1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #if !defined(IB_VERBS_H) 40 #define IB_VERBS_H 41 42 #include <linux/types.h> 43 #include <linux/device.h> 44 #include <linux/mm.h> 45 #include <linux/dma-mapping.h> 46 #include <linux/kref.h> 47 #include <linux/list.h> 48 #include <linux/rwsem.h> 49 #include <linux/scatterlist.h> 50 #include <linux/workqueue.h> 51 #include <linux/socket.h> 52 #include <linux/irq_poll.h> 53 #include <uapi/linux/if_ether.h> 54 #include <net/ipv6.h> 55 #include <net/ip.h> 56 #include <linux/string.h> 57 #include <linux/slab.h> 58 #include <linux/netdevice.h> 59 60 #include <linux/if_link.h> 61 #include <linux/atomic.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/uaccess.h> 64 #include <linux/cgroup_rdma.h> 65 #include <uapi/rdma/ib_user_verbs.h> 66 #include <rdma/restrack.h> 67 #include <uapi/rdma/rdma_user_ioctl.h> 68 #include <uapi/rdma/ib_user_ioctl_verbs.h> 69 70 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN 71 72 extern struct workqueue_struct *ib_wq; 73 extern struct workqueue_struct *ib_comp_wq; 74 75 union ib_gid { 76 u8 raw[16]; 77 struct { 78 __be64 subnet_prefix; 79 __be64 interface_id; 80 } global; 81 }; 82 83 extern union ib_gid zgid; 84 85 enum ib_gid_type { 86 /* If link layer is Ethernet, this is RoCE V1 */ 87 IB_GID_TYPE_IB = 0, 88 IB_GID_TYPE_ROCE = 0, 89 IB_GID_TYPE_ROCE_UDP_ENCAP = 1, 90 IB_GID_TYPE_SIZE 91 }; 92 93 #define ROCE_V2_UDP_DPORT 4791 94 struct ib_gid_attr { 95 struct net_device *ndev; 96 struct ib_device *device; 97 union ib_gid gid; 98 enum ib_gid_type gid_type; 99 u16 index; 100 u8 port_num; 101 }; 102 103 enum rdma_node_type { 104 /* IB values map to NodeInfo:NodeType. */ 105 RDMA_NODE_IB_CA = 1, 106 RDMA_NODE_IB_SWITCH, 107 RDMA_NODE_IB_ROUTER, 108 RDMA_NODE_RNIC, 109 RDMA_NODE_USNIC, 110 RDMA_NODE_USNIC_UDP, 111 }; 112 113 enum { 114 /* set the local administered indication */ 115 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2, 116 }; 117 118 enum rdma_transport_type { 119 RDMA_TRANSPORT_IB, 120 RDMA_TRANSPORT_IWARP, 121 RDMA_TRANSPORT_USNIC, 122 RDMA_TRANSPORT_USNIC_UDP 123 }; 124 125 enum rdma_protocol_type { 126 RDMA_PROTOCOL_IB, 127 RDMA_PROTOCOL_IBOE, 128 RDMA_PROTOCOL_IWARP, 129 RDMA_PROTOCOL_USNIC_UDP 130 }; 131 132 __attribute_const__ enum rdma_transport_type 133 rdma_node_get_transport(enum rdma_node_type node_type); 134 135 enum rdma_network_type { 136 RDMA_NETWORK_IB, 137 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB, 138 RDMA_NETWORK_IPV4, 139 RDMA_NETWORK_IPV6 140 }; 141 142 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) 143 { 144 if (network_type == RDMA_NETWORK_IPV4 || 145 network_type == RDMA_NETWORK_IPV6) 146 return IB_GID_TYPE_ROCE_UDP_ENCAP; 147 148 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */ 149 return IB_GID_TYPE_IB; 150 } 151 152 static inline enum rdma_network_type 153 rdma_gid_attr_network_type(const struct ib_gid_attr *attr) 154 { 155 if (attr->gid_type == IB_GID_TYPE_IB) 156 return RDMA_NETWORK_IB; 157 158 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid)) 159 return RDMA_NETWORK_IPV4; 160 else 161 return RDMA_NETWORK_IPV6; 162 } 163 164 enum rdma_link_layer { 165 IB_LINK_LAYER_UNSPECIFIED, 166 IB_LINK_LAYER_INFINIBAND, 167 IB_LINK_LAYER_ETHERNET, 168 }; 169 170 enum ib_device_cap_flags { 171 IB_DEVICE_RESIZE_MAX_WR = (1 << 0), 172 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1), 173 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2), 174 IB_DEVICE_RAW_MULTI = (1 << 3), 175 IB_DEVICE_AUTO_PATH_MIG = (1 << 4), 176 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5), 177 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6), 178 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7), 179 IB_DEVICE_SHUTDOWN_PORT = (1 << 8), 180 /* Not in use, former INIT_TYPE = (1 << 9),*/ 181 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10), 182 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11), 183 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12), 184 IB_DEVICE_SRQ_RESIZE = (1 << 13), 185 IB_DEVICE_N_NOTIFY_CQ = (1 << 14), 186 187 /* 188 * This device supports a per-device lkey or stag that can be 189 * used without performing a memory registration for the local 190 * memory. Note that ULPs should never check this flag, but 191 * instead of use the local_dma_lkey flag in the ib_pd structure, 192 * which will always contain a usable lkey. 193 */ 194 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15), 195 /* Reserved, old SEND_W_INV = (1 << 16),*/ 196 IB_DEVICE_MEM_WINDOW = (1 << 17), 197 /* 198 * Devices should set IB_DEVICE_UD_IP_SUM if they support 199 * insertion of UDP and TCP checksum on outgoing UD IPoIB 200 * messages and can verify the validity of checksum for 201 * incoming messages. Setting this flag implies that the 202 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 203 */ 204 IB_DEVICE_UD_IP_CSUM = (1 << 18), 205 IB_DEVICE_UD_TSO = (1 << 19), 206 IB_DEVICE_XRC = (1 << 20), 207 208 /* 209 * This device supports the IB "base memory management extension", 210 * which includes support for fast registrations (IB_WR_REG_MR, 211 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should 212 * also be set by any iWarp device which must support FRs to comply 213 * to the iWarp verbs spec. iWarp devices also support the 214 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the 215 * stag. 216 */ 217 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21), 218 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22), 219 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23), 220 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24), 221 IB_DEVICE_RC_IP_CSUM = (1 << 25), 222 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */ 223 IB_DEVICE_RAW_IP_CSUM = (1 << 26), 224 /* 225 * Devices should set IB_DEVICE_CROSS_CHANNEL if they 226 * support execution of WQEs that involve synchronization 227 * of I/O operations with single completion queue managed 228 * by hardware. 229 */ 230 IB_DEVICE_CROSS_CHANNEL = (1 << 27), 231 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29), 232 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30), 233 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31), 234 IB_DEVICE_SG_GAPS_REG = (1ULL << 32), 235 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33), 236 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */ 237 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34), 238 IB_DEVICE_RDMA_NETDEV_OPA_VNIC = (1ULL << 35), 239 /* The device supports padding incoming writes to cacheline. */ 240 IB_DEVICE_PCI_WRITE_END_PADDING = (1ULL << 36), 241 }; 242 243 enum ib_signature_prot_cap { 244 IB_PROT_T10DIF_TYPE_1 = 1, 245 IB_PROT_T10DIF_TYPE_2 = 1 << 1, 246 IB_PROT_T10DIF_TYPE_3 = 1 << 2, 247 }; 248 249 enum ib_signature_guard_cap { 250 IB_GUARD_T10DIF_CRC = 1, 251 IB_GUARD_T10DIF_CSUM = 1 << 1, 252 }; 253 254 enum ib_atomic_cap { 255 IB_ATOMIC_NONE, 256 IB_ATOMIC_HCA, 257 IB_ATOMIC_GLOB 258 }; 259 260 enum ib_odp_general_cap_bits { 261 IB_ODP_SUPPORT = 1 << 0, 262 IB_ODP_SUPPORT_IMPLICIT = 1 << 1, 263 }; 264 265 enum ib_odp_transport_cap_bits { 266 IB_ODP_SUPPORT_SEND = 1 << 0, 267 IB_ODP_SUPPORT_RECV = 1 << 1, 268 IB_ODP_SUPPORT_WRITE = 1 << 2, 269 IB_ODP_SUPPORT_READ = 1 << 3, 270 IB_ODP_SUPPORT_ATOMIC = 1 << 4, 271 }; 272 273 struct ib_odp_caps { 274 uint64_t general_caps; 275 struct { 276 uint32_t rc_odp_caps; 277 uint32_t uc_odp_caps; 278 uint32_t ud_odp_caps; 279 } per_transport_caps; 280 }; 281 282 struct ib_rss_caps { 283 /* Corresponding bit will be set if qp type from 284 * 'enum ib_qp_type' is supported, e.g. 285 * supported_qpts |= 1 << IB_QPT_UD 286 */ 287 u32 supported_qpts; 288 u32 max_rwq_indirection_tables; 289 u32 max_rwq_indirection_table_size; 290 }; 291 292 enum ib_tm_cap_flags { 293 /* Support tag matching on RC transport */ 294 IB_TM_CAP_RC = 1 << 0, 295 }; 296 297 struct ib_tm_caps { 298 /* Max size of RNDV header */ 299 u32 max_rndv_hdr_size; 300 /* Max number of entries in tag matching list */ 301 u32 max_num_tags; 302 /* From enum ib_tm_cap_flags */ 303 u32 flags; 304 /* Max number of outstanding list operations */ 305 u32 max_ops; 306 /* Max number of SGE in tag matching entry */ 307 u32 max_sge; 308 }; 309 310 struct ib_cq_init_attr { 311 unsigned int cqe; 312 int comp_vector; 313 u32 flags; 314 }; 315 316 enum ib_cq_attr_mask { 317 IB_CQ_MODERATE = 1 << 0, 318 }; 319 320 struct ib_cq_caps { 321 u16 max_cq_moderation_count; 322 u16 max_cq_moderation_period; 323 }; 324 325 struct ib_dm_mr_attr { 326 u64 length; 327 u64 offset; 328 u32 access_flags; 329 }; 330 331 struct ib_dm_alloc_attr { 332 u64 length; 333 u32 alignment; 334 u32 flags; 335 }; 336 337 struct ib_device_attr { 338 u64 fw_ver; 339 __be64 sys_image_guid; 340 u64 max_mr_size; 341 u64 page_size_cap; 342 u32 vendor_id; 343 u32 vendor_part_id; 344 u32 hw_ver; 345 int max_qp; 346 int max_qp_wr; 347 u64 device_cap_flags; 348 int max_send_sge; 349 int max_recv_sge; 350 int max_sge_rd; 351 int max_cq; 352 int max_cqe; 353 int max_mr; 354 int max_pd; 355 int max_qp_rd_atom; 356 int max_ee_rd_atom; 357 int max_res_rd_atom; 358 int max_qp_init_rd_atom; 359 int max_ee_init_rd_atom; 360 enum ib_atomic_cap atomic_cap; 361 enum ib_atomic_cap masked_atomic_cap; 362 int max_ee; 363 int max_rdd; 364 int max_mw; 365 int max_raw_ipv6_qp; 366 int max_raw_ethy_qp; 367 int max_mcast_grp; 368 int max_mcast_qp_attach; 369 int max_total_mcast_qp_attach; 370 int max_ah; 371 int max_fmr; 372 int max_map_per_fmr; 373 int max_srq; 374 int max_srq_wr; 375 int max_srq_sge; 376 unsigned int max_fast_reg_page_list_len; 377 u16 max_pkeys; 378 u8 local_ca_ack_delay; 379 int sig_prot_cap; 380 int sig_guard_cap; 381 struct ib_odp_caps odp_caps; 382 uint64_t timestamp_mask; 383 uint64_t hca_core_clock; /* in KHZ */ 384 struct ib_rss_caps rss_caps; 385 u32 max_wq_type_rq; 386 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */ 387 struct ib_tm_caps tm_caps; 388 struct ib_cq_caps cq_caps; 389 u64 max_dm_size; 390 }; 391 392 enum ib_mtu { 393 IB_MTU_256 = 1, 394 IB_MTU_512 = 2, 395 IB_MTU_1024 = 3, 396 IB_MTU_2048 = 4, 397 IB_MTU_4096 = 5 398 }; 399 400 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 401 { 402 switch (mtu) { 403 case IB_MTU_256: return 256; 404 case IB_MTU_512: return 512; 405 case IB_MTU_1024: return 1024; 406 case IB_MTU_2048: return 2048; 407 case IB_MTU_4096: return 4096; 408 default: return -1; 409 } 410 } 411 412 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu) 413 { 414 if (mtu >= 4096) 415 return IB_MTU_4096; 416 else if (mtu >= 2048) 417 return IB_MTU_2048; 418 else if (mtu >= 1024) 419 return IB_MTU_1024; 420 else if (mtu >= 512) 421 return IB_MTU_512; 422 else 423 return IB_MTU_256; 424 } 425 426 enum ib_port_state { 427 IB_PORT_NOP = 0, 428 IB_PORT_DOWN = 1, 429 IB_PORT_INIT = 2, 430 IB_PORT_ARMED = 3, 431 IB_PORT_ACTIVE = 4, 432 IB_PORT_ACTIVE_DEFER = 5 433 }; 434 435 enum ib_port_width { 436 IB_WIDTH_1X = 1, 437 IB_WIDTH_4X = 2, 438 IB_WIDTH_8X = 4, 439 IB_WIDTH_12X = 8 440 }; 441 442 static inline int ib_width_enum_to_int(enum ib_port_width width) 443 { 444 switch (width) { 445 case IB_WIDTH_1X: return 1; 446 case IB_WIDTH_4X: return 4; 447 case IB_WIDTH_8X: return 8; 448 case IB_WIDTH_12X: return 12; 449 default: return -1; 450 } 451 } 452 453 enum ib_port_speed { 454 IB_SPEED_SDR = 1, 455 IB_SPEED_DDR = 2, 456 IB_SPEED_QDR = 4, 457 IB_SPEED_FDR10 = 8, 458 IB_SPEED_FDR = 16, 459 IB_SPEED_EDR = 32, 460 IB_SPEED_HDR = 64 461 }; 462 463 /** 464 * struct rdma_hw_stats 465 * @lock - Mutex to protect parallel write access to lifespan and values 466 * of counters, which are 64bits and not guaranteeed to be written 467 * atomicaly on 32bits systems. 468 * @timestamp - Used by the core code to track when the last update was 469 * @lifespan - Used by the core code to determine how old the counters 470 * should be before being updated again. Stored in jiffies, defaults 471 * to 10 milliseconds, drivers can override the default be specifying 472 * their own value during their allocation routine. 473 * @name - Array of pointers to static names used for the counters in 474 * directory. 475 * @num_counters - How many hardware counters there are. If name is 476 * shorter than this number, a kernel oops will result. Driver authors 477 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters) 478 * in their code to prevent this. 479 * @value - Array of u64 counters that are accessed by the sysfs code and 480 * filled in by the drivers get_stats routine 481 */ 482 struct rdma_hw_stats { 483 struct mutex lock; /* Protect lifespan and values[] */ 484 unsigned long timestamp; 485 unsigned long lifespan; 486 const char * const *names; 487 int num_counters; 488 u64 value[]; 489 }; 490 491 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10 492 /** 493 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct 494 * for drivers. 495 * @names - Array of static const char * 496 * @num_counters - How many elements in array 497 * @lifespan - How many milliseconds between updates 498 */ 499 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 500 const char * const *names, int num_counters, 501 unsigned long lifespan) 502 { 503 struct rdma_hw_stats *stats; 504 505 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64), 506 GFP_KERNEL); 507 if (!stats) 508 return NULL; 509 stats->names = names; 510 stats->num_counters = num_counters; 511 stats->lifespan = msecs_to_jiffies(lifespan); 512 513 return stats; 514 } 515 516 517 /* Define bits for the various functionality this port needs to be supported by 518 * the core. 519 */ 520 /* Management 0x00000FFF */ 521 #define RDMA_CORE_CAP_IB_MAD 0x00000001 522 #define RDMA_CORE_CAP_IB_SMI 0x00000002 523 #define RDMA_CORE_CAP_IB_CM 0x00000004 524 #define RDMA_CORE_CAP_IW_CM 0x00000008 525 #define RDMA_CORE_CAP_IB_SA 0x00000010 526 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 527 528 /* Address format 0x000FF000 */ 529 #define RDMA_CORE_CAP_AF_IB 0x00001000 530 #define RDMA_CORE_CAP_ETH_AH 0x00002000 531 #define RDMA_CORE_CAP_OPA_AH 0x00004000 532 #define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000 533 534 /* Protocol 0xFFF00000 */ 535 #define RDMA_CORE_CAP_PROT_IB 0x00100000 536 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 537 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 538 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 539 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000 540 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000 541 542 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \ 543 | RDMA_CORE_CAP_PROT_ROCE \ 544 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP) 545 546 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 547 | RDMA_CORE_CAP_IB_MAD \ 548 | RDMA_CORE_CAP_IB_SMI \ 549 | RDMA_CORE_CAP_IB_CM \ 550 | RDMA_CORE_CAP_IB_SA \ 551 | RDMA_CORE_CAP_AF_IB) 552 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 553 | RDMA_CORE_CAP_IB_MAD \ 554 | RDMA_CORE_CAP_IB_CM \ 555 | RDMA_CORE_CAP_AF_IB \ 556 | RDMA_CORE_CAP_ETH_AH) 557 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ 558 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ 559 | RDMA_CORE_CAP_IB_MAD \ 560 | RDMA_CORE_CAP_IB_CM \ 561 | RDMA_CORE_CAP_AF_IB \ 562 | RDMA_CORE_CAP_ETH_AH) 563 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 564 | RDMA_CORE_CAP_IW_CM) 565 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 566 | RDMA_CORE_CAP_OPA_MAD) 567 568 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET) 569 570 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC) 571 572 struct ib_port_attr { 573 u64 subnet_prefix; 574 enum ib_port_state state; 575 enum ib_mtu max_mtu; 576 enum ib_mtu active_mtu; 577 int gid_tbl_len; 578 unsigned int ip_gids:1; 579 /* This is the value from PortInfo CapabilityMask, defined by IBA */ 580 u32 port_cap_flags; 581 u32 max_msg_sz; 582 u32 bad_pkey_cntr; 583 u32 qkey_viol_cntr; 584 u16 pkey_tbl_len; 585 u32 sm_lid; 586 u32 lid; 587 u8 lmc; 588 u8 max_vl_num; 589 u8 sm_sl; 590 u8 subnet_timeout; 591 u8 init_type_reply; 592 u8 active_width; 593 u8 active_speed; 594 u8 phys_state; 595 }; 596 597 enum ib_device_modify_flags { 598 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 599 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 600 }; 601 602 #define IB_DEVICE_NODE_DESC_MAX 64 603 604 struct ib_device_modify { 605 u64 sys_image_guid; 606 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 607 }; 608 609 enum ib_port_modify_flags { 610 IB_PORT_SHUTDOWN = 1, 611 IB_PORT_INIT_TYPE = (1<<2), 612 IB_PORT_RESET_QKEY_CNTR = (1<<3), 613 IB_PORT_OPA_MASK_CHG = (1<<4) 614 }; 615 616 struct ib_port_modify { 617 u32 set_port_cap_mask; 618 u32 clr_port_cap_mask; 619 u8 init_type; 620 }; 621 622 enum ib_event_type { 623 IB_EVENT_CQ_ERR, 624 IB_EVENT_QP_FATAL, 625 IB_EVENT_QP_REQ_ERR, 626 IB_EVENT_QP_ACCESS_ERR, 627 IB_EVENT_COMM_EST, 628 IB_EVENT_SQ_DRAINED, 629 IB_EVENT_PATH_MIG, 630 IB_EVENT_PATH_MIG_ERR, 631 IB_EVENT_DEVICE_FATAL, 632 IB_EVENT_PORT_ACTIVE, 633 IB_EVENT_PORT_ERR, 634 IB_EVENT_LID_CHANGE, 635 IB_EVENT_PKEY_CHANGE, 636 IB_EVENT_SM_CHANGE, 637 IB_EVENT_SRQ_ERR, 638 IB_EVENT_SRQ_LIMIT_REACHED, 639 IB_EVENT_QP_LAST_WQE_REACHED, 640 IB_EVENT_CLIENT_REREGISTER, 641 IB_EVENT_GID_CHANGE, 642 IB_EVENT_WQ_FATAL, 643 }; 644 645 const char *__attribute_const__ ib_event_msg(enum ib_event_type event); 646 647 struct ib_event { 648 struct ib_device *device; 649 union { 650 struct ib_cq *cq; 651 struct ib_qp *qp; 652 struct ib_srq *srq; 653 struct ib_wq *wq; 654 u8 port_num; 655 } element; 656 enum ib_event_type event; 657 }; 658 659 struct ib_event_handler { 660 struct ib_device *device; 661 void (*handler)(struct ib_event_handler *, struct ib_event *); 662 struct list_head list; 663 }; 664 665 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 666 do { \ 667 (_ptr)->device = _device; \ 668 (_ptr)->handler = _handler; \ 669 INIT_LIST_HEAD(&(_ptr)->list); \ 670 } while (0) 671 672 struct ib_global_route { 673 const struct ib_gid_attr *sgid_attr; 674 union ib_gid dgid; 675 u32 flow_label; 676 u8 sgid_index; 677 u8 hop_limit; 678 u8 traffic_class; 679 }; 680 681 struct ib_grh { 682 __be32 version_tclass_flow; 683 __be16 paylen; 684 u8 next_hdr; 685 u8 hop_limit; 686 union ib_gid sgid; 687 union ib_gid dgid; 688 }; 689 690 union rdma_network_hdr { 691 struct ib_grh ibgrh; 692 struct { 693 /* The IB spec states that if it's IPv4, the header 694 * is located in the last 20 bytes of the header. 695 */ 696 u8 reserved[20]; 697 struct iphdr roce4grh; 698 }; 699 }; 700 701 #define IB_QPN_MASK 0xFFFFFF 702 703 enum { 704 IB_MULTICAST_QPN = 0xffffff 705 }; 706 707 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 708 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000) 709 710 enum ib_ah_flags { 711 IB_AH_GRH = 1 712 }; 713 714 enum ib_rate { 715 IB_RATE_PORT_CURRENT = 0, 716 IB_RATE_2_5_GBPS = 2, 717 IB_RATE_5_GBPS = 5, 718 IB_RATE_10_GBPS = 3, 719 IB_RATE_20_GBPS = 6, 720 IB_RATE_30_GBPS = 4, 721 IB_RATE_40_GBPS = 7, 722 IB_RATE_60_GBPS = 8, 723 IB_RATE_80_GBPS = 9, 724 IB_RATE_120_GBPS = 10, 725 IB_RATE_14_GBPS = 11, 726 IB_RATE_56_GBPS = 12, 727 IB_RATE_112_GBPS = 13, 728 IB_RATE_168_GBPS = 14, 729 IB_RATE_25_GBPS = 15, 730 IB_RATE_100_GBPS = 16, 731 IB_RATE_200_GBPS = 17, 732 IB_RATE_300_GBPS = 18 733 }; 734 735 /** 736 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 737 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 738 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 739 * @rate: rate to convert. 740 */ 741 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 742 743 /** 744 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 745 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 746 * @rate: rate to convert. 747 */ 748 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 749 750 751 /** 752 * enum ib_mr_type - memory region type 753 * @IB_MR_TYPE_MEM_REG: memory region that is used for 754 * normal registration 755 * @IB_MR_TYPE_SIGNATURE: memory region that is used for 756 * signature operations (data-integrity 757 * capable regions) 758 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to 759 * register any arbitrary sg lists (without 760 * the normal mr constraints - see 761 * ib_map_mr_sg) 762 */ 763 enum ib_mr_type { 764 IB_MR_TYPE_MEM_REG, 765 IB_MR_TYPE_SIGNATURE, 766 IB_MR_TYPE_SG_GAPS, 767 }; 768 769 /** 770 * Signature types 771 * IB_SIG_TYPE_NONE: Unprotected. 772 * IB_SIG_TYPE_T10_DIF: Type T10-DIF 773 */ 774 enum ib_signature_type { 775 IB_SIG_TYPE_NONE, 776 IB_SIG_TYPE_T10_DIF, 777 }; 778 779 /** 780 * Signature T10-DIF block-guard types 781 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules. 782 * IB_T10DIF_CSUM: Corresponds to IP checksum rules. 783 */ 784 enum ib_t10_dif_bg_type { 785 IB_T10DIF_CRC, 786 IB_T10DIF_CSUM 787 }; 788 789 /** 790 * struct ib_t10_dif_domain - Parameters specific for T10-DIF 791 * domain. 792 * @bg_type: T10-DIF block guard type (CRC|CSUM) 793 * @pi_interval: protection information interval. 794 * @bg: seed of guard computation. 795 * @app_tag: application tag of guard block 796 * @ref_tag: initial guard block reference tag. 797 * @ref_remap: Indicate wethear the reftag increments each block 798 * @app_escape: Indicate to skip block check if apptag=0xffff 799 * @ref_escape: Indicate to skip block check if reftag=0xffffffff 800 * @apptag_check_mask: check bitmask of application tag. 801 */ 802 struct ib_t10_dif_domain { 803 enum ib_t10_dif_bg_type bg_type; 804 u16 pi_interval; 805 u16 bg; 806 u16 app_tag; 807 u32 ref_tag; 808 bool ref_remap; 809 bool app_escape; 810 bool ref_escape; 811 u16 apptag_check_mask; 812 }; 813 814 /** 815 * struct ib_sig_domain - Parameters for signature domain 816 * @sig_type: specific signauture type 817 * @sig: union of all signature domain attributes that may 818 * be used to set domain layout. 819 */ 820 struct ib_sig_domain { 821 enum ib_signature_type sig_type; 822 union { 823 struct ib_t10_dif_domain dif; 824 } sig; 825 }; 826 827 /** 828 * struct ib_sig_attrs - Parameters for signature handover operation 829 * @check_mask: bitmask for signature byte check (8 bytes) 830 * @mem: memory domain layout desciptor. 831 * @wire: wire domain layout desciptor. 832 */ 833 struct ib_sig_attrs { 834 u8 check_mask; 835 struct ib_sig_domain mem; 836 struct ib_sig_domain wire; 837 }; 838 839 enum ib_sig_err_type { 840 IB_SIG_BAD_GUARD, 841 IB_SIG_BAD_REFTAG, 842 IB_SIG_BAD_APPTAG, 843 }; 844 845 /** 846 * Signature check masks (8 bytes in total) according to the T10-PI standard: 847 * -------- -------- ------------ 848 * | GUARD | APPTAG | REFTAG | 849 * | 2B | 2B | 4B | 850 * -------- -------- ------------ 851 */ 852 enum { 853 IB_SIG_CHECK_GUARD = 0xc0, 854 IB_SIG_CHECK_APPTAG = 0x30, 855 IB_SIG_CHECK_REFTAG = 0x0f, 856 }; 857 858 /** 859 * struct ib_sig_err - signature error descriptor 860 */ 861 struct ib_sig_err { 862 enum ib_sig_err_type err_type; 863 u32 expected; 864 u32 actual; 865 u64 sig_err_offset; 866 u32 key; 867 }; 868 869 enum ib_mr_status_check { 870 IB_MR_CHECK_SIG_STATUS = 1, 871 }; 872 873 /** 874 * struct ib_mr_status - Memory region status container 875 * 876 * @fail_status: Bitmask of MR checks status. For each 877 * failed check a corresponding status bit is set. 878 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 879 * failure. 880 */ 881 struct ib_mr_status { 882 u32 fail_status; 883 struct ib_sig_err sig_err; 884 }; 885 886 /** 887 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 888 * enum. 889 * @mult: multiple to convert. 890 */ 891 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 892 893 enum rdma_ah_attr_type { 894 RDMA_AH_ATTR_TYPE_UNDEFINED, 895 RDMA_AH_ATTR_TYPE_IB, 896 RDMA_AH_ATTR_TYPE_ROCE, 897 RDMA_AH_ATTR_TYPE_OPA, 898 }; 899 900 struct ib_ah_attr { 901 u16 dlid; 902 u8 src_path_bits; 903 }; 904 905 struct roce_ah_attr { 906 u8 dmac[ETH_ALEN]; 907 }; 908 909 struct opa_ah_attr { 910 u32 dlid; 911 u8 src_path_bits; 912 bool make_grd; 913 }; 914 915 struct rdma_ah_attr { 916 struct ib_global_route grh; 917 u8 sl; 918 u8 static_rate; 919 u8 port_num; 920 u8 ah_flags; 921 enum rdma_ah_attr_type type; 922 union { 923 struct ib_ah_attr ib; 924 struct roce_ah_attr roce; 925 struct opa_ah_attr opa; 926 }; 927 }; 928 929 enum ib_wc_status { 930 IB_WC_SUCCESS, 931 IB_WC_LOC_LEN_ERR, 932 IB_WC_LOC_QP_OP_ERR, 933 IB_WC_LOC_EEC_OP_ERR, 934 IB_WC_LOC_PROT_ERR, 935 IB_WC_WR_FLUSH_ERR, 936 IB_WC_MW_BIND_ERR, 937 IB_WC_BAD_RESP_ERR, 938 IB_WC_LOC_ACCESS_ERR, 939 IB_WC_REM_INV_REQ_ERR, 940 IB_WC_REM_ACCESS_ERR, 941 IB_WC_REM_OP_ERR, 942 IB_WC_RETRY_EXC_ERR, 943 IB_WC_RNR_RETRY_EXC_ERR, 944 IB_WC_LOC_RDD_VIOL_ERR, 945 IB_WC_REM_INV_RD_REQ_ERR, 946 IB_WC_REM_ABORT_ERR, 947 IB_WC_INV_EECN_ERR, 948 IB_WC_INV_EEC_STATE_ERR, 949 IB_WC_FATAL_ERR, 950 IB_WC_RESP_TIMEOUT_ERR, 951 IB_WC_GENERAL_ERR 952 }; 953 954 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); 955 956 enum ib_wc_opcode { 957 IB_WC_SEND, 958 IB_WC_RDMA_WRITE, 959 IB_WC_RDMA_READ, 960 IB_WC_COMP_SWAP, 961 IB_WC_FETCH_ADD, 962 IB_WC_LSO, 963 IB_WC_LOCAL_INV, 964 IB_WC_REG_MR, 965 IB_WC_MASKED_COMP_SWAP, 966 IB_WC_MASKED_FETCH_ADD, 967 /* 968 * Set value of IB_WC_RECV so consumers can test if a completion is a 969 * receive by testing (opcode & IB_WC_RECV). 970 */ 971 IB_WC_RECV = 1 << 7, 972 IB_WC_RECV_RDMA_WITH_IMM 973 }; 974 975 enum ib_wc_flags { 976 IB_WC_GRH = 1, 977 IB_WC_WITH_IMM = (1<<1), 978 IB_WC_WITH_INVALIDATE = (1<<2), 979 IB_WC_IP_CSUM_OK = (1<<3), 980 IB_WC_WITH_SMAC = (1<<4), 981 IB_WC_WITH_VLAN = (1<<5), 982 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), 983 }; 984 985 struct ib_wc { 986 union { 987 u64 wr_id; 988 struct ib_cqe *wr_cqe; 989 }; 990 enum ib_wc_status status; 991 enum ib_wc_opcode opcode; 992 u32 vendor_err; 993 u32 byte_len; 994 struct ib_qp *qp; 995 union { 996 __be32 imm_data; 997 u32 invalidate_rkey; 998 } ex; 999 u32 src_qp; 1000 u32 slid; 1001 int wc_flags; 1002 u16 pkey_index; 1003 u8 sl; 1004 u8 dlid_path_bits; 1005 u8 port_num; /* valid only for DR SMPs on switches */ 1006 u8 smac[ETH_ALEN]; 1007 u16 vlan_id; 1008 u8 network_hdr_type; 1009 }; 1010 1011 enum ib_cq_notify_flags { 1012 IB_CQ_SOLICITED = 1 << 0, 1013 IB_CQ_NEXT_COMP = 1 << 1, 1014 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 1015 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 1016 }; 1017 1018 enum ib_srq_type { 1019 IB_SRQT_BASIC, 1020 IB_SRQT_XRC, 1021 IB_SRQT_TM, 1022 }; 1023 1024 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type) 1025 { 1026 return srq_type == IB_SRQT_XRC || 1027 srq_type == IB_SRQT_TM; 1028 } 1029 1030 enum ib_srq_attr_mask { 1031 IB_SRQ_MAX_WR = 1 << 0, 1032 IB_SRQ_LIMIT = 1 << 1, 1033 }; 1034 1035 struct ib_srq_attr { 1036 u32 max_wr; 1037 u32 max_sge; 1038 u32 srq_limit; 1039 }; 1040 1041 struct ib_srq_init_attr { 1042 void (*event_handler)(struct ib_event *, void *); 1043 void *srq_context; 1044 struct ib_srq_attr attr; 1045 enum ib_srq_type srq_type; 1046 1047 struct { 1048 struct ib_cq *cq; 1049 union { 1050 struct { 1051 struct ib_xrcd *xrcd; 1052 } xrc; 1053 1054 struct { 1055 u32 max_num_tags; 1056 } tag_matching; 1057 }; 1058 } ext; 1059 }; 1060 1061 struct ib_qp_cap { 1062 u32 max_send_wr; 1063 u32 max_recv_wr; 1064 u32 max_send_sge; 1065 u32 max_recv_sge; 1066 u32 max_inline_data; 1067 1068 /* 1069 * Maximum number of rdma_rw_ctx structures in flight at a time. 1070 * ib_create_qp() will calculate the right amount of neededed WRs 1071 * and MRs based on this. 1072 */ 1073 u32 max_rdma_ctxs; 1074 }; 1075 1076 enum ib_sig_type { 1077 IB_SIGNAL_ALL_WR, 1078 IB_SIGNAL_REQ_WR 1079 }; 1080 1081 enum ib_qp_type { 1082 /* 1083 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 1084 * here (and in that order) since the MAD layer uses them as 1085 * indices into a 2-entry table. 1086 */ 1087 IB_QPT_SMI, 1088 IB_QPT_GSI, 1089 1090 IB_QPT_RC, 1091 IB_QPT_UC, 1092 IB_QPT_UD, 1093 IB_QPT_RAW_IPV6, 1094 IB_QPT_RAW_ETHERTYPE, 1095 IB_QPT_RAW_PACKET = 8, 1096 IB_QPT_XRC_INI = 9, 1097 IB_QPT_XRC_TGT, 1098 IB_QPT_MAX, 1099 IB_QPT_DRIVER = 0xFF, 1100 /* Reserve a range for qp types internal to the low level driver. 1101 * These qp types will not be visible at the IB core layer, so the 1102 * IB_QPT_MAX usages should not be affected in the core layer 1103 */ 1104 IB_QPT_RESERVED1 = 0x1000, 1105 IB_QPT_RESERVED2, 1106 IB_QPT_RESERVED3, 1107 IB_QPT_RESERVED4, 1108 IB_QPT_RESERVED5, 1109 IB_QPT_RESERVED6, 1110 IB_QPT_RESERVED7, 1111 IB_QPT_RESERVED8, 1112 IB_QPT_RESERVED9, 1113 IB_QPT_RESERVED10, 1114 }; 1115 1116 enum ib_qp_create_flags { 1117 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 1118 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1, 1119 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 1120 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 1121 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 1122 IB_QP_CREATE_NETIF_QP = 1 << 5, 1123 IB_QP_CREATE_SIGNATURE_EN = 1 << 6, 1124 /* FREE = 1 << 7, */ 1125 IB_QP_CREATE_SCATTER_FCS = 1 << 8, 1126 IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9, 1127 IB_QP_CREATE_SOURCE_QPN = 1 << 10, 1128 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1 << 11, 1129 /* reserve bits 26-31 for low level drivers' internal use */ 1130 IB_QP_CREATE_RESERVED_START = 1 << 26, 1131 IB_QP_CREATE_RESERVED_END = 1 << 31, 1132 }; 1133 1134 /* 1135 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 1136 * callback to destroy the passed in QP. 1137 */ 1138 1139 struct ib_qp_init_attr { 1140 void (*event_handler)(struct ib_event *, void *); 1141 void *qp_context; 1142 struct ib_cq *send_cq; 1143 struct ib_cq *recv_cq; 1144 struct ib_srq *srq; 1145 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1146 struct ib_qp_cap cap; 1147 enum ib_sig_type sq_sig_type; 1148 enum ib_qp_type qp_type; 1149 enum ib_qp_create_flags create_flags; 1150 1151 /* 1152 * Only needed for special QP types, or when using the RW API. 1153 */ 1154 u8 port_num; 1155 struct ib_rwq_ind_table *rwq_ind_tbl; 1156 u32 source_qpn; 1157 }; 1158 1159 struct ib_qp_open_attr { 1160 void (*event_handler)(struct ib_event *, void *); 1161 void *qp_context; 1162 u32 qp_num; 1163 enum ib_qp_type qp_type; 1164 }; 1165 1166 enum ib_rnr_timeout { 1167 IB_RNR_TIMER_655_36 = 0, 1168 IB_RNR_TIMER_000_01 = 1, 1169 IB_RNR_TIMER_000_02 = 2, 1170 IB_RNR_TIMER_000_03 = 3, 1171 IB_RNR_TIMER_000_04 = 4, 1172 IB_RNR_TIMER_000_06 = 5, 1173 IB_RNR_TIMER_000_08 = 6, 1174 IB_RNR_TIMER_000_12 = 7, 1175 IB_RNR_TIMER_000_16 = 8, 1176 IB_RNR_TIMER_000_24 = 9, 1177 IB_RNR_TIMER_000_32 = 10, 1178 IB_RNR_TIMER_000_48 = 11, 1179 IB_RNR_TIMER_000_64 = 12, 1180 IB_RNR_TIMER_000_96 = 13, 1181 IB_RNR_TIMER_001_28 = 14, 1182 IB_RNR_TIMER_001_92 = 15, 1183 IB_RNR_TIMER_002_56 = 16, 1184 IB_RNR_TIMER_003_84 = 17, 1185 IB_RNR_TIMER_005_12 = 18, 1186 IB_RNR_TIMER_007_68 = 19, 1187 IB_RNR_TIMER_010_24 = 20, 1188 IB_RNR_TIMER_015_36 = 21, 1189 IB_RNR_TIMER_020_48 = 22, 1190 IB_RNR_TIMER_030_72 = 23, 1191 IB_RNR_TIMER_040_96 = 24, 1192 IB_RNR_TIMER_061_44 = 25, 1193 IB_RNR_TIMER_081_92 = 26, 1194 IB_RNR_TIMER_122_88 = 27, 1195 IB_RNR_TIMER_163_84 = 28, 1196 IB_RNR_TIMER_245_76 = 29, 1197 IB_RNR_TIMER_327_68 = 30, 1198 IB_RNR_TIMER_491_52 = 31 1199 }; 1200 1201 enum ib_qp_attr_mask { 1202 IB_QP_STATE = 1, 1203 IB_QP_CUR_STATE = (1<<1), 1204 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 1205 IB_QP_ACCESS_FLAGS = (1<<3), 1206 IB_QP_PKEY_INDEX = (1<<4), 1207 IB_QP_PORT = (1<<5), 1208 IB_QP_QKEY = (1<<6), 1209 IB_QP_AV = (1<<7), 1210 IB_QP_PATH_MTU = (1<<8), 1211 IB_QP_TIMEOUT = (1<<9), 1212 IB_QP_RETRY_CNT = (1<<10), 1213 IB_QP_RNR_RETRY = (1<<11), 1214 IB_QP_RQ_PSN = (1<<12), 1215 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 1216 IB_QP_ALT_PATH = (1<<14), 1217 IB_QP_MIN_RNR_TIMER = (1<<15), 1218 IB_QP_SQ_PSN = (1<<16), 1219 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 1220 IB_QP_PATH_MIG_STATE = (1<<18), 1221 IB_QP_CAP = (1<<19), 1222 IB_QP_DEST_QPN = (1<<20), 1223 IB_QP_RESERVED1 = (1<<21), 1224 IB_QP_RESERVED2 = (1<<22), 1225 IB_QP_RESERVED3 = (1<<23), 1226 IB_QP_RESERVED4 = (1<<24), 1227 IB_QP_RATE_LIMIT = (1<<25), 1228 }; 1229 1230 enum ib_qp_state { 1231 IB_QPS_RESET, 1232 IB_QPS_INIT, 1233 IB_QPS_RTR, 1234 IB_QPS_RTS, 1235 IB_QPS_SQD, 1236 IB_QPS_SQE, 1237 IB_QPS_ERR 1238 }; 1239 1240 enum ib_mig_state { 1241 IB_MIG_MIGRATED, 1242 IB_MIG_REARM, 1243 IB_MIG_ARMED 1244 }; 1245 1246 enum ib_mw_type { 1247 IB_MW_TYPE_1 = 1, 1248 IB_MW_TYPE_2 = 2 1249 }; 1250 1251 struct ib_qp_attr { 1252 enum ib_qp_state qp_state; 1253 enum ib_qp_state cur_qp_state; 1254 enum ib_mtu path_mtu; 1255 enum ib_mig_state path_mig_state; 1256 u32 qkey; 1257 u32 rq_psn; 1258 u32 sq_psn; 1259 u32 dest_qp_num; 1260 int qp_access_flags; 1261 struct ib_qp_cap cap; 1262 struct rdma_ah_attr ah_attr; 1263 struct rdma_ah_attr alt_ah_attr; 1264 u16 pkey_index; 1265 u16 alt_pkey_index; 1266 u8 en_sqd_async_notify; 1267 u8 sq_draining; 1268 u8 max_rd_atomic; 1269 u8 max_dest_rd_atomic; 1270 u8 min_rnr_timer; 1271 u8 port_num; 1272 u8 timeout; 1273 u8 retry_cnt; 1274 u8 rnr_retry; 1275 u8 alt_port_num; 1276 u8 alt_timeout; 1277 u32 rate_limit; 1278 }; 1279 1280 enum ib_wr_opcode { 1281 IB_WR_RDMA_WRITE, 1282 IB_WR_RDMA_WRITE_WITH_IMM, 1283 IB_WR_SEND, 1284 IB_WR_SEND_WITH_IMM, 1285 IB_WR_RDMA_READ, 1286 IB_WR_ATOMIC_CMP_AND_SWP, 1287 IB_WR_ATOMIC_FETCH_AND_ADD, 1288 IB_WR_LSO, 1289 IB_WR_SEND_WITH_INV, 1290 IB_WR_RDMA_READ_WITH_INV, 1291 IB_WR_LOCAL_INV, 1292 IB_WR_REG_MR, 1293 IB_WR_MASKED_ATOMIC_CMP_AND_SWP, 1294 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1295 IB_WR_REG_SIG_MR, 1296 /* reserve values for low level drivers' internal use. 1297 * These values will not be used at all in the ib core layer. 1298 */ 1299 IB_WR_RESERVED1 = 0xf0, 1300 IB_WR_RESERVED2, 1301 IB_WR_RESERVED3, 1302 IB_WR_RESERVED4, 1303 IB_WR_RESERVED5, 1304 IB_WR_RESERVED6, 1305 IB_WR_RESERVED7, 1306 IB_WR_RESERVED8, 1307 IB_WR_RESERVED9, 1308 IB_WR_RESERVED10, 1309 }; 1310 1311 enum ib_send_flags { 1312 IB_SEND_FENCE = 1, 1313 IB_SEND_SIGNALED = (1<<1), 1314 IB_SEND_SOLICITED = (1<<2), 1315 IB_SEND_INLINE = (1<<3), 1316 IB_SEND_IP_CSUM = (1<<4), 1317 1318 /* reserve bits 26-31 for low level drivers' internal use */ 1319 IB_SEND_RESERVED_START = (1 << 26), 1320 IB_SEND_RESERVED_END = (1 << 31), 1321 }; 1322 1323 struct ib_sge { 1324 u64 addr; 1325 u32 length; 1326 u32 lkey; 1327 }; 1328 1329 struct ib_cqe { 1330 void (*done)(struct ib_cq *cq, struct ib_wc *wc); 1331 }; 1332 1333 struct ib_send_wr { 1334 struct ib_send_wr *next; 1335 union { 1336 u64 wr_id; 1337 struct ib_cqe *wr_cqe; 1338 }; 1339 struct ib_sge *sg_list; 1340 int num_sge; 1341 enum ib_wr_opcode opcode; 1342 int send_flags; 1343 union { 1344 __be32 imm_data; 1345 u32 invalidate_rkey; 1346 } ex; 1347 }; 1348 1349 struct ib_rdma_wr { 1350 struct ib_send_wr wr; 1351 u64 remote_addr; 1352 u32 rkey; 1353 }; 1354 1355 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr) 1356 { 1357 return container_of(wr, struct ib_rdma_wr, wr); 1358 } 1359 1360 struct ib_atomic_wr { 1361 struct ib_send_wr wr; 1362 u64 remote_addr; 1363 u64 compare_add; 1364 u64 swap; 1365 u64 compare_add_mask; 1366 u64 swap_mask; 1367 u32 rkey; 1368 }; 1369 1370 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr) 1371 { 1372 return container_of(wr, struct ib_atomic_wr, wr); 1373 } 1374 1375 struct ib_ud_wr { 1376 struct ib_send_wr wr; 1377 struct ib_ah *ah; 1378 void *header; 1379 int hlen; 1380 int mss; 1381 u32 remote_qpn; 1382 u32 remote_qkey; 1383 u16 pkey_index; /* valid for GSI only */ 1384 u8 port_num; /* valid for DR SMPs on switch only */ 1385 }; 1386 1387 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr) 1388 { 1389 return container_of(wr, struct ib_ud_wr, wr); 1390 } 1391 1392 struct ib_reg_wr { 1393 struct ib_send_wr wr; 1394 struct ib_mr *mr; 1395 u32 key; 1396 int access; 1397 }; 1398 1399 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr) 1400 { 1401 return container_of(wr, struct ib_reg_wr, wr); 1402 } 1403 1404 struct ib_sig_handover_wr { 1405 struct ib_send_wr wr; 1406 struct ib_sig_attrs *sig_attrs; 1407 struct ib_mr *sig_mr; 1408 int access_flags; 1409 struct ib_sge *prot; 1410 }; 1411 1412 static inline const struct ib_sig_handover_wr * 1413 sig_handover_wr(const struct ib_send_wr *wr) 1414 { 1415 return container_of(wr, struct ib_sig_handover_wr, wr); 1416 } 1417 1418 struct ib_recv_wr { 1419 struct ib_recv_wr *next; 1420 union { 1421 u64 wr_id; 1422 struct ib_cqe *wr_cqe; 1423 }; 1424 struct ib_sge *sg_list; 1425 int num_sge; 1426 }; 1427 1428 enum ib_access_flags { 1429 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE, 1430 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE, 1431 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ, 1432 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC, 1433 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND, 1434 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED, 1435 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND, 1436 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB, 1437 1438 IB_ACCESS_SUPPORTED = ((IB_ACCESS_HUGETLB << 1) - 1) 1439 }; 1440 1441 /* 1442 * XXX: these are apparently used for ->rereg_user_mr, no idea why they 1443 * are hidden here instead of a uapi header! 1444 */ 1445 enum ib_mr_rereg_flags { 1446 IB_MR_REREG_TRANS = 1, 1447 IB_MR_REREG_PD = (1<<1), 1448 IB_MR_REREG_ACCESS = (1<<2), 1449 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1450 }; 1451 1452 struct ib_fmr_attr { 1453 int max_pages; 1454 int max_maps; 1455 u8 page_shift; 1456 }; 1457 1458 struct ib_umem; 1459 1460 enum rdma_remove_reason { 1461 /* 1462 * Userspace requested uobject deletion or initial try 1463 * to remove uobject via cleanup. Call could fail 1464 */ 1465 RDMA_REMOVE_DESTROY, 1466 /* Context deletion. This call should delete the actual object itself */ 1467 RDMA_REMOVE_CLOSE, 1468 /* Driver is being hot-unplugged. This call should delete the actual object itself */ 1469 RDMA_REMOVE_DRIVER_REMOVE, 1470 /* uobj is being cleaned-up before being committed */ 1471 RDMA_REMOVE_ABORT, 1472 }; 1473 1474 struct ib_rdmacg_object { 1475 #ifdef CONFIG_CGROUP_RDMA 1476 struct rdma_cgroup *cg; /* owner rdma cgroup */ 1477 #endif 1478 }; 1479 1480 struct ib_ucontext { 1481 struct ib_device *device; 1482 struct ib_uverbs_file *ufile; 1483 /* 1484 * 'closing' can be read by the driver only during a destroy callback, 1485 * it is set when we are closing the file descriptor and indicates 1486 * that mm_sem may be locked. 1487 */ 1488 int closing; 1489 1490 bool cleanup_retryable; 1491 1492 struct pid *tgid; 1493 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING 1494 struct rb_root_cached umem_tree; 1495 /* 1496 * Protects .umem_rbroot and tree, as well as odp_mrs_count and 1497 * mmu notifiers registration. 1498 */ 1499 struct rw_semaphore umem_rwsem; 1500 void (*invalidate_range)(struct ib_umem *umem, 1501 unsigned long start, unsigned long end); 1502 1503 struct mmu_notifier mn; 1504 atomic_t notifier_count; 1505 /* A list of umems that don't have private mmu notifier counters yet. */ 1506 struct list_head no_private_counters; 1507 int odp_mrs_count; 1508 #endif 1509 1510 struct ib_rdmacg_object cg_obj; 1511 }; 1512 1513 struct ib_uobject { 1514 u64 user_handle; /* handle given to us by userspace */ 1515 /* ufile & ucontext owning this object */ 1516 struct ib_uverbs_file *ufile; 1517 /* FIXME, save memory: ufile->context == context */ 1518 struct ib_ucontext *context; /* associated user context */ 1519 void *object; /* containing object */ 1520 struct list_head list; /* link to context's list */ 1521 struct ib_rdmacg_object cg_obj; /* rdmacg object */ 1522 int id; /* index into kernel idr */ 1523 struct kref ref; 1524 atomic_t usecnt; /* protects exclusive access */ 1525 struct rcu_head rcu; /* kfree_rcu() overhead */ 1526 1527 const struct uverbs_api_object *uapi_object; 1528 }; 1529 1530 struct ib_udata { 1531 const void __user *inbuf; 1532 void __user *outbuf; 1533 size_t inlen; 1534 size_t outlen; 1535 }; 1536 1537 struct ib_pd { 1538 u32 local_dma_lkey; 1539 u32 flags; 1540 struct ib_device *device; 1541 struct ib_uobject *uobject; 1542 atomic_t usecnt; /* count all resources */ 1543 1544 u32 unsafe_global_rkey; 1545 1546 /* 1547 * Implementation details of the RDMA core, don't use in drivers: 1548 */ 1549 struct ib_mr *__internal_mr; 1550 struct rdma_restrack_entry res; 1551 }; 1552 1553 struct ib_xrcd { 1554 struct ib_device *device; 1555 atomic_t usecnt; /* count all exposed resources */ 1556 struct inode *inode; 1557 1558 struct mutex tgt_qp_mutex; 1559 struct list_head tgt_qp_list; 1560 }; 1561 1562 struct ib_ah { 1563 struct ib_device *device; 1564 struct ib_pd *pd; 1565 struct ib_uobject *uobject; 1566 const struct ib_gid_attr *sgid_attr; 1567 enum rdma_ah_attr_type type; 1568 }; 1569 1570 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1571 1572 enum ib_poll_context { 1573 IB_POLL_DIRECT, /* caller context, no hw completions */ 1574 IB_POLL_SOFTIRQ, /* poll from softirq context */ 1575 IB_POLL_WORKQUEUE, /* poll from workqueue */ 1576 }; 1577 1578 struct ib_cq { 1579 struct ib_device *device; 1580 struct ib_uobject *uobject; 1581 ib_comp_handler comp_handler; 1582 void (*event_handler)(struct ib_event *, void *); 1583 void *cq_context; 1584 int cqe; 1585 atomic_t usecnt; /* count number of work queues */ 1586 enum ib_poll_context poll_ctx; 1587 struct ib_wc *wc; 1588 union { 1589 struct irq_poll iop; 1590 struct work_struct work; 1591 }; 1592 /* 1593 * Implementation details of the RDMA core, don't use in drivers: 1594 */ 1595 struct rdma_restrack_entry res; 1596 }; 1597 1598 struct ib_srq { 1599 struct ib_device *device; 1600 struct ib_pd *pd; 1601 struct ib_uobject *uobject; 1602 void (*event_handler)(struct ib_event *, void *); 1603 void *srq_context; 1604 enum ib_srq_type srq_type; 1605 atomic_t usecnt; 1606 1607 struct { 1608 struct ib_cq *cq; 1609 union { 1610 struct { 1611 struct ib_xrcd *xrcd; 1612 u32 srq_num; 1613 } xrc; 1614 }; 1615 } ext; 1616 }; 1617 1618 enum ib_raw_packet_caps { 1619 /* Strip cvlan from incoming packet and report it in the matching work 1620 * completion is supported. 1621 */ 1622 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0), 1623 /* Scatter FCS field of an incoming packet to host memory is supported. 1624 */ 1625 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1), 1626 /* Checksum offloads are supported (for both send and receive). */ 1627 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2), 1628 /* When a packet is received for an RQ with no receive WQEs, the 1629 * packet processing is delayed. 1630 */ 1631 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3), 1632 }; 1633 1634 enum ib_wq_type { 1635 IB_WQT_RQ 1636 }; 1637 1638 enum ib_wq_state { 1639 IB_WQS_RESET, 1640 IB_WQS_RDY, 1641 IB_WQS_ERR 1642 }; 1643 1644 struct ib_wq { 1645 struct ib_device *device; 1646 struct ib_uobject *uobject; 1647 void *wq_context; 1648 void (*event_handler)(struct ib_event *, void *); 1649 struct ib_pd *pd; 1650 struct ib_cq *cq; 1651 u32 wq_num; 1652 enum ib_wq_state state; 1653 enum ib_wq_type wq_type; 1654 atomic_t usecnt; 1655 }; 1656 1657 enum ib_wq_flags { 1658 IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0, 1659 IB_WQ_FLAGS_SCATTER_FCS = 1 << 1, 1660 IB_WQ_FLAGS_DELAY_DROP = 1 << 2, 1661 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3, 1662 }; 1663 1664 struct ib_wq_init_attr { 1665 void *wq_context; 1666 enum ib_wq_type wq_type; 1667 u32 max_wr; 1668 u32 max_sge; 1669 struct ib_cq *cq; 1670 void (*event_handler)(struct ib_event *, void *); 1671 u32 create_flags; /* Use enum ib_wq_flags */ 1672 }; 1673 1674 enum ib_wq_attr_mask { 1675 IB_WQ_STATE = 1 << 0, 1676 IB_WQ_CUR_STATE = 1 << 1, 1677 IB_WQ_FLAGS = 1 << 2, 1678 }; 1679 1680 struct ib_wq_attr { 1681 enum ib_wq_state wq_state; 1682 enum ib_wq_state curr_wq_state; 1683 u32 flags; /* Use enum ib_wq_flags */ 1684 u32 flags_mask; /* Use enum ib_wq_flags */ 1685 }; 1686 1687 struct ib_rwq_ind_table { 1688 struct ib_device *device; 1689 struct ib_uobject *uobject; 1690 atomic_t usecnt; 1691 u32 ind_tbl_num; 1692 u32 log_ind_tbl_size; 1693 struct ib_wq **ind_tbl; 1694 }; 1695 1696 struct ib_rwq_ind_table_init_attr { 1697 u32 log_ind_tbl_size; 1698 /* Each entry is a pointer to Receive Work Queue */ 1699 struct ib_wq **ind_tbl; 1700 }; 1701 1702 enum port_pkey_state { 1703 IB_PORT_PKEY_NOT_VALID = 0, 1704 IB_PORT_PKEY_VALID = 1, 1705 IB_PORT_PKEY_LISTED = 2, 1706 }; 1707 1708 struct ib_qp_security; 1709 1710 struct ib_port_pkey { 1711 enum port_pkey_state state; 1712 u16 pkey_index; 1713 u8 port_num; 1714 struct list_head qp_list; 1715 struct list_head to_error_list; 1716 struct ib_qp_security *sec; 1717 }; 1718 1719 struct ib_ports_pkeys { 1720 struct ib_port_pkey main; 1721 struct ib_port_pkey alt; 1722 }; 1723 1724 struct ib_qp_security { 1725 struct ib_qp *qp; 1726 struct ib_device *dev; 1727 /* Hold this mutex when changing port and pkey settings. */ 1728 struct mutex mutex; 1729 struct ib_ports_pkeys *ports_pkeys; 1730 /* A list of all open shared QP handles. Required to enforce security 1731 * properly for all users of a shared QP. 1732 */ 1733 struct list_head shared_qp_list; 1734 void *security; 1735 bool destroying; 1736 atomic_t error_list_count; 1737 struct completion error_complete; 1738 int error_comps_pending; 1739 }; 1740 1741 /* 1742 * @max_write_sge: Maximum SGE elements per RDMA WRITE request. 1743 * @max_read_sge: Maximum SGE elements per RDMA READ request. 1744 */ 1745 struct ib_qp { 1746 struct ib_device *device; 1747 struct ib_pd *pd; 1748 struct ib_cq *send_cq; 1749 struct ib_cq *recv_cq; 1750 spinlock_t mr_lock; 1751 int mrs_used; 1752 struct list_head rdma_mrs; 1753 struct list_head sig_mrs; 1754 struct ib_srq *srq; 1755 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1756 struct list_head xrcd_list; 1757 1758 /* count times opened, mcast attaches, flow attaches */ 1759 atomic_t usecnt; 1760 struct list_head open_list; 1761 struct ib_qp *real_qp; 1762 struct ib_uobject *uobject; 1763 void (*event_handler)(struct ib_event *, void *); 1764 void *qp_context; 1765 /* sgid_attrs associated with the AV's */ 1766 const struct ib_gid_attr *av_sgid_attr; 1767 const struct ib_gid_attr *alt_path_sgid_attr; 1768 u32 qp_num; 1769 u32 max_write_sge; 1770 u32 max_read_sge; 1771 enum ib_qp_type qp_type; 1772 struct ib_rwq_ind_table *rwq_ind_tbl; 1773 struct ib_qp_security *qp_sec; 1774 u8 port; 1775 1776 /* 1777 * Implementation details of the RDMA core, don't use in drivers: 1778 */ 1779 struct rdma_restrack_entry res; 1780 }; 1781 1782 struct ib_dm { 1783 struct ib_device *device; 1784 u32 length; 1785 u32 flags; 1786 struct ib_uobject *uobject; 1787 atomic_t usecnt; 1788 }; 1789 1790 struct ib_mr { 1791 struct ib_device *device; 1792 struct ib_pd *pd; 1793 u32 lkey; 1794 u32 rkey; 1795 u64 iova; 1796 u64 length; 1797 unsigned int page_size; 1798 bool need_inval; 1799 union { 1800 struct ib_uobject *uobject; /* user */ 1801 struct list_head qp_entry; /* FR */ 1802 }; 1803 1804 struct ib_dm *dm; 1805 1806 /* 1807 * Implementation details of the RDMA core, don't use in drivers: 1808 */ 1809 struct rdma_restrack_entry res; 1810 }; 1811 1812 struct ib_mw { 1813 struct ib_device *device; 1814 struct ib_pd *pd; 1815 struct ib_uobject *uobject; 1816 u32 rkey; 1817 enum ib_mw_type type; 1818 }; 1819 1820 struct ib_fmr { 1821 struct ib_device *device; 1822 struct ib_pd *pd; 1823 struct list_head list; 1824 u32 lkey; 1825 u32 rkey; 1826 }; 1827 1828 /* Supported steering options */ 1829 enum ib_flow_attr_type { 1830 /* steering according to rule specifications */ 1831 IB_FLOW_ATTR_NORMAL = 0x0, 1832 /* default unicast and multicast rule - 1833 * receive all Eth traffic which isn't steered to any QP 1834 */ 1835 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1836 /* default multicast rule - 1837 * receive all Eth multicast traffic which isn't steered to any QP 1838 */ 1839 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1840 /* sniffer rule - receive all port traffic */ 1841 IB_FLOW_ATTR_SNIFFER = 0x3 1842 }; 1843 1844 /* Supported steering header types */ 1845 enum ib_flow_spec_type { 1846 /* L2 headers*/ 1847 IB_FLOW_SPEC_ETH = 0x20, 1848 IB_FLOW_SPEC_IB = 0x22, 1849 /* L3 header*/ 1850 IB_FLOW_SPEC_IPV4 = 0x30, 1851 IB_FLOW_SPEC_IPV6 = 0x31, 1852 IB_FLOW_SPEC_ESP = 0x34, 1853 /* L4 headers*/ 1854 IB_FLOW_SPEC_TCP = 0x40, 1855 IB_FLOW_SPEC_UDP = 0x41, 1856 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50, 1857 IB_FLOW_SPEC_GRE = 0x51, 1858 IB_FLOW_SPEC_MPLS = 0x60, 1859 IB_FLOW_SPEC_INNER = 0x100, 1860 /* Actions */ 1861 IB_FLOW_SPEC_ACTION_TAG = 0x1000, 1862 IB_FLOW_SPEC_ACTION_DROP = 0x1001, 1863 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002, 1864 IB_FLOW_SPEC_ACTION_COUNT = 0x1003, 1865 }; 1866 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1867 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10 1868 1869 /* Flow steering rule priority is set according to it's domain. 1870 * Lower domain value means higher priority. 1871 */ 1872 enum ib_flow_domain { 1873 IB_FLOW_DOMAIN_USER, 1874 IB_FLOW_DOMAIN_ETHTOOL, 1875 IB_FLOW_DOMAIN_RFS, 1876 IB_FLOW_DOMAIN_NIC, 1877 IB_FLOW_DOMAIN_NUM /* Must be last */ 1878 }; 1879 1880 enum ib_flow_flags { 1881 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */ 1882 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */ 1883 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */ 1884 }; 1885 1886 struct ib_flow_eth_filter { 1887 u8 dst_mac[6]; 1888 u8 src_mac[6]; 1889 __be16 ether_type; 1890 __be16 vlan_tag; 1891 /* Must be last */ 1892 u8 real_sz[0]; 1893 }; 1894 1895 struct ib_flow_spec_eth { 1896 u32 type; 1897 u16 size; 1898 struct ib_flow_eth_filter val; 1899 struct ib_flow_eth_filter mask; 1900 }; 1901 1902 struct ib_flow_ib_filter { 1903 __be16 dlid; 1904 __u8 sl; 1905 /* Must be last */ 1906 u8 real_sz[0]; 1907 }; 1908 1909 struct ib_flow_spec_ib { 1910 u32 type; 1911 u16 size; 1912 struct ib_flow_ib_filter val; 1913 struct ib_flow_ib_filter mask; 1914 }; 1915 1916 /* IPv4 header flags */ 1917 enum ib_ipv4_flags { 1918 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */ 1919 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the 1920 last have this flag set */ 1921 }; 1922 1923 struct ib_flow_ipv4_filter { 1924 __be32 src_ip; 1925 __be32 dst_ip; 1926 u8 proto; 1927 u8 tos; 1928 u8 ttl; 1929 u8 flags; 1930 /* Must be last */ 1931 u8 real_sz[0]; 1932 }; 1933 1934 struct ib_flow_spec_ipv4 { 1935 u32 type; 1936 u16 size; 1937 struct ib_flow_ipv4_filter val; 1938 struct ib_flow_ipv4_filter mask; 1939 }; 1940 1941 struct ib_flow_ipv6_filter { 1942 u8 src_ip[16]; 1943 u8 dst_ip[16]; 1944 __be32 flow_label; 1945 u8 next_hdr; 1946 u8 traffic_class; 1947 u8 hop_limit; 1948 /* Must be last */ 1949 u8 real_sz[0]; 1950 }; 1951 1952 struct ib_flow_spec_ipv6 { 1953 u32 type; 1954 u16 size; 1955 struct ib_flow_ipv6_filter val; 1956 struct ib_flow_ipv6_filter mask; 1957 }; 1958 1959 struct ib_flow_tcp_udp_filter { 1960 __be16 dst_port; 1961 __be16 src_port; 1962 /* Must be last */ 1963 u8 real_sz[0]; 1964 }; 1965 1966 struct ib_flow_spec_tcp_udp { 1967 u32 type; 1968 u16 size; 1969 struct ib_flow_tcp_udp_filter val; 1970 struct ib_flow_tcp_udp_filter mask; 1971 }; 1972 1973 struct ib_flow_tunnel_filter { 1974 __be32 tunnel_id; 1975 u8 real_sz[0]; 1976 }; 1977 1978 /* ib_flow_spec_tunnel describes the Vxlan tunnel 1979 * the tunnel_id from val has the vni value 1980 */ 1981 struct ib_flow_spec_tunnel { 1982 u32 type; 1983 u16 size; 1984 struct ib_flow_tunnel_filter val; 1985 struct ib_flow_tunnel_filter mask; 1986 }; 1987 1988 struct ib_flow_esp_filter { 1989 __be32 spi; 1990 __be32 seq; 1991 /* Must be last */ 1992 u8 real_sz[0]; 1993 }; 1994 1995 struct ib_flow_spec_esp { 1996 u32 type; 1997 u16 size; 1998 struct ib_flow_esp_filter val; 1999 struct ib_flow_esp_filter mask; 2000 }; 2001 2002 struct ib_flow_gre_filter { 2003 __be16 c_ks_res0_ver; 2004 __be16 protocol; 2005 __be32 key; 2006 /* Must be last */ 2007 u8 real_sz[0]; 2008 }; 2009 2010 struct ib_flow_spec_gre { 2011 u32 type; 2012 u16 size; 2013 struct ib_flow_gre_filter val; 2014 struct ib_flow_gre_filter mask; 2015 }; 2016 2017 struct ib_flow_mpls_filter { 2018 __be32 tag; 2019 /* Must be last */ 2020 u8 real_sz[0]; 2021 }; 2022 2023 struct ib_flow_spec_mpls { 2024 u32 type; 2025 u16 size; 2026 struct ib_flow_mpls_filter val; 2027 struct ib_flow_mpls_filter mask; 2028 }; 2029 2030 struct ib_flow_spec_action_tag { 2031 enum ib_flow_spec_type type; 2032 u16 size; 2033 u32 tag_id; 2034 }; 2035 2036 struct ib_flow_spec_action_drop { 2037 enum ib_flow_spec_type type; 2038 u16 size; 2039 }; 2040 2041 struct ib_flow_spec_action_handle { 2042 enum ib_flow_spec_type type; 2043 u16 size; 2044 struct ib_flow_action *act; 2045 }; 2046 2047 enum ib_counters_description { 2048 IB_COUNTER_PACKETS, 2049 IB_COUNTER_BYTES, 2050 }; 2051 2052 struct ib_flow_spec_action_count { 2053 enum ib_flow_spec_type type; 2054 u16 size; 2055 struct ib_counters *counters; 2056 }; 2057 2058 union ib_flow_spec { 2059 struct { 2060 u32 type; 2061 u16 size; 2062 }; 2063 struct ib_flow_spec_eth eth; 2064 struct ib_flow_spec_ib ib; 2065 struct ib_flow_spec_ipv4 ipv4; 2066 struct ib_flow_spec_tcp_udp tcp_udp; 2067 struct ib_flow_spec_ipv6 ipv6; 2068 struct ib_flow_spec_tunnel tunnel; 2069 struct ib_flow_spec_esp esp; 2070 struct ib_flow_spec_gre gre; 2071 struct ib_flow_spec_mpls mpls; 2072 struct ib_flow_spec_action_tag flow_tag; 2073 struct ib_flow_spec_action_drop drop; 2074 struct ib_flow_spec_action_handle action; 2075 struct ib_flow_spec_action_count flow_count; 2076 }; 2077 2078 struct ib_flow_attr { 2079 enum ib_flow_attr_type type; 2080 u16 size; 2081 u16 priority; 2082 u32 flags; 2083 u8 num_of_specs; 2084 u8 port; 2085 union ib_flow_spec flows[]; 2086 }; 2087 2088 struct ib_flow { 2089 struct ib_qp *qp; 2090 struct ib_device *device; 2091 struct ib_uobject *uobject; 2092 }; 2093 2094 enum ib_flow_action_type { 2095 IB_FLOW_ACTION_UNSPECIFIED, 2096 IB_FLOW_ACTION_ESP = 1, 2097 }; 2098 2099 struct ib_flow_action_attrs_esp_keymats { 2100 enum ib_uverbs_flow_action_esp_keymat protocol; 2101 union { 2102 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm; 2103 } keymat; 2104 }; 2105 2106 struct ib_flow_action_attrs_esp_replays { 2107 enum ib_uverbs_flow_action_esp_replay protocol; 2108 union { 2109 struct ib_uverbs_flow_action_esp_replay_bmp bmp; 2110 } replay; 2111 }; 2112 2113 enum ib_flow_action_attrs_esp_flags { 2114 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags 2115 * This is done in order to share the same flags between user-space and 2116 * kernel and spare an unnecessary translation. 2117 */ 2118 2119 /* Kernel flags */ 2120 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32, 2121 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33, 2122 }; 2123 2124 struct ib_flow_spec_list { 2125 struct ib_flow_spec_list *next; 2126 union ib_flow_spec spec; 2127 }; 2128 2129 struct ib_flow_action_attrs_esp { 2130 struct ib_flow_action_attrs_esp_keymats *keymat; 2131 struct ib_flow_action_attrs_esp_replays *replay; 2132 struct ib_flow_spec_list *encap; 2133 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled. 2134 * Value of 0 is a valid value. 2135 */ 2136 u32 esn; 2137 u32 spi; 2138 u32 seq; 2139 u32 tfc_pad; 2140 /* Use enum ib_flow_action_attrs_esp_flags */ 2141 u64 flags; 2142 u64 hard_limit_pkts; 2143 }; 2144 2145 struct ib_flow_action { 2146 struct ib_device *device; 2147 struct ib_uobject *uobject; 2148 enum ib_flow_action_type type; 2149 atomic_t usecnt; 2150 }; 2151 2152 struct ib_mad_hdr; 2153 struct ib_grh; 2154 2155 enum ib_process_mad_flags { 2156 IB_MAD_IGNORE_MKEY = 1, 2157 IB_MAD_IGNORE_BKEY = 2, 2158 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 2159 }; 2160 2161 enum ib_mad_result { 2162 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 2163 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 2164 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 2165 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 2166 }; 2167 2168 struct ib_port_cache { 2169 u64 subnet_prefix; 2170 struct ib_pkey_cache *pkey; 2171 struct ib_gid_table *gid; 2172 u8 lmc; 2173 enum ib_port_state port_state; 2174 }; 2175 2176 struct ib_cache { 2177 rwlock_t lock; 2178 struct ib_event_handler event_handler; 2179 struct ib_port_cache *ports; 2180 }; 2181 2182 struct iw_cm_verbs; 2183 2184 struct ib_port_immutable { 2185 int pkey_tbl_len; 2186 int gid_tbl_len; 2187 u32 core_cap_flags; 2188 u32 max_mad_size; 2189 }; 2190 2191 /* rdma netdev type - specifies protocol type */ 2192 enum rdma_netdev_t { 2193 RDMA_NETDEV_OPA_VNIC, 2194 RDMA_NETDEV_IPOIB, 2195 }; 2196 2197 /** 2198 * struct rdma_netdev - rdma netdev 2199 * For cases where netstack interfacing is required. 2200 */ 2201 struct rdma_netdev { 2202 void *clnt_priv; 2203 struct ib_device *hca; 2204 u8 port_num; 2205 2206 /* 2207 * cleanup function must be specified. 2208 * FIXME: This is only used for OPA_VNIC and that usage should be 2209 * removed too. 2210 */ 2211 void (*free_rdma_netdev)(struct net_device *netdev); 2212 2213 /* control functions */ 2214 void (*set_id)(struct net_device *netdev, int id); 2215 /* send packet */ 2216 int (*send)(struct net_device *dev, struct sk_buff *skb, 2217 struct ib_ah *address, u32 dqpn); 2218 /* multicast */ 2219 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca, 2220 union ib_gid *gid, u16 mlid, 2221 int set_qkey, u32 qkey); 2222 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca, 2223 union ib_gid *gid, u16 mlid); 2224 }; 2225 2226 struct ib_port_pkey_list { 2227 /* Lock to hold while modifying the list. */ 2228 spinlock_t list_lock; 2229 struct list_head pkey_list; 2230 }; 2231 2232 struct ib_counters { 2233 struct ib_device *device; 2234 struct ib_uobject *uobject; 2235 /* num of objects attached */ 2236 atomic_t usecnt; 2237 }; 2238 2239 struct ib_counters_read_attr { 2240 u64 *counters_buff; 2241 u32 ncounters; 2242 u32 flags; /* use enum ib_read_counters_flags */ 2243 }; 2244 2245 struct uverbs_attr_bundle; 2246 2247 struct ib_device { 2248 /* Do not access @dma_device directly from ULP nor from HW drivers. */ 2249 struct device *dma_device; 2250 2251 char name[IB_DEVICE_NAME_MAX]; 2252 2253 struct list_head event_handler_list; 2254 spinlock_t event_handler_lock; 2255 2256 spinlock_t client_data_lock; 2257 struct list_head core_list; 2258 /* Access to the client_data_list is protected by the client_data_lock 2259 * spinlock and the lists_rwsem read-write semaphore */ 2260 struct list_head client_data_list; 2261 2262 struct ib_cache cache; 2263 /** 2264 * port_immutable is indexed by port number 2265 */ 2266 struct ib_port_immutable *port_immutable; 2267 2268 int num_comp_vectors; 2269 2270 struct ib_port_pkey_list *port_pkey_list; 2271 2272 struct iw_cm_verbs *iwcm; 2273 2274 /** 2275 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the 2276 * driver initialized data. The struct is kfree()'ed by the sysfs 2277 * core when the device is removed. A lifespan of -1 in the return 2278 * struct tells the core to set a default lifespan. 2279 */ 2280 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device, 2281 u8 port_num); 2282 /** 2283 * get_hw_stats - Fill in the counter value(s) in the stats struct. 2284 * @index - The index in the value array we wish to have updated, or 2285 * num_counters if we want all stats updated 2286 * Return codes - 2287 * < 0 - Error, no counters updated 2288 * index - Updated the single counter pointed to by index 2289 * num_counters - Updated all counters (will reset the timestamp 2290 * and prevent further calls for lifespan milliseconds) 2291 * Drivers are allowed to update all counters in leiu of just the 2292 * one given in index at their option 2293 */ 2294 int (*get_hw_stats)(struct ib_device *device, 2295 struct rdma_hw_stats *stats, 2296 u8 port, int index); 2297 int (*query_device)(struct ib_device *device, 2298 struct ib_device_attr *device_attr, 2299 struct ib_udata *udata); 2300 int (*query_port)(struct ib_device *device, 2301 u8 port_num, 2302 struct ib_port_attr *port_attr); 2303 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 2304 u8 port_num); 2305 /* When calling get_netdev, the HW vendor's driver should return the 2306 * net device of device @device at port @port_num or NULL if such 2307 * a net device doesn't exist. The vendor driver should call dev_hold 2308 * on this net device. The HW vendor's device driver must guarantee 2309 * that this function returns NULL before the net device has finished 2310 * NETDEV_UNREGISTER state. 2311 */ 2312 struct net_device *(*get_netdev)(struct ib_device *device, 2313 u8 port_num); 2314 /* query_gid should be return GID value for @device, when @port_num 2315 * link layer is either IB or iWarp. It is no-op if @port_num port 2316 * is RoCE link layer. 2317 */ 2318 int (*query_gid)(struct ib_device *device, 2319 u8 port_num, int index, 2320 union ib_gid *gid); 2321 /* When calling add_gid, the HW vendor's driver should add the gid 2322 * of device of port at gid index available at @attr. Meta-info of 2323 * that gid (for example, the network device related to this gid) is 2324 * available at @attr. @context allows the HW vendor driver to store 2325 * extra information together with a GID entry. The HW vendor driver may 2326 * allocate memory to contain this information and store it in @context 2327 * when a new GID entry is written to. Params are consistent until the 2328 * next call of add_gid or delete_gid. The function should return 0 on 2329 * success or error otherwise. The function could be called 2330 * concurrently for different ports. This function is only called when 2331 * roce_gid_table is used. 2332 */ 2333 int (*add_gid)(const struct ib_gid_attr *attr, 2334 void **context); 2335 /* When calling del_gid, the HW vendor's driver should delete the 2336 * gid of device @device at gid index gid_index of port port_num 2337 * available in @attr. 2338 * Upon the deletion of a GID entry, the HW vendor must free any 2339 * allocated memory. The caller will clear @context afterwards. 2340 * This function is only called when roce_gid_table is used. 2341 */ 2342 int (*del_gid)(const struct ib_gid_attr *attr, 2343 void **context); 2344 int (*query_pkey)(struct ib_device *device, 2345 u8 port_num, u16 index, u16 *pkey); 2346 int (*modify_device)(struct ib_device *device, 2347 int device_modify_mask, 2348 struct ib_device_modify *device_modify); 2349 int (*modify_port)(struct ib_device *device, 2350 u8 port_num, int port_modify_mask, 2351 struct ib_port_modify *port_modify); 2352 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device, 2353 struct ib_udata *udata); 2354 int (*dealloc_ucontext)(struct ib_ucontext *context); 2355 int (*mmap)(struct ib_ucontext *context, 2356 struct vm_area_struct *vma); 2357 struct ib_pd * (*alloc_pd)(struct ib_device *device, 2358 struct ib_ucontext *context, 2359 struct ib_udata *udata); 2360 int (*dealloc_pd)(struct ib_pd *pd); 2361 struct ib_ah * (*create_ah)(struct ib_pd *pd, 2362 struct rdma_ah_attr *ah_attr, 2363 struct ib_udata *udata); 2364 int (*modify_ah)(struct ib_ah *ah, 2365 struct rdma_ah_attr *ah_attr); 2366 int (*query_ah)(struct ib_ah *ah, 2367 struct rdma_ah_attr *ah_attr); 2368 int (*destroy_ah)(struct ib_ah *ah); 2369 struct ib_srq * (*create_srq)(struct ib_pd *pd, 2370 struct ib_srq_init_attr *srq_init_attr, 2371 struct ib_udata *udata); 2372 int (*modify_srq)(struct ib_srq *srq, 2373 struct ib_srq_attr *srq_attr, 2374 enum ib_srq_attr_mask srq_attr_mask, 2375 struct ib_udata *udata); 2376 int (*query_srq)(struct ib_srq *srq, 2377 struct ib_srq_attr *srq_attr); 2378 int (*destroy_srq)(struct ib_srq *srq); 2379 int (*post_srq_recv)(struct ib_srq *srq, 2380 const struct ib_recv_wr *recv_wr, 2381 const struct ib_recv_wr **bad_recv_wr); 2382 struct ib_qp * (*create_qp)(struct ib_pd *pd, 2383 struct ib_qp_init_attr *qp_init_attr, 2384 struct ib_udata *udata); 2385 int (*modify_qp)(struct ib_qp *qp, 2386 struct ib_qp_attr *qp_attr, 2387 int qp_attr_mask, 2388 struct ib_udata *udata); 2389 int (*query_qp)(struct ib_qp *qp, 2390 struct ib_qp_attr *qp_attr, 2391 int qp_attr_mask, 2392 struct ib_qp_init_attr *qp_init_attr); 2393 int (*destroy_qp)(struct ib_qp *qp); 2394 int (*post_send)(struct ib_qp *qp, 2395 const struct ib_send_wr *send_wr, 2396 const struct ib_send_wr **bad_send_wr); 2397 int (*post_recv)(struct ib_qp *qp, 2398 const struct ib_recv_wr *recv_wr, 2399 const struct ib_recv_wr **bad_recv_wr); 2400 struct ib_cq * (*create_cq)(struct ib_device *device, 2401 const struct ib_cq_init_attr *attr, 2402 struct ib_ucontext *context, 2403 struct ib_udata *udata); 2404 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, 2405 u16 cq_period); 2406 int (*destroy_cq)(struct ib_cq *cq); 2407 int (*resize_cq)(struct ib_cq *cq, int cqe, 2408 struct ib_udata *udata); 2409 int (*poll_cq)(struct ib_cq *cq, int num_entries, 2410 struct ib_wc *wc); 2411 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 2412 int (*req_notify_cq)(struct ib_cq *cq, 2413 enum ib_cq_notify_flags flags); 2414 int (*req_ncomp_notif)(struct ib_cq *cq, 2415 int wc_cnt); 2416 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, 2417 int mr_access_flags); 2418 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, 2419 u64 start, u64 length, 2420 u64 virt_addr, 2421 int mr_access_flags, 2422 struct ib_udata *udata); 2423 int (*rereg_user_mr)(struct ib_mr *mr, 2424 int flags, 2425 u64 start, u64 length, 2426 u64 virt_addr, 2427 int mr_access_flags, 2428 struct ib_pd *pd, 2429 struct ib_udata *udata); 2430 int (*dereg_mr)(struct ib_mr *mr); 2431 struct ib_mr * (*alloc_mr)(struct ib_pd *pd, 2432 enum ib_mr_type mr_type, 2433 u32 max_num_sg); 2434 int (*map_mr_sg)(struct ib_mr *mr, 2435 struct scatterlist *sg, 2436 int sg_nents, 2437 unsigned int *sg_offset); 2438 struct ib_mw * (*alloc_mw)(struct ib_pd *pd, 2439 enum ib_mw_type type, 2440 struct ib_udata *udata); 2441 int (*dealloc_mw)(struct ib_mw *mw); 2442 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, 2443 int mr_access_flags, 2444 struct ib_fmr_attr *fmr_attr); 2445 int (*map_phys_fmr)(struct ib_fmr *fmr, 2446 u64 *page_list, int list_len, 2447 u64 iova); 2448 int (*unmap_fmr)(struct list_head *fmr_list); 2449 int (*dealloc_fmr)(struct ib_fmr *fmr); 2450 int (*attach_mcast)(struct ib_qp *qp, 2451 union ib_gid *gid, 2452 u16 lid); 2453 int (*detach_mcast)(struct ib_qp *qp, 2454 union ib_gid *gid, 2455 u16 lid); 2456 int (*process_mad)(struct ib_device *device, 2457 int process_mad_flags, 2458 u8 port_num, 2459 const struct ib_wc *in_wc, 2460 const struct ib_grh *in_grh, 2461 const struct ib_mad_hdr *in_mad, 2462 size_t in_mad_size, 2463 struct ib_mad_hdr *out_mad, 2464 size_t *out_mad_size, 2465 u16 *out_mad_pkey_index); 2466 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device, 2467 struct ib_ucontext *ucontext, 2468 struct ib_udata *udata); 2469 int (*dealloc_xrcd)(struct ib_xrcd *xrcd); 2470 struct ib_flow * (*create_flow)(struct ib_qp *qp, 2471 struct ib_flow_attr 2472 *flow_attr, 2473 int domain, 2474 struct ib_udata *udata); 2475 int (*destroy_flow)(struct ib_flow *flow_id); 2476 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 2477 struct ib_mr_status *mr_status); 2478 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 2479 void (*drain_rq)(struct ib_qp *qp); 2480 void (*drain_sq)(struct ib_qp *qp); 2481 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port, 2482 int state); 2483 int (*get_vf_config)(struct ib_device *device, int vf, u8 port, 2484 struct ifla_vf_info *ivf); 2485 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port, 2486 struct ifla_vf_stats *stats); 2487 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid, 2488 int type); 2489 struct ib_wq * (*create_wq)(struct ib_pd *pd, 2490 struct ib_wq_init_attr *init_attr, 2491 struct ib_udata *udata); 2492 int (*destroy_wq)(struct ib_wq *wq); 2493 int (*modify_wq)(struct ib_wq *wq, 2494 struct ib_wq_attr *attr, 2495 u32 wq_attr_mask, 2496 struct ib_udata *udata); 2497 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device, 2498 struct ib_rwq_ind_table_init_attr *init_attr, 2499 struct ib_udata *udata); 2500 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table); 2501 struct ib_flow_action * (*create_flow_action_esp)(struct ib_device *device, 2502 const struct ib_flow_action_attrs_esp *attr, 2503 struct uverbs_attr_bundle *attrs); 2504 int (*destroy_flow_action)(struct ib_flow_action *action); 2505 int (*modify_flow_action_esp)(struct ib_flow_action *action, 2506 const struct ib_flow_action_attrs_esp *attr, 2507 struct uverbs_attr_bundle *attrs); 2508 struct ib_dm * (*alloc_dm)(struct ib_device *device, 2509 struct ib_ucontext *context, 2510 struct ib_dm_alloc_attr *attr, 2511 struct uverbs_attr_bundle *attrs); 2512 int (*dealloc_dm)(struct ib_dm *dm); 2513 struct ib_mr * (*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm, 2514 struct ib_dm_mr_attr *attr, 2515 struct uverbs_attr_bundle *attrs); 2516 struct ib_counters * (*create_counters)(struct ib_device *device, 2517 struct uverbs_attr_bundle *attrs); 2518 int (*destroy_counters)(struct ib_counters *counters); 2519 int (*read_counters)(struct ib_counters *counters, 2520 struct ib_counters_read_attr *counters_read_attr, 2521 struct uverbs_attr_bundle *attrs); 2522 2523 /** 2524 * rdma netdev operation 2525 * 2526 * Driver implementing alloc_rdma_netdev must return -EOPNOTSUPP if it 2527 * doesn't support the specified rdma netdev type. 2528 */ 2529 struct net_device *(*alloc_rdma_netdev)( 2530 struct ib_device *device, 2531 u8 port_num, 2532 enum rdma_netdev_t type, 2533 const char *name, 2534 unsigned char name_assign_type, 2535 void (*setup)(struct net_device *)); 2536 2537 struct module *owner; 2538 struct device dev; 2539 struct kobject *ports_parent; 2540 struct list_head port_list; 2541 2542 enum { 2543 IB_DEV_UNINITIALIZED, 2544 IB_DEV_REGISTERED, 2545 IB_DEV_UNREGISTERED 2546 } reg_state; 2547 2548 int uverbs_abi_ver; 2549 u64 uverbs_cmd_mask; 2550 u64 uverbs_ex_cmd_mask; 2551 2552 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 2553 __be64 node_guid; 2554 u32 local_dma_lkey; 2555 u16 is_switch:1; 2556 u8 node_type; 2557 u8 phys_port_cnt; 2558 struct ib_device_attr attrs; 2559 struct attribute_group *hw_stats_ag; 2560 struct rdma_hw_stats *hw_stats; 2561 2562 #ifdef CONFIG_CGROUP_RDMA 2563 struct rdmacg_device cg_device; 2564 #endif 2565 2566 u32 index; 2567 /* 2568 * Implementation details of the RDMA core, don't use in drivers 2569 */ 2570 struct rdma_restrack_root res; 2571 2572 /** 2573 * The following mandatory functions are used only at device 2574 * registration. Keep functions such as these at the end of this 2575 * structure to avoid cache line misses when accessing struct ib_device 2576 * in fast paths. 2577 */ 2578 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *); 2579 void (*get_dev_fw_str)(struct ib_device *, char *str); 2580 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev, 2581 int comp_vector); 2582 2583 const struct uverbs_object_tree_def *const *driver_specs; 2584 enum rdma_driver_id driver_id; 2585 }; 2586 2587 struct ib_client { 2588 char *name; 2589 void (*add) (struct ib_device *); 2590 void (*remove)(struct ib_device *, void *client_data); 2591 2592 /* Returns the net_dev belonging to this ib_client and matching the 2593 * given parameters. 2594 * @dev: An RDMA device that the net_dev use for communication. 2595 * @port: A physical port number on the RDMA device. 2596 * @pkey: P_Key that the net_dev uses if applicable. 2597 * @gid: A GID that the net_dev uses to communicate. 2598 * @addr: An IP address the net_dev is configured with. 2599 * @client_data: The device's client data set by ib_set_client_data(). 2600 * 2601 * An ib_client that implements a net_dev on top of RDMA devices 2602 * (such as IP over IB) should implement this callback, allowing the 2603 * rdma_cm module to find the right net_dev for a given request. 2604 * 2605 * The caller is responsible for calling dev_put on the returned 2606 * netdev. */ 2607 struct net_device *(*get_net_dev_by_params)( 2608 struct ib_device *dev, 2609 u8 port, 2610 u16 pkey, 2611 const union ib_gid *gid, 2612 const struct sockaddr *addr, 2613 void *client_data); 2614 struct list_head list; 2615 }; 2616 2617 struct ib_device *ib_alloc_device(size_t size); 2618 void ib_dealloc_device(struct ib_device *device); 2619 2620 void ib_get_device_fw_str(struct ib_device *device, char *str); 2621 2622 int ib_register_device(struct ib_device *device, 2623 int (*port_callback)(struct ib_device *, 2624 u8, struct kobject *)); 2625 void ib_unregister_device(struct ib_device *device); 2626 2627 int ib_register_client (struct ib_client *client); 2628 void ib_unregister_client(struct ib_client *client); 2629 2630 void *ib_get_client_data(struct ib_device *device, struct ib_client *client); 2631 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 2632 void *data); 2633 2634 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 2635 { 2636 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 2637 } 2638 2639 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 2640 { 2641 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 2642 } 2643 2644 static inline bool ib_is_buffer_cleared(const void __user *p, 2645 size_t len) 2646 { 2647 bool ret; 2648 u8 *buf; 2649 2650 if (len > USHRT_MAX) 2651 return false; 2652 2653 buf = memdup_user(p, len); 2654 if (IS_ERR(buf)) 2655 return false; 2656 2657 ret = !memchr_inv(buf, 0, len); 2658 kfree(buf); 2659 return ret; 2660 } 2661 2662 static inline bool ib_is_udata_cleared(struct ib_udata *udata, 2663 size_t offset, 2664 size_t len) 2665 { 2666 return ib_is_buffer_cleared(udata->inbuf + offset, len); 2667 } 2668 2669 /** 2670 * ib_is_destroy_retryable - Check whether the uobject destruction 2671 * is retryable. 2672 * @ret: The initial destruction return code 2673 * @why: remove reason 2674 * @uobj: The uobject that is destroyed 2675 * 2676 * This function is a helper function that IB layer and low-level drivers 2677 * can use to consider whether the destruction of the given uobject is 2678 * retry-able. 2679 * It checks the original return code, if it wasn't success the destruction 2680 * is retryable according to the ucontext state (i.e. cleanup_retryable) and 2681 * the remove reason. (i.e. why). 2682 * Must be called with the object locked for destroy. 2683 */ 2684 static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why, 2685 struct ib_uobject *uobj) 2686 { 2687 return ret && (why == RDMA_REMOVE_DESTROY || 2688 uobj->context->cleanup_retryable); 2689 } 2690 2691 /** 2692 * ib_destroy_usecnt - Called during destruction to check the usecnt 2693 * @usecnt: The usecnt atomic 2694 * @why: remove reason 2695 * @uobj: The uobject that is destroyed 2696 * 2697 * Non-zero usecnts will block destruction unless destruction was triggered by 2698 * a ucontext cleanup. 2699 */ 2700 static inline int ib_destroy_usecnt(atomic_t *usecnt, 2701 enum rdma_remove_reason why, 2702 struct ib_uobject *uobj) 2703 { 2704 if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj)) 2705 return -EBUSY; 2706 return 0; 2707 } 2708 2709 /** 2710 * ib_modify_qp_is_ok - Check that the supplied attribute mask 2711 * contains all required attributes and no attributes not allowed for 2712 * the given QP state transition. 2713 * @cur_state: Current QP state 2714 * @next_state: Next QP state 2715 * @type: QP type 2716 * @mask: Mask of supplied QP attributes 2717 * @ll : link layer of port 2718 * 2719 * This function is a helper function that a low-level driver's 2720 * modify_qp method can use to validate the consumer's input. It 2721 * checks that cur_state and next_state are valid QP states, that a 2722 * transition from cur_state to next_state is allowed by the IB spec, 2723 * and that the attribute mask supplied is allowed for the transition. 2724 */ 2725 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 2726 enum ib_qp_type type, enum ib_qp_attr_mask mask, 2727 enum rdma_link_layer ll); 2728 2729 void ib_register_event_handler(struct ib_event_handler *event_handler); 2730 void ib_unregister_event_handler(struct ib_event_handler *event_handler); 2731 void ib_dispatch_event(struct ib_event *event); 2732 2733 int ib_query_port(struct ib_device *device, 2734 u8 port_num, struct ib_port_attr *port_attr); 2735 2736 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 2737 u8 port_num); 2738 2739 /** 2740 * rdma_cap_ib_switch - Check if the device is IB switch 2741 * @device: Device to check 2742 * 2743 * Device driver is responsible for setting is_switch bit on 2744 * in ib_device structure at init time. 2745 * 2746 * Return: true if the device is IB switch. 2747 */ 2748 static inline bool rdma_cap_ib_switch(const struct ib_device *device) 2749 { 2750 return device->is_switch; 2751 } 2752 2753 /** 2754 * rdma_start_port - Return the first valid port number for the device 2755 * specified 2756 * 2757 * @device: Device to be checked 2758 * 2759 * Return start port number 2760 */ 2761 static inline u8 rdma_start_port(const struct ib_device *device) 2762 { 2763 return rdma_cap_ib_switch(device) ? 0 : 1; 2764 } 2765 2766 /** 2767 * rdma_end_port - Return the last valid port number for the device 2768 * specified 2769 * 2770 * @device: Device to be checked 2771 * 2772 * Return last port number 2773 */ 2774 static inline u8 rdma_end_port(const struct ib_device *device) 2775 { 2776 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 2777 } 2778 2779 static inline int rdma_is_port_valid(const struct ib_device *device, 2780 unsigned int port) 2781 { 2782 return (port >= rdma_start_port(device) && 2783 port <= rdma_end_port(device)); 2784 } 2785 2786 static inline bool rdma_is_grh_required(const struct ib_device *device, 2787 u8 port_num) 2788 { 2789 return device->port_immutable[port_num].core_cap_flags & 2790 RDMA_CORE_PORT_IB_GRH_REQUIRED; 2791 } 2792 2793 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num) 2794 { 2795 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB; 2796 } 2797 2798 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num) 2799 { 2800 return device->port_immutable[port_num].core_cap_flags & 2801 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); 2802 } 2803 2804 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num) 2805 { 2806 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; 2807 } 2808 2809 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num) 2810 { 2811 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE; 2812 } 2813 2814 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num) 2815 { 2816 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP; 2817 } 2818 2819 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num) 2820 { 2821 return rdma_protocol_ib(device, port_num) || 2822 rdma_protocol_roce(device, port_num); 2823 } 2824 2825 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num) 2826 { 2827 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_RAW_PACKET; 2828 } 2829 2830 static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num) 2831 { 2832 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_USNIC; 2833 } 2834 2835 /** 2836 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 2837 * Management Datagrams. 2838 * @device: Device to check 2839 * @port_num: Port number to check 2840 * 2841 * Management Datagrams (MAD) are a required part of the InfiniBand 2842 * specification and are supported on all InfiniBand devices. A slightly 2843 * extended version are also supported on OPA interfaces. 2844 * 2845 * Return: true if the port supports sending/receiving of MAD packets. 2846 */ 2847 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num) 2848 { 2849 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD; 2850 } 2851 2852 /** 2853 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 2854 * Management Datagrams. 2855 * @device: Device to check 2856 * @port_num: Port number to check 2857 * 2858 * Intel OmniPath devices extend and/or replace the InfiniBand Management 2859 * datagrams with their own versions. These OPA MADs share many but not all of 2860 * the characteristics of InfiniBand MADs. 2861 * 2862 * OPA MADs differ in the following ways: 2863 * 2864 * 1) MADs are variable size up to 2K 2865 * IBTA defined MADs remain fixed at 256 bytes 2866 * 2) OPA SMPs must carry valid PKeys 2867 * 3) OPA SMP packets are a different format 2868 * 2869 * Return: true if the port supports OPA MAD packet formats. 2870 */ 2871 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num) 2872 { 2873 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD) 2874 == RDMA_CORE_CAP_OPA_MAD; 2875 } 2876 2877 /** 2878 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 2879 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 2880 * @device: Device to check 2881 * @port_num: Port number to check 2882 * 2883 * Each InfiniBand node is required to provide a Subnet Management Agent 2884 * that the subnet manager can access. Prior to the fabric being fully 2885 * configured by the subnet manager, the SMA is accessed via a well known 2886 * interface called the Subnet Management Interface (SMI). This interface 2887 * uses directed route packets to communicate with the SM to get around the 2888 * chicken and egg problem of the SM needing to know what's on the fabric 2889 * in order to configure the fabric, and needing to configure the fabric in 2890 * order to send packets to the devices on the fabric. These directed 2891 * route packets do not need the fabric fully configured in order to reach 2892 * their destination. The SMI is the only method allowed to send 2893 * directed route packets on an InfiniBand fabric. 2894 * 2895 * Return: true if the port provides an SMI. 2896 */ 2897 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num) 2898 { 2899 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI; 2900 } 2901 2902 /** 2903 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 2904 * Communication Manager. 2905 * @device: Device to check 2906 * @port_num: Port number to check 2907 * 2908 * The InfiniBand Communication Manager is one of many pre-defined General 2909 * Service Agents (GSA) that are accessed via the General Service 2910 * Interface (GSI). It's role is to facilitate establishment of connections 2911 * between nodes as well as other management related tasks for established 2912 * connections. 2913 * 2914 * Return: true if the port supports an IB CM (this does not guarantee that 2915 * a CM is actually running however). 2916 */ 2917 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num) 2918 { 2919 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM; 2920 } 2921 2922 /** 2923 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 2924 * Communication Manager. 2925 * @device: Device to check 2926 * @port_num: Port number to check 2927 * 2928 * Similar to above, but specific to iWARP connections which have a different 2929 * managment protocol than InfiniBand. 2930 * 2931 * Return: true if the port supports an iWARP CM (this does not guarantee that 2932 * a CM is actually running however). 2933 */ 2934 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num) 2935 { 2936 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM; 2937 } 2938 2939 /** 2940 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 2941 * Subnet Administration. 2942 * @device: Device to check 2943 * @port_num: Port number to check 2944 * 2945 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 2946 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 2947 * fabrics, devices should resolve routes to other hosts by contacting the 2948 * SA to query the proper route. 2949 * 2950 * Return: true if the port should act as a client to the fabric Subnet 2951 * Administration interface. This does not imply that the SA service is 2952 * running locally. 2953 */ 2954 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num) 2955 { 2956 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA; 2957 } 2958 2959 /** 2960 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 2961 * Multicast. 2962 * @device: Device to check 2963 * @port_num: Port number to check 2964 * 2965 * InfiniBand multicast registration is more complex than normal IPv4 or 2966 * IPv6 multicast registration. Each Host Channel Adapter must register 2967 * with the Subnet Manager when it wishes to join a multicast group. It 2968 * should do so only once regardless of how many queue pairs it subscribes 2969 * to this group. And it should leave the group only after all queue pairs 2970 * attached to the group have been detached. 2971 * 2972 * Return: true if the port must undertake the additional adminstrative 2973 * overhead of registering/unregistering with the SM and tracking of the 2974 * total number of queue pairs attached to the multicast group. 2975 */ 2976 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num) 2977 { 2978 return rdma_cap_ib_sa(device, port_num); 2979 } 2980 2981 /** 2982 * rdma_cap_af_ib - Check if the port of device has the capability 2983 * Native Infiniband Address. 2984 * @device: Device to check 2985 * @port_num: Port number to check 2986 * 2987 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 2988 * GID. RoCE uses a different mechanism, but still generates a GID via 2989 * a prescribed mechanism and port specific data. 2990 * 2991 * Return: true if the port uses a GID address to identify devices on the 2992 * network. 2993 */ 2994 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num) 2995 { 2996 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB; 2997 } 2998 2999 /** 3000 * rdma_cap_eth_ah - Check if the port of device has the capability 3001 * Ethernet Address Handle. 3002 * @device: Device to check 3003 * @port_num: Port number to check 3004 * 3005 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 3006 * to fabricate GIDs over Ethernet/IP specific addresses native to the 3007 * port. Normally, packet headers are generated by the sending host 3008 * adapter, but when sending connectionless datagrams, we must manually 3009 * inject the proper headers for the fabric we are communicating over. 3010 * 3011 * Return: true if we are running as a RoCE port and must force the 3012 * addition of a Global Route Header built from our Ethernet Address 3013 * Handle into our header list for connectionless packets. 3014 */ 3015 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num) 3016 { 3017 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH; 3018 } 3019 3020 /** 3021 * rdma_cap_opa_ah - Check if the port of device supports 3022 * OPA Address handles 3023 * @device: Device to check 3024 * @port_num: Port number to check 3025 * 3026 * Return: true if we are running on an OPA device which supports 3027 * the extended OPA addressing. 3028 */ 3029 static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num) 3030 { 3031 return (device->port_immutable[port_num].core_cap_flags & 3032 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH; 3033 } 3034 3035 /** 3036 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 3037 * 3038 * @device: Device 3039 * @port_num: Port number 3040 * 3041 * This MAD size includes the MAD headers and MAD payload. No other headers 3042 * are included. 3043 * 3044 * Return the max MAD size required by the Port. Will return 0 if the port 3045 * does not support MADs 3046 */ 3047 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num) 3048 { 3049 return device->port_immutable[port_num].max_mad_size; 3050 } 3051 3052 /** 3053 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 3054 * @device: Device to check 3055 * @port_num: Port number to check 3056 * 3057 * RoCE GID table mechanism manages the various GIDs for a device. 3058 * 3059 * NOTE: if allocating the port's GID table has failed, this call will still 3060 * return true, but any RoCE GID table API will fail. 3061 * 3062 * Return: true if the port uses RoCE GID table mechanism in order to manage 3063 * its GIDs. 3064 */ 3065 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 3066 u8 port_num) 3067 { 3068 return rdma_protocol_roce(device, port_num) && 3069 device->add_gid && device->del_gid; 3070 } 3071 3072 /* 3073 * Check if the device supports READ W/ INVALIDATE. 3074 */ 3075 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num) 3076 { 3077 /* 3078 * iWarp drivers must support READ W/ INVALIDATE. No other protocol 3079 * has support for it yet. 3080 */ 3081 return rdma_protocol_iwarp(dev, port_num); 3082 } 3083 3084 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 3085 int state); 3086 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 3087 struct ifla_vf_info *info); 3088 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 3089 struct ifla_vf_stats *stats); 3090 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 3091 int type); 3092 3093 int ib_query_pkey(struct ib_device *device, 3094 u8 port_num, u16 index, u16 *pkey); 3095 3096 int ib_modify_device(struct ib_device *device, 3097 int device_modify_mask, 3098 struct ib_device_modify *device_modify); 3099 3100 int ib_modify_port(struct ib_device *device, 3101 u8 port_num, int port_modify_mask, 3102 struct ib_port_modify *port_modify); 3103 3104 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 3105 u8 *port_num, u16 *index); 3106 3107 int ib_find_pkey(struct ib_device *device, 3108 u8 port_num, u16 pkey, u16 *index); 3109 3110 enum ib_pd_flags { 3111 /* 3112 * Create a memory registration for all memory in the system and place 3113 * the rkey for it into pd->unsafe_global_rkey. This can be used by 3114 * ULPs to avoid the overhead of dynamic MRs. 3115 * 3116 * This flag is generally considered unsafe and must only be used in 3117 * extremly trusted environments. Every use of it will log a warning 3118 * in the kernel log. 3119 */ 3120 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01, 3121 }; 3122 3123 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 3124 const char *caller); 3125 #define ib_alloc_pd(device, flags) \ 3126 __ib_alloc_pd((device), (flags), KBUILD_MODNAME) 3127 void ib_dealloc_pd(struct ib_pd *pd); 3128 3129 /** 3130 * rdma_create_ah - Creates an address handle for the given address vector. 3131 * @pd: The protection domain associated with the address handle. 3132 * @ah_attr: The attributes of the address vector. 3133 * 3134 * The address handle is used to reference a local or global destination 3135 * in all UD QP post sends. 3136 */ 3137 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr); 3138 3139 /** 3140 * rdma_create_user_ah - Creates an address handle for the given address vector. 3141 * It resolves destination mac address for ah attribute of RoCE type. 3142 * @pd: The protection domain associated with the address handle. 3143 * @ah_attr: The attributes of the address vector. 3144 * @udata: pointer to user's input output buffer information need by 3145 * provider driver. 3146 * 3147 * It returns 0 on success and returns appropriate error code on error. 3148 * The address handle is used to reference a local or global destination 3149 * in all UD QP post sends. 3150 */ 3151 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd, 3152 struct rdma_ah_attr *ah_attr, 3153 struct ib_udata *udata); 3154 /** 3155 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header 3156 * work completion. 3157 * @hdr: the L3 header to parse 3158 * @net_type: type of header to parse 3159 * @sgid: place to store source gid 3160 * @dgid: place to store destination gid 3161 */ 3162 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 3163 enum rdma_network_type net_type, 3164 union ib_gid *sgid, union ib_gid *dgid); 3165 3166 /** 3167 * ib_get_rdma_header_version - Get the header version 3168 * @hdr: the L3 header to parse 3169 */ 3170 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr); 3171 3172 /** 3173 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a 3174 * work completion. 3175 * @device: Device on which the received message arrived. 3176 * @port_num: Port on which the received message arrived. 3177 * @wc: Work completion associated with the received message. 3178 * @grh: References the received global route header. This parameter is 3179 * ignored unless the work completion indicates that the GRH is valid. 3180 * @ah_attr: Returned attributes that can be used when creating an address 3181 * handle for replying to the message. 3182 * When ib_init_ah_attr_from_wc() returns success, 3183 * (a) for IB link layer it optionally contains a reference to SGID attribute 3184 * when GRH is present for IB link layer. 3185 * (b) for RoCE link layer it contains a reference to SGID attribute. 3186 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID 3187 * attributes which are initialized using ib_init_ah_attr_from_wc(). 3188 * 3189 */ 3190 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num, 3191 const struct ib_wc *wc, const struct ib_grh *grh, 3192 struct rdma_ah_attr *ah_attr); 3193 3194 /** 3195 * ib_create_ah_from_wc - Creates an address handle associated with the 3196 * sender of the specified work completion. 3197 * @pd: The protection domain associated with the address handle. 3198 * @wc: Work completion information associated with a received message. 3199 * @grh: References the received global route header. This parameter is 3200 * ignored unless the work completion indicates that the GRH is valid. 3201 * @port_num: The outbound port number to associate with the address. 3202 * 3203 * The address handle is used to reference a local or global destination 3204 * in all UD QP post sends. 3205 */ 3206 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 3207 const struct ib_grh *grh, u8 port_num); 3208 3209 /** 3210 * rdma_modify_ah - Modifies the address vector associated with an address 3211 * handle. 3212 * @ah: The address handle to modify. 3213 * @ah_attr: The new address vector attributes to associate with the 3214 * address handle. 3215 */ 3216 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3217 3218 /** 3219 * rdma_query_ah - Queries the address vector associated with an address 3220 * handle. 3221 * @ah: The address handle to query. 3222 * @ah_attr: The address vector attributes associated with the address 3223 * handle. 3224 */ 3225 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3226 3227 /** 3228 * rdma_destroy_ah - Destroys an address handle. 3229 * @ah: The address handle to destroy. 3230 */ 3231 int rdma_destroy_ah(struct ib_ah *ah); 3232 3233 /** 3234 * ib_create_srq - Creates a SRQ associated with the specified protection 3235 * domain. 3236 * @pd: The protection domain associated with the SRQ. 3237 * @srq_init_attr: A list of initial attributes required to create the 3238 * SRQ. If SRQ creation succeeds, then the attributes are updated to 3239 * the actual capabilities of the created SRQ. 3240 * 3241 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 3242 * requested size of the SRQ, and set to the actual values allocated 3243 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 3244 * will always be at least as large as the requested values. 3245 */ 3246 struct ib_srq *ib_create_srq(struct ib_pd *pd, 3247 struct ib_srq_init_attr *srq_init_attr); 3248 3249 /** 3250 * ib_modify_srq - Modifies the attributes for the specified SRQ. 3251 * @srq: The SRQ to modify. 3252 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 3253 * the current values of selected SRQ attributes are returned. 3254 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 3255 * are being modified. 3256 * 3257 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 3258 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 3259 * the number of receives queued drops below the limit. 3260 */ 3261 int ib_modify_srq(struct ib_srq *srq, 3262 struct ib_srq_attr *srq_attr, 3263 enum ib_srq_attr_mask srq_attr_mask); 3264 3265 /** 3266 * ib_query_srq - Returns the attribute list and current values for the 3267 * specified SRQ. 3268 * @srq: The SRQ to query. 3269 * @srq_attr: The attributes of the specified SRQ. 3270 */ 3271 int ib_query_srq(struct ib_srq *srq, 3272 struct ib_srq_attr *srq_attr); 3273 3274 /** 3275 * ib_destroy_srq - Destroys the specified SRQ. 3276 * @srq: The SRQ to destroy. 3277 */ 3278 int ib_destroy_srq(struct ib_srq *srq); 3279 3280 /** 3281 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 3282 * @srq: The SRQ to post the work request on. 3283 * @recv_wr: A list of work requests to post on the receive queue. 3284 * @bad_recv_wr: On an immediate failure, this parameter will reference 3285 * the work request that failed to be posted on the QP. 3286 */ 3287 static inline int ib_post_srq_recv(struct ib_srq *srq, 3288 const struct ib_recv_wr *recv_wr, 3289 const struct ib_recv_wr **bad_recv_wr) 3290 { 3291 const struct ib_recv_wr *dummy; 3292 3293 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr ? : &dummy); 3294 } 3295 3296 /** 3297 * ib_create_qp - Creates a QP associated with the specified protection 3298 * domain. 3299 * @pd: The protection domain associated with the QP. 3300 * @qp_init_attr: A list of initial attributes required to create the 3301 * QP. If QP creation succeeds, then the attributes are updated to 3302 * the actual capabilities of the created QP. 3303 */ 3304 struct ib_qp *ib_create_qp(struct ib_pd *pd, 3305 struct ib_qp_init_attr *qp_init_attr); 3306 3307 /** 3308 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 3309 * @qp: The QP to modify. 3310 * @attr: On input, specifies the QP attributes to modify. On output, 3311 * the current values of selected QP attributes are returned. 3312 * @attr_mask: A bit-mask used to specify which attributes of the QP 3313 * are being modified. 3314 * @udata: pointer to user's input output buffer information 3315 * are being modified. 3316 * It returns 0 on success and returns appropriate error code on error. 3317 */ 3318 int ib_modify_qp_with_udata(struct ib_qp *qp, 3319 struct ib_qp_attr *attr, 3320 int attr_mask, 3321 struct ib_udata *udata); 3322 3323 /** 3324 * ib_modify_qp - Modifies the attributes for the specified QP and then 3325 * transitions the QP to the given state. 3326 * @qp: The QP to modify. 3327 * @qp_attr: On input, specifies the QP attributes to modify. On output, 3328 * the current values of selected QP attributes are returned. 3329 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 3330 * are being modified. 3331 */ 3332 int ib_modify_qp(struct ib_qp *qp, 3333 struct ib_qp_attr *qp_attr, 3334 int qp_attr_mask); 3335 3336 /** 3337 * ib_query_qp - Returns the attribute list and current values for the 3338 * specified QP. 3339 * @qp: The QP to query. 3340 * @qp_attr: The attributes of the specified QP. 3341 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 3342 * @qp_init_attr: Additional attributes of the selected QP. 3343 * 3344 * The qp_attr_mask may be used to limit the query to gathering only the 3345 * selected attributes. 3346 */ 3347 int ib_query_qp(struct ib_qp *qp, 3348 struct ib_qp_attr *qp_attr, 3349 int qp_attr_mask, 3350 struct ib_qp_init_attr *qp_init_attr); 3351 3352 /** 3353 * ib_destroy_qp - Destroys the specified QP. 3354 * @qp: The QP to destroy. 3355 */ 3356 int ib_destroy_qp(struct ib_qp *qp); 3357 3358 /** 3359 * ib_open_qp - Obtain a reference to an existing sharable QP. 3360 * @xrcd - XRC domain 3361 * @qp_open_attr: Attributes identifying the QP to open. 3362 * 3363 * Returns a reference to a sharable QP. 3364 */ 3365 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 3366 struct ib_qp_open_attr *qp_open_attr); 3367 3368 /** 3369 * ib_close_qp - Release an external reference to a QP. 3370 * @qp: The QP handle to release 3371 * 3372 * The opened QP handle is released by the caller. The underlying 3373 * shared QP is not destroyed until all internal references are released. 3374 */ 3375 int ib_close_qp(struct ib_qp *qp); 3376 3377 /** 3378 * ib_post_send - Posts a list of work requests to the send queue of 3379 * the specified QP. 3380 * @qp: The QP to post the work request on. 3381 * @send_wr: A list of work requests to post on the send queue. 3382 * @bad_send_wr: On an immediate failure, this parameter will reference 3383 * the work request that failed to be posted on the QP. 3384 * 3385 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 3386 * error is returned, the QP state shall not be affected, 3387 * ib_post_send() will return an immediate error after queueing any 3388 * earlier work requests in the list. 3389 */ 3390 static inline int ib_post_send(struct ib_qp *qp, 3391 const struct ib_send_wr *send_wr, 3392 const struct ib_send_wr **bad_send_wr) 3393 { 3394 const struct ib_send_wr *dummy; 3395 3396 return qp->device->post_send(qp, send_wr, bad_send_wr ? : &dummy); 3397 } 3398 3399 /** 3400 * ib_post_recv - Posts a list of work requests to the receive queue of 3401 * the specified QP. 3402 * @qp: The QP to post the work request on. 3403 * @recv_wr: A list of work requests to post on the receive queue. 3404 * @bad_recv_wr: On an immediate failure, this parameter will reference 3405 * the work request that failed to be posted on the QP. 3406 */ 3407 static inline int ib_post_recv(struct ib_qp *qp, 3408 const struct ib_recv_wr *recv_wr, 3409 const struct ib_recv_wr **bad_recv_wr) 3410 { 3411 const struct ib_recv_wr *dummy; 3412 3413 return qp->device->post_recv(qp, recv_wr, bad_recv_wr ? : &dummy); 3414 } 3415 3416 struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, 3417 int nr_cqe, int comp_vector, 3418 enum ib_poll_context poll_ctx, const char *caller); 3419 #define ib_alloc_cq(device, priv, nr_cqe, comp_vect, poll_ctx) \ 3420 __ib_alloc_cq((device), (priv), (nr_cqe), (comp_vect), (poll_ctx), KBUILD_MODNAME) 3421 3422 void ib_free_cq(struct ib_cq *cq); 3423 int ib_process_cq_direct(struct ib_cq *cq, int budget); 3424 3425 /** 3426 * ib_create_cq - Creates a CQ on the specified device. 3427 * @device: The device on which to create the CQ. 3428 * @comp_handler: A user-specified callback that is invoked when a 3429 * completion event occurs on the CQ. 3430 * @event_handler: A user-specified callback that is invoked when an 3431 * asynchronous event not associated with a completion occurs on the CQ. 3432 * @cq_context: Context associated with the CQ returned to the user via 3433 * the associated completion and event handlers. 3434 * @cq_attr: The attributes the CQ should be created upon. 3435 * 3436 * Users can examine the cq structure to determine the actual CQ size. 3437 */ 3438 struct ib_cq *__ib_create_cq(struct ib_device *device, 3439 ib_comp_handler comp_handler, 3440 void (*event_handler)(struct ib_event *, void *), 3441 void *cq_context, 3442 const struct ib_cq_init_attr *cq_attr, 3443 const char *caller); 3444 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \ 3445 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME) 3446 3447 /** 3448 * ib_resize_cq - Modifies the capacity of the CQ. 3449 * @cq: The CQ to resize. 3450 * @cqe: The minimum size of the CQ. 3451 * 3452 * Users can examine the cq structure to determine the actual CQ size. 3453 */ 3454 int ib_resize_cq(struct ib_cq *cq, int cqe); 3455 3456 /** 3457 * rdma_set_cq_moderation - Modifies moderation params of the CQ 3458 * @cq: The CQ to modify. 3459 * @cq_count: number of CQEs that will trigger an event 3460 * @cq_period: max period of time in usec before triggering an event 3461 * 3462 */ 3463 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period); 3464 3465 /** 3466 * ib_destroy_cq - Destroys the specified CQ. 3467 * @cq: The CQ to destroy. 3468 */ 3469 int ib_destroy_cq(struct ib_cq *cq); 3470 3471 /** 3472 * ib_poll_cq - poll a CQ for completion(s) 3473 * @cq:the CQ being polled 3474 * @num_entries:maximum number of completions to return 3475 * @wc:array of at least @num_entries &struct ib_wc where completions 3476 * will be returned 3477 * 3478 * Poll a CQ for (possibly multiple) completions. If the return value 3479 * is < 0, an error occurred. If the return value is >= 0, it is the 3480 * number of completions returned. If the return value is 3481 * non-negative and < num_entries, then the CQ was emptied. 3482 */ 3483 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 3484 struct ib_wc *wc) 3485 { 3486 return cq->device->poll_cq(cq, num_entries, wc); 3487 } 3488 3489 /** 3490 * ib_req_notify_cq - Request completion notification on a CQ. 3491 * @cq: The CQ to generate an event for. 3492 * @flags: 3493 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 3494 * to request an event on the next solicited event or next work 3495 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 3496 * may also be |ed in to request a hint about missed events, as 3497 * described below. 3498 * 3499 * Return Value: 3500 * < 0 means an error occurred while requesting notification 3501 * == 0 means notification was requested successfully, and if 3502 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 3503 * were missed and it is safe to wait for another event. In 3504 * this case is it guaranteed that any work completions added 3505 * to the CQ since the last CQ poll will trigger a completion 3506 * notification event. 3507 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 3508 * in. It means that the consumer must poll the CQ again to 3509 * make sure it is empty to avoid missing an event because of a 3510 * race between requesting notification and an entry being 3511 * added to the CQ. This return value means it is possible 3512 * (but not guaranteed) that a work completion has been added 3513 * to the CQ since the last poll without triggering a 3514 * completion notification event. 3515 */ 3516 static inline int ib_req_notify_cq(struct ib_cq *cq, 3517 enum ib_cq_notify_flags flags) 3518 { 3519 return cq->device->req_notify_cq(cq, flags); 3520 } 3521 3522 /** 3523 * ib_req_ncomp_notif - Request completion notification when there are 3524 * at least the specified number of unreaped completions on the CQ. 3525 * @cq: The CQ to generate an event for. 3526 * @wc_cnt: The number of unreaped completions that should be on the 3527 * CQ before an event is generated. 3528 */ 3529 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 3530 { 3531 return cq->device->req_ncomp_notif ? 3532 cq->device->req_ncomp_notif(cq, wc_cnt) : 3533 -ENOSYS; 3534 } 3535 3536 /** 3537 * ib_dma_mapping_error - check a DMA addr for error 3538 * @dev: The device for which the dma_addr was created 3539 * @dma_addr: The DMA address to check 3540 */ 3541 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 3542 { 3543 return dma_mapping_error(dev->dma_device, dma_addr); 3544 } 3545 3546 /** 3547 * ib_dma_map_single - Map a kernel virtual address to DMA address 3548 * @dev: The device for which the dma_addr is to be created 3549 * @cpu_addr: The kernel virtual address 3550 * @size: The size of the region in bytes 3551 * @direction: The direction of the DMA 3552 */ 3553 static inline u64 ib_dma_map_single(struct ib_device *dev, 3554 void *cpu_addr, size_t size, 3555 enum dma_data_direction direction) 3556 { 3557 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 3558 } 3559 3560 /** 3561 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 3562 * @dev: The device for which the DMA address was created 3563 * @addr: The DMA address 3564 * @size: The size of the region in bytes 3565 * @direction: The direction of the DMA 3566 */ 3567 static inline void ib_dma_unmap_single(struct ib_device *dev, 3568 u64 addr, size_t size, 3569 enum dma_data_direction direction) 3570 { 3571 dma_unmap_single(dev->dma_device, addr, size, direction); 3572 } 3573 3574 /** 3575 * ib_dma_map_page - Map a physical page to DMA address 3576 * @dev: The device for which the dma_addr is to be created 3577 * @page: The page to be mapped 3578 * @offset: The offset within the page 3579 * @size: The size of the region in bytes 3580 * @direction: The direction of the DMA 3581 */ 3582 static inline u64 ib_dma_map_page(struct ib_device *dev, 3583 struct page *page, 3584 unsigned long offset, 3585 size_t size, 3586 enum dma_data_direction direction) 3587 { 3588 return dma_map_page(dev->dma_device, page, offset, size, direction); 3589 } 3590 3591 /** 3592 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 3593 * @dev: The device for which the DMA address was created 3594 * @addr: The DMA address 3595 * @size: The size of the region in bytes 3596 * @direction: The direction of the DMA 3597 */ 3598 static inline void ib_dma_unmap_page(struct ib_device *dev, 3599 u64 addr, size_t size, 3600 enum dma_data_direction direction) 3601 { 3602 dma_unmap_page(dev->dma_device, addr, size, direction); 3603 } 3604 3605 /** 3606 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 3607 * @dev: The device for which the DMA addresses are to be created 3608 * @sg: The array of scatter/gather entries 3609 * @nents: The number of scatter/gather entries 3610 * @direction: The direction of the DMA 3611 */ 3612 static inline int ib_dma_map_sg(struct ib_device *dev, 3613 struct scatterlist *sg, int nents, 3614 enum dma_data_direction direction) 3615 { 3616 return dma_map_sg(dev->dma_device, sg, nents, direction); 3617 } 3618 3619 /** 3620 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 3621 * @dev: The device for which the DMA addresses were created 3622 * @sg: The array of scatter/gather entries 3623 * @nents: The number of scatter/gather entries 3624 * @direction: The direction of the DMA 3625 */ 3626 static inline void ib_dma_unmap_sg(struct ib_device *dev, 3627 struct scatterlist *sg, int nents, 3628 enum dma_data_direction direction) 3629 { 3630 dma_unmap_sg(dev->dma_device, sg, nents, direction); 3631 } 3632 3633 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 3634 struct scatterlist *sg, int nents, 3635 enum dma_data_direction direction, 3636 unsigned long dma_attrs) 3637 { 3638 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, 3639 dma_attrs); 3640 } 3641 3642 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 3643 struct scatterlist *sg, int nents, 3644 enum dma_data_direction direction, 3645 unsigned long dma_attrs) 3646 { 3647 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs); 3648 } 3649 /** 3650 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry 3651 * @dev: The device for which the DMA addresses were created 3652 * @sg: The scatter/gather entry 3653 * 3654 * Note: this function is obsolete. To do: change all occurrences of 3655 * ib_sg_dma_address() into sg_dma_address(). 3656 */ 3657 static inline u64 ib_sg_dma_address(struct ib_device *dev, 3658 struct scatterlist *sg) 3659 { 3660 return sg_dma_address(sg); 3661 } 3662 3663 /** 3664 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry 3665 * @dev: The device for which the DMA addresses were created 3666 * @sg: The scatter/gather entry 3667 * 3668 * Note: this function is obsolete. To do: change all occurrences of 3669 * ib_sg_dma_len() into sg_dma_len(). 3670 */ 3671 static inline unsigned int ib_sg_dma_len(struct ib_device *dev, 3672 struct scatterlist *sg) 3673 { 3674 return sg_dma_len(sg); 3675 } 3676 3677 /** 3678 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 3679 * @dev: The device for which the DMA address was created 3680 * @addr: The DMA address 3681 * @size: The size of the region in bytes 3682 * @dir: The direction of the DMA 3683 */ 3684 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 3685 u64 addr, 3686 size_t size, 3687 enum dma_data_direction dir) 3688 { 3689 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 3690 } 3691 3692 /** 3693 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 3694 * @dev: The device for which the DMA address was created 3695 * @addr: The DMA address 3696 * @size: The size of the region in bytes 3697 * @dir: The direction of the DMA 3698 */ 3699 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 3700 u64 addr, 3701 size_t size, 3702 enum dma_data_direction dir) 3703 { 3704 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 3705 } 3706 3707 /** 3708 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 3709 * @dev: The device for which the DMA address is requested 3710 * @size: The size of the region to allocate in bytes 3711 * @dma_handle: A pointer for returning the DMA address of the region 3712 * @flag: memory allocator flags 3713 */ 3714 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 3715 size_t size, 3716 dma_addr_t *dma_handle, 3717 gfp_t flag) 3718 { 3719 return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag); 3720 } 3721 3722 /** 3723 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 3724 * @dev: The device for which the DMA addresses were allocated 3725 * @size: The size of the region 3726 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 3727 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 3728 */ 3729 static inline void ib_dma_free_coherent(struct ib_device *dev, 3730 size_t size, void *cpu_addr, 3731 dma_addr_t dma_handle) 3732 { 3733 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 3734 } 3735 3736 /** 3737 * ib_dereg_mr - Deregisters a memory region and removes it from the 3738 * HCA translation table. 3739 * @mr: The memory region to deregister. 3740 * 3741 * This function can fail, if the memory region has memory windows bound to it. 3742 */ 3743 int ib_dereg_mr(struct ib_mr *mr); 3744 3745 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, 3746 enum ib_mr_type mr_type, 3747 u32 max_num_sg); 3748 3749 /** 3750 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 3751 * R_Key and L_Key. 3752 * @mr - struct ib_mr pointer to be updated. 3753 * @newkey - new key to be used. 3754 */ 3755 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 3756 { 3757 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 3758 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 3759 } 3760 3761 /** 3762 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 3763 * for calculating a new rkey for type 2 memory windows. 3764 * @rkey - the rkey to increment. 3765 */ 3766 static inline u32 ib_inc_rkey(u32 rkey) 3767 { 3768 const u32 mask = 0x000000ff; 3769 return ((rkey + 1) & mask) | (rkey & ~mask); 3770 } 3771 3772 /** 3773 * ib_alloc_fmr - Allocates a unmapped fast memory region. 3774 * @pd: The protection domain associated with the unmapped region. 3775 * @mr_access_flags: Specifies the memory access rights. 3776 * @fmr_attr: Attributes of the unmapped region. 3777 * 3778 * A fast memory region must be mapped before it can be used as part of 3779 * a work request. 3780 */ 3781 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 3782 int mr_access_flags, 3783 struct ib_fmr_attr *fmr_attr); 3784 3785 /** 3786 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 3787 * @fmr: The fast memory region to associate with the pages. 3788 * @page_list: An array of physical pages to map to the fast memory region. 3789 * @list_len: The number of pages in page_list. 3790 * @iova: The I/O virtual address to use with the mapped region. 3791 */ 3792 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 3793 u64 *page_list, int list_len, 3794 u64 iova) 3795 { 3796 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); 3797 } 3798 3799 /** 3800 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 3801 * @fmr_list: A linked list of fast memory regions to unmap. 3802 */ 3803 int ib_unmap_fmr(struct list_head *fmr_list); 3804 3805 /** 3806 * ib_dealloc_fmr - Deallocates a fast memory region. 3807 * @fmr: The fast memory region to deallocate. 3808 */ 3809 int ib_dealloc_fmr(struct ib_fmr *fmr); 3810 3811 /** 3812 * ib_attach_mcast - Attaches the specified QP to a multicast group. 3813 * @qp: QP to attach to the multicast group. The QP must be type 3814 * IB_QPT_UD. 3815 * @gid: Multicast group GID. 3816 * @lid: Multicast group LID in host byte order. 3817 * 3818 * In order to send and receive multicast packets, subnet 3819 * administration must have created the multicast group and configured 3820 * the fabric appropriately. The port associated with the specified 3821 * QP must also be a member of the multicast group. 3822 */ 3823 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3824 3825 /** 3826 * ib_detach_mcast - Detaches the specified QP from a multicast group. 3827 * @qp: QP to detach from the multicast group. 3828 * @gid: Multicast group GID. 3829 * @lid: Multicast group LID in host byte order. 3830 */ 3831 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3832 3833 /** 3834 * ib_alloc_xrcd - Allocates an XRC domain. 3835 * @device: The device on which to allocate the XRC domain. 3836 * @caller: Module name for kernel consumers 3837 */ 3838 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller); 3839 #define ib_alloc_xrcd(device) \ 3840 __ib_alloc_xrcd((device), KBUILD_MODNAME) 3841 3842 /** 3843 * ib_dealloc_xrcd - Deallocates an XRC domain. 3844 * @xrcd: The XRC domain to deallocate. 3845 */ 3846 int ib_dealloc_xrcd(struct ib_xrcd *xrcd); 3847 3848 static inline int ib_check_mr_access(int flags) 3849 { 3850 /* 3851 * Local write permission is required if remote write or 3852 * remote atomic permission is also requested. 3853 */ 3854 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 3855 !(flags & IB_ACCESS_LOCAL_WRITE)) 3856 return -EINVAL; 3857 3858 return 0; 3859 } 3860 3861 static inline bool ib_access_writable(int access_flags) 3862 { 3863 /* 3864 * We have writable memory backing the MR if any of the following 3865 * access flags are set. "Local write" and "remote write" obviously 3866 * require write access. "Remote atomic" can do things like fetch and 3867 * add, which will modify memory, and "MW bind" can change permissions 3868 * by binding a window. 3869 */ 3870 return access_flags & 3871 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | 3872 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND); 3873 } 3874 3875 /** 3876 * ib_check_mr_status: lightweight check of MR status. 3877 * This routine may provide status checks on a selected 3878 * ib_mr. first use is for signature status check. 3879 * 3880 * @mr: A memory region. 3881 * @check_mask: Bitmask of which checks to perform from 3882 * ib_mr_status_check enumeration. 3883 * @mr_status: The container of relevant status checks. 3884 * failed checks will be indicated in the status bitmask 3885 * and the relevant info shall be in the error item. 3886 */ 3887 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 3888 struct ib_mr_status *mr_status); 3889 3890 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port, 3891 u16 pkey, const union ib_gid *gid, 3892 const struct sockaddr *addr); 3893 struct ib_wq *ib_create_wq(struct ib_pd *pd, 3894 struct ib_wq_init_attr *init_attr); 3895 int ib_destroy_wq(struct ib_wq *wq); 3896 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr, 3897 u32 wq_attr_mask); 3898 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device, 3899 struct ib_rwq_ind_table_init_attr* 3900 wq_ind_table_init_attr); 3901 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table); 3902 3903 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3904 unsigned int *sg_offset, unsigned int page_size); 3905 3906 static inline int 3907 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3908 unsigned int *sg_offset, unsigned int page_size) 3909 { 3910 int n; 3911 3912 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size); 3913 mr->iova = 0; 3914 3915 return n; 3916 } 3917 3918 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 3919 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64)); 3920 3921 void ib_drain_rq(struct ib_qp *qp); 3922 void ib_drain_sq(struct ib_qp *qp); 3923 void ib_drain_qp(struct ib_qp *qp); 3924 3925 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width); 3926 3927 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr) 3928 { 3929 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE) 3930 return attr->roce.dmac; 3931 return NULL; 3932 } 3933 3934 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid) 3935 { 3936 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 3937 attr->ib.dlid = (u16)dlid; 3938 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 3939 attr->opa.dlid = dlid; 3940 } 3941 3942 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr) 3943 { 3944 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 3945 return attr->ib.dlid; 3946 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 3947 return attr->opa.dlid; 3948 return 0; 3949 } 3950 3951 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl) 3952 { 3953 attr->sl = sl; 3954 } 3955 3956 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr) 3957 { 3958 return attr->sl; 3959 } 3960 3961 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr, 3962 u8 src_path_bits) 3963 { 3964 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 3965 attr->ib.src_path_bits = src_path_bits; 3966 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 3967 attr->opa.src_path_bits = src_path_bits; 3968 } 3969 3970 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr) 3971 { 3972 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 3973 return attr->ib.src_path_bits; 3974 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 3975 return attr->opa.src_path_bits; 3976 return 0; 3977 } 3978 3979 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr, 3980 bool make_grd) 3981 { 3982 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 3983 attr->opa.make_grd = make_grd; 3984 } 3985 3986 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr) 3987 { 3988 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 3989 return attr->opa.make_grd; 3990 return false; 3991 } 3992 3993 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num) 3994 { 3995 attr->port_num = port_num; 3996 } 3997 3998 static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr) 3999 { 4000 return attr->port_num; 4001 } 4002 4003 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr, 4004 u8 static_rate) 4005 { 4006 attr->static_rate = static_rate; 4007 } 4008 4009 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr) 4010 { 4011 return attr->static_rate; 4012 } 4013 4014 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr, 4015 enum ib_ah_flags flag) 4016 { 4017 attr->ah_flags = flag; 4018 } 4019 4020 static inline enum ib_ah_flags 4021 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr) 4022 { 4023 return attr->ah_flags; 4024 } 4025 4026 static inline const struct ib_global_route 4027 *rdma_ah_read_grh(const struct rdma_ah_attr *attr) 4028 { 4029 return &attr->grh; 4030 } 4031 4032 /*To retrieve and modify the grh */ 4033 static inline struct ib_global_route 4034 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr) 4035 { 4036 return &attr->grh; 4037 } 4038 4039 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid) 4040 { 4041 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4042 4043 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid)); 4044 } 4045 4046 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr, 4047 __be64 prefix) 4048 { 4049 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4050 4051 grh->dgid.global.subnet_prefix = prefix; 4052 } 4053 4054 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr, 4055 __be64 if_id) 4056 { 4057 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4058 4059 grh->dgid.global.interface_id = if_id; 4060 } 4061 4062 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr, 4063 union ib_gid *dgid, u32 flow_label, 4064 u8 sgid_index, u8 hop_limit, 4065 u8 traffic_class) 4066 { 4067 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4068 4069 attr->ah_flags = IB_AH_GRH; 4070 if (dgid) 4071 grh->dgid = *dgid; 4072 grh->flow_label = flow_label; 4073 grh->sgid_index = sgid_index; 4074 grh->hop_limit = hop_limit; 4075 grh->traffic_class = traffic_class; 4076 grh->sgid_attr = NULL; 4077 } 4078 4079 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr); 4080 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid, 4081 u32 flow_label, u8 hop_limit, u8 traffic_class, 4082 const struct ib_gid_attr *sgid_attr); 4083 void rdma_copy_ah_attr(struct rdma_ah_attr *dest, 4084 const struct rdma_ah_attr *src); 4085 void rdma_replace_ah_attr(struct rdma_ah_attr *old, 4086 const struct rdma_ah_attr *new); 4087 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src); 4088 4089 /** 4090 * rdma_ah_find_type - Return address handle type. 4091 * 4092 * @dev: Device to be checked 4093 * @port_num: Port number 4094 */ 4095 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev, 4096 u8 port_num) 4097 { 4098 if (rdma_protocol_roce(dev, port_num)) 4099 return RDMA_AH_ATTR_TYPE_ROCE; 4100 if (rdma_protocol_ib(dev, port_num)) { 4101 if (rdma_cap_opa_ah(dev, port_num)) 4102 return RDMA_AH_ATTR_TYPE_OPA; 4103 return RDMA_AH_ATTR_TYPE_IB; 4104 } 4105 4106 return RDMA_AH_ATTR_TYPE_UNDEFINED; 4107 } 4108 4109 /** 4110 * ib_lid_cpu16 - Return lid in 16bit CPU encoding. 4111 * In the current implementation the only way to get 4112 * get the 32bit lid is from other sources for OPA. 4113 * For IB, lids will always be 16bits so cast the 4114 * value accordingly. 4115 * 4116 * @lid: A 32bit LID 4117 */ 4118 static inline u16 ib_lid_cpu16(u32 lid) 4119 { 4120 WARN_ON_ONCE(lid & 0xFFFF0000); 4121 return (u16)lid; 4122 } 4123 4124 /** 4125 * ib_lid_be16 - Return lid in 16bit BE encoding. 4126 * 4127 * @lid: A 32bit LID 4128 */ 4129 static inline __be16 ib_lid_be16(u32 lid) 4130 { 4131 WARN_ON_ONCE(lid & 0xFFFF0000); 4132 return cpu_to_be16((u16)lid); 4133 } 4134 4135 /** 4136 * ib_get_vector_affinity - Get the affinity mappings of a given completion 4137 * vector 4138 * @device: the rdma device 4139 * @comp_vector: index of completion vector 4140 * 4141 * Returns NULL on failure, otherwise a corresponding cpu map of the 4142 * completion vector (returns all-cpus map if the device driver doesn't 4143 * implement get_vector_affinity). 4144 */ 4145 static inline const struct cpumask * 4146 ib_get_vector_affinity(struct ib_device *device, int comp_vector) 4147 { 4148 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors || 4149 !device->get_vector_affinity) 4150 return NULL; 4151 4152 return device->get_vector_affinity(device, comp_vector); 4153 4154 } 4155 4156 static inline void ib_set_flow(struct ib_uobject *uobj, struct ib_flow *ibflow, 4157 struct ib_qp *qp, struct ib_device *device) 4158 { 4159 uobj->object = ibflow; 4160 ibflow->uobject = uobj; 4161 4162 if (qp) { 4163 atomic_inc(&qp->usecnt); 4164 ibflow->qp = qp; 4165 } 4166 4167 ibflow->device = device; 4168 } 4169 4170 /** 4171 * rdma_roce_rescan_device - Rescan all of the network devices in the system 4172 * and add their gids, as needed, to the relevant RoCE devices. 4173 * 4174 * @device: the rdma device 4175 */ 4176 void rdma_roce_rescan_device(struct ib_device *ibdev); 4177 4178 struct ib_ucontext *ib_uverbs_get_ucontext(struct ib_uverbs_file *ufile); 4179 4180 int uverbs_destroy_def_handler(struct ib_uverbs_file *file, 4181 struct uverbs_attr_bundle *attrs); 4182 #endif /* IB_VERBS_H */ 4183