 4260 * The registration lock is only necessary for actions which require the 4261 * device to still be registered. Uses that only require the device pointer to 4262 * be valid should use get_device(&ibdev->dev) to hold the memory. 4263 * 4264 */ 4265 static inline bool ib_device_try_get(struct ib_device *dev) 4266 { 4267 return refcount_inc_not_zero(&dev->refcount); 4268 } 4269 4270 void ib_device_put(struct ib_device *device); 4271 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev, 4272 enum rdma_driver_id driver_id); 4273 struct ib_device *ib_device_get_by_name(const char *name, 4274 enum rdma_driver_id driver_id); 4275 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port, 4276 u16 pkey, const union ib_gid *gid, 4277 const struct sockaddr *addr); 4278 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev, 4279 unsigned int port); 4280 struct net_device *ib_device_netdev(struct ib_device *dev, u8 port); 4281 4282 struct ib_wq *ib_create_wq(struct ib_pd *pd, 4283 struct ib_wq_init_attr *init_attr); 4284 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata); 4285 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr, 4286 u32 wq_attr_mask); 4287 4288 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 4289 unsigned int *sg_offset, unsigned int page_size); 4290 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg, 4291 int data_sg_nents, unsigned int *data_sg_offset, 4292 struct scatterlist *meta_sg, int meta_sg_nents, 4293 unsigned int *meta_sg_offset, unsigned int page_size); 4294 4295 static inline int 4296 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 4297 unsigned int *sg_offset, unsigned int page_size) 4298 { 4299 int n; 4300 4301 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size); 4302 mr->iova = 0; 4303 4304 return n; 4305 } 4306 4307 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 4308 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64)); 4309 4310 void ib_drain_rq(struct ib_qp *qp); 4311 void ib_drain_sq(struct ib_qp *qp); 4312 void ib_drain_qp(struct ib_qp *qp); 4313 4314 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u16 *speed, u8 *width); 4315 4316 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr) 4317 { 4318 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE) 4319 return attr->roce.dmac; 4320 return NULL; 4321 } 4322 4323 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid) 4324 { 4325 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4326 attr->ib.dlid = (u16)dlid; 4327 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4328 attr->opa.dlid = dlid; 4329 } 4330 4331 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr) 4332 { 4333 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4334 return attr->ib.dlid; 4335 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4336 return attr->opa.dlid; 4337 return 0; 4338 } 4339 4340 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl) 4341 { 4342 attr->sl = sl; 4343 } 4344 4345 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr) 4346 { 4347 return attr->sl; 4348 } 4349 4350 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr, 4351 u8 src_path_bits) 4352 { 4353 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4354 attr->ib.src_path_bits = src_path_bits; 4355 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4356 attr->opa.src_path_bits = src_path_bits; 4357 } 4358 4359 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr) 4360 { 4361 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4362 return attr->ib.src_path_bits; 4363 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4364 return attr->opa.src_path_bits; 4365 return 0; 4366 } 4367 4368 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr, 4369 bool make_grd) 4370 { 4371 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4372 attr->opa.make_grd = make_grd; 4373 } 4374 4375 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr) 4376 { 4377 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4378 return attr->opa.make_grd; 4379 return false; 4380 } 4381 4382 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num) 4383 { 4384 attr->port_num = port_num; 4385 } 4386 4387 static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr) 4388 { 4389 return attr->port_num; 4390 } 4391 4392 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr, 4393 u8 static_rate) 4394 { 4395 attr->static_rate = static_rate; 4396 } 4397 4398 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr) 4399 { 4400 return attr->static_rate; 4401 } 4402 4403 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr, 4404 enum ib_ah_flags flag) 4405 { 4406 attr->ah_flags = flag; 4407 } 4408 4409 static inline enum ib_ah_flags 4410 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr) 4411 { 4412 return attr->ah_flags; 4413 } 4414 4415 static inline const struct ib_global_route 4416 *rdma_ah_read_grh(const struct rdma_ah_attr *attr) 4417 { 4418 return &attr->grh; 4419 } 4420 4421 /*To retrieve and modify the grh */ 4422 static inline struct ib_global_route 4423 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr) 4424 { 4425 return &attr->grh; 4426 } 4427 4428 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid) 4429 { 4430 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4431 4432 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid)); 4433 } 4434 4435 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr, 4436 __be64 prefix) 4437 { 4438 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4439 4440 grh->dgid.global.subnet_prefix = prefix; 4441 } 4442 4443 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr, 4444 __be64 if_id) 4445 { 4446 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4447 4448 grh->dgid.global.interface_id = if_id; 4449 } 4450 4451 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr, 4452 union ib_gid *dgid, u32 flow_label, 4453 u8 sgid_index, u8 hop_limit, 4454 u8 traffic_class) 4455 { 4456 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4457 4458 attr->ah_flags = IB_AH_GRH; 4459 if (dgid) 4460 grh->dgid = *dgid; 4461 grh->flow_label = flow_label; 4462 grh->sgid_index = sgid_index; 4463 grh->hop_limit = hop_limit; 4464 grh->traffic_class = traffic_class; 4465 grh->sgid_attr = NULL; 4466 } 4467 4468 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr); 4469 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid, 4470 u32 flow_label, u8 hop_limit, u8 traffic_class, 4471 const struct ib_gid_attr *sgid_attr); 4472 void rdma_copy_ah_attr(struct rdma_ah_attr *dest, 4473 const struct rdma_ah_attr *src); 4474 void rdma_replace_ah_attr(struct rdma_ah_attr *old, 4475 const struct rdma_ah_attr *new); 4476 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src); 4477 4478 /** 4479 * rdma_ah_find_type - Return address handle type. 4480 * 4481 * @dev: Device to be checked 4482 * @port_num: Port number 4483 */ 4484 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev, 4485 u8 port_num) 4486 { 4487 if (rdma_protocol_roce(dev, port_num)) 4488 return RDMA_AH_ATTR_TYPE_ROCE; 4489 if (rdma_protocol_ib(dev, port_num)) { 4490 if (rdma_cap_opa_ah(dev, port_num)) 4491 return RDMA_AH_ATTR_TYPE_OPA; 4492 return RDMA_AH_ATTR_TYPE_IB; 4493 } 4494 4495 return RDMA_AH_ATTR_TYPE_UNDEFINED; 4496 } 4497 4498 /** 4499 * ib_lid_cpu16 - Return lid in 16bit CPU encoding. 4500 * In the current implementation the only way to get 4501 * get the 32bit lid is from other sources for OPA. 4502 * For IB, lids will always be 16bits so cast the 4503 * value accordingly. 4504 * 4505 * @lid: A 32bit LID 4506 */ 4507 static inline u16 ib_lid_cpu16(u32 lid) 4508 { 4509 WARN_ON_ONCE(lid & 0xFFFF0000); 4510 return (u16)lid; 4511 } 4512 4513 /** 4514 * ib_lid_be16 - Return lid in 16bit BE encoding. 4515 * 4516 * @lid: A 32bit LID 4517 */ 4518 static inline __be16 ib_lid_be16(u32 lid) 4519 { 4520 WARN_ON_ONCE(lid & 0xFFFF0000); 4521 return cpu_to_be16((u16)lid); 4522 } 4523 4524 /** 4525 * ib_get_vector_affinity - Get the affinity mappings of a given completion 4526 * vector 4527 * @device: the rdma device 4528 * @comp_vector: index of completion vector 4529 * 4530 * Returns NULL on failure, otherwise a corresponding cpu map of the 4531 * completion vector (returns all-cpus map if the device driver doesn't 4532 * implement get_vector_affinity). 4533 */ 4534 static inline const struct cpumask * 4535 ib_get_vector_affinity(struct ib_device *device, int comp_vector) 4536 { 4537 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors || 4538 !device->ops.get_vector_affinity) 4539 return NULL; 4540 4541 return device->ops.get_vector_affinity(device, comp_vector); 4542 4543 } 4544 4545 /** 4546 * rdma_roce_rescan_device - Rescan all of the network devices in the system 4547 * and add their gids, as needed, to the relevant RoCE devices. 4548 * 4549 * @device: the rdma device 4550 */ 4551 void rdma_roce_rescan_device(struct ib_device *ibdev); 4552 4553 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile); 4554 4555 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs); 4556 4557 struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num, 4558 enum rdma_netdev_t type, const char *name, 4559 unsigned char name_assign_type, 4560 void (*setup)(struct net_device *)); 4561 4562 int rdma_init_netdev(struct ib_device *device, u8 port_num, 4563 enum rdma_netdev_t type, const char *name, 4564 unsigned char name_assign_type, 4565 void (*setup)(struct net_device *), 4566 struct net_device *netdev); 4567 4568 /** 4569 * rdma_set_device_sysfs_group - Set device attributes group to have 4570 * driver specific sysfs entries at 4571 * for infiniband class. 4572 * 4573 * @device: device pointer for which attributes to be created 4574 * @group: Pointer to group which should be added when device 4575 * is registered with sysfs. 4576 * rdma_set_device_sysfs_group() allows existing drivers to expose one 4577 * group per device to have sysfs attributes. 4578 * 4579 * NOTE: New drivers should not make use of this API; instead new device 4580 * parameter should be exposed via netlink command. This API and mechanism 4581 * exist only for existing drivers. 4582 */ 4583 static inline void 4584 rdma_set_device_sysfs_group(struct ib_device *dev, 4585 const struct attribute_group *group) 4586 { 4587 dev->groups[1] = group; 4588 } 4589 4590 /** 4591 * rdma_device_to_ibdev - Get ib_device pointer from device pointer 4592 * 4593 * @device: device pointer for which ib_device pointer to retrieve 4594 * 4595 * rdma_device_to_ibdev() retrieves ib_device pointer from device. 4596 * 4597 */ 4598 static inline struct ib_device *rdma_device_to_ibdev(struct device *device) 4599 { 4600 struct ib_core_device *coredev = 4601 container_of(device, struct ib_core_device, dev); 4602 4603 return coredev->owner; 4604 } 4605 4606 /** 4607 * ibdev_to_node - return the NUMA node for a given ib_device 4608 * @dev: device to get the NUMA node for. 4609 */ 4610 static inline int ibdev_to_node(struct ib_device *ibdev) 4611 { 4612 struct device *parent = ibdev->dev.parent; 4613 4614 if (!parent) 4615 return NUMA_NO_NODE; 4616 return dev_to_node(parent); 4617 } 4618 4619 /** 4620 * rdma_device_to_drv_device - Helper macro to reach back to driver's 4621 * ib_device holder structure from device pointer. 4622 * 4623 * NOTE: New drivers should not make use of this API; This API is only for 4624 * existing drivers who have exposed sysfs entries using 4625 * rdma_set_device_sysfs_group(). 4626 */ 4627 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \ 4628 container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member) 4629 4630 bool rdma_dev_access_netns(const struct ib_device *device, 4631 const struct net *net); 4632 4633 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000) 4634 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF) 4635 #define IB_GRH_FLOWLABEL_MASK (0x000FFFFF) 4636 4637 /** 4638 * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based 4639 * on the flow_label 4640 * 4641 * This function will convert the 20 bit flow_label input to a valid RoCE v2 4642 * UDP src port 14 bit value. All RoCE V2 drivers should use this same 4643 * convention. 4644 */ 4645 static inline u16 rdma_flow_label_to_udp_sport(u32 fl) 4646 { 4647 u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000; 4648 4649 fl_low ^= fl_high >> 14; 4650 return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN); 4651 } 4652 4653 /** 4654 * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on 4655 * local and remote qpn values 4656 * 4657 * This function folded the multiplication results of two qpns, 24 bit each, 4658 * fields, and converts it to a 20 bit results. 4659 * 4660 * This function will create symmetric flow_label value based on the local 4661 * and remote qpn values. this will allow both the requester and responder 4662 * to calculate the same flow_label for a given connection. 4663 * 4664 * This helper function should be used by driver in case the upper layer 4665 * provide a zero flow_label value. This is to improve entropy of RDMA 4666 * traffic in the network. 4667 */ 4668 static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn) 4669 { 4670 u64 v = (u64)lqpn * rqpn; 4671 4672 v ^= v >> 20; 4673 v ^= v >> 40; 4674 4675 return (u32)(v & IB_GRH_FLOWLABEL_MASK); 4676 } 4677 4678 const struct ib_port_immutable* 4679 ib_port_immutable_read(struct ib_device *dev, unsigned int port); 4680 #endif /* IB_VERBS_H */ 4681