1 /* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */ 2 /* 3 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 4 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 5 * Copyright (c) 2004, 2020 Intel Corporation. All rights reserved. 6 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 7 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 8 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 9 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 10 */ 11 12 #ifndef IB_VERBS_H 13 #define IB_VERBS_H 14 15 #include <linux/ethtool.h> 16 #include <linux/types.h> 17 #include <linux/device.h> 18 #include <linux/dma-mapping.h> 19 #include <linux/kref.h> 20 #include <linux/list.h> 21 #include <linux/rwsem.h> 22 #include <linux/workqueue.h> 23 #include <linux/irq_poll.h> 24 #include <uapi/linux/if_ether.h> 25 #include <net/ipv6.h> 26 #include <net/ip.h> 27 #include <linux/string.h> 28 #include <linux/slab.h> 29 #include <linux/netdevice.h> 30 #include <linux/refcount.h> 31 #include <linux/if_link.h> 32 #include <linux/atomic.h> 33 #include <linux/mmu_notifier.h> 34 #include <linux/uaccess.h> 35 #include <linux/cgroup_rdma.h> 36 #include <linux/irqflags.h> 37 #include <linux/preempt.h> 38 #include <linux/dim.h> 39 #include <uapi/rdma/ib_user_verbs.h> 40 #include <rdma/rdma_counter.h> 41 #include <rdma/restrack.h> 42 #include <rdma/signature.h> 43 #include <uapi/rdma/rdma_user_ioctl.h> 44 #include <uapi/rdma/ib_user_ioctl_verbs.h> 45 46 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN 47 48 struct ib_umem_odp; 49 struct ib_uqp_object; 50 struct ib_usrq_object; 51 struct ib_uwq_object; 52 struct rdma_cm_id; 53 struct ib_port; 54 struct hw_stats_device_data; 55 56 extern struct workqueue_struct *ib_wq; 57 extern struct workqueue_struct *ib_comp_wq; 58 extern struct workqueue_struct *ib_comp_unbound_wq; 59 60 struct ib_ucq_object; 61 62 __printf(3, 4) __cold 63 void ibdev_printk(const char *level, const struct ib_device *ibdev, 64 const char *format, ...); 65 __printf(2, 3) __cold 66 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...); 67 __printf(2, 3) __cold 68 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...); 69 __printf(2, 3) __cold 70 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...); 71 __printf(2, 3) __cold 72 void ibdev_err(const struct ib_device *ibdev, const char *format, ...); 73 __printf(2, 3) __cold 74 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...); 75 __printf(2, 3) __cold 76 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...); 77 __printf(2, 3) __cold 78 void ibdev_info(const struct ib_device *ibdev, const char *format, ...); 79 80 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 81 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 82 #define ibdev_dbg(__dev, format, args...) \ 83 dynamic_ibdev_dbg(__dev, format, ##args) 84 #else 85 __printf(2, 3) __cold 86 static inline 87 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {} 88 #endif 89 90 #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...) \ 91 do { \ 92 static DEFINE_RATELIMIT_STATE(_rs, \ 93 DEFAULT_RATELIMIT_INTERVAL, \ 94 DEFAULT_RATELIMIT_BURST); \ 95 if (__ratelimit(&_rs)) \ 96 ibdev_level(ibdev, fmt, ##__VA_ARGS__); \ 97 } while (0) 98 99 #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \ 100 ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__) 101 #define ibdev_alert_ratelimited(ibdev, fmt, ...) \ 102 ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__) 103 #define ibdev_crit_ratelimited(ibdev, fmt, ...) \ 104 ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__) 105 #define ibdev_err_ratelimited(ibdev, fmt, ...) \ 106 ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__) 107 #define ibdev_warn_ratelimited(ibdev, fmt, ...) \ 108 ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__) 109 #define ibdev_notice_ratelimited(ibdev, fmt, ...) \ 110 ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__) 111 #define ibdev_info_ratelimited(ibdev, fmt, ...) \ 112 ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__) 113 114 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 115 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 116 /* descriptor check is first to prevent flooding with "callbacks suppressed" */ 117 #define ibdev_dbg_ratelimited(ibdev, fmt, ...) \ 118 do { \ 119 static DEFINE_RATELIMIT_STATE(_rs, \ 120 DEFAULT_RATELIMIT_INTERVAL, \ 121 DEFAULT_RATELIMIT_BURST); \ 122 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \ 123 if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs)) \ 124 __dynamic_ibdev_dbg(&descriptor, ibdev, fmt, \ 125 ##__VA_ARGS__); \ 126 } while (0) 127 #else 128 __printf(2, 3) __cold 129 static inline 130 void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {} 131 #endif 132 133 union ib_gid { 134 u8 raw[16]; 135 struct { 136 __be64 subnet_prefix; 137 __be64 interface_id; 138 } global; 139 }; 140 141 extern union ib_gid zgid; 142 143 enum ib_gid_type { 144 IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB, 145 IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1, 146 IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2, 147 IB_GID_TYPE_SIZE 148 }; 149 150 #define ROCE_V2_UDP_DPORT 4791 151 struct ib_gid_attr { 152 struct net_device __rcu *ndev; 153 struct ib_device *device; 154 union ib_gid gid; 155 enum ib_gid_type gid_type; 156 u16 index; 157 u32 port_num; 158 }; 159 160 enum { 161 /* set the local administered indication */ 162 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2, 163 }; 164 165 enum rdma_transport_type { 166 RDMA_TRANSPORT_IB, 167 RDMA_TRANSPORT_IWARP, 168 RDMA_TRANSPORT_USNIC, 169 RDMA_TRANSPORT_USNIC_UDP, 170 RDMA_TRANSPORT_UNSPECIFIED, 171 }; 172 173 enum rdma_protocol_type { 174 RDMA_PROTOCOL_IB, 175 RDMA_PROTOCOL_IBOE, 176 RDMA_PROTOCOL_IWARP, 177 RDMA_PROTOCOL_USNIC_UDP 178 }; 179 180 __attribute_const__ enum rdma_transport_type 181 rdma_node_get_transport(unsigned int node_type); 182 183 enum rdma_network_type { 184 RDMA_NETWORK_IB, 185 RDMA_NETWORK_ROCE_V1, 186 RDMA_NETWORK_IPV4, 187 RDMA_NETWORK_IPV6 188 }; 189 190 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) 191 { 192 if (network_type == RDMA_NETWORK_IPV4 || 193 network_type == RDMA_NETWORK_IPV6) 194 return IB_GID_TYPE_ROCE_UDP_ENCAP; 195 else if (network_type == RDMA_NETWORK_ROCE_V1) 196 return IB_GID_TYPE_ROCE; 197 else 198 return IB_GID_TYPE_IB; 199 } 200 201 static inline enum rdma_network_type 202 rdma_gid_attr_network_type(const struct ib_gid_attr *attr) 203 { 204 if (attr->gid_type == IB_GID_TYPE_IB) 205 return RDMA_NETWORK_IB; 206 207 if (attr->gid_type == IB_GID_TYPE_ROCE) 208 return RDMA_NETWORK_ROCE_V1; 209 210 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid)) 211 return RDMA_NETWORK_IPV4; 212 else 213 return RDMA_NETWORK_IPV6; 214 } 215 216 enum rdma_link_layer { 217 IB_LINK_LAYER_UNSPECIFIED, 218 IB_LINK_LAYER_INFINIBAND, 219 IB_LINK_LAYER_ETHERNET, 220 }; 221 222 enum ib_device_cap_flags { 223 IB_DEVICE_RESIZE_MAX_WR = (1 << 0), 224 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1), 225 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2), 226 IB_DEVICE_RAW_MULTI = (1 << 3), 227 IB_DEVICE_AUTO_PATH_MIG = (1 << 4), 228 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5), 229 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6), 230 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7), 231 IB_DEVICE_SHUTDOWN_PORT = (1 << 8), 232 /* Not in use, former INIT_TYPE = (1 << 9),*/ 233 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10), 234 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11), 235 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12), 236 IB_DEVICE_SRQ_RESIZE = (1 << 13), 237 IB_DEVICE_N_NOTIFY_CQ = (1 << 14), 238 239 /* 240 * This device supports a per-device lkey or stag that can be 241 * used without performing a memory registration for the local 242 * memory. Note that ULPs should never check this flag, but 243 * instead of use the local_dma_lkey flag in the ib_pd structure, 244 * which will always contain a usable lkey. 245 */ 246 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15), 247 /* Reserved, old SEND_W_INV = (1 << 16),*/ 248 IB_DEVICE_MEM_WINDOW = (1 << 17), 249 /* 250 * Devices should set IB_DEVICE_UD_IP_SUM if they support 251 * insertion of UDP and TCP checksum on outgoing UD IPoIB 252 * messages and can verify the validity of checksum for 253 * incoming messages. Setting this flag implies that the 254 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 255 */ 256 IB_DEVICE_UD_IP_CSUM = (1 << 18), 257 IB_DEVICE_UD_TSO = (1 << 19), 258 IB_DEVICE_XRC = (1 << 20), 259 260 /* 261 * This device supports the IB "base memory management extension", 262 * which includes support for fast registrations (IB_WR_REG_MR, 263 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should 264 * also be set by any iWarp device which must support FRs to comply 265 * to the iWarp verbs spec. iWarp devices also support the 266 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the 267 * stag. 268 */ 269 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21), 270 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22), 271 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23), 272 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24), 273 IB_DEVICE_RC_IP_CSUM = (1 << 25), 274 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */ 275 IB_DEVICE_RAW_IP_CSUM = (1 << 26), 276 /* 277 * Devices should set IB_DEVICE_CROSS_CHANNEL if they 278 * support execution of WQEs that involve synchronization 279 * of I/O operations with single completion queue managed 280 * by hardware. 281 */ 282 IB_DEVICE_CROSS_CHANNEL = (1 << 27), 283 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29), 284 IB_DEVICE_INTEGRITY_HANDOVER = (1 << 30), 285 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31), 286 IB_DEVICE_SG_GAPS_REG = (1ULL << 32), 287 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33), 288 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */ 289 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34), 290 IB_DEVICE_RDMA_NETDEV_OPA = (1ULL << 35), 291 /* The device supports padding incoming writes to cacheline. */ 292 IB_DEVICE_PCI_WRITE_END_PADDING = (1ULL << 36), 293 IB_DEVICE_ALLOW_USER_UNREG = (1ULL << 37), 294 }; 295 296 enum ib_atomic_cap { 297 IB_ATOMIC_NONE, 298 IB_ATOMIC_HCA, 299 IB_ATOMIC_GLOB 300 }; 301 302 enum ib_odp_general_cap_bits { 303 IB_ODP_SUPPORT = 1 << 0, 304 IB_ODP_SUPPORT_IMPLICIT = 1 << 1, 305 }; 306 307 enum ib_odp_transport_cap_bits { 308 IB_ODP_SUPPORT_SEND = 1 << 0, 309 IB_ODP_SUPPORT_RECV = 1 << 1, 310 IB_ODP_SUPPORT_WRITE = 1 << 2, 311 IB_ODP_SUPPORT_READ = 1 << 3, 312 IB_ODP_SUPPORT_ATOMIC = 1 << 4, 313 IB_ODP_SUPPORT_SRQ_RECV = 1 << 5, 314 }; 315 316 struct ib_odp_caps { 317 uint64_t general_caps; 318 struct { 319 uint32_t rc_odp_caps; 320 uint32_t uc_odp_caps; 321 uint32_t ud_odp_caps; 322 uint32_t xrc_odp_caps; 323 } per_transport_caps; 324 }; 325 326 struct ib_rss_caps { 327 /* Corresponding bit will be set if qp type from 328 * 'enum ib_qp_type' is supported, e.g. 329 * supported_qpts |= 1 << IB_QPT_UD 330 */ 331 u32 supported_qpts; 332 u32 max_rwq_indirection_tables; 333 u32 max_rwq_indirection_table_size; 334 }; 335 336 enum ib_tm_cap_flags { 337 /* Support tag matching with rendezvous offload for RC transport */ 338 IB_TM_CAP_RNDV_RC = 1 << 0, 339 }; 340 341 struct ib_tm_caps { 342 /* Max size of RNDV header */ 343 u32 max_rndv_hdr_size; 344 /* Max number of entries in tag matching list */ 345 u32 max_num_tags; 346 /* From enum ib_tm_cap_flags */ 347 u32 flags; 348 /* Max number of outstanding list operations */ 349 u32 max_ops; 350 /* Max number of SGE in tag matching entry */ 351 u32 max_sge; 352 }; 353 354 struct ib_cq_init_attr { 355 unsigned int cqe; 356 u32 comp_vector; 357 u32 flags; 358 }; 359 360 enum ib_cq_attr_mask { 361 IB_CQ_MODERATE = 1 << 0, 362 }; 363 364 struct ib_cq_caps { 365 u16 max_cq_moderation_count; 366 u16 max_cq_moderation_period; 367 }; 368 369 struct ib_dm_mr_attr { 370 u64 length; 371 u64 offset; 372 u32 access_flags; 373 }; 374 375 struct ib_dm_alloc_attr { 376 u64 length; 377 u32 alignment; 378 u32 flags; 379 }; 380 381 struct ib_device_attr { 382 u64 fw_ver; 383 __be64 sys_image_guid; 384 u64 max_mr_size; 385 u64 page_size_cap; 386 u32 vendor_id; 387 u32 vendor_part_id; 388 u32 hw_ver; 389 int max_qp; 390 int max_qp_wr; 391 u64 device_cap_flags; 392 int max_send_sge; 393 int max_recv_sge; 394 int max_sge_rd; 395 int max_cq; 396 int max_cqe; 397 int max_mr; 398 int max_pd; 399 int max_qp_rd_atom; 400 int max_ee_rd_atom; 401 int max_res_rd_atom; 402 int max_qp_init_rd_atom; 403 int max_ee_init_rd_atom; 404 enum ib_atomic_cap atomic_cap; 405 enum ib_atomic_cap masked_atomic_cap; 406 int max_ee; 407 int max_rdd; 408 int max_mw; 409 int max_raw_ipv6_qp; 410 int max_raw_ethy_qp; 411 int max_mcast_grp; 412 int max_mcast_qp_attach; 413 int max_total_mcast_qp_attach; 414 int max_ah; 415 int max_srq; 416 int max_srq_wr; 417 int max_srq_sge; 418 unsigned int max_fast_reg_page_list_len; 419 unsigned int max_pi_fast_reg_page_list_len; 420 u16 max_pkeys; 421 u8 local_ca_ack_delay; 422 int sig_prot_cap; 423 int sig_guard_cap; 424 struct ib_odp_caps odp_caps; 425 uint64_t timestamp_mask; 426 uint64_t hca_core_clock; /* in KHZ */ 427 struct ib_rss_caps rss_caps; 428 u32 max_wq_type_rq; 429 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */ 430 struct ib_tm_caps tm_caps; 431 struct ib_cq_caps cq_caps; 432 u64 max_dm_size; 433 /* Max entries for sgl for optimized performance per READ */ 434 u32 max_sgl_rd; 435 }; 436 437 enum ib_mtu { 438 IB_MTU_256 = 1, 439 IB_MTU_512 = 2, 440 IB_MTU_1024 = 3, 441 IB_MTU_2048 = 4, 442 IB_MTU_4096 = 5 443 }; 444 445 enum opa_mtu { 446 OPA_MTU_8192 = 6, 447 OPA_MTU_10240 = 7 448 }; 449 450 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 451 { 452 switch (mtu) { 453 case IB_MTU_256: return 256; 454 case IB_MTU_512: return 512; 455 case IB_MTU_1024: return 1024; 456 case IB_MTU_2048: return 2048; 457 case IB_MTU_4096: return 4096; 458 default: return -1; 459 } 460 } 461 462 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu) 463 { 464 if (mtu >= 4096) 465 return IB_MTU_4096; 466 else if (mtu >= 2048) 467 return IB_MTU_2048; 468 else if (mtu >= 1024) 469 return IB_MTU_1024; 470 else if (mtu >= 512) 471 return IB_MTU_512; 472 else 473 return IB_MTU_256; 474 } 475 476 static inline int opa_mtu_enum_to_int(enum opa_mtu mtu) 477 { 478 switch (mtu) { 479 case OPA_MTU_8192: 480 return 8192; 481 case OPA_MTU_10240: 482 return 10240; 483 default: 484 return(ib_mtu_enum_to_int((enum ib_mtu)mtu)); 485 } 486 } 487 488 static inline enum opa_mtu opa_mtu_int_to_enum(int mtu) 489 { 490 if (mtu >= 10240) 491 return OPA_MTU_10240; 492 else if (mtu >= 8192) 493 return OPA_MTU_8192; 494 else 495 return ((enum opa_mtu)ib_mtu_int_to_enum(mtu)); 496 } 497 498 enum ib_port_state { 499 IB_PORT_NOP = 0, 500 IB_PORT_DOWN = 1, 501 IB_PORT_INIT = 2, 502 IB_PORT_ARMED = 3, 503 IB_PORT_ACTIVE = 4, 504 IB_PORT_ACTIVE_DEFER = 5 505 }; 506 507 enum ib_port_phys_state { 508 IB_PORT_PHYS_STATE_SLEEP = 1, 509 IB_PORT_PHYS_STATE_POLLING = 2, 510 IB_PORT_PHYS_STATE_DISABLED = 3, 511 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4, 512 IB_PORT_PHYS_STATE_LINK_UP = 5, 513 IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6, 514 IB_PORT_PHYS_STATE_PHY_TEST = 7, 515 }; 516 517 enum ib_port_width { 518 IB_WIDTH_1X = 1, 519 IB_WIDTH_2X = 16, 520 IB_WIDTH_4X = 2, 521 IB_WIDTH_8X = 4, 522 IB_WIDTH_12X = 8 523 }; 524 525 static inline int ib_width_enum_to_int(enum ib_port_width width) 526 { 527 switch (width) { 528 case IB_WIDTH_1X: return 1; 529 case IB_WIDTH_2X: return 2; 530 case IB_WIDTH_4X: return 4; 531 case IB_WIDTH_8X: return 8; 532 case IB_WIDTH_12X: return 12; 533 default: return -1; 534 } 535 } 536 537 enum ib_port_speed { 538 IB_SPEED_SDR = 1, 539 IB_SPEED_DDR = 2, 540 IB_SPEED_QDR = 4, 541 IB_SPEED_FDR10 = 8, 542 IB_SPEED_FDR = 16, 543 IB_SPEED_EDR = 32, 544 IB_SPEED_HDR = 64, 545 IB_SPEED_NDR = 128, 546 }; 547 548 enum ib_stat_flag { 549 IB_STAT_FLAG_OPTIONAL = 1 << 0, 550 }; 551 552 /** 553 * struct rdma_stat_desc 554 * @name - The name of the counter 555 * @flags - Flags of the counter; For example, IB_STAT_FLAG_OPTIONAL 556 * @priv - Driver private information; Core code should not use 557 */ 558 struct rdma_stat_desc { 559 const char *name; 560 unsigned int flags; 561 const void *priv; 562 }; 563 564 /** 565 * struct rdma_hw_stats 566 * @lock - Mutex to protect parallel write access to lifespan and values 567 * of counters, which are 64bits and not guaranteeed to be written 568 * atomicaly on 32bits systems. 569 * @timestamp - Used by the core code to track when the last update was 570 * @lifespan - Used by the core code to determine how old the counters 571 * should be before being updated again. Stored in jiffies, defaults 572 * to 10 milliseconds, drivers can override the default be specifying 573 * their own value during their allocation routine. 574 * @descs - Array of pointers to static descriptors used for the counters 575 * in directory. 576 * @is_disabled - A bitmap to indicate each counter is currently disabled 577 * or not. 578 * @num_counters - How many hardware counters there are. If name is 579 * shorter than this number, a kernel oops will result. Driver authors 580 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters) 581 * in their code to prevent this. 582 * @value - Array of u64 counters that are accessed by the sysfs code and 583 * filled in by the drivers get_stats routine 584 */ 585 struct rdma_hw_stats { 586 struct mutex lock; /* Protect lifespan and values[] */ 587 unsigned long timestamp; 588 unsigned long lifespan; 589 const struct rdma_stat_desc *descs; 590 unsigned long *is_disabled; 591 int num_counters; 592 u64 value[]; 593 }; 594 595 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10 596 597 struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 598 const struct rdma_stat_desc *descs, int num_counters, 599 unsigned long lifespan); 600 601 void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats); 602 603 /* Define bits for the various functionality this port needs to be supported by 604 * the core. 605 */ 606 /* Management 0x00000FFF */ 607 #define RDMA_CORE_CAP_IB_MAD 0x00000001 608 #define RDMA_CORE_CAP_IB_SMI 0x00000002 609 #define RDMA_CORE_CAP_IB_CM 0x00000004 610 #define RDMA_CORE_CAP_IW_CM 0x00000008 611 #define RDMA_CORE_CAP_IB_SA 0x00000010 612 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 613 614 /* Address format 0x000FF000 */ 615 #define RDMA_CORE_CAP_AF_IB 0x00001000 616 #define RDMA_CORE_CAP_ETH_AH 0x00002000 617 #define RDMA_CORE_CAP_OPA_AH 0x00004000 618 #define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000 619 620 /* Protocol 0xFFF00000 */ 621 #define RDMA_CORE_CAP_PROT_IB 0x00100000 622 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 623 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 624 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 625 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000 626 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000 627 628 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \ 629 | RDMA_CORE_CAP_PROT_ROCE \ 630 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP) 631 632 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 633 | RDMA_CORE_CAP_IB_MAD \ 634 | RDMA_CORE_CAP_IB_SMI \ 635 | RDMA_CORE_CAP_IB_CM \ 636 | RDMA_CORE_CAP_IB_SA \ 637 | RDMA_CORE_CAP_AF_IB) 638 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 639 | RDMA_CORE_CAP_IB_MAD \ 640 | RDMA_CORE_CAP_IB_CM \ 641 | RDMA_CORE_CAP_AF_IB \ 642 | RDMA_CORE_CAP_ETH_AH) 643 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ 644 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ 645 | RDMA_CORE_CAP_IB_MAD \ 646 | RDMA_CORE_CAP_IB_CM \ 647 | RDMA_CORE_CAP_AF_IB \ 648 | RDMA_CORE_CAP_ETH_AH) 649 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 650 | RDMA_CORE_CAP_IW_CM) 651 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 652 | RDMA_CORE_CAP_OPA_MAD) 653 654 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET) 655 656 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC) 657 658 struct ib_port_attr { 659 u64 subnet_prefix; 660 enum ib_port_state state; 661 enum ib_mtu max_mtu; 662 enum ib_mtu active_mtu; 663 u32 phys_mtu; 664 int gid_tbl_len; 665 unsigned int ip_gids:1; 666 /* This is the value from PortInfo CapabilityMask, defined by IBA */ 667 u32 port_cap_flags; 668 u32 max_msg_sz; 669 u32 bad_pkey_cntr; 670 u32 qkey_viol_cntr; 671 u16 pkey_tbl_len; 672 u32 sm_lid; 673 u32 lid; 674 u8 lmc; 675 u8 max_vl_num; 676 u8 sm_sl; 677 u8 subnet_timeout; 678 u8 init_type_reply; 679 u8 active_width; 680 u16 active_speed; 681 u8 phys_state; 682 u16 port_cap_flags2; 683 }; 684 685 enum ib_device_modify_flags { 686 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 687 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 688 }; 689 690 #define IB_DEVICE_NODE_DESC_MAX 64 691 692 struct ib_device_modify { 693 u64 sys_image_guid; 694 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 695 }; 696 697 enum ib_port_modify_flags { 698 IB_PORT_SHUTDOWN = 1, 699 IB_PORT_INIT_TYPE = (1<<2), 700 IB_PORT_RESET_QKEY_CNTR = (1<<3), 701 IB_PORT_OPA_MASK_CHG = (1<<4) 702 }; 703 704 struct ib_port_modify { 705 u32 set_port_cap_mask; 706 u32 clr_port_cap_mask; 707 u8 init_type; 708 }; 709 710 enum ib_event_type { 711 IB_EVENT_CQ_ERR, 712 IB_EVENT_QP_FATAL, 713 IB_EVENT_QP_REQ_ERR, 714 IB_EVENT_QP_ACCESS_ERR, 715 IB_EVENT_COMM_EST, 716 IB_EVENT_SQ_DRAINED, 717 IB_EVENT_PATH_MIG, 718 IB_EVENT_PATH_MIG_ERR, 719 IB_EVENT_DEVICE_FATAL, 720 IB_EVENT_PORT_ACTIVE, 721 IB_EVENT_PORT_ERR, 722 IB_EVENT_LID_CHANGE, 723 IB_EVENT_PKEY_CHANGE, 724 IB_EVENT_SM_CHANGE, 725 IB_EVENT_SRQ_ERR, 726 IB_EVENT_SRQ_LIMIT_REACHED, 727 IB_EVENT_QP_LAST_WQE_REACHED, 728 IB_EVENT_CLIENT_REREGISTER, 729 IB_EVENT_GID_CHANGE, 730 IB_EVENT_WQ_FATAL, 731 }; 732 733 const char *__attribute_const__ ib_event_msg(enum ib_event_type event); 734 735 struct ib_event { 736 struct ib_device *device; 737 union { 738 struct ib_cq *cq; 739 struct ib_qp *qp; 740 struct ib_srq *srq; 741 struct ib_wq *wq; 742 u32 port_num; 743 } element; 744 enum ib_event_type event; 745 }; 746 747 struct ib_event_handler { 748 struct ib_device *device; 749 void (*handler)(struct ib_event_handler *, struct ib_event *); 750 struct list_head list; 751 }; 752 753 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 754 do { \ 755 (_ptr)->device = _device; \ 756 (_ptr)->handler = _handler; \ 757 INIT_LIST_HEAD(&(_ptr)->list); \ 758 } while (0) 759 760 struct ib_global_route { 761 const struct ib_gid_attr *sgid_attr; 762 union ib_gid dgid; 763 u32 flow_label; 764 u8 sgid_index; 765 u8 hop_limit; 766 u8 traffic_class; 767 }; 768 769 struct ib_grh { 770 __be32 version_tclass_flow; 771 __be16 paylen; 772 u8 next_hdr; 773 u8 hop_limit; 774 union ib_gid sgid; 775 union ib_gid dgid; 776 }; 777 778 union rdma_network_hdr { 779 struct ib_grh ibgrh; 780 struct { 781 /* The IB spec states that if it's IPv4, the header 782 * is located in the last 20 bytes of the header. 783 */ 784 u8 reserved[20]; 785 struct iphdr roce4grh; 786 }; 787 }; 788 789 #define IB_QPN_MASK 0xFFFFFF 790 791 enum { 792 IB_MULTICAST_QPN = 0xffffff 793 }; 794 795 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 796 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000) 797 798 enum ib_ah_flags { 799 IB_AH_GRH = 1 800 }; 801 802 enum ib_rate { 803 IB_RATE_PORT_CURRENT = 0, 804 IB_RATE_2_5_GBPS = 2, 805 IB_RATE_5_GBPS = 5, 806 IB_RATE_10_GBPS = 3, 807 IB_RATE_20_GBPS = 6, 808 IB_RATE_30_GBPS = 4, 809 IB_RATE_40_GBPS = 7, 810 IB_RATE_60_GBPS = 8, 811 IB_RATE_80_GBPS = 9, 812 IB_RATE_120_GBPS = 10, 813 IB_RATE_14_GBPS = 11, 814 IB_RATE_56_GBPS = 12, 815 IB_RATE_112_GBPS = 13, 816 IB_RATE_168_GBPS = 14, 817 IB_RATE_25_GBPS = 15, 818 IB_RATE_100_GBPS = 16, 819 IB_RATE_200_GBPS = 17, 820 IB_RATE_300_GBPS = 18, 821 IB_RATE_28_GBPS = 19, 822 IB_RATE_50_GBPS = 20, 823 IB_RATE_400_GBPS = 21, 824 IB_RATE_600_GBPS = 22, 825 }; 826 827 /** 828 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 829 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 830 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 831 * @rate: rate to convert. 832 */ 833 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 834 835 /** 836 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 837 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 838 * @rate: rate to convert. 839 */ 840 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 841 842 843 /** 844 * enum ib_mr_type - memory region type 845 * @IB_MR_TYPE_MEM_REG: memory region that is used for 846 * normal registration 847 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to 848 * register any arbitrary sg lists (without 849 * the normal mr constraints - see 850 * ib_map_mr_sg) 851 * @IB_MR_TYPE_DM: memory region that is used for device 852 * memory registration 853 * @IB_MR_TYPE_USER: memory region that is used for the user-space 854 * application 855 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations 856 * without address translations (VA=PA) 857 * @IB_MR_TYPE_INTEGRITY: memory region that is used for 858 * data integrity operations 859 */ 860 enum ib_mr_type { 861 IB_MR_TYPE_MEM_REG, 862 IB_MR_TYPE_SG_GAPS, 863 IB_MR_TYPE_DM, 864 IB_MR_TYPE_USER, 865 IB_MR_TYPE_DMA, 866 IB_MR_TYPE_INTEGRITY, 867 }; 868 869 enum ib_mr_status_check { 870 IB_MR_CHECK_SIG_STATUS = 1, 871 }; 872 873 /** 874 * struct ib_mr_status - Memory region status container 875 * 876 * @fail_status: Bitmask of MR checks status. For each 877 * failed check a corresponding status bit is set. 878 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 879 * failure. 880 */ 881 struct ib_mr_status { 882 u32 fail_status; 883 struct ib_sig_err sig_err; 884 }; 885 886 /** 887 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 888 * enum. 889 * @mult: multiple to convert. 890 */ 891 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 892 893 struct rdma_ah_init_attr { 894 struct rdma_ah_attr *ah_attr; 895 u32 flags; 896 struct net_device *xmit_slave; 897 }; 898 899 enum rdma_ah_attr_type { 900 RDMA_AH_ATTR_TYPE_UNDEFINED, 901 RDMA_AH_ATTR_TYPE_IB, 902 RDMA_AH_ATTR_TYPE_ROCE, 903 RDMA_AH_ATTR_TYPE_OPA, 904 }; 905 906 struct ib_ah_attr { 907 u16 dlid; 908 u8 src_path_bits; 909 }; 910 911 struct roce_ah_attr { 912 u8 dmac[ETH_ALEN]; 913 }; 914 915 struct opa_ah_attr { 916 u32 dlid; 917 u8 src_path_bits; 918 bool make_grd; 919 }; 920 921 struct rdma_ah_attr { 922 struct ib_global_route grh; 923 u8 sl; 924 u8 static_rate; 925 u32 port_num; 926 u8 ah_flags; 927 enum rdma_ah_attr_type type; 928 union { 929 struct ib_ah_attr ib; 930 struct roce_ah_attr roce; 931 struct opa_ah_attr opa; 932 }; 933 }; 934 935 enum ib_wc_status { 936 IB_WC_SUCCESS, 937 IB_WC_LOC_LEN_ERR, 938 IB_WC_LOC_QP_OP_ERR, 939 IB_WC_LOC_EEC_OP_ERR, 940 IB_WC_LOC_PROT_ERR, 941 IB_WC_WR_FLUSH_ERR, 942 IB_WC_MW_BIND_ERR, 943 IB_WC_BAD_RESP_ERR, 944 IB_WC_LOC_ACCESS_ERR, 945 IB_WC_REM_INV_REQ_ERR, 946 IB_WC_REM_ACCESS_ERR, 947 IB_WC_REM_OP_ERR, 948 IB_WC_RETRY_EXC_ERR, 949 IB_WC_RNR_RETRY_EXC_ERR, 950 IB_WC_LOC_RDD_VIOL_ERR, 951 IB_WC_REM_INV_RD_REQ_ERR, 952 IB_WC_REM_ABORT_ERR, 953 IB_WC_INV_EECN_ERR, 954 IB_WC_INV_EEC_STATE_ERR, 955 IB_WC_FATAL_ERR, 956 IB_WC_RESP_TIMEOUT_ERR, 957 IB_WC_GENERAL_ERR 958 }; 959 960 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); 961 962 enum ib_wc_opcode { 963 IB_WC_SEND = IB_UVERBS_WC_SEND, 964 IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE, 965 IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ, 966 IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP, 967 IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD, 968 IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW, 969 IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV, 970 IB_WC_LSO = IB_UVERBS_WC_TSO, 971 IB_WC_REG_MR, 972 IB_WC_MASKED_COMP_SWAP, 973 IB_WC_MASKED_FETCH_ADD, 974 /* 975 * Set value of IB_WC_RECV so consumers can test if a completion is a 976 * receive by testing (opcode & IB_WC_RECV). 977 */ 978 IB_WC_RECV = 1 << 7, 979 IB_WC_RECV_RDMA_WITH_IMM 980 }; 981 982 enum ib_wc_flags { 983 IB_WC_GRH = 1, 984 IB_WC_WITH_IMM = (1<<1), 985 IB_WC_WITH_INVALIDATE = (1<<2), 986 IB_WC_IP_CSUM_OK = (1<<3), 987 IB_WC_WITH_SMAC = (1<<4), 988 IB_WC_WITH_VLAN = (1<<5), 989 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), 990 }; 991 992 struct ib_wc { 993 union { 994 u64 wr_id; 995 struct ib_cqe *wr_cqe; 996 }; 997 enum ib_wc_status status; 998 enum ib_wc_opcode opcode; 999 u32 vendor_err; 1000 u32 byte_len; 1001 struct ib_qp *qp; 1002 union { 1003 __be32 imm_data; 1004 u32 invalidate_rkey; 1005 } ex; 1006 u32 src_qp; 1007 u32 slid; 1008 int wc_flags; 1009 u16 pkey_index; 1010 u8 sl; 1011 u8 dlid_path_bits; 1012 u32 port_num; /* valid only for DR SMPs on switches */ 1013 u8 smac[ETH_ALEN]; 1014 u16 vlan_id; 1015 u8 network_hdr_type; 1016 }; 1017 1018 enum ib_cq_notify_flags { 1019 IB_CQ_SOLICITED = 1 << 0, 1020 IB_CQ_NEXT_COMP = 1 << 1, 1021 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 1022 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 1023 }; 1024 1025 enum ib_srq_type { 1026 IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC, 1027 IB_SRQT_XRC = IB_UVERBS_SRQT_XRC, 1028 IB_SRQT_TM = IB_UVERBS_SRQT_TM, 1029 }; 1030 1031 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type) 1032 { 1033 return srq_type == IB_SRQT_XRC || 1034 srq_type == IB_SRQT_TM; 1035 } 1036 1037 enum ib_srq_attr_mask { 1038 IB_SRQ_MAX_WR = 1 << 0, 1039 IB_SRQ_LIMIT = 1 << 1, 1040 }; 1041 1042 struct ib_srq_attr { 1043 u32 max_wr; 1044 u32 max_sge; 1045 u32 srq_limit; 1046 }; 1047 1048 struct ib_srq_init_attr { 1049 void (*event_handler)(struct ib_event *, void *); 1050 void *srq_context; 1051 struct ib_srq_attr attr; 1052 enum ib_srq_type srq_type; 1053 1054 struct { 1055 struct ib_cq *cq; 1056 union { 1057 struct { 1058 struct ib_xrcd *xrcd; 1059 } xrc; 1060 1061 struct { 1062 u32 max_num_tags; 1063 } tag_matching; 1064 }; 1065 } ext; 1066 }; 1067 1068 struct ib_qp_cap { 1069 u32 max_send_wr; 1070 u32 max_recv_wr; 1071 u32 max_send_sge; 1072 u32 max_recv_sge; 1073 u32 max_inline_data; 1074 1075 /* 1076 * Maximum number of rdma_rw_ctx structures in flight at a time. 1077 * ib_create_qp() will calculate the right amount of neededed WRs 1078 * and MRs based on this. 1079 */ 1080 u32 max_rdma_ctxs; 1081 }; 1082 1083 enum ib_sig_type { 1084 IB_SIGNAL_ALL_WR, 1085 IB_SIGNAL_REQ_WR 1086 }; 1087 1088 enum ib_qp_type { 1089 /* 1090 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 1091 * here (and in that order) since the MAD layer uses them as 1092 * indices into a 2-entry table. 1093 */ 1094 IB_QPT_SMI, 1095 IB_QPT_GSI, 1096 1097 IB_QPT_RC = IB_UVERBS_QPT_RC, 1098 IB_QPT_UC = IB_UVERBS_QPT_UC, 1099 IB_QPT_UD = IB_UVERBS_QPT_UD, 1100 IB_QPT_RAW_IPV6, 1101 IB_QPT_RAW_ETHERTYPE, 1102 IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET, 1103 IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI, 1104 IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT, 1105 IB_QPT_MAX, 1106 IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER, 1107 /* Reserve a range for qp types internal to the low level driver. 1108 * These qp types will not be visible at the IB core layer, so the 1109 * IB_QPT_MAX usages should not be affected in the core layer 1110 */ 1111 IB_QPT_RESERVED1 = 0x1000, 1112 IB_QPT_RESERVED2, 1113 IB_QPT_RESERVED3, 1114 IB_QPT_RESERVED4, 1115 IB_QPT_RESERVED5, 1116 IB_QPT_RESERVED6, 1117 IB_QPT_RESERVED7, 1118 IB_QPT_RESERVED8, 1119 IB_QPT_RESERVED9, 1120 IB_QPT_RESERVED10, 1121 }; 1122 1123 enum ib_qp_create_flags { 1124 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 1125 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1126 IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK, 1127 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 1128 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 1129 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 1130 IB_QP_CREATE_NETIF_QP = 1 << 5, 1131 IB_QP_CREATE_INTEGRITY_EN = 1 << 6, 1132 IB_QP_CREATE_NETDEV_USE = 1 << 7, 1133 IB_QP_CREATE_SCATTER_FCS = 1134 IB_UVERBS_QP_CREATE_SCATTER_FCS, 1135 IB_QP_CREATE_CVLAN_STRIPPING = 1136 IB_UVERBS_QP_CREATE_CVLAN_STRIPPING, 1137 IB_QP_CREATE_SOURCE_QPN = 1 << 10, 1138 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1139 IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING, 1140 /* reserve bits 26-31 for low level drivers' internal use */ 1141 IB_QP_CREATE_RESERVED_START = 1 << 26, 1142 IB_QP_CREATE_RESERVED_END = 1 << 31, 1143 }; 1144 1145 /* 1146 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 1147 * callback to destroy the passed in QP. 1148 */ 1149 1150 struct ib_qp_init_attr { 1151 /* Consumer's event_handler callback must not block */ 1152 void (*event_handler)(struct ib_event *, void *); 1153 1154 void *qp_context; 1155 struct ib_cq *send_cq; 1156 struct ib_cq *recv_cq; 1157 struct ib_srq *srq; 1158 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1159 struct ib_qp_cap cap; 1160 enum ib_sig_type sq_sig_type; 1161 enum ib_qp_type qp_type; 1162 u32 create_flags; 1163 1164 /* 1165 * Only needed for special QP types, or when using the RW API. 1166 */ 1167 u32 port_num; 1168 struct ib_rwq_ind_table *rwq_ind_tbl; 1169 u32 source_qpn; 1170 }; 1171 1172 struct ib_qp_open_attr { 1173 void (*event_handler)(struct ib_event *, void *); 1174 void *qp_context; 1175 u32 qp_num; 1176 enum ib_qp_type qp_type; 1177 }; 1178 1179 enum ib_rnr_timeout { 1180 IB_RNR_TIMER_655_36 = 0, 1181 IB_RNR_TIMER_000_01 = 1, 1182 IB_RNR_TIMER_000_02 = 2, 1183 IB_RNR_TIMER_000_03 = 3, 1184 IB_RNR_TIMER_000_04 = 4, 1185 IB_RNR_TIMER_000_06 = 5, 1186 IB_RNR_TIMER_000_08 = 6, 1187 IB_RNR_TIMER_000_12 = 7, 1188 IB_RNR_TIMER_000_16 = 8, 1189 IB_RNR_TIMER_000_24 = 9, 1190 IB_RNR_TIMER_000_32 = 10, 1191 IB_RNR_TIMER_000_48 = 11, 1192 IB_RNR_TIMER_000_64 = 12, 1193 IB_RNR_TIMER_000_96 = 13, 1194 IB_RNR_TIMER_001_28 = 14, 1195 IB_RNR_TIMER_001_92 = 15, 1196 IB_RNR_TIMER_002_56 = 16, 1197 IB_RNR_TIMER_003_84 = 17, 1198 IB_RNR_TIMER_005_12 = 18, 1199 IB_RNR_TIMER_007_68 = 19, 1200 IB_RNR_TIMER_010_24 = 20, 1201 IB_RNR_TIMER_015_36 = 21, 1202 IB_RNR_TIMER_020_48 = 22, 1203 IB_RNR_TIMER_030_72 = 23, 1204 IB_RNR_TIMER_040_96 = 24, 1205 IB_RNR_TIMER_061_44 = 25, 1206 IB_RNR_TIMER_081_92 = 26, 1207 IB_RNR_TIMER_122_88 = 27, 1208 IB_RNR_TIMER_163_84 = 28, 1209 IB_RNR_TIMER_245_76 = 29, 1210 IB_RNR_TIMER_327_68 = 30, 1211 IB_RNR_TIMER_491_52 = 31 1212 }; 1213 1214 enum ib_qp_attr_mask { 1215 IB_QP_STATE = 1, 1216 IB_QP_CUR_STATE = (1<<1), 1217 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 1218 IB_QP_ACCESS_FLAGS = (1<<3), 1219 IB_QP_PKEY_INDEX = (1<<4), 1220 IB_QP_PORT = (1<<5), 1221 IB_QP_QKEY = (1<<6), 1222 IB_QP_AV = (1<<7), 1223 IB_QP_PATH_MTU = (1<<8), 1224 IB_QP_TIMEOUT = (1<<9), 1225 IB_QP_RETRY_CNT = (1<<10), 1226 IB_QP_RNR_RETRY = (1<<11), 1227 IB_QP_RQ_PSN = (1<<12), 1228 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 1229 IB_QP_ALT_PATH = (1<<14), 1230 IB_QP_MIN_RNR_TIMER = (1<<15), 1231 IB_QP_SQ_PSN = (1<<16), 1232 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 1233 IB_QP_PATH_MIG_STATE = (1<<18), 1234 IB_QP_CAP = (1<<19), 1235 IB_QP_DEST_QPN = (1<<20), 1236 IB_QP_RESERVED1 = (1<<21), 1237 IB_QP_RESERVED2 = (1<<22), 1238 IB_QP_RESERVED3 = (1<<23), 1239 IB_QP_RESERVED4 = (1<<24), 1240 IB_QP_RATE_LIMIT = (1<<25), 1241 1242 IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0), 1243 }; 1244 1245 enum ib_qp_state { 1246 IB_QPS_RESET, 1247 IB_QPS_INIT, 1248 IB_QPS_RTR, 1249 IB_QPS_RTS, 1250 IB_QPS_SQD, 1251 IB_QPS_SQE, 1252 IB_QPS_ERR 1253 }; 1254 1255 enum ib_mig_state { 1256 IB_MIG_MIGRATED, 1257 IB_MIG_REARM, 1258 IB_MIG_ARMED 1259 }; 1260 1261 enum ib_mw_type { 1262 IB_MW_TYPE_1 = 1, 1263 IB_MW_TYPE_2 = 2 1264 }; 1265 1266 struct ib_qp_attr { 1267 enum ib_qp_state qp_state; 1268 enum ib_qp_state cur_qp_state; 1269 enum ib_mtu path_mtu; 1270 enum ib_mig_state path_mig_state; 1271 u32 qkey; 1272 u32 rq_psn; 1273 u32 sq_psn; 1274 u32 dest_qp_num; 1275 int qp_access_flags; 1276 struct ib_qp_cap cap; 1277 struct rdma_ah_attr ah_attr; 1278 struct rdma_ah_attr alt_ah_attr; 1279 u16 pkey_index; 1280 u16 alt_pkey_index; 1281 u8 en_sqd_async_notify; 1282 u8 sq_draining; 1283 u8 max_rd_atomic; 1284 u8 max_dest_rd_atomic; 1285 u8 min_rnr_timer; 1286 u32 port_num; 1287 u8 timeout; 1288 u8 retry_cnt; 1289 u8 rnr_retry; 1290 u32 alt_port_num; 1291 u8 alt_timeout; 1292 u32 rate_limit; 1293 struct net_device *xmit_slave; 1294 }; 1295 1296 enum ib_wr_opcode { 1297 /* These are shared with userspace */ 1298 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE, 1299 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM, 1300 IB_WR_SEND = IB_UVERBS_WR_SEND, 1301 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM, 1302 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ, 1303 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP, 1304 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD, 1305 IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW, 1306 IB_WR_LSO = IB_UVERBS_WR_TSO, 1307 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV, 1308 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV, 1309 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV, 1310 IB_WR_MASKED_ATOMIC_CMP_AND_SWP = 1311 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP, 1312 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD = 1313 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1314 1315 /* These are kernel only and can not be issued by userspace */ 1316 IB_WR_REG_MR = 0x20, 1317 IB_WR_REG_MR_INTEGRITY, 1318 1319 /* reserve values for low level drivers' internal use. 1320 * These values will not be used at all in the ib core layer. 1321 */ 1322 IB_WR_RESERVED1 = 0xf0, 1323 IB_WR_RESERVED2, 1324 IB_WR_RESERVED3, 1325 IB_WR_RESERVED4, 1326 IB_WR_RESERVED5, 1327 IB_WR_RESERVED6, 1328 IB_WR_RESERVED7, 1329 IB_WR_RESERVED8, 1330 IB_WR_RESERVED9, 1331 IB_WR_RESERVED10, 1332 }; 1333 1334 enum ib_send_flags { 1335 IB_SEND_FENCE = 1, 1336 IB_SEND_SIGNALED = (1<<1), 1337 IB_SEND_SOLICITED = (1<<2), 1338 IB_SEND_INLINE = (1<<3), 1339 IB_SEND_IP_CSUM = (1<<4), 1340 1341 /* reserve bits 26-31 for low level drivers' internal use */ 1342 IB_SEND_RESERVED_START = (1 << 26), 1343 IB_SEND_RESERVED_END = (1 << 31), 1344 }; 1345 1346 struct ib_sge { 1347 u64 addr; 1348 u32 length; 1349 u32 lkey; 1350 }; 1351 1352 struct ib_cqe { 1353 void (*done)(struct ib_cq *cq, struct ib_wc *wc); 1354 }; 1355 1356 struct ib_send_wr { 1357 struct ib_send_wr *next; 1358 union { 1359 u64 wr_id; 1360 struct ib_cqe *wr_cqe; 1361 }; 1362 struct ib_sge *sg_list; 1363 int num_sge; 1364 enum ib_wr_opcode opcode; 1365 int send_flags; 1366 union { 1367 __be32 imm_data; 1368 u32 invalidate_rkey; 1369 } ex; 1370 }; 1371 1372 struct ib_rdma_wr { 1373 struct ib_send_wr wr; 1374 u64 remote_addr; 1375 u32 rkey; 1376 }; 1377 1378 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr) 1379 { 1380 return container_of(wr, struct ib_rdma_wr, wr); 1381 } 1382 1383 struct ib_atomic_wr { 1384 struct ib_send_wr wr; 1385 u64 remote_addr; 1386 u64 compare_add; 1387 u64 swap; 1388 u64 compare_add_mask; 1389 u64 swap_mask; 1390 u32 rkey; 1391 }; 1392 1393 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr) 1394 { 1395 return container_of(wr, struct ib_atomic_wr, wr); 1396 } 1397 1398 struct ib_ud_wr { 1399 struct ib_send_wr wr; 1400 struct ib_ah *ah; 1401 void *header; 1402 int hlen; 1403 int mss; 1404 u32 remote_qpn; 1405 u32 remote_qkey; 1406 u16 pkey_index; /* valid for GSI only */ 1407 u32 port_num; /* valid for DR SMPs on switch only */ 1408 }; 1409 1410 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr) 1411 { 1412 return container_of(wr, struct ib_ud_wr, wr); 1413 } 1414 1415 struct ib_reg_wr { 1416 struct ib_send_wr wr; 1417 struct ib_mr *mr; 1418 u32 key; 1419 int access; 1420 }; 1421 1422 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr) 1423 { 1424 return container_of(wr, struct ib_reg_wr, wr); 1425 } 1426 1427 struct ib_recv_wr { 1428 struct ib_recv_wr *next; 1429 union { 1430 u64 wr_id; 1431 struct ib_cqe *wr_cqe; 1432 }; 1433 struct ib_sge *sg_list; 1434 int num_sge; 1435 }; 1436 1437 enum ib_access_flags { 1438 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE, 1439 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE, 1440 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ, 1441 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC, 1442 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND, 1443 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED, 1444 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND, 1445 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB, 1446 IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING, 1447 1448 IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE, 1449 IB_ACCESS_SUPPORTED = 1450 ((IB_ACCESS_HUGETLB << 1) - 1) | IB_ACCESS_OPTIONAL, 1451 }; 1452 1453 /* 1454 * XXX: these are apparently used for ->rereg_user_mr, no idea why they 1455 * are hidden here instead of a uapi header! 1456 */ 1457 enum ib_mr_rereg_flags { 1458 IB_MR_REREG_TRANS = 1, 1459 IB_MR_REREG_PD = (1<<1), 1460 IB_MR_REREG_ACCESS = (1<<2), 1461 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1462 }; 1463 1464 struct ib_umem; 1465 1466 enum rdma_remove_reason { 1467 /* 1468 * Userspace requested uobject deletion or initial try 1469 * to remove uobject via cleanup. Call could fail 1470 */ 1471 RDMA_REMOVE_DESTROY, 1472 /* Context deletion. This call should delete the actual object itself */ 1473 RDMA_REMOVE_CLOSE, 1474 /* Driver is being hot-unplugged. This call should delete the actual object itself */ 1475 RDMA_REMOVE_DRIVER_REMOVE, 1476 /* uobj is being cleaned-up before being committed */ 1477 RDMA_REMOVE_ABORT, 1478 /* The driver failed to destroy the uobject and is being disconnected */ 1479 RDMA_REMOVE_DRIVER_FAILURE, 1480 }; 1481 1482 struct ib_rdmacg_object { 1483 #ifdef CONFIG_CGROUP_RDMA 1484 struct rdma_cgroup *cg; /* owner rdma cgroup */ 1485 #endif 1486 }; 1487 1488 struct ib_ucontext { 1489 struct ib_device *device; 1490 struct ib_uverbs_file *ufile; 1491 1492 struct ib_rdmacg_object cg_obj; 1493 /* 1494 * Implementation details of the RDMA core, don't use in drivers: 1495 */ 1496 struct rdma_restrack_entry res; 1497 struct xarray mmap_xa; 1498 }; 1499 1500 struct ib_uobject { 1501 u64 user_handle; /* handle given to us by userspace */ 1502 /* ufile & ucontext owning this object */ 1503 struct ib_uverbs_file *ufile; 1504 /* FIXME, save memory: ufile->context == context */ 1505 struct ib_ucontext *context; /* associated user context */ 1506 void *object; /* containing object */ 1507 struct list_head list; /* link to context's list */ 1508 struct ib_rdmacg_object cg_obj; /* rdmacg object */ 1509 int id; /* index into kernel idr */ 1510 struct kref ref; 1511 atomic_t usecnt; /* protects exclusive access */ 1512 struct rcu_head rcu; /* kfree_rcu() overhead */ 1513 1514 const struct uverbs_api_object *uapi_object; 1515 }; 1516 1517 struct ib_udata { 1518 const void __user *inbuf; 1519 void __user *outbuf; 1520 size_t inlen; 1521 size_t outlen; 1522 }; 1523 1524 struct ib_pd { 1525 u32 local_dma_lkey; 1526 u32 flags; 1527 struct ib_device *device; 1528 struct ib_uobject *uobject; 1529 atomic_t usecnt; /* count all resources */ 1530 1531 u32 unsafe_global_rkey; 1532 1533 /* 1534 * Implementation details of the RDMA core, don't use in drivers: 1535 */ 1536 struct ib_mr *__internal_mr; 1537 struct rdma_restrack_entry res; 1538 }; 1539 1540 struct ib_xrcd { 1541 struct ib_device *device; 1542 atomic_t usecnt; /* count all exposed resources */ 1543 struct inode *inode; 1544 struct rw_semaphore tgt_qps_rwsem; 1545 struct xarray tgt_qps; 1546 }; 1547 1548 struct ib_ah { 1549 struct ib_device *device; 1550 struct ib_pd *pd; 1551 struct ib_uobject *uobject; 1552 const struct ib_gid_attr *sgid_attr; 1553 enum rdma_ah_attr_type type; 1554 }; 1555 1556 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1557 1558 enum ib_poll_context { 1559 IB_POLL_SOFTIRQ, /* poll from softirq context */ 1560 IB_POLL_WORKQUEUE, /* poll from workqueue */ 1561 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */ 1562 IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE, 1563 1564 IB_POLL_DIRECT, /* caller context, no hw completions */ 1565 }; 1566 1567 struct ib_cq { 1568 struct ib_device *device; 1569 struct ib_ucq_object *uobject; 1570 ib_comp_handler comp_handler; 1571 void (*event_handler)(struct ib_event *, void *); 1572 void *cq_context; 1573 int cqe; 1574 unsigned int cqe_used; 1575 atomic_t usecnt; /* count number of work queues */ 1576 enum ib_poll_context poll_ctx; 1577 struct ib_wc *wc; 1578 struct list_head pool_entry; 1579 union { 1580 struct irq_poll iop; 1581 struct work_struct work; 1582 }; 1583 struct workqueue_struct *comp_wq; 1584 struct dim *dim; 1585 1586 /* updated only by trace points */ 1587 ktime_t timestamp; 1588 u8 interrupt:1; 1589 u8 shared:1; 1590 unsigned int comp_vector; 1591 1592 /* 1593 * Implementation details of the RDMA core, don't use in drivers: 1594 */ 1595 struct rdma_restrack_entry res; 1596 }; 1597 1598 struct ib_srq { 1599 struct ib_device *device; 1600 struct ib_pd *pd; 1601 struct ib_usrq_object *uobject; 1602 void (*event_handler)(struct ib_event *, void *); 1603 void *srq_context; 1604 enum ib_srq_type srq_type; 1605 atomic_t usecnt; 1606 1607 struct { 1608 struct ib_cq *cq; 1609 union { 1610 struct { 1611 struct ib_xrcd *xrcd; 1612 u32 srq_num; 1613 } xrc; 1614 }; 1615 } ext; 1616 1617 /* 1618 * Implementation details of the RDMA core, don't use in drivers: 1619 */ 1620 struct rdma_restrack_entry res; 1621 }; 1622 1623 enum ib_raw_packet_caps { 1624 /* Strip cvlan from incoming packet and report it in the matching work 1625 * completion is supported. 1626 */ 1627 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0), 1628 /* Scatter FCS field of an incoming packet to host memory is supported. 1629 */ 1630 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1), 1631 /* Checksum offloads are supported (for both send and receive). */ 1632 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2), 1633 /* When a packet is received for an RQ with no receive WQEs, the 1634 * packet processing is delayed. 1635 */ 1636 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3), 1637 }; 1638 1639 enum ib_wq_type { 1640 IB_WQT_RQ = IB_UVERBS_WQT_RQ, 1641 }; 1642 1643 enum ib_wq_state { 1644 IB_WQS_RESET, 1645 IB_WQS_RDY, 1646 IB_WQS_ERR 1647 }; 1648 1649 struct ib_wq { 1650 struct ib_device *device; 1651 struct ib_uwq_object *uobject; 1652 void *wq_context; 1653 void (*event_handler)(struct ib_event *, void *); 1654 struct ib_pd *pd; 1655 struct ib_cq *cq; 1656 u32 wq_num; 1657 enum ib_wq_state state; 1658 enum ib_wq_type wq_type; 1659 atomic_t usecnt; 1660 }; 1661 1662 enum ib_wq_flags { 1663 IB_WQ_FLAGS_CVLAN_STRIPPING = IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING, 1664 IB_WQ_FLAGS_SCATTER_FCS = IB_UVERBS_WQ_FLAGS_SCATTER_FCS, 1665 IB_WQ_FLAGS_DELAY_DROP = IB_UVERBS_WQ_FLAGS_DELAY_DROP, 1666 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1667 IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING, 1668 }; 1669 1670 struct ib_wq_init_attr { 1671 void *wq_context; 1672 enum ib_wq_type wq_type; 1673 u32 max_wr; 1674 u32 max_sge; 1675 struct ib_cq *cq; 1676 void (*event_handler)(struct ib_event *, void *); 1677 u32 create_flags; /* Use enum ib_wq_flags */ 1678 }; 1679 1680 enum ib_wq_attr_mask { 1681 IB_WQ_STATE = 1 << 0, 1682 IB_WQ_CUR_STATE = 1 << 1, 1683 IB_WQ_FLAGS = 1 << 2, 1684 }; 1685 1686 struct ib_wq_attr { 1687 enum ib_wq_state wq_state; 1688 enum ib_wq_state curr_wq_state; 1689 u32 flags; /* Use enum ib_wq_flags */ 1690 u32 flags_mask; /* Use enum ib_wq_flags */ 1691 }; 1692 1693 struct ib_rwq_ind_table { 1694 struct ib_device *device; 1695 struct ib_uobject *uobject; 1696 atomic_t usecnt; 1697 u32 ind_tbl_num; 1698 u32 log_ind_tbl_size; 1699 struct ib_wq **ind_tbl; 1700 }; 1701 1702 struct ib_rwq_ind_table_init_attr { 1703 u32 log_ind_tbl_size; 1704 /* Each entry is a pointer to Receive Work Queue */ 1705 struct ib_wq **ind_tbl; 1706 }; 1707 1708 enum port_pkey_state { 1709 IB_PORT_PKEY_NOT_VALID = 0, 1710 IB_PORT_PKEY_VALID = 1, 1711 IB_PORT_PKEY_LISTED = 2, 1712 }; 1713 1714 struct ib_qp_security; 1715 1716 struct ib_port_pkey { 1717 enum port_pkey_state state; 1718 u16 pkey_index; 1719 u32 port_num; 1720 struct list_head qp_list; 1721 struct list_head to_error_list; 1722 struct ib_qp_security *sec; 1723 }; 1724 1725 struct ib_ports_pkeys { 1726 struct ib_port_pkey main; 1727 struct ib_port_pkey alt; 1728 }; 1729 1730 struct ib_qp_security { 1731 struct ib_qp *qp; 1732 struct ib_device *dev; 1733 /* Hold this mutex when changing port and pkey settings. */ 1734 struct mutex mutex; 1735 struct ib_ports_pkeys *ports_pkeys; 1736 /* A list of all open shared QP handles. Required to enforce security 1737 * properly for all users of a shared QP. 1738 */ 1739 struct list_head shared_qp_list; 1740 void *security; 1741 bool destroying; 1742 atomic_t error_list_count; 1743 struct completion error_complete; 1744 int error_comps_pending; 1745 }; 1746 1747 /* 1748 * @max_write_sge: Maximum SGE elements per RDMA WRITE request. 1749 * @max_read_sge: Maximum SGE elements per RDMA READ request. 1750 */ 1751 struct ib_qp { 1752 struct ib_device *device; 1753 struct ib_pd *pd; 1754 struct ib_cq *send_cq; 1755 struct ib_cq *recv_cq; 1756 spinlock_t mr_lock; 1757 int mrs_used; 1758 struct list_head rdma_mrs; 1759 struct list_head sig_mrs; 1760 struct ib_srq *srq; 1761 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1762 struct list_head xrcd_list; 1763 1764 /* count times opened, mcast attaches, flow attaches */ 1765 atomic_t usecnt; 1766 struct list_head open_list; 1767 struct ib_qp *real_qp; 1768 struct ib_uqp_object *uobject; 1769 void (*event_handler)(struct ib_event *, void *); 1770 void *qp_context; 1771 /* sgid_attrs associated with the AV's */ 1772 const struct ib_gid_attr *av_sgid_attr; 1773 const struct ib_gid_attr *alt_path_sgid_attr; 1774 u32 qp_num; 1775 u32 max_write_sge; 1776 u32 max_read_sge; 1777 enum ib_qp_type qp_type; 1778 struct ib_rwq_ind_table *rwq_ind_tbl; 1779 struct ib_qp_security *qp_sec; 1780 u32 port; 1781 1782 bool integrity_en; 1783 /* 1784 * Implementation details of the RDMA core, don't use in drivers: 1785 */ 1786 struct rdma_restrack_entry res; 1787 1788 /* The counter the qp is bind to */ 1789 struct rdma_counter *counter; 1790 }; 1791 1792 struct ib_dm { 1793 struct ib_device *device; 1794 u32 length; 1795 u32 flags; 1796 struct ib_uobject *uobject; 1797 atomic_t usecnt; 1798 }; 1799 1800 struct ib_mr { 1801 struct ib_device *device; 1802 struct ib_pd *pd; 1803 u32 lkey; 1804 u32 rkey; 1805 u64 iova; 1806 u64 length; 1807 unsigned int page_size; 1808 enum ib_mr_type type; 1809 bool need_inval; 1810 union { 1811 struct ib_uobject *uobject; /* user */ 1812 struct list_head qp_entry; /* FR */ 1813 }; 1814 1815 struct ib_dm *dm; 1816 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */ 1817 /* 1818 * Implementation details of the RDMA core, don't use in drivers: 1819 */ 1820 struct rdma_restrack_entry res; 1821 }; 1822 1823 struct ib_mw { 1824 struct ib_device *device; 1825 struct ib_pd *pd; 1826 struct ib_uobject *uobject; 1827 u32 rkey; 1828 enum ib_mw_type type; 1829 }; 1830 1831 /* Supported steering options */ 1832 enum ib_flow_attr_type { 1833 /* steering according to rule specifications */ 1834 IB_FLOW_ATTR_NORMAL = 0x0, 1835 /* default unicast and multicast rule - 1836 * receive all Eth traffic which isn't steered to any QP 1837 */ 1838 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1839 /* default multicast rule - 1840 * receive all Eth multicast traffic which isn't steered to any QP 1841 */ 1842 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1843 /* sniffer rule - receive all port traffic */ 1844 IB_FLOW_ATTR_SNIFFER = 0x3 1845 }; 1846 1847 /* Supported steering header types */ 1848 enum ib_flow_spec_type { 1849 /* L2 headers*/ 1850 IB_FLOW_SPEC_ETH = 0x20, 1851 IB_FLOW_SPEC_IB = 0x22, 1852 /* L3 header*/ 1853 IB_FLOW_SPEC_IPV4 = 0x30, 1854 IB_FLOW_SPEC_IPV6 = 0x31, 1855 IB_FLOW_SPEC_ESP = 0x34, 1856 /* L4 headers*/ 1857 IB_FLOW_SPEC_TCP = 0x40, 1858 IB_FLOW_SPEC_UDP = 0x41, 1859 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50, 1860 IB_FLOW_SPEC_GRE = 0x51, 1861 IB_FLOW_SPEC_MPLS = 0x60, 1862 IB_FLOW_SPEC_INNER = 0x100, 1863 /* Actions */ 1864 IB_FLOW_SPEC_ACTION_TAG = 0x1000, 1865 IB_FLOW_SPEC_ACTION_DROP = 0x1001, 1866 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002, 1867 IB_FLOW_SPEC_ACTION_COUNT = 0x1003, 1868 }; 1869 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1870 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10 1871 1872 enum ib_flow_flags { 1873 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */ 1874 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */ 1875 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */ 1876 }; 1877 1878 struct ib_flow_eth_filter { 1879 u8 dst_mac[6]; 1880 u8 src_mac[6]; 1881 __be16 ether_type; 1882 __be16 vlan_tag; 1883 /* Must be last */ 1884 u8 real_sz[]; 1885 }; 1886 1887 struct ib_flow_spec_eth { 1888 u32 type; 1889 u16 size; 1890 struct ib_flow_eth_filter val; 1891 struct ib_flow_eth_filter mask; 1892 }; 1893 1894 struct ib_flow_ib_filter { 1895 __be16 dlid; 1896 __u8 sl; 1897 /* Must be last */ 1898 u8 real_sz[]; 1899 }; 1900 1901 struct ib_flow_spec_ib { 1902 u32 type; 1903 u16 size; 1904 struct ib_flow_ib_filter val; 1905 struct ib_flow_ib_filter mask; 1906 }; 1907 1908 /* IPv4 header flags */ 1909 enum ib_ipv4_flags { 1910 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */ 1911 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the 1912 last have this flag set */ 1913 }; 1914 1915 struct ib_flow_ipv4_filter { 1916 __be32 src_ip; 1917 __be32 dst_ip; 1918 u8 proto; 1919 u8 tos; 1920 u8 ttl; 1921 u8 flags; 1922 /* Must be last */ 1923 u8 real_sz[]; 1924 }; 1925 1926 struct ib_flow_spec_ipv4 { 1927 u32 type; 1928 u16 size; 1929 struct ib_flow_ipv4_filter val; 1930 struct ib_flow_ipv4_filter mask; 1931 }; 1932 1933 struct ib_flow_ipv6_filter { 1934 u8 src_ip[16]; 1935 u8 dst_ip[16]; 1936 __be32 flow_label; 1937 u8 next_hdr; 1938 u8 traffic_class; 1939 u8 hop_limit; 1940 /* Must be last */ 1941 u8 real_sz[]; 1942 }; 1943 1944 struct ib_flow_spec_ipv6 { 1945 u32 type; 1946 u16 size; 1947 struct ib_flow_ipv6_filter val; 1948 struct ib_flow_ipv6_filter mask; 1949 }; 1950 1951 struct ib_flow_tcp_udp_filter { 1952 __be16 dst_port; 1953 __be16 src_port; 1954 /* Must be last */ 1955 u8 real_sz[]; 1956 }; 1957 1958 struct ib_flow_spec_tcp_udp { 1959 u32 type; 1960 u16 size; 1961 struct ib_flow_tcp_udp_filter val; 1962 struct ib_flow_tcp_udp_filter mask; 1963 }; 1964 1965 struct ib_flow_tunnel_filter { 1966 __be32 tunnel_id; 1967 u8 real_sz[]; 1968 }; 1969 1970 /* ib_flow_spec_tunnel describes the Vxlan tunnel 1971 * the tunnel_id from val has the vni value 1972 */ 1973 struct ib_flow_spec_tunnel { 1974 u32 type; 1975 u16 size; 1976 struct ib_flow_tunnel_filter val; 1977 struct ib_flow_tunnel_filter mask; 1978 }; 1979 1980 struct ib_flow_esp_filter { 1981 __be32 spi; 1982 __be32 seq; 1983 /* Must be last */ 1984 u8 real_sz[]; 1985 }; 1986 1987 struct ib_flow_spec_esp { 1988 u32 type; 1989 u16 size; 1990 struct ib_flow_esp_filter val; 1991 struct ib_flow_esp_filter mask; 1992 }; 1993 1994 struct ib_flow_gre_filter { 1995 __be16 c_ks_res0_ver; 1996 __be16 protocol; 1997 __be32 key; 1998 /* Must be last */ 1999 u8 real_sz[]; 2000 }; 2001 2002 struct ib_flow_spec_gre { 2003 u32 type; 2004 u16 size; 2005 struct ib_flow_gre_filter val; 2006 struct ib_flow_gre_filter mask; 2007 }; 2008 2009 struct ib_flow_mpls_filter { 2010 __be32 tag; 2011 /* Must be last */ 2012 u8 real_sz[]; 2013 }; 2014 2015 struct ib_flow_spec_mpls { 2016 u32 type; 2017 u16 size; 2018 struct ib_flow_mpls_filter val; 2019 struct ib_flow_mpls_filter mask; 2020 }; 2021 2022 struct ib_flow_spec_action_tag { 2023 enum ib_flow_spec_type type; 2024 u16 size; 2025 u32 tag_id; 2026 }; 2027 2028 struct ib_flow_spec_action_drop { 2029 enum ib_flow_spec_type type; 2030 u16 size; 2031 }; 2032 2033 struct ib_flow_spec_action_handle { 2034 enum ib_flow_spec_type type; 2035 u16 size; 2036 struct ib_flow_action *act; 2037 }; 2038 2039 enum ib_counters_description { 2040 IB_COUNTER_PACKETS, 2041 IB_COUNTER_BYTES, 2042 }; 2043 2044 struct ib_flow_spec_action_count { 2045 enum ib_flow_spec_type type; 2046 u16 size; 2047 struct ib_counters *counters; 2048 }; 2049 2050 union ib_flow_spec { 2051 struct { 2052 u32 type; 2053 u16 size; 2054 }; 2055 struct ib_flow_spec_eth eth; 2056 struct ib_flow_spec_ib ib; 2057 struct ib_flow_spec_ipv4 ipv4; 2058 struct ib_flow_spec_tcp_udp tcp_udp; 2059 struct ib_flow_spec_ipv6 ipv6; 2060 struct ib_flow_spec_tunnel tunnel; 2061 struct ib_flow_spec_esp esp; 2062 struct ib_flow_spec_gre gre; 2063 struct ib_flow_spec_mpls mpls; 2064 struct ib_flow_spec_action_tag flow_tag; 2065 struct ib_flow_spec_action_drop drop; 2066 struct ib_flow_spec_action_handle action; 2067 struct ib_flow_spec_action_count flow_count; 2068 }; 2069 2070 struct ib_flow_attr { 2071 enum ib_flow_attr_type type; 2072 u16 size; 2073 u16 priority; 2074 u32 flags; 2075 u8 num_of_specs; 2076 u32 port; 2077 union ib_flow_spec flows[]; 2078 }; 2079 2080 struct ib_flow { 2081 struct ib_qp *qp; 2082 struct ib_device *device; 2083 struct ib_uobject *uobject; 2084 }; 2085 2086 enum ib_flow_action_type { 2087 IB_FLOW_ACTION_UNSPECIFIED, 2088 IB_FLOW_ACTION_ESP = 1, 2089 }; 2090 2091 struct ib_flow_action_attrs_esp_keymats { 2092 enum ib_uverbs_flow_action_esp_keymat protocol; 2093 union { 2094 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm; 2095 } keymat; 2096 }; 2097 2098 struct ib_flow_action_attrs_esp_replays { 2099 enum ib_uverbs_flow_action_esp_replay protocol; 2100 union { 2101 struct ib_uverbs_flow_action_esp_replay_bmp bmp; 2102 } replay; 2103 }; 2104 2105 enum ib_flow_action_attrs_esp_flags { 2106 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags 2107 * This is done in order to share the same flags between user-space and 2108 * kernel and spare an unnecessary translation. 2109 */ 2110 2111 /* Kernel flags */ 2112 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32, 2113 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33, 2114 }; 2115 2116 struct ib_flow_spec_list { 2117 struct ib_flow_spec_list *next; 2118 union ib_flow_spec spec; 2119 }; 2120 2121 struct ib_flow_action_attrs_esp { 2122 struct ib_flow_action_attrs_esp_keymats *keymat; 2123 struct ib_flow_action_attrs_esp_replays *replay; 2124 struct ib_flow_spec_list *encap; 2125 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled. 2126 * Value of 0 is a valid value. 2127 */ 2128 u32 esn; 2129 u32 spi; 2130 u32 seq; 2131 u32 tfc_pad; 2132 /* Use enum ib_flow_action_attrs_esp_flags */ 2133 u64 flags; 2134 u64 hard_limit_pkts; 2135 }; 2136 2137 struct ib_flow_action { 2138 struct ib_device *device; 2139 struct ib_uobject *uobject; 2140 enum ib_flow_action_type type; 2141 atomic_t usecnt; 2142 }; 2143 2144 struct ib_mad; 2145 2146 enum ib_process_mad_flags { 2147 IB_MAD_IGNORE_MKEY = 1, 2148 IB_MAD_IGNORE_BKEY = 2, 2149 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 2150 }; 2151 2152 enum ib_mad_result { 2153 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 2154 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 2155 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 2156 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 2157 }; 2158 2159 struct ib_port_cache { 2160 u64 subnet_prefix; 2161 struct ib_pkey_cache *pkey; 2162 struct ib_gid_table *gid; 2163 u8 lmc; 2164 enum ib_port_state port_state; 2165 }; 2166 2167 struct ib_port_immutable { 2168 int pkey_tbl_len; 2169 int gid_tbl_len; 2170 u32 core_cap_flags; 2171 u32 max_mad_size; 2172 }; 2173 2174 struct ib_port_data { 2175 struct ib_device *ib_dev; 2176 2177 struct ib_port_immutable immutable; 2178 2179 spinlock_t pkey_list_lock; 2180 2181 spinlock_t netdev_lock; 2182 2183 struct list_head pkey_list; 2184 2185 struct ib_port_cache cache; 2186 2187 struct net_device __rcu *netdev; 2188 struct hlist_node ndev_hash_link; 2189 struct rdma_port_counter port_counter; 2190 struct ib_port *sysfs; 2191 }; 2192 2193 /* rdma netdev type - specifies protocol type */ 2194 enum rdma_netdev_t { 2195 RDMA_NETDEV_OPA_VNIC, 2196 RDMA_NETDEV_IPOIB, 2197 }; 2198 2199 /** 2200 * struct rdma_netdev - rdma netdev 2201 * For cases where netstack interfacing is required. 2202 */ 2203 struct rdma_netdev { 2204 void *clnt_priv; 2205 struct ib_device *hca; 2206 u32 port_num; 2207 int mtu; 2208 2209 /* 2210 * cleanup function must be specified. 2211 * FIXME: This is only used for OPA_VNIC and that usage should be 2212 * removed too. 2213 */ 2214 void (*free_rdma_netdev)(struct net_device *netdev); 2215 2216 /* control functions */ 2217 void (*set_id)(struct net_device *netdev, int id); 2218 /* send packet */ 2219 int (*send)(struct net_device *dev, struct sk_buff *skb, 2220 struct ib_ah *address, u32 dqpn); 2221 /* multicast */ 2222 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca, 2223 union ib_gid *gid, u16 mlid, 2224 int set_qkey, u32 qkey); 2225 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca, 2226 union ib_gid *gid, u16 mlid); 2227 /* timeout */ 2228 void (*tx_timeout)(struct net_device *dev, unsigned int txqueue); 2229 }; 2230 2231 struct rdma_netdev_alloc_params { 2232 size_t sizeof_priv; 2233 unsigned int txqs; 2234 unsigned int rxqs; 2235 void *param; 2236 2237 int (*initialize_rdma_netdev)(struct ib_device *device, u32 port_num, 2238 struct net_device *netdev, void *param); 2239 }; 2240 2241 struct ib_odp_counters { 2242 atomic64_t faults; 2243 atomic64_t invalidations; 2244 atomic64_t prefetch; 2245 }; 2246 2247 struct ib_counters { 2248 struct ib_device *device; 2249 struct ib_uobject *uobject; 2250 /* num of objects attached */ 2251 atomic_t usecnt; 2252 }; 2253 2254 struct ib_counters_read_attr { 2255 u64 *counters_buff; 2256 u32 ncounters; 2257 u32 flags; /* use enum ib_read_counters_flags */ 2258 }; 2259 2260 struct uverbs_attr_bundle; 2261 struct iw_cm_id; 2262 struct iw_cm_conn_param; 2263 2264 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \ 2265 .size_##ib_struct = \ 2266 (sizeof(struct drv_struct) + \ 2267 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \ 2268 BUILD_BUG_ON_ZERO( \ 2269 !__same_type(((struct drv_struct *)NULL)->member, \ 2270 struct ib_struct))) 2271 2272 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \ 2273 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \ 2274 gfp, false)) 2275 2276 #define rdma_zalloc_drv_obj_numa(ib_dev, ib_type) \ 2277 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \ 2278 GFP_KERNEL, true)) 2279 2280 #define rdma_zalloc_drv_obj(ib_dev, ib_type) \ 2281 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL) 2282 2283 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct 2284 2285 struct rdma_user_mmap_entry { 2286 struct kref ref; 2287 struct ib_ucontext *ucontext; 2288 unsigned long start_pgoff; 2289 size_t npages; 2290 bool driver_removed; 2291 }; 2292 2293 /* Return the offset (in bytes) the user should pass to libc's mmap() */ 2294 static inline u64 2295 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry) 2296 { 2297 return (u64)entry->start_pgoff << PAGE_SHIFT; 2298 } 2299 2300 /** 2301 * struct ib_device_ops - InfiniBand device operations 2302 * This structure defines all the InfiniBand device operations, providers will 2303 * need to define the supported operations, otherwise they will be set to null. 2304 */ 2305 struct ib_device_ops { 2306 struct module *owner; 2307 enum rdma_driver_id driver_id; 2308 u32 uverbs_abi_ver; 2309 unsigned int uverbs_no_driver_id_binding:1; 2310 2311 /* 2312 * NOTE: New drivers should not make use of device_group; instead new 2313 * device parameter should be exposed via netlink command. This 2314 * mechanism exists only for existing drivers. 2315 */ 2316 const struct attribute_group *device_group; 2317 const struct attribute_group **port_groups; 2318 2319 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr, 2320 const struct ib_send_wr **bad_send_wr); 2321 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr, 2322 const struct ib_recv_wr **bad_recv_wr); 2323 void (*drain_rq)(struct ib_qp *qp); 2324 void (*drain_sq)(struct ib_qp *qp); 2325 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc); 2326 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 2327 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags); 2328 int (*post_srq_recv)(struct ib_srq *srq, 2329 const struct ib_recv_wr *recv_wr, 2330 const struct ib_recv_wr **bad_recv_wr); 2331 int (*process_mad)(struct ib_device *device, int process_mad_flags, 2332 u32 port_num, const struct ib_wc *in_wc, 2333 const struct ib_grh *in_grh, 2334 const struct ib_mad *in_mad, struct ib_mad *out_mad, 2335 size_t *out_mad_size, u16 *out_mad_pkey_index); 2336 int (*query_device)(struct ib_device *device, 2337 struct ib_device_attr *device_attr, 2338 struct ib_udata *udata); 2339 int (*modify_device)(struct ib_device *device, int device_modify_mask, 2340 struct ib_device_modify *device_modify); 2341 void (*get_dev_fw_str)(struct ib_device *device, char *str); 2342 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev, 2343 int comp_vector); 2344 int (*query_port)(struct ib_device *device, u32 port_num, 2345 struct ib_port_attr *port_attr); 2346 int (*modify_port)(struct ib_device *device, u32 port_num, 2347 int port_modify_mask, 2348 struct ib_port_modify *port_modify); 2349 /** 2350 * The following mandatory functions are used only at device 2351 * registration. Keep functions such as these at the end of this 2352 * structure to avoid cache line misses when accessing struct ib_device 2353 * in fast paths. 2354 */ 2355 int (*get_port_immutable)(struct ib_device *device, u32 port_num, 2356 struct ib_port_immutable *immutable); 2357 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 2358 u32 port_num); 2359 /** 2360 * When calling get_netdev, the HW vendor's driver should return the 2361 * net device of device @device at port @port_num or NULL if such 2362 * a net device doesn't exist. The vendor driver should call dev_hold 2363 * on this net device. The HW vendor's device driver must guarantee 2364 * that this function returns NULL before the net device has finished 2365 * NETDEV_UNREGISTER state. 2366 */ 2367 struct net_device *(*get_netdev)(struct ib_device *device, 2368 u32 port_num); 2369 /** 2370 * rdma netdev operation 2371 * 2372 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params 2373 * must return -EOPNOTSUPP if it doesn't support the specified type. 2374 */ 2375 struct net_device *(*alloc_rdma_netdev)( 2376 struct ib_device *device, u32 port_num, enum rdma_netdev_t type, 2377 const char *name, unsigned char name_assign_type, 2378 void (*setup)(struct net_device *)); 2379 2380 int (*rdma_netdev_get_params)(struct ib_device *device, u32 port_num, 2381 enum rdma_netdev_t type, 2382 struct rdma_netdev_alloc_params *params); 2383 /** 2384 * query_gid should be return GID value for @device, when @port_num 2385 * link layer is either IB or iWarp. It is no-op if @port_num port 2386 * is RoCE link layer. 2387 */ 2388 int (*query_gid)(struct ib_device *device, u32 port_num, int index, 2389 union ib_gid *gid); 2390 /** 2391 * When calling add_gid, the HW vendor's driver should add the gid 2392 * of device of port at gid index available at @attr. Meta-info of 2393 * that gid (for example, the network device related to this gid) is 2394 * available at @attr. @context allows the HW vendor driver to store 2395 * extra information together with a GID entry. The HW vendor driver may 2396 * allocate memory to contain this information and store it in @context 2397 * when a new GID entry is written to. Params are consistent until the 2398 * next call of add_gid or delete_gid. The function should return 0 on 2399 * success or error otherwise. The function could be called 2400 * concurrently for different ports. This function is only called when 2401 * roce_gid_table is used. 2402 */ 2403 int (*add_gid)(const struct ib_gid_attr *attr, void **context); 2404 /** 2405 * When calling del_gid, the HW vendor's driver should delete the 2406 * gid of device @device at gid index gid_index of port port_num 2407 * available in @attr. 2408 * Upon the deletion of a GID entry, the HW vendor must free any 2409 * allocated memory. The caller will clear @context afterwards. 2410 * This function is only called when roce_gid_table is used. 2411 */ 2412 int (*del_gid)(const struct ib_gid_attr *attr, void **context); 2413 int (*query_pkey)(struct ib_device *device, u32 port_num, u16 index, 2414 u16 *pkey); 2415 int (*alloc_ucontext)(struct ib_ucontext *context, 2416 struct ib_udata *udata); 2417 void (*dealloc_ucontext)(struct ib_ucontext *context); 2418 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma); 2419 /** 2420 * This will be called once refcount of an entry in mmap_xa reaches 2421 * zero. The type of the memory that was mapped may differ between 2422 * entries and is opaque to the rdma_user_mmap interface. 2423 * Therefore needs to be implemented by the driver in mmap_free. 2424 */ 2425 void (*mmap_free)(struct rdma_user_mmap_entry *entry); 2426 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 2427 int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata); 2428 int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata); 2429 int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr, 2430 struct ib_udata *udata); 2431 int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr, 2432 struct ib_udata *udata); 2433 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2434 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2435 int (*destroy_ah)(struct ib_ah *ah, u32 flags); 2436 int (*create_srq)(struct ib_srq *srq, 2437 struct ib_srq_init_attr *srq_init_attr, 2438 struct ib_udata *udata); 2439 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr, 2440 enum ib_srq_attr_mask srq_attr_mask, 2441 struct ib_udata *udata); 2442 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr); 2443 int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata); 2444 int (*create_qp)(struct ib_qp *qp, struct ib_qp_init_attr *qp_init_attr, 2445 struct ib_udata *udata); 2446 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, 2447 int qp_attr_mask, struct ib_udata *udata); 2448 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, 2449 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr); 2450 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata); 2451 int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr, 2452 struct ib_udata *udata); 2453 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period); 2454 int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata); 2455 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata); 2456 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags); 2457 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length, 2458 u64 virt_addr, int mr_access_flags, 2459 struct ib_udata *udata); 2460 struct ib_mr *(*reg_user_mr_dmabuf)(struct ib_pd *pd, u64 offset, 2461 u64 length, u64 virt_addr, int fd, 2462 int mr_access_flags, 2463 struct ib_udata *udata); 2464 struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start, 2465 u64 length, u64 virt_addr, 2466 int mr_access_flags, struct ib_pd *pd, 2467 struct ib_udata *udata); 2468 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata); 2469 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type, 2470 u32 max_num_sg); 2471 struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd, 2472 u32 max_num_data_sg, 2473 u32 max_num_meta_sg); 2474 int (*advise_mr)(struct ib_pd *pd, 2475 enum ib_uverbs_advise_mr_advice advice, u32 flags, 2476 struct ib_sge *sg_list, u32 num_sge, 2477 struct uverbs_attr_bundle *attrs); 2478 2479 /* 2480 * Kernel users should universally support relaxed ordering (RO), as 2481 * they are designed to read data only after observing the CQE and use 2482 * the DMA API correctly. 2483 * 2484 * Some drivers implicitly enable RO if platform supports it. 2485 */ 2486 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 2487 unsigned int *sg_offset); 2488 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 2489 struct ib_mr_status *mr_status); 2490 int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata); 2491 int (*dealloc_mw)(struct ib_mw *mw); 2492 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2493 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2494 int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata); 2495 int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata); 2496 struct ib_flow *(*create_flow)(struct ib_qp *qp, 2497 struct ib_flow_attr *flow_attr, 2498 struct ib_udata *udata); 2499 int (*destroy_flow)(struct ib_flow *flow_id); 2500 int (*destroy_flow_action)(struct ib_flow_action *action); 2501 int (*set_vf_link_state)(struct ib_device *device, int vf, u32 port, 2502 int state); 2503 int (*get_vf_config)(struct ib_device *device, int vf, u32 port, 2504 struct ifla_vf_info *ivf); 2505 int (*get_vf_stats)(struct ib_device *device, int vf, u32 port, 2506 struct ifla_vf_stats *stats); 2507 int (*get_vf_guid)(struct ib_device *device, int vf, u32 port, 2508 struct ifla_vf_guid *node_guid, 2509 struct ifla_vf_guid *port_guid); 2510 int (*set_vf_guid)(struct ib_device *device, int vf, u32 port, u64 guid, 2511 int type); 2512 struct ib_wq *(*create_wq)(struct ib_pd *pd, 2513 struct ib_wq_init_attr *init_attr, 2514 struct ib_udata *udata); 2515 int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata); 2516 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr, 2517 u32 wq_attr_mask, struct ib_udata *udata); 2518 int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table, 2519 struct ib_rwq_ind_table_init_attr *init_attr, 2520 struct ib_udata *udata); 2521 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table); 2522 struct ib_dm *(*alloc_dm)(struct ib_device *device, 2523 struct ib_ucontext *context, 2524 struct ib_dm_alloc_attr *attr, 2525 struct uverbs_attr_bundle *attrs); 2526 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs); 2527 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm, 2528 struct ib_dm_mr_attr *attr, 2529 struct uverbs_attr_bundle *attrs); 2530 int (*create_counters)(struct ib_counters *counters, 2531 struct uverbs_attr_bundle *attrs); 2532 int (*destroy_counters)(struct ib_counters *counters); 2533 int (*read_counters)(struct ib_counters *counters, 2534 struct ib_counters_read_attr *counters_read_attr, 2535 struct uverbs_attr_bundle *attrs); 2536 int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg, 2537 int data_sg_nents, unsigned int *data_sg_offset, 2538 struct scatterlist *meta_sg, int meta_sg_nents, 2539 unsigned int *meta_sg_offset); 2540 2541 /** 2542 * alloc_hw_[device,port]_stats - Allocate a struct rdma_hw_stats and 2543 * fill in the driver initialized data. The struct is kfree()'ed by 2544 * the sysfs core when the device is removed. A lifespan of -1 in the 2545 * return struct tells the core to set a default lifespan. 2546 */ 2547 struct rdma_hw_stats *(*alloc_hw_device_stats)(struct ib_device *device); 2548 struct rdma_hw_stats *(*alloc_hw_port_stats)(struct ib_device *device, 2549 u32 port_num); 2550 /** 2551 * get_hw_stats - Fill in the counter value(s) in the stats struct. 2552 * @index - The index in the value array we wish to have updated, or 2553 * num_counters if we want all stats updated 2554 * Return codes - 2555 * < 0 - Error, no counters updated 2556 * index - Updated the single counter pointed to by index 2557 * num_counters - Updated all counters (will reset the timestamp 2558 * and prevent further calls for lifespan milliseconds) 2559 * Drivers are allowed to update all counters in leiu of just the 2560 * one given in index at their option 2561 */ 2562 int (*get_hw_stats)(struct ib_device *device, 2563 struct rdma_hw_stats *stats, u32 port, int index); 2564 2565 /** 2566 * modify_hw_stat - Modify the counter configuration 2567 * @enable: true/false when enable/disable a counter 2568 * Return codes - 0 on success or error code otherwise. 2569 */ 2570 int (*modify_hw_stat)(struct ib_device *device, u32 port, 2571 unsigned int counter_index, bool enable); 2572 /** 2573 * Allows rdma drivers to add their own restrack attributes. 2574 */ 2575 int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr); 2576 int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr); 2577 int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq); 2578 int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq); 2579 int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp); 2580 int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp); 2581 int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id); 2582 2583 /* Device lifecycle callbacks */ 2584 /* 2585 * Called after the device becomes registered, before clients are 2586 * attached 2587 */ 2588 int (*enable_driver)(struct ib_device *dev); 2589 /* 2590 * This is called as part of ib_dealloc_device(). 2591 */ 2592 void (*dealloc_driver)(struct ib_device *dev); 2593 2594 /* iWarp CM callbacks */ 2595 void (*iw_add_ref)(struct ib_qp *qp); 2596 void (*iw_rem_ref)(struct ib_qp *qp); 2597 struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn); 2598 int (*iw_connect)(struct iw_cm_id *cm_id, 2599 struct iw_cm_conn_param *conn_param); 2600 int (*iw_accept)(struct iw_cm_id *cm_id, 2601 struct iw_cm_conn_param *conn_param); 2602 int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata, 2603 u8 pdata_len); 2604 int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog); 2605 int (*iw_destroy_listen)(struct iw_cm_id *cm_id); 2606 /** 2607 * counter_bind_qp - Bind a QP to a counter. 2608 * @counter - The counter to be bound. If counter->id is zero then 2609 * the driver needs to allocate a new counter and set counter->id 2610 */ 2611 int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp); 2612 /** 2613 * counter_unbind_qp - Unbind the qp from the dynamically-allocated 2614 * counter and bind it onto the default one 2615 */ 2616 int (*counter_unbind_qp)(struct ib_qp *qp); 2617 /** 2618 * counter_dealloc -De-allocate the hw counter 2619 */ 2620 int (*counter_dealloc)(struct rdma_counter *counter); 2621 /** 2622 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in 2623 * the driver initialized data. 2624 */ 2625 struct rdma_hw_stats *(*counter_alloc_stats)( 2626 struct rdma_counter *counter); 2627 /** 2628 * counter_update_stats - Query the stats value of this counter 2629 */ 2630 int (*counter_update_stats)(struct rdma_counter *counter); 2631 2632 /** 2633 * Allows rdma drivers to add their own restrack attributes 2634 * dumped via 'rdma stat' iproute2 command. 2635 */ 2636 int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr); 2637 2638 /* query driver for its ucontext properties */ 2639 int (*query_ucontext)(struct ib_ucontext *context, 2640 struct uverbs_attr_bundle *attrs); 2641 2642 /* 2643 * Provide NUMA node. This API exists for rdmavt/hfi1 only. 2644 * Everyone else relies on Linux memory management model. 2645 */ 2646 int (*get_numa_node)(struct ib_device *dev); 2647 2648 DECLARE_RDMA_OBJ_SIZE(ib_ah); 2649 DECLARE_RDMA_OBJ_SIZE(ib_counters); 2650 DECLARE_RDMA_OBJ_SIZE(ib_cq); 2651 DECLARE_RDMA_OBJ_SIZE(ib_mw); 2652 DECLARE_RDMA_OBJ_SIZE(ib_pd); 2653 DECLARE_RDMA_OBJ_SIZE(ib_qp); 2654 DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table); 2655 DECLARE_RDMA_OBJ_SIZE(ib_srq); 2656 DECLARE_RDMA_OBJ_SIZE(ib_ucontext); 2657 DECLARE_RDMA_OBJ_SIZE(ib_xrcd); 2658 }; 2659 2660 struct ib_core_device { 2661 /* device must be the first element in structure until, 2662 * union of ib_core_device and device exists in ib_device. 2663 */ 2664 struct device dev; 2665 possible_net_t rdma_net; 2666 struct kobject *ports_kobj; 2667 struct list_head port_list; 2668 struct ib_device *owner; /* reach back to owner ib_device */ 2669 }; 2670 2671 struct rdma_restrack_root; 2672 struct ib_device { 2673 /* Do not access @dma_device directly from ULP nor from HW drivers. */ 2674 struct device *dma_device; 2675 struct ib_device_ops ops; 2676 char name[IB_DEVICE_NAME_MAX]; 2677 struct rcu_head rcu_head; 2678 2679 struct list_head event_handler_list; 2680 /* Protects event_handler_list */ 2681 struct rw_semaphore event_handler_rwsem; 2682 2683 /* Protects QP's event_handler calls and open_qp list */ 2684 spinlock_t qp_open_list_lock; 2685 2686 struct rw_semaphore client_data_rwsem; 2687 struct xarray client_data; 2688 struct mutex unregistration_lock; 2689 2690 /* Synchronize GID, Pkey cache entries, subnet prefix, LMC */ 2691 rwlock_t cache_lock; 2692 /** 2693 * port_data is indexed by port number 2694 */ 2695 struct ib_port_data *port_data; 2696 2697 int num_comp_vectors; 2698 2699 union { 2700 struct device dev; 2701 struct ib_core_device coredev; 2702 }; 2703 2704 /* First group is for device attributes, 2705 * Second group is for driver provided attributes (optional). 2706 * Third group is for the hw_stats 2707 * It is a NULL terminated array. 2708 */ 2709 const struct attribute_group *groups[4]; 2710 2711 u64 uverbs_cmd_mask; 2712 2713 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 2714 __be64 node_guid; 2715 u32 local_dma_lkey; 2716 u16 is_switch:1; 2717 /* Indicates kernel verbs support, should not be used in drivers */ 2718 u16 kverbs_provider:1; 2719 /* CQ adaptive moderation (RDMA DIM) */ 2720 u16 use_cq_dim:1; 2721 u8 node_type; 2722 u32 phys_port_cnt; 2723 struct ib_device_attr attrs; 2724 struct hw_stats_device_data *hw_stats_data; 2725 2726 #ifdef CONFIG_CGROUP_RDMA 2727 struct rdmacg_device cg_device; 2728 #endif 2729 2730 u32 index; 2731 2732 spinlock_t cq_pools_lock; 2733 struct list_head cq_pools[IB_POLL_LAST_POOL_TYPE + 1]; 2734 2735 struct rdma_restrack_root *res; 2736 2737 const struct uapi_definition *driver_def; 2738 2739 /* 2740 * Positive refcount indicates that the device is currently 2741 * registered and cannot be unregistered. 2742 */ 2743 refcount_t refcount; 2744 struct completion unreg_completion; 2745 struct work_struct unregistration_work; 2746 2747 const struct rdma_link_ops *link_ops; 2748 2749 /* Protects compat_devs xarray modifications */ 2750 struct mutex compat_devs_mutex; 2751 /* Maintains compat devices for each net namespace */ 2752 struct xarray compat_devs; 2753 2754 /* Used by iWarp CM */ 2755 char iw_ifname[IFNAMSIZ]; 2756 u32 iw_driver_flags; 2757 u32 lag_flags; 2758 }; 2759 2760 static inline void *rdma_zalloc_obj(struct ib_device *dev, size_t size, 2761 gfp_t gfp, bool is_numa_aware) 2762 { 2763 if (is_numa_aware && dev->ops.get_numa_node) 2764 return kzalloc_node(size, gfp, dev->ops.get_numa_node(dev)); 2765 2766 return kzalloc(size, gfp); 2767 } 2768 2769 struct ib_client_nl_info; 2770 struct ib_client { 2771 const char *name; 2772 int (*add)(struct ib_device *ibdev); 2773 void (*remove)(struct ib_device *, void *client_data); 2774 void (*rename)(struct ib_device *dev, void *client_data); 2775 int (*get_nl_info)(struct ib_device *ibdev, void *client_data, 2776 struct ib_client_nl_info *res); 2777 int (*get_global_nl_info)(struct ib_client_nl_info *res); 2778 2779 /* Returns the net_dev belonging to this ib_client and matching the 2780 * given parameters. 2781 * @dev: An RDMA device that the net_dev use for communication. 2782 * @port: A physical port number on the RDMA device. 2783 * @pkey: P_Key that the net_dev uses if applicable. 2784 * @gid: A GID that the net_dev uses to communicate. 2785 * @addr: An IP address the net_dev is configured with. 2786 * @client_data: The device's client data set by ib_set_client_data(). 2787 * 2788 * An ib_client that implements a net_dev on top of RDMA devices 2789 * (such as IP over IB) should implement this callback, allowing the 2790 * rdma_cm module to find the right net_dev for a given request. 2791 * 2792 * The caller is responsible for calling dev_put on the returned 2793 * netdev. */ 2794 struct net_device *(*get_net_dev_by_params)( 2795 struct ib_device *dev, 2796 u32 port, 2797 u16 pkey, 2798 const union ib_gid *gid, 2799 const struct sockaddr *addr, 2800 void *client_data); 2801 2802 refcount_t uses; 2803 struct completion uses_zero; 2804 u32 client_id; 2805 2806 /* kverbs are not required by the client */ 2807 u8 no_kverbs_req:1; 2808 }; 2809 2810 /* 2811 * IB block DMA iterator 2812 * 2813 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned 2814 * to a HW supported page size. 2815 */ 2816 struct ib_block_iter { 2817 /* internal states */ 2818 struct scatterlist *__sg; /* sg holding the current aligned block */ 2819 dma_addr_t __dma_addr; /* unaligned DMA address of this block */ 2820 unsigned int __sg_nents; /* number of SG entries */ 2821 unsigned int __sg_advance; /* number of bytes to advance in sg in next step */ 2822 unsigned int __pg_bit; /* alignment of current block */ 2823 }; 2824 2825 struct ib_device *_ib_alloc_device(size_t size); 2826 #define ib_alloc_device(drv_struct, member) \ 2827 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \ 2828 BUILD_BUG_ON_ZERO(offsetof( \ 2829 struct drv_struct, member))), \ 2830 struct drv_struct, member) 2831 2832 void ib_dealloc_device(struct ib_device *device); 2833 2834 void ib_get_device_fw_str(struct ib_device *device, char *str); 2835 2836 int ib_register_device(struct ib_device *device, const char *name, 2837 struct device *dma_device); 2838 void ib_unregister_device(struct ib_device *device); 2839 void ib_unregister_driver(enum rdma_driver_id driver_id); 2840 void ib_unregister_device_and_put(struct ib_device *device); 2841 void ib_unregister_device_queued(struct ib_device *ib_dev); 2842 2843 int ib_register_client (struct ib_client *client); 2844 void ib_unregister_client(struct ib_client *client); 2845 2846 void __rdma_block_iter_start(struct ib_block_iter *biter, 2847 struct scatterlist *sglist, 2848 unsigned int nents, 2849 unsigned long pgsz); 2850 bool __rdma_block_iter_next(struct ib_block_iter *biter); 2851 2852 /** 2853 * rdma_block_iter_dma_address - get the aligned dma address of the current 2854 * block held by the block iterator. 2855 * @biter: block iterator holding the memory block 2856 */ 2857 static inline dma_addr_t 2858 rdma_block_iter_dma_address(struct ib_block_iter *biter) 2859 { 2860 return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1); 2861 } 2862 2863 /** 2864 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list 2865 * @sglist: sglist to iterate over 2866 * @biter: block iterator holding the memory block 2867 * @nents: maximum number of sg entries to iterate over 2868 * @pgsz: best HW supported page size to use 2869 * 2870 * Callers may use rdma_block_iter_dma_address() to get each 2871 * blocks aligned DMA address. 2872 */ 2873 #define rdma_for_each_block(sglist, biter, nents, pgsz) \ 2874 for (__rdma_block_iter_start(biter, sglist, nents, \ 2875 pgsz); \ 2876 __rdma_block_iter_next(biter);) 2877 2878 /** 2879 * ib_get_client_data - Get IB client context 2880 * @device:Device to get context for 2881 * @client:Client to get context for 2882 * 2883 * ib_get_client_data() returns the client context data set with 2884 * ib_set_client_data(). This can only be called while the client is 2885 * registered to the device, once the ib_client remove() callback returns this 2886 * cannot be called. 2887 */ 2888 static inline void *ib_get_client_data(struct ib_device *device, 2889 struct ib_client *client) 2890 { 2891 return xa_load(&device->client_data, client->client_id); 2892 } 2893 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 2894 void *data); 2895 void ib_set_device_ops(struct ib_device *device, 2896 const struct ib_device_ops *ops); 2897 2898 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma, 2899 unsigned long pfn, unsigned long size, pgprot_t prot, 2900 struct rdma_user_mmap_entry *entry); 2901 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext, 2902 struct rdma_user_mmap_entry *entry, 2903 size_t length); 2904 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext, 2905 struct rdma_user_mmap_entry *entry, 2906 size_t length, u32 min_pgoff, 2907 u32 max_pgoff); 2908 2909 static inline int 2910 rdma_user_mmap_entry_insert_exact(struct ib_ucontext *ucontext, 2911 struct rdma_user_mmap_entry *entry, 2912 size_t length, u32 pgoff) 2913 { 2914 return rdma_user_mmap_entry_insert_range(ucontext, entry, length, pgoff, 2915 pgoff); 2916 } 2917 2918 struct rdma_user_mmap_entry * 2919 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext, 2920 unsigned long pgoff); 2921 struct rdma_user_mmap_entry * 2922 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext, 2923 struct vm_area_struct *vma); 2924 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry); 2925 2926 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry); 2927 2928 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 2929 { 2930 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 2931 } 2932 2933 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 2934 { 2935 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 2936 } 2937 2938 static inline bool ib_is_buffer_cleared(const void __user *p, 2939 size_t len) 2940 { 2941 bool ret; 2942 u8 *buf; 2943 2944 if (len > USHRT_MAX) 2945 return false; 2946 2947 buf = memdup_user(p, len); 2948 if (IS_ERR(buf)) 2949 return false; 2950 2951 ret = !memchr_inv(buf, 0, len); 2952 kfree(buf); 2953 return ret; 2954 } 2955 2956 static inline bool ib_is_udata_cleared(struct ib_udata *udata, 2957 size_t offset, 2958 size_t len) 2959 { 2960 return ib_is_buffer_cleared(udata->inbuf + offset, len); 2961 } 2962 2963 /** 2964 * ib_modify_qp_is_ok - Check that the supplied attribute mask 2965 * contains all required attributes and no attributes not allowed for 2966 * the given QP state transition. 2967 * @cur_state: Current QP state 2968 * @next_state: Next QP state 2969 * @type: QP type 2970 * @mask: Mask of supplied QP attributes 2971 * 2972 * This function is a helper function that a low-level driver's 2973 * modify_qp method can use to validate the consumer's input. It 2974 * checks that cur_state and next_state are valid QP states, that a 2975 * transition from cur_state to next_state is allowed by the IB spec, 2976 * and that the attribute mask supplied is allowed for the transition. 2977 */ 2978 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 2979 enum ib_qp_type type, enum ib_qp_attr_mask mask); 2980 2981 void ib_register_event_handler(struct ib_event_handler *event_handler); 2982 void ib_unregister_event_handler(struct ib_event_handler *event_handler); 2983 void ib_dispatch_event(const struct ib_event *event); 2984 2985 int ib_query_port(struct ib_device *device, 2986 u32 port_num, struct ib_port_attr *port_attr); 2987 2988 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 2989 u32 port_num); 2990 2991 /** 2992 * rdma_cap_ib_switch - Check if the device is IB switch 2993 * @device: Device to check 2994 * 2995 * Device driver is responsible for setting is_switch bit on 2996 * in ib_device structure at init time. 2997 * 2998 * Return: true if the device is IB switch. 2999 */ 3000 static inline bool rdma_cap_ib_switch(const struct ib_device *device) 3001 { 3002 return device->is_switch; 3003 } 3004 3005 /** 3006 * rdma_start_port - Return the first valid port number for the device 3007 * specified 3008 * 3009 * @device: Device to be checked 3010 * 3011 * Return start port number 3012 */ 3013 static inline u32 rdma_start_port(const struct ib_device *device) 3014 { 3015 return rdma_cap_ib_switch(device) ? 0 : 1; 3016 } 3017 3018 /** 3019 * rdma_for_each_port - Iterate over all valid port numbers of the IB device 3020 * @device - The struct ib_device * to iterate over 3021 * @iter - The unsigned int to store the port number 3022 */ 3023 #define rdma_for_each_port(device, iter) \ 3024 for (iter = rdma_start_port(device + \ 3025 BUILD_BUG_ON_ZERO(!__same_type(u32, \ 3026 iter))); \ 3027 iter <= rdma_end_port(device); iter++) 3028 3029 /** 3030 * rdma_end_port - Return the last valid port number for the device 3031 * specified 3032 * 3033 * @device: Device to be checked 3034 * 3035 * Return last port number 3036 */ 3037 static inline u32 rdma_end_port(const struct ib_device *device) 3038 { 3039 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 3040 } 3041 3042 static inline int rdma_is_port_valid(const struct ib_device *device, 3043 unsigned int port) 3044 { 3045 return (port >= rdma_start_port(device) && 3046 port <= rdma_end_port(device)); 3047 } 3048 3049 static inline bool rdma_is_grh_required(const struct ib_device *device, 3050 u32 port_num) 3051 { 3052 return device->port_data[port_num].immutable.core_cap_flags & 3053 RDMA_CORE_PORT_IB_GRH_REQUIRED; 3054 } 3055 3056 static inline bool rdma_protocol_ib(const struct ib_device *device, 3057 u32 port_num) 3058 { 3059 return device->port_data[port_num].immutable.core_cap_flags & 3060 RDMA_CORE_CAP_PROT_IB; 3061 } 3062 3063 static inline bool rdma_protocol_roce(const struct ib_device *device, 3064 u32 port_num) 3065 { 3066 return device->port_data[port_num].immutable.core_cap_flags & 3067 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); 3068 } 3069 3070 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, 3071 u32 port_num) 3072 { 3073 return device->port_data[port_num].immutable.core_cap_flags & 3074 RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; 3075 } 3076 3077 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, 3078 u32 port_num) 3079 { 3080 return device->port_data[port_num].immutable.core_cap_flags & 3081 RDMA_CORE_CAP_PROT_ROCE; 3082 } 3083 3084 static inline bool rdma_protocol_iwarp(const struct ib_device *device, 3085 u32 port_num) 3086 { 3087 return device->port_data[port_num].immutable.core_cap_flags & 3088 RDMA_CORE_CAP_PROT_IWARP; 3089 } 3090 3091 static inline bool rdma_ib_or_roce(const struct ib_device *device, 3092 u32 port_num) 3093 { 3094 return rdma_protocol_ib(device, port_num) || 3095 rdma_protocol_roce(device, port_num); 3096 } 3097 3098 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, 3099 u32 port_num) 3100 { 3101 return device->port_data[port_num].immutable.core_cap_flags & 3102 RDMA_CORE_CAP_PROT_RAW_PACKET; 3103 } 3104 3105 static inline bool rdma_protocol_usnic(const struct ib_device *device, 3106 u32 port_num) 3107 { 3108 return device->port_data[port_num].immutable.core_cap_flags & 3109 RDMA_CORE_CAP_PROT_USNIC; 3110 } 3111 3112 /** 3113 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 3114 * Management Datagrams. 3115 * @device: Device to check 3116 * @port_num: Port number to check 3117 * 3118 * Management Datagrams (MAD) are a required part of the InfiniBand 3119 * specification and are supported on all InfiniBand devices. A slightly 3120 * extended version are also supported on OPA interfaces. 3121 * 3122 * Return: true if the port supports sending/receiving of MAD packets. 3123 */ 3124 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u32 port_num) 3125 { 3126 return device->port_data[port_num].immutable.core_cap_flags & 3127 RDMA_CORE_CAP_IB_MAD; 3128 } 3129 3130 /** 3131 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 3132 * Management Datagrams. 3133 * @device: Device to check 3134 * @port_num: Port number to check 3135 * 3136 * Intel OmniPath devices extend and/or replace the InfiniBand Management 3137 * datagrams with their own versions. These OPA MADs share many but not all of 3138 * the characteristics of InfiniBand MADs. 3139 * 3140 * OPA MADs differ in the following ways: 3141 * 3142 * 1) MADs are variable size up to 2K 3143 * IBTA defined MADs remain fixed at 256 bytes 3144 * 2) OPA SMPs must carry valid PKeys 3145 * 3) OPA SMP packets are a different format 3146 * 3147 * Return: true if the port supports OPA MAD packet formats. 3148 */ 3149 static inline bool rdma_cap_opa_mad(struct ib_device *device, u32 port_num) 3150 { 3151 return device->port_data[port_num].immutable.core_cap_flags & 3152 RDMA_CORE_CAP_OPA_MAD; 3153 } 3154 3155 /** 3156 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 3157 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 3158 * @device: Device to check 3159 * @port_num: Port number to check 3160 * 3161 * Each InfiniBand node is required to provide a Subnet Management Agent 3162 * that the subnet manager can access. Prior to the fabric being fully 3163 * configured by the subnet manager, the SMA is accessed via a well known 3164 * interface called the Subnet Management Interface (SMI). This interface 3165 * uses directed route packets to communicate with the SM to get around the 3166 * chicken and egg problem of the SM needing to know what's on the fabric 3167 * in order to configure the fabric, and needing to configure the fabric in 3168 * order to send packets to the devices on the fabric. These directed 3169 * route packets do not need the fabric fully configured in order to reach 3170 * their destination. The SMI is the only method allowed to send 3171 * directed route packets on an InfiniBand fabric. 3172 * 3173 * Return: true if the port provides an SMI. 3174 */ 3175 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u32 port_num) 3176 { 3177 return device->port_data[port_num].immutable.core_cap_flags & 3178 RDMA_CORE_CAP_IB_SMI; 3179 } 3180 3181 /** 3182 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 3183 * Communication Manager. 3184 * @device: Device to check 3185 * @port_num: Port number to check 3186 * 3187 * The InfiniBand Communication Manager is one of many pre-defined General 3188 * Service Agents (GSA) that are accessed via the General Service 3189 * Interface (GSI). It's role is to facilitate establishment of connections 3190 * between nodes as well as other management related tasks for established 3191 * connections. 3192 * 3193 * Return: true if the port supports an IB CM (this does not guarantee that 3194 * a CM is actually running however). 3195 */ 3196 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u32 port_num) 3197 { 3198 return device->port_data[port_num].immutable.core_cap_flags & 3199 RDMA_CORE_CAP_IB_CM; 3200 } 3201 3202 /** 3203 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 3204 * Communication Manager. 3205 * @device: Device to check 3206 * @port_num: Port number to check 3207 * 3208 * Similar to above, but specific to iWARP connections which have a different 3209 * managment protocol than InfiniBand. 3210 * 3211 * Return: true if the port supports an iWARP CM (this does not guarantee that 3212 * a CM is actually running however). 3213 */ 3214 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u32 port_num) 3215 { 3216 return device->port_data[port_num].immutable.core_cap_flags & 3217 RDMA_CORE_CAP_IW_CM; 3218 } 3219 3220 /** 3221 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 3222 * Subnet Administration. 3223 * @device: Device to check 3224 * @port_num: Port number to check 3225 * 3226 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 3227 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 3228 * fabrics, devices should resolve routes to other hosts by contacting the 3229 * SA to query the proper route. 3230 * 3231 * Return: true if the port should act as a client to the fabric Subnet 3232 * Administration interface. This does not imply that the SA service is 3233 * running locally. 3234 */ 3235 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u32 port_num) 3236 { 3237 return device->port_data[port_num].immutable.core_cap_flags & 3238 RDMA_CORE_CAP_IB_SA; 3239 } 3240 3241 /** 3242 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 3243 * Multicast. 3244 * @device: Device to check 3245 * @port_num: Port number to check 3246 * 3247 * InfiniBand multicast registration is more complex than normal IPv4 or 3248 * IPv6 multicast registration. Each Host Channel Adapter must register 3249 * with the Subnet Manager when it wishes to join a multicast group. It 3250 * should do so only once regardless of how many queue pairs it subscribes 3251 * to this group. And it should leave the group only after all queue pairs 3252 * attached to the group have been detached. 3253 * 3254 * Return: true if the port must undertake the additional adminstrative 3255 * overhead of registering/unregistering with the SM and tracking of the 3256 * total number of queue pairs attached to the multicast group. 3257 */ 3258 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, 3259 u32 port_num) 3260 { 3261 return rdma_cap_ib_sa(device, port_num); 3262 } 3263 3264 /** 3265 * rdma_cap_af_ib - Check if the port of device has the capability 3266 * Native Infiniband Address. 3267 * @device: Device to check 3268 * @port_num: Port number to check 3269 * 3270 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 3271 * GID. RoCE uses a different mechanism, but still generates a GID via 3272 * a prescribed mechanism and port specific data. 3273 * 3274 * Return: true if the port uses a GID address to identify devices on the 3275 * network. 3276 */ 3277 static inline bool rdma_cap_af_ib(const struct ib_device *device, u32 port_num) 3278 { 3279 return device->port_data[port_num].immutable.core_cap_flags & 3280 RDMA_CORE_CAP_AF_IB; 3281 } 3282 3283 /** 3284 * rdma_cap_eth_ah - Check if the port of device has the capability 3285 * Ethernet Address Handle. 3286 * @device: Device to check 3287 * @port_num: Port number to check 3288 * 3289 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 3290 * to fabricate GIDs over Ethernet/IP specific addresses native to the 3291 * port. Normally, packet headers are generated by the sending host 3292 * adapter, but when sending connectionless datagrams, we must manually 3293 * inject the proper headers for the fabric we are communicating over. 3294 * 3295 * Return: true if we are running as a RoCE port and must force the 3296 * addition of a Global Route Header built from our Ethernet Address 3297 * Handle into our header list for connectionless packets. 3298 */ 3299 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u32 port_num) 3300 { 3301 return device->port_data[port_num].immutable.core_cap_flags & 3302 RDMA_CORE_CAP_ETH_AH; 3303 } 3304 3305 /** 3306 * rdma_cap_opa_ah - Check if the port of device supports 3307 * OPA Address handles 3308 * @device: Device to check 3309 * @port_num: Port number to check 3310 * 3311 * Return: true if we are running on an OPA device which supports 3312 * the extended OPA addressing. 3313 */ 3314 static inline bool rdma_cap_opa_ah(struct ib_device *device, u32 port_num) 3315 { 3316 return (device->port_data[port_num].immutable.core_cap_flags & 3317 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH; 3318 } 3319 3320 /** 3321 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 3322 * 3323 * @device: Device 3324 * @port_num: Port number 3325 * 3326 * This MAD size includes the MAD headers and MAD payload. No other headers 3327 * are included. 3328 * 3329 * Return the max MAD size required by the Port. Will return 0 if the port 3330 * does not support MADs 3331 */ 3332 static inline size_t rdma_max_mad_size(const struct ib_device *device, 3333 u32 port_num) 3334 { 3335 return device->port_data[port_num].immutable.max_mad_size; 3336 } 3337 3338 /** 3339 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 3340 * @device: Device to check 3341 * @port_num: Port number to check 3342 * 3343 * RoCE GID table mechanism manages the various GIDs for a device. 3344 * 3345 * NOTE: if allocating the port's GID table has failed, this call will still 3346 * return true, but any RoCE GID table API will fail. 3347 * 3348 * Return: true if the port uses RoCE GID table mechanism in order to manage 3349 * its GIDs. 3350 */ 3351 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 3352 u32 port_num) 3353 { 3354 return rdma_protocol_roce(device, port_num) && 3355 device->ops.add_gid && device->ops.del_gid; 3356 } 3357 3358 /* 3359 * Check if the device supports READ W/ INVALIDATE. 3360 */ 3361 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num) 3362 { 3363 /* 3364 * iWarp drivers must support READ W/ INVALIDATE. No other protocol 3365 * has support for it yet. 3366 */ 3367 return rdma_protocol_iwarp(dev, port_num); 3368 } 3369 3370 /** 3371 * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not. 3372 * @device: Device 3373 * @port_num: 1 based Port number 3374 * 3375 * Return true if port is an Intel OPA port , false if not 3376 */ 3377 static inline bool rdma_core_cap_opa_port(struct ib_device *device, 3378 u32 port_num) 3379 { 3380 return (device->port_data[port_num].immutable.core_cap_flags & 3381 RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA; 3382 } 3383 3384 /** 3385 * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value. 3386 * @device: Device 3387 * @port_num: Port number 3388 * @mtu: enum value of MTU 3389 * 3390 * Return the MTU size supported by the port as an integer value. Will return 3391 * -1 if enum value of mtu is not supported. 3392 */ 3393 static inline int rdma_mtu_enum_to_int(struct ib_device *device, u32 port, 3394 int mtu) 3395 { 3396 if (rdma_core_cap_opa_port(device, port)) 3397 return opa_mtu_enum_to_int((enum opa_mtu)mtu); 3398 else 3399 return ib_mtu_enum_to_int((enum ib_mtu)mtu); 3400 } 3401 3402 /** 3403 * rdma_mtu_from_attr - Return the mtu of the port from the port attribute. 3404 * @device: Device 3405 * @port_num: Port number 3406 * @attr: port attribute 3407 * 3408 * Return the MTU size supported by the port as an integer value. 3409 */ 3410 static inline int rdma_mtu_from_attr(struct ib_device *device, u32 port, 3411 struct ib_port_attr *attr) 3412 { 3413 if (rdma_core_cap_opa_port(device, port)) 3414 return attr->phys_mtu; 3415 else 3416 return ib_mtu_enum_to_int(attr->max_mtu); 3417 } 3418 3419 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port, 3420 int state); 3421 int ib_get_vf_config(struct ib_device *device, int vf, u32 port, 3422 struct ifla_vf_info *info); 3423 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port, 3424 struct ifla_vf_stats *stats); 3425 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port, 3426 struct ifla_vf_guid *node_guid, 3427 struct ifla_vf_guid *port_guid); 3428 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid, 3429 int type); 3430 3431 int ib_query_pkey(struct ib_device *device, 3432 u32 port_num, u16 index, u16 *pkey); 3433 3434 int ib_modify_device(struct ib_device *device, 3435 int device_modify_mask, 3436 struct ib_device_modify *device_modify); 3437 3438 int ib_modify_port(struct ib_device *device, 3439 u32 port_num, int port_modify_mask, 3440 struct ib_port_modify *port_modify); 3441 3442 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 3443 u32 *port_num, u16 *index); 3444 3445 int ib_find_pkey(struct ib_device *device, 3446 u32 port_num, u16 pkey, u16 *index); 3447 3448 enum ib_pd_flags { 3449 /* 3450 * Create a memory registration for all memory in the system and place 3451 * the rkey for it into pd->unsafe_global_rkey. This can be used by 3452 * ULPs to avoid the overhead of dynamic MRs. 3453 * 3454 * This flag is generally considered unsafe and must only be used in 3455 * extremly trusted environments. Every use of it will log a warning 3456 * in the kernel log. 3457 */ 3458 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01, 3459 }; 3460 3461 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 3462 const char *caller); 3463 3464 /** 3465 * ib_alloc_pd - Allocates an unused protection domain. 3466 * @device: The device on which to allocate the protection domain. 3467 * @flags: protection domain flags 3468 * 3469 * A protection domain object provides an association between QPs, shared 3470 * receive queues, address handles, memory regions, and memory windows. 3471 * 3472 * Every PD has a local_dma_lkey which can be used as the lkey value for local 3473 * memory operations. 3474 */ 3475 #define ib_alloc_pd(device, flags) \ 3476 __ib_alloc_pd((device), (flags), KBUILD_MODNAME) 3477 3478 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata); 3479 3480 /** 3481 * ib_dealloc_pd - Deallocate kernel PD 3482 * @pd: The protection domain 3483 * 3484 * NOTE: for user PD use ib_dealloc_pd_user with valid udata! 3485 */ 3486 static inline void ib_dealloc_pd(struct ib_pd *pd) 3487 { 3488 int ret = ib_dealloc_pd_user(pd, NULL); 3489 3490 WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail"); 3491 } 3492 3493 enum rdma_create_ah_flags { 3494 /* In a sleepable context */ 3495 RDMA_CREATE_AH_SLEEPABLE = BIT(0), 3496 }; 3497 3498 /** 3499 * rdma_create_ah - Creates an address handle for the given address vector. 3500 * @pd: The protection domain associated with the address handle. 3501 * @ah_attr: The attributes of the address vector. 3502 * @flags: Create address handle flags (see enum rdma_create_ah_flags). 3503 * 3504 * The address handle is used to reference a local or global destination 3505 * in all UD QP post sends. 3506 */ 3507 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr, 3508 u32 flags); 3509 3510 /** 3511 * rdma_create_user_ah - Creates an address handle for the given address vector. 3512 * It resolves destination mac address for ah attribute of RoCE type. 3513 * @pd: The protection domain associated with the address handle. 3514 * @ah_attr: The attributes of the address vector. 3515 * @udata: pointer to user's input output buffer information need by 3516 * provider driver. 3517 * 3518 * It returns 0 on success and returns appropriate error code on error. 3519 * The address handle is used to reference a local or global destination 3520 * in all UD QP post sends. 3521 */ 3522 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd, 3523 struct rdma_ah_attr *ah_attr, 3524 struct ib_udata *udata); 3525 /** 3526 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header 3527 * work completion. 3528 * @hdr: the L3 header to parse 3529 * @net_type: type of header to parse 3530 * @sgid: place to store source gid 3531 * @dgid: place to store destination gid 3532 */ 3533 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 3534 enum rdma_network_type net_type, 3535 union ib_gid *sgid, union ib_gid *dgid); 3536 3537 /** 3538 * ib_get_rdma_header_version - Get the header version 3539 * @hdr: the L3 header to parse 3540 */ 3541 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr); 3542 3543 /** 3544 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a 3545 * work completion. 3546 * @device: Device on which the received message arrived. 3547 * @port_num: Port on which the received message arrived. 3548 * @wc: Work completion associated with the received message. 3549 * @grh: References the received global route header. This parameter is 3550 * ignored unless the work completion indicates that the GRH is valid. 3551 * @ah_attr: Returned attributes that can be used when creating an address 3552 * handle for replying to the message. 3553 * When ib_init_ah_attr_from_wc() returns success, 3554 * (a) for IB link layer it optionally contains a reference to SGID attribute 3555 * when GRH is present for IB link layer. 3556 * (b) for RoCE link layer it contains a reference to SGID attribute. 3557 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID 3558 * attributes which are initialized using ib_init_ah_attr_from_wc(). 3559 * 3560 */ 3561 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num, 3562 const struct ib_wc *wc, const struct ib_grh *grh, 3563 struct rdma_ah_attr *ah_attr); 3564 3565 /** 3566 * ib_create_ah_from_wc - Creates an address handle associated with the 3567 * sender of the specified work completion. 3568 * @pd: The protection domain associated with the address handle. 3569 * @wc: Work completion information associated with a received message. 3570 * @grh: References the received global route header. This parameter is 3571 * ignored unless the work completion indicates that the GRH is valid. 3572 * @port_num: The outbound port number to associate with the address. 3573 * 3574 * The address handle is used to reference a local or global destination 3575 * in all UD QP post sends. 3576 */ 3577 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 3578 const struct ib_grh *grh, u32 port_num); 3579 3580 /** 3581 * rdma_modify_ah - Modifies the address vector associated with an address 3582 * handle. 3583 * @ah: The address handle to modify. 3584 * @ah_attr: The new address vector attributes to associate with the 3585 * address handle. 3586 */ 3587 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3588 3589 /** 3590 * rdma_query_ah - Queries the address vector associated with an address 3591 * handle. 3592 * @ah: The address handle to query. 3593 * @ah_attr: The address vector attributes associated with the address 3594 * handle. 3595 */ 3596 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3597 3598 enum rdma_destroy_ah_flags { 3599 /* In a sleepable context */ 3600 RDMA_DESTROY_AH_SLEEPABLE = BIT(0), 3601 }; 3602 3603 /** 3604 * rdma_destroy_ah_user - Destroys an address handle. 3605 * @ah: The address handle to destroy. 3606 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3607 * @udata: Valid user data or NULL for kernel objects 3608 */ 3609 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata); 3610 3611 /** 3612 * rdma_destroy_ah - Destroys an kernel address handle. 3613 * @ah: The address handle to destroy. 3614 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3615 * 3616 * NOTE: for user ah use rdma_destroy_ah_user with valid udata! 3617 */ 3618 static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags) 3619 { 3620 int ret = rdma_destroy_ah_user(ah, flags, NULL); 3621 3622 WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail"); 3623 } 3624 3625 struct ib_srq *ib_create_srq_user(struct ib_pd *pd, 3626 struct ib_srq_init_attr *srq_init_attr, 3627 struct ib_usrq_object *uobject, 3628 struct ib_udata *udata); 3629 static inline struct ib_srq * 3630 ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr) 3631 { 3632 if (!pd->device->ops.create_srq) 3633 return ERR_PTR(-EOPNOTSUPP); 3634 3635 return ib_create_srq_user(pd, srq_init_attr, NULL, NULL); 3636 } 3637 3638 /** 3639 * ib_modify_srq - Modifies the attributes for the specified SRQ. 3640 * @srq: The SRQ to modify. 3641 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 3642 * the current values of selected SRQ attributes are returned. 3643 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 3644 * are being modified. 3645 * 3646 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 3647 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 3648 * the number of receives queued drops below the limit. 3649 */ 3650 int ib_modify_srq(struct ib_srq *srq, 3651 struct ib_srq_attr *srq_attr, 3652 enum ib_srq_attr_mask srq_attr_mask); 3653 3654 /** 3655 * ib_query_srq - Returns the attribute list and current values for the 3656 * specified SRQ. 3657 * @srq: The SRQ to query. 3658 * @srq_attr: The attributes of the specified SRQ. 3659 */ 3660 int ib_query_srq(struct ib_srq *srq, 3661 struct ib_srq_attr *srq_attr); 3662 3663 /** 3664 * ib_destroy_srq_user - Destroys the specified SRQ. 3665 * @srq: The SRQ to destroy. 3666 * @udata: Valid user data or NULL for kernel objects 3667 */ 3668 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata); 3669 3670 /** 3671 * ib_destroy_srq - Destroys the specified kernel SRQ. 3672 * @srq: The SRQ to destroy. 3673 * 3674 * NOTE: for user srq use ib_destroy_srq_user with valid udata! 3675 */ 3676 static inline void ib_destroy_srq(struct ib_srq *srq) 3677 { 3678 int ret = ib_destroy_srq_user(srq, NULL); 3679 3680 WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail"); 3681 } 3682 3683 /** 3684 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 3685 * @srq: The SRQ to post the work request on. 3686 * @recv_wr: A list of work requests to post on the receive queue. 3687 * @bad_recv_wr: On an immediate failure, this parameter will reference 3688 * the work request that failed to be posted on the QP. 3689 */ 3690 static inline int ib_post_srq_recv(struct ib_srq *srq, 3691 const struct ib_recv_wr *recv_wr, 3692 const struct ib_recv_wr **bad_recv_wr) 3693 { 3694 const struct ib_recv_wr *dummy; 3695 3696 return srq->device->ops.post_srq_recv(srq, recv_wr, 3697 bad_recv_wr ? : &dummy); 3698 } 3699 3700 struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd, 3701 struct ib_qp_init_attr *qp_init_attr, 3702 const char *caller); 3703 /** 3704 * ib_create_qp - Creates a kernel QP associated with the specific protection 3705 * domain. 3706 * @pd: The protection domain associated with the QP. 3707 * @init_attr: A list of initial attributes required to create the 3708 * QP. If QP creation succeeds, then the attributes are updated to 3709 * the actual capabilities of the created QP. 3710 */ 3711 static inline struct ib_qp *ib_create_qp(struct ib_pd *pd, 3712 struct ib_qp_init_attr *init_attr) 3713 { 3714 return ib_create_qp_kernel(pd, init_attr, KBUILD_MODNAME); 3715 } 3716 3717 /** 3718 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 3719 * @qp: The QP to modify. 3720 * @attr: On input, specifies the QP attributes to modify. On output, 3721 * the current values of selected QP attributes are returned. 3722 * @attr_mask: A bit-mask used to specify which attributes of the QP 3723 * are being modified. 3724 * @udata: pointer to user's input output buffer information 3725 * are being modified. 3726 * It returns 0 on success and returns appropriate error code on error. 3727 */ 3728 int ib_modify_qp_with_udata(struct ib_qp *qp, 3729 struct ib_qp_attr *attr, 3730 int attr_mask, 3731 struct ib_udata *udata); 3732 3733 /** 3734 * ib_modify_qp - Modifies the attributes for the specified QP and then 3735 * transitions the QP to the given state. 3736 * @qp: The QP to modify. 3737 * @qp_attr: On input, specifies the QP attributes to modify. On output, 3738 * the current values of selected QP attributes are returned. 3739 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 3740 * are being modified. 3741 */ 3742 int ib_modify_qp(struct ib_qp *qp, 3743 struct ib_qp_attr *qp_attr, 3744 int qp_attr_mask); 3745 3746 /** 3747 * ib_query_qp - Returns the attribute list and current values for the 3748 * specified QP. 3749 * @qp: The QP to query. 3750 * @qp_attr: The attributes of the specified QP. 3751 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 3752 * @qp_init_attr: Additional attributes of the selected QP. 3753 * 3754 * The qp_attr_mask may be used to limit the query to gathering only the 3755 * selected attributes. 3756 */ 3757 int ib_query_qp(struct ib_qp *qp, 3758 struct ib_qp_attr *qp_attr, 3759 int qp_attr_mask, 3760 struct ib_qp_init_attr *qp_init_attr); 3761 3762 /** 3763 * ib_destroy_qp - Destroys the specified QP. 3764 * @qp: The QP to destroy. 3765 * @udata: Valid udata or NULL for kernel objects 3766 */ 3767 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata); 3768 3769 /** 3770 * ib_destroy_qp - Destroys the specified kernel QP. 3771 * @qp: The QP to destroy. 3772 * 3773 * NOTE: for user qp use ib_destroy_qp_user with valid udata! 3774 */ 3775 static inline int ib_destroy_qp(struct ib_qp *qp) 3776 { 3777 return ib_destroy_qp_user(qp, NULL); 3778 } 3779 3780 /** 3781 * ib_open_qp - Obtain a reference to an existing sharable QP. 3782 * @xrcd - XRC domain 3783 * @qp_open_attr: Attributes identifying the QP to open. 3784 * 3785 * Returns a reference to a sharable QP. 3786 */ 3787 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 3788 struct ib_qp_open_attr *qp_open_attr); 3789 3790 /** 3791 * ib_close_qp - Release an external reference to a QP. 3792 * @qp: The QP handle to release 3793 * 3794 * The opened QP handle is released by the caller. The underlying 3795 * shared QP is not destroyed until all internal references are released. 3796 */ 3797 int ib_close_qp(struct ib_qp *qp); 3798 3799 /** 3800 * ib_post_send - Posts a list of work requests to the send queue of 3801 * the specified QP. 3802 * @qp: The QP to post the work request on. 3803 * @send_wr: A list of work requests to post on the send queue. 3804 * @bad_send_wr: On an immediate failure, this parameter will reference 3805 * the work request that failed to be posted on the QP. 3806 * 3807 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 3808 * error is returned, the QP state shall not be affected, 3809 * ib_post_send() will return an immediate error after queueing any 3810 * earlier work requests in the list. 3811 */ 3812 static inline int ib_post_send(struct ib_qp *qp, 3813 const struct ib_send_wr *send_wr, 3814 const struct ib_send_wr **bad_send_wr) 3815 { 3816 const struct ib_send_wr *dummy; 3817 3818 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy); 3819 } 3820 3821 /** 3822 * ib_post_recv - Posts a list of work requests to the receive queue of 3823 * the specified QP. 3824 * @qp: The QP to post the work request on. 3825 * @recv_wr: A list of work requests to post on the receive queue. 3826 * @bad_recv_wr: On an immediate failure, this parameter will reference 3827 * the work request that failed to be posted on the QP. 3828 */ 3829 static inline int ib_post_recv(struct ib_qp *qp, 3830 const struct ib_recv_wr *recv_wr, 3831 const struct ib_recv_wr **bad_recv_wr) 3832 { 3833 const struct ib_recv_wr *dummy; 3834 3835 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy); 3836 } 3837 3838 struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe, 3839 int comp_vector, enum ib_poll_context poll_ctx, 3840 const char *caller); 3841 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private, 3842 int nr_cqe, int comp_vector, 3843 enum ib_poll_context poll_ctx) 3844 { 3845 return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx, 3846 KBUILD_MODNAME); 3847 } 3848 3849 struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private, 3850 int nr_cqe, enum ib_poll_context poll_ctx, 3851 const char *caller); 3852 3853 /** 3854 * ib_alloc_cq_any: Allocate kernel CQ 3855 * @dev: The IB device 3856 * @private: Private data attached to the CQE 3857 * @nr_cqe: Number of CQEs in the CQ 3858 * @poll_ctx: Context used for polling the CQ 3859 */ 3860 static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev, 3861 void *private, int nr_cqe, 3862 enum ib_poll_context poll_ctx) 3863 { 3864 return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx, 3865 KBUILD_MODNAME); 3866 } 3867 3868 void ib_free_cq(struct ib_cq *cq); 3869 int ib_process_cq_direct(struct ib_cq *cq, int budget); 3870 3871 /** 3872 * ib_create_cq - Creates a CQ on the specified device. 3873 * @device: The device on which to create the CQ. 3874 * @comp_handler: A user-specified callback that is invoked when a 3875 * completion event occurs on the CQ. 3876 * @event_handler: A user-specified callback that is invoked when an 3877 * asynchronous event not associated with a completion occurs on the CQ. 3878 * @cq_context: Context associated with the CQ returned to the user via 3879 * the associated completion and event handlers. 3880 * @cq_attr: The attributes the CQ should be created upon. 3881 * 3882 * Users can examine the cq structure to determine the actual CQ size. 3883 */ 3884 struct ib_cq *__ib_create_cq(struct ib_device *device, 3885 ib_comp_handler comp_handler, 3886 void (*event_handler)(struct ib_event *, void *), 3887 void *cq_context, 3888 const struct ib_cq_init_attr *cq_attr, 3889 const char *caller); 3890 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \ 3891 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME) 3892 3893 /** 3894 * ib_resize_cq - Modifies the capacity of the CQ. 3895 * @cq: The CQ to resize. 3896 * @cqe: The minimum size of the CQ. 3897 * 3898 * Users can examine the cq structure to determine the actual CQ size. 3899 */ 3900 int ib_resize_cq(struct ib_cq *cq, int cqe); 3901 3902 /** 3903 * rdma_set_cq_moderation - Modifies moderation params of the CQ 3904 * @cq: The CQ to modify. 3905 * @cq_count: number of CQEs that will trigger an event 3906 * @cq_period: max period of time in usec before triggering an event 3907 * 3908 */ 3909 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period); 3910 3911 /** 3912 * ib_destroy_cq_user - Destroys the specified CQ. 3913 * @cq: The CQ to destroy. 3914 * @udata: Valid user data or NULL for kernel objects 3915 */ 3916 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata); 3917 3918 /** 3919 * ib_destroy_cq - Destroys the specified kernel CQ. 3920 * @cq: The CQ to destroy. 3921 * 3922 * NOTE: for user cq use ib_destroy_cq_user with valid udata! 3923 */ 3924 static inline void ib_destroy_cq(struct ib_cq *cq) 3925 { 3926 int ret = ib_destroy_cq_user(cq, NULL); 3927 3928 WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail"); 3929 } 3930 3931 /** 3932 * ib_poll_cq - poll a CQ for completion(s) 3933 * @cq:the CQ being polled 3934 * @num_entries:maximum number of completions to return 3935 * @wc:array of at least @num_entries &struct ib_wc where completions 3936 * will be returned 3937 * 3938 * Poll a CQ for (possibly multiple) completions. If the return value 3939 * is < 0, an error occurred. If the return value is >= 0, it is the 3940 * number of completions returned. If the return value is 3941 * non-negative and < num_entries, then the CQ was emptied. 3942 */ 3943 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 3944 struct ib_wc *wc) 3945 { 3946 return cq->device->ops.poll_cq(cq, num_entries, wc); 3947 } 3948 3949 /** 3950 * ib_req_notify_cq - Request completion notification on a CQ. 3951 * @cq: The CQ to generate an event for. 3952 * @flags: 3953 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 3954 * to request an event on the next solicited event or next work 3955 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 3956 * may also be |ed in to request a hint about missed events, as 3957 * described below. 3958 * 3959 * Return Value: 3960 * < 0 means an error occurred while requesting notification 3961 * == 0 means notification was requested successfully, and if 3962 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 3963 * were missed and it is safe to wait for another event. In 3964 * this case is it guaranteed that any work completions added 3965 * to the CQ since the last CQ poll will trigger a completion 3966 * notification event. 3967 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 3968 * in. It means that the consumer must poll the CQ again to 3969 * make sure it is empty to avoid missing an event because of a 3970 * race between requesting notification and an entry being 3971 * added to the CQ. This return value means it is possible 3972 * (but not guaranteed) that a work completion has been added 3973 * to the CQ since the last poll without triggering a 3974 * completion notification event. 3975 */ 3976 static inline int ib_req_notify_cq(struct ib_cq *cq, 3977 enum ib_cq_notify_flags flags) 3978 { 3979 return cq->device->ops.req_notify_cq(cq, flags); 3980 } 3981 3982 struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe, 3983 int comp_vector_hint, 3984 enum ib_poll_context poll_ctx); 3985 3986 void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe); 3987 3988 /* 3989 * Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to 3990 * NULL. This causes the ib_dma* helpers to just stash the kernel virtual 3991 * address into the dma address. 3992 */ 3993 static inline bool ib_uses_virt_dma(struct ib_device *dev) 3994 { 3995 return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device; 3996 } 3997 3998 /** 3999 * ib_dma_mapping_error - check a DMA addr for error 4000 * @dev: The device for which the dma_addr was created 4001 * @dma_addr: The DMA address to check 4002 */ 4003 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 4004 { 4005 if (ib_uses_virt_dma(dev)) 4006 return 0; 4007 return dma_mapping_error(dev->dma_device, dma_addr); 4008 } 4009 4010 /** 4011 * ib_dma_map_single - Map a kernel virtual address to DMA address 4012 * @dev: The device for which the dma_addr is to be created 4013 * @cpu_addr: The kernel virtual address 4014 * @size: The size of the region in bytes 4015 * @direction: The direction of the DMA 4016 */ 4017 static inline u64 ib_dma_map_single(struct ib_device *dev, 4018 void *cpu_addr, size_t size, 4019 enum dma_data_direction direction) 4020 { 4021 if (ib_uses_virt_dma(dev)) 4022 return (uintptr_t)cpu_addr; 4023 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 4024 } 4025 4026 /** 4027 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 4028 * @dev: The device for which the DMA address was created 4029 * @addr: The DMA address 4030 * @size: The size of the region in bytes 4031 * @direction: The direction of the DMA 4032 */ 4033 static inline void ib_dma_unmap_single(struct ib_device *dev, 4034 u64 addr, size_t size, 4035 enum dma_data_direction direction) 4036 { 4037 if (!ib_uses_virt_dma(dev)) 4038 dma_unmap_single(dev->dma_device, addr, size, direction); 4039 } 4040 4041 /** 4042 * ib_dma_map_page - Map a physical page to DMA address 4043 * @dev: The device for which the dma_addr is to be created 4044 * @page: The page to be mapped 4045 * @offset: The offset within the page 4046 * @size: The size of the region in bytes 4047 * @direction: The direction of the DMA 4048 */ 4049 static inline u64 ib_dma_map_page(struct ib_device *dev, 4050 struct page *page, 4051 unsigned long offset, 4052 size_t size, 4053 enum dma_data_direction direction) 4054 { 4055 if (ib_uses_virt_dma(dev)) 4056 return (uintptr_t)(page_address(page) + offset); 4057 return dma_map_page(dev->dma_device, page, offset, size, direction); 4058 } 4059 4060 /** 4061 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 4062 * @dev: The device for which the DMA address was created 4063 * @addr: The DMA address 4064 * @size: The size of the region in bytes 4065 * @direction: The direction of the DMA 4066 */ 4067 static inline void ib_dma_unmap_page(struct ib_device *dev, 4068 u64 addr, size_t size, 4069 enum dma_data_direction direction) 4070 { 4071 if (!ib_uses_virt_dma(dev)) 4072 dma_unmap_page(dev->dma_device, addr, size, direction); 4073 } 4074 4075 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents); 4076 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 4077 struct scatterlist *sg, int nents, 4078 enum dma_data_direction direction, 4079 unsigned long dma_attrs) 4080 { 4081 if (ib_uses_virt_dma(dev)) 4082 return ib_dma_virt_map_sg(dev, sg, nents); 4083 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, 4084 dma_attrs); 4085 } 4086 4087 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 4088 struct scatterlist *sg, int nents, 4089 enum dma_data_direction direction, 4090 unsigned long dma_attrs) 4091 { 4092 if (!ib_uses_virt_dma(dev)) 4093 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, 4094 dma_attrs); 4095 } 4096 4097 /** 4098 * ib_dma_map_sgtable_attrs - Map a scatter/gather table to DMA addresses 4099 * @dev: The device for which the DMA addresses are to be created 4100 * @sg: The sg_table object describing the buffer 4101 * @direction: The direction of the DMA 4102 * @attrs: Optional DMA attributes for the map operation 4103 */ 4104 static inline int ib_dma_map_sgtable_attrs(struct ib_device *dev, 4105 struct sg_table *sgt, 4106 enum dma_data_direction direction, 4107 unsigned long dma_attrs) 4108 { 4109 int nents; 4110 4111 if (ib_uses_virt_dma(dev)) { 4112 nents = ib_dma_virt_map_sg(dev, sgt->sgl, sgt->orig_nents); 4113 if (!nents) 4114 return -EIO; 4115 sgt->nents = nents; 4116 return 0; 4117 } 4118 return dma_map_sgtable(dev->dma_device, sgt, direction, dma_attrs); 4119 } 4120 4121 static inline void ib_dma_unmap_sgtable_attrs(struct ib_device *dev, 4122 struct sg_table *sgt, 4123 enum dma_data_direction direction, 4124 unsigned long dma_attrs) 4125 { 4126 if (!ib_uses_virt_dma(dev)) 4127 dma_unmap_sgtable(dev->dma_device, sgt, direction, dma_attrs); 4128 } 4129 4130 /** 4131 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 4132 * @dev: The device for which the DMA addresses are to be created 4133 * @sg: The array of scatter/gather entries 4134 * @nents: The number of scatter/gather entries 4135 * @direction: The direction of the DMA 4136 */ 4137 static inline int ib_dma_map_sg(struct ib_device *dev, 4138 struct scatterlist *sg, int nents, 4139 enum dma_data_direction direction) 4140 { 4141 return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0); 4142 } 4143 4144 /** 4145 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 4146 * @dev: The device for which the DMA addresses were created 4147 * @sg: The array of scatter/gather entries 4148 * @nents: The number of scatter/gather entries 4149 * @direction: The direction of the DMA 4150 */ 4151 static inline void ib_dma_unmap_sg(struct ib_device *dev, 4152 struct scatterlist *sg, int nents, 4153 enum dma_data_direction direction) 4154 { 4155 ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0); 4156 } 4157 4158 /** 4159 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer 4160 * @dev: The device to query 4161 * 4162 * The returned value represents a size in bytes. 4163 */ 4164 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev) 4165 { 4166 if (ib_uses_virt_dma(dev)) 4167 return UINT_MAX; 4168 return dma_get_max_seg_size(dev->dma_device); 4169 } 4170 4171 /** 4172 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 4173 * @dev: The device for which the DMA address was created 4174 * @addr: The DMA address 4175 * @size: The size of the region in bytes 4176 * @dir: The direction of the DMA 4177 */ 4178 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 4179 u64 addr, 4180 size_t size, 4181 enum dma_data_direction dir) 4182 { 4183 if (!ib_uses_virt_dma(dev)) 4184 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 4185 } 4186 4187 /** 4188 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 4189 * @dev: The device for which the DMA address was created 4190 * @addr: The DMA address 4191 * @size: The size of the region in bytes 4192 * @dir: The direction of the DMA 4193 */ 4194 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 4195 u64 addr, 4196 size_t size, 4197 enum dma_data_direction dir) 4198 { 4199 if (!ib_uses_virt_dma(dev)) 4200 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 4201 } 4202 4203 /* ib_reg_user_mr - register a memory region for virtual addresses from kernel 4204 * space. This function should be called when 'current' is the owning MM. 4205 */ 4206 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 4207 u64 virt_addr, int mr_access_flags); 4208 4209 /* ib_advise_mr - give an advice about an address range in a memory region */ 4210 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice, 4211 u32 flags, struct ib_sge *sg_list, u32 num_sge); 4212 /** 4213 * ib_dereg_mr_user - Deregisters a memory region and removes it from the 4214 * HCA translation table. 4215 * @mr: The memory region to deregister. 4216 * @udata: Valid user data or NULL for kernel object 4217 * 4218 * This function can fail, if the memory region has memory windows bound to it. 4219 */ 4220 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata); 4221 4222 /** 4223 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the 4224 * HCA translation table. 4225 * @mr: The memory region to deregister. 4226 * 4227 * This function can fail, if the memory region has memory windows bound to it. 4228 * 4229 * NOTE: for user mr use ib_dereg_mr_user with valid udata! 4230 */ 4231 static inline int ib_dereg_mr(struct ib_mr *mr) 4232 { 4233 return ib_dereg_mr_user(mr, NULL); 4234 } 4235 4236 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 4237 u32 max_num_sg); 4238 4239 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd, 4240 u32 max_num_data_sg, 4241 u32 max_num_meta_sg); 4242 4243 /** 4244 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 4245 * R_Key and L_Key. 4246 * @mr - struct ib_mr pointer to be updated. 4247 * @newkey - new key to be used. 4248 */ 4249 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 4250 { 4251 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 4252 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 4253 } 4254 4255 /** 4256 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 4257 * for calculating a new rkey for type 2 memory windows. 4258 * @rkey - the rkey to increment. 4259 */ 4260 static inline u32 ib_inc_rkey(u32 rkey) 4261 { 4262 const u32 mask = 0x000000ff; 4263 return ((rkey + 1) & mask) | (rkey & ~mask); 4264 } 4265 4266 /** 4267 * ib_attach_mcast - Attaches the specified QP to a multicast group. 4268 * @qp: QP to attach to the multicast group. The QP must be type 4269 * IB_QPT_UD. 4270 * @gid: Multicast group GID. 4271 * @lid: Multicast group LID in host byte order. 4272 * 4273 * In order to send and receive multicast packets, subnet 4274 * administration must have created the multicast group and configured 4275 * the fabric appropriately. The port associated with the specified 4276 * QP must also be a member of the multicast group. 4277 */ 4278 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 4279 4280 /** 4281 * ib_detach_mcast - Detaches the specified QP from a multicast group. 4282 * @qp: QP to detach from the multicast group. 4283 * @gid: Multicast group GID. 4284 * @lid: Multicast group LID in host byte order. 4285 */ 4286 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 4287 4288 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device, 4289 struct inode *inode, struct ib_udata *udata); 4290 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata); 4291 4292 static inline int ib_check_mr_access(struct ib_device *ib_dev, 4293 unsigned int flags) 4294 { 4295 /* 4296 * Local write permission is required if remote write or 4297 * remote atomic permission is also requested. 4298 */ 4299 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 4300 !(flags & IB_ACCESS_LOCAL_WRITE)) 4301 return -EINVAL; 4302 4303 if (flags & ~IB_ACCESS_SUPPORTED) 4304 return -EINVAL; 4305 4306 if (flags & IB_ACCESS_ON_DEMAND && 4307 !(ib_dev->attrs.device_cap_flags & IB_DEVICE_ON_DEMAND_PAGING)) 4308 return -EINVAL; 4309 return 0; 4310 } 4311 4312 static inline bool ib_access_writable(int access_flags) 4313 { 4314 /* 4315 * We have writable memory backing the MR if any of the following 4316 * access flags are set. "Local write" and "remote write" obviously 4317 * require write access. "Remote atomic" can do things like fetch and 4318 * add, which will modify memory, and "MW bind" can change permissions 4319 * by binding a window. 4320 */ 4321 return access_flags & 4322 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | 4323 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND); 4324 } 4325 4326 /** 4327 * ib_check_mr_status: lightweight check of MR status. 4328 * This routine may provide status checks on a selected 4329 * ib_mr. first use is for signature status check. 4330 * 4331 * @mr: A memory region. 4332 * @check_mask: Bitmask of which checks to perform from 4333 * ib_mr_status_check enumeration. 4334 * @mr_status: The container of relevant status checks. 4335 * failed checks will be indicated in the status bitmask 4336 * and the relevant info shall be in the error item. 4337 */ 4338 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 4339 struct ib_mr_status *mr_status); 4340 4341 /** 4342 * ib_device_try_get: Hold a registration lock 4343 * device: The device to lock 4344 * 4345 * A device under an active registration lock cannot become unregistered. It 4346 * is only possible to obtain a registration lock on a device that is fully 4347 * registered, otherwise this function returns false. 4348 * 4349 * The registration lock is only necessary for actions which require the 4350 * device to still be registered. Uses that only require the device pointer to 4351 * be valid should use get_device(&ibdev->dev) to hold the memory. 4352 * 4353 */ 4354 static inline bool ib_device_try_get(struct ib_device *dev) 4355 { 4356 return refcount_inc_not_zero(&dev->refcount); 4357 } 4358 4359 void ib_device_put(struct ib_device *device); 4360 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev, 4361 enum rdma_driver_id driver_id); 4362 struct ib_device *ib_device_get_by_name(const char *name, 4363 enum rdma_driver_id driver_id); 4364 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u32 port, 4365 u16 pkey, const union ib_gid *gid, 4366 const struct sockaddr *addr); 4367 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev, 4368 unsigned int port); 4369 struct net_device *ib_device_netdev(struct ib_device *dev, u32 port); 4370 4371 struct ib_wq *ib_create_wq(struct ib_pd *pd, 4372 struct ib_wq_init_attr *init_attr); 4373 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata); 4374 4375 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 4376 unsigned int *sg_offset, unsigned int page_size); 4377 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg, 4378 int data_sg_nents, unsigned int *data_sg_offset, 4379 struct scatterlist *meta_sg, int meta_sg_nents, 4380 unsigned int *meta_sg_offset, unsigned int page_size); 4381 4382 static inline int 4383 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 4384 unsigned int *sg_offset, unsigned int page_size) 4385 { 4386 int n; 4387 4388 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size); 4389 mr->iova = 0; 4390 4391 return n; 4392 } 4393 4394 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 4395 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64)); 4396 4397 void ib_drain_rq(struct ib_qp *qp); 4398 void ib_drain_sq(struct ib_qp *qp); 4399 void ib_drain_qp(struct ib_qp *qp); 4400 4401 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed, 4402 u8 *width); 4403 4404 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr) 4405 { 4406 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE) 4407 return attr->roce.dmac; 4408 return NULL; 4409 } 4410 4411 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid) 4412 { 4413 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4414 attr->ib.dlid = (u16)dlid; 4415 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4416 attr->opa.dlid = dlid; 4417 } 4418 4419 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr) 4420 { 4421 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4422 return attr->ib.dlid; 4423 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4424 return attr->opa.dlid; 4425 return 0; 4426 } 4427 4428 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl) 4429 { 4430 attr->sl = sl; 4431 } 4432 4433 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr) 4434 { 4435 return attr->sl; 4436 } 4437 4438 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr, 4439 u8 src_path_bits) 4440 { 4441 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4442 attr->ib.src_path_bits = src_path_bits; 4443 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4444 attr->opa.src_path_bits = src_path_bits; 4445 } 4446 4447 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr) 4448 { 4449 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4450 return attr->ib.src_path_bits; 4451 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4452 return attr->opa.src_path_bits; 4453 return 0; 4454 } 4455 4456 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr, 4457 bool make_grd) 4458 { 4459 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4460 attr->opa.make_grd = make_grd; 4461 } 4462 4463 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr) 4464 { 4465 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4466 return attr->opa.make_grd; 4467 return false; 4468 } 4469 4470 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u32 port_num) 4471 { 4472 attr->port_num = port_num; 4473 } 4474 4475 static inline u32 rdma_ah_get_port_num(const struct rdma_ah_attr *attr) 4476 { 4477 return attr->port_num; 4478 } 4479 4480 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr, 4481 u8 static_rate) 4482 { 4483 attr->static_rate = static_rate; 4484 } 4485 4486 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr) 4487 { 4488 return attr->static_rate; 4489 } 4490 4491 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr, 4492 enum ib_ah_flags flag) 4493 { 4494 attr->ah_flags = flag; 4495 } 4496 4497 static inline enum ib_ah_flags 4498 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr) 4499 { 4500 return attr->ah_flags; 4501 } 4502 4503 static inline const struct ib_global_route 4504 *rdma_ah_read_grh(const struct rdma_ah_attr *attr) 4505 { 4506 return &attr->grh; 4507 } 4508 4509 /*To retrieve and modify the grh */ 4510 static inline struct ib_global_route 4511 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr) 4512 { 4513 return &attr->grh; 4514 } 4515 4516 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid) 4517 { 4518 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4519 4520 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid)); 4521 } 4522 4523 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr, 4524 __be64 prefix) 4525 { 4526 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4527 4528 grh->dgid.global.subnet_prefix = prefix; 4529 } 4530 4531 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr, 4532 __be64 if_id) 4533 { 4534 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4535 4536 grh->dgid.global.interface_id = if_id; 4537 } 4538 4539 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr, 4540 union ib_gid *dgid, u32 flow_label, 4541 u8 sgid_index, u8 hop_limit, 4542 u8 traffic_class) 4543 { 4544 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4545 4546 attr->ah_flags = IB_AH_GRH; 4547 if (dgid) 4548 grh->dgid = *dgid; 4549 grh->flow_label = flow_label; 4550 grh->sgid_index = sgid_index; 4551 grh->hop_limit = hop_limit; 4552 grh->traffic_class = traffic_class; 4553 grh->sgid_attr = NULL; 4554 } 4555 4556 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr); 4557 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid, 4558 u32 flow_label, u8 hop_limit, u8 traffic_class, 4559 const struct ib_gid_attr *sgid_attr); 4560 void rdma_copy_ah_attr(struct rdma_ah_attr *dest, 4561 const struct rdma_ah_attr *src); 4562 void rdma_replace_ah_attr(struct rdma_ah_attr *old, 4563 const struct rdma_ah_attr *new); 4564 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src); 4565 4566 /** 4567 * rdma_ah_find_type - Return address handle type. 4568 * 4569 * @dev: Device to be checked 4570 * @port_num: Port number 4571 */ 4572 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev, 4573 u32 port_num) 4574 { 4575 if (rdma_protocol_roce(dev, port_num)) 4576 return RDMA_AH_ATTR_TYPE_ROCE; 4577 if (rdma_protocol_ib(dev, port_num)) { 4578 if (rdma_cap_opa_ah(dev, port_num)) 4579 return RDMA_AH_ATTR_TYPE_OPA; 4580 return RDMA_AH_ATTR_TYPE_IB; 4581 } 4582 4583 return RDMA_AH_ATTR_TYPE_UNDEFINED; 4584 } 4585 4586 /** 4587 * ib_lid_cpu16 - Return lid in 16bit CPU encoding. 4588 * In the current implementation the only way to get 4589 * get the 32bit lid is from other sources for OPA. 4590 * For IB, lids will always be 16bits so cast the 4591 * value accordingly. 4592 * 4593 * @lid: A 32bit LID 4594 */ 4595 static inline u16 ib_lid_cpu16(u32 lid) 4596 { 4597 WARN_ON_ONCE(lid & 0xFFFF0000); 4598 return (u16)lid; 4599 } 4600 4601 /** 4602 * ib_lid_be16 - Return lid in 16bit BE encoding. 4603 * 4604 * @lid: A 32bit LID 4605 */ 4606 static inline __be16 ib_lid_be16(u32 lid) 4607 { 4608 WARN_ON_ONCE(lid & 0xFFFF0000); 4609 return cpu_to_be16((u16)lid); 4610 } 4611 4612 /** 4613 * ib_get_vector_affinity - Get the affinity mappings of a given completion 4614 * vector 4615 * @device: the rdma device 4616 * @comp_vector: index of completion vector 4617 * 4618 * Returns NULL on failure, otherwise a corresponding cpu map of the 4619 * completion vector (returns all-cpus map if the device driver doesn't 4620 * implement get_vector_affinity). 4621 */ 4622 static inline const struct cpumask * 4623 ib_get_vector_affinity(struct ib_device *device, int comp_vector) 4624 { 4625 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors || 4626 !device->ops.get_vector_affinity) 4627 return NULL; 4628 4629 return device->ops.get_vector_affinity(device, comp_vector); 4630 4631 } 4632 4633 /** 4634 * rdma_roce_rescan_device - Rescan all of the network devices in the system 4635 * and add their gids, as needed, to the relevant RoCE devices. 4636 * 4637 * @device: the rdma device 4638 */ 4639 void rdma_roce_rescan_device(struct ib_device *ibdev); 4640 4641 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile); 4642 4643 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs); 4644 4645 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num, 4646 enum rdma_netdev_t type, const char *name, 4647 unsigned char name_assign_type, 4648 void (*setup)(struct net_device *)); 4649 4650 int rdma_init_netdev(struct ib_device *device, u32 port_num, 4651 enum rdma_netdev_t type, const char *name, 4652 unsigned char name_assign_type, 4653 void (*setup)(struct net_device *), 4654 struct net_device *netdev); 4655 4656 /** 4657 * rdma_device_to_ibdev - Get ib_device pointer from device pointer 4658 * 4659 * @device: device pointer for which ib_device pointer to retrieve 4660 * 4661 * rdma_device_to_ibdev() retrieves ib_device pointer from device. 4662 * 4663 */ 4664 static inline struct ib_device *rdma_device_to_ibdev(struct device *device) 4665 { 4666 struct ib_core_device *coredev = 4667 container_of(device, struct ib_core_device, dev); 4668 4669 return coredev->owner; 4670 } 4671 4672 /** 4673 * ibdev_to_node - return the NUMA node for a given ib_device 4674 * @dev: device to get the NUMA node for. 4675 */ 4676 static inline int ibdev_to_node(struct ib_device *ibdev) 4677 { 4678 struct device *parent = ibdev->dev.parent; 4679 4680 if (!parent) 4681 return NUMA_NO_NODE; 4682 return dev_to_node(parent); 4683 } 4684 4685 /** 4686 * rdma_device_to_drv_device - Helper macro to reach back to driver's 4687 * ib_device holder structure from device pointer. 4688 * 4689 * NOTE: New drivers should not make use of this API; This API is only for 4690 * existing drivers who have exposed sysfs entries using 4691 * ops->device_group. 4692 */ 4693 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \ 4694 container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member) 4695 4696 bool rdma_dev_access_netns(const struct ib_device *device, 4697 const struct net *net); 4698 4699 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000) 4700 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF) 4701 #define IB_GRH_FLOWLABEL_MASK (0x000FFFFF) 4702 4703 /** 4704 * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based 4705 * on the flow_label 4706 * 4707 * This function will convert the 20 bit flow_label input to a valid RoCE v2 4708 * UDP src port 14 bit value. All RoCE V2 drivers should use this same 4709 * convention. 4710 */ 4711 static inline u16 rdma_flow_label_to_udp_sport(u32 fl) 4712 { 4713 u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000; 4714 4715 fl_low ^= fl_high >> 14; 4716 return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN); 4717 } 4718 4719 /** 4720 * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on 4721 * local and remote qpn values 4722 * 4723 * This function folded the multiplication results of two qpns, 24 bit each, 4724 * fields, and converts it to a 20 bit results. 4725 * 4726 * This function will create symmetric flow_label value based on the local 4727 * and remote qpn values. this will allow both the requester and responder 4728 * to calculate the same flow_label for a given connection. 4729 * 4730 * This helper function should be used by driver in case the upper layer 4731 * provide a zero flow_label value. This is to improve entropy of RDMA 4732 * traffic in the network. 4733 */ 4734 static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn) 4735 { 4736 u64 v = (u64)lqpn * rqpn; 4737 4738 v ^= v >> 20; 4739 v ^= v >> 40; 4740 4741 return (u32)(v & IB_GRH_FLOWLABEL_MASK); 4742 } 4743 4744 /** 4745 * rdma_get_udp_sport - Calculate and set UDP source port based on the flow 4746 * label. If flow label is not defined in GRH then 4747 * calculate it based on lqpn/rqpn. 4748 * 4749 * @fl: flow label from GRH 4750 * @lqpn: local qp number 4751 * @rqpn: remote qp number 4752 */ 4753 static inline u16 rdma_get_udp_sport(u32 fl, u32 lqpn, u32 rqpn) 4754 { 4755 if (!fl) 4756 fl = rdma_calc_flow_label(lqpn, rqpn); 4757 4758 return rdma_flow_label_to_udp_sport(fl); 4759 } 4760 4761 const struct ib_port_immutable* 4762 ib_port_immutable_read(struct ib_device *dev, unsigned int port); 4763 #endif /* IB_VERBS_H */ 4764