1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #if !defined(IB_VERBS_H) 40 #define IB_VERBS_H 41 42 #include <linux/types.h> 43 #include <linux/device.h> 44 #include <linux/dma-mapping.h> 45 #include <linux/kref.h> 46 #include <linux/list.h> 47 #include <linux/rwsem.h> 48 #include <linux/workqueue.h> 49 #include <linux/irq_poll.h> 50 #include <uapi/linux/if_ether.h> 51 #include <net/ipv6.h> 52 #include <net/ip.h> 53 #include <linux/string.h> 54 #include <linux/slab.h> 55 #include <linux/netdevice.h> 56 #include <linux/refcount.h> 57 #include <linux/if_link.h> 58 #include <linux/atomic.h> 59 #include <linux/mmu_notifier.h> 60 #include <linux/uaccess.h> 61 #include <linux/cgroup_rdma.h> 62 #include <linux/irqflags.h> 63 #include <linux/preempt.h> 64 #include <linux/dim.h> 65 #include <uapi/rdma/ib_user_verbs.h> 66 #include <rdma/rdma_counter.h> 67 #include <rdma/restrack.h> 68 #include <rdma/signature.h> 69 #include <uapi/rdma/rdma_user_ioctl.h> 70 #include <uapi/rdma/ib_user_ioctl_verbs.h> 71 72 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN 73 74 struct ib_umem_odp; 75 76 extern struct workqueue_struct *ib_wq; 77 extern struct workqueue_struct *ib_comp_wq; 78 extern struct workqueue_struct *ib_comp_unbound_wq; 79 80 __printf(3, 4) __cold 81 void ibdev_printk(const char *level, const struct ib_device *ibdev, 82 const char *format, ...); 83 __printf(2, 3) __cold 84 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...); 85 __printf(2, 3) __cold 86 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...); 87 __printf(2, 3) __cold 88 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...); 89 __printf(2, 3) __cold 90 void ibdev_err(const struct ib_device *ibdev, const char *format, ...); 91 __printf(2, 3) __cold 92 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...); 93 __printf(2, 3) __cold 94 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...); 95 __printf(2, 3) __cold 96 void ibdev_info(const struct ib_device *ibdev, const char *format, ...); 97 98 #if defined(CONFIG_DYNAMIC_DEBUG) 99 #define ibdev_dbg(__dev, format, args...) \ 100 dynamic_ibdev_dbg(__dev, format, ##args) 101 #elif defined(DEBUG) 102 #define ibdev_dbg(__dev, format, args...) \ 103 ibdev_printk(KERN_DEBUG, __dev, format, ##args) 104 #else 105 __printf(2, 3) __cold 106 static inline 107 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {} 108 #endif 109 110 union ib_gid { 111 u8 raw[16]; 112 struct { 113 __be64 subnet_prefix; 114 __be64 interface_id; 115 } global; 116 }; 117 118 extern union ib_gid zgid; 119 120 enum ib_gid_type { 121 /* If link layer is Ethernet, this is RoCE V1 */ 122 IB_GID_TYPE_IB = 0, 123 IB_GID_TYPE_ROCE = 0, 124 IB_GID_TYPE_ROCE_UDP_ENCAP = 1, 125 IB_GID_TYPE_SIZE 126 }; 127 128 #define ROCE_V2_UDP_DPORT 4791 129 struct ib_gid_attr { 130 struct net_device __rcu *ndev; 131 struct ib_device *device; 132 union ib_gid gid; 133 enum ib_gid_type gid_type; 134 u16 index; 135 u8 port_num; 136 }; 137 138 enum { 139 /* set the local administered indication */ 140 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2, 141 }; 142 143 enum rdma_transport_type { 144 RDMA_TRANSPORT_IB, 145 RDMA_TRANSPORT_IWARP, 146 RDMA_TRANSPORT_USNIC, 147 RDMA_TRANSPORT_USNIC_UDP, 148 RDMA_TRANSPORT_UNSPECIFIED, 149 }; 150 151 enum rdma_protocol_type { 152 RDMA_PROTOCOL_IB, 153 RDMA_PROTOCOL_IBOE, 154 RDMA_PROTOCOL_IWARP, 155 RDMA_PROTOCOL_USNIC_UDP 156 }; 157 158 __attribute_const__ enum rdma_transport_type 159 rdma_node_get_transport(unsigned int node_type); 160 161 enum rdma_network_type { 162 RDMA_NETWORK_IB, 163 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB, 164 RDMA_NETWORK_IPV4, 165 RDMA_NETWORK_IPV6 166 }; 167 168 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) 169 { 170 if (network_type == RDMA_NETWORK_IPV4 || 171 network_type == RDMA_NETWORK_IPV6) 172 return IB_GID_TYPE_ROCE_UDP_ENCAP; 173 174 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */ 175 return IB_GID_TYPE_IB; 176 } 177 178 static inline enum rdma_network_type 179 rdma_gid_attr_network_type(const struct ib_gid_attr *attr) 180 { 181 if (attr->gid_type == IB_GID_TYPE_IB) 182 return RDMA_NETWORK_IB; 183 184 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid)) 185 return RDMA_NETWORK_IPV4; 186 else 187 return RDMA_NETWORK_IPV6; 188 } 189 190 enum rdma_link_layer { 191 IB_LINK_LAYER_UNSPECIFIED, 192 IB_LINK_LAYER_INFINIBAND, 193 IB_LINK_LAYER_ETHERNET, 194 }; 195 196 enum ib_device_cap_flags { 197 IB_DEVICE_RESIZE_MAX_WR = (1 << 0), 198 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1), 199 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2), 200 IB_DEVICE_RAW_MULTI = (1 << 3), 201 IB_DEVICE_AUTO_PATH_MIG = (1 << 4), 202 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5), 203 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6), 204 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7), 205 IB_DEVICE_SHUTDOWN_PORT = (1 << 8), 206 /* Not in use, former INIT_TYPE = (1 << 9),*/ 207 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10), 208 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11), 209 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12), 210 IB_DEVICE_SRQ_RESIZE = (1 << 13), 211 IB_DEVICE_N_NOTIFY_CQ = (1 << 14), 212 213 /* 214 * This device supports a per-device lkey or stag that can be 215 * used without performing a memory registration for the local 216 * memory. Note that ULPs should never check this flag, but 217 * instead of use the local_dma_lkey flag in the ib_pd structure, 218 * which will always contain a usable lkey. 219 */ 220 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15), 221 /* Reserved, old SEND_W_INV = (1 << 16),*/ 222 IB_DEVICE_MEM_WINDOW = (1 << 17), 223 /* 224 * Devices should set IB_DEVICE_UD_IP_SUM if they support 225 * insertion of UDP and TCP checksum on outgoing UD IPoIB 226 * messages and can verify the validity of checksum for 227 * incoming messages. Setting this flag implies that the 228 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 229 */ 230 IB_DEVICE_UD_IP_CSUM = (1 << 18), 231 IB_DEVICE_UD_TSO = (1 << 19), 232 IB_DEVICE_XRC = (1 << 20), 233 234 /* 235 * This device supports the IB "base memory management extension", 236 * which includes support for fast registrations (IB_WR_REG_MR, 237 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should 238 * also be set by any iWarp device which must support FRs to comply 239 * to the iWarp verbs spec. iWarp devices also support the 240 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the 241 * stag. 242 */ 243 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21), 244 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22), 245 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23), 246 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24), 247 IB_DEVICE_RC_IP_CSUM = (1 << 25), 248 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */ 249 IB_DEVICE_RAW_IP_CSUM = (1 << 26), 250 /* 251 * Devices should set IB_DEVICE_CROSS_CHANNEL if they 252 * support execution of WQEs that involve synchronization 253 * of I/O operations with single completion queue managed 254 * by hardware. 255 */ 256 IB_DEVICE_CROSS_CHANNEL = (1 << 27), 257 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29), 258 IB_DEVICE_INTEGRITY_HANDOVER = (1 << 30), 259 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31), 260 IB_DEVICE_SG_GAPS_REG = (1ULL << 32), 261 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33), 262 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */ 263 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34), 264 IB_DEVICE_RDMA_NETDEV_OPA_VNIC = (1ULL << 35), 265 /* The device supports padding incoming writes to cacheline. */ 266 IB_DEVICE_PCI_WRITE_END_PADDING = (1ULL << 36), 267 IB_DEVICE_ALLOW_USER_UNREG = (1ULL << 37), 268 }; 269 270 enum ib_atomic_cap { 271 IB_ATOMIC_NONE, 272 IB_ATOMIC_HCA, 273 IB_ATOMIC_GLOB 274 }; 275 276 enum ib_odp_general_cap_bits { 277 IB_ODP_SUPPORT = 1 << 0, 278 IB_ODP_SUPPORT_IMPLICIT = 1 << 1, 279 }; 280 281 enum ib_odp_transport_cap_bits { 282 IB_ODP_SUPPORT_SEND = 1 << 0, 283 IB_ODP_SUPPORT_RECV = 1 << 1, 284 IB_ODP_SUPPORT_WRITE = 1 << 2, 285 IB_ODP_SUPPORT_READ = 1 << 3, 286 IB_ODP_SUPPORT_ATOMIC = 1 << 4, 287 IB_ODP_SUPPORT_SRQ_RECV = 1 << 5, 288 }; 289 290 struct ib_odp_caps { 291 uint64_t general_caps; 292 struct { 293 uint32_t rc_odp_caps; 294 uint32_t uc_odp_caps; 295 uint32_t ud_odp_caps; 296 uint32_t xrc_odp_caps; 297 } per_transport_caps; 298 }; 299 300 struct ib_rss_caps { 301 /* Corresponding bit will be set if qp type from 302 * 'enum ib_qp_type' is supported, e.g. 303 * supported_qpts |= 1 << IB_QPT_UD 304 */ 305 u32 supported_qpts; 306 u32 max_rwq_indirection_tables; 307 u32 max_rwq_indirection_table_size; 308 }; 309 310 enum ib_tm_cap_flags { 311 /* Support tag matching with rendezvous offload for RC transport */ 312 IB_TM_CAP_RNDV_RC = 1 << 0, 313 }; 314 315 struct ib_tm_caps { 316 /* Max size of RNDV header */ 317 u32 max_rndv_hdr_size; 318 /* Max number of entries in tag matching list */ 319 u32 max_num_tags; 320 /* From enum ib_tm_cap_flags */ 321 u32 flags; 322 /* Max number of outstanding list operations */ 323 u32 max_ops; 324 /* Max number of SGE in tag matching entry */ 325 u32 max_sge; 326 }; 327 328 struct ib_cq_init_attr { 329 unsigned int cqe; 330 int comp_vector; 331 u32 flags; 332 }; 333 334 enum ib_cq_attr_mask { 335 IB_CQ_MODERATE = 1 << 0, 336 }; 337 338 struct ib_cq_caps { 339 u16 max_cq_moderation_count; 340 u16 max_cq_moderation_period; 341 }; 342 343 struct ib_dm_mr_attr { 344 u64 length; 345 u64 offset; 346 u32 access_flags; 347 }; 348 349 struct ib_dm_alloc_attr { 350 u64 length; 351 u32 alignment; 352 u32 flags; 353 }; 354 355 struct ib_device_attr { 356 u64 fw_ver; 357 __be64 sys_image_guid; 358 u64 max_mr_size; 359 u64 page_size_cap; 360 u32 vendor_id; 361 u32 vendor_part_id; 362 u32 hw_ver; 363 int max_qp; 364 int max_qp_wr; 365 u64 device_cap_flags; 366 int max_send_sge; 367 int max_recv_sge; 368 int max_sge_rd; 369 int max_cq; 370 int max_cqe; 371 int max_mr; 372 int max_pd; 373 int max_qp_rd_atom; 374 int max_ee_rd_atom; 375 int max_res_rd_atom; 376 int max_qp_init_rd_atom; 377 int max_ee_init_rd_atom; 378 enum ib_atomic_cap atomic_cap; 379 enum ib_atomic_cap masked_atomic_cap; 380 int max_ee; 381 int max_rdd; 382 int max_mw; 383 int max_raw_ipv6_qp; 384 int max_raw_ethy_qp; 385 int max_mcast_grp; 386 int max_mcast_qp_attach; 387 int max_total_mcast_qp_attach; 388 int max_ah; 389 int max_fmr; 390 int max_map_per_fmr; 391 int max_srq; 392 int max_srq_wr; 393 int max_srq_sge; 394 unsigned int max_fast_reg_page_list_len; 395 unsigned int max_pi_fast_reg_page_list_len; 396 u16 max_pkeys; 397 u8 local_ca_ack_delay; 398 int sig_prot_cap; 399 int sig_guard_cap; 400 struct ib_odp_caps odp_caps; 401 uint64_t timestamp_mask; 402 uint64_t hca_core_clock; /* in KHZ */ 403 struct ib_rss_caps rss_caps; 404 u32 max_wq_type_rq; 405 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */ 406 struct ib_tm_caps tm_caps; 407 struct ib_cq_caps cq_caps; 408 u64 max_dm_size; 409 }; 410 411 enum ib_mtu { 412 IB_MTU_256 = 1, 413 IB_MTU_512 = 2, 414 IB_MTU_1024 = 3, 415 IB_MTU_2048 = 4, 416 IB_MTU_4096 = 5 417 }; 418 419 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 420 { 421 switch (mtu) { 422 case IB_MTU_256: return 256; 423 case IB_MTU_512: return 512; 424 case IB_MTU_1024: return 1024; 425 case IB_MTU_2048: return 2048; 426 case IB_MTU_4096: return 4096; 427 default: return -1; 428 } 429 } 430 431 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu) 432 { 433 if (mtu >= 4096) 434 return IB_MTU_4096; 435 else if (mtu >= 2048) 436 return IB_MTU_2048; 437 else if (mtu >= 1024) 438 return IB_MTU_1024; 439 else if (mtu >= 512) 440 return IB_MTU_512; 441 else 442 return IB_MTU_256; 443 } 444 445 enum ib_port_state { 446 IB_PORT_NOP = 0, 447 IB_PORT_DOWN = 1, 448 IB_PORT_INIT = 2, 449 IB_PORT_ARMED = 3, 450 IB_PORT_ACTIVE = 4, 451 IB_PORT_ACTIVE_DEFER = 5 452 }; 453 454 enum ib_port_width { 455 IB_WIDTH_1X = 1, 456 IB_WIDTH_2X = 16, 457 IB_WIDTH_4X = 2, 458 IB_WIDTH_8X = 4, 459 IB_WIDTH_12X = 8 460 }; 461 462 static inline int ib_width_enum_to_int(enum ib_port_width width) 463 { 464 switch (width) { 465 case IB_WIDTH_1X: return 1; 466 case IB_WIDTH_2X: return 2; 467 case IB_WIDTH_4X: return 4; 468 case IB_WIDTH_8X: return 8; 469 case IB_WIDTH_12X: return 12; 470 default: return -1; 471 } 472 } 473 474 enum ib_port_speed { 475 IB_SPEED_SDR = 1, 476 IB_SPEED_DDR = 2, 477 IB_SPEED_QDR = 4, 478 IB_SPEED_FDR10 = 8, 479 IB_SPEED_FDR = 16, 480 IB_SPEED_EDR = 32, 481 IB_SPEED_HDR = 64 482 }; 483 484 /** 485 * struct rdma_hw_stats 486 * @lock - Mutex to protect parallel write access to lifespan and values 487 * of counters, which are 64bits and not guaranteeed to be written 488 * atomicaly on 32bits systems. 489 * @timestamp - Used by the core code to track when the last update was 490 * @lifespan - Used by the core code to determine how old the counters 491 * should be before being updated again. Stored in jiffies, defaults 492 * to 10 milliseconds, drivers can override the default be specifying 493 * their own value during their allocation routine. 494 * @name - Array of pointers to static names used for the counters in 495 * directory. 496 * @num_counters - How many hardware counters there are. If name is 497 * shorter than this number, a kernel oops will result. Driver authors 498 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters) 499 * in their code to prevent this. 500 * @value - Array of u64 counters that are accessed by the sysfs code and 501 * filled in by the drivers get_stats routine 502 */ 503 struct rdma_hw_stats { 504 struct mutex lock; /* Protect lifespan and values[] */ 505 unsigned long timestamp; 506 unsigned long lifespan; 507 const char * const *names; 508 int num_counters; 509 u64 value[]; 510 }; 511 512 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10 513 /** 514 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct 515 * for drivers. 516 * @names - Array of static const char * 517 * @num_counters - How many elements in array 518 * @lifespan - How many milliseconds between updates 519 */ 520 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 521 const char * const *names, int num_counters, 522 unsigned long lifespan) 523 { 524 struct rdma_hw_stats *stats; 525 526 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64), 527 GFP_KERNEL); 528 if (!stats) 529 return NULL; 530 stats->names = names; 531 stats->num_counters = num_counters; 532 stats->lifespan = msecs_to_jiffies(lifespan); 533 534 return stats; 535 } 536 537 538 /* Define bits for the various functionality this port needs to be supported by 539 * the core. 540 */ 541 /* Management 0x00000FFF */ 542 #define RDMA_CORE_CAP_IB_MAD 0x00000001 543 #define RDMA_CORE_CAP_IB_SMI 0x00000002 544 #define RDMA_CORE_CAP_IB_CM 0x00000004 545 #define RDMA_CORE_CAP_IW_CM 0x00000008 546 #define RDMA_CORE_CAP_IB_SA 0x00000010 547 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 548 549 /* Address format 0x000FF000 */ 550 #define RDMA_CORE_CAP_AF_IB 0x00001000 551 #define RDMA_CORE_CAP_ETH_AH 0x00002000 552 #define RDMA_CORE_CAP_OPA_AH 0x00004000 553 #define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000 554 555 /* Protocol 0xFFF00000 */ 556 #define RDMA_CORE_CAP_PROT_IB 0x00100000 557 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 558 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 559 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 560 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000 561 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000 562 563 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \ 564 | RDMA_CORE_CAP_PROT_ROCE \ 565 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP) 566 567 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 568 | RDMA_CORE_CAP_IB_MAD \ 569 | RDMA_CORE_CAP_IB_SMI \ 570 | RDMA_CORE_CAP_IB_CM \ 571 | RDMA_CORE_CAP_IB_SA \ 572 | RDMA_CORE_CAP_AF_IB) 573 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 574 | RDMA_CORE_CAP_IB_MAD \ 575 | RDMA_CORE_CAP_IB_CM \ 576 | RDMA_CORE_CAP_AF_IB \ 577 | RDMA_CORE_CAP_ETH_AH) 578 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ 579 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ 580 | RDMA_CORE_CAP_IB_MAD \ 581 | RDMA_CORE_CAP_IB_CM \ 582 | RDMA_CORE_CAP_AF_IB \ 583 | RDMA_CORE_CAP_ETH_AH) 584 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 585 | RDMA_CORE_CAP_IW_CM) 586 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 587 | RDMA_CORE_CAP_OPA_MAD) 588 589 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET) 590 591 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC) 592 593 struct ib_port_attr { 594 u64 subnet_prefix; 595 enum ib_port_state state; 596 enum ib_mtu max_mtu; 597 enum ib_mtu active_mtu; 598 int gid_tbl_len; 599 unsigned int ip_gids:1; 600 /* This is the value from PortInfo CapabilityMask, defined by IBA */ 601 u32 port_cap_flags; 602 u32 max_msg_sz; 603 u32 bad_pkey_cntr; 604 u32 qkey_viol_cntr; 605 u16 pkey_tbl_len; 606 u32 sm_lid; 607 u32 lid; 608 u8 lmc; 609 u8 max_vl_num; 610 u8 sm_sl; 611 u8 subnet_timeout; 612 u8 init_type_reply; 613 u8 active_width; 614 u8 active_speed; 615 u8 phys_state; 616 u16 port_cap_flags2; 617 }; 618 619 enum ib_device_modify_flags { 620 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 621 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 622 }; 623 624 #define IB_DEVICE_NODE_DESC_MAX 64 625 626 struct ib_device_modify { 627 u64 sys_image_guid; 628 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 629 }; 630 631 enum ib_port_modify_flags { 632 IB_PORT_SHUTDOWN = 1, 633 IB_PORT_INIT_TYPE = (1<<2), 634 IB_PORT_RESET_QKEY_CNTR = (1<<3), 635 IB_PORT_OPA_MASK_CHG = (1<<4) 636 }; 637 638 struct ib_port_modify { 639 u32 set_port_cap_mask; 640 u32 clr_port_cap_mask; 641 u8 init_type; 642 }; 643 644 enum ib_event_type { 645 IB_EVENT_CQ_ERR, 646 IB_EVENT_QP_FATAL, 647 IB_EVENT_QP_REQ_ERR, 648 IB_EVENT_QP_ACCESS_ERR, 649 IB_EVENT_COMM_EST, 650 IB_EVENT_SQ_DRAINED, 651 IB_EVENT_PATH_MIG, 652 IB_EVENT_PATH_MIG_ERR, 653 IB_EVENT_DEVICE_FATAL, 654 IB_EVENT_PORT_ACTIVE, 655 IB_EVENT_PORT_ERR, 656 IB_EVENT_LID_CHANGE, 657 IB_EVENT_PKEY_CHANGE, 658 IB_EVENT_SM_CHANGE, 659 IB_EVENT_SRQ_ERR, 660 IB_EVENT_SRQ_LIMIT_REACHED, 661 IB_EVENT_QP_LAST_WQE_REACHED, 662 IB_EVENT_CLIENT_REREGISTER, 663 IB_EVENT_GID_CHANGE, 664 IB_EVENT_WQ_FATAL, 665 }; 666 667 const char *__attribute_const__ ib_event_msg(enum ib_event_type event); 668 669 struct ib_event { 670 struct ib_device *device; 671 union { 672 struct ib_cq *cq; 673 struct ib_qp *qp; 674 struct ib_srq *srq; 675 struct ib_wq *wq; 676 u8 port_num; 677 } element; 678 enum ib_event_type event; 679 }; 680 681 struct ib_event_handler { 682 struct ib_device *device; 683 void (*handler)(struct ib_event_handler *, struct ib_event *); 684 struct list_head list; 685 }; 686 687 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 688 do { \ 689 (_ptr)->device = _device; \ 690 (_ptr)->handler = _handler; \ 691 INIT_LIST_HEAD(&(_ptr)->list); \ 692 } while (0) 693 694 struct ib_global_route { 695 const struct ib_gid_attr *sgid_attr; 696 union ib_gid dgid; 697 u32 flow_label; 698 u8 sgid_index; 699 u8 hop_limit; 700 u8 traffic_class; 701 }; 702 703 struct ib_grh { 704 __be32 version_tclass_flow; 705 __be16 paylen; 706 u8 next_hdr; 707 u8 hop_limit; 708 union ib_gid sgid; 709 union ib_gid dgid; 710 }; 711 712 union rdma_network_hdr { 713 struct ib_grh ibgrh; 714 struct { 715 /* The IB spec states that if it's IPv4, the header 716 * is located in the last 20 bytes of the header. 717 */ 718 u8 reserved[20]; 719 struct iphdr roce4grh; 720 }; 721 }; 722 723 #define IB_QPN_MASK 0xFFFFFF 724 725 enum { 726 IB_MULTICAST_QPN = 0xffffff 727 }; 728 729 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 730 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000) 731 732 enum ib_ah_flags { 733 IB_AH_GRH = 1 734 }; 735 736 enum ib_rate { 737 IB_RATE_PORT_CURRENT = 0, 738 IB_RATE_2_5_GBPS = 2, 739 IB_RATE_5_GBPS = 5, 740 IB_RATE_10_GBPS = 3, 741 IB_RATE_20_GBPS = 6, 742 IB_RATE_30_GBPS = 4, 743 IB_RATE_40_GBPS = 7, 744 IB_RATE_60_GBPS = 8, 745 IB_RATE_80_GBPS = 9, 746 IB_RATE_120_GBPS = 10, 747 IB_RATE_14_GBPS = 11, 748 IB_RATE_56_GBPS = 12, 749 IB_RATE_112_GBPS = 13, 750 IB_RATE_168_GBPS = 14, 751 IB_RATE_25_GBPS = 15, 752 IB_RATE_100_GBPS = 16, 753 IB_RATE_200_GBPS = 17, 754 IB_RATE_300_GBPS = 18, 755 IB_RATE_28_GBPS = 19, 756 IB_RATE_50_GBPS = 20, 757 IB_RATE_400_GBPS = 21, 758 IB_RATE_600_GBPS = 22, 759 }; 760 761 /** 762 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 763 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 764 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 765 * @rate: rate to convert. 766 */ 767 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 768 769 /** 770 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 771 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 772 * @rate: rate to convert. 773 */ 774 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 775 776 777 /** 778 * enum ib_mr_type - memory region type 779 * @IB_MR_TYPE_MEM_REG: memory region that is used for 780 * normal registration 781 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to 782 * register any arbitrary sg lists (without 783 * the normal mr constraints - see 784 * ib_map_mr_sg) 785 * @IB_MR_TYPE_DM: memory region that is used for device 786 * memory registration 787 * @IB_MR_TYPE_USER: memory region that is used for the user-space 788 * application 789 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations 790 * without address translations (VA=PA) 791 * @IB_MR_TYPE_INTEGRITY: memory region that is used for 792 * data integrity operations 793 */ 794 enum ib_mr_type { 795 IB_MR_TYPE_MEM_REG, 796 IB_MR_TYPE_SG_GAPS, 797 IB_MR_TYPE_DM, 798 IB_MR_TYPE_USER, 799 IB_MR_TYPE_DMA, 800 IB_MR_TYPE_INTEGRITY, 801 }; 802 803 enum ib_mr_status_check { 804 IB_MR_CHECK_SIG_STATUS = 1, 805 }; 806 807 /** 808 * struct ib_mr_status - Memory region status container 809 * 810 * @fail_status: Bitmask of MR checks status. For each 811 * failed check a corresponding status bit is set. 812 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 813 * failure. 814 */ 815 struct ib_mr_status { 816 u32 fail_status; 817 struct ib_sig_err sig_err; 818 }; 819 820 /** 821 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 822 * enum. 823 * @mult: multiple to convert. 824 */ 825 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 826 827 enum rdma_ah_attr_type { 828 RDMA_AH_ATTR_TYPE_UNDEFINED, 829 RDMA_AH_ATTR_TYPE_IB, 830 RDMA_AH_ATTR_TYPE_ROCE, 831 RDMA_AH_ATTR_TYPE_OPA, 832 }; 833 834 struct ib_ah_attr { 835 u16 dlid; 836 u8 src_path_bits; 837 }; 838 839 struct roce_ah_attr { 840 u8 dmac[ETH_ALEN]; 841 }; 842 843 struct opa_ah_attr { 844 u32 dlid; 845 u8 src_path_bits; 846 bool make_grd; 847 }; 848 849 struct rdma_ah_attr { 850 struct ib_global_route grh; 851 u8 sl; 852 u8 static_rate; 853 u8 port_num; 854 u8 ah_flags; 855 enum rdma_ah_attr_type type; 856 union { 857 struct ib_ah_attr ib; 858 struct roce_ah_attr roce; 859 struct opa_ah_attr opa; 860 }; 861 }; 862 863 enum ib_wc_status { 864 IB_WC_SUCCESS, 865 IB_WC_LOC_LEN_ERR, 866 IB_WC_LOC_QP_OP_ERR, 867 IB_WC_LOC_EEC_OP_ERR, 868 IB_WC_LOC_PROT_ERR, 869 IB_WC_WR_FLUSH_ERR, 870 IB_WC_MW_BIND_ERR, 871 IB_WC_BAD_RESP_ERR, 872 IB_WC_LOC_ACCESS_ERR, 873 IB_WC_REM_INV_REQ_ERR, 874 IB_WC_REM_ACCESS_ERR, 875 IB_WC_REM_OP_ERR, 876 IB_WC_RETRY_EXC_ERR, 877 IB_WC_RNR_RETRY_EXC_ERR, 878 IB_WC_LOC_RDD_VIOL_ERR, 879 IB_WC_REM_INV_RD_REQ_ERR, 880 IB_WC_REM_ABORT_ERR, 881 IB_WC_INV_EECN_ERR, 882 IB_WC_INV_EEC_STATE_ERR, 883 IB_WC_FATAL_ERR, 884 IB_WC_RESP_TIMEOUT_ERR, 885 IB_WC_GENERAL_ERR 886 }; 887 888 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); 889 890 enum ib_wc_opcode { 891 IB_WC_SEND, 892 IB_WC_RDMA_WRITE, 893 IB_WC_RDMA_READ, 894 IB_WC_COMP_SWAP, 895 IB_WC_FETCH_ADD, 896 IB_WC_LSO, 897 IB_WC_LOCAL_INV, 898 IB_WC_REG_MR, 899 IB_WC_MASKED_COMP_SWAP, 900 IB_WC_MASKED_FETCH_ADD, 901 /* 902 * Set value of IB_WC_RECV so consumers can test if a completion is a 903 * receive by testing (opcode & IB_WC_RECV). 904 */ 905 IB_WC_RECV = 1 << 7, 906 IB_WC_RECV_RDMA_WITH_IMM 907 }; 908 909 enum ib_wc_flags { 910 IB_WC_GRH = 1, 911 IB_WC_WITH_IMM = (1<<1), 912 IB_WC_WITH_INVALIDATE = (1<<2), 913 IB_WC_IP_CSUM_OK = (1<<3), 914 IB_WC_WITH_SMAC = (1<<4), 915 IB_WC_WITH_VLAN = (1<<5), 916 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), 917 }; 918 919 struct ib_wc { 920 union { 921 u64 wr_id; 922 struct ib_cqe *wr_cqe; 923 }; 924 enum ib_wc_status status; 925 enum ib_wc_opcode opcode; 926 u32 vendor_err; 927 u32 byte_len; 928 struct ib_qp *qp; 929 union { 930 __be32 imm_data; 931 u32 invalidate_rkey; 932 } ex; 933 u32 src_qp; 934 u32 slid; 935 int wc_flags; 936 u16 pkey_index; 937 u8 sl; 938 u8 dlid_path_bits; 939 u8 port_num; /* valid only for DR SMPs on switches */ 940 u8 smac[ETH_ALEN]; 941 u16 vlan_id; 942 u8 network_hdr_type; 943 }; 944 945 enum ib_cq_notify_flags { 946 IB_CQ_SOLICITED = 1 << 0, 947 IB_CQ_NEXT_COMP = 1 << 1, 948 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 949 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 950 }; 951 952 enum ib_srq_type { 953 IB_SRQT_BASIC, 954 IB_SRQT_XRC, 955 IB_SRQT_TM, 956 }; 957 958 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type) 959 { 960 return srq_type == IB_SRQT_XRC || 961 srq_type == IB_SRQT_TM; 962 } 963 964 enum ib_srq_attr_mask { 965 IB_SRQ_MAX_WR = 1 << 0, 966 IB_SRQ_LIMIT = 1 << 1, 967 }; 968 969 struct ib_srq_attr { 970 u32 max_wr; 971 u32 max_sge; 972 u32 srq_limit; 973 }; 974 975 struct ib_srq_init_attr { 976 void (*event_handler)(struct ib_event *, void *); 977 void *srq_context; 978 struct ib_srq_attr attr; 979 enum ib_srq_type srq_type; 980 981 struct { 982 struct ib_cq *cq; 983 union { 984 struct { 985 struct ib_xrcd *xrcd; 986 } xrc; 987 988 struct { 989 u32 max_num_tags; 990 } tag_matching; 991 }; 992 } ext; 993 }; 994 995 struct ib_qp_cap { 996 u32 max_send_wr; 997 u32 max_recv_wr; 998 u32 max_send_sge; 999 u32 max_recv_sge; 1000 u32 max_inline_data; 1001 1002 /* 1003 * Maximum number of rdma_rw_ctx structures in flight at a time. 1004 * ib_create_qp() will calculate the right amount of neededed WRs 1005 * and MRs based on this. 1006 */ 1007 u32 max_rdma_ctxs; 1008 }; 1009 1010 enum ib_sig_type { 1011 IB_SIGNAL_ALL_WR, 1012 IB_SIGNAL_REQ_WR 1013 }; 1014 1015 enum ib_qp_type { 1016 /* 1017 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 1018 * here (and in that order) since the MAD layer uses them as 1019 * indices into a 2-entry table. 1020 */ 1021 IB_QPT_SMI, 1022 IB_QPT_GSI, 1023 1024 IB_QPT_RC, 1025 IB_QPT_UC, 1026 IB_QPT_UD, 1027 IB_QPT_RAW_IPV6, 1028 IB_QPT_RAW_ETHERTYPE, 1029 IB_QPT_RAW_PACKET = 8, 1030 IB_QPT_XRC_INI = 9, 1031 IB_QPT_XRC_TGT, 1032 IB_QPT_MAX, 1033 IB_QPT_DRIVER = 0xFF, 1034 /* Reserve a range for qp types internal to the low level driver. 1035 * These qp types will not be visible at the IB core layer, so the 1036 * IB_QPT_MAX usages should not be affected in the core layer 1037 */ 1038 IB_QPT_RESERVED1 = 0x1000, 1039 IB_QPT_RESERVED2, 1040 IB_QPT_RESERVED3, 1041 IB_QPT_RESERVED4, 1042 IB_QPT_RESERVED5, 1043 IB_QPT_RESERVED6, 1044 IB_QPT_RESERVED7, 1045 IB_QPT_RESERVED8, 1046 IB_QPT_RESERVED9, 1047 IB_QPT_RESERVED10, 1048 }; 1049 1050 enum ib_qp_create_flags { 1051 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 1052 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1, 1053 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 1054 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 1055 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 1056 IB_QP_CREATE_NETIF_QP = 1 << 5, 1057 IB_QP_CREATE_INTEGRITY_EN = 1 << 6, 1058 /* FREE = 1 << 7, */ 1059 IB_QP_CREATE_SCATTER_FCS = 1 << 8, 1060 IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9, 1061 IB_QP_CREATE_SOURCE_QPN = 1 << 10, 1062 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1 << 11, 1063 /* reserve bits 26-31 for low level drivers' internal use */ 1064 IB_QP_CREATE_RESERVED_START = 1 << 26, 1065 IB_QP_CREATE_RESERVED_END = 1 << 31, 1066 }; 1067 1068 /* 1069 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 1070 * callback to destroy the passed in QP. 1071 */ 1072 1073 struct ib_qp_init_attr { 1074 /* Consumer's event_handler callback must not block */ 1075 void (*event_handler)(struct ib_event *, void *); 1076 1077 void *qp_context; 1078 struct ib_cq *send_cq; 1079 struct ib_cq *recv_cq; 1080 struct ib_srq *srq; 1081 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1082 struct ib_qp_cap cap; 1083 enum ib_sig_type sq_sig_type; 1084 enum ib_qp_type qp_type; 1085 u32 create_flags; 1086 1087 /* 1088 * Only needed for special QP types, or when using the RW API. 1089 */ 1090 u8 port_num; 1091 struct ib_rwq_ind_table *rwq_ind_tbl; 1092 u32 source_qpn; 1093 }; 1094 1095 struct ib_qp_open_attr { 1096 void (*event_handler)(struct ib_event *, void *); 1097 void *qp_context; 1098 u32 qp_num; 1099 enum ib_qp_type qp_type; 1100 }; 1101 1102 enum ib_rnr_timeout { 1103 IB_RNR_TIMER_655_36 = 0, 1104 IB_RNR_TIMER_000_01 = 1, 1105 IB_RNR_TIMER_000_02 = 2, 1106 IB_RNR_TIMER_000_03 = 3, 1107 IB_RNR_TIMER_000_04 = 4, 1108 IB_RNR_TIMER_000_06 = 5, 1109 IB_RNR_TIMER_000_08 = 6, 1110 IB_RNR_TIMER_000_12 = 7, 1111 IB_RNR_TIMER_000_16 = 8, 1112 IB_RNR_TIMER_000_24 = 9, 1113 IB_RNR_TIMER_000_32 = 10, 1114 IB_RNR_TIMER_000_48 = 11, 1115 IB_RNR_TIMER_000_64 = 12, 1116 IB_RNR_TIMER_000_96 = 13, 1117 IB_RNR_TIMER_001_28 = 14, 1118 IB_RNR_TIMER_001_92 = 15, 1119 IB_RNR_TIMER_002_56 = 16, 1120 IB_RNR_TIMER_003_84 = 17, 1121 IB_RNR_TIMER_005_12 = 18, 1122 IB_RNR_TIMER_007_68 = 19, 1123 IB_RNR_TIMER_010_24 = 20, 1124 IB_RNR_TIMER_015_36 = 21, 1125 IB_RNR_TIMER_020_48 = 22, 1126 IB_RNR_TIMER_030_72 = 23, 1127 IB_RNR_TIMER_040_96 = 24, 1128 IB_RNR_TIMER_061_44 = 25, 1129 IB_RNR_TIMER_081_92 = 26, 1130 IB_RNR_TIMER_122_88 = 27, 1131 IB_RNR_TIMER_163_84 = 28, 1132 IB_RNR_TIMER_245_76 = 29, 1133 IB_RNR_TIMER_327_68 = 30, 1134 IB_RNR_TIMER_491_52 = 31 1135 }; 1136 1137 enum ib_qp_attr_mask { 1138 IB_QP_STATE = 1, 1139 IB_QP_CUR_STATE = (1<<1), 1140 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 1141 IB_QP_ACCESS_FLAGS = (1<<3), 1142 IB_QP_PKEY_INDEX = (1<<4), 1143 IB_QP_PORT = (1<<5), 1144 IB_QP_QKEY = (1<<6), 1145 IB_QP_AV = (1<<7), 1146 IB_QP_PATH_MTU = (1<<8), 1147 IB_QP_TIMEOUT = (1<<9), 1148 IB_QP_RETRY_CNT = (1<<10), 1149 IB_QP_RNR_RETRY = (1<<11), 1150 IB_QP_RQ_PSN = (1<<12), 1151 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 1152 IB_QP_ALT_PATH = (1<<14), 1153 IB_QP_MIN_RNR_TIMER = (1<<15), 1154 IB_QP_SQ_PSN = (1<<16), 1155 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 1156 IB_QP_PATH_MIG_STATE = (1<<18), 1157 IB_QP_CAP = (1<<19), 1158 IB_QP_DEST_QPN = (1<<20), 1159 IB_QP_RESERVED1 = (1<<21), 1160 IB_QP_RESERVED2 = (1<<22), 1161 IB_QP_RESERVED3 = (1<<23), 1162 IB_QP_RESERVED4 = (1<<24), 1163 IB_QP_RATE_LIMIT = (1<<25), 1164 }; 1165 1166 enum ib_qp_state { 1167 IB_QPS_RESET, 1168 IB_QPS_INIT, 1169 IB_QPS_RTR, 1170 IB_QPS_RTS, 1171 IB_QPS_SQD, 1172 IB_QPS_SQE, 1173 IB_QPS_ERR 1174 }; 1175 1176 enum ib_mig_state { 1177 IB_MIG_MIGRATED, 1178 IB_MIG_REARM, 1179 IB_MIG_ARMED 1180 }; 1181 1182 enum ib_mw_type { 1183 IB_MW_TYPE_1 = 1, 1184 IB_MW_TYPE_2 = 2 1185 }; 1186 1187 struct ib_qp_attr { 1188 enum ib_qp_state qp_state; 1189 enum ib_qp_state cur_qp_state; 1190 enum ib_mtu path_mtu; 1191 enum ib_mig_state path_mig_state; 1192 u32 qkey; 1193 u32 rq_psn; 1194 u32 sq_psn; 1195 u32 dest_qp_num; 1196 int qp_access_flags; 1197 struct ib_qp_cap cap; 1198 struct rdma_ah_attr ah_attr; 1199 struct rdma_ah_attr alt_ah_attr; 1200 u16 pkey_index; 1201 u16 alt_pkey_index; 1202 u8 en_sqd_async_notify; 1203 u8 sq_draining; 1204 u8 max_rd_atomic; 1205 u8 max_dest_rd_atomic; 1206 u8 min_rnr_timer; 1207 u8 port_num; 1208 u8 timeout; 1209 u8 retry_cnt; 1210 u8 rnr_retry; 1211 u8 alt_port_num; 1212 u8 alt_timeout; 1213 u32 rate_limit; 1214 }; 1215 1216 enum ib_wr_opcode { 1217 /* These are shared with userspace */ 1218 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE, 1219 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM, 1220 IB_WR_SEND = IB_UVERBS_WR_SEND, 1221 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM, 1222 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ, 1223 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP, 1224 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD, 1225 IB_WR_LSO = IB_UVERBS_WR_TSO, 1226 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV, 1227 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV, 1228 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV, 1229 IB_WR_MASKED_ATOMIC_CMP_AND_SWP = 1230 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP, 1231 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD = 1232 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1233 1234 /* These are kernel only and can not be issued by userspace */ 1235 IB_WR_REG_MR = 0x20, 1236 IB_WR_REG_MR_INTEGRITY, 1237 1238 /* reserve values for low level drivers' internal use. 1239 * These values will not be used at all in the ib core layer. 1240 */ 1241 IB_WR_RESERVED1 = 0xf0, 1242 IB_WR_RESERVED2, 1243 IB_WR_RESERVED3, 1244 IB_WR_RESERVED4, 1245 IB_WR_RESERVED5, 1246 IB_WR_RESERVED6, 1247 IB_WR_RESERVED7, 1248 IB_WR_RESERVED8, 1249 IB_WR_RESERVED9, 1250 IB_WR_RESERVED10, 1251 }; 1252 1253 enum ib_send_flags { 1254 IB_SEND_FENCE = 1, 1255 IB_SEND_SIGNALED = (1<<1), 1256 IB_SEND_SOLICITED = (1<<2), 1257 IB_SEND_INLINE = (1<<3), 1258 IB_SEND_IP_CSUM = (1<<4), 1259 1260 /* reserve bits 26-31 for low level drivers' internal use */ 1261 IB_SEND_RESERVED_START = (1 << 26), 1262 IB_SEND_RESERVED_END = (1 << 31), 1263 }; 1264 1265 struct ib_sge { 1266 u64 addr; 1267 u32 length; 1268 u32 lkey; 1269 }; 1270 1271 struct ib_cqe { 1272 void (*done)(struct ib_cq *cq, struct ib_wc *wc); 1273 }; 1274 1275 struct ib_send_wr { 1276 struct ib_send_wr *next; 1277 union { 1278 u64 wr_id; 1279 struct ib_cqe *wr_cqe; 1280 }; 1281 struct ib_sge *sg_list; 1282 int num_sge; 1283 enum ib_wr_opcode opcode; 1284 int send_flags; 1285 union { 1286 __be32 imm_data; 1287 u32 invalidate_rkey; 1288 } ex; 1289 }; 1290 1291 struct ib_rdma_wr { 1292 struct ib_send_wr wr; 1293 u64 remote_addr; 1294 u32 rkey; 1295 }; 1296 1297 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr) 1298 { 1299 return container_of(wr, struct ib_rdma_wr, wr); 1300 } 1301 1302 struct ib_atomic_wr { 1303 struct ib_send_wr wr; 1304 u64 remote_addr; 1305 u64 compare_add; 1306 u64 swap; 1307 u64 compare_add_mask; 1308 u64 swap_mask; 1309 u32 rkey; 1310 }; 1311 1312 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr) 1313 { 1314 return container_of(wr, struct ib_atomic_wr, wr); 1315 } 1316 1317 struct ib_ud_wr { 1318 struct ib_send_wr wr; 1319 struct ib_ah *ah; 1320 void *header; 1321 int hlen; 1322 int mss; 1323 u32 remote_qpn; 1324 u32 remote_qkey; 1325 u16 pkey_index; /* valid for GSI only */ 1326 u8 port_num; /* valid for DR SMPs on switch only */ 1327 }; 1328 1329 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr) 1330 { 1331 return container_of(wr, struct ib_ud_wr, wr); 1332 } 1333 1334 struct ib_reg_wr { 1335 struct ib_send_wr wr; 1336 struct ib_mr *mr; 1337 u32 key; 1338 int access; 1339 }; 1340 1341 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr) 1342 { 1343 return container_of(wr, struct ib_reg_wr, wr); 1344 } 1345 1346 struct ib_recv_wr { 1347 struct ib_recv_wr *next; 1348 union { 1349 u64 wr_id; 1350 struct ib_cqe *wr_cqe; 1351 }; 1352 struct ib_sge *sg_list; 1353 int num_sge; 1354 }; 1355 1356 enum ib_access_flags { 1357 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE, 1358 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE, 1359 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ, 1360 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC, 1361 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND, 1362 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED, 1363 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND, 1364 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB, 1365 1366 IB_ACCESS_SUPPORTED = ((IB_ACCESS_HUGETLB << 1) - 1) 1367 }; 1368 1369 /* 1370 * XXX: these are apparently used for ->rereg_user_mr, no idea why they 1371 * are hidden here instead of a uapi header! 1372 */ 1373 enum ib_mr_rereg_flags { 1374 IB_MR_REREG_TRANS = 1, 1375 IB_MR_REREG_PD = (1<<1), 1376 IB_MR_REREG_ACCESS = (1<<2), 1377 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1378 }; 1379 1380 struct ib_fmr_attr { 1381 int max_pages; 1382 int max_maps; 1383 u8 page_shift; 1384 }; 1385 1386 struct ib_umem; 1387 1388 enum rdma_remove_reason { 1389 /* 1390 * Userspace requested uobject deletion or initial try 1391 * to remove uobject via cleanup. Call could fail 1392 */ 1393 RDMA_REMOVE_DESTROY, 1394 /* Context deletion. This call should delete the actual object itself */ 1395 RDMA_REMOVE_CLOSE, 1396 /* Driver is being hot-unplugged. This call should delete the actual object itself */ 1397 RDMA_REMOVE_DRIVER_REMOVE, 1398 /* uobj is being cleaned-up before being committed */ 1399 RDMA_REMOVE_ABORT, 1400 }; 1401 1402 struct ib_rdmacg_object { 1403 #ifdef CONFIG_CGROUP_RDMA 1404 struct rdma_cgroup *cg; /* owner rdma cgroup */ 1405 #endif 1406 }; 1407 1408 struct ib_ucontext { 1409 struct ib_device *device; 1410 struct ib_uverbs_file *ufile; 1411 /* 1412 * 'closing' can be read by the driver only during a destroy callback, 1413 * it is set when we are closing the file descriptor and indicates 1414 * that mm_sem may be locked. 1415 */ 1416 bool closing; 1417 1418 bool cleanup_retryable; 1419 1420 void (*invalidate_range)(struct ib_umem_odp *umem_odp, 1421 unsigned long start, unsigned long end); 1422 struct mutex per_mm_list_lock; 1423 struct list_head per_mm_list; 1424 1425 struct ib_rdmacg_object cg_obj; 1426 /* 1427 * Implementation details of the RDMA core, don't use in drivers: 1428 */ 1429 struct rdma_restrack_entry res; 1430 }; 1431 1432 struct ib_uobject { 1433 u64 user_handle; /* handle given to us by userspace */ 1434 /* ufile & ucontext owning this object */ 1435 struct ib_uverbs_file *ufile; 1436 /* FIXME, save memory: ufile->context == context */ 1437 struct ib_ucontext *context; /* associated user context */ 1438 void *object; /* containing object */ 1439 struct list_head list; /* link to context's list */ 1440 struct ib_rdmacg_object cg_obj; /* rdmacg object */ 1441 int id; /* index into kernel idr */ 1442 struct kref ref; 1443 atomic_t usecnt; /* protects exclusive access */ 1444 struct rcu_head rcu; /* kfree_rcu() overhead */ 1445 1446 const struct uverbs_api_object *uapi_object; 1447 }; 1448 1449 struct ib_udata { 1450 const void __user *inbuf; 1451 void __user *outbuf; 1452 size_t inlen; 1453 size_t outlen; 1454 }; 1455 1456 struct ib_pd { 1457 u32 local_dma_lkey; 1458 u32 flags; 1459 struct ib_device *device; 1460 struct ib_uobject *uobject; 1461 atomic_t usecnt; /* count all resources */ 1462 1463 u32 unsafe_global_rkey; 1464 1465 /* 1466 * Implementation details of the RDMA core, don't use in drivers: 1467 */ 1468 struct ib_mr *__internal_mr; 1469 struct rdma_restrack_entry res; 1470 }; 1471 1472 struct ib_xrcd { 1473 struct ib_device *device; 1474 atomic_t usecnt; /* count all exposed resources */ 1475 struct inode *inode; 1476 1477 struct mutex tgt_qp_mutex; 1478 struct list_head tgt_qp_list; 1479 }; 1480 1481 struct ib_ah { 1482 struct ib_device *device; 1483 struct ib_pd *pd; 1484 struct ib_uobject *uobject; 1485 const struct ib_gid_attr *sgid_attr; 1486 enum rdma_ah_attr_type type; 1487 }; 1488 1489 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1490 1491 enum ib_poll_context { 1492 IB_POLL_DIRECT, /* caller context, no hw completions */ 1493 IB_POLL_SOFTIRQ, /* poll from softirq context */ 1494 IB_POLL_WORKQUEUE, /* poll from workqueue */ 1495 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */ 1496 }; 1497 1498 struct ib_cq { 1499 struct ib_device *device; 1500 struct ib_uobject *uobject; 1501 ib_comp_handler comp_handler; 1502 void (*event_handler)(struct ib_event *, void *); 1503 void *cq_context; 1504 int cqe; 1505 atomic_t usecnt; /* count number of work queues */ 1506 enum ib_poll_context poll_ctx; 1507 struct ib_wc *wc; 1508 union { 1509 struct irq_poll iop; 1510 struct work_struct work; 1511 }; 1512 struct workqueue_struct *comp_wq; 1513 struct dim *dim; 1514 /* 1515 * Implementation details of the RDMA core, don't use in drivers: 1516 */ 1517 struct rdma_restrack_entry res; 1518 }; 1519 1520 struct ib_srq { 1521 struct ib_device *device; 1522 struct ib_pd *pd; 1523 struct ib_uobject *uobject; 1524 void (*event_handler)(struct ib_event *, void *); 1525 void *srq_context; 1526 enum ib_srq_type srq_type; 1527 atomic_t usecnt; 1528 1529 struct { 1530 struct ib_cq *cq; 1531 union { 1532 struct { 1533 struct ib_xrcd *xrcd; 1534 u32 srq_num; 1535 } xrc; 1536 }; 1537 } ext; 1538 }; 1539 1540 enum ib_raw_packet_caps { 1541 /* Strip cvlan from incoming packet and report it in the matching work 1542 * completion is supported. 1543 */ 1544 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0), 1545 /* Scatter FCS field of an incoming packet to host memory is supported. 1546 */ 1547 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1), 1548 /* Checksum offloads are supported (for both send and receive). */ 1549 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2), 1550 /* When a packet is received for an RQ with no receive WQEs, the 1551 * packet processing is delayed. 1552 */ 1553 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3), 1554 }; 1555 1556 enum ib_wq_type { 1557 IB_WQT_RQ 1558 }; 1559 1560 enum ib_wq_state { 1561 IB_WQS_RESET, 1562 IB_WQS_RDY, 1563 IB_WQS_ERR 1564 }; 1565 1566 struct ib_wq { 1567 struct ib_device *device; 1568 struct ib_uobject *uobject; 1569 void *wq_context; 1570 void (*event_handler)(struct ib_event *, void *); 1571 struct ib_pd *pd; 1572 struct ib_cq *cq; 1573 u32 wq_num; 1574 enum ib_wq_state state; 1575 enum ib_wq_type wq_type; 1576 atomic_t usecnt; 1577 }; 1578 1579 enum ib_wq_flags { 1580 IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0, 1581 IB_WQ_FLAGS_SCATTER_FCS = 1 << 1, 1582 IB_WQ_FLAGS_DELAY_DROP = 1 << 2, 1583 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3, 1584 }; 1585 1586 struct ib_wq_init_attr { 1587 void *wq_context; 1588 enum ib_wq_type wq_type; 1589 u32 max_wr; 1590 u32 max_sge; 1591 struct ib_cq *cq; 1592 void (*event_handler)(struct ib_event *, void *); 1593 u32 create_flags; /* Use enum ib_wq_flags */ 1594 }; 1595 1596 enum ib_wq_attr_mask { 1597 IB_WQ_STATE = 1 << 0, 1598 IB_WQ_CUR_STATE = 1 << 1, 1599 IB_WQ_FLAGS = 1 << 2, 1600 }; 1601 1602 struct ib_wq_attr { 1603 enum ib_wq_state wq_state; 1604 enum ib_wq_state curr_wq_state; 1605 u32 flags; /* Use enum ib_wq_flags */ 1606 u32 flags_mask; /* Use enum ib_wq_flags */ 1607 }; 1608 1609 struct ib_rwq_ind_table { 1610 struct ib_device *device; 1611 struct ib_uobject *uobject; 1612 atomic_t usecnt; 1613 u32 ind_tbl_num; 1614 u32 log_ind_tbl_size; 1615 struct ib_wq **ind_tbl; 1616 }; 1617 1618 struct ib_rwq_ind_table_init_attr { 1619 u32 log_ind_tbl_size; 1620 /* Each entry is a pointer to Receive Work Queue */ 1621 struct ib_wq **ind_tbl; 1622 }; 1623 1624 enum port_pkey_state { 1625 IB_PORT_PKEY_NOT_VALID = 0, 1626 IB_PORT_PKEY_VALID = 1, 1627 IB_PORT_PKEY_LISTED = 2, 1628 }; 1629 1630 struct ib_qp_security; 1631 1632 struct ib_port_pkey { 1633 enum port_pkey_state state; 1634 u16 pkey_index; 1635 u8 port_num; 1636 struct list_head qp_list; 1637 struct list_head to_error_list; 1638 struct ib_qp_security *sec; 1639 }; 1640 1641 struct ib_ports_pkeys { 1642 struct ib_port_pkey main; 1643 struct ib_port_pkey alt; 1644 }; 1645 1646 struct ib_qp_security { 1647 struct ib_qp *qp; 1648 struct ib_device *dev; 1649 /* Hold this mutex when changing port and pkey settings. */ 1650 struct mutex mutex; 1651 struct ib_ports_pkeys *ports_pkeys; 1652 /* A list of all open shared QP handles. Required to enforce security 1653 * properly for all users of a shared QP. 1654 */ 1655 struct list_head shared_qp_list; 1656 void *security; 1657 bool destroying; 1658 atomic_t error_list_count; 1659 struct completion error_complete; 1660 int error_comps_pending; 1661 }; 1662 1663 /* 1664 * @max_write_sge: Maximum SGE elements per RDMA WRITE request. 1665 * @max_read_sge: Maximum SGE elements per RDMA READ request. 1666 */ 1667 struct ib_qp { 1668 struct ib_device *device; 1669 struct ib_pd *pd; 1670 struct ib_cq *send_cq; 1671 struct ib_cq *recv_cq; 1672 spinlock_t mr_lock; 1673 int mrs_used; 1674 struct list_head rdma_mrs; 1675 struct list_head sig_mrs; 1676 struct ib_srq *srq; 1677 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1678 struct list_head xrcd_list; 1679 1680 /* count times opened, mcast attaches, flow attaches */ 1681 atomic_t usecnt; 1682 struct list_head open_list; 1683 struct ib_qp *real_qp; 1684 struct ib_uobject *uobject; 1685 void (*event_handler)(struct ib_event *, void *); 1686 void *qp_context; 1687 /* sgid_attrs associated with the AV's */ 1688 const struct ib_gid_attr *av_sgid_attr; 1689 const struct ib_gid_attr *alt_path_sgid_attr; 1690 u32 qp_num; 1691 u32 max_write_sge; 1692 u32 max_read_sge; 1693 enum ib_qp_type qp_type; 1694 struct ib_rwq_ind_table *rwq_ind_tbl; 1695 struct ib_qp_security *qp_sec; 1696 u8 port; 1697 1698 bool integrity_en; 1699 /* 1700 * Implementation details of the RDMA core, don't use in drivers: 1701 */ 1702 struct rdma_restrack_entry res; 1703 1704 /* The counter the qp is bind to */ 1705 struct rdma_counter *counter; 1706 }; 1707 1708 struct ib_dm { 1709 struct ib_device *device; 1710 u32 length; 1711 u32 flags; 1712 struct ib_uobject *uobject; 1713 atomic_t usecnt; 1714 }; 1715 1716 struct ib_mr { 1717 struct ib_device *device; 1718 struct ib_pd *pd; 1719 u32 lkey; 1720 u32 rkey; 1721 u64 iova; 1722 u64 length; 1723 unsigned int page_size; 1724 enum ib_mr_type type; 1725 bool need_inval; 1726 union { 1727 struct ib_uobject *uobject; /* user */ 1728 struct list_head qp_entry; /* FR */ 1729 }; 1730 1731 struct ib_dm *dm; 1732 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */ 1733 /* 1734 * Implementation details of the RDMA core, don't use in drivers: 1735 */ 1736 struct rdma_restrack_entry res; 1737 }; 1738 1739 struct ib_mw { 1740 struct ib_device *device; 1741 struct ib_pd *pd; 1742 struct ib_uobject *uobject; 1743 u32 rkey; 1744 enum ib_mw_type type; 1745 }; 1746 1747 struct ib_fmr { 1748 struct ib_device *device; 1749 struct ib_pd *pd; 1750 struct list_head list; 1751 u32 lkey; 1752 u32 rkey; 1753 }; 1754 1755 /* Supported steering options */ 1756 enum ib_flow_attr_type { 1757 /* steering according to rule specifications */ 1758 IB_FLOW_ATTR_NORMAL = 0x0, 1759 /* default unicast and multicast rule - 1760 * receive all Eth traffic which isn't steered to any QP 1761 */ 1762 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1763 /* default multicast rule - 1764 * receive all Eth multicast traffic which isn't steered to any QP 1765 */ 1766 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1767 /* sniffer rule - receive all port traffic */ 1768 IB_FLOW_ATTR_SNIFFER = 0x3 1769 }; 1770 1771 /* Supported steering header types */ 1772 enum ib_flow_spec_type { 1773 /* L2 headers*/ 1774 IB_FLOW_SPEC_ETH = 0x20, 1775 IB_FLOW_SPEC_IB = 0x22, 1776 /* L3 header*/ 1777 IB_FLOW_SPEC_IPV4 = 0x30, 1778 IB_FLOW_SPEC_IPV6 = 0x31, 1779 IB_FLOW_SPEC_ESP = 0x34, 1780 /* L4 headers*/ 1781 IB_FLOW_SPEC_TCP = 0x40, 1782 IB_FLOW_SPEC_UDP = 0x41, 1783 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50, 1784 IB_FLOW_SPEC_GRE = 0x51, 1785 IB_FLOW_SPEC_MPLS = 0x60, 1786 IB_FLOW_SPEC_INNER = 0x100, 1787 /* Actions */ 1788 IB_FLOW_SPEC_ACTION_TAG = 0x1000, 1789 IB_FLOW_SPEC_ACTION_DROP = 0x1001, 1790 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002, 1791 IB_FLOW_SPEC_ACTION_COUNT = 0x1003, 1792 }; 1793 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1794 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10 1795 1796 /* Flow steering rule priority is set according to it's domain. 1797 * Lower domain value means higher priority. 1798 */ 1799 enum ib_flow_domain { 1800 IB_FLOW_DOMAIN_USER, 1801 IB_FLOW_DOMAIN_ETHTOOL, 1802 IB_FLOW_DOMAIN_RFS, 1803 IB_FLOW_DOMAIN_NIC, 1804 IB_FLOW_DOMAIN_NUM /* Must be last */ 1805 }; 1806 1807 enum ib_flow_flags { 1808 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */ 1809 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */ 1810 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */ 1811 }; 1812 1813 struct ib_flow_eth_filter { 1814 u8 dst_mac[6]; 1815 u8 src_mac[6]; 1816 __be16 ether_type; 1817 __be16 vlan_tag; 1818 /* Must be last */ 1819 u8 real_sz[0]; 1820 }; 1821 1822 struct ib_flow_spec_eth { 1823 u32 type; 1824 u16 size; 1825 struct ib_flow_eth_filter val; 1826 struct ib_flow_eth_filter mask; 1827 }; 1828 1829 struct ib_flow_ib_filter { 1830 __be16 dlid; 1831 __u8 sl; 1832 /* Must be last */ 1833 u8 real_sz[0]; 1834 }; 1835 1836 struct ib_flow_spec_ib { 1837 u32 type; 1838 u16 size; 1839 struct ib_flow_ib_filter val; 1840 struct ib_flow_ib_filter mask; 1841 }; 1842 1843 /* IPv4 header flags */ 1844 enum ib_ipv4_flags { 1845 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */ 1846 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the 1847 last have this flag set */ 1848 }; 1849 1850 struct ib_flow_ipv4_filter { 1851 __be32 src_ip; 1852 __be32 dst_ip; 1853 u8 proto; 1854 u8 tos; 1855 u8 ttl; 1856 u8 flags; 1857 /* Must be last */ 1858 u8 real_sz[0]; 1859 }; 1860 1861 struct ib_flow_spec_ipv4 { 1862 u32 type; 1863 u16 size; 1864 struct ib_flow_ipv4_filter val; 1865 struct ib_flow_ipv4_filter mask; 1866 }; 1867 1868 struct ib_flow_ipv6_filter { 1869 u8 src_ip[16]; 1870 u8 dst_ip[16]; 1871 __be32 flow_label; 1872 u8 next_hdr; 1873 u8 traffic_class; 1874 u8 hop_limit; 1875 /* Must be last */ 1876 u8 real_sz[0]; 1877 }; 1878 1879 struct ib_flow_spec_ipv6 { 1880 u32 type; 1881 u16 size; 1882 struct ib_flow_ipv6_filter val; 1883 struct ib_flow_ipv6_filter mask; 1884 }; 1885 1886 struct ib_flow_tcp_udp_filter { 1887 __be16 dst_port; 1888 __be16 src_port; 1889 /* Must be last */ 1890 u8 real_sz[0]; 1891 }; 1892 1893 struct ib_flow_spec_tcp_udp { 1894 u32 type; 1895 u16 size; 1896 struct ib_flow_tcp_udp_filter val; 1897 struct ib_flow_tcp_udp_filter mask; 1898 }; 1899 1900 struct ib_flow_tunnel_filter { 1901 __be32 tunnel_id; 1902 u8 real_sz[0]; 1903 }; 1904 1905 /* ib_flow_spec_tunnel describes the Vxlan tunnel 1906 * the tunnel_id from val has the vni value 1907 */ 1908 struct ib_flow_spec_tunnel { 1909 u32 type; 1910 u16 size; 1911 struct ib_flow_tunnel_filter val; 1912 struct ib_flow_tunnel_filter mask; 1913 }; 1914 1915 struct ib_flow_esp_filter { 1916 __be32 spi; 1917 __be32 seq; 1918 /* Must be last */ 1919 u8 real_sz[0]; 1920 }; 1921 1922 struct ib_flow_spec_esp { 1923 u32 type; 1924 u16 size; 1925 struct ib_flow_esp_filter val; 1926 struct ib_flow_esp_filter mask; 1927 }; 1928 1929 struct ib_flow_gre_filter { 1930 __be16 c_ks_res0_ver; 1931 __be16 protocol; 1932 __be32 key; 1933 /* Must be last */ 1934 u8 real_sz[0]; 1935 }; 1936 1937 struct ib_flow_spec_gre { 1938 u32 type; 1939 u16 size; 1940 struct ib_flow_gre_filter val; 1941 struct ib_flow_gre_filter mask; 1942 }; 1943 1944 struct ib_flow_mpls_filter { 1945 __be32 tag; 1946 /* Must be last */ 1947 u8 real_sz[0]; 1948 }; 1949 1950 struct ib_flow_spec_mpls { 1951 u32 type; 1952 u16 size; 1953 struct ib_flow_mpls_filter val; 1954 struct ib_flow_mpls_filter mask; 1955 }; 1956 1957 struct ib_flow_spec_action_tag { 1958 enum ib_flow_spec_type type; 1959 u16 size; 1960 u32 tag_id; 1961 }; 1962 1963 struct ib_flow_spec_action_drop { 1964 enum ib_flow_spec_type type; 1965 u16 size; 1966 }; 1967 1968 struct ib_flow_spec_action_handle { 1969 enum ib_flow_spec_type type; 1970 u16 size; 1971 struct ib_flow_action *act; 1972 }; 1973 1974 enum ib_counters_description { 1975 IB_COUNTER_PACKETS, 1976 IB_COUNTER_BYTES, 1977 }; 1978 1979 struct ib_flow_spec_action_count { 1980 enum ib_flow_spec_type type; 1981 u16 size; 1982 struct ib_counters *counters; 1983 }; 1984 1985 union ib_flow_spec { 1986 struct { 1987 u32 type; 1988 u16 size; 1989 }; 1990 struct ib_flow_spec_eth eth; 1991 struct ib_flow_spec_ib ib; 1992 struct ib_flow_spec_ipv4 ipv4; 1993 struct ib_flow_spec_tcp_udp tcp_udp; 1994 struct ib_flow_spec_ipv6 ipv6; 1995 struct ib_flow_spec_tunnel tunnel; 1996 struct ib_flow_spec_esp esp; 1997 struct ib_flow_spec_gre gre; 1998 struct ib_flow_spec_mpls mpls; 1999 struct ib_flow_spec_action_tag flow_tag; 2000 struct ib_flow_spec_action_drop drop; 2001 struct ib_flow_spec_action_handle action; 2002 struct ib_flow_spec_action_count flow_count; 2003 }; 2004 2005 struct ib_flow_attr { 2006 enum ib_flow_attr_type type; 2007 u16 size; 2008 u16 priority; 2009 u32 flags; 2010 u8 num_of_specs; 2011 u8 port; 2012 union ib_flow_spec flows[]; 2013 }; 2014 2015 struct ib_flow { 2016 struct ib_qp *qp; 2017 struct ib_device *device; 2018 struct ib_uobject *uobject; 2019 }; 2020 2021 enum ib_flow_action_type { 2022 IB_FLOW_ACTION_UNSPECIFIED, 2023 IB_FLOW_ACTION_ESP = 1, 2024 }; 2025 2026 struct ib_flow_action_attrs_esp_keymats { 2027 enum ib_uverbs_flow_action_esp_keymat protocol; 2028 union { 2029 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm; 2030 } keymat; 2031 }; 2032 2033 struct ib_flow_action_attrs_esp_replays { 2034 enum ib_uverbs_flow_action_esp_replay protocol; 2035 union { 2036 struct ib_uverbs_flow_action_esp_replay_bmp bmp; 2037 } replay; 2038 }; 2039 2040 enum ib_flow_action_attrs_esp_flags { 2041 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags 2042 * This is done in order to share the same flags between user-space and 2043 * kernel and spare an unnecessary translation. 2044 */ 2045 2046 /* Kernel flags */ 2047 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32, 2048 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33, 2049 }; 2050 2051 struct ib_flow_spec_list { 2052 struct ib_flow_spec_list *next; 2053 union ib_flow_spec spec; 2054 }; 2055 2056 struct ib_flow_action_attrs_esp { 2057 struct ib_flow_action_attrs_esp_keymats *keymat; 2058 struct ib_flow_action_attrs_esp_replays *replay; 2059 struct ib_flow_spec_list *encap; 2060 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled. 2061 * Value of 0 is a valid value. 2062 */ 2063 u32 esn; 2064 u32 spi; 2065 u32 seq; 2066 u32 tfc_pad; 2067 /* Use enum ib_flow_action_attrs_esp_flags */ 2068 u64 flags; 2069 u64 hard_limit_pkts; 2070 }; 2071 2072 struct ib_flow_action { 2073 struct ib_device *device; 2074 struct ib_uobject *uobject; 2075 enum ib_flow_action_type type; 2076 atomic_t usecnt; 2077 }; 2078 2079 struct ib_mad_hdr; 2080 struct ib_grh; 2081 2082 enum ib_process_mad_flags { 2083 IB_MAD_IGNORE_MKEY = 1, 2084 IB_MAD_IGNORE_BKEY = 2, 2085 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 2086 }; 2087 2088 enum ib_mad_result { 2089 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 2090 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 2091 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 2092 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 2093 }; 2094 2095 struct ib_port_cache { 2096 u64 subnet_prefix; 2097 struct ib_pkey_cache *pkey; 2098 struct ib_gid_table *gid; 2099 u8 lmc; 2100 enum ib_port_state port_state; 2101 }; 2102 2103 struct ib_cache { 2104 rwlock_t lock; 2105 struct ib_event_handler event_handler; 2106 }; 2107 2108 struct ib_port_immutable { 2109 int pkey_tbl_len; 2110 int gid_tbl_len; 2111 u32 core_cap_flags; 2112 u32 max_mad_size; 2113 }; 2114 2115 struct ib_port_data { 2116 struct ib_device *ib_dev; 2117 2118 struct ib_port_immutable immutable; 2119 2120 spinlock_t pkey_list_lock; 2121 struct list_head pkey_list; 2122 2123 struct ib_port_cache cache; 2124 2125 spinlock_t netdev_lock; 2126 struct net_device __rcu *netdev; 2127 struct hlist_node ndev_hash_link; 2128 struct rdma_port_counter port_counter; 2129 struct rdma_hw_stats *hw_stats; 2130 }; 2131 2132 /* rdma netdev type - specifies protocol type */ 2133 enum rdma_netdev_t { 2134 RDMA_NETDEV_OPA_VNIC, 2135 RDMA_NETDEV_IPOIB, 2136 }; 2137 2138 /** 2139 * struct rdma_netdev - rdma netdev 2140 * For cases where netstack interfacing is required. 2141 */ 2142 struct rdma_netdev { 2143 void *clnt_priv; 2144 struct ib_device *hca; 2145 u8 port_num; 2146 2147 /* 2148 * cleanup function must be specified. 2149 * FIXME: This is only used for OPA_VNIC and that usage should be 2150 * removed too. 2151 */ 2152 void (*free_rdma_netdev)(struct net_device *netdev); 2153 2154 /* control functions */ 2155 void (*set_id)(struct net_device *netdev, int id); 2156 /* send packet */ 2157 int (*send)(struct net_device *dev, struct sk_buff *skb, 2158 struct ib_ah *address, u32 dqpn); 2159 /* multicast */ 2160 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca, 2161 union ib_gid *gid, u16 mlid, 2162 int set_qkey, u32 qkey); 2163 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca, 2164 union ib_gid *gid, u16 mlid); 2165 }; 2166 2167 struct rdma_netdev_alloc_params { 2168 size_t sizeof_priv; 2169 unsigned int txqs; 2170 unsigned int rxqs; 2171 void *param; 2172 2173 int (*initialize_rdma_netdev)(struct ib_device *device, u8 port_num, 2174 struct net_device *netdev, void *param); 2175 }; 2176 2177 struct ib_counters { 2178 struct ib_device *device; 2179 struct ib_uobject *uobject; 2180 /* num of objects attached */ 2181 atomic_t usecnt; 2182 }; 2183 2184 struct ib_counters_read_attr { 2185 u64 *counters_buff; 2186 u32 ncounters; 2187 u32 flags; /* use enum ib_read_counters_flags */ 2188 }; 2189 2190 struct uverbs_attr_bundle; 2191 struct iw_cm_id; 2192 struct iw_cm_conn_param; 2193 2194 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \ 2195 .size_##ib_struct = \ 2196 (sizeof(struct drv_struct) + \ 2197 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \ 2198 BUILD_BUG_ON_ZERO( \ 2199 !__same_type(((struct drv_struct *)NULL)->member, \ 2200 struct ib_struct))) 2201 2202 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \ 2203 ((struct ib_type *)kzalloc(ib_dev->ops.size_##ib_type, gfp)) 2204 2205 #define rdma_zalloc_drv_obj(ib_dev, ib_type) \ 2206 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL) 2207 2208 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct 2209 2210 /** 2211 * struct ib_device_ops - InfiniBand device operations 2212 * This structure defines all the InfiniBand device operations, providers will 2213 * need to define the supported operations, otherwise they will be set to null. 2214 */ 2215 struct ib_device_ops { 2216 struct module *owner; 2217 enum rdma_driver_id driver_id; 2218 u32 uverbs_abi_ver; 2219 unsigned int uverbs_no_driver_id_binding:1; 2220 2221 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr, 2222 const struct ib_send_wr **bad_send_wr); 2223 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr, 2224 const struct ib_recv_wr **bad_recv_wr); 2225 void (*drain_rq)(struct ib_qp *qp); 2226 void (*drain_sq)(struct ib_qp *qp); 2227 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc); 2228 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 2229 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags); 2230 int (*req_ncomp_notif)(struct ib_cq *cq, int wc_cnt); 2231 int (*post_srq_recv)(struct ib_srq *srq, 2232 const struct ib_recv_wr *recv_wr, 2233 const struct ib_recv_wr **bad_recv_wr); 2234 int (*process_mad)(struct ib_device *device, int process_mad_flags, 2235 u8 port_num, const struct ib_wc *in_wc, 2236 const struct ib_grh *in_grh, 2237 const struct ib_mad_hdr *in_mad, size_t in_mad_size, 2238 struct ib_mad_hdr *out_mad, size_t *out_mad_size, 2239 u16 *out_mad_pkey_index); 2240 int (*query_device)(struct ib_device *device, 2241 struct ib_device_attr *device_attr, 2242 struct ib_udata *udata); 2243 int (*modify_device)(struct ib_device *device, int device_modify_mask, 2244 struct ib_device_modify *device_modify); 2245 void (*get_dev_fw_str)(struct ib_device *device, char *str); 2246 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev, 2247 int comp_vector); 2248 int (*query_port)(struct ib_device *device, u8 port_num, 2249 struct ib_port_attr *port_attr); 2250 int (*modify_port)(struct ib_device *device, u8 port_num, 2251 int port_modify_mask, 2252 struct ib_port_modify *port_modify); 2253 /** 2254 * The following mandatory functions are used only at device 2255 * registration. Keep functions such as these at the end of this 2256 * structure to avoid cache line misses when accessing struct ib_device 2257 * in fast paths. 2258 */ 2259 int (*get_port_immutable)(struct ib_device *device, u8 port_num, 2260 struct ib_port_immutable *immutable); 2261 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 2262 u8 port_num); 2263 /** 2264 * When calling get_netdev, the HW vendor's driver should return the 2265 * net device of device @device at port @port_num or NULL if such 2266 * a net device doesn't exist. The vendor driver should call dev_hold 2267 * on this net device. The HW vendor's device driver must guarantee 2268 * that this function returns NULL before the net device has finished 2269 * NETDEV_UNREGISTER state. 2270 */ 2271 struct net_device *(*get_netdev)(struct ib_device *device, u8 port_num); 2272 /** 2273 * rdma netdev operation 2274 * 2275 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params 2276 * must return -EOPNOTSUPP if it doesn't support the specified type. 2277 */ 2278 struct net_device *(*alloc_rdma_netdev)( 2279 struct ib_device *device, u8 port_num, enum rdma_netdev_t type, 2280 const char *name, unsigned char name_assign_type, 2281 void (*setup)(struct net_device *)); 2282 2283 int (*rdma_netdev_get_params)(struct ib_device *device, u8 port_num, 2284 enum rdma_netdev_t type, 2285 struct rdma_netdev_alloc_params *params); 2286 /** 2287 * query_gid should be return GID value for @device, when @port_num 2288 * link layer is either IB or iWarp. It is no-op if @port_num port 2289 * is RoCE link layer. 2290 */ 2291 int (*query_gid)(struct ib_device *device, u8 port_num, int index, 2292 union ib_gid *gid); 2293 /** 2294 * When calling add_gid, the HW vendor's driver should add the gid 2295 * of device of port at gid index available at @attr. Meta-info of 2296 * that gid (for example, the network device related to this gid) is 2297 * available at @attr. @context allows the HW vendor driver to store 2298 * extra information together with a GID entry. The HW vendor driver may 2299 * allocate memory to contain this information and store it in @context 2300 * when a new GID entry is written to. Params are consistent until the 2301 * next call of add_gid or delete_gid. The function should return 0 on 2302 * success or error otherwise. The function could be called 2303 * concurrently for different ports. This function is only called when 2304 * roce_gid_table is used. 2305 */ 2306 int (*add_gid)(const struct ib_gid_attr *attr, void **context); 2307 /** 2308 * When calling del_gid, the HW vendor's driver should delete the 2309 * gid of device @device at gid index gid_index of port port_num 2310 * available in @attr. 2311 * Upon the deletion of a GID entry, the HW vendor must free any 2312 * allocated memory. The caller will clear @context afterwards. 2313 * This function is only called when roce_gid_table is used. 2314 */ 2315 int (*del_gid)(const struct ib_gid_attr *attr, void **context); 2316 int (*query_pkey)(struct ib_device *device, u8 port_num, u16 index, 2317 u16 *pkey); 2318 int (*alloc_ucontext)(struct ib_ucontext *context, 2319 struct ib_udata *udata); 2320 void (*dealloc_ucontext)(struct ib_ucontext *context); 2321 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma); 2322 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 2323 int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata); 2324 void (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata); 2325 int (*create_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr, 2326 u32 flags, struct ib_udata *udata); 2327 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2328 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2329 void (*destroy_ah)(struct ib_ah *ah, u32 flags); 2330 int (*create_srq)(struct ib_srq *srq, 2331 struct ib_srq_init_attr *srq_init_attr, 2332 struct ib_udata *udata); 2333 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr, 2334 enum ib_srq_attr_mask srq_attr_mask, 2335 struct ib_udata *udata); 2336 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr); 2337 void (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata); 2338 struct ib_qp *(*create_qp)(struct ib_pd *pd, 2339 struct ib_qp_init_attr *qp_init_attr, 2340 struct ib_udata *udata); 2341 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, 2342 int qp_attr_mask, struct ib_udata *udata); 2343 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, 2344 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr); 2345 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata); 2346 int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr, 2347 struct ib_udata *udata); 2348 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period); 2349 void (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata); 2350 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata); 2351 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags); 2352 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length, 2353 u64 virt_addr, int mr_access_flags, 2354 struct ib_udata *udata); 2355 int (*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start, u64 length, 2356 u64 virt_addr, int mr_access_flags, 2357 struct ib_pd *pd, struct ib_udata *udata); 2358 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata); 2359 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type, 2360 u32 max_num_sg, struct ib_udata *udata); 2361 struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd, 2362 u32 max_num_data_sg, 2363 u32 max_num_meta_sg); 2364 int (*advise_mr)(struct ib_pd *pd, 2365 enum ib_uverbs_advise_mr_advice advice, u32 flags, 2366 struct ib_sge *sg_list, u32 num_sge, 2367 struct uverbs_attr_bundle *attrs); 2368 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 2369 unsigned int *sg_offset); 2370 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 2371 struct ib_mr_status *mr_status); 2372 struct ib_mw *(*alloc_mw)(struct ib_pd *pd, enum ib_mw_type type, 2373 struct ib_udata *udata); 2374 int (*dealloc_mw)(struct ib_mw *mw); 2375 struct ib_fmr *(*alloc_fmr)(struct ib_pd *pd, int mr_access_flags, 2376 struct ib_fmr_attr *fmr_attr); 2377 int (*map_phys_fmr)(struct ib_fmr *fmr, u64 *page_list, int list_len, 2378 u64 iova); 2379 int (*unmap_fmr)(struct list_head *fmr_list); 2380 int (*dealloc_fmr)(struct ib_fmr *fmr); 2381 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2382 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2383 struct ib_xrcd *(*alloc_xrcd)(struct ib_device *device, 2384 struct ib_udata *udata); 2385 int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata); 2386 struct ib_flow *(*create_flow)(struct ib_qp *qp, 2387 struct ib_flow_attr *flow_attr, 2388 int domain, struct ib_udata *udata); 2389 int (*destroy_flow)(struct ib_flow *flow_id); 2390 struct ib_flow_action *(*create_flow_action_esp)( 2391 struct ib_device *device, 2392 const struct ib_flow_action_attrs_esp *attr, 2393 struct uverbs_attr_bundle *attrs); 2394 int (*destroy_flow_action)(struct ib_flow_action *action); 2395 int (*modify_flow_action_esp)( 2396 struct ib_flow_action *action, 2397 const struct ib_flow_action_attrs_esp *attr, 2398 struct uverbs_attr_bundle *attrs); 2399 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port, 2400 int state); 2401 int (*get_vf_config)(struct ib_device *device, int vf, u8 port, 2402 struct ifla_vf_info *ivf); 2403 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port, 2404 struct ifla_vf_stats *stats); 2405 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid, 2406 int type); 2407 struct ib_wq *(*create_wq)(struct ib_pd *pd, 2408 struct ib_wq_init_attr *init_attr, 2409 struct ib_udata *udata); 2410 void (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata); 2411 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr, 2412 u32 wq_attr_mask, struct ib_udata *udata); 2413 struct ib_rwq_ind_table *(*create_rwq_ind_table)( 2414 struct ib_device *device, 2415 struct ib_rwq_ind_table_init_attr *init_attr, 2416 struct ib_udata *udata); 2417 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table); 2418 struct ib_dm *(*alloc_dm)(struct ib_device *device, 2419 struct ib_ucontext *context, 2420 struct ib_dm_alloc_attr *attr, 2421 struct uverbs_attr_bundle *attrs); 2422 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs); 2423 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm, 2424 struct ib_dm_mr_attr *attr, 2425 struct uverbs_attr_bundle *attrs); 2426 struct ib_counters *(*create_counters)( 2427 struct ib_device *device, struct uverbs_attr_bundle *attrs); 2428 int (*destroy_counters)(struct ib_counters *counters); 2429 int (*read_counters)(struct ib_counters *counters, 2430 struct ib_counters_read_attr *counters_read_attr, 2431 struct uverbs_attr_bundle *attrs); 2432 int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg, 2433 int data_sg_nents, unsigned int *data_sg_offset, 2434 struct scatterlist *meta_sg, int meta_sg_nents, 2435 unsigned int *meta_sg_offset); 2436 2437 /** 2438 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the 2439 * driver initialized data. The struct is kfree()'ed by the sysfs 2440 * core when the device is removed. A lifespan of -1 in the return 2441 * struct tells the core to set a default lifespan. 2442 */ 2443 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device, 2444 u8 port_num); 2445 /** 2446 * get_hw_stats - Fill in the counter value(s) in the stats struct. 2447 * @index - The index in the value array we wish to have updated, or 2448 * num_counters if we want all stats updated 2449 * Return codes - 2450 * < 0 - Error, no counters updated 2451 * index - Updated the single counter pointed to by index 2452 * num_counters - Updated all counters (will reset the timestamp 2453 * and prevent further calls for lifespan milliseconds) 2454 * Drivers are allowed to update all counters in leiu of just the 2455 * one given in index at their option 2456 */ 2457 int (*get_hw_stats)(struct ib_device *device, 2458 struct rdma_hw_stats *stats, u8 port, int index); 2459 /* 2460 * This function is called once for each port when a ib device is 2461 * registered. 2462 */ 2463 int (*init_port)(struct ib_device *device, u8 port_num, 2464 struct kobject *port_sysfs); 2465 /** 2466 * Allows rdma drivers to add their own restrack attributes. 2467 */ 2468 int (*fill_res_entry)(struct sk_buff *msg, 2469 struct rdma_restrack_entry *entry); 2470 2471 /* Device lifecycle callbacks */ 2472 /* 2473 * Called after the device becomes registered, before clients are 2474 * attached 2475 */ 2476 int (*enable_driver)(struct ib_device *dev); 2477 /* 2478 * This is called as part of ib_dealloc_device(). 2479 */ 2480 void (*dealloc_driver)(struct ib_device *dev); 2481 2482 /* iWarp CM callbacks */ 2483 void (*iw_add_ref)(struct ib_qp *qp); 2484 void (*iw_rem_ref)(struct ib_qp *qp); 2485 struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn); 2486 int (*iw_connect)(struct iw_cm_id *cm_id, 2487 struct iw_cm_conn_param *conn_param); 2488 int (*iw_accept)(struct iw_cm_id *cm_id, 2489 struct iw_cm_conn_param *conn_param); 2490 int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata, 2491 u8 pdata_len); 2492 int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog); 2493 int (*iw_destroy_listen)(struct iw_cm_id *cm_id); 2494 /** 2495 * counter_bind_qp - Bind a QP to a counter. 2496 * @counter - The counter to be bound. If counter->id is zero then 2497 * the driver needs to allocate a new counter and set counter->id 2498 */ 2499 int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp); 2500 /** 2501 * counter_unbind_qp - Unbind the qp from the dynamically-allocated 2502 * counter and bind it onto the default one 2503 */ 2504 int (*counter_unbind_qp)(struct ib_qp *qp); 2505 /** 2506 * counter_dealloc -De-allocate the hw counter 2507 */ 2508 int (*counter_dealloc)(struct rdma_counter *counter); 2509 /** 2510 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in 2511 * the driver initialized data. 2512 */ 2513 struct rdma_hw_stats *(*counter_alloc_stats)( 2514 struct rdma_counter *counter); 2515 /** 2516 * counter_update_stats - Query the stats value of this counter 2517 */ 2518 int (*counter_update_stats)(struct rdma_counter *counter); 2519 2520 DECLARE_RDMA_OBJ_SIZE(ib_ah); 2521 DECLARE_RDMA_OBJ_SIZE(ib_cq); 2522 DECLARE_RDMA_OBJ_SIZE(ib_pd); 2523 DECLARE_RDMA_OBJ_SIZE(ib_srq); 2524 DECLARE_RDMA_OBJ_SIZE(ib_ucontext); 2525 }; 2526 2527 struct ib_core_device { 2528 /* device must be the first element in structure until, 2529 * union of ib_core_device and device exists in ib_device. 2530 */ 2531 struct device dev; 2532 possible_net_t rdma_net; 2533 struct kobject *ports_kobj; 2534 struct list_head port_list; 2535 struct ib_device *owner; /* reach back to owner ib_device */ 2536 }; 2537 2538 struct rdma_restrack_root; 2539 struct ib_device { 2540 /* Do not access @dma_device directly from ULP nor from HW drivers. */ 2541 struct device *dma_device; 2542 struct ib_device_ops ops; 2543 char name[IB_DEVICE_NAME_MAX]; 2544 struct rcu_head rcu_head; 2545 2546 struct list_head event_handler_list; 2547 spinlock_t event_handler_lock; 2548 2549 struct rw_semaphore client_data_rwsem; 2550 struct xarray client_data; 2551 struct mutex unregistration_lock; 2552 2553 struct ib_cache cache; 2554 /** 2555 * port_data is indexed by port number 2556 */ 2557 struct ib_port_data *port_data; 2558 2559 int num_comp_vectors; 2560 2561 union { 2562 struct device dev; 2563 struct ib_core_device coredev; 2564 }; 2565 2566 /* First group for device attributes, 2567 * Second group for driver provided attributes (optional). 2568 * It is NULL terminated array. 2569 */ 2570 const struct attribute_group *groups[3]; 2571 2572 u64 uverbs_cmd_mask; 2573 u64 uverbs_ex_cmd_mask; 2574 2575 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 2576 __be64 node_guid; 2577 u32 local_dma_lkey; 2578 u16 is_switch:1; 2579 /* Indicates kernel verbs support, should not be used in drivers */ 2580 u16 kverbs_provider:1; 2581 /* CQ adaptive moderation (RDMA DIM) */ 2582 u16 use_cq_dim:1; 2583 u8 node_type; 2584 u8 phys_port_cnt; 2585 struct ib_device_attr attrs; 2586 struct attribute_group *hw_stats_ag; 2587 struct rdma_hw_stats *hw_stats; 2588 2589 #ifdef CONFIG_CGROUP_RDMA 2590 struct rdmacg_device cg_device; 2591 #endif 2592 2593 u32 index; 2594 struct rdma_restrack_root *res; 2595 2596 const struct uapi_definition *driver_def; 2597 2598 /* 2599 * Positive refcount indicates that the device is currently 2600 * registered and cannot be unregistered. 2601 */ 2602 refcount_t refcount; 2603 struct completion unreg_completion; 2604 struct work_struct unregistration_work; 2605 2606 const struct rdma_link_ops *link_ops; 2607 2608 /* Protects compat_devs xarray modifications */ 2609 struct mutex compat_devs_mutex; 2610 /* Maintains compat devices for each net namespace */ 2611 struct xarray compat_devs; 2612 2613 /* Used by iWarp CM */ 2614 char iw_ifname[IFNAMSIZ]; 2615 u32 iw_driver_flags; 2616 }; 2617 2618 struct ib_client_nl_info; 2619 struct ib_client { 2620 const char *name; 2621 void (*add) (struct ib_device *); 2622 void (*remove)(struct ib_device *, void *client_data); 2623 void (*rename)(struct ib_device *dev, void *client_data); 2624 int (*get_nl_info)(struct ib_device *ibdev, void *client_data, 2625 struct ib_client_nl_info *res); 2626 int (*get_global_nl_info)(struct ib_client_nl_info *res); 2627 2628 /* Returns the net_dev belonging to this ib_client and matching the 2629 * given parameters. 2630 * @dev: An RDMA device that the net_dev use for communication. 2631 * @port: A physical port number on the RDMA device. 2632 * @pkey: P_Key that the net_dev uses if applicable. 2633 * @gid: A GID that the net_dev uses to communicate. 2634 * @addr: An IP address the net_dev is configured with. 2635 * @client_data: The device's client data set by ib_set_client_data(). 2636 * 2637 * An ib_client that implements a net_dev on top of RDMA devices 2638 * (such as IP over IB) should implement this callback, allowing the 2639 * rdma_cm module to find the right net_dev for a given request. 2640 * 2641 * The caller is responsible for calling dev_put on the returned 2642 * netdev. */ 2643 struct net_device *(*get_net_dev_by_params)( 2644 struct ib_device *dev, 2645 u8 port, 2646 u16 pkey, 2647 const union ib_gid *gid, 2648 const struct sockaddr *addr, 2649 void *client_data); 2650 2651 refcount_t uses; 2652 struct completion uses_zero; 2653 u32 client_id; 2654 2655 /* kverbs are not required by the client */ 2656 u8 no_kverbs_req:1; 2657 }; 2658 2659 /* 2660 * IB block DMA iterator 2661 * 2662 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned 2663 * to a HW supported page size. 2664 */ 2665 struct ib_block_iter { 2666 /* internal states */ 2667 struct scatterlist *__sg; /* sg holding the current aligned block */ 2668 dma_addr_t __dma_addr; /* unaligned DMA address of this block */ 2669 unsigned int __sg_nents; /* number of SG entries */ 2670 unsigned int __sg_advance; /* number of bytes to advance in sg in next step */ 2671 unsigned int __pg_bit; /* alignment of current block */ 2672 }; 2673 2674 struct ib_device *_ib_alloc_device(size_t size); 2675 #define ib_alloc_device(drv_struct, member) \ 2676 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \ 2677 BUILD_BUG_ON_ZERO(offsetof( \ 2678 struct drv_struct, member))), \ 2679 struct drv_struct, member) 2680 2681 void ib_dealloc_device(struct ib_device *device); 2682 2683 void ib_get_device_fw_str(struct ib_device *device, char *str); 2684 2685 int ib_register_device(struct ib_device *device, const char *name); 2686 void ib_unregister_device(struct ib_device *device); 2687 void ib_unregister_driver(enum rdma_driver_id driver_id); 2688 void ib_unregister_device_and_put(struct ib_device *device); 2689 void ib_unregister_device_queued(struct ib_device *ib_dev); 2690 2691 int ib_register_client (struct ib_client *client); 2692 void ib_unregister_client(struct ib_client *client); 2693 2694 void __rdma_block_iter_start(struct ib_block_iter *biter, 2695 struct scatterlist *sglist, 2696 unsigned int nents, 2697 unsigned long pgsz); 2698 bool __rdma_block_iter_next(struct ib_block_iter *biter); 2699 2700 /** 2701 * rdma_block_iter_dma_address - get the aligned dma address of the current 2702 * block held by the block iterator. 2703 * @biter: block iterator holding the memory block 2704 */ 2705 static inline dma_addr_t 2706 rdma_block_iter_dma_address(struct ib_block_iter *biter) 2707 { 2708 return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1); 2709 } 2710 2711 /** 2712 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list 2713 * @sglist: sglist to iterate over 2714 * @biter: block iterator holding the memory block 2715 * @nents: maximum number of sg entries to iterate over 2716 * @pgsz: best HW supported page size to use 2717 * 2718 * Callers may use rdma_block_iter_dma_address() to get each 2719 * blocks aligned DMA address. 2720 */ 2721 #define rdma_for_each_block(sglist, biter, nents, pgsz) \ 2722 for (__rdma_block_iter_start(biter, sglist, nents, \ 2723 pgsz); \ 2724 __rdma_block_iter_next(biter);) 2725 2726 /** 2727 * ib_get_client_data - Get IB client context 2728 * @device:Device to get context for 2729 * @client:Client to get context for 2730 * 2731 * ib_get_client_data() returns the client context data set with 2732 * ib_set_client_data(). This can only be called while the client is 2733 * registered to the device, once the ib_client remove() callback returns this 2734 * cannot be called. 2735 */ 2736 static inline void *ib_get_client_data(struct ib_device *device, 2737 struct ib_client *client) 2738 { 2739 return xa_load(&device->client_data, client->client_id); 2740 } 2741 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 2742 void *data); 2743 void ib_set_device_ops(struct ib_device *device, 2744 const struct ib_device_ops *ops); 2745 2746 #if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS) 2747 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma, 2748 unsigned long pfn, unsigned long size, pgprot_t prot); 2749 #else 2750 static inline int rdma_user_mmap_io(struct ib_ucontext *ucontext, 2751 struct vm_area_struct *vma, 2752 unsigned long pfn, unsigned long size, 2753 pgprot_t prot) 2754 { 2755 return -EINVAL; 2756 } 2757 #endif 2758 2759 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 2760 { 2761 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 2762 } 2763 2764 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 2765 { 2766 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 2767 } 2768 2769 static inline bool ib_is_buffer_cleared(const void __user *p, 2770 size_t len) 2771 { 2772 bool ret; 2773 u8 *buf; 2774 2775 if (len > USHRT_MAX) 2776 return false; 2777 2778 buf = memdup_user(p, len); 2779 if (IS_ERR(buf)) 2780 return false; 2781 2782 ret = !memchr_inv(buf, 0, len); 2783 kfree(buf); 2784 return ret; 2785 } 2786 2787 static inline bool ib_is_udata_cleared(struct ib_udata *udata, 2788 size_t offset, 2789 size_t len) 2790 { 2791 return ib_is_buffer_cleared(udata->inbuf + offset, len); 2792 } 2793 2794 /** 2795 * ib_is_destroy_retryable - Check whether the uobject destruction 2796 * is retryable. 2797 * @ret: The initial destruction return code 2798 * @why: remove reason 2799 * @uobj: The uobject that is destroyed 2800 * 2801 * This function is a helper function that IB layer and low-level drivers 2802 * can use to consider whether the destruction of the given uobject is 2803 * retry-able. 2804 * It checks the original return code, if it wasn't success the destruction 2805 * is retryable according to the ucontext state (i.e. cleanup_retryable) and 2806 * the remove reason. (i.e. why). 2807 * Must be called with the object locked for destroy. 2808 */ 2809 static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why, 2810 struct ib_uobject *uobj) 2811 { 2812 return ret && (why == RDMA_REMOVE_DESTROY || 2813 uobj->context->cleanup_retryable); 2814 } 2815 2816 /** 2817 * ib_destroy_usecnt - Called during destruction to check the usecnt 2818 * @usecnt: The usecnt atomic 2819 * @why: remove reason 2820 * @uobj: The uobject that is destroyed 2821 * 2822 * Non-zero usecnts will block destruction unless destruction was triggered by 2823 * a ucontext cleanup. 2824 */ 2825 static inline int ib_destroy_usecnt(atomic_t *usecnt, 2826 enum rdma_remove_reason why, 2827 struct ib_uobject *uobj) 2828 { 2829 if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj)) 2830 return -EBUSY; 2831 return 0; 2832 } 2833 2834 /** 2835 * ib_modify_qp_is_ok - Check that the supplied attribute mask 2836 * contains all required attributes and no attributes not allowed for 2837 * the given QP state transition. 2838 * @cur_state: Current QP state 2839 * @next_state: Next QP state 2840 * @type: QP type 2841 * @mask: Mask of supplied QP attributes 2842 * 2843 * This function is a helper function that a low-level driver's 2844 * modify_qp method can use to validate the consumer's input. It 2845 * checks that cur_state and next_state are valid QP states, that a 2846 * transition from cur_state to next_state is allowed by the IB spec, 2847 * and that the attribute mask supplied is allowed for the transition. 2848 */ 2849 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 2850 enum ib_qp_type type, enum ib_qp_attr_mask mask); 2851 2852 void ib_register_event_handler(struct ib_event_handler *event_handler); 2853 void ib_unregister_event_handler(struct ib_event_handler *event_handler); 2854 void ib_dispatch_event(struct ib_event *event); 2855 2856 int ib_query_port(struct ib_device *device, 2857 u8 port_num, struct ib_port_attr *port_attr); 2858 2859 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 2860 u8 port_num); 2861 2862 /** 2863 * rdma_cap_ib_switch - Check if the device is IB switch 2864 * @device: Device to check 2865 * 2866 * Device driver is responsible for setting is_switch bit on 2867 * in ib_device structure at init time. 2868 * 2869 * Return: true if the device is IB switch. 2870 */ 2871 static inline bool rdma_cap_ib_switch(const struct ib_device *device) 2872 { 2873 return device->is_switch; 2874 } 2875 2876 /** 2877 * rdma_start_port - Return the first valid port number for the device 2878 * specified 2879 * 2880 * @device: Device to be checked 2881 * 2882 * Return start port number 2883 */ 2884 static inline u8 rdma_start_port(const struct ib_device *device) 2885 { 2886 return rdma_cap_ib_switch(device) ? 0 : 1; 2887 } 2888 2889 /** 2890 * rdma_for_each_port - Iterate over all valid port numbers of the IB device 2891 * @device - The struct ib_device * to iterate over 2892 * @iter - The unsigned int to store the port number 2893 */ 2894 #define rdma_for_each_port(device, iter) \ 2895 for (iter = rdma_start_port(device + BUILD_BUG_ON_ZERO(!__same_type( \ 2896 unsigned int, iter))); \ 2897 iter <= rdma_end_port(device); (iter)++) 2898 2899 /** 2900 * rdma_end_port - Return the last valid port number for the device 2901 * specified 2902 * 2903 * @device: Device to be checked 2904 * 2905 * Return last port number 2906 */ 2907 static inline u8 rdma_end_port(const struct ib_device *device) 2908 { 2909 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 2910 } 2911 2912 static inline int rdma_is_port_valid(const struct ib_device *device, 2913 unsigned int port) 2914 { 2915 return (port >= rdma_start_port(device) && 2916 port <= rdma_end_port(device)); 2917 } 2918 2919 static inline bool rdma_is_grh_required(const struct ib_device *device, 2920 u8 port_num) 2921 { 2922 return device->port_data[port_num].immutable.core_cap_flags & 2923 RDMA_CORE_PORT_IB_GRH_REQUIRED; 2924 } 2925 2926 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num) 2927 { 2928 return device->port_data[port_num].immutable.core_cap_flags & 2929 RDMA_CORE_CAP_PROT_IB; 2930 } 2931 2932 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num) 2933 { 2934 return device->port_data[port_num].immutable.core_cap_flags & 2935 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); 2936 } 2937 2938 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num) 2939 { 2940 return device->port_data[port_num].immutable.core_cap_flags & 2941 RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; 2942 } 2943 2944 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num) 2945 { 2946 return device->port_data[port_num].immutable.core_cap_flags & 2947 RDMA_CORE_CAP_PROT_ROCE; 2948 } 2949 2950 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num) 2951 { 2952 return device->port_data[port_num].immutable.core_cap_flags & 2953 RDMA_CORE_CAP_PROT_IWARP; 2954 } 2955 2956 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num) 2957 { 2958 return rdma_protocol_ib(device, port_num) || 2959 rdma_protocol_roce(device, port_num); 2960 } 2961 2962 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num) 2963 { 2964 return device->port_data[port_num].immutable.core_cap_flags & 2965 RDMA_CORE_CAP_PROT_RAW_PACKET; 2966 } 2967 2968 static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num) 2969 { 2970 return device->port_data[port_num].immutable.core_cap_flags & 2971 RDMA_CORE_CAP_PROT_USNIC; 2972 } 2973 2974 /** 2975 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 2976 * Management Datagrams. 2977 * @device: Device to check 2978 * @port_num: Port number to check 2979 * 2980 * Management Datagrams (MAD) are a required part of the InfiniBand 2981 * specification and are supported on all InfiniBand devices. A slightly 2982 * extended version are also supported on OPA interfaces. 2983 * 2984 * Return: true if the port supports sending/receiving of MAD packets. 2985 */ 2986 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num) 2987 { 2988 return device->port_data[port_num].immutable.core_cap_flags & 2989 RDMA_CORE_CAP_IB_MAD; 2990 } 2991 2992 /** 2993 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 2994 * Management Datagrams. 2995 * @device: Device to check 2996 * @port_num: Port number to check 2997 * 2998 * Intel OmniPath devices extend and/or replace the InfiniBand Management 2999 * datagrams with their own versions. These OPA MADs share many but not all of 3000 * the characteristics of InfiniBand MADs. 3001 * 3002 * OPA MADs differ in the following ways: 3003 * 3004 * 1) MADs are variable size up to 2K 3005 * IBTA defined MADs remain fixed at 256 bytes 3006 * 2) OPA SMPs must carry valid PKeys 3007 * 3) OPA SMP packets are a different format 3008 * 3009 * Return: true if the port supports OPA MAD packet formats. 3010 */ 3011 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num) 3012 { 3013 return device->port_data[port_num].immutable.core_cap_flags & 3014 RDMA_CORE_CAP_OPA_MAD; 3015 } 3016 3017 /** 3018 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 3019 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 3020 * @device: Device to check 3021 * @port_num: Port number to check 3022 * 3023 * Each InfiniBand node is required to provide a Subnet Management Agent 3024 * that the subnet manager can access. Prior to the fabric being fully 3025 * configured by the subnet manager, the SMA is accessed via a well known 3026 * interface called the Subnet Management Interface (SMI). This interface 3027 * uses directed route packets to communicate with the SM to get around the 3028 * chicken and egg problem of the SM needing to know what's on the fabric 3029 * in order to configure the fabric, and needing to configure the fabric in 3030 * order to send packets to the devices on the fabric. These directed 3031 * route packets do not need the fabric fully configured in order to reach 3032 * their destination. The SMI is the only method allowed to send 3033 * directed route packets on an InfiniBand fabric. 3034 * 3035 * Return: true if the port provides an SMI. 3036 */ 3037 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num) 3038 { 3039 return device->port_data[port_num].immutable.core_cap_flags & 3040 RDMA_CORE_CAP_IB_SMI; 3041 } 3042 3043 /** 3044 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 3045 * Communication Manager. 3046 * @device: Device to check 3047 * @port_num: Port number to check 3048 * 3049 * The InfiniBand Communication Manager is one of many pre-defined General 3050 * Service Agents (GSA) that are accessed via the General Service 3051 * Interface (GSI). It's role is to facilitate establishment of connections 3052 * between nodes as well as other management related tasks for established 3053 * connections. 3054 * 3055 * Return: true if the port supports an IB CM (this does not guarantee that 3056 * a CM is actually running however). 3057 */ 3058 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num) 3059 { 3060 return device->port_data[port_num].immutable.core_cap_flags & 3061 RDMA_CORE_CAP_IB_CM; 3062 } 3063 3064 /** 3065 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 3066 * Communication Manager. 3067 * @device: Device to check 3068 * @port_num: Port number to check 3069 * 3070 * Similar to above, but specific to iWARP connections which have a different 3071 * managment protocol than InfiniBand. 3072 * 3073 * Return: true if the port supports an iWARP CM (this does not guarantee that 3074 * a CM is actually running however). 3075 */ 3076 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num) 3077 { 3078 return device->port_data[port_num].immutable.core_cap_flags & 3079 RDMA_CORE_CAP_IW_CM; 3080 } 3081 3082 /** 3083 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 3084 * Subnet Administration. 3085 * @device: Device to check 3086 * @port_num: Port number to check 3087 * 3088 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 3089 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 3090 * fabrics, devices should resolve routes to other hosts by contacting the 3091 * SA to query the proper route. 3092 * 3093 * Return: true if the port should act as a client to the fabric Subnet 3094 * Administration interface. This does not imply that the SA service is 3095 * running locally. 3096 */ 3097 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num) 3098 { 3099 return device->port_data[port_num].immutable.core_cap_flags & 3100 RDMA_CORE_CAP_IB_SA; 3101 } 3102 3103 /** 3104 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 3105 * Multicast. 3106 * @device: Device to check 3107 * @port_num: Port number to check 3108 * 3109 * InfiniBand multicast registration is more complex than normal IPv4 or 3110 * IPv6 multicast registration. Each Host Channel Adapter must register 3111 * with the Subnet Manager when it wishes to join a multicast group. It 3112 * should do so only once regardless of how many queue pairs it subscribes 3113 * to this group. And it should leave the group only after all queue pairs 3114 * attached to the group have been detached. 3115 * 3116 * Return: true if the port must undertake the additional adminstrative 3117 * overhead of registering/unregistering with the SM and tracking of the 3118 * total number of queue pairs attached to the multicast group. 3119 */ 3120 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num) 3121 { 3122 return rdma_cap_ib_sa(device, port_num); 3123 } 3124 3125 /** 3126 * rdma_cap_af_ib - Check if the port of device has the capability 3127 * Native Infiniband Address. 3128 * @device: Device to check 3129 * @port_num: Port number to check 3130 * 3131 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 3132 * GID. RoCE uses a different mechanism, but still generates a GID via 3133 * a prescribed mechanism and port specific data. 3134 * 3135 * Return: true if the port uses a GID address to identify devices on the 3136 * network. 3137 */ 3138 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num) 3139 { 3140 return device->port_data[port_num].immutable.core_cap_flags & 3141 RDMA_CORE_CAP_AF_IB; 3142 } 3143 3144 /** 3145 * rdma_cap_eth_ah - Check if the port of device has the capability 3146 * Ethernet Address Handle. 3147 * @device: Device to check 3148 * @port_num: Port number to check 3149 * 3150 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 3151 * to fabricate GIDs over Ethernet/IP specific addresses native to the 3152 * port. Normally, packet headers are generated by the sending host 3153 * adapter, but when sending connectionless datagrams, we must manually 3154 * inject the proper headers for the fabric we are communicating over. 3155 * 3156 * Return: true if we are running as a RoCE port and must force the 3157 * addition of a Global Route Header built from our Ethernet Address 3158 * Handle into our header list for connectionless packets. 3159 */ 3160 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num) 3161 { 3162 return device->port_data[port_num].immutable.core_cap_flags & 3163 RDMA_CORE_CAP_ETH_AH; 3164 } 3165 3166 /** 3167 * rdma_cap_opa_ah - Check if the port of device supports 3168 * OPA Address handles 3169 * @device: Device to check 3170 * @port_num: Port number to check 3171 * 3172 * Return: true if we are running on an OPA device which supports 3173 * the extended OPA addressing. 3174 */ 3175 static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num) 3176 { 3177 return (device->port_data[port_num].immutable.core_cap_flags & 3178 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH; 3179 } 3180 3181 /** 3182 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 3183 * 3184 * @device: Device 3185 * @port_num: Port number 3186 * 3187 * This MAD size includes the MAD headers and MAD payload. No other headers 3188 * are included. 3189 * 3190 * Return the max MAD size required by the Port. Will return 0 if the port 3191 * does not support MADs 3192 */ 3193 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num) 3194 { 3195 return device->port_data[port_num].immutable.max_mad_size; 3196 } 3197 3198 /** 3199 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 3200 * @device: Device to check 3201 * @port_num: Port number to check 3202 * 3203 * RoCE GID table mechanism manages the various GIDs for a device. 3204 * 3205 * NOTE: if allocating the port's GID table has failed, this call will still 3206 * return true, but any RoCE GID table API will fail. 3207 * 3208 * Return: true if the port uses RoCE GID table mechanism in order to manage 3209 * its GIDs. 3210 */ 3211 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 3212 u8 port_num) 3213 { 3214 return rdma_protocol_roce(device, port_num) && 3215 device->ops.add_gid && device->ops.del_gid; 3216 } 3217 3218 /* 3219 * Check if the device supports READ W/ INVALIDATE. 3220 */ 3221 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num) 3222 { 3223 /* 3224 * iWarp drivers must support READ W/ INVALIDATE. No other protocol 3225 * has support for it yet. 3226 */ 3227 return rdma_protocol_iwarp(dev, port_num); 3228 } 3229 3230 /** 3231 * rdma_find_pg_bit - Find page bit given address and HW supported page sizes 3232 * 3233 * @addr: address 3234 * @pgsz_bitmap: bitmap of HW supported page sizes 3235 */ 3236 static inline unsigned int rdma_find_pg_bit(unsigned long addr, 3237 unsigned long pgsz_bitmap) 3238 { 3239 unsigned long align; 3240 unsigned long pgsz; 3241 3242 align = addr & -addr; 3243 3244 /* Find page bit such that addr is aligned to the highest supported 3245 * HW page size 3246 */ 3247 pgsz = pgsz_bitmap & ~(-align << 1); 3248 if (!pgsz) 3249 return __ffs(pgsz_bitmap); 3250 3251 return __fls(pgsz); 3252 } 3253 3254 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 3255 int state); 3256 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 3257 struct ifla_vf_info *info); 3258 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 3259 struct ifla_vf_stats *stats); 3260 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 3261 int type); 3262 3263 int ib_query_pkey(struct ib_device *device, 3264 u8 port_num, u16 index, u16 *pkey); 3265 3266 int ib_modify_device(struct ib_device *device, 3267 int device_modify_mask, 3268 struct ib_device_modify *device_modify); 3269 3270 int ib_modify_port(struct ib_device *device, 3271 u8 port_num, int port_modify_mask, 3272 struct ib_port_modify *port_modify); 3273 3274 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 3275 u8 *port_num, u16 *index); 3276 3277 int ib_find_pkey(struct ib_device *device, 3278 u8 port_num, u16 pkey, u16 *index); 3279 3280 enum ib_pd_flags { 3281 /* 3282 * Create a memory registration for all memory in the system and place 3283 * the rkey for it into pd->unsafe_global_rkey. This can be used by 3284 * ULPs to avoid the overhead of dynamic MRs. 3285 * 3286 * This flag is generally considered unsafe and must only be used in 3287 * extremly trusted environments. Every use of it will log a warning 3288 * in the kernel log. 3289 */ 3290 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01, 3291 }; 3292 3293 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 3294 const char *caller); 3295 3296 #define ib_alloc_pd(device, flags) \ 3297 __ib_alloc_pd((device), (flags), KBUILD_MODNAME) 3298 3299 /** 3300 * ib_dealloc_pd_user - Deallocate kernel/user PD 3301 * @pd: The protection domain 3302 * @udata: Valid user data or NULL for kernel objects 3303 */ 3304 void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata); 3305 3306 /** 3307 * ib_dealloc_pd - Deallocate kernel PD 3308 * @pd: The protection domain 3309 * 3310 * NOTE: for user PD use ib_dealloc_pd_user with valid udata! 3311 */ 3312 static inline void ib_dealloc_pd(struct ib_pd *pd) 3313 { 3314 ib_dealloc_pd_user(pd, NULL); 3315 } 3316 3317 enum rdma_create_ah_flags { 3318 /* In a sleepable context */ 3319 RDMA_CREATE_AH_SLEEPABLE = BIT(0), 3320 }; 3321 3322 /** 3323 * rdma_create_ah - Creates an address handle for the given address vector. 3324 * @pd: The protection domain associated with the address handle. 3325 * @ah_attr: The attributes of the address vector. 3326 * @flags: Create address handle flags (see enum rdma_create_ah_flags). 3327 * 3328 * The address handle is used to reference a local or global destination 3329 * in all UD QP post sends. 3330 */ 3331 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr, 3332 u32 flags); 3333 3334 /** 3335 * rdma_create_user_ah - Creates an address handle for the given address vector. 3336 * It resolves destination mac address for ah attribute of RoCE type. 3337 * @pd: The protection domain associated with the address handle. 3338 * @ah_attr: The attributes of the address vector. 3339 * @udata: pointer to user's input output buffer information need by 3340 * provider driver. 3341 * 3342 * It returns 0 on success and returns appropriate error code on error. 3343 * The address handle is used to reference a local or global destination 3344 * in all UD QP post sends. 3345 */ 3346 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd, 3347 struct rdma_ah_attr *ah_attr, 3348 struct ib_udata *udata); 3349 /** 3350 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header 3351 * work completion. 3352 * @hdr: the L3 header to parse 3353 * @net_type: type of header to parse 3354 * @sgid: place to store source gid 3355 * @dgid: place to store destination gid 3356 */ 3357 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 3358 enum rdma_network_type net_type, 3359 union ib_gid *sgid, union ib_gid *dgid); 3360 3361 /** 3362 * ib_get_rdma_header_version - Get the header version 3363 * @hdr: the L3 header to parse 3364 */ 3365 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr); 3366 3367 /** 3368 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a 3369 * work completion. 3370 * @device: Device on which the received message arrived. 3371 * @port_num: Port on which the received message arrived. 3372 * @wc: Work completion associated with the received message. 3373 * @grh: References the received global route header. This parameter is 3374 * ignored unless the work completion indicates that the GRH is valid. 3375 * @ah_attr: Returned attributes that can be used when creating an address 3376 * handle for replying to the message. 3377 * When ib_init_ah_attr_from_wc() returns success, 3378 * (a) for IB link layer it optionally contains a reference to SGID attribute 3379 * when GRH is present for IB link layer. 3380 * (b) for RoCE link layer it contains a reference to SGID attribute. 3381 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID 3382 * attributes which are initialized using ib_init_ah_attr_from_wc(). 3383 * 3384 */ 3385 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num, 3386 const struct ib_wc *wc, const struct ib_grh *grh, 3387 struct rdma_ah_attr *ah_attr); 3388 3389 /** 3390 * ib_create_ah_from_wc - Creates an address handle associated with the 3391 * sender of the specified work completion. 3392 * @pd: The protection domain associated with the address handle. 3393 * @wc: Work completion information associated with a received message. 3394 * @grh: References the received global route header. This parameter is 3395 * ignored unless the work completion indicates that the GRH is valid. 3396 * @port_num: The outbound port number to associate with the address. 3397 * 3398 * The address handle is used to reference a local or global destination 3399 * in all UD QP post sends. 3400 */ 3401 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 3402 const struct ib_grh *grh, u8 port_num); 3403 3404 /** 3405 * rdma_modify_ah - Modifies the address vector associated with an address 3406 * handle. 3407 * @ah: The address handle to modify. 3408 * @ah_attr: The new address vector attributes to associate with the 3409 * address handle. 3410 */ 3411 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3412 3413 /** 3414 * rdma_query_ah - Queries the address vector associated with an address 3415 * handle. 3416 * @ah: The address handle to query. 3417 * @ah_attr: The address vector attributes associated with the address 3418 * handle. 3419 */ 3420 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3421 3422 enum rdma_destroy_ah_flags { 3423 /* In a sleepable context */ 3424 RDMA_DESTROY_AH_SLEEPABLE = BIT(0), 3425 }; 3426 3427 /** 3428 * rdma_destroy_ah_user - Destroys an address handle. 3429 * @ah: The address handle to destroy. 3430 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3431 * @udata: Valid user data or NULL for kernel objects 3432 */ 3433 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata); 3434 3435 /** 3436 * rdma_destroy_ah - Destroys an kernel address handle. 3437 * @ah: The address handle to destroy. 3438 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3439 * 3440 * NOTE: for user ah use rdma_destroy_ah_user with valid udata! 3441 */ 3442 static inline int rdma_destroy_ah(struct ib_ah *ah, u32 flags) 3443 { 3444 return rdma_destroy_ah_user(ah, flags, NULL); 3445 } 3446 3447 /** 3448 * ib_create_srq - Creates a SRQ associated with the specified protection 3449 * domain. 3450 * @pd: The protection domain associated with the SRQ. 3451 * @srq_init_attr: A list of initial attributes required to create the 3452 * SRQ. If SRQ creation succeeds, then the attributes are updated to 3453 * the actual capabilities of the created SRQ. 3454 * 3455 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 3456 * requested size of the SRQ, and set to the actual values allocated 3457 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 3458 * will always be at least as large as the requested values. 3459 */ 3460 struct ib_srq *ib_create_srq(struct ib_pd *pd, 3461 struct ib_srq_init_attr *srq_init_attr); 3462 3463 /** 3464 * ib_modify_srq - Modifies the attributes for the specified SRQ. 3465 * @srq: The SRQ to modify. 3466 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 3467 * the current values of selected SRQ attributes are returned. 3468 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 3469 * are being modified. 3470 * 3471 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 3472 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 3473 * the number of receives queued drops below the limit. 3474 */ 3475 int ib_modify_srq(struct ib_srq *srq, 3476 struct ib_srq_attr *srq_attr, 3477 enum ib_srq_attr_mask srq_attr_mask); 3478 3479 /** 3480 * ib_query_srq - Returns the attribute list and current values for the 3481 * specified SRQ. 3482 * @srq: The SRQ to query. 3483 * @srq_attr: The attributes of the specified SRQ. 3484 */ 3485 int ib_query_srq(struct ib_srq *srq, 3486 struct ib_srq_attr *srq_attr); 3487 3488 /** 3489 * ib_destroy_srq_user - Destroys the specified SRQ. 3490 * @srq: The SRQ to destroy. 3491 * @udata: Valid user data or NULL for kernel objects 3492 */ 3493 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata); 3494 3495 /** 3496 * ib_destroy_srq - Destroys the specified kernel SRQ. 3497 * @srq: The SRQ to destroy. 3498 * 3499 * NOTE: for user srq use ib_destroy_srq_user with valid udata! 3500 */ 3501 static inline int ib_destroy_srq(struct ib_srq *srq) 3502 { 3503 return ib_destroy_srq_user(srq, NULL); 3504 } 3505 3506 /** 3507 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 3508 * @srq: The SRQ to post the work request on. 3509 * @recv_wr: A list of work requests to post on the receive queue. 3510 * @bad_recv_wr: On an immediate failure, this parameter will reference 3511 * the work request that failed to be posted on the QP. 3512 */ 3513 static inline int ib_post_srq_recv(struct ib_srq *srq, 3514 const struct ib_recv_wr *recv_wr, 3515 const struct ib_recv_wr **bad_recv_wr) 3516 { 3517 const struct ib_recv_wr *dummy; 3518 3519 return srq->device->ops.post_srq_recv(srq, recv_wr, 3520 bad_recv_wr ? : &dummy); 3521 } 3522 3523 /** 3524 * ib_create_qp_user - Creates a QP associated with the specified protection 3525 * domain. 3526 * @pd: The protection domain associated with the QP. 3527 * @qp_init_attr: A list of initial attributes required to create the 3528 * QP. If QP creation succeeds, then the attributes are updated to 3529 * the actual capabilities of the created QP. 3530 * @udata: Valid user data or NULL for kernel objects 3531 */ 3532 struct ib_qp *ib_create_qp_user(struct ib_pd *pd, 3533 struct ib_qp_init_attr *qp_init_attr, 3534 struct ib_udata *udata); 3535 3536 /** 3537 * ib_create_qp - Creates a kernel QP associated with the specified protection 3538 * domain. 3539 * @pd: The protection domain associated with the QP. 3540 * @qp_init_attr: A list of initial attributes required to create the 3541 * QP. If QP creation succeeds, then the attributes are updated to 3542 * the actual capabilities of the created QP. 3543 * @udata: Valid user data or NULL for kernel objects 3544 * 3545 * NOTE: for user qp use ib_create_qp_user with valid udata! 3546 */ 3547 static inline struct ib_qp *ib_create_qp(struct ib_pd *pd, 3548 struct ib_qp_init_attr *qp_init_attr) 3549 { 3550 return ib_create_qp_user(pd, qp_init_attr, NULL); 3551 } 3552 3553 /** 3554 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 3555 * @qp: The QP to modify. 3556 * @attr: On input, specifies the QP attributes to modify. On output, 3557 * the current values of selected QP attributes are returned. 3558 * @attr_mask: A bit-mask used to specify which attributes of the QP 3559 * are being modified. 3560 * @udata: pointer to user's input output buffer information 3561 * are being modified. 3562 * It returns 0 on success and returns appropriate error code on error. 3563 */ 3564 int ib_modify_qp_with_udata(struct ib_qp *qp, 3565 struct ib_qp_attr *attr, 3566 int attr_mask, 3567 struct ib_udata *udata); 3568 3569 /** 3570 * ib_modify_qp - Modifies the attributes for the specified QP and then 3571 * transitions the QP to the given state. 3572 * @qp: The QP to modify. 3573 * @qp_attr: On input, specifies the QP attributes to modify. On output, 3574 * the current values of selected QP attributes are returned. 3575 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 3576 * are being modified. 3577 */ 3578 int ib_modify_qp(struct ib_qp *qp, 3579 struct ib_qp_attr *qp_attr, 3580 int qp_attr_mask); 3581 3582 /** 3583 * ib_query_qp - Returns the attribute list and current values for the 3584 * specified QP. 3585 * @qp: The QP to query. 3586 * @qp_attr: The attributes of the specified QP. 3587 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 3588 * @qp_init_attr: Additional attributes of the selected QP. 3589 * 3590 * The qp_attr_mask may be used to limit the query to gathering only the 3591 * selected attributes. 3592 */ 3593 int ib_query_qp(struct ib_qp *qp, 3594 struct ib_qp_attr *qp_attr, 3595 int qp_attr_mask, 3596 struct ib_qp_init_attr *qp_init_attr); 3597 3598 /** 3599 * ib_destroy_qp - Destroys the specified QP. 3600 * @qp: The QP to destroy. 3601 * @udata: Valid udata or NULL for kernel objects 3602 */ 3603 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata); 3604 3605 /** 3606 * ib_destroy_qp - Destroys the specified kernel QP. 3607 * @qp: The QP to destroy. 3608 * 3609 * NOTE: for user qp use ib_destroy_qp_user with valid udata! 3610 */ 3611 static inline int ib_destroy_qp(struct ib_qp *qp) 3612 { 3613 return ib_destroy_qp_user(qp, NULL); 3614 } 3615 3616 /** 3617 * ib_open_qp - Obtain a reference to an existing sharable QP. 3618 * @xrcd - XRC domain 3619 * @qp_open_attr: Attributes identifying the QP to open. 3620 * 3621 * Returns a reference to a sharable QP. 3622 */ 3623 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 3624 struct ib_qp_open_attr *qp_open_attr); 3625 3626 /** 3627 * ib_close_qp - Release an external reference to a QP. 3628 * @qp: The QP handle to release 3629 * 3630 * The opened QP handle is released by the caller. The underlying 3631 * shared QP is not destroyed until all internal references are released. 3632 */ 3633 int ib_close_qp(struct ib_qp *qp); 3634 3635 /** 3636 * ib_post_send - Posts a list of work requests to the send queue of 3637 * the specified QP. 3638 * @qp: The QP to post the work request on. 3639 * @send_wr: A list of work requests to post on the send queue. 3640 * @bad_send_wr: On an immediate failure, this parameter will reference 3641 * the work request that failed to be posted on the QP. 3642 * 3643 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 3644 * error is returned, the QP state shall not be affected, 3645 * ib_post_send() will return an immediate error after queueing any 3646 * earlier work requests in the list. 3647 */ 3648 static inline int ib_post_send(struct ib_qp *qp, 3649 const struct ib_send_wr *send_wr, 3650 const struct ib_send_wr **bad_send_wr) 3651 { 3652 const struct ib_send_wr *dummy; 3653 3654 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy); 3655 } 3656 3657 /** 3658 * ib_post_recv - Posts a list of work requests to the receive queue of 3659 * the specified QP. 3660 * @qp: The QP to post the work request on. 3661 * @recv_wr: A list of work requests to post on the receive queue. 3662 * @bad_recv_wr: On an immediate failure, this parameter will reference 3663 * the work request that failed to be posted on the QP. 3664 */ 3665 static inline int ib_post_recv(struct ib_qp *qp, 3666 const struct ib_recv_wr *recv_wr, 3667 const struct ib_recv_wr **bad_recv_wr) 3668 { 3669 const struct ib_recv_wr *dummy; 3670 3671 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy); 3672 } 3673 3674 struct ib_cq *__ib_alloc_cq_user(struct ib_device *dev, void *private, 3675 int nr_cqe, int comp_vector, 3676 enum ib_poll_context poll_ctx, 3677 const char *caller, struct ib_udata *udata); 3678 3679 /** 3680 * ib_alloc_cq_user: Allocate kernel/user CQ 3681 * @dev: The IB device 3682 * @private: Private data attached to the CQE 3683 * @nr_cqe: Number of CQEs in the CQ 3684 * @comp_vector: Completion vector used for the IRQs 3685 * @poll_ctx: Context used for polling the CQ 3686 * @udata: Valid user data or NULL for kernel objects 3687 */ 3688 static inline struct ib_cq *ib_alloc_cq_user(struct ib_device *dev, 3689 void *private, int nr_cqe, 3690 int comp_vector, 3691 enum ib_poll_context poll_ctx, 3692 struct ib_udata *udata) 3693 { 3694 return __ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx, 3695 KBUILD_MODNAME, udata); 3696 } 3697 3698 /** 3699 * ib_alloc_cq: Allocate kernel CQ 3700 * @dev: The IB device 3701 * @private: Private data attached to the CQE 3702 * @nr_cqe: Number of CQEs in the CQ 3703 * @comp_vector: Completion vector used for the IRQs 3704 * @poll_ctx: Context used for polling the CQ 3705 * 3706 * NOTE: for user cq use ib_alloc_cq_user with valid udata! 3707 */ 3708 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private, 3709 int nr_cqe, int comp_vector, 3710 enum ib_poll_context poll_ctx) 3711 { 3712 return ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx, 3713 NULL); 3714 } 3715 3716 /** 3717 * ib_free_cq_user - Free kernel/user CQ 3718 * @cq: The CQ to free 3719 * @udata: Valid user data or NULL for kernel objects 3720 */ 3721 void ib_free_cq_user(struct ib_cq *cq, struct ib_udata *udata); 3722 3723 /** 3724 * ib_free_cq - Free kernel CQ 3725 * @cq: The CQ to free 3726 * 3727 * NOTE: for user cq use ib_free_cq_user with valid udata! 3728 */ 3729 static inline void ib_free_cq(struct ib_cq *cq) 3730 { 3731 ib_free_cq_user(cq, NULL); 3732 } 3733 3734 int ib_process_cq_direct(struct ib_cq *cq, int budget); 3735 3736 /** 3737 * ib_create_cq - Creates a CQ on the specified device. 3738 * @device: The device on which to create the CQ. 3739 * @comp_handler: A user-specified callback that is invoked when a 3740 * completion event occurs on the CQ. 3741 * @event_handler: A user-specified callback that is invoked when an 3742 * asynchronous event not associated with a completion occurs on the CQ. 3743 * @cq_context: Context associated with the CQ returned to the user via 3744 * the associated completion and event handlers. 3745 * @cq_attr: The attributes the CQ should be created upon. 3746 * 3747 * Users can examine the cq structure to determine the actual CQ size. 3748 */ 3749 struct ib_cq *__ib_create_cq(struct ib_device *device, 3750 ib_comp_handler comp_handler, 3751 void (*event_handler)(struct ib_event *, void *), 3752 void *cq_context, 3753 const struct ib_cq_init_attr *cq_attr, 3754 const char *caller); 3755 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \ 3756 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME) 3757 3758 /** 3759 * ib_resize_cq - Modifies the capacity of the CQ. 3760 * @cq: The CQ to resize. 3761 * @cqe: The minimum size of the CQ. 3762 * 3763 * Users can examine the cq structure to determine the actual CQ size. 3764 */ 3765 int ib_resize_cq(struct ib_cq *cq, int cqe); 3766 3767 /** 3768 * rdma_set_cq_moderation - Modifies moderation params of the CQ 3769 * @cq: The CQ to modify. 3770 * @cq_count: number of CQEs that will trigger an event 3771 * @cq_period: max period of time in usec before triggering an event 3772 * 3773 */ 3774 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period); 3775 3776 /** 3777 * ib_destroy_cq_user - Destroys the specified CQ. 3778 * @cq: The CQ to destroy. 3779 * @udata: Valid user data or NULL for kernel objects 3780 */ 3781 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata); 3782 3783 /** 3784 * ib_destroy_cq - Destroys the specified kernel CQ. 3785 * @cq: The CQ to destroy. 3786 * 3787 * NOTE: for user cq use ib_destroy_cq_user with valid udata! 3788 */ 3789 static inline void ib_destroy_cq(struct ib_cq *cq) 3790 { 3791 ib_destroy_cq_user(cq, NULL); 3792 } 3793 3794 /** 3795 * ib_poll_cq - poll a CQ for completion(s) 3796 * @cq:the CQ being polled 3797 * @num_entries:maximum number of completions to return 3798 * @wc:array of at least @num_entries &struct ib_wc where completions 3799 * will be returned 3800 * 3801 * Poll a CQ for (possibly multiple) completions. If the return value 3802 * is < 0, an error occurred. If the return value is >= 0, it is the 3803 * number of completions returned. If the return value is 3804 * non-negative and < num_entries, then the CQ was emptied. 3805 */ 3806 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 3807 struct ib_wc *wc) 3808 { 3809 return cq->device->ops.poll_cq(cq, num_entries, wc); 3810 } 3811 3812 /** 3813 * ib_req_notify_cq - Request completion notification on a CQ. 3814 * @cq: The CQ to generate an event for. 3815 * @flags: 3816 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 3817 * to request an event on the next solicited event or next work 3818 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 3819 * may also be |ed in to request a hint about missed events, as 3820 * described below. 3821 * 3822 * Return Value: 3823 * < 0 means an error occurred while requesting notification 3824 * == 0 means notification was requested successfully, and if 3825 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 3826 * were missed and it is safe to wait for another event. In 3827 * this case is it guaranteed that any work completions added 3828 * to the CQ since the last CQ poll will trigger a completion 3829 * notification event. 3830 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 3831 * in. It means that the consumer must poll the CQ again to 3832 * make sure it is empty to avoid missing an event because of a 3833 * race between requesting notification and an entry being 3834 * added to the CQ. This return value means it is possible 3835 * (but not guaranteed) that a work completion has been added 3836 * to the CQ since the last poll without triggering a 3837 * completion notification event. 3838 */ 3839 static inline int ib_req_notify_cq(struct ib_cq *cq, 3840 enum ib_cq_notify_flags flags) 3841 { 3842 return cq->device->ops.req_notify_cq(cq, flags); 3843 } 3844 3845 /** 3846 * ib_req_ncomp_notif - Request completion notification when there are 3847 * at least the specified number of unreaped completions on the CQ. 3848 * @cq: The CQ to generate an event for. 3849 * @wc_cnt: The number of unreaped completions that should be on the 3850 * CQ before an event is generated. 3851 */ 3852 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 3853 { 3854 return cq->device->ops.req_ncomp_notif ? 3855 cq->device->ops.req_ncomp_notif(cq, wc_cnt) : 3856 -ENOSYS; 3857 } 3858 3859 /** 3860 * ib_dma_mapping_error - check a DMA addr for error 3861 * @dev: The device for which the dma_addr was created 3862 * @dma_addr: The DMA address to check 3863 */ 3864 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 3865 { 3866 return dma_mapping_error(dev->dma_device, dma_addr); 3867 } 3868 3869 /** 3870 * ib_dma_map_single - Map a kernel virtual address to DMA address 3871 * @dev: The device for which the dma_addr is to be created 3872 * @cpu_addr: The kernel virtual address 3873 * @size: The size of the region in bytes 3874 * @direction: The direction of the DMA 3875 */ 3876 static inline u64 ib_dma_map_single(struct ib_device *dev, 3877 void *cpu_addr, size_t size, 3878 enum dma_data_direction direction) 3879 { 3880 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 3881 } 3882 3883 /** 3884 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 3885 * @dev: The device for which the DMA address was created 3886 * @addr: The DMA address 3887 * @size: The size of the region in bytes 3888 * @direction: The direction of the DMA 3889 */ 3890 static inline void ib_dma_unmap_single(struct ib_device *dev, 3891 u64 addr, size_t size, 3892 enum dma_data_direction direction) 3893 { 3894 dma_unmap_single(dev->dma_device, addr, size, direction); 3895 } 3896 3897 /** 3898 * ib_dma_map_page - Map a physical page to DMA address 3899 * @dev: The device for which the dma_addr is to be created 3900 * @page: The page to be mapped 3901 * @offset: The offset within the page 3902 * @size: The size of the region in bytes 3903 * @direction: The direction of the DMA 3904 */ 3905 static inline u64 ib_dma_map_page(struct ib_device *dev, 3906 struct page *page, 3907 unsigned long offset, 3908 size_t size, 3909 enum dma_data_direction direction) 3910 { 3911 return dma_map_page(dev->dma_device, page, offset, size, direction); 3912 } 3913 3914 /** 3915 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 3916 * @dev: The device for which the DMA address was created 3917 * @addr: The DMA address 3918 * @size: The size of the region in bytes 3919 * @direction: The direction of the DMA 3920 */ 3921 static inline void ib_dma_unmap_page(struct ib_device *dev, 3922 u64 addr, size_t size, 3923 enum dma_data_direction direction) 3924 { 3925 dma_unmap_page(dev->dma_device, addr, size, direction); 3926 } 3927 3928 /** 3929 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 3930 * @dev: The device for which the DMA addresses are to be created 3931 * @sg: The array of scatter/gather entries 3932 * @nents: The number of scatter/gather entries 3933 * @direction: The direction of the DMA 3934 */ 3935 static inline int ib_dma_map_sg(struct ib_device *dev, 3936 struct scatterlist *sg, int nents, 3937 enum dma_data_direction direction) 3938 { 3939 return dma_map_sg(dev->dma_device, sg, nents, direction); 3940 } 3941 3942 /** 3943 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 3944 * @dev: The device for which the DMA addresses were created 3945 * @sg: The array of scatter/gather entries 3946 * @nents: The number of scatter/gather entries 3947 * @direction: The direction of the DMA 3948 */ 3949 static inline void ib_dma_unmap_sg(struct ib_device *dev, 3950 struct scatterlist *sg, int nents, 3951 enum dma_data_direction direction) 3952 { 3953 dma_unmap_sg(dev->dma_device, sg, nents, direction); 3954 } 3955 3956 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 3957 struct scatterlist *sg, int nents, 3958 enum dma_data_direction direction, 3959 unsigned long dma_attrs) 3960 { 3961 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, 3962 dma_attrs); 3963 } 3964 3965 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 3966 struct scatterlist *sg, int nents, 3967 enum dma_data_direction direction, 3968 unsigned long dma_attrs) 3969 { 3970 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs); 3971 } 3972 3973 /** 3974 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer 3975 * @dev: The device to query 3976 * 3977 * The returned value represents a size in bytes. 3978 */ 3979 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev) 3980 { 3981 struct device_dma_parameters *p = dev->dma_device->dma_parms; 3982 3983 return p ? p->max_segment_size : UINT_MAX; 3984 } 3985 3986 /** 3987 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 3988 * @dev: The device for which the DMA address was created 3989 * @addr: The DMA address 3990 * @size: The size of the region in bytes 3991 * @dir: The direction of the DMA 3992 */ 3993 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 3994 u64 addr, 3995 size_t size, 3996 enum dma_data_direction dir) 3997 { 3998 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 3999 } 4000 4001 /** 4002 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 4003 * @dev: The device for which the DMA address was created 4004 * @addr: The DMA address 4005 * @size: The size of the region in bytes 4006 * @dir: The direction of the DMA 4007 */ 4008 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 4009 u64 addr, 4010 size_t size, 4011 enum dma_data_direction dir) 4012 { 4013 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 4014 } 4015 4016 /** 4017 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 4018 * @dev: The device for which the DMA address is requested 4019 * @size: The size of the region to allocate in bytes 4020 * @dma_handle: A pointer for returning the DMA address of the region 4021 * @flag: memory allocator flags 4022 */ 4023 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 4024 size_t size, 4025 dma_addr_t *dma_handle, 4026 gfp_t flag) 4027 { 4028 return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag); 4029 } 4030 4031 /** 4032 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 4033 * @dev: The device for which the DMA addresses were allocated 4034 * @size: The size of the region 4035 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 4036 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 4037 */ 4038 static inline void ib_dma_free_coherent(struct ib_device *dev, 4039 size_t size, void *cpu_addr, 4040 dma_addr_t dma_handle) 4041 { 4042 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 4043 } 4044 4045 /** 4046 * ib_dereg_mr_user - Deregisters a memory region and removes it from the 4047 * HCA translation table. 4048 * @mr: The memory region to deregister. 4049 * @udata: Valid user data or NULL for kernel object 4050 * 4051 * This function can fail, if the memory region has memory windows bound to it. 4052 */ 4053 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata); 4054 4055 /** 4056 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the 4057 * HCA translation table. 4058 * @mr: The memory region to deregister. 4059 * 4060 * This function can fail, if the memory region has memory windows bound to it. 4061 * 4062 * NOTE: for user mr use ib_dereg_mr_user with valid udata! 4063 */ 4064 static inline int ib_dereg_mr(struct ib_mr *mr) 4065 { 4066 return ib_dereg_mr_user(mr, NULL); 4067 } 4068 4069 struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type, 4070 u32 max_num_sg, struct ib_udata *udata); 4071 4072 static inline struct ib_mr *ib_alloc_mr(struct ib_pd *pd, 4073 enum ib_mr_type mr_type, u32 max_num_sg) 4074 { 4075 return ib_alloc_mr_user(pd, mr_type, max_num_sg, NULL); 4076 } 4077 4078 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd, 4079 u32 max_num_data_sg, 4080 u32 max_num_meta_sg); 4081 4082 /** 4083 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 4084 * R_Key and L_Key. 4085 * @mr - struct ib_mr pointer to be updated. 4086 * @newkey - new key to be used. 4087 */ 4088 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 4089 { 4090 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 4091 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 4092 } 4093 4094 /** 4095 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 4096 * for calculating a new rkey for type 2 memory windows. 4097 * @rkey - the rkey to increment. 4098 */ 4099 static inline u32 ib_inc_rkey(u32 rkey) 4100 { 4101 const u32 mask = 0x000000ff; 4102 return ((rkey + 1) & mask) | (rkey & ~mask); 4103 } 4104 4105 /** 4106 * ib_alloc_fmr - Allocates a unmapped fast memory region. 4107 * @pd: The protection domain associated with the unmapped region. 4108 * @mr_access_flags: Specifies the memory access rights. 4109 * @fmr_attr: Attributes of the unmapped region. 4110 * 4111 * A fast memory region must be mapped before it can be used as part of 4112 * a work request. 4113 */ 4114 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 4115 int mr_access_flags, 4116 struct ib_fmr_attr *fmr_attr); 4117 4118 /** 4119 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 4120 * @fmr: The fast memory region to associate with the pages. 4121 * @page_list: An array of physical pages to map to the fast memory region. 4122 * @list_len: The number of pages in page_list. 4123 * @iova: The I/O virtual address to use with the mapped region. 4124 */ 4125 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 4126 u64 *page_list, int list_len, 4127 u64 iova) 4128 { 4129 return fmr->device->ops.map_phys_fmr(fmr, page_list, list_len, iova); 4130 } 4131 4132 /** 4133 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 4134 * @fmr_list: A linked list of fast memory regions to unmap. 4135 */ 4136 int ib_unmap_fmr(struct list_head *fmr_list); 4137 4138 /** 4139 * ib_dealloc_fmr - Deallocates a fast memory region. 4140 * @fmr: The fast memory region to deallocate. 4141 */ 4142 int ib_dealloc_fmr(struct ib_fmr *fmr); 4143 4144 /** 4145 * ib_attach_mcast - Attaches the specified QP to a multicast group. 4146 * @qp: QP to attach to the multicast group. The QP must be type 4147 * IB_QPT_UD. 4148 * @gid: Multicast group GID. 4149 * @lid: Multicast group LID in host byte order. 4150 * 4151 * In order to send and receive multicast packets, subnet 4152 * administration must have created the multicast group and configured 4153 * the fabric appropriately. The port associated with the specified 4154 * QP must also be a member of the multicast group. 4155 */ 4156 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 4157 4158 /** 4159 * ib_detach_mcast - Detaches the specified QP from a multicast group. 4160 * @qp: QP to detach from the multicast group. 4161 * @gid: Multicast group GID. 4162 * @lid: Multicast group LID in host byte order. 4163 */ 4164 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 4165 4166 /** 4167 * ib_alloc_xrcd - Allocates an XRC domain. 4168 * @device: The device on which to allocate the XRC domain. 4169 * @caller: Module name for kernel consumers 4170 */ 4171 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller); 4172 #define ib_alloc_xrcd(device) \ 4173 __ib_alloc_xrcd((device), KBUILD_MODNAME) 4174 4175 /** 4176 * ib_dealloc_xrcd - Deallocates an XRC domain. 4177 * @xrcd: The XRC domain to deallocate. 4178 * @udata: Valid user data or NULL for kernel object 4179 */ 4180 int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata); 4181 4182 static inline int ib_check_mr_access(int flags) 4183 { 4184 /* 4185 * Local write permission is required if remote write or 4186 * remote atomic permission is also requested. 4187 */ 4188 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 4189 !(flags & IB_ACCESS_LOCAL_WRITE)) 4190 return -EINVAL; 4191 4192 return 0; 4193 } 4194 4195 static inline bool ib_access_writable(int access_flags) 4196 { 4197 /* 4198 * We have writable memory backing the MR if any of the following 4199 * access flags are set. "Local write" and "remote write" obviously 4200 * require write access. "Remote atomic" can do things like fetch and 4201 * add, which will modify memory, and "MW bind" can change permissions 4202 * by binding a window. 4203 */ 4204 return access_flags & 4205 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | 4206 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND); 4207 } 4208 4209 /** 4210 * ib_check_mr_status: lightweight check of MR status. 4211 * This routine may provide status checks on a selected 4212 * ib_mr. first use is for signature status check. 4213 * 4214 * @mr: A memory region. 4215 * @check_mask: Bitmask of which checks to perform from 4216 * ib_mr_status_check enumeration. 4217 * @mr_status: The container of relevant status checks. 4218 * failed checks will be indicated in the status bitmask 4219 * and the relevant info shall be in the error item. 4220 */ 4221 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 4222 struct ib_mr_status *mr_status); 4223 4224 /** 4225 * ib_device_try_get: Hold a registration lock 4226 * device: The device to lock 4227 * 4228 * A device under an active registration lock cannot become unregistered. It 4229 * is only possible to obtain a registration lock on a device that is fully 4230 * registered, otherwise this function returns false. 4231 * 4232 * The registration lock is only necessary for actions which require the 4233 * device to still be registered. Uses that only require the device pointer to 4234 * be valid should use get_device(&ibdev->dev) to hold the memory. 4235 * 4236 */ 4237 static inline bool ib_device_try_get(struct ib_device *dev) 4238 { 4239 return refcount_inc_not_zero(&dev->refcount); 4240 } 4241 4242 void ib_device_put(struct ib_device *device); 4243 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev, 4244 enum rdma_driver_id driver_id); 4245 struct ib_device *ib_device_get_by_name(const char *name, 4246 enum rdma_driver_id driver_id); 4247 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port, 4248 u16 pkey, const union ib_gid *gid, 4249 const struct sockaddr *addr); 4250 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev, 4251 unsigned int port); 4252 struct net_device *ib_device_netdev(struct ib_device *dev, u8 port); 4253 4254 struct ib_wq *ib_create_wq(struct ib_pd *pd, 4255 struct ib_wq_init_attr *init_attr); 4256 int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata); 4257 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr, 4258 u32 wq_attr_mask); 4259 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device, 4260 struct ib_rwq_ind_table_init_attr* 4261 wq_ind_table_init_attr); 4262 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table); 4263 4264 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 4265 unsigned int *sg_offset, unsigned int page_size); 4266 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg, 4267 int data_sg_nents, unsigned int *data_sg_offset, 4268 struct scatterlist *meta_sg, int meta_sg_nents, 4269 unsigned int *meta_sg_offset, unsigned int page_size); 4270 4271 static inline int 4272 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 4273 unsigned int *sg_offset, unsigned int page_size) 4274 { 4275 int n; 4276 4277 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size); 4278 mr->iova = 0; 4279 4280 return n; 4281 } 4282 4283 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 4284 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64)); 4285 4286 void ib_drain_rq(struct ib_qp *qp); 4287 void ib_drain_sq(struct ib_qp *qp); 4288 void ib_drain_qp(struct ib_qp *qp); 4289 4290 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width); 4291 4292 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr) 4293 { 4294 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE) 4295 return attr->roce.dmac; 4296 return NULL; 4297 } 4298 4299 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid) 4300 { 4301 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4302 attr->ib.dlid = (u16)dlid; 4303 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4304 attr->opa.dlid = dlid; 4305 } 4306 4307 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr) 4308 { 4309 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4310 return attr->ib.dlid; 4311 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4312 return attr->opa.dlid; 4313 return 0; 4314 } 4315 4316 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl) 4317 { 4318 attr->sl = sl; 4319 } 4320 4321 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr) 4322 { 4323 return attr->sl; 4324 } 4325 4326 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr, 4327 u8 src_path_bits) 4328 { 4329 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4330 attr->ib.src_path_bits = src_path_bits; 4331 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4332 attr->opa.src_path_bits = src_path_bits; 4333 } 4334 4335 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr) 4336 { 4337 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4338 return attr->ib.src_path_bits; 4339 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4340 return attr->opa.src_path_bits; 4341 return 0; 4342 } 4343 4344 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr, 4345 bool make_grd) 4346 { 4347 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4348 attr->opa.make_grd = make_grd; 4349 } 4350 4351 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr) 4352 { 4353 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4354 return attr->opa.make_grd; 4355 return false; 4356 } 4357 4358 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num) 4359 { 4360 attr->port_num = port_num; 4361 } 4362 4363 static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr) 4364 { 4365 return attr->port_num; 4366 } 4367 4368 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr, 4369 u8 static_rate) 4370 { 4371 attr->static_rate = static_rate; 4372 } 4373 4374 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr) 4375 { 4376 return attr->static_rate; 4377 } 4378 4379 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr, 4380 enum ib_ah_flags flag) 4381 { 4382 attr->ah_flags = flag; 4383 } 4384 4385 static inline enum ib_ah_flags 4386 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr) 4387 { 4388 return attr->ah_flags; 4389 } 4390 4391 static inline const struct ib_global_route 4392 *rdma_ah_read_grh(const struct rdma_ah_attr *attr) 4393 { 4394 return &attr->grh; 4395 } 4396 4397 /*To retrieve and modify the grh */ 4398 static inline struct ib_global_route 4399 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr) 4400 { 4401 return &attr->grh; 4402 } 4403 4404 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid) 4405 { 4406 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4407 4408 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid)); 4409 } 4410 4411 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr, 4412 __be64 prefix) 4413 { 4414 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4415 4416 grh->dgid.global.subnet_prefix = prefix; 4417 } 4418 4419 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr, 4420 __be64 if_id) 4421 { 4422 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4423 4424 grh->dgid.global.interface_id = if_id; 4425 } 4426 4427 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr, 4428 union ib_gid *dgid, u32 flow_label, 4429 u8 sgid_index, u8 hop_limit, 4430 u8 traffic_class) 4431 { 4432 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4433 4434 attr->ah_flags = IB_AH_GRH; 4435 if (dgid) 4436 grh->dgid = *dgid; 4437 grh->flow_label = flow_label; 4438 grh->sgid_index = sgid_index; 4439 grh->hop_limit = hop_limit; 4440 grh->traffic_class = traffic_class; 4441 grh->sgid_attr = NULL; 4442 } 4443 4444 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr); 4445 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid, 4446 u32 flow_label, u8 hop_limit, u8 traffic_class, 4447 const struct ib_gid_attr *sgid_attr); 4448 void rdma_copy_ah_attr(struct rdma_ah_attr *dest, 4449 const struct rdma_ah_attr *src); 4450 void rdma_replace_ah_attr(struct rdma_ah_attr *old, 4451 const struct rdma_ah_attr *new); 4452 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src); 4453 4454 /** 4455 * rdma_ah_find_type - Return address handle type. 4456 * 4457 * @dev: Device to be checked 4458 * @port_num: Port number 4459 */ 4460 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev, 4461 u8 port_num) 4462 { 4463 if (rdma_protocol_roce(dev, port_num)) 4464 return RDMA_AH_ATTR_TYPE_ROCE; 4465 if (rdma_protocol_ib(dev, port_num)) { 4466 if (rdma_cap_opa_ah(dev, port_num)) 4467 return RDMA_AH_ATTR_TYPE_OPA; 4468 return RDMA_AH_ATTR_TYPE_IB; 4469 } 4470 4471 return RDMA_AH_ATTR_TYPE_UNDEFINED; 4472 } 4473 4474 /** 4475 * ib_lid_cpu16 - Return lid in 16bit CPU encoding. 4476 * In the current implementation the only way to get 4477 * get the 32bit lid is from other sources for OPA. 4478 * For IB, lids will always be 16bits so cast the 4479 * value accordingly. 4480 * 4481 * @lid: A 32bit LID 4482 */ 4483 static inline u16 ib_lid_cpu16(u32 lid) 4484 { 4485 WARN_ON_ONCE(lid & 0xFFFF0000); 4486 return (u16)lid; 4487 } 4488 4489 /** 4490 * ib_lid_be16 - Return lid in 16bit BE encoding. 4491 * 4492 * @lid: A 32bit LID 4493 */ 4494 static inline __be16 ib_lid_be16(u32 lid) 4495 { 4496 WARN_ON_ONCE(lid & 0xFFFF0000); 4497 return cpu_to_be16((u16)lid); 4498 } 4499 4500 /** 4501 * ib_get_vector_affinity - Get the affinity mappings of a given completion 4502 * vector 4503 * @device: the rdma device 4504 * @comp_vector: index of completion vector 4505 * 4506 * Returns NULL on failure, otherwise a corresponding cpu map of the 4507 * completion vector (returns all-cpus map if the device driver doesn't 4508 * implement get_vector_affinity). 4509 */ 4510 static inline const struct cpumask * 4511 ib_get_vector_affinity(struct ib_device *device, int comp_vector) 4512 { 4513 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors || 4514 !device->ops.get_vector_affinity) 4515 return NULL; 4516 4517 return device->ops.get_vector_affinity(device, comp_vector); 4518 4519 } 4520 4521 /** 4522 * rdma_roce_rescan_device - Rescan all of the network devices in the system 4523 * and add their gids, as needed, to the relevant RoCE devices. 4524 * 4525 * @device: the rdma device 4526 */ 4527 void rdma_roce_rescan_device(struct ib_device *ibdev); 4528 4529 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile); 4530 4531 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs); 4532 4533 struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num, 4534 enum rdma_netdev_t type, const char *name, 4535 unsigned char name_assign_type, 4536 void (*setup)(struct net_device *)); 4537 4538 int rdma_init_netdev(struct ib_device *device, u8 port_num, 4539 enum rdma_netdev_t type, const char *name, 4540 unsigned char name_assign_type, 4541 void (*setup)(struct net_device *), 4542 struct net_device *netdev); 4543 4544 /** 4545 * rdma_set_device_sysfs_group - Set device attributes group to have 4546 * driver specific sysfs entries at 4547 * for infiniband class. 4548 * 4549 * @device: device pointer for which attributes to be created 4550 * @group: Pointer to group which should be added when device 4551 * is registered with sysfs. 4552 * rdma_set_device_sysfs_group() allows existing drivers to expose one 4553 * group per device to have sysfs attributes. 4554 * 4555 * NOTE: New drivers should not make use of this API; instead new device 4556 * parameter should be exposed via netlink command. This API and mechanism 4557 * exist only for existing drivers. 4558 */ 4559 static inline void 4560 rdma_set_device_sysfs_group(struct ib_device *dev, 4561 const struct attribute_group *group) 4562 { 4563 dev->groups[1] = group; 4564 } 4565 4566 /** 4567 * rdma_device_to_ibdev - Get ib_device pointer from device pointer 4568 * 4569 * @device: device pointer for which ib_device pointer to retrieve 4570 * 4571 * rdma_device_to_ibdev() retrieves ib_device pointer from device. 4572 * 4573 */ 4574 static inline struct ib_device *rdma_device_to_ibdev(struct device *device) 4575 { 4576 struct ib_core_device *coredev = 4577 container_of(device, struct ib_core_device, dev); 4578 4579 return coredev->owner; 4580 } 4581 4582 /** 4583 * rdma_device_to_drv_device - Helper macro to reach back to driver's 4584 * ib_device holder structure from device pointer. 4585 * 4586 * NOTE: New drivers should not make use of this API; This API is only for 4587 * existing drivers who have exposed sysfs entries using 4588 * rdma_set_device_sysfs_group(). 4589 */ 4590 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \ 4591 container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member) 4592 4593 bool rdma_dev_access_netns(const struct ib_device *device, 4594 const struct net *net); 4595 #endif /* IB_VERBS_H */ 4596