1 /* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */ 2 /* 3 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 4 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 5 * Copyright (c) 2004 Intel Corporation. All rights reserved. 6 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 7 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 8 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 9 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 10 */ 11 12 #ifndef IB_VERBS_H 13 #define IB_VERBS_H 14 15 #include <linux/ethtool.h> 16 #include <linux/types.h> 17 #include <linux/device.h> 18 #include <linux/dma-mapping.h> 19 #include <linux/kref.h> 20 #include <linux/list.h> 21 #include <linux/rwsem.h> 22 #include <linux/workqueue.h> 23 #include <linux/irq_poll.h> 24 #include <uapi/linux/if_ether.h> 25 #include <net/ipv6.h> 26 #include <net/ip.h> 27 #include <linux/string.h> 28 #include <linux/slab.h> 29 #include <linux/netdevice.h> 30 #include <linux/refcount.h> 31 #include <linux/if_link.h> 32 #include <linux/atomic.h> 33 #include <linux/mmu_notifier.h> 34 #include <linux/uaccess.h> 35 #include <linux/cgroup_rdma.h> 36 #include <linux/irqflags.h> 37 #include <linux/preempt.h> 38 #include <linux/dim.h> 39 #include <uapi/rdma/ib_user_verbs.h> 40 #include <rdma/rdma_counter.h> 41 #include <rdma/restrack.h> 42 #include <rdma/signature.h> 43 #include <uapi/rdma/rdma_user_ioctl.h> 44 #include <uapi/rdma/ib_user_ioctl_verbs.h> 45 46 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN 47 48 struct ib_umem_odp; 49 struct ib_uqp_object; 50 struct ib_usrq_object; 51 struct ib_uwq_object; 52 struct rdma_cm_id; 53 54 extern struct workqueue_struct *ib_wq; 55 extern struct workqueue_struct *ib_comp_wq; 56 extern struct workqueue_struct *ib_comp_unbound_wq; 57 58 struct ib_ucq_object; 59 60 __printf(3, 4) __cold 61 void ibdev_printk(const char *level, const struct ib_device *ibdev, 62 const char *format, ...); 63 __printf(2, 3) __cold 64 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...); 65 __printf(2, 3) __cold 66 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...); 67 __printf(2, 3) __cold 68 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...); 69 __printf(2, 3) __cold 70 void ibdev_err(const struct ib_device *ibdev, const char *format, ...); 71 __printf(2, 3) __cold 72 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...); 73 __printf(2, 3) __cold 74 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...); 75 __printf(2, 3) __cold 76 void ibdev_info(const struct ib_device *ibdev, const char *format, ...); 77 78 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 79 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 80 #define ibdev_dbg(__dev, format, args...) \ 81 dynamic_ibdev_dbg(__dev, format, ##args) 82 #else 83 __printf(2, 3) __cold 84 static inline 85 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {} 86 #endif 87 88 #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...) \ 89 do { \ 90 static DEFINE_RATELIMIT_STATE(_rs, \ 91 DEFAULT_RATELIMIT_INTERVAL, \ 92 DEFAULT_RATELIMIT_BURST); \ 93 if (__ratelimit(&_rs)) \ 94 ibdev_level(ibdev, fmt, ##__VA_ARGS__); \ 95 } while (0) 96 97 #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \ 98 ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__) 99 #define ibdev_alert_ratelimited(ibdev, fmt, ...) \ 100 ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__) 101 #define ibdev_crit_ratelimited(ibdev, fmt, ...) \ 102 ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__) 103 #define ibdev_err_ratelimited(ibdev, fmt, ...) \ 104 ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__) 105 #define ibdev_warn_ratelimited(ibdev, fmt, ...) \ 106 ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__) 107 #define ibdev_notice_ratelimited(ibdev, fmt, ...) \ 108 ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__) 109 #define ibdev_info_ratelimited(ibdev, fmt, ...) \ 110 ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__) 111 112 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 113 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 114 /* descriptor check is first to prevent flooding with "callbacks suppressed" */ 115 #define ibdev_dbg_ratelimited(ibdev, fmt, ...) \ 116 do { \ 117 static DEFINE_RATELIMIT_STATE(_rs, \ 118 DEFAULT_RATELIMIT_INTERVAL, \ 119 DEFAULT_RATELIMIT_BURST); \ 120 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \ 121 if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs)) \ 122 __dynamic_ibdev_dbg(&descriptor, ibdev, fmt, \ 123 ##__VA_ARGS__); \ 124 } while (0) 125 #else 126 __printf(2, 3) __cold 127 static inline 128 void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {} 129 #endif 130 131 union ib_gid { 132 u8 raw[16]; 133 struct { 134 __be64 subnet_prefix; 135 __be64 interface_id; 136 } global; 137 }; 138 139 extern union ib_gid zgid; 140 141 enum ib_gid_type { 142 IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB, 143 IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1, 144 IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2, 145 IB_GID_TYPE_SIZE 146 }; 147 148 #define ROCE_V2_UDP_DPORT 4791 149 struct ib_gid_attr { 150 struct net_device __rcu *ndev; 151 struct ib_device *device; 152 union ib_gid gid; 153 enum ib_gid_type gid_type; 154 u16 index; 155 u8 port_num; 156 }; 157 158 enum { 159 /* set the local administered indication */ 160 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2, 161 }; 162 163 enum rdma_transport_type { 164 RDMA_TRANSPORT_IB, 165 RDMA_TRANSPORT_IWARP, 166 RDMA_TRANSPORT_USNIC, 167 RDMA_TRANSPORT_USNIC_UDP, 168 RDMA_TRANSPORT_UNSPECIFIED, 169 }; 170 171 enum rdma_protocol_type { 172 RDMA_PROTOCOL_IB, 173 RDMA_PROTOCOL_IBOE, 174 RDMA_PROTOCOL_IWARP, 175 RDMA_PROTOCOL_USNIC_UDP 176 }; 177 178 __attribute_const__ enum rdma_transport_type 179 rdma_node_get_transport(unsigned int node_type); 180 181 enum rdma_network_type { 182 RDMA_NETWORK_IB, 183 RDMA_NETWORK_ROCE_V1, 184 RDMA_NETWORK_IPV4, 185 RDMA_NETWORK_IPV6 186 }; 187 188 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) 189 { 190 if (network_type == RDMA_NETWORK_IPV4 || 191 network_type == RDMA_NETWORK_IPV6) 192 return IB_GID_TYPE_ROCE_UDP_ENCAP; 193 else if (network_type == RDMA_NETWORK_ROCE_V1) 194 return IB_GID_TYPE_ROCE; 195 else 196 return IB_GID_TYPE_IB; 197 } 198 199 static inline enum rdma_network_type 200 rdma_gid_attr_network_type(const struct ib_gid_attr *attr) 201 { 202 if (attr->gid_type == IB_GID_TYPE_IB) 203 return RDMA_NETWORK_IB; 204 205 if (attr->gid_type == IB_GID_TYPE_ROCE) 206 return RDMA_NETWORK_ROCE_V1; 207 208 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid)) 209 return RDMA_NETWORK_IPV4; 210 else 211 return RDMA_NETWORK_IPV6; 212 } 213 214 enum rdma_link_layer { 215 IB_LINK_LAYER_UNSPECIFIED, 216 IB_LINK_LAYER_INFINIBAND, 217 IB_LINK_LAYER_ETHERNET, 218 }; 219 220 enum ib_device_cap_flags { 221 IB_DEVICE_RESIZE_MAX_WR = (1 << 0), 222 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1), 223 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2), 224 IB_DEVICE_RAW_MULTI = (1 << 3), 225 IB_DEVICE_AUTO_PATH_MIG = (1 << 4), 226 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5), 227 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6), 228 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7), 229 IB_DEVICE_SHUTDOWN_PORT = (1 << 8), 230 /* Not in use, former INIT_TYPE = (1 << 9),*/ 231 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10), 232 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11), 233 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12), 234 IB_DEVICE_SRQ_RESIZE = (1 << 13), 235 IB_DEVICE_N_NOTIFY_CQ = (1 << 14), 236 237 /* 238 * This device supports a per-device lkey or stag that can be 239 * used without performing a memory registration for the local 240 * memory. Note that ULPs should never check this flag, but 241 * instead of use the local_dma_lkey flag in the ib_pd structure, 242 * which will always contain a usable lkey. 243 */ 244 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15), 245 /* Reserved, old SEND_W_INV = (1 << 16),*/ 246 IB_DEVICE_MEM_WINDOW = (1 << 17), 247 /* 248 * Devices should set IB_DEVICE_UD_IP_SUM if they support 249 * insertion of UDP and TCP checksum on outgoing UD IPoIB 250 * messages and can verify the validity of checksum for 251 * incoming messages. Setting this flag implies that the 252 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 253 */ 254 IB_DEVICE_UD_IP_CSUM = (1 << 18), 255 IB_DEVICE_UD_TSO = (1 << 19), 256 IB_DEVICE_XRC = (1 << 20), 257 258 /* 259 * This device supports the IB "base memory management extension", 260 * which includes support for fast registrations (IB_WR_REG_MR, 261 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should 262 * also be set by any iWarp device which must support FRs to comply 263 * to the iWarp verbs spec. iWarp devices also support the 264 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the 265 * stag. 266 */ 267 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21), 268 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22), 269 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23), 270 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24), 271 IB_DEVICE_RC_IP_CSUM = (1 << 25), 272 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */ 273 IB_DEVICE_RAW_IP_CSUM = (1 << 26), 274 /* 275 * Devices should set IB_DEVICE_CROSS_CHANNEL if they 276 * support execution of WQEs that involve synchronization 277 * of I/O operations with single completion queue managed 278 * by hardware. 279 */ 280 IB_DEVICE_CROSS_CHANNEL = (1 << 27), 281 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29), 282 IB_DEVICE_INTEGRITY_HANDOVER = (1 << 30), 283 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31), 284 IB_DEVICE_SG_GAPS_REG = (1ULL << 32), 285 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33), 286 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */ 287 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34), 288 IB_DEVICE_RDMA_NETDEV_OPA = (1ULL << 35), 289 /* The device supports padding incoming writes to cacheline. */ 290 IB_DEVICE_PCI_WRITE_END_PADDING = (1ULL << 36), 291 IB_DEVICE_ALLOW_USER_UNREG = (1ULL << 37), 292 }; 293 294 enum ib_atomic_cap { 295 IB_ATOMIC_NONE, 296 IB_ATOMIC_HCA, 297 IB_ATOMIC_GLOB 298 }; 299 300 enum ib_odp_general_cap_bits { 301 IB_ODP_SUPPORT = 1 << 0, 302 IB_ODP_SUPPORT_IMPLICIT = 1 << 1, 303 }; 304 305 enum ib_odp_transport_cap_bits { 306 IB_ODP_SUPPORT_SEND = 1 << 0, 307 IB_ODP_SUPPORT_RECV = 1 << 1, 308 IB_ODP_SUPPORT_WRITE = 1 << 2, 309 IB_ODP_SUPPORT_READ = 1 << 3, 310 IB_ODP_SUPPORT_ATOMIC = 1 << 4, 311 IB_ODP_SUPPORT_SRQ_RECV = 1 << 5, 312 }; 313 314 struct ib_odp_caps { 315 uint64_t general_caps; 316 struct { 317 uint32_t rc_odp_caps; 318 uint32_t uc_odp_caps; 319 uint32_t ud_odp_caps; 320 uint32_t xrc_odp_caps; 321 } per_transport_caps; 322 }; 323 324 struct ib_rss_caps { 325 /* Corresponding bit will be set if qp type from 326 * 'enum ib_qp_type' is supported, e.g. 327 * supported_qpts |= 1 << IB_QPT_UD 328 */ 329 u32 supported_qpts; 330 u32 max_rwq_indirection_tables; 331 u32 max_rwq_indirection_table_size; 332 }; 333 334 enum ib_tm_cap_flags { 335 /* Support tag matching with rendezvous offload for RC transport */ 336 IB_TM_CAP_RNDV_RC = 1 << 0, 337 }; 338 339 struct ib_tm_caps { 340 /* Max size of RNDV header */ 341 u32 max_rndv_hdr_size; 342 /* Max number of entries in tag matching list */ 343 u32 max_num_tags; 344 /* From enum ib_tm_cap_flags */ 345 u32 flags; 346 /* Max number of outstanding list operations */ 347 u32 max_ops; 348 /* Max number of SGE in tag matching entry */ 349 u32 max_sge; 350 }; 351 352 struct ib_cq_init_attr { 353 unsigned int cqe; 354 u32 comp_vector; 355 u32 flags; 356 }; 357 358 enum ib_cq_attr_mask { 359 IB_CQ_MODERATE = 1 << 0, 360 }; 361 362 struct ib_cq_caps { 363 u16 max_cq_moderation_count; 364 u16 max_cq_moderation_period; 365 }; 366 367 struct ib_dm_mr_attr { 368 u64 length; 369 u64 offset; 370 u32 access_flags; 371 }; 372 373 struct ib_dm_alloc_attr { 374 u64 length; 375 u32 alignment; 376 u32 flags; 377 }; 378 379 struct ib_device_attr { 380 u64 fw_ver; 381 __be64 sys_image_guid; 382 u64 max_mr_size; 383 u64 page_size_cap; 384 u32 vendor_id; 385 u32 vendor_part_id; 386 u32 hw_ver; 387 int max_qp; 388 int max_qp_wr; 389 u64 device_cap_flags; 390 int max_send_sge; 391 int max_recv_sge; 392 int max_sge_rd; 393 int max_cq; 394 int max_cqe; 395 int max_mr; 396 int max_pd; 397 int max_qp_rd_atom; 398 int max_ee_rd_atom; 399 int max_res_rd_atom; 400 int max_qp_init_rd_atom; 401 int max_ee_init_rd_atom; 402 enum ib_atomic_cap atomic_cap; 403 enum ib_atomic_cap masked_atomic_cap; 404 int max_ee; 405 int max_rdd; 406 int max_mw; 407 int max_raw_ipv6_qp; 408 int max_raw_ethy_qp; 409 int max_mcast_grp; 410 int max_mcast_qp_attach; 411 int max_total_mcast_qp_attach; 412 int max_ah; 413 int max_srq; 414 int max_srq_wr; 415 int max_srq_sge; 416 unsigned int max_fast_reg_page_list_len; 417 unsigned int max_pi_fast_reg_page_list_len; 418 u16 max_pkeys; 419 u8 local_ca_ack_delay; 420 int sig_prot_cap; 421 int sig_guard_cap; 422 struct ib_odp_caps odp_caps; 423 uint64_t timestamp_mask; 424 uint64_t hca_core_clock; /* in KHZ */ 425 struct ib_rss_caps rss_caps; 426 u32 max_wq_type_rq; 427 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */ 428 struct ib_tm_caps tm_caps; 429 struct ib_cq_caps cq_caps; 430 u64 max_dm_size; 431 /* Max entries for sgl for optimized performance per READ */ 432 u32 max_sgl_rd; 433 }; 434 435 enum ib_mtu { 436 IB_MTU_256 = 1, 437 IB_MTU_512 = 2, 438 IB_MTU_1024 = 3, 439 IB_MTU_2048 = 4, 440 IB_MTU_4096 = 5 441 }; 442 443 enum opa_mtu { 444 OPA_MTU_8192 = 6, 445 OPA_MTU_10240 = 7 446 }; 447 448 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 449 { 450 switch (mtu) { 451 case IB_MTU_256: return 256; 452 case IB_MTU_512: return 512; 453 case IB_MTU_1024: return 1024; 454 case IB_MTU_2048: return 2048; 455 case IB_MTU_4096: return 4096; 456 default: return -1; 457 } 458 } 459 460 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu) 461 { 462 if (mtu >= 4096) 463 return IB_MTU_4096; 464 else if (mtu >= 2048) 465 return IB_MTU_2048; 466 else if (mtu >= 1024) 467 return IB_MTU_1024; 468 else if (mtu >= 512) 469 return IB_MTU_512; 470 else 471 return IB_MTU_256; 472 } 473 474 static inline int opa_mtu_enum_to_int(enum opa_mtu mtu) 475 { 476 switch (mtu) { 477 case OPA_MTU_8192: 478 return 8192; 479 case OPA_MTU_10240: 480 return 10240; 481 default: 482 return(ib_mtu_enum_to_int((enum ib_mtu)mtu)); 483 } 484 } 485 486 static inline enum opa_mtu opa_mtu_int_to_enum(int mtu) 487 { 488 if (mtu >= 10240) 489 return OPA_MTU_10240; 490 else if (mtu >= 8192) 491 return OPA_MTU_8192; 492 else 493 return ((enum opa_mtu)ib_mtu_int_to_enum(mtu)); 494 } 495 496 enum ib_port_state { 497 IB_PORT_NOP = 0, 498 IB_PORT_DOWN = 1, 499 IB_PORT_INIT = 2, 500 IB_PORT_ARMED = 3, 501 IB_PORT_ACTIVE = 4, 502 IB_PORT_ACTIVE_DEFER = 5 503 }; 504 505 enum ib_port_phys_state { 506 IB_PORT_PHYS_STATE_SLEEP = 1, 507 IB_PORT_PHYS_STATE_POLLING = 2, 508 IB_PORT_PHYS_STATE_DISABLED = 3, 509 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4, 510 IB_PORT_PHYS_STATE_LINK_UP = 5, 511 IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6, 512 IB_PORT_PHYS_STATE_PHY_TEST = 7, 513 }; 514 515 enum ib_port_width { 516 IB_WIDTH_1X = 1, 517 IB_WIDTH_2X = 16, 518 IB_WIDTH_4X = 2, 519 IB_WIDTH_8X = 4, 520 IB_WIDTH_12X = 8 521 }; 522 523 static inline int ib_width_enum_to_int(enum ib_port_width width) 524 { 525 switch (width) { 526 case IB_WIDTH_1X: return 1; 527 case IB_WIDTH_2X: return 2; 528 case IB_WIDTH_4X: return 4; 529 case IB_WIDTH_8X: return 8; 530 case IB_WIDTH_12X: return 12; 531 default: return -1; 532 } 533 } 534 535 enum ib_port_speed { 536 IB_SPEED_SDR = 1, 537 IB_SPEED_DDR = 2, 538 IB_SPEED_QDR = 4, 539 IB_SPEED_FDR10 = 8, 540 IB_SPEED_FDR = 16, 541 IB_SPEED_EDR = 32, 542 IB_SPEED_HDR = 64, 543 IB_SPEED_NDR = 128, 544 }; 545 546 /** 547 * struct rdma_hw_stats 548 * @lock - Mutex to protect parallel write access to lifespan and values 549 * of counters, which are 64bits and not guaranteeed to be written 550 * atomicaly on 32bits systems. 551 * @timestamp - Used by the core code to track when the last update was 552 * @lifespan - Used by the core code to determine how old the counters 553 * should be before being updated again. Stored in jiffies, defaults 554 * to 10 milliseconds, drivers can override the default be specifying 555 * their own value during their allocation routine. 556 * @name - Array of pointers to static names used for the counters in 557 * directory. 558 * @num_counters - How many hardware counters there are. If name is 559 * shorter than this number, a kernel oops will result. Driver authors 560 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters) 561 * in their code to prevent this. 562 * @value - Array of u64 counters that are accessed by the sysfs code and 563 * filled in by the drivers get_stats routine 564 */ 565 struct rdma_hw_stats { 566 struct mutex lock; /* Protect lifespan and values[] */ 567 unsigned long timestamp; 568 unsigned long lifespan; 569 const char * const *names; 570 int num_counters; 571 u64 value[]; 572 }; 573 574 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10 575 /** 576 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct 577 * for drivers. 578 * @names - Array of static const char * 579 * @num_counters - How many elements in array 580 * @lifespan - How many milliseconds between updates 581 */ 582 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 583 const char * const *names, int num_counters, 584 unsigned long lifespan) 585 { 586 struct rdma_hw_stats *stats; 587 588 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64), 589 GFP_KERNEL); 590 if (!stats) 591 return NULL; 592 stats->names = names; 593 stats->num_counters = num_counters; 594 stats->lifespan = msecs_to_jiffies(lifespan); 595 596 return stats; 597 } 598 599 600 /* Define bits for the various functionality this port needs to be supported by 601 * the core. 602 */ 603 /* Management 0x00000FFF */ 604 #define RDMA_CORE_CAP_IB_MAD 0x00000001 605 #define RDMA_CORE_CAP_IB_SMI 0x00000002 606 #define RDMA_CORE_CAP_IB_CM 0x00000004 607 #define RDMA_CORE_CAP_IW_CM 0x00000008 608 #define RDMA_CORE_CAP_IB_SA 0x00000010 609 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 610 611 /* Address format 0x000FF000 */ 612 #define RDMA_CORE_CAP_AF_IB 0x00001000 613 #define RDMA_CORE_CAP_ETH_AH 0x00002000 614 #define RDMA_CORE_CAP_OPA_AH 0x00004000 615 #define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000 616 617 /* Protocol 0xFFF00000 */ 618 #define RDMA_CORE_CAP_PROT_IB 0x00100000 619 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 620 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 621 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 622 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000 623 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000 624 625 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \ 626 | RDMA_CORE_CAP_PROT_ROCE \ 627 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP) 628 629 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 630 | RDMA_CORE_CAP_IB_MAD \ 631 | RDMA_CORE_CAP_IB_SMI \ 632 | RDMA_CORE_CAP_IB_CM \ 633 | RDMA_CORE_CAP_IB_SA \ 634 | RDMA_CORE_CAP_AF_IB) 635 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 636 | RDMA_CORE_CAP_IB_MAD \ 637 | RDMA_CORE_CAP_IB_CM \ 638 | RDMA_CORE_CAP_AF_IB \ 639 | RDMA_CORE_CAP_ETH_AH) 640 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ 641 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ 642 | RDMA_CORE_CAP_IB_MAD \ 643 | RDMA_CORE_CAP_IB_CM \ 644 | RDMA_CORE_CAP_AF_IB \ 645 | RDMA_CORE_CAP_ETH_AH) 646 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 647 | RDMA_CORE_CAP_IW_CM) 648 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 649 | RDMA_CORE_CAP_OPA_MAD) 650 651 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET) 652 653 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC) 654 655 struct ib_port_attr { 656 u64 subnet_prefix; 657 enum ib_port_state state; 658 enum ib_mtu max_mtu; 659 enum ib_mtu active_mtu; 660 u32 phys_mtu; 661 int gid_tbl_len; 662 unsigned int ip_gids:1; 663 /* This is the value from PortInfo CapabilityMask, defined by IBA */ 664 u32 port_cap_flags; 665 u32 max_msg_sz; 666 u32 bad_pkey_cntr; 667 u32 qkey_viol_cntr; 668 u16 pkey_tbl_len; 669 u32 sm_lid; 670 u32 lid; 671 u8 lmc; 672 u8 max_vl_num; 673 u8 sm_sl; 674 u8 subnet_timeout; 675 u8 init_type_reply; 676 u8 active_width; 677 u16 active_speed; 678 u8 phys_state; 679 u16 port_cap_flags2; 680 }; 681 682 enum ib_device_modify_flags { 683 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 684 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 685 }; 686 687 #define IB_DEVICE_NODE_DESC_MAX 64 688 689 struct ib_device_modify { 690 u64 sys_image_guid; 691 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 692 }; 693 694 enum ib_port_modify_flags { 695 IB_PORT_SHUTDOWN = 1, 696 IB_PORT_INIT_TYPE = (1<<2), 697 IB_PORT_RESET_QKEY_CNTR = (1<<3), 698 IB_PORT_OPA_MASK_CHG = (1<<4) 699 }; 700 701 struct ib_port_modify { 702 u32 set_port_cap_mask; 703 u32 clr_port_cap_mask; 704 u8 init_type; 705 }; 706 707 enum ib_event_type { 708 IB_EVENT_CQ_ERR, 709 IB_EVENT_QP_FATAL, 710 IB_EVENT_QP_REQ_ERR, 711 IB_EVENT_QP_ACCESS_ERR, 712 IB_EVENT_COMM_EST, 713 IB_EVENT_SQ_DRAINED, 714 IB_EVENT_PATH_MIG, 715 IB_EVENT_PATH_MIG_ERR, 716 IB_EVENT_DEVICE_FATAL, 717 IB_EVENT_PORT_ACTIVE, 718 IB_EVENT_PORT_ERR, 719 IB_EVENT_LID_CHANGE, 720 IB_EVENT_PKEY_CHANGE, 721 IB_EVENT_SM_CHANGE, 722 IB_EVENT_SRQ_ERR, 723 IB_EVENT_SRQ_LIMIT_REACHED, 724 IB_EVENT_QP_LAST_WQE_REACHED, 725 IB_EVENT_CLIENT_REREGISTER, 726 IB_EVENT_GID_CHANGE, 727 IB_EVENT_WQ_FATAL, 728 }; 729 730 const char *__attribute_const__ ib_event_msg(enum ib_event_type event); 731 732 struct ib_event { 733 struct ib_device *device; 734 union { 735 struct ib_cq *cq; 736 struct ib_qp *qp; 737 struct ib_srq *srq; 738 struct ib_wq *wq; 739 u8 port_num; 740 } element; 741 enum ib_event_type event; 742 }; 743 744 struct ib_event_handler { 745 struct ib_device *device; 746 void (*handler)(struct ib_event_handler *, struct ib_event *); 747 struct list_head list; 748 }; 749 750 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 751 do { \ 752 (_ptr)->device = _device; \ 753 (_ptr)->handler = _handler; \ 754 INIT_LIST_HEAD(&(_ptr)->list); \ 755 } while (0) 756 757 struct ib_global_route { 758 const struct ib_gid_attr *sgid_attr; 759 union ib_gid dgid; 760 u32 flow_label; 761 u8 sgid_index; 762 u8 hop_limit; 763 u8 traffic_class; 764 }; 765 766 struct ib_grh { 767 __be32 version_tclass_flow; 768 __be16 paylen; 769 u8 next_hdr; 770 u8 hop_limit; 771 union ib_gid sgid; 772 union ib_gid dgid; 773 }; 774 775 union rdma_network_hdr { 776 struct ib_grh ibgrh; 777 struct { 778 /* The IB spec states that if it's IPv4, the header 779 * is located in the last 20 bytes of the header. 780 */ 781 u8 reserved[20]; 782 struct iphdr roce4grh; 783 }; 784 }; 785 786 #define IB_QPN_MASK 0xFFFFFF 787 788 enum { 789 IB_MULTICAST_QPN = 0xffffff 790 }; 791 792 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 793 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000) 794 795 enum ib_ah_flags { 796 IB_AH_GRH = 1 797 }; 798 799 enum ib_rate { 800 IB_RATE_PORT_CURRENT = 0, 801 IB_RATE_2_5_GBPS = 2, 802 IB_RATE_5_GBPS = 5, 803 IB_RATE_10_GBPS = 3, 804 IB_RATE_20_GBPS = 6, 805 IB_RATE_30_GBPS = 4, 806 IB_RATE_40_GBPS = 7, 807 IB_RATE_60_GBPS = 8, 808 IB_RATE_80_GBPS = 9, 809 IB_RATE_120_GBPS = 10, 810 IB_RATE_14_GBPS = 11, 811 IB_RATE_56_GBPS = 12, 812 IB_RATE_112_GBPS = 13, 813 IB_RATE_168_GBPS = 14, 814 IB_RATE_25_GBPS = 15, 815 IB_RATE_100_GBPS = 16, 816 IB_RATE_200_GBPS = 17, 817 IB_RATE_300_GBPS = 18, 818 IB_RATE_28_GBPS = 19, 819 IB_RATE_50_GBPS = 20, 820 IB_RATE_400_GBPS = 21, 821 IB_RATE_600_GBPS = 22, 822 }; 823 824 /** 825 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 826 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 827 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 828 * @rate: rate to convert. 829 */ 830 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 831 832 /** 833 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 834 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 835 * @rate: rate to convert. 836 */ 837 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 838 839 840 /** 841 * enum ib_mr_type - memory region type 842 * @IB_MR_TYPE_MEM_REG: memory region that is used for 843 * normal registration 844 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to 845 * register any arbitrary sg lists (without 846 * the normal mr constraints - see 847 * ib_map_mr_sg) 848 * @IB_MR_TYPE_DM: memory region that is used for device 849 * memory registration 850 * @IB_MR_TYPE_USER: memory region that is used for the user-space 851 * application 852 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations 853 * without address translations (VA=PA) 854 * @IB_MR_TYPE_INTEGRITY: memory region that is used for 855 * data integrity operations 856 */ 857 enum ib_mr_type { 858 IB_MR_TYPE_MEM_REG, 859 IB_MR_TYPE_SG_GAPS, 860 IB_MR_TYPE_DM, 861 IB_MR_TYPE_USER, 862 IB_MR_TYPE_DMA, 863 IB_MR_TYPE_INTEGRITY, 864 }; 865 866 enum ib_mr_status_check { 867 IB_MR_CHECK_SIG_STATUS = 1, 868 }; 869 870 /** 871 * struct ib_mr_status - Memory region status container 872 * 873 * @fail_status: Bitmask of MR checks status. For each 874 * failed check a corresponding status bit is set. 875 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 876 * failure. 877 */ 878 struct ib_mr_status { 879 u32 fail_status; 880 struct ib_sig_err sig_err; 881 }; 882 883 /** 884 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 885 * enum. 886 * @mult: multiple to convert. 887 */ 888 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 889 890 struct rdma_ah_init_attr { 891 struct rdma_ah_attr *ah_attr; 892 u32 flags; 893 struct net_device *xmit_slave; 894 }; 895 896 enum rdma_ah_attr_type { 897 RDMA_AH_ATTR_TYPE_UNDEFINED, 898 RDMA_AH_ATTR_TYPE_IB, 899 RDMA_AH_ATTR_TYPE_ROCE, 900 RDMA_AH_ATTR_TYPE_OPA, 901 }; 902 903 struct ib_ah_attr { 904 u16 dlid; 905 u8 src_path_bits; 906 }; 907 908 struct roce_ah_attr { 909 u8 dmac[ETH_ALEN]; 910 }; 911 912 struct opa_ah_attr { 913 u32 dlid; 914 u8 src_path_bits; 915 bool make_grd; 916 }; 917 918 struct rdma_ah_attr { 919 struct ib_global_route grh; 920 u8 sl; 921 u8 static_rate; 922 u8 port_num; 923 u8 ah_flags; 924 enum rdma_ah_attr_type type; 925 union { 926 struct ib_ah_attr ib; 927 struct roce_ah_attr roce; 928 struct opa_ah_attr opa; 929 }; 930 }; 931 932 enum ib_wc_status { 933 IB_WC_SUCCESS, 934 IB_WC_LOC_LEN_ERR, 935 IB_WC_LOC_QP_OP_ERR, 936 IB_WC_LOC_EEC_OP_ERR, 937 IB_WC_LOC_PROT_ERR, 938 IB_WC_WR_FLUSH_ERR, 939 IB_WC_MW_BIND_ERR, 940 IB_WC_BAD_RESP_ERR, 941 IB_WC_LOC_ACCESS_ERR, 942 IB_WC_REM_INV_REQ_ERR, 943 IB_WC_REM_ACCESS_ERR, 944 IB_WC_REM_OP_ERR, 945 IB_WC_RETRY_EXC_ERR, 946 IB_WC_RNR_RETRY_EXC_ERR, 947 IB_WC_LOC_RDD_VIOL_ERR, 948 IB_WC_REM_INV_RD_REQ_ERR, 949 IB_WC_REM_ABORT_ERR, 950 IB_WC_INV_EECN_ERR, 951 IB_WC_INV_EEC_STATE_ERR, 952 IB_WC_FATAL_ERR, 953 IB_WC_RESP_TIMEOUT_ERR, 954 IB_WC_GENERAL_ERR 955 }; 956 957 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); 958 959 enum ib_wc_opcode { 960 IB_WC_SEND = IB_UVERBS_WC_SEND, 961 IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE, 962 IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ, 963 IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP, 964 IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD, 965 IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW, 966 IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV, 967 IB_WC_LSO = IB_UVERBS_WC_TSO, 968 IB_WC_REG_MR, 969 IB_WC_MASKED_COMP_SWAP, 970 IB_WC_MASKED_FETCH_ADD, 971 /* 972 * Set value of IB_WC_RECV so consumers can test if a completion is a 973 * receive by testing (opcode & IB_WC_RECV). 974 */ 975 IB_WC_RECV = 1 << 7, 976 IB_WC_RECV_RDMA_WITH_IMM 977 }; 978 979 enum ib_wc_flags { 980 IB_WC_GRH = 1, 981 IB_WC_WITH_IMM = (1<<1), 982 IB_WC_WITH_INVALIDATE = (1<<2), 983 IB_WC_IP_CSUM_OK = (1<<3), 984 IB_WC_WITH_SMAC = (1<<4), 985 IB_WC_WITH_VLAN = (1<<5), 986 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), 987 }; 988 989 struct ib_wc { 990 union { 991 u64 wr_id; 992 struct ib_cqe *wr_cqe; 993 }; 994 enum ib_wc_status status; 995 enum ib_wc_opcode opcode; 996 u32 vendor_err; 997 u32 byte_len; 998 struct ib_qp *qp; 999 union { 1000 __be32 imm_data; 1001 u32 invalidate_rkey; 1002 } ex; 1003 u32 src_qp; 1004 u32 slid; 1005 int wc_flags; 1006 u16 pkey_index; 1007 u8 sl; 1008 u8 dlid_path_bits; 1009 u8 port_num; /* valid only for DR SMPs on switches */ 1010 u8 smac[ETH_ALEN]; 1011 u16 vlan_id; 1012 u8 network_hdr_type; 1013 }; 1014 1015 enum ib_cq_notify_flags { 1016 IB_CQ_SOLICITED = 1 << 0, 1017 IB_CQ_NEXT_COMP = 1 << 1, 1018 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 1019 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 1020 }; 1021 1022 enum ib_srq_type { 1023 IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC, 1024 IB_SRQT_XRC = IB_UVERBS_SRQT_XRC, 1025 IB_SRQT_TM = IB_UVERBS_SRQT_TM, 1026 }; 1027 1028 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type) 1029 { 1030 return srq_type == IB_SRQT_XRC || 1031 srq_type == IB_SRQT_TM; 1032 } 1033 1034 enum ib_srq_attr_mask { 1035 IB_SRQ_MAX_WR = 1 << 0, 1036 IB_SRQ_LIMIT = 1 << 1, 1037 }; 1038 1039 struct ib_srq_attr { 1040 u32 max_wr; 1041 u32 max_sge; 1042 u32 srq_limit; 1043 }; 1044 1045 struct ib_srq_init_attr { 1046 void (*event_handler)(struct ib_event *, void *); 1047 void *srq_context; 1048 struct ib_srq_attr attr; 1049 enum ib_srq_type srq_type; 1050 1051 struct { 1052 struct ib_cq *cq; 1053 union { 1054 struct { 1055 struct ib_xrcd *xrcd; 1056 } xrc; 1057 1058 struct { 1059 u32 max_num_tags; 1060 } tag_matching; 1061 }; 1062 } ext; 1063 }; 1064 1065 struct ib_qp_cap { 1066 u32 max_send_wr; 1067 u32 max_recv_wr; 1068 u32 max_send_sge; 1069 u32 max_recv_sge; 1070 u32 max_inline_data; 1071 1072 /* 1073 * Maximum number of rdma_rw_ctx structures in flight at a time. 1074 * ib_create_qp() will calculate the right amount of neededed WRs 1075 * and MRs based on this. 1076 */ 1077 u32 max_rdma_ctxs; 1078 }; 1079 1080 enum ib_sig_type { 1081 IB_SIGNAL_ALL_WR, 1082 IB_SIGNAL_REQ_WR 1083 }; 1084 1085 enum ib_qp_type { 1086 /* 1087 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 1088 * here (and in that order) since the MAD layer uses them as 1089 * indices into a 2-entry table. 1090 */ 1091 IB_QPT_SMI, 1092 IB_QPT_GSI, 1093 1094 IB_QPT_RC = IB_UVERBS_QPT_RC, 1095 IB_QPT_UC = IB_UVERBS_QPT_UC, 1096 IB_QPT_UD = IB_UVERBS_QPT_UD, 1097 IB_QPT_RAW_IPV6, 1098 IB_QPT_RAW_ETHERTYPE, 1099 IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET, 1100 IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI, 1101 IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT, 1102 IB_QPT_MAX, 1103 IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER, 1104 /* Reserve a range for qp types internal to the low level driver. 1105 * These qp types will not be visible at the IB core layer, so the 1106 * IB_QPT_MAX usages should not be affected in the core layer 1107 */ 1108 IB_QPT_RESERVED1 = 0x1000, 1109 IB_QPT_RESERVED2, 1110 IB_QPT_RESERVED3, 1111 IB_QPT_RESERVED4, 1112 IB_QPT_RESERVED5, 1113 IB_QPT_RESERVED6, 1114 IB_QPT_RESERVED7, 1115 IB_QPT_RESERVED8, 1116 IB_QPT_RESERVED9, 1117 IB_QPT_RESERVED10, 1118 }; 1119 1120 enum ib_qp_create_flags { 1121 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 1122 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1123 IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK, 1124 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 1125 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 1126 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 1127 IB_QP_CREATE_NETIF_QP = 1 << 5, 1128 IB_QP_CREATE_INTEGRITY_EN = 1 << 6, 1129 IB_QP_CREATE_NETDEV_USE = 1 << 7, 1130 IB_QP_CREATE_SCATTER_FCS = 1131 IB_UVERBS_QP_CREATE_SCATTER_FCS, 1132 IB_QP_CREATE_CVLAN_STRIPPING = 1133 IB_UVERBS_QP_CREATE_CVLAN_STRIPPING, 1134 IB_QP_CREATE_SOURCE_QPN = 1 << 10, 1135 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1136 IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING, 1137 /* reserve bits 26-31 for low level drivers' internal use */ 1138 IB_QP_CREATE_RESERVED_START = 1 << 26, 1139 IB_QP_CREATE_RESERVED_END = 1 << 31, 1140 }; 1141 1142 /* 1143 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 1144 * callback to destroy the passed in QP. 1145 */ 1146 1147 struct ib_qp_init_attr { 1148 /* Consumer's event_handler callback must not block */ 1149 void (*event_handler)(struct ib_event *, void *); 1150 1151 void *qp_context; 1152 struct ib_cq *send_cq; 1153 struct ib_cq *recv_cq; 1154 struct ib_srq *srq; 1155 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1156 struct ib_qp_cap cap; 1157 enum ib_sig_type sq_sig_type; 1158 enum ib_qp_type qp_type; 1159 u32 create_flags; 1160 1161 /* 1162 * Only needed for special QP types, or when using the RW API. 1163 */ 1164 u8 port_num; 1165 struct ib_rwq_ind_table *rwq_ind_tbl; 1166 u32 source_qpn; 1167 }; 1168 1169 struct ib_qp_open_attr { 1170 void (*event_handler)(struct ib_event *, void *); 1171 void *qp_context; 1172 u32 qp_num; 1173 enum ib_qp_type qp_type; 1174 }; 1175 1176 enum ib_rnr_timeout { 1177 IB_RNR_TIMER_655_36 = 0, 1178 IB_RNR_TIMER_000_01 = 1, 1179 IB_RNR_TIMER_000_02 = 2, 1180 IB_RNR_TIMER_000_03 = 3, 1181 IB_RNR_TIMER_000_04 = 4, 1182 IB_RNR_TIMER_000_06 = 5, 1183 IB_RNR_TIMER_000_08 = 6, 1184 IB_RNR_TIMER_000_12 = 7, 1185 IB_RNR_TIMER_000_16 = 8, 1186 IB_RNR_TIMER_000_24 = 9, 1187 IB_RNR_TIMER_000_32 = 10, 1188 IB_RNR_TIMER_000_48 = 11, 1189 IB_RNR_TIMER_000_64 = 12, 1190 IB_RNR_TIMER_000_96 = 13, 1191 IB_RNR_TIMER_001_28 = 14, 1192 IB_RNR_TIMER_001_92 = 15, 1193 IB_RNR_TIMER_002_56 = 16, 1194 IB_RNR_TIMER_003_84 = 17, 1195 IB_RNR_TIMER_005_12 = 18, 1196 IB_RNR_TIMER_007_68 = 19, 1197 IB_RNR_TIMER_010_24 = 20, 1198 IB_RNR_TIMER_015_36 = 21, 1199 IB_RNR_TIMER_020_48 = 22, 1200 IB_RNR_TIMER_030_72 = 23, 1201 IB_RNR_TIMER_040_96 = 24, 1202 IB_RNR_TIMER_061_44 = 25, 1203 IB_RNR_TIMER_081_92 = 26, 1204 IB_RNR_TIMER_122_88 = 27, 1205 IB_RNR_TIMER_163_84 = 28, 1206 IB_RNR_TIMER_245_76 = 29, 1207 IB_RNR_TIMER_327_68 = 30, 1208 IB_RNR_TIMER_491_52 = 31 1209 }; 1210 1211 enum ib_qp_attr_mask { 1212 IB_QP_STATE = 1, 1213 IB_QP_CUR_STATE = (1<<1), 1214 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 1215 IB_QP_ACCESS_FLAGS = (1<<3), 1216 IB_QP_PKEY_INDEX = (1<<4), 1217 IB_QP_PORT = (1<<5), 1218 IB_QP_QKEY = (1<<6), 1219 IB_QP_AV = (1<<7), 1220 IB_QP_PATH_MTU = (1<<8), 1221 IB_QP_TIMEOUT = (1<<9), 1222 IB_QP_RETRY_CNT = (1<<10), 1223 IB_QP_RNR_RETRY = (1<<11), 1224 IB_QP_RQ_PSN = (1<<12), 1225 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 1226 IB_QP_ALT_PATH = (1<<14), 1227 IB_QP_MIN_RNR_TIMER = (1<<15), 1228 IB_QP_SQ_PSN = (1<<16), 1229 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 1230 IB_QP_PATH_MIG_STATE = (1<<18), 1231 IB_QP_CAP = (1<<19), 1232 IB_QP_DEST_QPN = (1<<20), 1233 IB_QP_RESERVED1 = (1<<21), 1234 IB_QP_RESERVED2 = (1<<22), 1235 IB_QP_RESERVED3 = (1<<23), 1236 IB_QP_RESERVED4 = (1<<24), 1237 IB_QP_RATE_LIMIT = (1<<25), 1238 1239 IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0), 1240 }; 1241 1242 enum ib_qp_state { 1243 IB_QPS_RESET, 1244 IB_QPS_INIT, 1245 IB_QPS_RTR, 1246 IB_QPS_RTS, 1247 IB_QPS_SQD, 1248 IB_QPS_SQE, 1249 IB_QPS_ERR 1250 }; 1251 1252 enum ib_mig_state { 1253 IB_MIG_MIGRATED, 1254 IB_MIG_REARM, 1255 IB_MIG_ARMED 1256 }; 1257 1258 enum ib_mw_type { 1259 IB_MW_TYPE_1 = 1, 1260 IB_MW_TYPE_2 = 2 1261 }; 1262 1263 struct ib_qp_attr { 1264 enum ib_qp_state qp_state; 1265 enum ib_qp_state cur_qp_state; 1266 enum ib_mtu path_mtu; 1267 enum ib_mig_state path_mig_state; 1268 u32 qkey; 1269 u32 rq_psn; 1270 u32 sq_psn; 1271 u32 dest_qp_num; 1272 int qp_access_flags; 1273 struct ib_qp_cap cap; 1274 struct rdma_ah_attr ah_attr; 1275 struct rdma_ah_attr alt_ah_attr; 1276 u16 pkey_index; 1277 u16 alt_pkey_index; 1278 u8 en_sqd_async_notify; 1279 u8 sq_draining; 1280 u8 max_rd_atomic; 1281 u8 max_dest_rd_atomic; 1282 u8 min_rnr_timer; 1283 u8 port_num; 1284 u8 timeout; 1285 u8 retry_cnt; 1286 u8 rnr_retry; 1287 u8 alt_port_num; 1288 u8 alt_timeout; 1289 u32 rate_limit; 1290 struct net_device *xmit_slave; 1291 }; 1292 1293 enum ib_wr_opcode { 1294 /* These are shared with userspace */ 1295 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE, 1296 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM, 1297 IB_WR_SEND = IB_UVERBS_WR_SEND, 1298 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM, 1299 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ, 1300 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP, 1301 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD, 1302 IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW, 1303 IB_WR_LSO = IB_UVERBS_WR_TSO, 1304 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV, 1305 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV, 1306 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV, 1307 IB_WR_MASKED_ATOMIC_CMP_AND_SWP = 1308 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP, 1309 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD = 1310 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1311 1312 /* These are kernel only and can not be issued by userspace */ 1313 IB_WR_REG_MR = 0x20, 1314 IB_WR_REG_MR_INTEGRITY, 1315 1316 /* reserve values for low level drivers' internal use. 1317 * These values will not be used at all in the ib core layer. 1318 */ 1319 IB_WR_RESERVED1 = 0xf0, 1320 IB_WR_RESERVED2, 1321 IB_WR_RESERVED3, 1322 IB_WR_RESERVED4, 1323 IB_WR_RESERVED5, 1324 IB_WR_RESERVED6, 1325 IB_WR_RESERVED7, 1326 IB_WR_RESERVED8, 1327 IB_WR_RESERVED9, 1328 IB_WR_RESERVED10, 1329 }; 1330 1331 enum ib_send_flags { 1332 IB_SEND_FENCE = 1, 1333 IB_SEND_SIGNALED = (1<<1), 1334 IB_SEND_SOLICITED = (1<<2), 1335 IB_SEND_INLINE = (1<<3), 1336 IB_SEND_IP_CSUM = (1<<4), 1337 1338 /* reserve bits 26-31 for low level drivers' internal use */ 1339 IB_SEND_RESERVED_START = (1 << 26), 1340 IB_SEND_RESERVED_END = (1 << 31), 1341 }; 1342 1343 struct ib_sge { 1344 u64 addr; 1345 u32 length; 1346 u32 lkey; 1347 }; 1348 1349 struct ib_cqe { 1350 void (*done)(struct ib_cq *cq, struct ib_wc *wc); 1351 }; 1352 1353 struct ib_send_wr { 1354 struct ib_send_wr *next; 1355 union { 1356 u64 wr_id; 1357 struct ib_cqe *wr_cqe; 1358 }; 1359 struct ib_sge *sg_list; 1360 int num_sge; 1361 enum ib_wr_opcode opcode; 1362 int send_flags; 1363 union { 1364 __be32 imm_data; 1365 u32 invalidate_rkey; 1366 } ex; 1367 }; 1368 1369 struct ib_rdma_wr { 1370 struct ib_send_wr wr; 1371 u64 remote_addr; 1372 u32 rkey; 1373 }; 1374 1375 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr) 1376 { 1377 return container_of(wr, struct ib_rdma_wr, wr); 1378 } 1379 1380 struct ib_atomic_wr { 1381 struct ib_send_wr wr; 1382 u64 remote_addr; 1383 u64 compare_add; 1384 u64 swap; 1385 u64 compare_add_mask; 1386 u64 swap_mask; 1387 u32 rkey; 1388 }; 1389 1390 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr) 1391 { 1392 return container_of(wr, struct ib_atomic_wr, wr); 1393 } 1394 1395 struct ib_ud_wr { 1396 struct ib_send_wr wr; 1397 struct ib_ah *ah; 1398 void *header; 1399 int hlen; 1400 int mss; 1401 u32 remote_qpn; 1402 u32 remote_qkey; 1403 u16 pkey_index; /* valid for GSI only */ 1404 u8 port_num; /* valid for DR SMPs on switch only */ 1405 }; 1406 1407 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr) 1408 { 1409 return container_of(wr, struct ib_ud_wr, wr); 1410 } 1411 1412 struct ib_reg_wr { 1413 struct ib_send_wr wr; 1414 struct ib_mr *mr; 1415 u32 key; 1416 int access; 1417 }; 1418 1419 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr) 1420 { 1421 return container_of(wr, struct ib_reg_wr, wr); 1422 } 1423 1424 struct ib_recv_wr { 1425 struct ib_recv_wr *next; 1426 union { 1427 u64 wr_id; 1428 struct ib_cqe *wr_cqe; 1429 }; 1430 struct ib_sge *sg_list; 1431 int num_sge; 1432 }; 1433 1434 enum ib_access_flags { 1435 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE, 1436 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE, 1437 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ, 1438 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC, 1439 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND, 1440 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED, 1441 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND, 1442 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB, 1443 IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING, 1444 1445 IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE, 1446 IB_ACCESS_SUPPORTED = 1447 ((IB_ACCESS_HUGETLB << 1) - 1) | IB_ACCESS_OPTIONAL, 1448 }; 1449 1450 /* 1451 * XXX: these are apparently used for ->rereg_user_mr, no idea why they 1452 * are hidden here instead of a uapi header! 1453 */ 1454 enum ib_mr_rereg_flags { 1455 IB_MR_REREG_TRANS = 1, 1456 IB_MR_REREG_PD = (1<<1), 1457 IB_MR_REREG_ACCESS = (1<<2), 1458 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1459 }; 1460 1461 struct ib_umem; 1462 1463 enum rdma_remove_reason { 1464 /* 1465 * Userspace requested uobject deletion or initial try 1466 * to remove uobject via cleanup. Call could fail 1467 */ 1468 RDMA_REMOVE_DESTROY, 1469 /* Context deletion. This call should delete the actual object itself */ 1470 RDMA_REMOVE_CLOSE, 1471 /* Driver is being hot-unplugged. This call should delete the actual object itself */ 1472 RDMA_REMOVE_DRIVER_REMOVE, 1473 /* uobj is being cleaned-up before being committed */ 1474 RDMA_REMOVE_ABORT, 1475 /* The driver failed to destroy the uobject and is being disconnected */ 1476 RDMA_REMOVE_DRIVER_FAILURE, 1477 }; 1478 1479 struct ib_rdmacg_object { 1480 #ifdef CONFIG_CGROUP_RDMA 1481 struct rdma_cgroup *cg; /* owner rdma cgroup */ 1482 #endif 1483 }; 1484 1485 struct ib_ucontext { 1486 struct ib_device *device; 1487 struct ib_uverbs_file *ufile; 1488 1489 struct ib_rdmacg_object cg_obj; 1490 /* 1491 * Implementation details of the RDMA core, don't use in drivers: 1492 */ 1493 struct rdma_restrack_entry res; 1494 struct xarray mmap_xa; 1495 }; 1496 1497 struct ib_uobject { 1498 u64 user_handle; /* handle given to us by userspace */ 1499 /* ufile & ucontext owning this object */ 1500 struct ib_uverbs_file *ufile; 1501 /* FIXME, save memory: ufile->context == context */ 1502 struct ib_ucontext *context; /* associated user context */ 1503 void *object; /* containing object */ 1504 struct list_head list; /* link to context's list */ 1505 struct ib_rdmacg_object cg_obj; /* rdmacg object */ 1506 int id; /* index into kernel idr */ 1507 struct kref ref; 1508 atomic_t usecnt; /* protects exclusive access */ 1509 struct rcu_head rcu; /* kfree_rcu() overhead */ 1510 1511 const struct uverbs_api_object *uapi_object; 1512 }; 1513 1514 struct ib_udata { 1515 const void __user *inbuf; 1516 void __user *outbuf; 1517 size_t inlen; 1518 size_t outlen; 1519 }; 1520 1521 struct ib_pd { 1522 u32 local_dma_lkey; 1523 u32 flags; 1524 struct ib_device *device; 1525 struct ib_uobject *uobject; 1526 atomic_t usecnt; /* count all resources */ 1527 1528 u32 unsafe_global_rkey; 1529 1530 /* 1531 * Implementation details of the RDMA core, don't use in drivers: 1532 */ 1533 struct ib_mr *__internal_mr; 1534 struct rdma_restrack_entry res; 1535 }; 1536 1537 struct ib_xrcd { 1538 struct ib_device *device; 1539 atomic_t usecnt; /* count all exposed resources */ 1540 struct inode *inode; 1541 struct rw_semaphore tgt_qps_rwsem; 1542 struct xarray tgt_qps; 1543 }; 1544 1545 struct ib_ah { 1546 struct ib_device *device; 1547 struct ib_pd *pd; 1548 struct ib_uobject *uobject; 1549 const struct ib_gid_attr *sgid_attr; 1550 enum rdma_ah_attr_type type; 1551 }; 1552 1553 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1554 1555 enum ib_poll_context { 1556 IB_POLL_SOFTIRQ, /* poll from softirq context */ 1557 IB_POLL_WORKQUEUE, /* poll from workqueue */ 1558 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */ 1559 IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE, 1560 1561 IB_POLL_DIRECT, /* caller context, no hw completions */ 1562 }; 1563 1564 struct ib_cq { 1565 struct ib_device *device; 1566 struct ib_ucq_object *uobject; 1567 ib_comp_handler comp_handler; 1568 void (*event_handler)(struct ib_event *, void *); 1569 void *cq_context; 1570 int cqe; 1571 unsigned int cqe_used; 1572 atomic_t usecnt; /* count number of work queues */ 1573 enum ib_poll_context poll_ctx; 1574 struct ib_wc *wc; 1575 struct list_head pool_entry; 1576 union { 1577 struct irq_poll iop; 1578 struct work_struct work; 1579 }; 1580 struct workqueue_struct *comp_wq; 1581 struct dim *dim; 1582 1583 /* updated only by trace points */ 1584 ktime_t timestamp; 1585 u8 interrupt:1; 1586 u8 shared:1; 1587 unsigned int comp_vector; 1588 1589 /* 1590 * Implementation details of the RDMA core, don't use in drivers: 1591 */ 1592 struct rdma_restrack_entry res; 1593 }; 1594 1595 struct ib_srq { 1596 struct ib_device *device; 1597 struct ib_pd *pd; 1598 struct ib_usrq_object *uobject; 1599 void (*event_handler)(struct ib_event *, void *); 1600 void *srq_context; 1601 enum ib_srq_type srq_type; 1602 atomic_t usecnt; 1603 1604 struct { 1605 struct ib_cq *cq; 1606 union { 1607 struct { 1608 struct ib_xrcd *xrcd; 1609 u32 srq_num; 1610 } xrc; 1611 }; 1612 } ext; 1613 }; 1614 1615 enum ib_raw_packet_caps { 1616 /* Strip cvlan from incoming packet and report it in the matching work 1617 * completion is supported. 1618 */ 1619 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0), 1620 /* Scatter FCS field of an incoming packet to host memory is supported. 1621 */ 1622 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1), 1623 /* Checksum offloads are supported (for both send and receive). */ 1624 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2), 1625 /* When a packet is received for an RQ with no receive WQEs, the 1626 * packet processing is delayed. 1627 */ 1628 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3), 1629 }; 1630 1631 enum ib_wq_type { 1632 IB_WQT_RQ = IB_UVERBS_WQT_RQ, 1633 }; 1634 1635 enum ib_wq_state { 1636 IB_WQS_RESET, 1637 IB_WQS_RDY, 1638 IB_WQS_ERR 1639 }; 1640 1641 struct ib_wq { 1642 struct ib_device *device; 1643 struct ib_uwq_object *uobject; 1644 void *wq_context; 1645 void (*event_handler)(struct ib_event *, void *); 1646 struct ib_pd *pd; 1647 struct ib_cq *cq; 1648 u32 wq_num; 1649 enum ib_wq_state state; 1650 enum ib_wq_type wq_type; 1651 atomic_t usecnt; 1652 }; 1653 1654 enum ib_wq_flags { 1655 IB_WQ_FLAGS_CVLAN_STRIPPING = IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING, 1656 IB_WQ_FLAGS_SCATTER_FCS = IB_UVERBS_WQ_FLAGS_SCATTER_FCS, 1657 IB_WQ_FLAGS_DELAY_DROP = IB_UVERBS_WQ_FLAGS_DELAY_DROP, 1658 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1659 IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING, 1660 }; 1661 1662 struct ib_wq_init_attr { 1663 void *wq_context; 1664 enum ib_wq_type wq_type; 1665 u32 max_wr; 1666 u32 max_sge; 1667 struct ib_cq *cq; 1668 void (*event_handler)(struct ib_event *, void *); 1669 u32 create_flags; /* Use enum ib_wq_flags */ 1670 }; 1671 1672 enum ib_wq_attr_mask { 1673 IB_WQ_STATE = 1 << 0, 1674 IB_WQ_CUR_STATE = 1 << 1, 1675 IB_WQ_FLAGS = 1 << 2, 1676 }; 1677 1678 struct ib_wq_attr { 1679 enum ib_wq_state wq_state; 1680 enum ib_wq_state curr_wq_state; 1681 u32 flags; /* Use enum ib_wq_flags */ 1682 u32 flags_mask; /* Use enum ib_wq_flags */ 1683 }; 1684 1685 struct ib_rwq_ind_table { 1686 struct ib_device *device; 1687 struct ib_uobject *uobject; 1688 atomic_t usecnt; 1689 u32 ind_tbl_num; 1690 u32 log_ind_tbl_size; 1691 struct ib_wq **ind_tbl; 1692 }; 1693 1694 struct ib_rwq_ind_table_init_attr { 1695 u32 log_ind_tbl_size; 1696 /* Each entry is a pointer to Receive Work Queue */ 1697 struct ib_wq **ind_tbl; 1698 }; 1699 1700 enum port_pkey_state { 1701 IB_PORT_PKEY_NOT_VALID = 0, 1702 IB_PORT_PKEY_VALID = 1, 1703 IB_PORT_PKEY_LISTED = 2, 1704 }; 1705 1706 struct ib_qp_security; 1707 1708 struct ib_port_pkey { 1709 enum port_pkey_state state; 1710 u16 pkey_index; 1711 u8 port_num; 1712 struct list_head qp_list; 1713 struct list_head to_error_list; 1714 struct ib_qp_security *sec; 1715 }; 1716 1717 struct ib_ports_pkeys { 1718 struct ib_port_pkey main; 1719 struct ib_port_pkey alt; 1720 }; 1721 1722 struct ib_qp_security { 1723 struct ib_qp *qp; 1724 struct ib_device *dev; 1725 /* Hold this mutex when changing port and pkey settings. */ 1726 struct mutex mutex; 1727 struct ib_ports_pkeys *ports_pkeys; 1728 /* A list of all open shared QP handles. Required to enforce security 1729 * properly for all users of a shared QP. 1730 */ 1731 struct list_head shared_qp_list; 1732 void *security; 1733 bool destroying; 1734 atomic_t error_list_count; 1735 struct completion error_complete; 1736 int error_comps_pending; 1737 }; 1738 1739 /* 1740 * @max_write_sge: Maximum SGE elements per RDMA WRITE request. 1741 * @max_read_sge: Maximum SGE elements per RDMA READ request. 1742 */ 1743 struct ib_qp { 1744 struct ib_device *device; 1745 struct ib_pd *pd; 1746 struct ib_cq *send_cq; 1747 struct ib_cq *recv_cq; 1748 spinlock_t mr_lock; 1749 int mrs_used; 1750 struct list_head rdma_mrs; 1751 struct list_head sig_mrs; 1752 struct ib_srq *srq; 1753 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1754 struct list_head xrcd_list; 1755 1756 /* count times opened, mcast attaches, flow attaches */ 1757 atomic_t usecnt; 1758 struct list_head open_list; 1759 struct ib_qp *real_qp; 1760 struct ib_uqp_object *uobject; 1761 void (*event_handler)(struct ib_event *, void *); 1762 void *qp_context; 1763 /* sgid_attrs associated with the AV's */ 1764 const struct ib_gid_attr *av_sgid_attr; 1765 const struct ib_gid_attr *alt_path_sgid_attr; 1766 u32 qp_num; 1767 u32 max_write_sge; 1768 u32 max_read_sge; 1769 enum ib_qp_type qp_type; 1770 struct ib_rwq_ind_table *rwq_ind_tbl; 1771 struct ib_qp_security *qp_sec; 1772 u8 port; 1773 1774 bool integrity_en; 1775 /* 1776 * Implementation details of the RDMA core, don't use in drivers: 1777 */ 1778 struct rdma_restrack_entry res; 1779 1780 /* The counter the qp is bind to */ 1781 struct rdma_counter *counter; 1782 }; 1783 1784 struct ib_dm { 1785 struct ib_device *device; 1786 u32 length; 1787 u32 flags; 1788 struct ib_uobject *uobject; 1789 atomic_t usecnt; 1790 }; 1791 1792 struct ib_mr { 1793 struct ib_device *device; 1794 struct ib_pd *pd; 1795 u32 lkey; 1796 u32 rkey; 1797 u64 iova; 1798 u64 length; 1799 unsigned int page_size; 1800 enum ib_mr_type type; 1801 bool need_inval; 1802 union { 1803 struct ib_uobject *uobject; /* user */ 1804 struct list_head qp_entry; /* FR */ 1805 }; 1806 1807 struct ib_dm *dm; 1808 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */ 1809 /* 1810 * Implementation details of the RDMA core, don't use in drivers: 1811 */ 1812 struct rdma_restrack_entry res; 1813 }; 1814 1815 struct ib_mw { 1816 struct ib_device *device; 1817 struct ib_pd *pd; 1818 struct ib_uobject *uobject; 1819 u32 rkey; 1820 enum ib_mw_type type; 1821 }; 1822 1823 /* Supported steering options */ 1824 enum ib_flow_attr_type { 1825 /* steering according to rule specifications */ 1826 IB_FLOW_ATTR_NORMAL = 0x0, 1827 /* default unicast and multicast rule - 1828 * receive all Eth traffic which isn't steered to any QP 1829 */ 1830 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1831 /* default multicast rule - 1832 * receive all Eth multicast traffic which isn't steered to any QP 1833 */ 1834 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1835 /* sniffer rule - receive all port traffic */ 1836 IB_FLOW_ATTR_SNIFFER = 0x3 1837 }; 1838 1839 /* Supported steering header types */ 1840 enum ib_flow_spec_type { 1841 /* L2 headers*/ 1842 IB_FLOW_SPEC_ETH = 0x20, 1843 IB_FLOW_SPEC_IB = 0x22, 1844 /* L3 header*/ 1845 IB_FLOW_SPEC_IPV4 = 0x30, 1846 IB_FLOW_SPEC_IPV6 = 0x31, 1847 IB_FLOW_SPEC_ESP = 0x34, 1848 /* L4 headers*/ 1849 IB_FLOW_SPEC_TCP = 0x40, 1850 IB_FLOW_SPEC_UDP = 0x41, 1851 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50, 1852 IB_FLOW_SPEC_GRE = 0x51, 1853 IB_FLOW_SPEC_MPLS = 0x60, 1854 IB_FLOW_SPEC_INNER = 0x100, 1855 /* Actions */ 1856 IB_FLOW_SPEC_ACTION_TAG = 0x1000, 1857 IB_FLOW_SPEC_ACTION_DROP = 0x1001, 1858 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002, 1859 IB_FLOW_SPEC_ACTION_COUNT = 0x1003, 1860 }; 1861 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1862 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10 1863 1864 enum ib_flow_flags { 1865 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */ 1866 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */ 1867 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */ 1868 }; 1869 1870 struct ib_flow_eth_filter { 1871 u8 dst_mac[6]; 1872 u8 src_mac[6]; 1873 __be16 ether_type; 1874 __be16 vlan_tag; 1875 /* Must be last */ 1876 u8 real_sz[]; 1877 }; 1878 1879 struct ib_flow_spec_eth { 1880 u32 type; 1881 u16 size; 1882 struct ib_flow_eth_filter val; 1883 struct ib_flow_eth_filter mask; 1884 }; 1885 1886 struct ib_flow_ib_filter { 1887 __be16 dlid; 1888 __u8 sl; 1889 /* Must be last */ 1890 u8 real_sz[]; 1891 }; 1892 1893 struct ib_flow_spec_ib { 1894 u32 type; 1895 u16 size; 1896 struct ib_flow_ib_filter val; 1897 struct ib_flow_ib_filter mask; 1898 }; 1899 1900 /* IPv4 header flags */ 1901 enum ib_ipv4_flags { 1902 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */ 1903 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the 1904 last have this flag set */ 1905 }; 1906 1907 struct ib_flow_ipv4_filter { 1908 __be32 src_ip; 1909 __be32 dst_ip; 1910 u8 proto; 1911 u8 tos; 1912 u8 ttl; 1913 u8 flags; 1914 /* Must be last */ 1915 u8 real_sz[]; 1916 }; 1917 1918 struct ib_flow_spec_ipv4 { 1919 u32 type; 1920 u16 size; 1921 struct ib_flow_ipv4_filter val; 1922 struct ib_flow_ipv4_filter mask; 1923 }; 1924 1925 struct ib_flow_ipv6_filter { 1926 u8 src_ip[16]; 1927 u8 dst_ip[16]; 1928 __be32 flow_label; 1929 u8 next_hdr; 1930 u8 traffic_class; 1931 u8 hop_limit; 1932 /* Must be last */ 1933 u8 real_sz[]; 1934 }; 1935 1936 struct ib_flow_spec_ipv6 { 1937 u32 type; 1938 u16 size; 1939 struct ib_flow_ipv6_filter val; 1940 struct ib_flow_ipv6_filter mask; 1941 }; 1942 1943 struct ib_flow_tcp_udp_filter { 1944 __be16 dst_port; 1945 __be16 src_port; 1946 /* Must be last */ 1947 u8 real_sz[]; 1948 }; 1949 1950 struct ib_flow_spec_tcp_udp { 1951 u32 type; 1952 u16 size; 1953 struct ib_flow_tcp_udp_filter val; 1954 struct ib_flow_tcp_udp_filter mask; 1955 }; 1956 1957 struct ib_flow_tunnel_filter { 1958 __be32 tunnel_id; 1959 u8 real_sz[]; 1960 }; 1961 1962 /* ib_flow_spec_tunnel describes the Vxlan tunnel 1963 * the tunnel_id from val has the vni value 1964 */ 1965 struct ib_flow_spec_tunnel { 1966 u32 type; 1967 u16 size; 1968 struct ib_flow_tunnel_filter val; 1969 struct ib_flow_tunnel_filter mask; 1970 }; 1971 1972 struct ib_flow_esp_filter { 1973 __be32 spi; 1974 __be32 seq; 1975 /* Must be last */ 1976 u8 real_sz[]; 1977 }; 1978 1979 struct ib_flow_spec_esp { 1980 u32 type; 1981 u16 size; 1982 struct ib_flow_esp_filter val; 1983 struct ib_flow_esp_filter mask; 1984 }; 1985 1986 struct ib_flow_gre_filter { 1987 __be16 c_ks_res0_ver; 1988 __be16 protocol; 1989 __be32 key; 1990 /* Must be last */ 1991 u8 real_sz[]; 1992 }; 1993 1994 struct ib_flow_spec_gre { 1995 u32 type; 1996 u16 size; 1997 struct ib_flow_gre_filter val; 1998 struct ib_flow_gre_filter mask; 1999 }; 2000 2001 struct ib_flow_mpls_filter { 2002 __be32 tag; 2003 /* Must be last */ 2004 u8 real_sz[]; 2005 }; 2006 2007 struct ib_flow_spec_mpls { 2008 u32 type; 2009 u16 size; 2010 struct ib_flow_mpls_filter val; 2011 struct ib_flow_mpls_filter mask; 2012 }; 2013 2014 struct ib_flow_spec_action_tag { 2015 enum ib_flow_spec_type type; 2016 u16 size; 2017 u32 tag_id; 2018 }; 2019 2020 struct ib_flow_spec_action_drop { 2021 enum ib_flow_spec_type type; 2022 u16 size; 2023 }; 2024 2025 struct ib_flow_spec_action_handle { 2026 enum ib_flow_spec_type type; 2027 u16 size; 2028 struct ib_flow_action *act; 2029 }; 2030 2031 enum ib_counters_description { 2032 IB_COUNTER_PACKETS, 2033 IB_COUNTER_BYTES, 2034 }; 2035 2036 struct ib_flow_spec_action_count { 2037 enum ib_flow_spec_type type; 2038 u16 size; 2039 struct ib_counters *counters; 2040 }; 2041 2042 union ib_flow_spec { 2043 struct { 2044 u32 type; 2045 u16 size; 2046 }; 2047 struct ib_flow_spec_eth eth; 2048 struct ib_flow_spec_ib ib; 2049 struct ib_flow_spec_ipv4 ipv4; 2050 struct ib_flow_spec_tcp_udp tcp_udp; 2051 struct ib_flow_spec_ipv6 ipv6; 2052 struct ib_flow_spec_tunnel tunnel; 2053 struct ib_flow_spec_esp esp; 2054 struct ib_flow_spec_gre gre; 2055 struct ib_flow_spec_mpls mpls; 2056 struct ib_flow_spec_action_tag flow_tag; 2057 struct ib_flow_spec_action_drop drop; 2058 struct ib_flow_spec_action_handle action; 2059 struct ib_flow_spec_action_count flow_count; 2060 }; 2061 2062 struct ib_flow_attr { 2063 enum ib_flow_attr_type type; 2064 u16 size; 2065 u16 priority; 2066 u32 flags; 2067 u8 num_of_specs; 2068 u8 port; 2069 union ib_flow_spec flows[]; 2070 }; 2071 2072 struct ib_flow { 2073 struct ib_qp *qp; 2074 struct ib_device *device; 2075 struct ib_uobject *uobject; 2076 }; 2077 2078 enum ib_flow_action_type { 2079 IB_FLOW_ACTION_UNSPECIFIED, 2080 IB_FLOW_ACTION_ESP = 1, 2081 }; 2082 2083 struct ib_flow_action_attrs_esp_keymats { 2084 enum ib_uverbs_flow_action_esp_keymat protocol; 2085 union { 2086 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm; 2087 } keymat; 2088 }; 2089 2090 struct ib_flow_action_attrs_esp_replays { 2091 enum ib_uverbs_flow_action_esp_replay protocol; 2092 union { 2093 struct ib_uverbs_flow_action_esp_replay_bmp bmp; 2094 } replay; 2095 }; 2096 2097 enum ib_flow_action_attrs_esp_flags { 2098 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags 2099 * This is done in order to share the same flags between user-space and 2100 * kernel and spare an unnecessary translation. 2101 */ 2102 2103 /* Kernel flags */ 2104 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32, 2105 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33, 2106 }; 2107 2108 struct ib_flow_spec_list { 2109 struct ib_flow_spec_list *next; 2110 union ib_flow_spec spec; 2111 }; 2112 2113 struct ib_flow_action_attrs_esp { 2114 struct ib_flow_action_attrs_esp_keymats *keymat; 2115 struct ib_flow_action_attrs_esp_replays *replay; 2116 struct ib_flow_spec_list *encap; 2117 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled. 2118 * Value of 0 is a valid value. 2119 */ 2120 u32 esn; 2121 u32 spi; 2122 u32 seq; 2123 u32 tfc_pad; 2124 /* Use enum ib_flow_action_attrs_esp_flags */ 2125 u64 flags; 2126 u64 hard_limit_pkts; 2127 }; 2128 2129 struct ib_flow_action { 2130 struct ib_device *device; 2131 struct ib_uobject *uobject; 2132 enum ib_flow_action_type type; 2133 atomic_t usecnt; 2134 }; 2135 2136 struct ib_mad; 2137 struct ib_grh; 2138 2139 enum ib_process_mad_flags { 2140 IB_MAD_IGNORE_MKEY = 1, 2141 IB_MAD_IGNORE_BKEY = 2, 2142 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 2143 }; 2144 2145 enum ib_mad_result { 2146 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 2147 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 2148 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 2149 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 2150 }; 2151 2152 struct ib_port_cache { 2153 u64 subnet_prefix; 2154 struct ib_pkey_cache *pkey; 2155 struct ib_gid_table *gid; 2156 u8 lmc; 2157 enum ib_port_state port_state; 2158 }; 2159 2160 struct ib_port_immutable { 2161 int pkey_tbl_len; 2162 int gid_tbl_len; 2163 u32 core_cap_flags; 2164 u32 max_mad_size; 2165 }; 2166 2167 struct ib_port_data { 2168 struct ib_device *ib_dev; 2169 2170 struct ib_port_immutable immutable; 2171 2172 spinlock_t pkey_list_lock; 2173 struct list_head pkey_list; 2174 2175 struct ib_port_cache cache; 2176 2177 spinlock_t netdev_lock; 2178 struct net_device __rcu *netdev; 2179 struct hlist_node ndev_hash_link; 2180 struct rdma_port_counter port_counter; 2181 struct rdma_hw_stats *hw_stats; 2182 }; 2183 2184 /* rdma netdev type - specifies protocol type */ 2185 enum rdma_netdev_t { 2186 RDMA_NETDEV_OPA_VNIC, 2187 RDMA_NETDEV_IPOIB, 2188 }; 2189 2190 /** 2191 * struct rdma_netdev - rdma netdev 2192 * For cases where netstack interfacing is required. 2193 */ 2194 struct rdma_netdev { 2195 void *clnt_priv; 2196 struct ib_device *hca; 2197 u8 port_num; 2198 int mtu; 2199 2200 /* 2201 * cleanup function must be specified. 2202 * FIXME: This is only used for OPA_VNIC and that usage should be 2203 * removed too. 2204 */ 2205 void (*free_rdma_netdev)(struct net_device *netdev); 2206 2207 /* control functions */ 2208 void (*set_id)(struct net_device *netdev, int id); 2209 /* send packet */ 2210 int (*send)(struct net_device *dev, struct sk_buff *skb, 2211 struct ib_ah *address, u32 dqpn); 2212 /* multicast */ 2213 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca, 2214 union ib_gid *gid, u16 mlid, 2215 int set_qkey, u32 qkey); 2216 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca, 2217 union ib_gid *gid, u16 mlid); 2218 }; 2219 2220 struct rdma_netdev_alloc_params { 2221 size_t sizeof_priv; 2222 unsigned int txqs; 2223 unsigned int rxqs; 2224 void *param; 2225 2226 int (*initialize_rdma_netdev)(struct ib_device *device, u8 port_num, 2227 struct net_device *netdev, void *param); 2228 }; 2229 2230 struct ib_odp_counters { 2231 atomic64_t faults; 2232 atomic64_t invalidations; 2233 atomic64_t prefetch; 2234 }; 2235 2236 struct ib_counters { 2237 struct ib_device *device; 2238 struct ib_uobject *uobject; 2239 /* num of objects attached */ 2240 atomic_t usecnt; 2241 }; 2242 2243 struct ib_counters_read_attr { 2244 u64 *counters_buff; 2245 u32 ncounters; 2246 u32 flags; /* use enum ib_read_counters_flags */ 2247 }; 2248 2249 struct uverbs_attr_bundle; 2250 struct iw_cm_id; 2251 struct iw_cm_conn_param; 2252 2253 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \ 2254 .size_##ib_struct = \ 2255 (sizeof(struct drv_struct) + \ 2256 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \ 2257 BUILD_BUG_ON_ZERO( \ 2258 !__same_type(((struct drv_struct *)NULL)->member, \ 2259 struct ib_struct))) 2260 2261 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \ 2262 ((struct ib_type *)kzalloc(ib_dev->ops.size_##ib_type, gfp)) 2263 2264 #define rdma_zalloc_drv_obj(ib_dev, ib_type) \ 2265 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL) 2266 2267 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct 2268 2269 struct rdma_user_mmap_entry { 2270 struct kref ref; 2271 struct ib_ucontext *ucontext; 2272 unsigned long start_pgoff; 2273 size_t npages; 2274 bool driver_removed; 2275 }; 2276 2277 /* Return the offset (in bytes) the user should pass to libc's mmap() */ 2278 static inline u64 2279 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry) 2280 { 2281 return (u64)entry->start_pgoff << PAGE_SHIFT; 2282 } 2283 2284 /** 2285 * struct ib_device_ops - InfiniBand device operations 2286 * This structure defines all the InfiniBand device operations, providers will 2287 * need to define the supported operations, otherwise they will be set to null. 2288 */ 2289 struct ib_device_ops { 2290 struct module *owner; 2291 enum rdma_driver_id driver_id; 2292 u32 uverbs_abi_ver; 2293 unsigned int uverbs_no_driver_id_binding:1; 2294 2295 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr, 2296 const struct ib_send_wr **bad_send_wr); 2297 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr, 2298 const struct ib_recv_wr **bad_recv_wr); 2299 void (*drain_rq)(struct ib_qp *qp); 2300 void (*drain_sq)(struct ib_qp *qp); 2301 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc); 2302 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 2303 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags); 2304 int (*req_ncomp_notif)(struct ib_cq *cq, int wc_cnt); 2305 int (*post_srq_recv)(struct ib_srq *srq, 2306 const struct ib_recv_wr *recv_wr, 2307 const struct ib_recv_wr **bad_recv_wr); 2308 int (*process_mad)(struct ib_device *device, int process_mad_flags, 2309 u8 port_num, const struct ib_wc *in_wc, 2310 const struct ib_grh *in_grh, 2311 const struct ib_mad *in_mad, struct ib_mad *out_mad, 2312 size_t *out_mad_size, u16 *out_mad_pkey_index); 2313 int (*query_device)(struct ib_device *device, 2314 struct ib_device_attr *device_attr, 2315 struct ib_udata *udata); 2316 int (*modify_device)(struct ib_device *device, int device_modify_mask, 2317 struct ib_device_modify *device_modify); 2318 void (*get_dev_fw_str)(struct ib_device *device, char *str); 2319 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev, 2320 int comp_vector); 2321 int (*query_port)(struct ib_device *device, u8 port_num, 2322 struct ib_port_attr *port_attr); 2323 int (*modify_port)(struct ib_device *device, u8 port_num, 2324 int port_modify_mask, 2325 struct ib_port_modify *port_modify); 2326 /** 2327 * The following mandatory functions are used only at device 2328 * registration. Keep functions such as these at the end of this 2329 * structure to avoid cache line misses when accessing struct ib_device 2330 * in fast paths. 2331 */ 2332 int (*get_port_immutable)(struct ib_device *device, u8 port_num, 2333 struct ib_port_immutable *immutable); 2334 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 2335 u8 port_num); 2336 /** 2337 * When calling get_netdev, the HW vendor's driver should return the 2338 * net device of device @device at port @port_num or NULL if such 2339 * a net device doesn't exist. The vendor driver should call dev_hold 2340 * on this net device. The HW vendor's device driver must guarantee 2341 * that this function returns NULL before the net device has finished 2342 * NETDEV_UNREGISTER state. 2343 */ 2344 struct net_device *(*get_netdev)(struct ib_device *device, u8 port_num); 2345 /** 2346 * rdma netdev operation 2347 * 2348 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params 2349 * must return -EOPNOTSUPP if it doesn't support the specified type. 2350 */ 2351 struct net_device *(*alloc_rdma_netdev)( 2352 struct ib_device *device, u8 port_num, enum rdma_netdev_t type, 2353 const char *name, unsigned char name_assign_type, 2354 void (*setup)(struct net_device *)); 2355 2356 int (*rdma_netdev_get_params)(struct ib_device *device, u8 port_num, 2357 enum rdma_netdev_t type, 2358 struct rdma_netdev_alloc_params *params); 2359 /** 2360 * query_gid should be return GID value for @device, when @port_num 2361 * link layer is either IB or iWarp. It is no-op if @port_num port 2362 * is RoCE link layer. 2363 */ 2364 int (*query_gid)(struct ib_device *device, u8 port_num, int index, 2365 union ib_gid *gid); 2366 /** 2367 * When calling add_gid, the HW vendor's driver should add the gid 2368 * of device of port at gid index available at @attr. Meta-info of 2369 * that gid (for example, the network device related to this gid) is 2370 * available at @attr. @context allows the HW vendor driver to store 2371 * extra information together with a GID entry. The HW vendor driver may 2372 * allocate memory to contain this information and store it in @context 2373 * when a new GID entry is written to. Params are consistent until the 2374 * next call of add_gid or delete_gid. The function should return 0 on 2375 * success or error otherwise. The function could be called 2376 * concurrently for different ports. This function is only called when 2377 * roce_gid_table is used. 2378 */ 2379 int (*add_gid)(const struct ib_gid_attr *attr, void **context); 2380 /** 2381 * When calling del_gid, the HW vendor's driver should delete the 2382 * gid of device @device at gid index gid_index of port port_num 2383 * available in @attr. 2384 * Upon the deletion of a GID entry, the HW vendor must free any 2385 * allocated memory. The caller will clear @context afterwards. 2386 * This function is only called when roce_gid_table is used. 2387 */ 2388 int (*del_gid)(const struct ib_gid_attr *attr, void **context); 2389 int (*query_pkey)(struct ib_device *device, u8 port_num, u16 index, 2390 u16 *pkey); 2391 int (*alloc_ucontext)(struct ib_ucontext *context, 2392 struct ib_udata *udata); 2393 void (*dealloc_ucontext)(struct ib_ucontext *context); 2394 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma); 2395 /** 2396 * This will be called once refcount of an entry in mmap_xa reaches 2397 * zero. The type of the memory that was mapped may differ between 2398 * entries and is opaque to the rdma_user_mmap interface. 2399 * Therefore needs to be implemented by the driver in mmap_free. 2400 */ 2401 void (*mmap_free)(struct rdma_user_mmap_entry *entry); 2402 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 2403 int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata); 2404 int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata); 2405 int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr, 2406 struct ib_udata *udata); 2407 int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr, 2408 struct ib_udata *udata); 2409 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2410 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2411 int (*destroy_ah)(struct ib_ah *ah, u32 flags); 2412 int (*create_srq)(struct ib_srq *srq, 2413 struct ib_srq_init_attr *srq_init_attr, 2414 struct ib_udata *udata); 2415 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr, 2416 enum ib_srq_attr_mask srq_attr_mask, 2417 struct ib_udata *udata); 2418 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr); 2419 int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata); 2420 struct ib_qp *(*create_qp)(struct ib_pd *pd, 2421 struct ib_qp_init_attr *qp_init_attr, 2422 struct ib_udata *udata); 2423 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, 2424 int qp_attr_mask, struct ib_udata *udata); 2425 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, 2426 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr); 2427 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata); 2428 int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr, 2429 struct ib_udata *udata); 2430 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period); 2431 int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata); 2432 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata); 2433 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags); 2434 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length, 2435 u64 virt_addr, int mr_access_flags, 2436 struct ib_udata *udata); 2437 struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start, 2438 u64 length, u64 virt_addr, 2439 int mr_access_flags, struct ib_pd *pd, 2440 struct ib_udata *udata); 2441 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata); 2442 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type, 2443 u32 max_num_sg); 2444 struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd, 2445 u32 max_num_data_sg, 2446 u32 max_num_meta_sg); 2447 int (*advise_mr)(struct ib_pd *pd, 2448 enum ib_uverbs_advise_mr_advice advice, u32 flags, 2449 struct ib_sge *sg_list, u32 num_sge, 2450 struct uverbs_attr_bundle *attrs); 2451 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 2452 unsigned int *sg_offset); 2453 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 2454 struct ib_mr_status *mr_status); 2455 int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata); 2456 int (*dealloc_mw)(struct ib_mw *mw); 2457 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2458 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2459 int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata); 2460 int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata); 2461 struct ib_flow *(*create_flow)(struct ib_qp *qp, 2462 struct ib_flow_attr *flow_attr, 2463 struct ib_udata *udata); 2464 int (*destroy_flow)(struct ib_flow *flow_id); 2465 struct ib_flow_action *(*create_flow_action_esp)( 2466 struct ib_device *device, 2467 const struct ib_flow_action_attrs_esp *attr, 2468 struct uverbs_attr_bundle *attrs); 2469 int (*destroy_flow_action)(struct ib_flow_action *action); 2470 int (*modify_flow_action_esp)( 2471 struct ib_flow_action *action, 2472 const struct ib_flow_action_attrs_esp *attr, 2473 struct uverbs_attr_bundle *attrs); 2474 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port, 2475 int state); 2476 int (*get_vf_config)(struct ib_device *device, int vf, u8 port, 2477 struct ifla_vf_info *ivf); 2478 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port, 2479 struct ifla_vf_stats *stats); 2480 int (*get_vf_guid)(struct ib_device *device, int vf, u8 port, 2481 struct ifla_vf_guid *node_guid, 2482 struct ifla_vf_guid *port_guid); 2483 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid, 2484 int type); 2485 struct ib_wq *(*create_wq)(struct ib_pd *pd, 2486 struct ib_wq_init_attr *init_attr, 2487 struct ib_udata *udata); 2488 int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata); 2489 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr, 2490 u32 wq_attr_mask, struct ib_udata *udata); 2491 int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table, 2492 struct ib_rwq_ind_table_init_attr *init_attr, 2493 struct ib_udata *udata); 2494 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table); 2495 struct ib_dm *(*alloc_dm)(struct ib_device *device, 2496 struct ib_ucontext *context, 2497 struct ib_dm_alloc_attr *attr, 2498 struct uverbs_attr_bundle *attrs); 2499 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs); 2500 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm, 2501 struct ib_dm_mr_attr *attr, 2502 struct uverbs_attr_bundle *attrs); 2503 int (*create_counters)(struct ib_counters *counters, 2504 struct uverbs_attr_bundle *attrs); 2505 int (*destroy_counters)(struct ib_counters *counters); 2506 int (*read_counters)(struct ib_counters *counters, 2507 struct ib_counters_read_attr *counters_read_attr, 2508 struct uverbs_attr_bundle *attrs); 2509 int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg, 2510 int data_sg_nents, unsigned int *data_sg_offset, 2511 struct scatterlist *meta_sg, int meta_sg_nents, 2512 unsigned int *meta_sg_offset); 2513 2514 /** 2515 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the 2516 * driver initialized data. The struct is kfree()'ed by the sysfs 2517 * core when the device is removed. A lifespan of -1 in the return 2518 * struct tells the core to set a default lifespan. 2519 */ 2520 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device, 2521 u8 port_num); 2522 /** 2523 * get_hw_stats - Fill in the counter value(s) in the stats struct. 2524 * @index - The index in the value array we wish to have updated, or 2525 * num_counters if we want all stats updated 2526 * Return codes - 2527 * < 0 - Error, no counters updated 2528 * index - Updated the single counter pointed to by index 2529 * num_counters - Updated all counters (will reset the timestamp 2530 * and prevent further calls for lifespan milliseconds) 2531 * Drivers are allowed to update all counters in leiu of just the 2532 * one given in index at their option 2533 */ 2534 int (*get_hw_stats)(struct ib_device *device, 2535 struct rdma_hw_stats *stats, u8 port, int index); 2536 /* 2537 * This function is called once for each port when a ib device is 2538 * registered. 2539 */ 2540 int (*init_port)(struct ib_device *device, u8 port_num, 2541 struct kobject *port_sysfs); 2542 /** 2543 * Allows rdma drivers to add their own restrack attributes. 2544 */ 2545 int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr); 2546 int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr); 2547 int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq); 2548 int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq); 2549 int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp); 2550 int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp); 2551 int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id); 2552 2553 /* Device lifecycle callbacks */ 2554 /* 2555 * Called after the device becomes registered, before clients are 2556 * attached 2557 */ 2558 int (*enable_driver)(struct ib_device *dev); 2559 /* 2560 * This is called as part of ib_dealloc_device(). 2561 */ 2562 void (*dealloc_driver)(struct ib_device *dev); 2563 2564 /* iWarp CM callbacks */ 2565 void (*iw_add_ref)(struct ib_qp *qp); 2566 void (*iw_rem_ref)(struct ib_qp *qp); 2567 struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn); 2568 int (*iw_connect)(struct iw_cm_id *cm_id, 2569 struct iw_cm_conn_param *conn_param); 2570 int (*iw_accept)(struct iw_cm_id *cm_id, 2571 struct iw_cm_conn_param *conn_param); 2572 int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata, 2573 u8 pdata_len); 2574 int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog); 2575 int (*iw_destroy_listen)(struct iw_cm_id *cm_id); 2576 /** 2577 * counter_bind_qp - Bind a QP to a counter. 2578 * @counter - The counter to be bound. If counter->id is zero then 2579 * the driver needs to allocate a new counter and set counter->id 2580 */ 2581 int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp); 2582 /** 2583 * counter_unbind_qp - Unbind the qp from the dynamically-allocated 2584 * counter and bind it onto the default one 2585 */ 2586 int (*counter_unbind_qp)(struct ib_qp *qp); 2587 /** 2588 * counter_dealloc -De-allocate the hw counter 2589 */ 2590 int (*counter_dealloc)(struct rdma_counter *counter); 2591 /** 2592 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in 2593 * the driver initialized data. 2594 */ 2595 struct rdma_hw_stats *(*counter_alloc_stats)( 2596 struct rdma_counter *counter); 2597 /** 2598 * counter_update_stats - Query the stats value of this counter 2599 */ 2600 int (*counter_update_stats)(struct rdma_counter *counter); 2601 2602 /** 2603 * Allows rdma drivers to add their own restrack attributes 2604 * dumped via 'rdma stat' iproute2 command. 2605 */ 2606 int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr); 2607 2608 /* query driver for its ucontext properties */ 2609 int (*query_ucontext)(struct ib_ucontext *context, 2610 struct uverbs_attr_bundle *attrs); 2611 2612 DECLARE_RDMA_OBJ_SIZE(ib_ah); 2613 DECLARE_RDMA_OBJ_SIZE(ib_counters); 2614 DECLARE_RDMA_OBJ_SIZE(ib_cq); 2615 DECLARE_RDMA_OBJ_SIZE(ib_mw); 2616 DECLARE_RDMA_OBJ_SIZE(ib_pd); 2617 DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table); 2618 DECLARE_RDMA_OBJ_SIZE(ib_srq); 2619 DECLARE_RDMA_OBJ_SIZE(ib_ucontext); 2620 DECLARE_RDMA_OBJ_SIZE(ib_xrcd); 2621 }; 2622 2623 struct ib_core_device { 2624 /* device must be the first element in structure until, 2625 * union of ib_core_device and device exists in ib_device. 2626 */ 2627 struct device dev; 2628 possible_net_t rdma_net; 2629 struct kobject *ports_kobj; 2630 struct list_head port_list; 2631 struct ib_device *owner; /* reach back to owner ib_device */ 2632 }; 2633 2634 struct rdma_restrack_root; 2635 struct ib_device { 2636 /* Do not access @dma_device directly from ULP nor from HW drivers. */ 2637 struct device *dma_device; 2638 struct ib_device_ops ops; 2639 char name[IB_DEVICE_NAME_MAX]; 2640 struct rcu_head rcu_head; 2641 2642 struct list_head event_handler_list; 2643 /* Protects event_handler_list */ 2644 struct rw_semaphore event_handler_rwsem; 2645 2646 /* Protects QP's event_handler calls and open_qp list */ 2647 spinlock_t qp_open_list_lock; 2648 2649 struct rw_semaphore client_data_rwsem; 2650 struct xarray client_data; 2651 struct mutex unregistration_lock; 2652 2653 /* Synchronize GID, Pkey cache entries, subnet prefix, LMC */ 2654 rwlock_t cache_lock; 2655 /** 2656 * port_data is indexed by port number 2657 */ 2658 struct ib_port_data *port_data; 2659 2660 int num_comp_vectors; 2661 2662 union { 2663 struct device dev; 2664 struct ib_core_device coredev; 2665 }; 2666 2667 /* First group for device attributes, 2668 * Second group for driver provided attributes (optional). 2669 * It is NULL terminated array. 2670 */ 2671 const struct attribute_group *groups[3]; 2672 2673 u64 uverbs_cmd_mask; 2674 2675 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 2676 __be64 node_guid; 2677 u32 local_dma_lkey; 2678 u16 is_switch:1; 2679 /* Indicates kernel verbs support, should not be used in drivers */ 2680 u16 kverbs_provider:1; 2681 /* CQ adaptive moderation (RDMA DIM) */ 2682 u16 use_cq_dim:1; 2683 u8 node_type; 2684 u8 phys_port_cnt; 2685 struct ib_device_attr attrs; 2686 struct attribute_group *hw_stats_ag; 2687 struct rdma_hw_stats *hw_stats; 2688 2689 #ifdef CONFIG_CGROUP_RDMA 2690 struct rdmacg_device cg_device; 2691 #endif 2692 2693 u32 index; 2694 2695 spinlock_t cq_pools_lock; 2696 struct list_head cq_pools[IB_POLL_LAST_POOL_TYPE + 1]; 2697 2698 struct rdma_restrack_root *res; 2699 2700 const struct uapi_definition *driver_def; 2701 2702 /* 2703 * Positive refcount indicates that the device is currently 2704 * registered and cannot be unregistered. 2705 */ 2706 refcount_t refcount; 2707 struct completion unreg_completion; 2708 struct work_struct unregistration_work; 2709 2710 const struct rdma_link_ops *link_ops; 2711 2712 /* Protects compat_devs xarray modifications */ 2713 struct mutex compat_devs_mutex; 2714 /* Maintains compat devices for each net namespace */ 2715 struct xarray compat_devs; 2716 2717 /* Used by iWarp CM */ 2718 char iw_ifname[IFNAMSIZ]; 2719 u32 iw_driver_flags; 2720 u32 lag_flags; 2721 }; 2722 2723 struct ib_client_nl_info; 2724 struct ib_client { 2725 const char *name; 2726 int (*add)(struct ib_device *ibdev); 2727 void (*remove)(struct ib_device *, void *client_data); 2728 void (*rename)(struct ib_device *dev, void *client_data); 2729 int (*get_nl_info)(struct ib_device *ibdev, void *client_data, 2730 struct ib_client_nl_info *res); 2731 int (*get_global_nl_info)(struct ib_client_nl_info *res); 2732 2733 /* Returns the net_dev belonging to this ib_client and matching the 2734 * given parameters. 2735 * @dev: An RDMA device that the net_dev use for communication. 2736 * @port: A physical port number on the RDMA device. 2737 * @pkey: P_Key that the net_dev uses if applicable. 2738 * @gid: A GID that the net_dev uses to communicate. 2739 * @addr: An IP address the net_dev is configured with. 2740 * @client_data: The device's client data set by ib_set_client_data(). 2741 * 2742 * An ib_client that implements a net_dev on top of RDMA devices 2743 * (such as IP over IB) should implement this callback, allowing the 2744 * rdma_cm module to find the right net_dev for a given request. 2745 * 2746 * The caller is responsible for calling dev_put on the returned 2747 * netdev. */ 2748 struct net_device *(*get_net_dev_by_params)( 2749 struct ib_device *dev, 2750 u8 port, 2751 u16 pkey, 2752 const union ib_gid *gid, 2753 const struct sockaddr *addr, 2754 void *client_data); 2755 2756 refcount_t uses; 2757 struct completion uses_zero; 2758 u32 client_id; 2759 2760 /* kverbs are not required by the client */ 2761 u8 no_kverbs_req:1; 2762 }; 2763 2764 /* 2765 * IB block DMA iterator 2766 * 2767 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned 2768 * to a HW supported page size. 2769 */ 2770 struct ib_block_iter { 2771 /* internal states */ 2772 struct scatterlist *__sg; /* sg holding the current aligned block */ 2773 dma_addr_t __dma_addr; /* unaligned DMA address of this block */ 2774 unsigned int __sg_nents; /* number of SG entries */ 2775 unsigned int __sg_advance; /* number of bytes to advance in sg in next step */ 2776 unsigned int __pg_bit; /* alignment of current block */ 2777 }; 2778 2779 struct ib_device *_ib_alloc_device(size_t size); 2780 #define ib_alloc_device(drv_struct, member) \ 2781 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \ 2782 BUILD_BUG_ON_ZERO(offsetof( \ 2783 struct drv_struct, member))), \ 2784 struct drv_struct, member) 2785 2786 void ib_dealloc_device(struct ib_device *device); 2787 2788 void ib_get_device_fw_str(struct ib_device *device, char *str); 2789 2790 int ib_register_device(struct ib_device *device, const char *name, 2791 struct device *dma_device); 2792 void ib_unregister_device(struct ib_device *device); 2793 void ib_unregister_driver(enum rdma_driver_id driver_id); 2794 void ib_unregister_device_and_put(struct ib_device *device); 2795 void ib_unregister_device_queued(struct ib_device *ib_dev); 2796 2797 int ib_register_client (struct ib_client *client); 2798 void ib_unregister_client(struct ib_client *client); 2799 2800 void __rdma_block_iter_start(struct ib_block_iter *biter, 2801 struct scatterlist *sglist, 2802 unsigned int nents, 2803 unsigned long pgsz); 2804 bool __rdma_block_iter_next(struct ib_block_iter *biter); 2805 2806 /** 2807 * rdma_block_iter_dma_address - get the aligned dma address of the current 2808 * block held by the block iterator. 2809 * @biter: block iterator holding the memory block 2810 */ 2811 static inline dma_addr_t 2812 rdma_block_iter_dma_address(struct ib_block_iter *biter) 2813 { 2814 return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1); 2815 } 2816 2817 /** 2818 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list 2819 * @sglist: sglist to iterate over 2820 * @biter: block iterator holding the memory block 2821 * @nents: maximum number of sg entries to iterate over 2822 * @pgsz: best HW supported page size to use 2823 * 2824 * Callers may use rdma_block_iter_dma_address() to get each 2825 * blocks aligned DMA address. 2826 */ 2827 #define rdma_for_each_block(sglist, biter, nents, pgsz) \ 2828 for (__rdma_block_iter_start(biter, sglist, nents, \ 2829 pgsz); \ 2830 __rdma_block_iter_next(biter);) 2831 2832 /** 2833 * ib_get_client_data - Get IB client context 2834 * @device:Device to get context for 2835 * @client:Client to get context for 2836 * 2837 * ib_get_client_data() returns the client context data set with 2838 * ib_set_client_data(). This can only be called while the client is 2839 * registered to the device, once the ib_client remove() callback returns this 2840 * cannot be called. 2841 */ 2842 static inline void *ib_get_client_data(struct ib_device *device, 2843 struct ib_client *client) 2844 { 2845 return xa_load(&device->client_data, client->client_id); 2846 } 2847 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 2848 void *data); 2849 void ib_set_device_ops(struct ib_device *device, 2850 const struct ib_device_ops *ops); 2851 2852 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma, 2853 unsigned long pfn, unsigned long size, pgprot_t prot, 2854 struct rdma_user_mmap_entry *entry); 2855 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext, 2856 struct rdma_user_mmap_entry *entry, 2857 size_t length); 2858 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext, 2859 struct rdma_user_mmap_entry *entry, 2860 size_t length, u32 min_pgoff, 2861 u32 max_pgoff); 2862 2863 struct rdma_user_mmap_entry * 2864 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext, 2865 unsigned long pgoff); 2866 struct rdma_user_mmap_entry * 2867 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext, 2868 struct vm_area_struct *vma); 2869 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry); 2870 2871 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry); 2872 2873 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 2874 { 2875 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 2876 } 2877 2878 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 2879 { 2880 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 2881 } 2882 2883 static inline bool ib_is_buffer_cleared(const void __user *p, 2884 size_t len) 2885 { 2886 bool ret; 2887 u8 *buf; 2888 2889 if (len > USHRT_MAX) 2890 return false; 2891 2892 buf = memdup_user(p, len); 2893 if (IS_ERR(buf)) 2894 return false; 2895 2896 ret = !memchr_inv(buf, 0, len); 2897 kfree(buf); 2898 return ret; 2899 } 2900 2901 static inline bool ib_is_udata_cleared(struct ib_udata *udata, 2902 size_t offset, 2903 size_t len) 2904 { 2905 return ib_is_buffer_cleared(udata->inbuf + offset, len); 2906 } 2907 2908 /** 2909 * ib_modify_qp_is_ok - Check that the supplied attribute mask 2910 * contains all required attributes and no attributes not allowed for 2911 * the given QP state transition. 2912 * @cur_state: Current QP state 2913 * @next_state: Next QP state 2914 * @type: QP type 2915 * @mask: Mask of supplied QP attributes 2916 * 2917 * This function is a helper function that a low-level driver's 2918 * modify_qp method can use to validate the consumer's input. It 2919 * checks that cur_state and next_state are valid QP states, that a 2920 * transition from cur_state to next_state is allowed by the IB spec, 2921 * and that the attribute mask supplied is allowed for the transition. 2922 */ 2923 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 2924 enum ib_qp_type type, enum ib_qp_attr_mask mask); 2925 2926 void ib_register_event_handler(struct ib_event_handler *event_handler); 2927 void ib_unregister_event_handler(struct ib_event_handler *event_handler); 2928 void ib_dispatch_event(const struct ib_event *event); 2929 2930 int ib_query_port(struct ib_device *device, 2931 u8 port_num, struct ib_port_attr *port_attr); 2932 2933 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 2934 u8 port_num); 2935 2936 /** 2937 * rdma_cap_ib_switch - Check if the device is IB switch 2938 * @device: Device to check 2939 * 2940 * Device driver is responsible for setting is_switch bit on 2941 * in ib_device structure at init time. 2942 * 2943 * Return: true if the device is IB switch. 2944 */ 2945 static inline bool rdma_cap_ib_switch(const struct ib_device *device) 2946 { 2947 return device->is_switch; 2948 } 2949 2950 /** 2951 * rdma_start_port - Return the first valid port number for the device 2952 * specified 2953 * 2954 * @device: Device to be checked 2955 * 2956 * Return start port number 2957 */ 2958 static inline u8 rdma_start_port(const struct ib_device *device) 2959 { 2960 return rdma_cap_ib_switch(device) ? 0 : 1; 2961 } 2962 2963 /** 2964 * rdma_for_each_port - Iterate over all valid port numbers of the IB device 2965 * @device - The struct ib_device * to iterate over 2966 * @iter - The unsigned int to store the port number 2967 */ 2968 #define rdma_for_each_port(device, iter) \ 2969 for (iter = rdma_start_port(device + BUILD_BUG_ON_ZERO(!__same_type( \ 2970 unsigned int, iter))); \ 2971 iter <= rdma_end_port(device); (iter)++) 2972 2973 /** 2974 * rdma_end_port - Return the last valid port number for the device 2975 * specified 2976 * 2977 * @device: Device to be checked 2978 * 2979 * Return last port number 2980 */ 2981 static inline u8 rdma_end_port(const struct ib_device *device) 2982 { 2983 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 2984 } 2985 2986 static inline int rdma_is_port_valid(const struct ib_device *device, 2987 unsigned int port) 2988 { 2989 return (port >= rdma_start_port(device) && 2990 port <= rdma_end_port(device)); 2991 } 2992 2993 static inline bool rdma_is_grh_required(const struct ib_device *device, 2994 u8 port_num) 2995 { 2996 return device->port_data[port_num].immutable.core_cap_flags & 2997 RDMA_CORE_PORT_IB_GRH_REQUIRED; 2998 } 2999 3000 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num) 3001 { 3002 return device->port_data[port_num].immutable.core_cap_flags & 3003 RDMA_CORE_CAP_PROT_IB; 3004 } 3005 3006 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num) 3007 { 3008 return device->port_data[port_num].immutable.core_cap_flags & 3009 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); 3010 } 3011 3012 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num) 3013 { 3014 return device->port_data[port_num].immutable.core_cap_flags & 3015 RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; 3016 } 3017 3018 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num) 3019 { 3020 return device->port_data[port_num].immutable.core_cap_flags & 3021 RDMA_CORE_CAP_PROT_ROCE; 3022 } 3023 3024 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num) 3025 { 3026 return device->port_data[port_num].immutable.core_cap_flags & 3027 RDMA_CORE_CAP_PROT_IWARP; 3028 } 3029 3030 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num) 3031 { 3032 return rdma_protocol_ib(device, port_num) || 3033 rdma_protocol_roce(device, port_num); 3034 } 3035 3036 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num) 3037 { 3038 return device->port_data[port_num].immutable.core_cap_flags & 3039 RDMA_CORE_CAP_PROT_RAW_PACKET; 3040 } 3041 3042 static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num) 3043 { 3044 return device->port_data[port_num].immutable.core_cap_flags & 3045 RDMA_CORE_CAP_PROT_USNIC; 3046 } 3047 3048 /** 3049 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 3050 * Management Datagrams. 3051 * @device: Device to check 3052 * @port_num: Port number to check 3053 * 3054 * Management Datagrams (MAD) are a required part of the InfiniBand 3055 * specification and are supported on all InfiniBand devices. A slightly 3056 * extended version are also supported on OPA interfaces. 3057 * 3058 * Return: true if the port supports sending/receiving of MAD packets. 3059 */ 3060 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num) 3061 { 3062 return device->port_data[port_num].immutable.core_cap_flags & 3063 RDMA_CORE_CAP_IB_MAD; 3064 } 3065 3066 /** 3067 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 3068 * Management Datagrams. 3069 * @device: Device to check 3070 * @port_num: Port number to check 3071 * 3072 * Intel OmniPath devices extend and/or replace the InfiniBand Management 3073 * datagrams with their own versions. These OPA MADs share many but not all of 3074 * the characteristics of InfiniBand MADs. 3075 * 3076 * OPA MADs differ in the following ways: 3077 * 3078 * 1) MADs are variable size up to 2K 3079 * IBTA defined MADs remain fixed at 256 bytes 3080 * 2) OPA SMPs must carry valid PKeys 3081 * 3) OPA SMP packets are a different format 3082 * 3083 * Return: true if the port supports OPA MAD packet formats. 3084 */ 3085 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num) 3086 { 3087 return device->port_data[port_num].immutable.core_cap_flags & 3088 RDMA_CORE_CAP_OPA_MAD; 3089 } 3090 3091 /** 3092 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 3093 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 3094 * @device: Device to check 3095 * @port_num: Port number to check 3096 * 3097 * Each InfiniBand node is required to provide a Subnet Management Agent 3098 * that the subnet manager can access. Prior to the fabric being fully 3099 * configured by the subnet manager, the SMA is accessed via a well known 3100 * interface called the Subnet Management Interface (SMI). This interface 3101 * uses directed route packets to communicate with the SM to get around the 3102 * chicken and egg problem of the SM needing to know what's on the fabric 3103 * in order to configure the fabric, and needing to configure the fabric in 3104 * order to send packets to the devices on the fabric. These directed 3105 * route packets do not need the fabric fully configured in order to reach 3106 * their destination. The SMI is the only method allowed to send 3107 * directed route packets on an InfiniBand fabric. 3108 * 3109 * Return: true if the port provides an SMI. 3110 */ 3111 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num) 3112 { 3113 return device->port_data[port_num].immutable.core_cap_flags & 3114 RDMA_CORE_CAP_IB_SMI; 3115 } 3116 3117 /** 3118 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 3119 * Communication Manager. 3120 * @device: Device to check 3121 * @port_num: Port number to check 3122 * 3123 * The InfiniBand Communication Manager is one of many pre-defined General 3124 * Service Agents (GSA) that are accessed via the General Service 3125 * Interface (GSI). It's role is to facilitate establishment of connections 3126 * between nodes as well as other management related tasks for established 3127 * connections. 3128 * 3129 * Return: true if the port supports an IB CM (this does not guarantee that 3130 * a CM is actually running however). 3131 */ 3132 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num) 3133 { 3134 return device->port_data[port_num].immutable.core_cap_flags & 3135 RDMA_CORE_CAP_IB_CM; 3136 } 3137 3138 /** 3139 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 3140 * Communication Manager. 3141 * @device: Device to check 3142 * @port_num: Port number to check 3143 * 3144 * Similar to above, but specific to iWARP connections which have a different 3145 * managment protocol than InfiniBand. 3146 * 3147 * Return: true if the port supports an iWARP CM (this does not guarantee that 3148 * a CM is actually running however). 3149 */ 3150 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num) 3151 { 3152 return device->port_data[port_num].immutable.core_cap_flags & 3153 RDMA_CORE_CAP_IW_CM; 3154 } 3155 3156 /** 3157 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 3158 * Subnet Administration. 3159 * @device: Device to check 3160 * @port_num: Port number to check 3161 * 3162 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 3163 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 3164 * fabrics, devices should resolve routes to other hosts by contacting the 3165 * SA to query the proper route. 3166 * 3167 * Return: true if the port should act as a client to the fabric Subnet 3168 * Administration interface. This does not imply that the SA service is 3169 * running locally. 3170 */ 3171 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num) 3172 { 3173 return device->port_data[port_num].immutable.core_cap_flags & 3174 RDMA_CORE_CAP_IB_SA; 3175 } 3176 3177 /** 3178 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 3179 * Multicast. 3180 * @device: Device to check 3181 * @port_num: Port number to check 3182 * 3183 * InfiniBand multicast registration is more complex than normal IPv4 or 3184 * IPv6 multicast registration. Each Host Channel Adapter must register 3185 * with the Subnet Manager when it wishes to join a multicast group. It 3186 * should do so only once regardless of how many queue pairs it subscribes 3187 * to this group. And it should leave the group only after all queue pairs 3188 * attached to the group have been detached. 3189 * 3190 * Return: true if the port must undertake the additional adminstrative 3191 * overhead of registering/unregistering with the SM and tracking of the 3192 * total number of queue pairs attached to the multicast group. 3193 */ 3194 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num) 3195 { 3196 return rdma_cap_ib_sa(device, port_num); 3197 } 3198 3199 /** 3200 * rdma_cap_af_ib - Check if the port of device has the capability 3201 * Native Infiniband Address. 3202 * @device: Device to check 3203 * @port_num: Port number to check 3204 * 3205 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 3206 * GID. RoCE uses a different mechanism, but still generates a GID via 3207 * a prescribed mechanism and port specific data. 3208 * 3209 * Return: true if the port uses a GID address to identify devices on the 3210 * network. 3211 */ 3212 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num) 3213 { 3214 return device->port_data[port_num].immutable.core_cap_flags & 3215 RDMA_CORE_CAP_AF_IB; 3216 } 3217 3218 /** 3219 * rdma_cap_eth_ah - Check if the port of device has the capability 3220 * Ethernet Address Handle. 3221 * @device: Device to check 3222 * @port_num: Port number to check 3223 * 3224 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 3225 * to fabricate GIDs over Ethernet/IP specific addresses native to the 3226 * port. Normally, packet headers are generated by the sending host 3227 * adapter, but when sending connectionless datagrams, we must manually 3228 * inject the proper headers for the fabric we are communicating over. 3229 * 3230 * Return: true if we are running as a RoCE port and must force the 3231 * addition of a Global Route Header built from our Ethernet Address 3232 * Handle into our header list for connectionless packets. 3233 */ 3234 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num) 3235 { 3236 return device->port_data[port_num].immutable.core_cap_flags & 3237 RDMA_CORE_CAP_ETH_AH; 3238 } 3239 3240 /** 3241 * rdma_cap_opa_ah - Check if the port of device supports 3242 * OPA Address handles 3243 * @device: Device to check 3244 * @port_num: Port number to check 3245 * 3246 * Return: true if we are running on an OPA device which supports 3247 * the extended OPA addressing. 3248 */ 3249 static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num) 3250 { 3251 return (device->port_data[port_num].immutable.core_cap_flags & 3252 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH; 3253 } 3254 3255 /** 3256 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 3257 * 3258 * @device: Device 3259 * @port_num: Port number 3260 * 3261 * This MAD size includes the MAD headers and MAD payload. No other headers 3262 * are included. 3263 * 3264 * Return the max MAD size required by the Port. Will return 0 if the port 3265 * does not support MADs 3266 */ 3267 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num) 3268 { 3269 return device->port_data[port_num].immutable.max_mad_size; 3270 } 3271 3272 /** 3273 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 3274 * @device: Device to check 3275 * @port_num: Port number to check 3276 * 3277 * RoCE GID table mechanism manages the various GIDs for a device. 3278 * 3279 * NOTE: if allocating the port's GID table has failed, this call will still 3280 * return true, but any RoCE GID table API will fail. 3281 * 3282 * Return: true if the port uses RoCE GID table mechanism in order to manage 3283 * its GIDs. 3284 */ 3285 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 3286 u8 port_num) 3287 { 3288 return rdma_protocol_roce(device, port_num) && 3289 device->ops.add_gid && device->ops.del_gid; 3290 } 3291 3292 /* 3293 * Check if the device supports READ W/ INVALIDATE. 3294 */ 3295 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num) 3296 { 3297 /* 3298 * iWarp drivers must support READ W/ INVALIDATE. No other protocol 3299 * has support for it yet. 3300 */ 3301 return rdma_protocol_iwarp(dev, port_num); 3302 } 3303 3304 /** 3305 * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not. 3306 * @device: Device 3307 * @port_num: 1 based Port number 3308 * 3309 * Return true if port is an Intel OPA port , false if not 3310 */ 3311 static inline bool rdma_core_cap_opa_port(struct ib_device *device, 3312 u32 port_num) 3313 { 3314 return (device->port_data[port_num].immutable.core_cap_flags & 3315 RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA; 3316 } 3317 3318 /** 3319 * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value. 3320 * @device: Device 3321 * @port_num: Port number 3322 * @mtu: enum value of MTU 3323 * 3324 * Return the MTU size supported by the port as an integer value. Will return 3325 * -1 if enum value of mtu is not supported. 3326 */ 3327 static inline int rdma_mtu_enum_to_int(struct ib_device *device, u8 port, 3328 int mtu) 3329 { 3330 if (rdma_core_cap_opa_port(device, port)) 3331 return opa_mtu_enum_to_int((enum opa_mtu)mtu); 3332 else 3333 return ib_mtu_enum_to_int((enum ib_mtu)mtu); 3334 } 3335 3336 /** 3337 * rdma_mtu_from_attr - Return the mtu of the port from the port attribute. 3338 * @device: Device 3339 * @port_num: Port number 3340 * @attr: port attribute 3341 * 3342 * Return the MTU size supported by the port as an integer value. 3343 */ 3344 static inline int rdma_mtu_from_attr(struct ib_device *device, u8 port, 3345 struct ib_port_attr *attr) 3346 { 3347 if (rdma_core_cap_opa_port(device, port)) 3348 return attr->phys_mtu; 3349 else 3350 return ib_mtu_enum_to_int(attr->max_mtu); 3351 } 3352 3353 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 3354 int state); 3355 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 3356 struct ifla_vf_info *info); 3357 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 3358 struct ifla_vf_stats *stats); 3359 int ib_get_vf_guid(struct ib_device *device, int vf, u8 port, 3360 struct ifla_vf_guid *node_guid, 3361 struct ifla_vf_guid *port_guid); 3362 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 3363 int type); 3364 3365 int ib_query_pkey(struct ib_device *device, 3366 u8 port_num, u16 index, u16 *pkey); 3367 3368 int ib_modify_device(struct ib_device *device, 3369 int device_modify_mask, 3370 struct ib_device_modify *device_modify); 3371 3372 int ib_modify_port(struct ib_device *device, 3373 u8 port_num, int port_modify_mask, 3374 struct ib_port_modify *port_modify); 3375 3376 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 3377 u8 *port_num, u16 *index); 3378 3379 int ib_find_pkey(struct ib_device *device, 3380 u8 port_num, u16 pkey, u16 *index); 3381 3382 enum ib_pd_flags { 3383 /* 3384 * Create a memory registration for all memory in the system and place 3385 * the rkey for it into pd->unsafe_global_rkey. This can be used by 3386 * ULPs to avoid the overhead of dynamic MRs. 3387 * 3388 * This flag is generally considered unsafe and must only be used in 3389 * extremly trusted environments. Every use of it will log a warning 3390 * in the kernel log. 3391 */ 3392 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01, 3393 }; 3394 3395 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 3396 const char *caller); 3397 3398 /** 3399 * ib_alloc_pd - Allocates an unused protection domain. 3400 * @device: The device on which to allocate the protection domain. 3401 * @flags: protection domain flags 3402 * 3403 * A protection domain object provides an association between QPs, shared 3404 * receive queues, address handles, memory regions, and memory windows. 3405 * 3406 * Every PD has a local_dma_lkey which can be used as the lkey value for local 3407 * memory operations. 3408 */ 3409 #define ib_alloc_pd(device, flags) \ 3410 __ib_alloc_pd((device), (flags), KBUILD_MODNAME) 3411 3412 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata); 3413 3414 /** 3415 * ib_dealloc_pd - Deallocate kernel PD 3416 * @pd: The protection domain 3417 * 3418 * NOTE: for user PD use ib_dealloc_pd_user with valid udata! 3419 */ 3420 static inline void ib_dealloc_pd(struct ib_pd *pd) 3421 { 3422 int ret = ib_dealloc_pd_user(pd, NULL); 3423 3424 WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail"); 3425 } 3426 3427 enum rdma_create_ah_flags { 3428 /* In a sleepable context */ 3429 RDMA_CREATE_AH_SLEEPABLE = BIT(0), 3430 }; 3431 3432 /** 3433 * rdma_create_ah - Creates an address handle for the given address vector. 3434 * @pd: The protection domain associated with the address handle. 3435 * @ah_attr: The attributes of the address vector. 3436 * @flags: Create address handle flags (see enum rdma_create_ah_flags). 3437 * 3438 * The address handle is used to reference a local or global destination 3439 * in all UD QP post sends. 3440 */ 3441 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr, 3442 u32 flags); 3443 3444 /** 3445 * rdma_create_user_ah - Creates an address handle for the given address vector. 3446 * It resolves destination mac address for ah attribute of RoCE type. 3447 * @pd: The protection domain associated with the address handle. 3448 * @ah_attr: The attributes of the address vector. 3449 * @udata: pointer to user's input output buffer information need by 3450 * provider driver. 3451 * 3452 * It returns 0 on success and returns appropriate error code on error. 3453 * The address handle is used to reference a local or global destination 3454 * in all UD QP post sends. 3455 */ 3456 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd, 3457 struct rdma_ah_attr *ah_attr, 3458 struct ib_udata *udata); 3459 /** 3460 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header 3461 * work completion. 3462 * @hdr: the L3 header to parse 3463 * @net_type: type of header to parse 3464 * @sgid: place to store source gid 3465 * @dgid: place to store destination gid 3466 */ 3467 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 3468 enum rdma_network_type net_type, 3469 union ib_gid *sgid, union ib_gid *dgid); 3470 3471 /** 3472 * ib_get_rdma_header_version - Get the header version 3473 * @hdr: the L3 header to parse 3474 */ 3475 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr); 3476 3477 /** 3478 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a 3479 * work completion. 3480 * @device: Device on which the received message arrived. 3481 * @port_num: Port on which the received message arrived. 3482 * @wc: Work completion associated with the received message. 3483 * @grh: References the received global route header. This parameter is 3484 * ignored unless the work completion indicates that the GRH is valid. 3485 * @ah_attr: Returned attributes that can be used when creating an address 3486 * handle for replying to the message. 3487 * When ib_init_ah_attr_from_wc() returns success, 3488 * (a) for IB link layer it optionally contains a reference to SGID attribute 3489 * when GRH is present for IB link layer. 3490 * (b) for RoCE link layer it contains a reference to SGID attribute. 3491 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID 3492 * attributes which are initialized using ib_init_ah_attr_from_wc(). 3493 * 3494 */ 3495 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num, 3496 const struct ib_wc *wc, const struct ib_grh *grh, 3497 struct rdma_ah_attr *ah_attr); 3498 3499 /** 3500 * ib_create_ah_from_wc - Creates an address handle associated with the 3501 * sender of the specified work completion. 3502 * @pd: The protection domain associated with the address handle. 3503 * @wc: Work completion information associated with a received message. 3504 * @grh: References the received global route header. This parameter is 3505 * ignored unless the work completion indicates that the GRH is valid. 3506 * @port_num: The outbound port number to associate with the address. 3507 * 3508 * The address handle is used to reference a local or global destination 3509 * in all UD QP post sends. 3510 */ 3511 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 3512 const struct ib_grh *grh, u8 port_num); 3513 3514 /** 3515 * rdma_modify_ah - Modifies the address vector associated with an address 3516 * handle. 3517 * @ah: The address handle to modify. 3518 * @ah_attr: The new address vector attributes to associate with the 3519 * address handle. 3520 */ 3521 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3522 3523 /** 3524 * rdma_query_ah - Queries the address vector associated with an address 3525 * handle. 3526 * @ah: The address handle to query. 3527 * @ah_attr: The address vector attributes associated with the address 3528 * handle. 3529 */ 3530 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3531 3532 enum rdma_destroy_ah_flags { 3533 /* In a sleepable context */ 3534 RDMA_DESTROY_AH_SLEEPABLE = BIT(0), 3535 }; 3536 3537 /** 3538 * rdma_destroy_ah_user - Destroys an address handle. 3539 * @ah: The address handle to destroy. 3540 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3541 * @udata: Valid user data or NULL for kernel objects 3542 */ 3543 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata); 3544 3545 /** 3546 * rdma_destroy_ah - Destroys an kernel address handle. 3547 * @ah: The address handle to destroy. 3548 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3549 * 3550 * NOTE: for user ah use rdma_destroy_ah_user with valid udata! 3551 */ 3552 static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags) 3553 { 3554 int ret = rdma_destroy_ah_user(ah, flags, NULL); 3555 3556 WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail"); 3557 } 3558 3559 struct ib_srq *ib_create_srq_user(struct ib_pd *pd, 3560 struct ib_srq_init_attr *srq_init_attr, 3561 struct ib_usrq_object *uobject, 3562 struct ib_udata *udata); 3563 static inline struct ib_srq * 3564 ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr) 3565 { 3566 if (!pd->device->ops.create_srq) 3567 return ERR_PTR(-EOPNOTSUPP); 3568 3569 return ib_create_srq_user(pd, srq_init_attr, NULL, NULL); 3570 } 3571 3572 /** 3573 * ib_modify_srq - Modifies the attributes for the specified SRQ. 3574 * @srq: The SRQ to modify. 3575 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 3576 * the current values of selected SRQ attributes are returned. 3577 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 3578 * are being modified. 3579 * 3580 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 3581 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 3582 * the number of receives queued drops below the limit. 3583 */ 3584 int ib_modify_srq(struct ib_srq *srq, 3585 struct ib_srq_attr *srq_attr, 3586 enum ib_srq_attr_mask srq_attr_mask); 3587 3588 /** 3589 * ib_query_srq - Returns the attribute list and current values for the 3590 * specified SRQ. 3591 * @srq: The SRQ to query. 3592 * @srq_attr: The attributes of the specified SRQ. 3593 */ 3594 int ib_query_srq(struct ib_srq *srq, 3595 struct ib_srq_attr *srq_attr); 3596 3597 /** 3598 * ib_destroy_srq_user - Destroys the specified SRQ. 3599 * @srq: The SRQ to destroy. 3600 * @udata: Valid user data or NULL for kernel objects 3601 */ 3602 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata); 3603 3604 /** 3605 * ib_destroy_srq - Destroys the specified kernel SRQ. 3606 * @srq: The SRQ to destroy. 3607 * 3608 * NOTE: for user srq use ib_destroy_srq_user with valid udata! 3609 */ 3610 static inline void ib_destroy_srq(struct ib_srq *srq) 3611 { 3612 int ret = ib_destroy_srq_user(srq, NULL); 3613 3614 WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail"); 3615 } 3616 3617 /** 3618 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 3619 * @srq: The SRQ to post the work request on. 3620 * @recv_wr: A list of work requests to post on the receive queue. 3621 * @bad_recv_wr: On an immediate failure, this parameter will reference 3622 * the work request that failed to be posted on the QP. 3623 */ 3624 static inline int ib_post_srq_recv(struct ib_srq *srq, 3625 const struct ib_recv_wr *recv_wr, 3626 const struct ib_recv_wr **bad_recv_wr) 3627 { 3628 const struct ib_recv_wr *dummy; 3629 3630 return srq->device->ops.post_srq_recv(srq, recv_wr, 3631 bad_recv_wr ? : &dummy); 3632 } 3633 3634 struct ib_qp *ib_create_named_qp(struct ib_pd *pd, 3635 struct ib_qp_init_attr *qp_init_attr, 3636 const char *caller); 3637 static inline struct ib_qp *ib_create_qp(struct ib_pd *pd, 3638 struct ib_qp_init_attr *init_attr) 3639 { 3640 return ib_create_named_qp(pd, init_attr, KBUILD_MODNAME); 3641 } 3642 3643 /** 3644 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 3645 * @qp: The QP to modify. 3646 * @attr: On input, specifies the QP attributes to modify. On output, 3647 * the current values of selected QP attributes are returned. 3648 * @attr_mask: A bit-mask used to specify which attributes of the QP 3649 * are being modified. 3650 * @udata: pointer to user's input output buffer information 3651 * are being modified. 3652 * It returns 0 on success and returns appropriate error code on error. 3653 */ 3654 int ib_modify_qp_with_udata(struct ib_qp *qp, 3655 struct ib_qp_attr *attr, 3656 int attr_mask, 3657 struct ib_udata *udata); 3658 3659 /** 3660 * ib_modify_qp - Modifies the attributes for the specified QP and then 3661 * transitions the QP to the given state. 3662 * @qp: The QP to modify. 3663 * @qp_attr: On input, specifies the QP attributes to modify. On output, 3664 * the current values of selected QP attributes are returned. 3665 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 3666 * are being modified. 3667 */ 3668 int ib_modify_qp(struct ib_qp *qp, 3669 struct ib_qp_attr *qp_attr, 3670 int qp_attr_mask); 3671 3672 /** 3673 * ib_query_qp - Returns the attribute list and current values for the 3674 * specified QP. 3675 * @qp: The QP to query. 3676 * @qp_attr: The attributes of the specified QP. 3677 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 3678 * @qp_init_attr: Additional attributes of the selected QP. 3679 * 3680 * The qp_attr_mask may be used to limit the query to gathering only the 3681 * selected attributes. 3682 */ 3683 int ib_query_qp(struct ib_qp *qp, 3684 struct ib_qp_attr *qp_attr, 3685 int qp_attr_mask, 3686 struct ib_qp_init_attr *qp_init_attr); 3687 3688 /** 3689 * ib_destroy_qp - Destroys the specified QP. 3690 * @qp: The QP to destroy. 3691 * @udata: Valid udata or NULL for kernel objects 3692 */ 3693 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata); 3694 3695 /** 3696 * ib_destroy_qp - Destroys the specified kernel QP. 3697 * @qp: The QP to destroy. 3698 * 3699 * NOTE: for user qp use ib_destroy_qp_user with valid udata! 3700 */ 3701 static inline int ib_destroy_qp(struct ib_qp *qp) 3702 { 3703 return ib_destroy_qp_user(qp, NULL); 3704 } 3705 3706 /** 3707 * ib_open_qp - Obtain a reference to an existing sharable QP. 3708 * @xrcd - XRC domain 3709 * @qp_open_attr: Attributes identifying the QP to open. 3710 * 3711 * Returns a reference to a sharable QP. 3712 */ 3713 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 3714 struct ib_qp_open_attr *qp_open_attr); 3715 3716 /** 3717 * ib_close_qp - Release an external reference to a QP. 3718 * @qp: The QP handle to release 3719 * 3720 * The opened QP handle is released by the caller. The underlying 3721 * shared QP is not destroyed until all internal references are released. 3722 */ 3723 int ib_close_qp(struct ib_qp *qp); 3724 3725 /** 3726 * ib_post_send - Posts a list of work requests to the send queue of 3727 * the specified QP. 3728 * @qp: The QP to post the work request on. 3729 * @send_wr: A list of work requests to post on the send queue. 3730 * @bad_send_wr: On an immediate failure, this parameter will reference 3731 * the work request that failed to be posted on the QP. 3732 * 3733 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 3734 * error is returned, the QP state shall not be affected, 3735 * ib_post_send() will return an immediate error after queueing any 3736 * earlier work requests in the list. 3737 */ 3738 static inline int ib_post_send(struct ib_qp *qp, 3739 const struct ib_send_wr *send_wr, 3740 const struct ib_send_wr **bad_send_wr) 3741 { 3742 const struct ib_send_wr *dummy; 3743 3744 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy); 3745 } 3746 3747 /** 3748 * ib_post_recv - Posts a list of work requests to the receive queue of 3749 * the specified QP. 3750 * @qp: The QP to post the work request on. 3751 * @recv_wr: A list of work requests to post on the receive queue. 3752 * @bad_recv_wr: On an immediate failure, this parameter will reference 3753 * the work request that failed to be posted on the QP. 3754 */ 3755 static inline int ib_post_recv(struct ib_qp *qp, 3756 const struct ib_recv_wr *recv_wr, 3757 const struct ib_recv_wr **bad_recv_wr) 3758 { 3759 const struct ib_recv_wr *dummy; 3760 3761 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy); 3762 } 3763 3764 struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe, 3765 int comp_vector, enum ib_poll_context poll_ctx, 3766 const char *caller); 3767 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private, 3768 int nr_cqe, int comp_vector, 3769 enum ib_poll_context poll_ctx) 3770 { 3771 return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx, 3772 KBUILD_MODNAME); 3773 } 3774 3775 struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private, 3776 int nr_cqe, enum ib_poll_context poll_ctx, 3777 const char *caller); 3778 3779 /** 3780 * ib_alloc_cq_any: Allocate kernel CQ 3781 * @dev: The IB device 3782 * @private: Private data attached to the CQE 3783 * @nr_cqe: Number of CQEs in the CQ 3784 * @poll_ctx: Context used for polling the CQ 3785 */ 3786 static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev, 3787 void *private, int nr_cqe, 3788 enum ib_poll_context poll_ctx) 3789 { 3790 return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx, 3791 KBUILD_MODNAME); 3792 } 3793 3794 void ib_free_cq(struct ib_cq *cq); 3795 int ib_process_cq_direct(struct ib_cq *cq, int budget); 3796 3797 /** 3798 * ib_create_cq - Creates a CQ on the specified device. 3799 * @device: The device on which to create the CQ. 3800 * @comp_handler: A user-specified callback that is invoked when a 3801 * completion event occurs on the CQ. 3802 * @event_handler: A user-specified callback that is invoked when an 3803 * asynchronous event not associated with a completion occurs on the CQ. 3804 * @cq_context: Context associated with the CQ returned to the user via 3805 * the associated completion and event handlers. 3806 * @cq_attr: The attributes the CQ should be created upon. 3807 * 3808 * Users can examine the cq structure to determine the actual CQ size. 3809 */ 3810 struct ib_cq *__ib_create_cq(struct ib_device *device, 3811 ib_comp_handler comp_handler, 3812 void (*event_handler)(struct ib_event *, void *), 3813 void *cq_context, 3814 const struct ib_cq_init_attr *cq_attr, 3815 const char *caller); 3816 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \ 3817 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME) 3818 3819 /** 3820 * ib_resize_cq - Modifies the capacity of the CQ. 3821 * @cq: The CQ to resize. 3822 * @cqe: The minimum size of the CQ. 3823 * 3824 * Users can examine the cq structure to determine the actual CQ size. 3825 */ 3826 int ib_resize_cq(struct ib_cq *cq, int cqe); 3827 3828 /** 3829 * rdma_set_cq_moderation - Modifies moderation params of the CQ 3830 * @cq: The CQ to modify. 3831 * @cq_count: number of CQEs that will trigger an event 3832 * @cq_period: max period of time in usec before triggering an event 3833 * 3834 */ 3835 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period); 3836 3837 /** 3838 * ib_destroy_cq_user - Destroys the specified CQ. 3839 * @cq: The CQ to destroy. 3840 * @udata: Valid user data or NULL for kernel objects 3841 */ 3842 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata); 3843 3844 /** 3845 * ib_destroy_cq - Destroys the specified kernel CQ. 3846 * @cq: The CQ to destroy. 3847 * 3848 * NOTE: for user cq use ib_destroy_cq_user with valid udata! 3849 */ 3850 static inline void ib_destroy_cq(struct ib_cq *cq) 3851 { 3852 int ret = ib_destroy_cq_user(cq, NULL); 3853 3854 WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail"); 3855 } 3856 3857 /** 3858 * ib_poll_cq - poll a CQ for completion(s) 3859 * @cq:the CQ being polled 3860 * @num_entries:maximum number of completions to return 3861 * @wc:array of at least @num_entries &struct ib_wc where completions 3862 * will be returned 3863 * 3864 * Poll a CQ for (possibly multiple) completions. If the return value 3865 * is < 0, an error occurred. If the return value is >= 0, it is the 3866 * number of completions returned. If the return value is 3867 * non-negative and < num_entries, then the CQ was emptied. 3868 */ 3869 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 3870 struct ib_wc *wc) 3871 { 3872 return cq->device->ops.poll_cq(cq, num_entries, wc); 3873 } 3874 3875 /** 3876 * ib_req_notify_cq - Request completion notification on a CQ. 3877 * @cq: The CQ to generate an event for. 3878 * @flags: 3879 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 3880 * to request an event on the next solicited event or next work 3881 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 3882 * may also be |ed in to request a hint about missed events, as 3883 * described below. 3884 * 3885 * Return Value: 3886 * < 0 means an error occurred while requesting notification 3887 * == 0 means notification was requested successfully, and if 3888 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 3889 * were missed and it is safe to wait for another event. In 3890 * this case is it guaranteed that any work completions added 3891 * to the CQ since the last CQ poll will trigger a completion 3892 * notification event. 3893 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 3894 * in. It means that the consumer must poll the CQ again to 3895 * make sure it is empty to avoid missing an event because of a 3896 * race between requesting notification and an entry being 3897 * added to the CQ. This return value means it is possible 3898 * (but not guaranteed) that a work completion has been added 3899 * to the CQ since the last poll without triggering a 3900 * completion notification event. 3901 */ 3902 static inline int ib_req_notify_cq(struct ib_cq *cq, 3903 enum ib_cq_notify_flags flags) 3904 { 3905 return cq->device->ops.req_notify_cq(cq, flags); 3906 } 3907 3908 struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe, 3909 int comp_vector_hint, 3910 enum ib_poll_context poll_ctx); 3911 3912 void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe); 3913 3914 /** 3915 * ib_req_ncomp_notif - Request completion notification when there are 3916 * at least the specified number of unreaped completions on the CQ. 3917 * @cq: The CQ to generate an event for. 3918 * @wc_cnt: The number of unreaped completions that should be on the 3919 * CQ before an event is generated. 3920 */ 3921 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 3922 { 3923 return cq->device->ops.req_ncomp_notif ? 3924 cq->device->ops.req_ncomp_notif(cq, wc_cnt) : 3925 -ENOSYS; 3926 } 3927 3928 /* 3929 * Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to 3930 * NULL. This causes the ib_dma* helpers to just stash the kernel virtual 3931 * address into the dma address. 3932 */ 3933 static inline bool ib_uses_virt_dma(struct ib_device *dev) 3934 { 3935 return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device; 3936 } 3937 3938 /** 3939 * ib_dma_mapping_error - check a DMA addr for error 3940 * @dev: The device for which the dma_addr was created 3941 * @dma_addr: The DMA address to check 3942 */ 3943 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 3944 { 3945 if (ib_uses_virt_dma(dev)) 3946 return 0; 3947 return dma_mapping_error(dev->dma_device, dma_addr); 3948 } 3949 3950 /** 3951 * ib_dma_map_single - Map a kernel virtual address to DMA address 3952 * @dev: The device for which the dma_addr is to be created 3953 * @cpu_addr: The kernel virtual address 3954 * @size: The size of the region in bytes 3955 * @direction: The direction of the DMA 3956 */ 3957 static inline u64 ib_dma_map_single(struct ib_device *dev, 3958 void *cpu_addr, size_t size, 3959 enum dma_data_direction direction) 3960 { 3961 if (ib_uses_virt_dma(dev)) 3962 return (uintptr_t)cpu_addr; 3963 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 3964 } 3965 3966 /** 3967 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 3968 * @dev: The device for which the DMA address was created 3969 * @addr: The DMA address 3970 * @size: The size of the region in bytes 3971 * @direction: The direction of the DMA 3972 */ 3973 static inline void ib_dma_unmap_single(struct ib_device *dev, 3974 u64 addr, size_t size, 3975 enum dma_data_direction direction) 3976 { 3977 if (!ib_uses_virt_dma(dev)) 3978 dma_unmap_single(dev->dma_device, addr, size, direction); 3979 } 3980 3981 /** 3982 * ib_dma_map_page - Map a physical page to DMA address 3983 * @dev: The device for which the dma_addr is to be created 3984 * @page: The page to be mapped 3985 * @offset: The offset within the page 3986 * @size: The size of the region in bytes 3987 * @direction: The direction of the DMA 3988 */ 3989 static inline u64 ib_dma_map_page(struct ib_device *dev, 3990 struct page *page, 3991 unsigned long offset, 3992 size_t size, 3993 enum dma_data_direction direction) 3994 { 3995 if (ib_uses_virt_dma(dev)) 3996 return (uintptr_t)(page_address(page) + offset); 3997 return dma_map_page(dev->dma_device, page, offset, size, direction); 3998 } 3999 4000 /** 4001 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 4002 * @dev: The device for which the DMA address was created 4003 * @addr: The DMA address 4004 * @size: The size of the region in bytes 4005 * @direction: The direction of the DMA 4006 */ 4007 static inline void ib_dma_unmap_page(struct ib_device *dev, 4008 u64 addr, size_t size, 4009 enum dma_data_direction direction) 4010 { 4011 if (!ib_uses_virt_dma(dev)) 4012 dma_unmap_page(dev->dma_device, addr, size, direction); 4013 } 4014 4015 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents); 4016 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 4017 struct scatterlist *sg, int nents, 4018 enum dma_data_direction direction, 4019 unsigned long dma_attrs) 4020 { 4021 if (ib_uses_virt_dma(dev)) 4022 return ib_dma_virt_map_sg(dev, sg, nents); 4023 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, 4024 dma_attrs); 4025 } 4026 4027 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 4028 struct scatterlist *sg, int nents, 4029 enum dma_data_direction direction, 4030 unsigned long dma_attrs) 4031 { 4032 if (!ib_uses_virt_dma(dev)) 4033 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, 4034 dma_attrs); 4035 } 4036 4037 /** 4038 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 4039 * @dev: The device for which the DMA addresses are to be created 4040 * @sg: The array of scatter/gather entries 4041 * @nents: The number of scatter/gather entries 4042 * @direction: The direction of the DMA 4043 */ 4044 static inline int ib_dma_map_sg(struct ib_device *dev, 4045 struct scatterlist *sg, int nents, 4046 enum dma_data_direction direction) 4047 { 4048 return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0); 4049 } 4050 4051 /** 4052 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 4053 * @dev: The device for which the DMA addresses were created 4054 * @sg: The array of scatter/gather entries 4055 * @nents: The number of scatter/gather entries 4056 * @direction: The direction of the DMA 4057 */ 4058 static inline void ib_dma_unmap_sg(struct ib_device *dev, 4059 struct scatterlist *sg, int nents, 4060 enum dma_data_direction direction) 4061 { 4062 ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0); 4063 } 4064 4065 /** 4066 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer 4067 * @dev: The device to query 4068 * 4069 * The returned value represents a size in bytes. 4070 */ 4071 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev) 4072 { 4073 if (ib_uses_virt_dma(dev)) 4074 return UINT_MAX; 4075 return dma_get_max_seg_size(dev->dma_device); 4076 } 4077 4078 /** 4079 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 4080 * @dev: The device for which the DMA address was created 4081 * @addr: The DMA address 4082 * @size: The size of the region in bytes 4083 * @dir: The direction of the DMA 4084 */ 4085 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 4086 u64 addr, 4087 size_t size, 4088 enum dma_data_direction dir) 4089 { 4090 if (!ib_uses_virt_dma(dev)) 4091 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 4092 } 4093 4094 /** 4095 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 4096 * @dev: The device for which the DMA address was created 4097 * @addr: The DMA address 4098 * @size: The size of the region in bytes 4099 * @dir: The direction of the DMA 4100 */ 4101 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 4102 u64 addr, 4103 size_t size, 4104 enum dma_data_direction dir) 4105 { 4106 if (!ib_uses_virt_dma(dev)) 4107 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 4108 } 4109 4110 /* ib_reg_user_mr - register a memory region for virtual addresses from kernel 4111 * space. This function should be called when 'current' is the owning MM. 4112 */ 4113 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 4114 u64 virt_addr, int mr_access_flags); 4115 4116 /* ib_advise_mr - give an advice about an address range in a memory region */ 4117 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice, 4118 u32 flags, struct ib_sge *sg_list, u32 num_sge); 4119 /** 4120 * ib_dereg_mr_user - Deregisters a memory region and removes it from the 4121 * HCA translation table. 4122 * @mr: The memory region to deregister. 4123 * @udata: Valid user data or NULL for kernel object 4124 * 4125 * This function can fail, if the memory region has memory windows bound to it. 4126 */ 4127 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata); 4128 4129 /** 4130 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the 4131 * HCA translation table. 4132 * @mr: The memory region to deregister. 4133 * 4134 * This function can fail, if the memory region has memory windows bound to it. 4135 * 4136 * NOTE: for user mr use ib_dereg_mr_user with valid udata! 4137 */ 4138 static inline int ib_dereg_mr(struct ib_mr *mr) 4139 { 4140 return ib_dereg_mr_user(mr, NULL); 4141 } 4142 4143 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 4144 u32 max_num_sg); 4145 4146 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd, 4147 u32 max_num_data_sg, 4148 u32 max_num_meta_sg); 4149 4150 /** 4151 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 4152 * R_Key and L_Key. 4153 * @mr - struct ib_mr pointer to be updated. 4154 * @newkey - new key to be used. 4155 */ 4156 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 4157 { 4158 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 4159 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 4160 } 4161 4162 /** 4163 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 4164 * for calculating a new rkey for type 2 memory windows. 4165 * @rkey - the rkey to increment. 4166 */ 4167 static inline u32 ib_inc_rkey(u32 rkey) 4168 { 4169 const u32 mask = 0x000000ff; 4170 return ((rkey + 1) & mask) | (rkey & ~mask); 4171 } 4172 4173 /** 4174 * ib_attach_mcast - Attaches the specified QP to a multicast group. 4175 * @qp: QP to attach to the multicast group. The QP must be type 4176 * IB_QPT_UD. 4177 * @gid: Multicast group GID. 4178 * @lid: Multicast group LID in host byte order. 4179 * 4180 * In order to send and receive multicast packets, subnet 4181 * administration must have created the multicast group and configured 4182 * the fabric appropriately. The port associated with the specified 4183 * QP must also be a member of the multicast group. 4184 */ 4185 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 4186 4187 /** 4188 * ib_detach_mcast - Detaches the specified QP from a multicast group. 4189 * @qp: QP to detach from the multicast group. 4190 * @gid: Multicast group GID. 4191 * @lid: Multicast group LID in host byte order. 4192 */ 4193 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 4194 4195 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device, 4196 struct inode *inode, struct ib_udata *udata); 4197 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata); 4198 4199 static inline int ib_check_mr_access(struct ib_device *ib_dev, 4200 unsigned int flags) 4201 { 4202 /* 4203 * Local write permission is required if remote write or 4204 * remote atomic permission is also requested. 4205 */ 4206 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 4207 !(flags & IB_ACCESS_LOCAL_WRITE)) 4208 return -EINVAL; 4209 4210 if (flags & ~IB_ACCESS_SUPPORTED) 4211 return -EINVAL; 4212 4213 if (flags & IB_ACCESS_ON_DEMAND && 4214 !(ib_dev->attrs.device_cap_flags & IB_DEVICE_ON_DEMAND_PAGING)) 4215 return -EINVAL; 4216 return 0; 4217 } 4218 4219 static inline bool ib_access_writable(int access_flags) 4220 { 4221 /* 4222 * We have writable memory backing the MR if any of the following 4223 * access flags are set. "Local write" and "remote write" obviously 4224 * require write access. "Remote atomic" can do things like fetch and 4225 * add, which will modify memory, and "MW bind" can change permissions 4226 * by binding a window. 4227 */ 4228 return access_flags & 4229 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | 4230 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND); 4231 } 4232 4233 /** 4234 * ib_check_mr_status: lightweight check of MR status. 4235 * This routine may provide status checks on a selected 4236 * ib_mr. first use is for signature status check. 4237 * 4238 * @mr: A memory region. 4239 * @check_mask: Bitmask of which checks to perform from 4240 * ib_mr_status_check enumeration. 4241 * @mr_status: The container of relevant status checks. 4242 * failed checks will be indicated in the status bitmask 4243 * and the relevant info shall be in the error item. 4244 */ 4245 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 4246 struct ib_mr_status *mr_status); 4247 4248 /** 4249 * ib_device_try_get: Hold a registration lock 4250 * device: The device to lock 4251 * 4252 * A device under an active registration lock cannot become unregistered. It 4253 * is only possible to obtain a registration lock on a device that is fully 4254 * registered, otherwise this function returns false. 4255 * 4256 * The registration lock is only necessary for actions which require the 4257 * device to still be registered. Uses that only require the device pointer to 4258 * be valid should use get_device(&ibdev->dev) to hold the memory. 4259 * 4260 */ 4261 static inline bool ib_device_try_get(struct ib_device *dev) 4262 { 4263 return refcount_inc_not_zero(&dev->refcount); 4264 } 4265 4266 void ib_device_put(struct ib_device *device); 4267 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev, 4268 enum rdma_driver_id driver_id); 4269 struct ib_device *ib_device_get_by_name(const char *name, 4270 enum rdma_driver_id driver_id); 4271 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port, 4272 u16 pkey, const union ib_gid *gid, 4273 const struct sockaddr *addr); 4274 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev, 4275 unsigned int port); 4276 struct net_device *ib_device_netdev(struct ib_device *dev, u8 port); 4277 4278 struct ib_wq *ib_create_wq(struct ib_pd *pd, 4279 struct ib_wq_init_attr *init_attr); 4280 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata); 4281 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr, 4282 u32 wq_attr_mask); 4283 4284 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 4285 unsigned int *sg_offset, unsigned int page_size); 4286 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg, 4287 int data_sg_nents, unsigned int *data_sg_offset, 4288 struct scatterlist *meta_sg, int meta_sg_nents, 4289 unsigned int *meta_sg_offset, unsigned int page_size); 4290 4291 static inline int 4292 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 4293 unsigned int *sg_offset, unsigned int page_size) 4294 { 4295 int n; 4296 4297 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size); 4298 mr->iova = 0; 4299 4300 return n; 4301 } 4302 4303 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 4304 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64)); 4305 4306 void ib_drain_rq(struct ib_qp *qp); 4307 void ib_drain_sq(struct ib_qp *qp); 4308 void ib_drain_qp(struct ib_qp *qp); 4309 4310 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u16 *speed, u8 *width); 4311 4312 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr) 4313 { 4314 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE) 4315 return attr->roce.dmac; 4316 return NULL; 4317 } 4318 4319 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid) 4320 { 4321 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4322 attr->ib.dlid = (u16)dlid; 4323 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4324 attr->opa.dlid = dlid; 4325 } 4326 4327 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr) 4328 { 4329 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4330 return attr->ib.dlid; 4331 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4332 return attr->opa.dlid; 4333 return 0; 4334 } 4335 4336 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl) 4337 { 4338 attr->sl = sl; 4339 } 4340 4341 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr) 4342 { 4343 return attr->sl; 4344 } 4345 4346 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr, 4347 u8 src_path_bits) 4348 { 4349 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4350 attr->ib.src_path_bits = src_path_bits; 4351 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4352 attr->opa.src_path_bits = src_path_bits; 4353 } 4354 4355 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr) 4356 { 4357 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4358 return attr->ib.src_path_bits; 4359 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4360 return attr->opa.src_path_bits; 4361 return 0; 4362 } 4363 4364 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr, 4365 bool make_grd) 4366 { 4367 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4368 attr->opa.make_grd = make_grd; 4369 } 4370 4371 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr) 4372 { 4373 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4374 return attr->opa.make_grd; 4375 return false; 4376 } 4377 4378 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num) 4379 { 4380 attr->port_num = port_num; 4381 } 4382 4383 static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr) 4384 { 4385 return attr->port_num; 4386 } 4387 4388 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr, 4389 u8 static_rate) 4390 { 4391 attr->static_rate = static_rate; 4392 } 4393 4394 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr) 4395 { 4396 return attr->static_rate; 4397 } 4398 4399 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr, 4400 enum ib_ah_flags flag) 4401 { 4402 attr->ah_flags = flag; 4403 } 4404 4405 static inline enum ib_ah_flags 4406 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr) 4407 { 4408 return attr->ah_flags; 4409 } 4410 4411 static inline const struct ib_global_route 4412 *rdma_ah_read_grh(const struct rdma_ah_attr *attr) 4413 { 4414 return &attr->grh; 4415 } 4416 4417 /*To retrieve and modify the grh */ 4418 static inline struct ib_global_route 4419 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr) 4420 { 4421 return &attr->grh; 4422 } 4423 4424 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid) 4425 { 4426 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4427 4428 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid)); 4429 } 4430 4431 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr, 4432 __be64 prefix) 4433 { 4434 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4435 4436 grh->dgid.global.subnet_prefix = prefix; 4437 } 4438 4439 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr, 4440 __be64 if_id) 4441 { 4442 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4443 4444 grh->dgid.global.interface_id = if_id; 4445 } 4446 4447 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr, 4448 union ib_gid *dgid, u32 flow_label, 4449 u8 sgid_index, u8 hop_limit, 4450 u8 traffic_class) 4451 { 4452 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4453 4454 attr->ah_flags = IB_AH_GRH; 4455 if (dgid) 4456 grh->dgid = *dgid; 4457 grh->flow_label = flow_label; 4458 grh->sgid_index = sgid_index; 4459 grh->hop_limit = hop_limit; 4460 grh->traffic_class = traffic_class; 4461 grh->sgid_attr = NULL; 4462 } 4463 4464 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr); 4465 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid, 4466 u32 flow_label, u8 hop_limit, u8 traffic_class, 4467 const struct ib_gid_attr *sgid_attr); 4468 void rdma_copy_ah_attr(struct rdma_ah_attr *dest, 4469 const struct rdma_ah_attr *src); 4470 void rdma_replace_ah_attr(struct rdma_ah_attr *old, 4471 const struct rdma_ah_attr *new); 4472 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src); 4473 4474 /** 4475 * rdma_ah_find_type - Return address handle type. 4476 * 4477 * @dev: Device to be checked 4478 * @port_num: Port number 4479 */ 4480 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev, 4481 u8 port_num) 4482 { 4483 if (rdma_protocol_roce(dev, port_num)) 4484 return RDMA_AH_ATTR_TYPE_ROCE; 4485 if (rdma_protocol_ib(dev, port_num)) { 4486 if (rdma_cap_opa_ah(dev, port_num)) 4487 return RDMA_AH_ATTR_TYPE_OPA; 4488 return RDMA_AH_ATTR_TYPE_IB; 4489 } 4490 4491 return RDMA_AH_ATTR_TYPE_UNDEFINED; 4492 } 4493 4494 /** 4495 * ib_lid_cpu16 - Return lid in 16bit CPU encoding. 4496 * In the current implementation the only way to get 4497 * get the 32bit lid is from other sources for OPA. 4498 * For IB, lids will always be 16bits so cast the 4499 * value accordingly. 4500 * 4501 * @lid: A 32bit LID 4502 */ 4503 static inline u16 ib_lid_cpu16(u32 lid) 4504 { 4505 WARN_ON_ONCE(lid & 0xFFFF0000); 4506 return (u16)lid; 4507 } 4508 4509 /** 4510 * ib_lid_be16 - Return lid in 16bit BE encoding. 4511 * 4512 * @lid: A 32bit LID 4513 */ 4514 static inline __be16 ib_lid_be16(u32 lid) 4515 { 4516 WARN_ON_ONCE(lid & 0xFFFF0000); 4517 return cpu_to_be16((u16)lid); 4518 } 4519 4520 /** 4521 * ib_get_vector_affinity - Get the affinity mappings of a given completion 4522 * vector 4523 * @device: the rdma device 4524 * @comp_vector: index of completion vector 4525 * 4526 * Returns NULL on failure, otherwise a corresponding cpu map of the 4527 * completion vector (returns all-cpus map if the device driver doesn't 4528 * implement get_vector_affinity). 4529 */ 4530 static inline const struct cpumask * 4531 ib_get_vector_affinity(struct ib_device *device, int comp_vector) 4532 { 4533 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors || 4534 !device->ops.get_vector_affinity) 4535 return NULL; 4536 4537 return device->ops.get_vector_affinity(device, comp_vector); 4538 4539 } 4540 4541 /** 4542 * rdma_roce_rescan_device - Rescan all of the network devices in the system 4543 * and add their gids, as needed, to the relevant RoCE devices. 4544 * 4545 * @device: the rdma device 4546 */ 4547 void rdma_roce_rescan_device(struct ib_device *ibdev); 4548 4549 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile); 4550 4551 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs); 4552 4553 struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num, 4554 enum rdma_netdev_t type, const char *name, 4555 unsigned char name_assign_type, 4556 void (*setup)(struct net_device *)); 4557 4558 int rdma_init_netdev(struct ib_device *device, u8 port_num, 4559 enum rdma_netdev_t type, const char *name, 4560 unsigned char name_assign_type, 4561 void (*setup)(struct net_device *), 4562 struct net_device *netdev); 4563 4564 /** 4565 * rdma_set_device_sysfs_group - Set device attributes group to have 4566 * driver specific sysfs entries at 4567 * for infiniband class. 4568 * 4569 * @device: device pointer for which attributes to be created 4570 * @group: Pointer to group which should be added when device 4571 * is registered with sysfs. 4572 * rdma_set_device_sysfs_group() allows existing drivers to expose one 4573 * group per device to have sysfs attributes. 4574 * 4575 * NOTE: New drivers should not make use of this API; instead new device 4576 * parameter should be exposed via netlink command. This API and mechanism 4577 * exist only for existing drivers. 4578 */ 4579 static inline void 4580 rdma_set_device_sysfs_group(struct ib_device *dev, 4581 const struct attribute_group *group) 4582 { 4583 dev->groups[1] = group; 4584 } 4585 4586 /** 4587 * rdma_device_to_ibdev - Get ib_device pointer from device pointer 4588 * 4589 * @device: device pointer for which ib_device pointer to retrieve 4590 * 4591 * rdma_device_to_ibdev() retrieves ib_device pointer from device. 4592 * 4593 */ 4594 static inline struct ib_device *rdma_device_to_ibdev(struct device *device) 4595 { 4596 struct ib_core_device *coredev = 4597 container_of(device, struct ib_core_device, dev); 4598 4599 return coredev->owner; 4600 } 4601 4602 /** 4603 * ibdev_to_node - return the NUMA node for a given ib_device 4604 * @dev: device to get the NUMA node for. 4605 */ 4606 static inline int ibdev_to_node(struct ib_device *ibdev) 4607 { 4608 struct device *parent = ibdev->dev.parent; 4609 4610 if (!parent) 4611 return NUMA_NO_NODE; 4612 return dev_to_node(parent); 4613 } 4614 4615 /** 4616 * rdma_device_to_drv_device - Helper macro to reach back to driver's 4617 * ib_device holder structure from device pointer. 4618 * 4619 * NOTE: New drivers should not make use of this API; This API is only for 4620 * existing drivers who have exposed sysfs entries using 4621 * rdma_set_device_sysfs_group(). 4622 */ 4623 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \ 4624 container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member) 4625 4626 bool rdma_dev_access_netns(const struct ib_device *device, 4627 const struct net *net); 4628 4629 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000) 4630 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF) 4631 #define IB_GRH_FLOWLABEL_MASK (0x000FFFFF) 4632 4633 /** 4634 * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based 4635 * on the flow_label 4636 * 4637 * This function will convert the 20 bit flow_label input to a valid RoCE v2 4638 * UDP src port 14 bit value. All RoCE V2 drivers should use this same 4639 * convention. 4640 */ 4641 static inline u16 rdma_flow_label_to_udp_sport(u32 fl) 4642 { 4643 u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000; 4644 4645 fl_low ^= fl_high >> 14; 4646 return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN); 4647 } 4648 4649 /** 4650 * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on 4651 * local and remote qpn values 4652 * 4653 * This function folded the multiplication results of two qpns, 24 bit each, 4654 * fields, and converts it to a 20 bit results. 4655 * 4656 * This function will create symmetric flow_label value based on the local 4657 * and remote qpn values. this will allow both the requester and responder 4658 * to calculate the same flow_label for a given connection. 4659 * 4660 * This helper function should be used by driver in case the upper layer 4661 * provide a zero flow_label value. This is to improve entropy of RDMA 4662 * traffic in the network. 4663 */ 4664 static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn) 4665 { 4666 u64 v = (u64)lqpn * rqpn; 4667 4668 v ^= v >> 20; 4669 v ^= v >> 40; 4670 4671 return (u32)(v & IB_GRH_FLOWLABEL_MASK); 4672 } 4673 #endif /* IB_VERBS_H */ 4674