1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #if !defined(IB_VERBS_H) 40 #define IB_VERBS_H 41 42 #include <linux/types.h> 43 #include <linux/device.h> 44 #include <linux/mm.h> 45 #include <linux/dma-mapping.h> 46 #include <linux/kref.h> 47 #include <linux/list.h> 48 #include <linux/rwsem.h> 49 #include <linux/scatterlist.h> 50 #include <linux/workqueue.h> 51 #include <linux/socket.h> 52 #include <linux/irq_poll.h> 53 #include <uapi/linux/if_ether.h> 54 #include <net/ipv6.h> 55 #include <net/ip.h> 56 #include <linux/string.h> 57 #include <linux/slab.h> 58 59 #include <linux/if_link.h> 60 #include <linux/atomic.h> 61 #include <linux/mmu_notifier.h> 62 #include <asm/uaccess.h> 63 64 extern struct workqueue_struct *ib_wq; 65 extern struct workqueue_struct *ib_comp_wq; 66 67 union ib_gid { 68 u8 raw[16]; 69 struct { 70 __be64 subnet_prefix; 71 __be64 interface_id; 72 } global; 73 }; 74 75 extern union ib_gid zgid; 76 77 enum ib_gid_type { 78 /* If link layer is Ethernet, this is RoCE V1 */ 79 IB_GID_TYPE_IB = 0, 80 IB_GID_TYPE_ROCE = 0, 81 IB_GID_TYPE_ROCE_UDP_ENCAP = 1, 82 IB_GID_TYPE_SIZE 83 }; 84 85 #define ROCE_V2_UDP_DPORT 4791 86 struct ib_gid_attr { 87 enum ib_gid_type gid_type; 88 struct net_device *ndev; 89 }; 90 91 enum rdma_node_type { 92 /* IB values map to NodeInfo:NodeType. */ 93 RDMA_NODE_IB_CA = 1, 94 RDMA_NODE_IB_SWITCH, 95 RDMA_NODE_IB_ROUTER, 96 RDMA_NODE_RNIC, 97 RDMA_NODE_USNIC, 98 RDMA_NODE_USNIC_UDP, 99 }; 100 101 enum { 102 /* set the local administered indication */ 103 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2, 104 }; 105 106 enum rdma_transport_type { 107 RDMA_TRANSPORT_IB, 108 RDMA_TRANSPORT_IWARP, 109 RDMA_TRANSPORT_USNIC, 110 RDMA_TRANSPORT_USNIC_UDP 111 }; 112 113 enum rdma_protocol_type { 114 RDMA_PROTOCOL_IB, 115 RDMA_PROTOCOL_IBOE, 116 RDMA_PROTOCOL_IWARP, 117 RDMA_PROTOCOL_USNIC_UDP 118 }; 119 120 __attribute_const__ enum rdma_transport_type 121 rdma_node_get_transport(enum rdma_node_type node_type); 122 123 enum rdma_network_type { 124 RDMA_NETWORK_IB, 125 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB, 126 RDMA_NETWORK_IPV4, 127 RDMA_NETWORK_IPV6 128 }; 129 130 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) 131 { 132 if (network_type == RDMA_NETWORK_IPV4 || 133 network_type == RDMA_NETWORK_IPV6) 134 return IB_GID_TYPE_ROCE_UDP_ENCAP; 135 136 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */ 137 return IB_GID_TYPE_IB; 138 } 139 140 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type, 141 union ib_gid *gid) 142 { 143 if (gid_type == IB_GID_TYPE_IB) 144 return RDMA_NETWORK_IB; 145 146 if (ipv6_addr_v4mapped((struct in6_addr *)gid)) 147 return RDMA_NETWORK_IPV4; 148 else 149 return RDMA_NETWORK_IPV6; 150 } 151 152 enum rdma_link_layer { 153 IB_LINK_LAYER_UNSPECIFIED, 154 IB_LINK_LAYER_INFINIBAND, 155 IB_LINK_LAYER_ETHERNET, 156 }; 157 158 enum ib_device_cap_flags { 159 IB_DEVICE_RESIZE_MAX_WR = (1 << 0), 160 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1), 161 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2), 162 IB_DEVICE_RAW_MULTI = (1 << 3), 163 IB_DEVICE_AUTO_PATH_MIG = (1 << 4), 164 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5), 165 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6), 166 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7), 167 IB_DEVICE_SHUTDOWN_PORT = (1 << 8), 168 IB_DEVICE_INIT_TYPE = (1 << 9), 169 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10), 170 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11), 171 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12), 172 IB_DEVICE_SRQ_RESIZE = (1 << 13), 173 IB_DEVICE_N_NOTIFY_CQ = (1 << 14), 174 175 /* 176 * This device supports a per-device lkey or stag that can be 177 * used without performing a memory registration for the local 178 * memory. Note that ULPs should never check this flag, but 179 * instead of use the local_dma_lkey flag in the ib_pd structure, 180 * which will always contain a usable lkey. 181 */ 182 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15), 183 IB_DEVICE_RESERVED /* old SEND_W_INV */ = (1 << 16), 184 IB_DEVICE_MEM_WINDOW = (1 << 17), 185 /* 186 * Devices should set IB_DEVICE_UD_IP_SUM if they support 187 * insertion of UDP and TCP checksum on outgoing UD IPoIB 188 * messages and can verify the validity of checksum for 189 * incoming messages. Setting this flag implies that the 190 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 191 */ 192 IB_DEVICE_UD_IP_CSUM = (1 << 18), 193 IB_DEVICE_UD_TSO = (1 << 19), 194 IB_DEVICE_XRC = (1 << 20), 195 196 /* 197 * This device supports the IB "base memory management extension", 198 * which includes support for fast registrations (IB_WR_REG_MR, 199 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should 200 * also be set by any iWarp device which must support FRs to comply 201 * to the iWarp verbs spec. iWarp devices also support the 202 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the 203 * stag. 204 */ 205 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21), 206 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22), 207 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23), 208 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24), 209 IB_DEVICE_RC_IP_CSUM = (1 << 25), 210 IB_DEVICE_RAW_IP_CSUM = (1 << 26), 211 /* 212 * Devices should set IB_DEVICE_CROSS_CHANNEL if they 213 * support execution of WQEs that involve synchronization 214 * of I/O operations with single completion queue managed 215 * by hardware. 216 */ 217 IB_DEVICE_CROSS_CHANNEL = (1 << 27), 218 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29), 219 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30), 220 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31), 221 IB_DEVICE_SG_GAPS_REG = (1ULL << 32), 222 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33), 223 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34), 224 }; 225 226 enum ib_signature_prot_cap { 227 IB_PROT_T10DIF_TYPE_1 = 1, 228 IB_PROT_T10DIF_TYPE_2 = 1 << 1, 229 IB_PROT_T10DIF_TYPE_3 = 1 << 2, 230 }; 231 232 enum ib_signature_guard_cap { 233 IB_GUARD_T10DIF_CRC = 1, 234 IB_GUARD_T10DIF_CSUM = 1 << 1, 235 }; 236 237 enum ib_atomic_cap { 238 IB_ATOMIC_NONE, 239 IB_ATOMIC_HCA, 240 IB_ATOMIC_GLOB 241 }; 242 243 enum ib_odp_general_cap_bits { 244 IB_ODP_SUPPORT = 1 << 0, 245 }; 246 247 enum ib_odp_transport_cap_bits { 248 IB_ODP_SUPPORT_SEND = 1 << 0, 249 IB_ODP_SUPPORT_RECV = 1 << 1, 250 IB_ODP_SUPPORT_WRITE = 1 << 2, 251 IB_ODP_SUPPORT_READ = 1 << 3, 252 IB_ODP_SUPPORT_ATOMIC = 1 << 4, 253 }; 254 255 struct ib_odp_caps { 256 uint64_t general_caps; 257 struct { 258 uint32_t rc_odp_caps; 259 uint32_t uc_odp_caps; 260 uint32_t ud_odp_caps; 261 } per_transport_caps; 262 }; 263 264 enum ib_cq_creation_flags { 265 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0, 266 IB_CQ_FLAGS_IGNORE_OVERRUN = 1 << 1, 267 }; 268 269 struct ib_cq_init_attr { 270 unsigned int cqe; 271 int comp_vector; 272 u32 flags; 273 }; 274 275 struct ib_device_attr { 276 u64 fw_ver; 277 __be64 sys_image_guid; 278 u64 max_mr_size; 279 u64 page_size_cap; 280 u32 vendor_id; 281 u32 vendor_part_id; 282 u32 hw_ver; 283 int max_qp; 284 int max_qp_wr; 285 u64 device_cap_flags; 286 int max_sge; 287 int max_sge_rd; 288 int max_cq; 289 int max_cqe; 290 int max_mr; 291 int max_pd; 292 int max_qp_rd_atom; 293 int max_ee_rd_atom; 294 int max_res_rd_atom; 295 int max_qp_init_rd_atom; 296 int max_ee_init_rd_atom; 297 enum ib_atomic_cap atomic_cap; 298 enum ib_atomic_cap masked_atomic_cap; 299 int max_ee; 300 int max_rdd; 301 int max_mw; 302 int max_raw_ipv6_qp; 303 int max_raw_ethy_qp; 304 int max_mcast_grp; 305 int max_mcast_qp_attach; 306 int max_total_mcast_qp_attach; 307 int max_ah; 308 int max_fmr; 309 int max_map_per_fmr; 310 int max_srq; 311 int max_srq_wr; 312 int max_srq_sge; 313 unsigned int max_fast_reg_page_list_len; 314 u16 max_pkeys; 315 u8 local_ca_ack_delay; 316 int sig_prot_cap; 317 int sig_guard_cap; 318 struct ib_odp_caps odp_caps; 319 uint64_t timestamp_mask; 320 uint64_t hca_core_clock; /* in KHZ */ 321 }; 322 323 enum ib_mtu { 324 IB_MTU_256 = 1, 325 IB_MTU_512 = 2, 326 IB_MTU_1024 = 3, 327 IB_MTU_2048 = 4, 328 IB_MTU_4096 = 5 329 }; 330 331 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 332 { 333 switch (mtu) { 334 case IB_MTU_256: return 256; 335 case IB_MTU_512: return 512; 336 case IB_MTU_1024: return 1024; 337 case IB_MTU_2048: return 2048; 338 case IB_MTU_4096: return 4096; 339 default: return -1; 340 } 341 } 342 343 enum ib_port_state { 344 IB_PORT_NOP = 0, 345 IB_PORT_DOWN = 1, 346 IB_PORT_INIT = 2, 347 IB_PORT_ARMED = 3, 348 IB_PORT_ACTIVE = 4, 349 IB_PORT_ACTIVE_DEFER = 5 350 }; 351 352 enum ib_port_cap_flags { 353 IB_PORT_SM = 1 << 1, 354 IB_PORT_NOTICE_SUP = 1 << 2, 355 IB_PORT_TRAP_SUP = 1 << 3, 356 IB_PORT_OPT_IPD_SUP = 1 << 4, 357 IB_PORT_AUTO_MIGR_SUP = 1 << 5, 358 IB_PORT_SL_MAP_SUP = 1 << 6, 359 IB_PORT_MKEY_NVRAM = 1 << 7, 360 IB_PORT_PKEY_NVRAM = 1 << 8, 361 IB_PORT_LED_INFO_SUP = 1 << 9, 362 IB_PORT_SM_DISABLED = 1 << 10, 363 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11, 364 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12, 365 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14, 366 IB_PORT_CM_SUP = 1 << 16, 367 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17, 368 IB_PORT_REINIT_SUP = 1 << 18, 369 IB_PORT_DEVICE_MGMT_SUP = 1 << 19, 370 IB_PORT_VENDOR_CLASS_SUP = 1 << 20, 371 IB_PORT_DR_NOTICE_SUP = 1 << 21, 372 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22, 373 IB_PORT_BOOT_MGMT_SUP = 1 << 23, 374 IB_PORT_LINK_LATENCY_SUP = 1 << 24, 375 IB_PORT_CLIENT_REG_SUP = 1 << 25, 376 IB_PORT_IP_BASED_GIDS = 1 << 26, 377 }; 378 379 enum ib_port_width { 380 IB_WIDTH_1X = 1, 381 IB_WIDTH_4X = 2, 382 IB_WIDTH_8X = 4, 383 IB_WIDTH_12X = 8 384 }; 385 386 static inline int ib_width_enum_to_int(enum ib_port_width width) 387 { 388 switch (width) { 389 case IB_WIDTH_1X: return 1; 390 case IB_WIDTH_4X: return 4; 391 case IB_WIDTH_8X: return 8; 392 case IB_WIDTH_12X: return 12; 393 default: return -1; 394 } 395 } 396 397 enum ib_port_speed { 398 IB_SPEED_SDR = 1, 399 IB_SPEED_DDR = 2, 400 IB_SPEED_QDR = 4, 401 IB_SPEED_FDR10 = 8, 402 IB_SPEED_FDR = 16, 403 IB_SPEED_EDR = 32 404 }; 405 406 /** 407 * struct rdma_hw_stats 408 * @timestamp - Used by the core code to track when the last update was 409 * @lifespan - Used by the core code to determine how old the counters 410 * should be before being updated again. Stored in jiffies, defaults 411 * to 10 milliseconds, drivers can override the default be specifying 412 * their own value during their allocation routine. 413 * @name - Array of pointers to static names used for the counters in 414 * directory. 415 * @num_counters - How many hardware counters there are. If name is 416 * shorter than this number, a kernel oops will result. Driver authors 417 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters) 418 * in their code to prevent this. 419 * @value - Array of u64 counters that are accessed by the sysfs code and 420 * filled in by the drivers get_stats routine 421 */ 422 struct rdma_hw_stats { 423 unsigned long timestamp; 424 unsigned long lifespan; 425 const char * const *names; 426 int num_counters; 427 u64 value[]; 428 }; 429 430 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10 431 /** 432 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct 433 * for drivers. 434 * @names - Array of static const char * 435 * @num_counters - How many elements in array 436 * @lifespan - How many milliseconds between updates 437 */ 438 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 439 const char * const *names, int num_counters, 440 unsigned long lifespan) 441 { 442 struct rdma_hw_stats *stats; 443 444 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64), 445 GFP_KERNEL); 446 if (!stats) 447 return NULL; 448 stats->names = names; 449 stats->num_counters = num_counters; 450 stats->lifespan = msecs_to_jiffies(lifespan); 451 452 return stats; 453 } 454 455 456 /* Define bits for the various functionality this port needs to be supported by 457 * the core. 458 */ 459 /* Management 0x00000FFF */ 460 #define RDMA_CORE_CAP_IB_MAD 0x00000001 461 #define RDMA_CORE_CAP_IB_SMI 0x00000002 462 #define RDMA_CORE_CAP_IB_CM 0x00000004 463 #define RDMA_CORE_CAP_IW_CM 0x00000008 464 #define RDMA_CORE_CAP_IB_SA 0x00000010 465 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 466 467 /* Address format 0x000FF000 */ 468 #define RDMA_CORE_CAP_AF_IB 0x00001000 469 #define RDMA_CORE_CAP_ETH_AH 0x00002000 470 471 /* Protocol 0xFFF00000 */ 472 #define RDMA_CORE_CAP_PROT_IB 0x00100000 473 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 474 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 475 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 476 477 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 478 | RDMA_CORE_CAP_IB_MAD \ 479 | RDMA_CORE_CAP_IB_SMI \ 480 | RDMA_CORE_CAP_IB_CM \ 481 | RDMA_CORE_CAP_IB_SA \ 482 | RDMA_CORE_CAP_AF_IB) 483 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 484 | RDMA_CORE_CAP_IB_MAD \ 485 | RDMA_CORE_CAP_IB_CM \ 486 | RDMA_CORE_CAP_AF_IB \ 487 | RDMA_CORE_CAP_ETH_AH) 488 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ 489 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ 490 | RDMA_CORE_CAP_IB_MAD \ 491 | RDMA_CORE_CAP_IB_CM \ 492 | RDMA_CORE_CAP_AF_IB \ 493 | RDMA_CORE_CAP_ETH_AH) 494 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 495 | RDMA_CORE_CAP_IW_CM) 496 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 497 | RDMA_CORE_CAP_OPA_MAD) 498 499 struct ib_port_attr { 500 u64 subnet_prefix; 501 enum ib_port_state state; 502 enum ib_mtu max_mtu; 503 enum ib_mtu active_mtu; 504 int gid_tbl_len; 505 u32 port_cap_flags; 506 u32 max_msg_sz; 507 u32 bad_pkey_cntr; 508 u32 qkey_viol_cntr; 509 u16 pkey_tbl_len; 510 u16 lid; 511 u16 sm_lid; 512 u8 lmc; 513 u8 max_vl_num; 514 u8 sm_sl; 515 u8 subnet_timeout; 516 u8 init_type_reply; 517 u8 active_width; 518 u8 active_speed; 519 u8 phys_state; 520 bool grh_required; 521 }; 522 523 enum ib_device_modify_flags { 524 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 525 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 526 }; 527 528 struct ib_device_modify { 529 u64 sys_image_guid; 530 char node_desc[64]; 531 }; 532 533 enum ib_port_modify_flags { 534 IB_PORT_SHUTDOWN = 1, 535 IB_PORT_INIT_TYPE = (1<<2), 536 IB_PORT_RESET_QKEY_CNTR = (1<<3) 537 }; 538 539 struct ib_port_modify { 540 u32 set_port_cap_mask; 541 u32 clr_port_cap_mask; 542 u8 init_type; 543 }; 544 545 enum ib_event_type { 546 IB_EVENT_CQ_ERR, 547 IB_EVENT_QP_FATAL, 548 IB_EVENT_QP_REQ_ERR, 549 IB_EVENT_QP_ACCESS_ERR, 550 IB_EVENT_COMM_EST, 551 IB_EVENT_SQ_DRAINED, 552 IB_EVENT_PATH_MIG, 553 IB_EVENT_PATH_MIG_ERR, 554 IB_EVENT_DEVICE_FATAL, 555 IB_EVENT_PORT_ACTIVE, 556 IB_EVENT_PORT_ERR, 557 IB_EVENT_LID_CHANGE, 558 IB_EVENT_PKEY_CHANGE, 559 IB_EVENT_SM_CHANGE, 560 IB_EVENT_SRQ_ERR, 561 IB_EVENT_SRQ_LIMIT_REACHED, 562 IB_EVENT_QP_LAST_WQE_REACHED, 563 IB_EVENT_CLIENT_REREGISTER, 564 IB_EVENT_GID_CHANGE, 565 IB_EVENT_WQ_FATAL, 566 }; 567 568 const char *__attribute_const__ ib_event_msg(enum ib_event_type event); 569 570 struct ib_event { 571 struct ib_device *device; 572 union { 573 struct ib_cq *cq; 574 struct ib_qp *qp; 575 struct ib_srq *srq; 576 struct ib_wq *wq; 577 u8 port_num; 578 } element; 579 enum ib_event_type event; 580 }; 581 582 struct ib_event_handler { 583 struct ib_device *device; 584 void (*handler)(struct ib_event_handler *, struct ib_event *); 585 struct list_head list; 586 }; 587 588 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 589 do { \ 590 (_ptr)->device = _device; \ 591 (_ptr)->handler = _handler; \ 592 INIT_LIST_HEAD(&(_ptr)->list); \ 593 } while (0) 594 595 struct ib_global_route { 596 union ib_gid dgid; 597 u32 flow_label; 598 u8 sgid_index; 599 u8 hop_limit; 600 u8 traffic_class; 601 }; 602 603 struct ib_grh { 604 __be32 version_tclass_flow; 605 __be16 paylen; 606 u8 next_hdr; 607 u8 hop_limit; 608 union ib_gid sgid; 609 union ib_gid dgid; 610 }; 611 612 union rdma_network_hdr { 613 struct ib_grh ibgrh; 614 struct { 615 /* The IB spec states that if it's IPv4, the header 616 * is located in the last 20 bytes of the header. 617 */ 618 u8 reserved[20]; 619 struct iphdr roce4grh; 620 }; 621 }; 622 623 enum { 624 IB_MULTICAST_QPN = 0xffffff 625 }; 626 627 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 628 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000) 629 630 enum ib_ah_flags { 631 IB_AH_GRH = 1 632 }; 633 634 enum ib_rate { 635 IB_RATE_PORT_CURRENT = 0, 636 IB_RATE_2_5_GBPS = 2, 637 IB_RATE_5_GBPS = 5, 638 IB_RATE_10_GBPS = 3, 639 IB_RATE_20_GBPS = 6, 640 IB_RATE_30_GBPS = 4, 641 IB_RATE_40_GBPS = 7, 642 IB_RATE_60_GBPS = 8, 643 IB_RATE_80_GBPS = 9, 644 IB_RATE_120_GBPS = 10, 645 IB_RATE_14_GBPS = 11, 646 IB_RATE_56_GBPS = 12, 647 IB_RATE_112_GBPS = 13, 648 IB_RATE_168_GBPS = 14, 649 IB_RATE_25_GBPS = 15, 650 IB_RATE_100_GBPS = 16, 651 IB_RATE_200_GBPS = 17, 652 IB_RATE_300_GBPS = 18 653 }; 654 655 /** 656 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 657 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 658 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 659 * @rate: rate to convert. 660 */ 661 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 662 663 /** 664 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 665 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 666 * @rate: rate to convert. 667 */ 668 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 669 670 671 /** 672 * enum ib_mr_type - memory region type 673 * @IB_MR_TYPE_MEM_REG: memory region that is used for 674 * normal registration 675 * @IB_MR_TYPE_SIGNATURE: memory region that is used for 676 * signature operations (data-integrity 677 * capable regions) 678 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to 679 * register any arbitrary sg lists (without 680 * the normal mr constraints - see 681 * ib_map_mr_sg) 682 */ 683 enum ib_mr_type { 684 IB_MR_TYPE_MEM_REG, 685 IB_MR_TYPE_SIGNATURE, 686 IB_MR_TYPE_SG_GAPS, 687 }; 688 689 /** 690 * Signature types 691 * IB_SIG_TYPE_NONE: Unprotected. 692 * IB_SIG_TYPE_T10_DIF: Type T10-DIF 693 */ 694 enum ib_signature_type { 695 IB_SIG_TYPE_NONE, 696 IB_SIG_TYPE_T10_DIF, 697 }; 698 699 /** 700 * Signature T10-DIF block-guard types 701 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules. 702 * IB_T10DIF_CSUM: Corresponds to IP checksum rules. 703 */ 704 enum ib_t10_dif_bg_type { 705 IB_T10DIF_CRC, 706 IB_T10DIF_CSUM 707 }; 708 709 /** 710 * struct ib_t10_dif_domain - Parameters specific for T10-DIF 711 * domain. 712 * @bg_type: T10-DIF block guard type (CRC|CSUM) 713 * @pi_interval: protection information interval. 714 * @bg: seed of guard computation. 715 * @app_tag: application tag of guard block 716 * @ref_tag: initial guard block reference tag. 717 * @ref_remap: Indicate wethear the reftag increments each block 718 * @app_escape: Indicate to skip block check if apptag=0xffff 719 * @ref_escape: Indicate to skip block check if reftag=0xffffffff 720 * @apptag_check_mask: check bitmask of application tag. 721 */ 722 struct ib_t10_dif_domain { 723 enum ib_t10_dif_bg_type bg_type; 724 u16 pi_interval; 725 u16 bg; 726 u16 app_tag; 727 u32 ref_tag; 728 bool ref_remap; 729 bool app_escape; 730 bool ref_escape; 731 u16 apptag_check_mask; 732 }; 733 734 /** 735 * struct ib_sig_domain - Parameters for signature domain 736 * @sig_type: specific signauture type 737 * @sig: union of all signature domain attributes that may 738 * be used to set domain layout. 739 */ 740 struct ib_sig_domain { 741 enum ib_signature_type sig_type; 742 union { 743 struct ib_t10_dif_domain dif; 744 } sig; 745 }; 746 747 /** 748 * struct ib_sig_attrs - Parameters for signature handover operation 749 * @check_mask: bitmask for signature byte check (8 bytes) 750 * @mem: memory domain layout desciptor. 751 * @wire: wire domain layout desciptor. 752 */ 753 struct ib_sig_attrs { 754 u8 check_mask; 755 struct ib_sig_domain mem; 756 struct ib_sig_domain wire; 757 }; 758 759 enum ib_sig_err_type { 760 IB_SIG_BAD_GUARD, 761 IB_SIG_BAD_REFTAG, 762 IB_SIG_BAD_APPTAG, 763 }; 764 765 /** 766 * struct ib_sig_err - signature error descriptor 767 */ 768 struct ib_sig_err { 769 enum ib_sig_err_type err_type; 770 u32 expected; 771 u32 actual; 772 u64 sig_err_offset; 773 u32 key; 774 }; 775 776 enum ib_mr_status_check { 777 IB_MR_CHECK_SIG_STATUS = 1, 778 }; 779 780 /** 781 * struct ib_mr_status - Memory region status container 782 * 783 * @fail_status: Bitmask of MR checks status. For each 784 * failed check a corresponding status bit is set. 785 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 786 * failure. 787 */ 788 struct ib_mr_status { 789 u32 fail_status; 790 struct ib_sig_err sig_err; 791 }; 792 793 /** 794 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 795 * enum. 796 * @mult: multiple to convert. 797 */ 798 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 799 800 struct ib_ah_attr { 801 struct ib_global_route grh; 802 u16 dlid; 803 u8 sl; 804 u8 src_path_bits; 805 u8 static_rate; 806 u8 ah_flags; 807 u8 port_num; 808 u8 dmac[ETH_ALEN]; 809 }; 810 811 enum ib_wc_status { 812 IB_WC_SUCCESS, 813 IB_WC_LOC_LEN_ERR, 814 IB_WC_LOC_QP_OP_ERR, 815 IB_WC_LOC_EEC_OP_ERR, 816 IB_WC_LOC_PROT_ERR, 817 IB_WC_WR_FLUSH_ERR, 818 IB_WC_MW_BIND_ERR, 819 IB_WC_BAD_RESP_ERR, 820 IB_WC_LOC_ACCESS_ERR, 821 IB_WC_REM_INV_REQ_ERR, 822 IB_WC_REM_ACCESS_ERR, 823 IB_WC_REM_OP_ERR, 824 IB_WC_RETRY_EXC_ERR, 825 IB_WC_RNR_RETRY_EXC_ERR, 826 IB_WC_LOC_RDD_VIOL_ERR, 827 IB_WC_REM_INV_RD_REQ_ERR, 828 IB_WC_REM_ABORT_ERR, 829 IB_WC_INV_EECN_ERR, 830 IB_WC_INV_EEC_STATE_ERR, 831 IB_WC_FATAL_ERR, 832 IB_WC_RESP_TIMEOUT_ERR, 833 IB_WC_GENERAL_ERR 834 }; 835 836 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); 837 838 enum ib_wc_opcode { 839 IB_WC_SEND, 840 IB_WC_RDMA_WRITE, 841 IB_WC_RDMA_READ, 842 IB_WC_COMP_SWAP, 843 IB_WC_FETCH_ADD, 844 IB_WC_LSO, 845 IB_WC_LOCAL_INV, 846 IB_WC_REG_MR, 847 IB_WC_MASKED_COMP_SWAP, 848 IB_WC_MASKED_FETCH_ADD, 849 /* 850 * Set value of IB_WC_RECV so consumers can test if a completion is a 851 * receive by testing (opcode & IB_WC_RECV). 852 */ 853 IB_WC_RECV = 1 << 7, 854 IB_WC_RECV_RDMA_WITH_IMM 855 }; 856 857 enum ib_wc_flags { 858 IB_WC_GRH = 1, 859 IB_WC_WITH_IMM = (1<<1), 860 IB_WC_WITH_INVALIDATE = (1<<2), 861 IB_WC_IP_CSUM_OK = (1<<3), 862 IB_WC_WITH_SMAC = (1<<4), 863 IB_WC_WITH_VLAN = (1<<5), 864 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), 865 }; 866 867 struct ib_wc { 868 union { 869 u64 wr_id; 870 struct ib_cqe *wr_cqe; 871 }; 872 enum ib_wc_status status; 873 enum ib_wc_opcode opcode; 874 u32 vendor_err; 875 u32 byte_len; 876 struct ib_qp *qp; 877 union { 878 __be32 imm_data; 879 u32 invalidate_rkey; 880 } ex; 881 u32 src_qp; 882 int wc_flags; 883 u16 pkey_index; 884 u16 slid; 885 u8 sl; 886 u8 dlid_path_bits; 887 u8 port_num; /* valid only for DR SMPs on switches */ 888 u8 smac[ETH_ALEN]; 889 u16 vlan_id; 890 u8 network_hdr_type; 891 }; 892 893 enum ib_cq_notify_flags { 894 IB_CQ_SOLICITED = 1 << 0, 895 IB_CQ_NEXT_COMP = 1 << 1, 896 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 897 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 898 }; 899 900 enum ib_srq_type { 901 IB_SRQT_BASIC, 902 IB_SRQT_XRC 903 }; 904 905 enum ib_srq_attr_mask { 906 IB_SRQ_MAX_WR = 1 << 0, 907 IB_SRQ_LIMIT = 1 << 1, 908 }; 909 910 struct ib_srq_attr { 911 u32 max_wr; 912 u32 max_sge; 913 u32 srq_limit; 914 }; 915 916 struct ib_srq_init_attr { 917 void (*event_handler)(struct ib_event *, void *); 918 void *srq_context; 919 struct ib_srq_attr attr; 920 enum ib_srq_type srq_type; 921 922 union { 923 struct { 924 struct ib_xrcd *xrcd; 925 struct ib_cq *cq; 926 } xrc; 927 } ext; 928 }; 929 930 struct ib_qp_cap { 931 u32 max_send_wr; 932 u32 max_recv_wr; 933 u32 max_send_sge; 934 u32 max_recv_sge; 935 u32 max_inline_data; 936 937 /* 938 * Maximum number of rdma_rw_ctx structures in flight at a time. 939 * ib_create_qp() will calculate the right amount of neededed WRs 940 * and MRs based on this. 941 */ 942 u32 max_rdma_ctxs; 943 }; 944 945 enum ib_sig_type { 946 IB_SIGNAL_ALL_WR, 947 IB_SIGNAL_REQ_WR 948 }; 949 950 enum ib_qp_type { 951 /* 952 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 953 * here (and in that order) since the MAD layer uses them as 954 * indices into a 2-entry table. 955 */ 956 IB_QPT_SMI, 957 IB_QPT_GSI, 958 959 IB_QPT_RC, 960 IB_QPT_UC, 961 IB_QPT_UD, 962 IB_QPT_RAW_IPV6, 963 IB_QPT_RAW_ETHERTYPE, 964 IB_QPT_RAW_PACKET = 8, 965 IB_QPT_XRC_INI = 9, 966 IB_QPT_XRC_TGT, 967 IB_QPT_MAX, 968 /* Reserve a range for qp types internal to the low level driver. 969 * These qp types will not be visible at the IB core layer, so the 970 * IB_QPT_MAX usages should not be affected in the core layer 971 */ 972 IB_QPT_RESERVED1 = 0x1000, 973 IB_QPT_RESERVED2, 974 IB_QPT_RESERVED3, 975 IB_QPT_RESERVED4, 976 IB_QPT_RESERVED5, 977 IB_QPT_RESERVED6, 978 IB_QPT_RESERVED7, 979 IB_QPT_RESERVED8, 980 IB_QPT_RESERVED9, 981 IB_QPT_RESERVED10, 982 }; 983 984 enum ib_qp_create_flags { 985 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 986 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1, 987 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 988 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 989 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 990 IB_QP_CREATE_NETIF_QP = 1 << 5, 991 IB_QP_CREATE_SIGNATURE_EN = 1 << 6, 992 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7, 993 IB_QP_CREATE_SCATTER_FCS = 1 << 8, 994 /* reserve bits 26-31 for low level drivers' internal use */ 995 IB_QP_CREATE_RESERVED_START = 1 << 26, 996 IB_QP_CREATE_RESERVED_END = 1 << 31, 997 }; 998 999 /* 1000 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 1001 * callback to destroy the passed in QP. 1002 */ 1003 1004 struct ib_qp_init_attr { 1005 void (*event_handler)(struct ib_event *, void *); 1006 void *qp_context; 1007 struct ib_cq *send_cq; 1008 struct ib_cq *recv_cq; 1009 struct ib_srq *srq; 1010 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1011 struct ib_qp_cap cap; 1012 enum ib_sig_type sq_sig_type; 1013 enum ib_qp_type qp_type; 1014 enum ib_qp_create_flags create_flags; 1015 1016 /* 1017 * Only needed for special QP types, or when using the RW API. 1018 */ 1019 u8 port_num; 1020 struct ib_rwq_ind_table *rwq_ind_tbl; 1021 }; 1022 1023 struct ib_qp_open_attr { 1024 void (*event_handler)(struct ib_event *, void *); 1025 void *qp_context; 1026 u32 qp_num; 1027 enum ib_qp_type qp_type; 1028 }; 1029 1030 enum ib_rnr_timeout { 1031 IB_RNR_TIMER_655_36 = 0, 1032 IB_RNR_TIMER_000_01 = 1, 1033 IB_RNR_TIMER_000_02 = 2, 1034 IB_RNR_TIMER_000_03 = 3, 1035 IB_RNR_TIMER_000_04 = 4, 1036 IB_RNR_TIMER_000_06 = 5, 1037 IB_RNR_TIMER_000_08 = 6, 1038 IB_RNR_TIMER_000_12 = 7, 1039 IB_RNR_TIMER_000_16 = 8, 1040 IB_RNR_TIMER_000_24 = 9, 1041 IB_RNR_TIMER_000_32 = 10, 1042 IB_RNR_TIMER_000_48 = 11, 1043 IB_RNR_TIMER_000_64 = 12, 1044 IB_RNR_TIMER_000_96 = 13, 1045 IB_RNR_TIMER_001_28 = 14, 1046 IB_RNR_TIMER_001_92 = 15, 1047 IB_RNR_TIMER_002_56 = 16, 1048 IB_RNR_TIMER_003_84 = 17, 1049 IB_RNR_TIMER_005_12 = 18, 1050 IB_RNR_TIMER_007_68 = 19, 1051 IB_RNR_TIMER_010_24 = 20, 1052 IB_RNR_TIMER_015_36 = 21, 1053 IB_RNR_TIMER_020_48 = 22, 1054 IB_RNR_TIMER_030_72 = 23, 1055 IB_RNR_TIMER_040_96 = 24, 1056 IB_RNR_TIMER_061_44 = 25, 1057 IB_RNR_TIMER_081_92 = 26, 1058 IB_RNR_TIMER_122_88 = 27, 1059 IB_RNR_TIMER_163_84 = 28, 1060 IB_RNR_TIMER_245_76 = 29, 1061 IB_RNR_TIMER_327_68 = 30, 1062 IB_RNR_TIMER_491_52 = 31 1063 }; 1064 1065 enum ib_qp_attr_mask { 1066 IB_QP_STATE = 1, 1067 IB_QP_CUR_STATE = (1<<1), 1068 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 1069 IB_QP_ACCESS_FLAGS = (1<<3), 1070 IB_QP_PKEY_INDEX = (1<<4), 1071 IB_QP_PORT = (1<<5), 1072 IB_QP_QKEY = (1<<6), 1073 IB_QP_AV = (1<<7), 1074 IB_QP_PATH_MTU = (1<<8), 1075 IB_QP_TIMEOUT = (1<<9), 1076 IB_QP_RETRY_CNT = (1<<10), 1077 IB_QP_RNR_RETRY = (1<<11), 1078 IB_QP_RQ_PSN = (1<<12), 1079 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 1080 IB_QP_ALT_PATH = (1<<14), 1081 IB_QP_MIN_RNR_TIMER = (1<<15), 1082 IB_QP_SQ_PSN = (1<<16), 1083 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 1084 IB_QP_PATH_MIG_STATE = (1<<18), 1085 IB_QP_CAP = (1<<19), 1086 IB_QP_DEST_QPN = (1<<20), 1087 IB_QP_RESERVED1 = (1<<21), 1088 IB_QP_RESERVED2 = (1<<22), 1089 IB_QP_RESERVED3 = (1<<23), 1090 IB_QP_RESERVED4 = (1<<24), 1091 }; 1092 1093 enum ib_qp_state { 1094 IB_QPS_RESET, 1095 IB_QPS_INIT, 1096 IB_QPS_RTR, 1097 IB_QPS_RTS, 1098 IB_QPS_SQD, 1099 IB_QPS_SQE, 1100 IB_QPS_ERR 1101 }; 1102 1103 enum ib_mig_state { 1104 IB_MIG_MIGRATED, 1105 IB_MIG_REARM, 1106 IB_MIG_ARMED 1107 }; 1108 1109 enum ib_mw_type { 1110 IB_MW_TYPE_1 = 1, 1111 IB_MW_TYPE_2 = 2 1112 }; 1113 1114 struct ib_qp_attr { 1115 enum ib_qp_state qp_state; 1116 enum ib_qp_state cur_qp_state; 1117 enum ib_mtu path_mtu; 1118 enum ib_mig_state path_mig_state; 1119 u32 qkey; 1120 u32 rq_psn; 1121 u32 sq_psn; 1122 u32 dest_qp_num; 1123 int qp_access_flags; 1124 struct ib_qp_cap cap; 1125 struct ib_ah_attr ah_attr; 1126 struct ib_ah_attr alt_ah_attr; 1127 u16 pkey_index; 1128 u16 alt_pkey_index; 1129 u8 en_sqd_async_notify; 1130 u8 sq_draining; 1131 u8 max_rd_atomic; 1132 u8 max_dest_rd_atomic; 1133 u8 min_rnr_timer; 1134 u8 port_num; 1135 u8 timeout; 1136 u8 retry_cnt; 1137 u8 rnr_retry; 1138 u8 alt_port_num; 1139 u8 alt_timeout; 1140 }; 1141 1142 enum ib_wr_opcode { 1143 IB_WR_RDMA_WRITE, 1144 IB_WR_RDMA_WRITE_WITH_IMM, 1145 IB_WR_SEND, 1146 IB_WR_SEND_WITH_IMM, 1147 IB_WR_RDMA_READ, 1148 IB_WR_ATOMIC_CMP_AND_SWP, 1149 IB_WR_ATOMIC_FETCH_AND_ADD, 1150 IB_WR_LSO, 1151 IB_WR_SEND_WITH_INV, 1152 IB_WR_RDMA_READ_WITH_INV, 1153 IB_WR_LOCAL_INV, 1154 IB_WR_REG_MR, 1155 IB_WR_MASKED_ATOMIC_CMP_AND_SWP, 1156 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1157 IB_WR_REG_SIG_MR, 1158 /* reserve values for low level drivers' internal use. 1159 * These values will not be used at all in the ib core layer. 1160 */ 1161 IB_WR_RESERVED1 = 0xf0, 1162 IB_WR_RESERVED2, 1163 IB_WR_RESERVED3, 1164 IB_WR_RESERVED4, 1165 IB_WR_RESERVED5, 1166 IB_WR_RESERVED6, 1167 IB_WR_RESERVED7, 1168 IB_WR_RESERVED8, 1169 IB_WR_RESERVED9, 1170 IB_WR_RESERVED10, 1171 }; 1172 1173 enum ib_send_flags { 1174 IB_SEND_FENCE = 1, 1175 IB_SEND_SIGNALED = (1<<1), 1176 IB_SEND_SOLICITED = (1<<2), 1177 IB_SEND_INLINE = (1<<3), 1178 IB_SEND_IP_CSUM = (1<<4), 1179 1180 /* reserve bits 26-31 for low level drivers' internal use */ 1181 IB_SEND_RESERVED_START = (1 << 26), 1182 IB_SEND_RESERVED_END = (1 << 31), 1183 }; 1184 1185 struct ib_sge { 1186 u64 addr; 1187 u32 length; 1188 u32 lkey; 1189 }; 1190 1191 struct ib_cqe { 1192 void (*done)(struct ib_cq *cq, struct ib_wc *wc); 1193 }; 1194 1195 struct ib_send_wr { 1196 struct ib_send_wr *next; 1197 union { 1198 u64 wr_id; 1199 struct ib_cqe *wr_cqe; 1200 }; 1201 struct ib_sge *sg_list; 1202 int num_sge; 1203 enum ib_wr_opcode opcode; 1204 int send_flags; 1205 union { 1206 __be32 imm_data; 1207 u32 invalidate_rkey; 1208 } ex; 1209 }; 1210 1211 struct ib_rdma_wr { 1212 struct ib_send_wr wr; 1213 u64 remote_addr; 1214 u32 rkey; 1215 }; 1216 1217 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr) 1218 { 1219 return container_of(wr, struct ib_rdma_wr, wr); 1220 } 1221 1222 struct ib_atomic_wr { 1223 struct ib_send_wr wr; 1224 u64 remote_addr; 1225 u64 compare_add; 1226 u64 swap; 1227 u64 compare_add_mask; 1228 u64 swap_mask; 1229 u32 rkey; 1230 }; 1231 1232 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr) 1233 { 1234 return container_of(wr, struct ib_atomic_wr, wr); 1235 } 1236 1237 struct ib_ud_wr { 1238 struct ib_send_wr wr; 1239 struct ib_ah *ah; 1240 void *header; 1241 int hlen; 1242 int mss; 1243 u32 remote_qpn; 1244 u32 remote_qkey; 1245 u16 pkey_index; /* valid for GSI only */ 1246 u8 port_num; /* valid for DR SMPs on switch only */ 1247 }; 1248 1249 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr) 1250 { 1251 return container_of(wr, struct ib_ud_wr, wr); 1252 } 1253 1254 struct ib_reg_wr { 1255 struct ib_send_wr wr; 1256 struct ib_mr *mr; 1257 u32 key; 1258 int access; 1259 }; 1260 1261 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr) 1262 { 1263 return container_of(wr, struct ib_reg_wr, wr); 1264 } 1265 1266 struct ib_sig_handover_wr { 1267 struct ib_send_wr wr; 1268 struct ib_sig_attrs *sig_attrs; 1269 struct ib_mr *sig_mr; 1270 int access_flags; 1271 struct ib_sge *prot; 1272 }; 1273 1274 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr) 1275 { 1276 return container_of(wr, struct ib_sig_handover_wr, wr); 1277 } 1278 1279 struct ib_recv_wr { 1280 struct ib_recv_wr *next; 1281 union { 1282 u64 wr_id; 1283 struct ib_cqe *wr_cqe; 1284 }; 1285 struct ib_sge *sg_list; 1286 int num_sge; 1287 }; 1288 1289 enum ib_access_flags { 1290 IB_ACCESS_LOCAL_WRITE = 1, 1291 IB_ACCESS_REMOTE_WRITE = (1<<1), 1292 IB_ACCESS_REMOTE_READ = (1<<2), 1293 IB_ACCESS_REMOTE_ATOMIC = (1<<3), 1294 IB_ACCESS_MW_BIND = (1<<4), 1295 IB_ZERO_BASED = (1<<5), 1296 IB_ACCESS_ON_DEMAND = (1<<6), 1297 }; 1298 1299 /* 1300 * XXX: these are apparently used for ->rereg_user_mr, no idea why they 1301 * are hidden here instead of a uapi header! 1302 */ 1303 enum ib_mr_rereg_flags { 1304 IB_MR_REREG_TRANS = 1, 1305 IB_MR_REREG_PD = (1<<1), 1306 IB_MR_REREG_ACCESS = (1<<2), 1307 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1308 }; 1309 1310 struct ib_fmr_attr { 1311 int max_pages; 1312 int max_maps; 1313 u8 page_shift; 1314 }; 1315 1316 struct ib_umem; 1317 1318 struct ib_ucontext { 1319 struct ib_device *device; 1320 struct list_head pd_list; 1321 struct list_head mr_list; 1322 struct list_head mw_list; 1323 struct list_head cq_list; 1324 struct list_head qp_list; 1325 struct list_head srq_list; 1326 struct list_head ah_list; 1327 struct list_head xrcd_list; 1328 struct list_head rule_list; 1329 struct list_head wq_list; 1330 struct list_head rwq_ind_tbl_list; 1331 int closing; 1332 1333 struct pid *tgid; 1334 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING 1335 struct rb_root umem_tree; 1336 /* 1337 * Protects .umem_rbroot and tree, as well as odp_mrs_count and 1338 * mmu notifiers registration. 1339 */ 1340 struct rw_semaphore umem_rwsem; 1341 void (*invalidate_range)(struct ib_umem *umem, 1342 unsigned long start, unsigned long end); 1343 1344 struct mmu_notifier mn; 1345 atomic_t notifier_count; 1346 /* A list of umems that don't have private mmu notifier counters yet. */ 1347 struct list_head no_private_counters; 1348 int odp_mrs_count; 1349 #endif 1350 }; 1351 1352 struct ib_uobject { 1353 u64 user_handle; /* handle given to us by userspace */ 1354 struct ib_ucontext *context; /* associated user context */ 1355 void *object; /* containing object */ 1356 struct list_head list; /* link to context's list */ 1357 int id; /* index into kernel idr */ 1358 struct kref ref; 1359 struct rw_semaphore mutex; /* protects .live */ 1360 struct rcu_head rcu; /* kfree_rcu() overhead */ 1361 int live; 1362 }; 1363 1364 struct ib_udata { 1365 const void __user *inbuf; 1366 void __user *outbuf; 1367 size_t inlen; 1368 size_t outlen; 1369 }; 1370 1371 struct ib_pd { 1372 u32 local_dma_lkey; 1373 struct ib_device *device; 1374 struct ib_uobject *uobject; 1375 atomic_t usecnt; /* count all resources */ 1376 struct ib_mr *local_mr; 1377 }; 1378 1379 struct ib_xrcd { 1380 struct ib_device *device; 1381 atomic_t usecnt; /* count all exposed resources */ 1382 struct inode *inode; 1383 1384 struct mutex tgt_qp_mutex; 1385 struct list_head tgt_qp_list; 1386 }; 1387 1388 struct ib_ah { 1389 struct ib_device *device; 1390 struct ib_pd *pd; 1391 struct ib_uobject *uobject; 1392 }; 1393 1394 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1395 1396 enum ib_poll_context { 1397 IB_POLL_DIRECT, /* caller context, no hw completions */ 1398 IB_POLL_SOFTIRQ, /* poll from softirq context */ 1399 IB_POLL_WORKQUEUE, /* poll from workqueue */ 1400 }; 1401 1402 struct ib_cq { 1403 struct ib_device *device; 1404 struct ib_uobject *uobject; 1405 ib_comp_handler comp_handler; 1406 void (*event_handler)(struct ib_event *, void *); 1407 void *cq_context; 1408 int cqe; 1409 atomic_t usecnt; /* count number of work queues */ 1410 enum ib_poll_context poll_ctx; 1411 struct ib_wc *wc; 1412 union { 1413 struct irq_poll iop; 1414 struct work_struct work; 1415 }; 1416 }; 1417 1418 struct ib_srq { 1419 struct ib_device *device; 1420 struct ib_pd *pd; 1421 struct ib_uobject *uobject; 1422 void (*event_handler)(struct ib_event *, void *); 1423 void *srq_context; 1424 enum ib_srq_type srq_type; 1425 atomic_t usecnt; 1426 1427 union { 1428 struct { 1429 struct ib_xrcd *xrcd; 1430 struct ib_cq *cq; 1431 u32 srq_num; 1432 } xrc; 1433 } ext; 1434 }; 1435 1436 enum ib_wq_type { 1437 IB_WQT_RQ 1438 }; 1439 1440 enum ib_wq_state { 1441 IB_WQS_RESET, 1442 IB_WQS_RDY, 1443 IB_WQS_ERR 1444 }; 1445 1446 struct ib_wq { 1447 struct ib_device *device; 1448 struct ib_uobject *uobject; 1449 void *wq_context; 1450 void (*event_handler)(struct ib_event *, void *); 1451 struct ib_pd *pd; 1452 struct ib_cq *cq; 1453 u32 wq_num; 1454 enum ib_wq_state state; 1455 enum ib_wq_type wq_type; 1456 atomic_t usecnt; 1457 }; 1458 1459 struct ib_wq_init_attr { 1460 void *wq_context; 1461 enum ib_wq_type wq_type; 1462 u32 max_wr; 1463 u32 max_sge; 1464 struct ib_cq *cq; 1465 void (*event_handler)(struct ib_event *, void *); 1466 }; 1467 1468 enum ib_wq_attr_mask { 1469 IB_WQ_STATE = 1 << 0, 1470 IB_WQ_CUR_STATE = 1 << 1, 1471 }; 1472 1473 struct ib_wq_attr { 1474 enum ib_wq_state wq_state; 1475 enum ib_wq_state curr_wq_state; 1476 }; 1477 1478 struct ib_rwq_ind_table { 1479 struct ib_device *device; 1480 struct ib_uobject *uobject; 1481 atomic_t usecnt; 1482 u32 ind_tbl_num; 1483 u32 log_ind_tbl_size; 1484 struct ib_wq **ind_tbl; 1485 }; 1486 1487 struct ib_rwq_ind_table_init_attr { 1488 u32 log_ind_tbl_size; 1489 /* Each entry is a pointer to Receive Work Queue */ 1490 struct ib_wq **ind_tbl; 1491 }; 1492 1493 /* 1494 * @max_write_sge: Maximum SGE elements per RDMA WRITE request. 1495 * @max_read_sge: Maximum SGE elements per RDMA READ request. 1496 */ 1497 struct ib_qp { 1498 struct ib_device *device; 1499 struct ib_pd *pd; 1500 struct ib_cq *send_cq; 1501 struct ib_cq *recv_cq; 1502 spinlock_t mr_lock; 1503 int mrs_used; 1504 struct list_head rdma_mrs; 1505 struct list_head sig_mrs; 1506 struct ib_srq *srq; 1507 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1508 struct list_head xrcd_list; 1509 1510 /* count times opened, mcast attaches, flow attaches */ 1511 atomic_t usecnt; 1512 struct list_head open_list; 1513 struct ib_qp *real_qp; 1514 struct ib_uobject *uobject; 1515 void (*event_handler)(struct ib_event *, void *); 1516 void *qp_context; 1517 u32 qp_num; 1518 u32 max_write_sge; 1519 u32 max_read_sge; 1520 enum ib_qp_type qp_type; 1521 struct ib_rwq_ind_table *rwq_ind_tbl; 1522 }; 1523 1524 struct ib_mr { 1525 struct ib_device *device; 1526 struct ib_pd *pd; 1527 u32 lkey; 1528 u32 rkey; 1529 u64 iova; 1530 u32 length; 1531 unsigned int page_size; 1532 bool need_inval; 1533 union { 1534 struct ib_uobject *uobject; /* user */ 1535 struct list_head qp_entry; /* FR */ 1536 }; 1537 }; 1538 1539 struct ib_mw { 1540 struct ib_device *device; 1541 struct ib_pd *pd; 1542 struct ib_uobject *uobject; 1543 u32 rkey; 1544 enum ib_mw_type type; 1545 }; 1546 1547 struct ib_fmr { 1548 struct ib_device *device; 1549 struct ib_pd *pd; 1550 struct list_head list; 1551 u32 lkey; 1552 u32 rkey; 1553 }; 1554 1555 /* Supported steering options */ 1556 enum ib_flow_attr_type { 1557 /* steering according to rule specifications */ 1558 IB_FLOW_ATTR_NORMAL = 0x0, 1559 /* default unicast and multicast rule - 1560 * receive all Eth traffic which isn't steered to any QP 1561 */ 1562 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1563 /* default multicast rule - 1564 * receive all Eth multicast traffic which isn't steered to any QP 1565 */ 1566 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1567 /* sniffer rule - receive all port traffic */ 1568 IB_FLOW_ATTR_SNIFFER = 0x3 1569 }; 1570 1571 /* Supported steering header types */ 1572 enum ib_flow_spec_type { 1573 /* L2 headers*/ 1574 IB_FLOW_SPEC_ETH = 0x20, 1575 IB_FLOW_SPEC_IB = 0x22, 1576 /* L3 header*/ 1577 IB_FLOW_SPEC_IPV4 = 0x30, 1578 IB_FLOW_SPEC_IPV6 = 0x31, 1579 /* L4 headers*/ 1580 IB_FLOW_SPEC_TCP = 0x40, 1581 IB_FLOW_SPEC_UDP = 0x41 1582 }; 1583 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1584 #define IB_FLOW_SPEC_SUPPORT_LAYERS 4 1585 1586 /* Flow steering rule priority is set according to it's domain. 1587 * Lower domain value means higher priority. 1588 */ 1589 enum ib_flow_domain { 1590 IB_FLOW_DOMAIN_USER, 1591 IB_FLOW_DOMAIN_ETHTOOL, 1592 IB_FLOW_DOMAIN_RFS, 1593 IB_FLOW_DOMAIN_NIC, 1594 IB_FLOW_DOMAIN_NUM /* Must be last */ 1595 }; 1596 1597 enum ib_flow_flags { 1598 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */ 1599 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */ 1600 }; 1601 1602 struct ib_flow_eth_filter { 1603 u8 dst_mac[6]; 1604 u8 src_mac[6]; 1605 __be16 ether_type; 1606 __be16 vlan_tag; 1607 }; 1608 1609 struct ib_flow_spec_eth { 1610 enum ib_flow_spec_type type; 1611 u16 size; 1612 struct ib_flow_eth_filter val; 1613 struct ib_flow_eth_filter mask; 1614 }; 1615 1616 struct ib_flow_ib_filter { 1617 __be16 dlid; 1618 __u8 sl; 1619 }; 1620 1621 struct ib_flow_spec_ib { 1622 enum ib_flow_spec_type type; 1623 u16 size; 1624 struct ib_flow_ib_filter val; 1625 struct ib_flow_ib_filter mask; 1626 }; 1627 1628 struct ib_flow_ipv4_filter { 1629 __be32 src_ip; 1630 __be32 dst_ip; 1631 }; 1632 1633 struct ib_flow_spec_ipv4 { 1634 enum ib_flow_spec_type type; 1635 u16 size; 1636 struct ib_flow_ipv4_filter val; 1637 struct ib_flow_ipv4_filter mask; 1638 }; 1639 1640 struct ib_flow_ipv6_filter { 1641 u8 src_ip[16]; 1642 u8 dst_ip[16]; 1643 }; 1644 1645 struct ib_flow_spec_ipv6 { 1646 enum ib_flow_spec_type type; 1647 u16 size; 1648 struct ib_flow_ipv6_filter val; 1649 struct ib_flow_ipv6_filter mask; 1650 }; 1651 1652 struct ib_flow_tcp_udp_filter { 1653 __be16 dst_port; 1654 __be16 src_port; 1655 }; 1656 1657 struct ib_flow_spec_tcp_udp { 1658 enum ib_flow_spec_type type; 1659 u16 size; 1660 struct ib_flow_tcp_udp_filter val; 1661 struct ib_flow_tcp_udp_filter mask; 1662 }; 1663 1664 union ib_flow_spec { 1665 struct { 1666 enum ib_flow_spec_type type; 1667 u16 size; 1668 }; 1669 struct ib_flow_spec_eth eth; 1670 struct ib_flow_spec_ib ib; 1671 struct ib_flow_spec_ipv4 ipv4; 1672 struct ib_flow_spec_tcp_udp tcp_udp; 1673 struct ib_flow_spec_ipv6 ipv6; 1674 }; 1675 1676 struct ib_flow_attr { 1677 enum ib_flow_attr_type type; 1678 u16 size; 1679 u16 priority; 1680 u32 flags; 1681 u8 num_of_specs; 1682 u8 port; 1683 /* Following are the optional layers according to user request 1684 * struct ib_flow_spec_xxx 1685 * struct ib_flow_spec_yyy 1686 */ 1687 }; 1688 1689 struct ib_flow { 1690 struct ib_qp *qp; 1691 struct ib_uobject *uobject; 1692 }; 1693 1694 struct ib_mad_hdr; 1695 struct ib_grh; 1696 1697 enum ib_process_mad_flags { 1698 IB_MAD_IGNORE_MKEY = 1, 1699 IB_MAD_IGNORE_BKEY = 2, 1700 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 1701 }; 1702 1703 enum ib_mad_result { 1704 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 1705 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 1706 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 1707 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 1708 }; 1709 1710 #define IB_DEVICE_NAME_MAX 64 1711 1712 struct ib_cache { 1713 rwlock_t lock; 1714 struct ib_event_handler event_handler; 1715 struct ib_pkey_cache **pkey_cache; 1716 struct ib_gid_table **gid_cache; 1717 u8 *lmc_cache; 1718 }; 1719 1720 struct ib_dma_mapping_ops { 1721 int (*mapping_error)(struct ib_device *dev, 1722 u64 dma_addr); 1723 u64 (*map_single)(struct ib_device *dev, 1724 void *ptr, size_t size, 1725 enum dma_data_direction direction); 1726 void (*unmap_single)(struct ib_device *dev, 1727 u64 addr, size_t size, 1728 enum dma_data_direction direction); 1729 u64 (*map_page)(struct ib_device *dev, 1730 struct page *page, unsigned long offset, 1731 size_t size, 1732 enum dma_data_direction direction); 1733 void (*unmap_page)(struct ib_device *dev, 1734 u64 addr, size_t size, 1735 enum dma_data_direction direction); 1736 int (*map_sg)(struct ib_device *dev, 1737 struct scatterlist *sg, int nents, 1738 enum dma_data_direction direction); 1739 void (*unmap_sg)(struct ib_device *dev, 1740 struct scatterlist *sg, int nents, 1741 enum dma_data_direction direction); 1742 void (*sync_single_for_cpu)(struct ib_device *dev, 1743 u64 dma_handle, 1744 size_t size, 1745 enum dma_data_direction dir); 1746 void (*sync_single_for_device)(struct ib_device *dev, 1747 u64 dma_handle, 1748 size_t size, 1749 enum dma_data_direction dir); 1750 void *(*alloc_coherent)(struct ib_device *dev, 1751 size_t size, 1752 u64 *dma_handle, 1753 gfp_t flag); 1754 void (*free_coherent)(struct ib_device *dev, 1755 size_t size, void *cpu_addr, 1756 u64 dma_handle); 1757 }; 1758 1759 struct iw_cm_verbs; 1760 1761 struct ib_port_immutable { 1762 int pkey_tbl_len; 1763 int gid_tbl_len; 1764 u32 core_cap_flags; 1765 u32 max_mad_size; 1766 }; 1767 1768 struct ib_device { 1769 struct device *dma_device; 1770 1771 char name[IB_DEVICE_NAME_MAX]; 1772 1773 struct list_head event_handler_list; 1774 spinlock_t event_handler_lock; 1775 1776 spinlock_t client_data_lock; 1777 struct list_head core_list; 1778 /* Access to the client_data_list is protected by the client_data_lock 1779 * spinlock and the lists_rwsem read-write semaphore */ 1780 struct list_head client_data_list; 1781 1782 struct ib_cache cache; 1783 /** 1784 * port_immutable is indexed by port number 1785 */ 1786 struct ib_port_immutable *port_immutable; 1787 1788 int num_comp_vectors; 1789 1790 struct iw_cm_verbs *iwcm; 1791 1792 /** 1793 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the 1794 * driver initialized data. The struct is kfree()'ed by the sysfs 1795 * core when the device is removed. A lifespan of -1 in the return 1796 * struct tells the core to set a default lifespan. 1797 */ 1798 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device, 1799 u8 port_num); 1800 /** 1801 * get_hw_stats - Fill in the counter value(s) in the stats struct. 1802 * @index - The index in the value array we wish to have updated, or 1803 * num_counters if we want all stats updated 1804 * Return codes - 1805 * < 0 - Error, no counters updated 1806 * index - Updated the single counter pointed to by index 1807 * num_counters - Updated all counters (will reset the timestamp 1808 * and prevent further calls for lifespan milliseconds) 1809 * Drivers are allowed to update all counters in leiu of just the 1810 * one given in index at their option 1811 */ 1812 int (*get_hw_stats)(struct ib_device *device, 1813 struct rdma_hw_stats *stats, 1814 u8 port, int index); 1815 int (*query_device)(struct ib_device *device, 1816 struct ib_device_attr *device_attr, 1817 struct ib_udata *udata); 1818 int (*query_port)(struct ib_device *device, 1819 u8 port_num, 1820 struct ib_port_attr *port_attr); 1821 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 1822 u8 port_num); 1823 /* When calling get_netdev, the HW vendor's driver should return the 1824 * net device of device @device at port @port_num or NULL if such 1825 * a net device doesn't exist. The vendor driver should call dev_hold 1826 * on this net device. The HW vendor's device driver must guarantee 1827 * that this function returns NULL before the net device reaches 1828 * NETDEV_UNREGISTER_FINAL state. 1829 */ 1830 struct net_device *(*get_netdev)(struct ib_device *device, 1831 u8 port_num); 1832 int (*query_gid)(struct ib_device *device, 1833 u8 port_num, int index, 1834 union ib_gid *gid); 1835 /* When calling add_gid, the HW vendor's driver should 1836 * add the gid of device @device at gid index @index of 1837 * port @port_num to be @gid. Meta-info of that gid (for example, 1838 * the network device related to this gid is available 1839 * at @attr. @context allows the HW vendor driver to store extra 1840 * information together with a GID entry. The HW vendor may allocate 1841 * memory to contain this information and store it in @context when a 1842 * new GID entry is written to. Params are consistent until the next 1843 * call of add_gid or delete_gid. The function should return 0 on 1844 * success or error otherwise. The function could be called 1845 * concurrently for different ports. This function is only called 1846 * when roce_gid_table is used. 1847 */ 1848 int (*add_gid)(struct ib_device *device, 1849 u8 port_num, 1850 unsigned int index, 1851 const union ib_gid *gid, 1852 const struct ib_gid_attr *attr, 1853 void **context); 1854 /* When calling del_gid, the HW vendor's driver should delete the 1855 * gid of device @device at gid index @index of port @port_num. 1856 * Upon the deletion of a GID entry, the HW vendor must free any 1857 * allocated memory. The caller will clear @context afterwards. 1858 * This function is only called when roce_gid_table is used. 1859 */ 1860 int (*del_gid)(struct ib_device *device, 1861 u8 port_num, 1862 unsigned int index, 1863 void **context); 1864 int (*query_pkey)(struct ib_device *device, 1865 u8 port_num, u16 index, u16 *pkey); 1866 int (*modify_device)(struct ib_device *device, 1867 int device_modify_mask, 1868 struct ib_device_modify *device_modify); 1869 int (*modify_port)(struct ib_device *device, 1870 u8 port_num, int port_modify_mask, 1871 struct ib_port_modify *port_modify); 1872 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device, 1873 struct ib_udata *udata); 1874 int (*dealloc_ucontext)(struct ib_ucontext *context); 1875 int (*mmap)(struct ib_ucontext *context, 1876 struct vm_area_struct *vma); 1877 struct ib_pd * (*alloc_pd)(struct ib_device *device, 1878 struct ib_ucontext *context, 1879 struct ib_udata *udata); 1880 int (*dealloc_pd)(struct ib_pd *pd); 1881 struct ib_ah * (*create_ah)(struct ib_pd *pd, 1882 struct ib_ah_attr *ah_attr); 1883 int (*modify_ah)(struct ib_ah *ah, 1884 struct ib_ah_attr *ah_attr); 1885 int (*query_ah)(struct ib_ah *ah, 1886 struct ib_ah_attr *ah_attr); 1887 int (*destroy_ah)(struct ib_ah *ah); 1888 struct ib_srq * (*create_srq)(struct ib_pd *pd, 1889 struct ib_srq_init_attr *srq_init_attr, 1890 struct ib_udata *udata); 1891 int (*modify_srq)(struct ib_srq *srq, 1892 struct ib_srq_attr *srq_attr, 1893 enum ib_srq_attr_mask srq_attr_mask, 1894 struct ib_udata *udata); 1895 int (*query_srq)(struct ib_srq *srq, 1896 struct ib_srq_attr *srq_attr); 1897 int (*destroy_srq)(struct ib_srq *srq); 1898 int (*post_srq_recv)(struct ib_srq *srq, 1899 struct ib_recv_wr *recv_wr, 1900 struct ib_recv_wr **bad_recv_wr); 1901 struct ib_qp * (*create_qp)(struct ib_pd *pd, 1902 struct ib_qp_init_attr *qp_init_attr, 1903 struct ib_udata *udata); 1904 int (*modify_qp)(struct ib_qp *qp, 1905 struct ib_qp_attr *qp_attr, 1906 int qp_attr_mask, 1907 struct ib_udata *udata); 1908 int (*query_qp)(struct ib_qp *qp, 1909 struct ib_qp_attr *qp_attr, 1910 int qp_attr_mask, 1911 struct ib_qp_init_attr *qp_init_attr); 1912 int (*destroy_qp)(struct ib_qp *qp); 1913 int (*post_send)(struct ib_qp *qp, 1914 struct ib_send_wr *send_wr, 1915 struct ib_send_wr **bad_send_wr); 1916 int (*post_recv)(struct ib_qp *qp, 1917 struct ib_recv_wr *recv_wr, 1918 struct ib_recv_wr **bad_recv_wr); 1919 struct ib_cq * (*create_cq)(struct ib_device *device, 1920 const struct ib_cq_init_attr *attr, 1921 struct ib_ucontext *context, 1922 struct ib_udata *udata); 1923 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, 1924 u16 cq_period); 1925 int (*destroy_cq)(struct ib_cq *cq); 1926 int (*resize_cq)(struct ib_cq *cq, int cqe, 1927 struct ib_udata *udata); 1928 int (*poll_cq)(struct ib_cq *cq, int num_entries, 1929 struct ib_wc *wc); 1930 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 1931 int (*req_notify_cq)(struct ib_cq *cq, 1932 enum ib_cq_notify_flags flags); 1933 int (*req_ncomp_notif)(struct ib_cq *cq, 1934 int wc_cnt); 1935 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, 1936 int mr_access_flags); 1937 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, 1938 u64 start, u64 length, 1939 u64 virt_addr, 1940 int mr_access_flags, 1941 struct ib_udata *udata); 1942 int (*rereg_user_mr)(struct ib_mr *mr, 1943 int flags, 1944 u64 start, u64 length, 1945 u64 virt_addr, 1946 int mr_access_flags, 1947 struct ib_pd *pd, 1948 struct ib_udata *udata); 1949 int (*dereg_mr)(struct ib_mr *mr); 1950 struct ib_mr * (*alloc_mr)(struct ib_pd *pd, 1951 enum ib_mr_type mr_type, 1952 u32 max_num_sg); 1953 int (*map_mr_sg)(struct ib_mr *mr, 1954 struct scatterlist *sg, 1955 int sg_nents, 1956 unsigned int *sg_offset); 1957 struct ib_mw * (*alloc_mw)(struct ib_pd *pd, 1958 enum ib_mw_type type, 1959 struct ib_udata *udata); 1960 int (*dealloc_mw)(struct ib_mw *mw); 1961 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, 1962 int mr_access_flags, 1963 struct ib_fmr_attr *fmr_attr); 1964 int (*map_phys_fmr)(struct ib_fmr *fmr, 1965 u64 *page_list, int list_len, 1966 u64 iova); 1967 int (*unmap_fmr)(struct list_head *fmr_list); 1968 int (*dealloc_fmr)(struct ib_fmr *fmr); 1969 int (*attach_mcast)(struct ib_qp *qp, 1970 union ib_gid *gid, 1971 u16 lid); 1972 int (*detach_mcast)(struct ib_qp *qp, 1973 union ib_gid *gid, 1974 u16 lid); 1975 int (*process_mad)(struct ib_device *device, 1976 int process_mad_flags, 1977 u8 port_num, 1978 const struct ib_wc *in_wc, 1979 const struct ib_grh *in_grh, 1980 const struct ib_mad_hdr *in_mad, 1981 size_t in_mad_size, 1982 struct ib_mad_hdr *out_mad, 1983 size_t *out_mad_size, 1984 u16 *out_mad_pkey_index); 1985 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device, 1986 struct ib_ucontext *ucontext, 1987 struct ib_udata *udata); 1988 int (*dealloc_xrcd)(struct ib_xrcd *xrcd); 1989 struct ib_flow * (*create_flow)(struct ib_qp *qp, 1990 struct ib_flow_attr 1991 *flow_attr, 1992 int domain); 1993 int (*destroy_flow)(struct ib_flow *flow_id); 1994 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 1995 struct ib_mr_status *mr_status); 1996 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 1997 void (*drain_rq)(struct ib_qp *qp); 1998 void (*drain_sq)(struct ib_qp *qp); 1999 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port, 2000 int state); 2001 int (*get_vf_config)(struct ib_device *device, int vf, u8 port, 2002 struct ifla_vf_info *ivf); 2003 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port, 2004 struct ifla_vf_stats *stats); 2005 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid, 2006 int type); 2007 struct ib_wq * (*create_wq)(struct ib_pd *pd, 2008 struct ib_wq_init_attr *init_attr, 2009 struct ib_udata *udata); 2010 int (*destroy_wq)(struct ib_wq *wq); 2011 int (*modify_wq)(struct ib_wq *wq, 2012 struct ib_wq_attr *attr, 2013 u32 wq_attr_mask, 2014 struct ib_udata *udata); 2015 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device, 2016 struct ib_rwq_ind_table_init_attr *init_attr, 2017 struct ib_udata *udata); 2018 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table); 2019 struct ib_dma_mapping_ops *dma_ops; 2020 2021 struct module *owner; 2022 struct device dev; 2023 struct kobject *ports_parent; 2024 struct list_head port_list; 2025 2026 enum { 2027 IB_DEV_UNINITIALIZED, 2028 IB_DEV_REGISTERED, 2029 IB_DEV_UNREGISTERED 2030 } reg_state; 2031 2032 int uverbs_abi_ver; 2033 u64 uverbs_cmd_mask; 2034 u64 uverbs_ex_cmd_mask; 2035 2036 char node_desc[64]; 2037 __be64 node_guid; 2038 u32 local_dma_lkey; 2039 u16 is_switch:1; 2040 u8 node_type; 2041 u8 phys_port_cnt; 2042 struct ib_device_attr attrs; 2043 struct attribute_group *hw_stats_ag; 2044 struct rdma_hw_stats *hw_stats; 2045 2046 /** 2047 * The following mandatory functions are used only at device 2048 * registration. Keep functions such as these at the end of this 2049 * structure to avoid cache line misses when accessing struct ib_device 2050 * in fast paths. 2051 */ 2052 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *); 2053 void (*get_dev_fw_str)(struct ib_device *, char *str, size_t str_len); 2054 }; 2055 2056 struct ib_client { 2057 char *name; 2058 void (*add) (struct ib_device *); 2059 void (*remove)(struct ib_device *, void *client_data); 2060 2061 /* Returns the net_dev belonging to this ib_client and matching the 2062 * given parameters. 2063 * @dev: An RDMA device that the net_dev use for communication. 2064 * @port: A physical port number on the RDMA device. 2065 * @pkey: P_Key that the net_dev uses if applicable. 2066 * @gid: A GID that the net_dev uses to communicate. 2067 * @addr: An IP address the net_dev is configured with. 2068 * @client_data: The device's client data set by ib_set_client_data(). 2069 * 2070 * An ib_client that implements a net_dev on top of RDMA devices 2071 * (such as IP over IB) should implement this callback, allowing the 2072 * rdma_cm module to find the right net_dev for a given request. 2073 * 2074 * The caller is responsible for calling dev_put on the returned 2075 * netdev. */ 2076 struct net_device *(*get_net_dev_by_params)( 2077 struct ib_device *dev, 2078 u8 port, 2079 u16 pkey, 2080 const union ib_gid *gid, 2081 const struct sockaddr *addr, 2082 void *client_data); 2083 struct list_head list; 2084 }; 2085 2086 struct ib_device *ib_alloc_device(size_t size); 2087 void ib_dealloc_device(struct ib_device *device); 2088 2089 void ib_get_device_fw_str(struct ib_device *device, char *str, size_t str_len); 2090 2091 int ib_register_device(struct ib_device *device, 2092 int (*port_callback)(struct ib_device *, 2093 u8, struct kobject *)); 2094 void ib_unregister_device(struct ib_device *device); 2095 2096 int ib_register_client (struct ib_client *client); 2097 void ib_unregister_client(struct ib_client *client); 2098 2099 void *ib_get_client_data(struct ib_device *device, struct ib_client *client); 2100 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 2101 void *data); 2102 2103 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 2104 { 2105 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 2106 } 2107 2108 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 2109 { 2110 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 2111 } 2112 2113 static inline bool ib_is_udata_cleared(struct ib_udata *udata, 2114 size_t offset, 2115 size_t len) 2116 { 2117 const void __user *p = udata->inbuf + offset; 2118 bool ret; 2119 u8 *buf; 2120 2121 if (len > USHRT_MAX) 2122 return false; 2123 2124 buf = memdup_user(p, len); 2125 if (IS_ERR(buf)) 2126 return false; 2127 2128 ret = !memchr_inv(buf, 0, len); 2129 kfree(buf); 2130 return ret; 2131 } 2132 2133 /** 2134 * ib_modify_qp_is_ok - Check that the supplied attribute mask 2135 * contains all required attributes and no attributes not allowed for 2136 * the given QP state transition. 2137 * @cur_state: Current QP state 2138 * @next_state: Next QP state 2139 * @type: QP type 2140 * @mask: Mask of supplied QP attributes 2141 * @ll : link layer of port 2142 * 2143 * This function is a helper function that a low-level driver's 2144 * modify_qp method can use to validate the consumer's input. It 2145 * checks that cur_state and next_state are valid QP states, that a 2146 * transition from cur_state to next_state is allowed by the IB spec, 2147 * and that the attribute mask supplied is allowed for the transition. 2148 */ 2149 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 2150 enum ib_qp_type type, enum ib_qp_attr_mask mask, 2151 enum rdma_link_layer ll); 2152 2153 int ib_register_event_handler (struct ib_event_handler *event_handler); 2154 int ib_unregister_event_handler(struct ib_event_handler *event_handler); 2155 void ib_dispatch_event(struct ib_event *event); 2156 2157 int ib_query_port(struct ib_device *device, 2158 u8 port_num, struct ib_port_attr *port_attr); 2159 2160 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 2161 u8 port_num); 2162 2163 /** 2164 * rdma_cap_ib_switch - Check if the device is IB switch 2165 * @device: Device to check 2166 * 2167 * Device driver is responsible for setting is_switch bit on 2168 * in ib_device structure at init time. 2169 * 2170 * Return: true if the device is IB switch. 2171 */ 2172 static inline bool rdma_cap_ib_switch(const struct ib_device *device) 2173 { 2174 return device->is_switch; 2175 } 2176 2177 /** 2178 * rdma_start_port - Return the first valid port number for the device 2179 * specified 2180 * 2181 * @device: Device to be checked 2182 * 2183 * Return start port number 2184 */ 2185 static inline u8 rdma_start_port(const struct ib_device *device) 2186 { 2187 return rdma_cap_ib_switch(device) ? 0 : 1; 2188 } 2189 2190 /** 2191 * rdma_end_port - Return the last valid port number for the device 2192 * specified 2193 * 2194 * @device: Device to be checked 2195 * 2196 * Return last port number 2197 */ 2198 static inline u8 rdma_end_port(const struct ib_device *device) 2199 { 2200 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 2201 } 2202 2203 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num) 2204 { 2205 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB; 2206 } 2207 2208 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num) 2209 { 2210 return device->port_immutable[port_num].core_cap_flags & 2211 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); 2212 } 2213 2214 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num) 2215 { 2216 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; 2217 } 2218 2219 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num) 2220 { 2221 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE; 2222 } 2223 2224 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num) 2225 { 2226 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP; 2227 } 2228 2229 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num) 2230 { 2231 return rdma_protocol_ib(device, port_num) || 2232 rdma_protocol_roce(device, port_num); 2233 } 2234 2235 /** 2236 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 2237 * Management Datagrams. 2238 * @device: Device to check 2239 * @port_num: Port number to check 2240 * 2241 * Management Datagrams (MAD) are a required part of the InfiniBand 2242 * specification and are supported on all InfiniBand devices. A slightly 2243 * extended version are also supported on OPA interfaces. 2244 * 2245 * Return: true if the port supports sending/receiving of MAD packets. 2246 */ 2247 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num) 2248 { 2249 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD; 2250 } 2251 2252 /** 2253 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 2254 * Management Datagrams. 2255 * @device: Device to check 2256 * @port_num: Port number to check 2257 * 2258 * Intel OmniPath devices extend and/or replace the InfiniBand Management 2259 * datagrams with their own versions. These OPA MADs share many but not all of 2260 * the characteristics of InfiniBand MADs. 2261 * 2262 * OPA MADs differ in the following ways: 2263 * 2264 * 1) MADs are variable size up to 2K 2265 * IBTA defined MADs remain fixed at 256 bytes 2266 * 2) OPA SMPs must carry valid PKeys 2267 * 3) OPA SMP packets are a different format 2268 * 2269 * Return: true if the port supports OPA MAD packet formats. 2270 */ 2271 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num) 2272 { 2273 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD) 2274 == RDMA_CORE_CAP_OPA_MAD; 2275 } 2276 2277 /** 2278 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 2279 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 2280 * @device: Device to check 2281 * @port_num: Port number to check 2282 * 2283 * Each InfiniBand node is required to provide a Subnet Management Agent 2284 * that the subnet manager can access. Prior to the fabric being fully 2285 * configured by the subnet manager, the SMA is accessed via a well known 2286 * interface called the Subnet Management Interface (SMI). This interface 2287 * uses directed route packets to communicate with the SM to get around the 2288 * chicken and egg problem of the SM needing to know what's on the fabric 2289 * in order to configure the fabric, and needing to configure the fabric in 2290 * order to send packets to the devices on the fabric. These directed 2291 * route packets do not need the fabric fully configured in order to reach 2292 * their destination. The SMI is the only method allowed to send 2293 * directed route packets on an InfiniBand fabric. 2294 * 2295 * Return: true if the port provides an SMI. 2296 */ 2297 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num) 2298 { 2299 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI; 2300 } 2301 2302 /** 2303 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 2304 * Communication Manager. 2305 * @device: Device to check 2306 * @port_num: Port number to check 2307 * 2308 * The InfiniBand Communication Manager is one of many pre-defined General 2309 * Service Agents (GSA) that are accessed via the General Service 2310 * Interface (GSI). It's role is to facilitate establishment of connections 2311 * between nodes as well as other management related tasks for established 2312 * connections. 2313 * 2314 * Return: true if the port supports an IB CM (this does not guarantee that 2315 * a CM is actually running however). 2316 */ 2317 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num) 2318 { 2319 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM; 2320 } 2321 2322 /** 2323 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 2324 * Communication Manager. 2325 * @device: Device to check 2326 * @port_num: Port number to check 2327 * 2328 * Similar to above, but specific to iWARP connections which have a different 2329 * managment protocol than InfiniBand. 2330 * 2331 * Return: true if the port supports an iWARP CM (this does not guarantee that 2332 * a CM is actually running however). 2333 */ 2334 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num) 2335 { 2336 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM; 2337 } 2338 2339 /** 2340 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 2341 * Subnet Administration. 2342 * @device: Device to check 2343 * @port_num: Port number to check 2344 * 2345 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 2346 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 2347 * fabrics, devices should resolve routes to other hosts by contacting the 2348 * SA to query the proper route. 2349 * 2350 * Return: true if the port should act as a client to the fabric Subnet 2351 * Administration interface. This does not imply that the SA service is 2352 * running locally. 2353 */ 2354 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num) 2355 { 2356 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA; 2357 } 2358 2359 /** 2360 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 2361 * Multicast. 2362 * @device: Device to check 2363 * @port_num: Port number to check 2364 * 2365 * InfiniBand multicast registration is more complex than normal IPv4 or 2366 * IPv6 multicast registration. Each Host Channel Adapter must register 2367 * with the Subnet Manager when it wishes to join a multicast group. It 2368 * should do so only once regardless of how many queue pairs it subscribes 2369 * to this group. And it should leave the group only after all queue pairs 2370 * attached to the group have been detached. 2371 * 2372 * Return: true if the port must undertake the additional adminstrative 2373 * overhead of registering/unregistering with the SM and tracking of the 2374 * total number of queue pairs attached to the multicast group. 2375 */ 2376 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num) 2377 { 2378 return rdma_cap_ib_sa(device, port_num); 2379 } 2380 2381 /** 2382 * rdma_cap_af_ib - Check if the port of device has the capability 2383 * Native Infiniband Address. 2384 * @device: Device to check 2385 * @port_num: Port number to check 2386 * 2387 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 2388 * GID. RoCE uses a different mechanism, but still generates a GID via 2389 * a prescribed mechanism and port specific data. 2390 * 2391 * Return: true if the port uses a GID address to identify devices on the 2392 * network. 2393 */ 2394 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num) 2395 { 2396 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB; 2397 } 2398 2399 /** 2400 * rdma_cap_eth_ah - Check if the port of device has the capability 2401 * Ethernet Address Handle. 2402 * @device: Device to check 2403 * @port_num: Port number to check 2404 * 2405 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 2406 * to fabricate GIDs over Ethernet/IP specific addresses native to the 2407 * port. Normally, packet headers are generated by the sending host 2408 * adapter, but when sending connectionless datagrams, we must manually 2409 * inject the proper headers for the fabric we are communicating over. 2410 * 2411 * Return: true if we are running as a RoCE port and must force the 2412 * addition of a Global Route Header built from our Ethernet Address 2413 * Handle into our header list for connectionless packets. 2414 */ 2415 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num) 2416 { 2417 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH; 2418 } 2419 2420 /** 2421 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 2422 * 2423 * @device: Device 2424 * @port_num: Port number 2425 * 2426 * This MAD size includes the MAD headers and MAD payload. No other headers 2427 * are included. 2428 * 2429 * Return the max MAD size required by the Port. Will return 0 if the port 2430 * does not support MADs 2431 */ 2432 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num) 2433 { 2434 return device->port_immutable[port_num].max_mad_size; 2435 } 2436 2437 /** 2438 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 2439 * @device: Device to check 2440 * @port_num: Port number to check 2441 * 2442 * RoCE GID table mechanism manages the various GIDs for a device. 2443 * 2444 * NOTE: if allocating the port's GID table has failed, this call will still 2445 * return true, but any RoCE GID table API will fail. 2446 * 2447 * Return: true if the port uses RoCE GID table mechanism in order to manage 2448 * its GIDs. 2449 */ 2450 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 2451 u8 port_num) 2452 { 2453 return rdma_protocol_roce(device, port_num) && 2454 device->add_gid && device->del_gid; 2455 } 2456 2457 /* 2458 * Check if the device supports READ W/ INVALIDATE. 2459 */ 2460 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num) 2461 { 2462 /* 2463 * iWarp drivers must support READ W/ INVALIDATE. No other protocol 2464 * has support for it yet. 2465 */ 2466 return rdma_protocol_iwarp(dev, port_num); 2467 } 2468 2469 int ib_query_gid(struct ib_device *device, 2470 u8 port_num, int index, union ib_gid *gid, 2471 struct ib_gid_attr *attr); 2472 2473 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 2474 int state); 2475 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 2476 struct ifla_vf_info *info); 2477 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 2478 struct ifla_vf_stats *stats); 2479 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 2480 int type); 2481 2482 int ib_query_pkey(struct ib_device *device, 2483 u8 port_num, u16 index, u16 *pkey); 2484 2485 int ib_modify_device(struct ib_device *device, 2486 int device_modify_mask, 2487 struct ib_device_modify *device_modify); 2488 2489 int ib_modify_port(struct ib_device *device, 2490 u8 port_num, int port_modify_mask, 2491 struct ib_port_modify *port_modify); 2492 2493 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 2494 enum ib_gid_type gid_type, struct net_device *ndev, 2495 u8 *port_num, u16 *index); 2496 2497 int ib_find_pkey(struct ib_device *device, 2498 u8 port_num, u16 pkey, u16 *index); 2499 2500 struct ib_pd *ib_alloc_pd(struct ib_device *device); 2501 2502 void ib_dealloc_pd(struct ib_pd *pd); 2503 2504 /** 2505 * ib_create_ah - Creates an address handle for the given address vector. 2506 * @pd: The protection domain associated with the address handle. 2507 * @ah_attr: The attributes of the address vector. 2508 * 2509 * The address handle is used to reference a local or global destination 2510 * in all UD QP post sends. 2511 */ 2512 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr); 2513 2514 /** 2515 * ib_init_ah_from_wc - Initializes address handle attributes from a 2516 * work completion. 2517 * @device: Device on which the received message arrived. 2518 * @port_num: Port on which the received message arrived. 2519 * @wc: Work completion associated with the received message. 2520 * @grh: References the received global route header. This parameter is 2521 * ignored unless the work completion indicates that the GRH is valid. 2522 * @ah_attr: Returned attributes that can be used when creating an address 2523 * handle for replying to the message. 2524 */ 2525 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, 2526 const struct ib_wc *wc, const struct ib_grh *grh, 2527 struct ib_ah_attr *ah_attr); 2528 2529 /** 2530 * ib_create_ah_from_wc - Creates an address handle associated with the 2531 * sender of the specified work completion. 2532 * @pd: The protection domain associated with the address handle. 2533 * @wc: Work completion information associated with a received message. 2534 * @grh: References the received global route header. This parameter is 2535 * ignored unless the work completion indicates that the GRH is valid. 2536 * @port_num: The outbound port number to associate with the address. 2537 * 2538 * The address handle is used to reference a local or global destination 2539 * in all UD QP post sends. 2540 */ 2541 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 2542 const struct ib_grh *grh, u8 port_num); 2543 2544 /** 2545 * ib_modify_ah - Modifies the address vector associated with an address 2546 * handle. 2547 * @ah: The address handle to modify. 2548 * @ah_attr: The new address vector attributes to associate with the 2549 * address handle. 2550 */ 2551 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 2552 2553 /** 2554 * ib_query_ah - Queries the address vector associated with an address 2555 * handle. 2556 * @ah: The address handle to query. 2557 * @ah_attr: The address vector attributes associated with the address 2558 * handle. 2559 */ 2560 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 2561 2562 /** 2563 * ib_destroy_ah - Destroys an address handle. 2564 * @ah: The address handle to destroy. 2565 */ 2566 int ib_destroy_ah(struct ib_ah *ah); 2567 2568 /** 2569 * ib_create_srq - Creates a SRQ associated with the specified protection 2570 * domain. 2571 * @pd: The protection domain associated with the SRQ. 2572 * @srq_init_attr: A list of initial attributes required to create the 2573 * SRQ. If SRQ creation succeeds, then the attributes are updated to 2574 * the actual capabilities of the created SRQ. 2575 * 2576 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 2577 * requested size of the SRQ, and set to the actual values allocated 2578 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 2579 * will always be at least as large as the requested values. 2580 */ 2581 struct ib_srq *ib_create_srq(struct ib_pd *pd, 2582 struct ib_srq_init_attr *srq_init_attr); 2583 2584 /** 2585 * ib_modify_srq - Modifies the attributes for the specified SRQ. 2586 * @srq: The SRQ to modify. 2587 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 2588 * the current values of selected SRQ attributes are returned. 2589 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 2590 * are being modified. 2591 * 2592 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 2593 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 2594 * the number of receives queued drops below the limit. 2595 */ 2596 int ib_modify_srq(struct ib_srq *srq, 2597 struct ib_srq_attr *srq_attr, 2598 enum ib_srq_attr_mask srq_attr_mask); 2599 2600 /** 2601 * ib_query_srq - Returns the attribute list and current values for the 2602 * specified SRQ. 2603 * @srq: The SRQ to query. 2604 * @srq_attr: The attributes of the specified SRQ. 2605 */ 2606 int ib_query_srq(struct ib_srq *srq, 2607 struct ib_srq_attr *srq_attr); 2608 2609 /** 2610 * ib_destroy_srq - Destroys the specified SRQ. 2611 * @srq: The SRQ to destroy. 2612 */ 2613 int ib_destroy_srq(struct ib_srq *srq); 2614 2615 /** 2616 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 2617 * @srq: The SRQ to post the work request on. 2618 * @recv_wr: A list of work requests to post on the receive queue. 2619 * @bad_recv_wr: On an immediate failure, this parameter will reference 2620 * the work request that failed to be posted on the QP. 2621 */ 2622 static inline int ib_post_srq_recv(struct ib_srq *srq, 2623 struct ib_recv_wr *recv_wr, 2624 struct ib_recv_wr **bad_recv_wr) 2625 { 2626 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr); 2627 } 2628 2629 /** 2630 * ib_create_qp - Creates a QP associated with the specified protection 2631 * domain. 2632 * @pd: The protection domain associated with the QP. 2633 * @qp_init_attr: A list of initial attributes required to create the 2634 * QP. If QP creation succeeds, then the attributes are updated to 2635 * the actual capabilities of the created QP. 2636 */ 2637 struct ib_qp *ib_create_qp(struct ib_pd *pd, 2638 struct ib_qp_init_attr *qp_init_attr); 2639 2640 /** 2641 * ib_modify_qp - Modifies the attributes for the specified QP and then 2642 * transitions the QP to the given state. 2643 * @qp: The QP to modify. 2644 * @qp_attr: On input, specifies the QP attributes to modify. On output, 2645 * the current values of selected QP attributes are returned. 2646 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 2647 * are being modified. 2648 */ 2649 int ib_modify_qp(struct ib_qp *qp, 2650 struct ib_qp_attr *qp_attr, 2651 int qp_attr_mask); 2652 2653 /** 2654 * ib_query_qp - Returns the attribute list and current values for the 2655 * specified QP. 2656 * @qp: The QP to query. 2657 * @qp_attr: The attributes of the specified QP. 2658 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 2659 * @qp_init_attr: Additional attributes of the selected QP. 2660 * 2661 * The qp_attr_mask may be used to limit the query to gathering only the 2662 * selected attributes. 2663 */ 2664 int ib_query_qp(struct ib_qp *qp, 2665 struct ib_qp_attr *qp_attr, 2666 int qp_attr_mask, 2667 struct ib_qp_init_attr *qp_init_attr); 2668 2669 /** 2670 * ib_destroy_qp - Destroys the specified QP. 2671 * @qp: The QP to destroy. 2672 */ 2673 int ib_destroy_qp(struct ib_qp *qp); 2674 2675 /** 2676 * ib_open_qp - Obtain a reference to an existing sharable QP. 2677 * @xrcd - XRC domain 2678 * @qp_open_attr: Attributes identifying the QP to open. 2679 * 2680 * Returns a reference to a sharable QP. 2681 */ 2682 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 2683 struct ib_qp_open_attr *qp_open_attr); 2684 2685 /** 2686 * ib_close_qp - Release an external reference to a QP. 2687 * @qp: The QP handle to release 2688 * 2689 * The opened QP handle is released by the caller. The underlying 2690 * shared QP is not destroyed until all internal references are released. 2691 */ 2692 int ib_close_qp(struct ib_qp *qp); 2693 2694 /** 2695 * ib_post_send - Posts a list of work requests to the send queue of 2696 * the specified QP. 2697 * @qp: The QP to post the work request on. 2698 * @send_wr: A list of work requests to post on the send queue. 2699 * @bad_send_wr: On an immediate failure, this parameter will reference 2700 * the work request that failed to be posted on the QP. 2701 * 2702 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 2703 * error is returned, the QP state shall not be affected, 2704 * ib_post_send() will return an immediate error after queueing any 2705 * earlier work requests in the list. 2706 */ 2707 static inline int ib_post_send(struct ib_qp *qp, 2708 struct ib_send_wr *send_wr, 2709 struct ib_send_wr **bad_send_wr) 2710 { 2711 return qp->device->post_send(qp, send_wr, bad_send_wr); 2712 } 2713 2714 /** 2715 * ib_post_recv - Posts a list of work requests to the receive queue of 2716 * the specified QP. 2717 * @qp: The QP to post the work request on. 2718 * @recv_wr: A list of work requests to post on the receive queue. 2719 * @bad_recv_wr: On an immediate failure, this parameter will reference 2720 * the work request that failed to be posted on the QP. 2721 */ 2722 static inline int ib_post_recv(struct ib_qp *qp, 2723 struct ib_recv_wr *recv_wr, 2724 struct ib_recv_wr **bad_recv_wr) 2725 { 2726 return qp->device->post_recv(qp, recv_wr, bad_recv_wr); 2727 } 2728 2729 struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private, 2730 int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx); 2731 void ib_free_cq(struct ib_cq *cq); 2732 int ib_process_cq_direct(struct ib_cq *cq, int budget); 2733 2734 /** 2735 * ib_create_cq - Creates a CQ on the specified device. 2736 * @device: The device on which to create the CQ. 2737 * @comp_handler: A user-specified callback that is invoked when a 2738 * completion event occurs on the CQ. 2739 * @event_handler: A user-specified callback that is invoked when an 2740 * asynchronous event not associated with a completion occurs on the CQ. 2741 * @cq_context: Context associated with the CQ returned to the user via 2742 * the associated completion and event handlers. 2743 * @cq_attr: The attributes the CQ should be created upon. 2744 * 2745 * Users can examine the cq structure to determine the actual CQ size. 2746 */ 2747 struct ib_cq *ib_create_cq(struct ib_device *device, 2748 ib_comp_handler comp_handler, 2749 void (*event_handler)(struct ib_event *, void *), 2750 void *cq_context, 2751 const struct ib_cq_init_attr *cq_attr); 2752 2753 /** 2754 * ib_resize_cq - Modifies the capacity of the CQ. 2755 * @cq: The CQ to resize. 2756 * @cqe: The minimum size of the CQ. 2757 * 2758 * Users can examine the cq structure to determine the actual CQ size. 2759 */ 2760 int ib_resize_cq(struct ib_cq *cq, int cqe); 2761 2762 /** 2763 * ib_modify_cq - Modifies moderation params of the CQ 2764 * @cq: The CQ to modify. 2765 * @cq_count: number of CQEs that will trigger an event 2766 * @cq_period: max period of time in usec before triggering an event 2767 * 2768 */ 2769 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period); 2770 2771 /** 2772 * ib_destroy_cq - Destroys the specified CQ. 2773 * @cq: The CQ to destroy. 2774 */ 2775 int ib_destroy_cq(struct ib_cq *cq); 2776 2777 /** 2778 * ib_poll_cq - poll a CQ for completion(s) 2779 * @cq:the CQ being polled 2780 * @num_entries:maximum number of completions to return 2781 * @wc:array of at least @num_entries &struct ib_wc where completions 2782 * will be returned 2783 * 2784 * Poll a CQ for (possibly multiple) completions. If the return value 2785 * is < 0, an error occurred. If the return value is >= 0, it is the 2786 * number of completions returned. If the return value is 2787 * non-negative and < num_entries, then the CQ was emptied. 2788 */ 2789 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 2790 struct ib_wc *wc) 2791 { 2792 return cq->device->poll_cq(cq, num_entries, wc); 2793 } 2794 2795 /** 2796 * ib_peek_cq - Returns the number of unreaped completions currently 2797 * on the specified CQ. 2798 * @cq: The CQ to peek. 2799 * @wc_cnt: A minimum number of unreaped completions to check for. 2800 * 2801 * If the number of unreaped completions is greater than or equal to wc_cnt, 2802 * this function returns wc_cnt, otherwise, it returns the actual number of 2803 * unreaped completions. 2804 */ 2805 int ib_peek_cq(struct ib_cq *cq, int wc_cnt); 2806 2807 /** 2808 * ib_req_notify_cq - Request completion notification on a CQ. 2809 * @cq: The CQ to generate an event for. 2810 * @flags: 2811 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 2812 * to request an event on the next solicited event or next work 2813 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 2814 * may also be |ed in to request a hint about missed events, as 2815 * described below. 2816 * 2817 * Return Value: 2818 * < 0 means an error occurred while requesting notification 2819 * == 0 means notification was requested successfully, and if 2820 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 2821 * were missed and it is safe to wait for another event. In 2822 * this case is it guaranteed that any work completions added 2823 * to the CQ since the last CQ poll will trigger a completion 2824 * notification event. 2825 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 2826 * in. It means that the consumer must poll the CQ again to 2827 * make sure it is empty to avoid missing an event because of a 2828 * race between requesting notification and an entry being 2829 * added to the CQ. This return value means it is possible 2830 * (but not guaranteed) that a work completion has been added 2831 * to the CQ since the last poll without triggering a 2832 * completion notification event. 2833 */ 2834 static inline int ib_req_notify_cq(struct ib_cq *cq, 2835 enum ib_cq_notify_flags flags) 2836 { 2837 return cq->device->req_notify_cq(cq, flags); 2838 } 2839 2840 /** 2841 * ib_req_ncomp_notif - Request completion notification when there are 2842 * at least the specified number of unreaped completions on the CQ. 2843 * @cq: The CQ to generate an event for. 2844 * @wc_cnt: The number of unreaped completions that should be on the 2845 * CQ before an event is generated. 2846 */ 2847 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 2848 { 2849 return cq->device->req_ncomp_notif ? 2850 cq->device->req_ncomp_notif(cq, wc_cnt) : 2851 -ENOSYS; 2852 } 2853 2854 /** 2855 * ib_get_dma_mr - Returns a memory region for system memory that is 2856 * usable for DMA. 2857 * @pd: The protection domain associated with the memory region. 2858 * @mr_access_flags: Specifies the memory access rights. 2859 * 2860 * Note that the ib_dma_*() functions defined below must be used 2861 * to create/destroy addresses used with the Lkey or Rkey returned 2862 * by ib_get_dma_mr(). 2863 */ 2864 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags); 2865 2866 /** 2867 * ib_dma_mapping_error - check a DMA addr for error 2868 * @dev: The device for which the dma_addr was created 2869 * @dma_addr: The DMA address to check 2870 */ 2871 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 2872 { 2873 if (dev->dma_ops) 2874 return dev->dma_ops->mapping_error(dev, dma_addr); 2875 return dma_mapping_error(dev->dma_device, dma_addr); 2876 } 2877 2878 /** 2879 * ib_dma_map_single - Map a kernel virtual address to DMA address 2880 * @dev: The device for which the dma_addr is to be created 2881 * @cpu_addr: The kernel virtual address 2882 * @size: The size of the region in bytes 2883 * @direction: The direction of the DMA 2884 */ 2885 static inline u64 ib_dma_map_single(struct ib_device *dev, 2886 void *cpu_addr, size_t size, 2887 enum dma_data_direction direction) 2888 { 2889 if (dev->dma_ops) 2890 return dev->dma_ops->map_single(dev, cpu_addr, size, direction); 2891 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 2892 } 2893 2894 /** 2895 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 2896 * @dev: The device for which the DMA address was created 2897 * @addr: The DMA address 2898 * @size: The size of the region in bytes 2899 * @direction: The direction of the DMA 2900 */ 2901 static inline void ib_dma_unmap_single(struct ib_device *dev, 2902 u64 addr, size_t size, 2903 enum dma_data_direction direction) 2904 { 2905 if (dev->dma_ops) 2906 dev->dma_ops->unmap_single(dev, addr, size, direction); 2907 else 2908 dma_unmap_single(dev->dma_device, addr, size, direction); 2909 } 2910 2911 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev, 2912 void *cpu_addr, size_t size, 2913 enum dma_data_direction direction, 2914 unsigned long dma_attrs) 2915 { 2916 return dma_map_single_attrs(dev->dma_device, cpu_addr, size, 2917 direction, dma_attrs); 2918 } 2919 2920 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev, 2921 u64 addr, size_t size, 2922 enum dma_data_direction direction, 2923 unsigned long dma_attrs) 2924 { 2925 return dma_unmap_single_attrs(dev->dma_device, addr, size, 2926 direction, dma_attrs); 2927 } 2928 2929 /** 2930 * ib_dma_map_page - Map a physical page to DMA address 2931 * @dev: The device for which the dma_addr is to be created 2932 * @page: The page to be mapped 2933 * @offset: The offset within the page 2934 * @size: The size of the region in bytes 2935 * @direction: The direction of the DMA 2936 */ 2937 static inline u64 ib_dma_map_page(struct ib_device *dev, 2938 struct page *page, 2939 unsigned long offset, 2940 size_t size, 2941 enum dma_data_direction direction) 2942 { 2943 if (dev->dma_ops) 2944 return dev->dma_ops->map_page(dev, page, offset, size, direction); 2945 return dma_map_page(dev->dma_device, page, offset, size, direction); 2946 } 2947 2948 /** 2949 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 2950 * @dev: The device for which the DMA address was created 2951 * @addr: The DMA address 2952 * @size: The size of the region in bytes 2953 * @direction: The direction of the DMA 2954 */ 2955 static inline void ib_dma_unmap_page(struct ib_device *dev, 2956 u64 addr, size_t size, 2957 enum dma_data_direction direction) 2958 { 2959 if (dev->dma_ops) 2960 dev->dma_ops->unmap_page(dev, addr, size, direction); 2961 else 2962 dma_unmap_page(dev->dma_device, addr, size, direction); 2963 } 2964 2965 /** 2966 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 2967 * @dev: The device for which the DMA addresses are to be created 2968 * @sg: The array of scatter/gather entries 2969 * @nents: The number of scatter/gather entries 2970 * @direction: The direction of the DMA 2971 */ 2972 static inline int ib_dma_map_sg(struct ib_device *dev, 2973 struct scatterlist *sg, int nents, 2974 enum dma_data_direction direction) 2975 { 2976 if (dev->dma_ops) 2977 return dev->dma_ops->map_sg(dev, sg, nents, direction); 2978 return dma_map_sg(dev->dma_device, sg, nents, direction); 2979 } 2980 2981 /** 2982 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 2983 * @dev: The device for which the DMA addresses were created 2984 * @sg: The array of scatter/gather entries 2985 * @nents: The number of scatter/gather entries 2986 * @direction: The direction of the DMA 2987 */ 2988 static inline void ib_dma_unmap_sg(struct ib_device *dev, 2989 struct scatterlist *sg, int nents, 2990 enum dma_data_direction direction) 2991 { 2992 if (dev->dma_ops) 2993 dev->dma_ops->unmap_sg(dev, sg, nents, direction); 2994 else 2995 dma_unmap_sg(dev->dma_device, sg, nents, direction); 2996 } 2997 2998 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 2999 struct scatterlist *sg, int nents, 3000 enum dma_data_direction direction, 3001 unsigned long dma_attrs) 3002 { 3003 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, 3004 dma_attrs); 3005 } 3006 3007 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 3008 struct scatterlist *sg, int nents, 3009 enum dma_data_direction direction, 3010 unsigned long dma_attrs) 3011 { 3012 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs); 3013 } 3014 /** 3015 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry 3016 * @dev: The device for which the DMA addresses were created 3017 * @sg: The scatter/gather entry 3018 * 3019 * Note: this function is obsolete. To do: change all occurrences of 3020 * ib_sg_dma_address() into sg_dma_address(). 3021 */ 3022 static inline u64 ib_sg_dma_address(struct ib_device *dev, 3023 struct scatterlist *sg) 3024 { 3025 return sg_dma_address(sg); 3026 } 3027 3028 /** 3029 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry 3030 * @dev: The device for which the DMA addresses were created 3031 * @sg: The scatter/gather entry 3032 * 3033 * Note: this function is obsolete. To do: change all occurrences of 3034 * ib_sg_dma_len() into sg_dma_len(). 3035 */ 3036 static inline unsigned int ib_sg_dma_len(struct ib_device *dev, 3037 struct scatterlist *sg) 3038 { 3039 return sg_dma_len(sg); 3040 } 3041 3042 /** 3043 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 3044 * @dev: The device for which the DMA address was created 3045 * @addr: The DMA address 3046 * @size: The size of the region in bytes 3047 * @dir: The direction of the DMA 3048 */ 3049 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 3050 u64 addr, 3051 size_t size, 3052 enum dma_data_direction dir) 3053 { 3054 if (dev->dma_ops) 3055 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir); 3056 else 3057 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 3058 } 3059 3060 /** 3061 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 3062 * @dev: The device for which the DMA address was created 3063 * @addr: The DMA address 3064 * @size: The size of the region in bytes 3065 * @dir: The direction of the DMA 3066 */ 3067 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 3068 u64 addr, 3069 size_t size, 3070 enum dma_data_direction dir) 3071 { 3072 if (dev->dma_ops) 3073 dev->dma_ops->sync_single_for_device(dev, addr, size, dir); 3074 else 3075 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 3076 } 3077 3078 /** 3079 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 3080 * @dev: The device for which the DMA address is requested 3081 * @size: The size of the region to allocate in bytes 3082 * @dma_handle: A pointer for returning the DMA address of the region 3083 * @flag: memory allocator flags 3084 */ 3085 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 3086 size_t size, 3087 u64 *dma_handle, 3088 gfp_t flag) 3089 { 3090 if (dev->dma_ops) 3091 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag); 3092 else { 3093 dma_addr_t handle; 3094 void *ret; 3095 3096 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag); 3097 *dma_handle = handle; 3098 return ret; 3099 } 3100 } 3101 3102 /** 3103 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 3104 * @dev: The device for which the DMA addresses were allocated 3105 * @size: The size of the region 3106 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 3107 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 3108 */ 3109 static inline void ib_dma_free_coherent(struct ib_device *dev, 3110 size_t size, void *cpu_addr, 3111 u64 dma_handle) 3112 { 3113 if (dev->dma_ops) 3114 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle); 3115 else 3116 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 3117 } 3118 3119 /** 3120 * ib_dereg_mr - Deregisters a memory region and removes it from the 3121 * HCA translation table. 3122 * @mr: The memory region to deregister. 3123 * 3124 * This function can fail, if the memory region has memory windows bound to it. 3125 */ 3126 int ib_dereg_mr(struct ib_mr *mr); 3127 3128 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, 3129 enum ib_mr_type mr_type, 3130 u32 max_num_sg); 3131 3132 /** 3133 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 3134 * R_Key and L_Key. 3135 * @mr - struct ib_mr pointer to be updated. 3136 * @newkey - new key to be used. 3137 */ 3138 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 3139 { 3140 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 3141 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 3142 } 3143 3144 /** 3145 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 3146 * for calculating a new rkey for type 2 memory windows. 3147 * @rkey - the rkey to increment. 3148 */ 3149 static inline u32 ib_inc_rkey(u32 rkey) 3150 { 3151 const u32 mask = 0x000000ff; 3152 return ((rkey + 1) & mask) | (rkey & ~mask); 3153 } 3154 3155 /** 3156 * ib_alloc_fmr - Allocates a unmapped fast memory region. 3157 * @pd: The protection domain associated with the unmapped region. 3158 * @mr_access_flags: Specifies the memory access rights. 3159 * @fmr_attr: Attributes of the unmapped region. 3160 * 3161 * A fast memory region must be mapped before it can be used as part of 3162 * a work request. 3163 */ 3164 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 3165 int mr_access_flags, 3166 struct ib_fmr_attr *fmr_attr); 3167 3168 /** 3169 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 3170 * @fmr: The fast memory region to associate with the pages. 3171 * @page_list: An array of physical pages to map to the fast memory region. 3172 * @list_len: The number of pages in page_list. 3173 * @iova: The I/O virtual address to use with the mapped region. 3174 */ 3175 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 3176 u64 *page_list, int list_len, 3177 u64 iova) 3178 { 3179 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); 3180 } 3181 3182 /** 3183 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 3184 * @fmr_list: A linked list of fast memory regions to unmap. 3185 */ 3186 int ib_unmap_fmr(struct list_head *fmr_list); 3187 3188 /** 3189 * ib_dealloc_fmr - Deallocates a fast memory region. 3190 * @fmr: The fast memory region to deallocate. 3191 */ 3192 int ib_dealloc_fmr(struct ib_fmr *fmr); 3193 3194 /** 3195 * ib_attach_mcast - Attaches the specified QP to a multicast group. 3196 * @qp: QP to attach to the multicast group. The QP must be type 3197 * IB_QPT_UD. 3198 * @gid: Multicast group GID. 3199 * @lid: Multicast group LID in host byte order. 3200 * 3201 * In order to send and receive multicast packets, subnet 3202 * administration must have created the multicast group and configured 3203 * the fabric appropriately. The port associated with the specified 3204 * QP must also be a member of the multicast group. 3205 */ 3206 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3207 3208 /** 3209 * ib_detach_mcast - Detaches the specified QP from a multicast group. 3210 * @qp: QP to detach from the multicast group. 3211 * @gid: Multicast group GID. 3212 * @lid: Multicast group LID in host byte order. 3213 */ 3214 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3215 3216 /** 3217 * ib_alloc_xrcd - Allocates an XRC domain. 3218 * @device: The device on which to allocate the XRC domain. 3219 */ 3220 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device); 3221 3222 /** 3223 * ib_dealloc_xrcd - Deallocates an XRC domain. 3224 * @xrcd: The XRC domain to deallocate. 3225 */ 3226 int ib_dealloc_xrcd(struct ib_xrcd *xrcd); 3227 3228 struct ib_flow *ib_create_flow(struct ib_qp *qp, 3229 struct ib_flow_attr *flow_attr, int domain); 3230 int ib_destroy_flow(struct ib_flow *flow_id); 3231 3232 static inline int ib_check_mr_access(int flags) 3233 { 3234 /* 3235 * Local write permission is required if remote write or 3236 * remote atomic permission is also requested. 3237 */ 3238 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 3239 !(flags & IB_ACCESS_LOCAL_WRITE)) 3240 return -EINVAL; 3241 3242 return 0; 3243 } 3244 3245 /** 3246 * ib_check_mr_status: lightweight check of MR status. 3247 * This routine may provide status checks on a selected 3248 * ib_mr. first use is for signature status check. 3249 * 3250 * @mr: A memory region. 3251 * @check_mask: Bitmask of which checks to perform from 3252 * ib_mr_status_check enumeration. 3253 * @mr_status: The container of relevant status checks. 3254 * failed checks will be indicated in the status bitmask 3255 * and the relevant info shall be in the error item. 3256 */ 3257 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 3258 struct ib_mr_status *mr_status); 3259 3260 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port, 3261 u16 pkey, const union ib_gid *gid, 3262 const struct sockaddr *addr); 3263 struct ib_wq *ib_create_wq(struct ib_pd *pd, 3264 struct ib_wq_init_attr *init_attr); 3265 int ib_destroy_wq(struct ib_wq *wq); 3266 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr, 3267 u32 wq_attr_mask); 3268 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device, 3269 struct ib_rwq_ind_table_init_attr* 3270 wq_ind_table_init_attr); 3271 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table); 3272 3273 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3274 unsigned int *sg_offset, unsigned int page_size); 3275 3276 static inline int 3277 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3278 unsigned int *sg_offset, unsigned int page_size) 3279 { 3280 int n; 3281 3282 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size); 3283 mr->iova = 0; 3284 3285 return n; 3286 } 3287 3288 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 3289 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64)); 3290 3291 void ib_drain_rq(struct ib_qp *qp); 3292 void ib_drain_sq(struct ib_qp *qp); 3293 void ib_drain_qp(struct ib_qp *qp); 3294 #endif /* IB_VERBS_H */ 3295