1 /* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */ 2 /* 3 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 4 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 5 * Copyright (c) 2004, 2020 Intel Corporation. All rights reserved. 6 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 7 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 8 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 9 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 10 */ 11 12 #ifndef IB_VERBS_H 13 #define IB_VERBS_H 14 15 #include <linux/ethtool.h> 16 #include <linux/types.h> 17 #include <linux/device.h> 18 #include <linux/dma-mapping.h> 19 #include <linux/kref.h> 20 #include <linux/list.h> 21 #include <linux/rwsem.h> 22 #include <linux/workqueue.h> 23 #include <linux/irq_poll.h> 24 #include <uapi/linux/if_ether.h> 25 #include <net/ipv6.h> 26 #include <net/ip.h> 27 #include <linux/string.h> 28 #include <linux/slab.h> 29 #include <linux/netdevice.h> 30 #include <linux/refcount.h> 31 #include <linux/if_link.h> 32 #include <linux/atomic.h> 33 #include <linux/mmu_notifier.h> 34 #include <linux/uaccess.h> 35 #include <linux/cgroup_rdma.h> 36 #include <linux/irqflags.h> 37 #include <linux/preempt.h> 38 #include <linux/dim.h> 39 #include <uapi/rdma/ib_user_verbs.h> 40 #include <rdma/rdma_counter.h> 41 #include <rdma/restrack.h> 42 #include <rdma/signature.h> 43 #include <uapi/rdma/rdma_user_ioctl.h> 44 #include <uapi/rdma/ib_user_ioctl_verbs.h> 45 46 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN 47 48 struct ib_umem_odp; 49 struct ib_uqp_object; 50 struct ib_usrq_object; 51 struct ib_uwq_object; 52 struct rdma_cm_id; 53 struct ib_port; 54 struct hw_stats_device_data; 55 56 extern struct workqueue_struct *ib_wq; 57 extern struct workqueue_struct *ib_comp_wq; 58 extern struct workqueue_struct *ib_comp_unbound_wq; 59 60 struct ib_ucq_object; 61 62 __printf(3, 4) __cold 63 void ibdev_printk(const char *level, const struct ib_device *ibdev, 64 const char *format, ...); 65 __printf(2, 3) __cold 66 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...); 67 __printf(2, 3) __cold 68 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...); 69 __printf(2, 3) __cold 70 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...); 71 __printf(2, 3) __cold 72 void ibdev_err(const struct ib_device *ibdev, const char *format, ...); 73 __printf(2, 3) __cold 74 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...); 75 __printf(2, 3) __cold 76 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...); 77 __printf(2, 3) __cold 78 void ibdev_info(const struct ib_device *ibdev, const char *format, ...); 79 80 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 81 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 82 #define ibdev_dbg(__dev, format, args...) \ 83 dynamic_ibdev_dbg(__dev, format, ##args) 84 #else 85 __printf(2, 3) __cold 86 static inline 87 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {} 88 #endif 89 90 #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...) \ 91 do { \ 92 static DEFINE_RATELIMIT_STATE(_rs, \ 93 DEFAULT_RATELIMIT_INTERVAL, \ 94 DEFAULT_RATELIMIT_BURST); \ 95 if (__ratelimit(&_rs)) \ 96 ibdev_level(ibdev, fmt, ##__VA_ARGS__); \ 97 } while (0) 98 99 #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \ 100 ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__) 101 #define ibdev_alert_ratelimited(ibdev, fmt, ...) \ 102 ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__) 103 #define ibdev_crit_ratelimited(ibdev, fmt, ...) \ 104 ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__) 105 #define ibdev_err_ratelimited(ibdev, fmt, ...) \ 106 ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__) 107 #define ibdev_warn_ratelimited(ibdev, fmt, ...) \ 108 ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__) 109 #define ibdev_notice_ratelimited(ibdev, fmt, ...) \ 110 ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__) 111 #define ibdev_info_ratelimited(ibdev, fmt, ...) \ 112 ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__) 113 114 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 115 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 116 /* descriptor check is first to prevent flooding with "callbacks suppressed" */ 117 #define ibdev_dbg_ratelimited(ibdev, fmt, ...) \ 118 do { \ 119 static DEFINE_RATELIMIT_STATE(_rs, \ 120 DEFAULT_RATELIMIT_INTERVAL, \ 121 DEFAULT_RATELIMIT_BURST); \ 122 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \ 123 if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs)) \ 124 __dynamic_ibdev_dbg(&descriptor, ibdev, fmt, \ 125 ##__VA_ARGS__); \ 126 } while (0) 127 #else 128 __printf(2, 3) __cold 129 static inline 130 void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {} 131 #endif 132 133 union ib_gid { 134 u8 raw[16]; 135 struct { 136 __be64 subnet_prefix; 137 __be64 interface_id; 138 } global; 139 }; 140 141 extern union ib_gid zgid; 142 143 enum ib_gid_type { 144 IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB, 145 IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1, 146 IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2, 147 IB_GID_TYPE_SIZE 148 }; 149 150 #define ROCE_V2_UDP_DPORT 4791 151 struct ib_gid_attr { 152 struct net_device __rcu *ndev; 153 struct ib_device *device; 154 union ib_gid gid; 155 enum ib_gid_type gid_type; 156 u16 index; 157 u32 port_num; 158 }; 159 160 enum { 161 /* set the local administered indication */ 162 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2, 163 }; 164 165 enum rdma_transport_type { 166 RDMA_TRANSPORT_IB, 167 RDMA_TRANSPORT_IWARP, 168 RDMA_TRANSPORT_USNIC, 169 RDMA_TRANSPORT_USNIC_UDP, 170 RDMA_TRANSPORT_UNSPECIFIED, 171 }; 172 173 enum rdma_protocol_type { 174 RDMA_PROTOCOL_IB, 175 RDMA_PROTOCOL_IBOE, 176 RDMA_PROTOCOL_IWARP, 177 RDMA_PROTOCOL_USNIC_UDP 178 }; 179 180 __attribute_const__ enum rdma_transport_type 181 rdma_node_get_transport(unsigned int node_type); 182 183 enum rdma_network_type { 184 RDMA_NETWORK_IB, 185 RDMA_NETWORK_ROCE_V1, 186 RDMA_NETWORK_IPV4, 187 RDMA_NETWORK_IPV6 188 }; 189 190 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) 191 { 192 if (network_type == RDMA_NETWORK_IPV4 || 193 network_type == RDMA_NETWORK_IPV6) 194 return IB_GID_TYPE_ROCE_UDP_ENCAP; 195 else if (network_type == RDMA_NETWORK_ROCE_V1) 196 return IB_GID_TYPE_ROCE; 197 else 198 return IB_GID_TYPE_IB; 199 } 200 201 static inline enum rdma_network_type 202 rdma_gid_attr_network_type(const struct ib_gid_attr *attr) 203 { 204 if (attr->gid_type == IB_GID_TYPE_IB) 205 return RDMA_NETWORK_IB; 206 207 if (attr->gid_type == IB_GID_TYPE_ROCE) 208 return RDMA_NETWORK_ROCE_V1; 209 210 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid)) 211 return RDMA_NETWORK_IPV4; 212 else 213 return RDMA_NETWORK_IPV6; 214 } 215 216 enum rdma_link_layer { 217 IB_LINK_LAYER_UNSPECIFIED, 218 IB_LINK_LAYER_INFINIBAND, 219 IB_LINK_LAYER_ETHERNET, 220 }; 221 222 enum ib_device_cap_flags { 223 IB_DEVICE_RESIZE_MAX_WR = (1 << 0), 224 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1), 225 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2), 226 IB_DEVICE_RAW_MULTI = (1 << 3), 227 IB_DEVICE_AUTO_PATH_MIG = (1 << 4), 228 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5), 229 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6), 230 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7), 231 IB_DEVICE_SHUTDOWN_PORT = (1 << 8), 232 /* Not in use, former INIT_TYPE = (1 << 9),*/ 233 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10), 234 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11), 235 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12), 236 IB_DEVICE_SRQ_RESIZE = (1 << 13), 237 IB_DEVICE_N_NOTIFY_CQ = (1 << 14), 238 239 /* 240 * This device supports a per-device lkey or stag that can be 241 * used without performing a memory registration for the local 242 * memory. Note that ULPs should never check this flag, but 243 * instead of use the local_dma_lkey flag in the ib_pd structure, 244 * which will always contain a usable lkey. 245 */ 246 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15), 247 /* Reserved, old SEND_W_INV = (1 << 16),*/ 248 IB_DEVICE_MEM_WINDOW = (1 << 17), 249 /* 250 * Devices should set IB_DEVICE_UD_IP_SUM if they support 251 * insertion of UDP and TCP checksum on outgoing UD IPoIB 252 * messages and can verify the validity of checksum for 253 * incoming messages. Setting this flag implies that the 254 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 255 */ 256 IB_DEVICE_UD_IP_CSUM = (1 << 18), 257 IB_DEVICE_UD_TSO = (1 << 19), 258 IB_DEVICE_XRC = (1 << 20), 259 260 /* 261 * This device supports the IB "base memory management extension", 262 * which includes support for fast registrations (IB_WR_REG_MR, 263 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should 264 * also be set by any iWarp device which must support FRs to comply 265 * to the iWarp verbs spec. iWarp devices also support the 266 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the 267 * stag. 268 */ 269 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21), 270 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22), 271 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23), 272 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24), 273 IB_DEVICE_RC_IP_CSUM = (1 << 25), 274 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */ 275 IB_DEVICE_RAW_IP_CSUM = (1 << 26), 276 /* 277 * Devices should set IB_DEVICE_CROSS_CHANNEL if they 278 * support execution of WQEs that involve synchronization 279 * of I/O operations with single completion queue managed 280 * by hardware. 281 */ 282 IB_DEVICE_CROSS_CHANNEL = (1 << 27), 283 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29), 284 IB_DEVICE_INTEGRITY_HANDOVER = (1 << 30), 285 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31), 286 IB_DEVICE_SG_GAPS_REG = (1ULL << 32), 287 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33), 288 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */ 289 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34), 290 IB_DEVICE_RDMA_NETDEV_OPA = (1ULL << 35), 291 /* The device supports padding incoming writes to cacheline. */ 292 IB_DEVICE_PCI_WRITE_END_PADDING = (1ULL << 36), 293 IB_DEVICE_ALLOW_USER_UNREG = (1ULL << 37), 294 }; 295 296 enum ib_atomic_cap { 297 IB_ATOMIC_NONE, 298 IB_ATOMIC_HCA, 299 IB_ATOMIC_GLOB 300 }; 301 302 enum ib_odp_general_cap_bits { 303 IB_ODP_SUPPORT = 1 << 0, 304 IB_ODP_SUPPORT_IMPLICIT = 1 << 1, 305 }; 306 307 enum ib_odp_transport_cap_bits { 308 IB_ODP_SUPPORT_SEND = 1 << 0, 309 IB_ODP_SUPPORT_RECV = 1 << 1, 310 IB_ODP_SUPPORT_WRITE = 1 << 2, 311 IB_ODP_SUPPORT_READ = 1 << 3, 312 IB_ODP_SUPPORT_ATOMIC = 1 << 4, 313 IB_ODP_SUPPORT_SRQ_RECV = 1 << 5, 314 }; 315 316 struct ib_odp_caps { 317 uint64_t general_caps; 318 struct { 319 uint32_t rc_odp_caps; 320 uint32_t uc_odp_caps; 321 uint32_t ud_odp_caps; 322 uint32_t xrc_odp_caps; 323 } per_transport_caps; 324 }; 325 326 struct ib_rss_caps { 327 /* Corresponding bit will be set if qp type from 328 * 'enum ib_qp_type' is supported, e.g. 329 * supported_qpts |= 1 << IB_QPT_UD 330 */ 331 u32 supported_qpts; 332 u32 max_rwq_indirection_tables; 333 u32 max_rwq_indirection_table_size; 334 }; 335 336 enum ib_tm_cap_flags { 337 /* Support tag matching with rendezvous offload for RC transport */ 338 IB_TM_CAP_RNDV_RC = 1 << 0, 339 }; 340 341 struct ib_tm_caps { 342 /* Max size of RNDV header */ 343 u32 max_rndv_hdr_size; 344 /* Max number of entries in tag matching list */ 345 u32 max_num_tags; 346 /* From enum ib_tm_cap_flags */ 347 u32 flags; 348 /* Max number of outstanding list operations */ 349 u32 max_ops; 350 /* Max number of SGE in tag matching entry */ 351 u32 max_sge; 352 }; 353 354 struct ib_cq_init_attr { 355 unsigned int cqe; 356 u32 comp_vector; 357 u32 flags; 358 }; 359 360 enum ib_cq_attr_mask { 361 IB_CQ_MODERATE = 1 << 0, 362 }; 363 364 struct ib_cq_caps { 365 u16 max_cq_moderation_count; 366 u16 max_cq_moderation_period; 367 }; 368 369 struct ib_dm_mr_attr { 370 u64 length; 371 u64 offset; 372 u32 access_flags; 373 }; 374 375 struct ib_dm_alloc_attr { 376 u64 length; 377 u32 alignment; 378 u32 flags; 379 }; 380 381 struct ib_device_attr { 382 u64 fw_ver; 383 __be64 sys_image_guid; 384 u64 max_mr_size; 385 u64 page_size_cap; 386 u32 vendor_id; 387 u32 vendor_part_id; 388 u32 hw_ver; 389 int max_qp; 390 int max_qp_wr; 391 u64 device_cap_flags; 392 int max_send_sge; 393 int max_recv_sge; 394 int max_sge_rd; 395 int max_cq; 396 int max_cqe; 397 int max_mr; 398 int max_pd; 399 int max_qp_rd_atom; 400 int max_ee_rd_atom; 401 int max_res_rd_atom; 402 int max_qp_init_rd_atom; 403 int max_ee_init_rd_atom; 404 enum ib_atomic_cap atomic_cap; 405 enum ib_atomic_cap masked_atomic_cap; 406 int max_ee; 407 int max_rdd; 408 int max_mw; 409 int max_raw_ipv6_qp; 410 int max_raw_ethy_qp; 411 int max_mcast_grp; 412 int max_mcast_qp_attach; 413 int max_total_mcast_qp_attach; 414 int max_ah; 415 int max_srq; 416 int max_srq_wr; 417 int max_srq_sge; 418 unsigned int max_fast_reg_page_list_len; 419 unsigned int max_pi_fast_reg_page_list_len; 420 u16 max_pkeys; 421 u8 local_ca_ack_delay; 422 int sig_prot_cap; 423 int sig_guard_cap; 424 struct ib_odp_caps odp_caps; 425 uint64_t timestamp_mask; 426 uint64_t hca_core_clock; /* in KHZ */ 427 struct ib_rss_caps rss_caps; 428 u32 max_wq_type_rq; 429 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */ 430 struct ib_tm_caps tm_caps; 431 struct ib_cq_caps cq_caps; 432 u64 max_dm_size; 433 /* Max entries for sgl for optimized performance per READ */ 434 u32 max_sgl_rd; 435 }; 436 437 enum ib_mtu { 438 IB_MTU_256 = 1, 439 IB_MTU_512 = 2, 440 IB_MTU_1024 = 3, 441 IB_MTU_2048 = 4, 442 IB_MTU_4096 = 5 443 }; 444 445 enum opa_mtu { 446 OPA_MTU_8192 = 6, 447 OPA_MTU_10240 = 7 448 }; 449 450 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 451 { 452 switch (mtu) { 453 case IB_MTU_256: return 256; 454 case IB_MTU_512: return 512; 455 case IB_MTU_1024: return 1024; 456 case IB_MTU_2048: return 2048; 457 case IB_MTU_4096: return 4096; 458 default: return -1; 459 } 460 } 461 462 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu) 463 { 464 if (mtu >= 4096) 465 return IB_MTU_4096; 466 else if (mtu >= 2048) 467 return IB_MTU_2048; 468 else if (mtu >= 1024) 469 return IB_MTU_1024; 470 else if (mtu >= 512) 471 return IB_MTU_512; 472 else 473 return IB_MTU_256; 474 } 475 476 static inline int opa_mtu_enum_to_int(enum opa_mtu mtu) 477 { 478 switch (mtu) { 479 case OPA_MTU_8192: 480 return 8192; 481 case OPA_MTU_10240: 482 return 10240; 483 default: 484 return(ib_mtu_enum_to_int((enum ib_mtu)mtu)); 485 } 486 } 487 488 static inline enum opa_mtu opa_mtu_int_to_enum(int mtu) 489 { 490 if (mtu >= 10240) 491 return OPA_MTU_10240; 492 else if (mtu >= 8192) 493 return OPA_MTU_8192; 494 else 495 return ((enum opa_mtu)ib_mtu_int_to_enum(mtu)); 496 } 497 498 enum ib_port_state { 499 IB_PORT_NOP = 0, 500 IB_PORT_DOWN = 1, 501 IB_PORT_INIT = 2, 502 IB_PORT_ARMED = 3, 503 IB_PORT_ACTIVE = 4, 504 IB_PORT_ACTIVE_DEFER = 5 505 }; 506 507 enum ib_port_phys_state { 508 IB_PORT_PHYS_STATE_SLEEP = 1, 509 IB_PORT_PHYS_STATE_POLLING = 2, 510 IB_PORT_PHYS_STATE_DISABLED = 3, 511 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4, 512 IB_PORT_PHYS_STATE_LINK_UP = 5, 513 IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6, 514 IB_PORT_PHYS_STATE_PHY_TEST = 7, 515 }; 516 517 enum ib_port_width { 518 IB_WIDTH_1X = 1, 519 IB_WIDTH_2X = 16, 520 IB_WIDTH_4X = 2, 521 IB_WIDTH_8X = 4, 522 IB_WIDTH_12X = 8 523 }; 524 525 static inline int ib_width_enum_to_int(enum ib_port_width width) 526 { 527 switch (width) { 528 case IB_WIDTH_1X: return 1; 529 case IB_WIDTH_2X: return 2; 530 case IB_WIDTH_4X: return 4; 531 case IB_WIDTH_8X: return 8; 532 case IB_WIDTH_12X: return 12; 533 default: return -1; 534 } 535 } 536 537 enum ib_port_speed { 538 IB_SPEED_SDR = 1, 539 IB_SPEED_DDR = 2, 540 IB_SPEED_QDR = 4, 541 IB_SPEED_FDR10 = 8, 542 IB_SPEED_FDR = 16, 543 IB_SPEED_EDR = 32, 544 IB_SPEED_HDR = 64, 545 IB_SPEED_NDR = 128, 546 }; 547 548 enum ib_stat_flag { 549 IB_STAT_FLAG_OPTIONAL = 1 << 0, 550 }; 551 552 /** 553 * struct rdma_stat_desc 554 * @name - The name of the counter 555 * @flags - Flags of the counter; For example, IB_STAT_FLAG_OPTIONAL 556 * @priv - Driver private information; Core code should not use 557 */ 558 struct rdma_stat_desc { 559 const char *name; 560 unsigned int flags; 561 const void *priv; 562 }; 563 564 /** 565 * struct rdma_hw_stats 566 * @lock - Mutex to protect parallel write access to lifespan and values 567 * of counters, which are 64bits and not guaranteeed to be written 568 * atomicaly on 32bits systems. 569 * @timestamp - Used by the core code to track when the last update was 570 * @lifespan - Used by the core code to determine how old the counters 571 * should be before being updated again. Stored in jiffies, defaults 572 * to 10 milliseconds, drivers can override the default be specifying 573 * their own value during their allocation routine. 574 * @descs - Array of pointers to static descriptors used for the counters 575 * in directory. 576 * @is_disabled - A bitmap to indicate each counter is currently disabled 577 * or not. 578 * @num_counters - How many hardware counters there are. If name is 579 * shorter than this number, a kernel oops will result. Driver authors 580 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters) 581 * in their code to prevent this. 582 * @value - Array of u64 counters that are accessed by the sysfs code and 583 * filled in by the drivers get_stats routine 584 */ 585 struct rdma_hw_stats { 586 struct mutex lock; /* Protect lifespan and values[] */ 587 unsigned long timestamp; 588 unsigned long lifespan; 589 const struct rdma_stat_desc *descs; 590 unsigned long *is_disabled; 591 int num_counters; 592 u64 value[]; 593 }; 594 595 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10 596 597 struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 598 const struct rdma_stat_desc *descs, int num_counters, 599 unsigned long lifespan); 600 601 void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats); 602 603 /* Define bits for the various functionality this port needs to be supported by 604 * the core. 605 */ 606 /* Management 0x00000FFF */ 607 #define RDMA_CORE_CAP_IB_MAD 0x00000001 608 #define RDMA_CORE_CAP_IB_SMI 0x00000002 609 #define RDMA_CORE_CAP_IB_CM 0x00000004 610 #define RDMA_CORE_CAP_IW_CM 0x00000008 611 #define RDMA_CORE_CAP_IB_SA 0x00000010 612 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 613 614 /* Address format 0x000FF000 */ 615 #define RDMA_CORE_CAP_AF_IB 0x00001000 616 #define RDMA_CORE_CAP_ETH_AH 0x00002000 617 #define RDMA_CORE_CAP_OPA_AH 0x00004000 618 #define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000 619 620 /* Protocol 0xFFF00000 */ 621 #define RDMA_CORE_CAP_PROT_IB 0x00100000 622 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 623 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 624 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 625 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000 626 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000 627 628 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \ 629 | RDMA_CORE_CAP_PROT_ROCE \ 630 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP) 631 632 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 633 | RDMA_CORE_CAP_IB_MAD \ 634 | RDMA_CORE_CAP_IB_SMI \ 635 | RDMA_CORE_CAP_IB_CM \ 636 | RDMA_CORE_CAP_IB_SA \ 637 | RDMA_CORE_CAP_AF_IB) 638 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 639 | RDMA_CORE_CAP_IB_MAD \ 640 | RDMA_CORE_CAP_IB_CM \ 641 | RDMA_CORE_CAP_AF_IB \ 642 | RDMA_CORE_CAP_ETH_AH) 643 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ 644 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ 645 | RDMA_CORE_CAP_IB_MAD \ 646 | RDMA_CORE_CAP_IB_CM \ 647 | RDMA_CORE_CAP_AF_IB \ 648 | RDMA_CORE_CAP_ETH_AH) 649 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 650 | RDMA_CORE_CAP_IW_CM) 651 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 652 | RDMA_CORE_CAP_OPA_MAD) 653 654 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET) 655 656 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC) 657 658 struct ib_port_attr { 659 u64 subnet_prefix; 660 enum ib_port_state state; 661 enum ib_mtu max_mtu; 662 enum ib_mtu active_mtu; 663 u32 phys_mtu; 664 int gid_tbl_len; 665 unsigned int ip_gids:1; 666 /* This is the value from PortInfo CapabilityMask, defined by IBA */ 667 u32 port_cap_flags; 668 u32 max_msg_sz; 669 u32 bad_pkey_cntr; 670 u32 qkey_viol_cntr; 671 u16 pkey_tbl_len; 672 u32 sm_lid; 673 u32 lid; 674 u8 lmc; 675 u8 max_vl_num; 676 u8 sm_sl; 677 u8 subnet_timeout; 678 u8 init_type_reply; 679 u8 active_width; 680 u16 active_speed; 681 u8 phys_state; 682 u16 port_cap_flags2; 683 }; 684 685 enum ib_device_modify_flags { 686 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 687 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 688 }; 689 690 #define IB_DEVICE_NODE_DESC_MAX 64 691 692 struct ib_device_modify { 693 u64 sys_image_guid; 694 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 695 }; 696 697 enum ib_port_modify_flags { 698 IB_PORT_SHUTDOWN = 1, 699 IB_PORT_INIT_TYPE = (1<<2), 700 IB_PORT_RESET_QKEY_CNTR = (1<<3), 701 IB_PORT_OPA_MASK_CHG = (1<<4) 702 }; 703 704 struct ib_port_modify { 705 u32 set_port_cap_mask; 706 u32 clr_port_cap_mask; 707 u8 init_type; 708 }; 709 710 enum ib_event_type { 711 IB_EVENT_CQ_ERR, 712 IB_EVENT_QP_FATAL, 713 IB_EVENT_QP_REQ_ERR, 714 IB_EVENT_QP_ACCESS_ERR, 715 IB_EVENT_COMM_EST, 716 IB_EVENT_SQ_DRAINED, 717 IB_EVENT_PATH_MIG, 718 IB_EVENT_PATH_MIG_ERR, 719 IB_EVENT_DEVICE_FATAL, 720 IB_EVENT_PORT_ACTIVE, 721 IB_EVENT_PORT_ERR, 722 IB_EVENT_LID_CHANGE, 723 IB_EVENT_PKEY_CHANGE, 724 IB_EVENT_SM_CHANGE, 725 IB_EVENT_SRQ_ERR, 726 IB_EVENT_SRQ_LIMIT_REACHED, 727 IB_EVENT_QP_LAST_WQE_REACHED, 728 IB_EVENT_CLIENT_REREGISTER, 729 IB_EVENT_GID_CHANGE, 730 IB_EVENT_WQ_FATAL, 731 }; 732 733 const char *__attribute_const__ ib_event_msg(enum ib_event_type event); 734 735 struct ib_event { 736 struct ib_device *device; 737 union { 738 struct ib_cq *cq; 739 struct ib_qp *qp; 740 struct ib_srq *srq; 741 struct ib_wq *wq; 742 u32 port_num; 743 } element; 744 enum ib_event_type event; 745 }; 746 747 struct ib_event_handler { 748 struct ib_device *device; 749 void (*handler)(struct ib_event_handler *, struct ib_event *); 750 struct list_head list; 751 }; 752 753 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 754 do { \ 755 (_ptr)->device = _device; \ 756 (_ptr)->handler = _handler; \ 757 INIT_LIST_HEAD(&(_ptr)->list); \ 758 } while (0) 759 760 struct ib_global_route { 761 const struct ib_gid_attr *sgid_attr; 762 union ib_gid dgid; 763 u32 flow_label; 764 u8 sgid_index; 765 u8 hop_limit; 766 u8 traffic_class; 767 }; 768 769 struct ib_grh { 770 __be32 version_tclass_flow; 771 __be16 paylen; 772 u8 next_hdr; 773 u8 hop_limit; 774 union ib_gid sgid; 775 union ib_gid dgid; 776 }; 777 778 union rdma_network_hdr { 779 struct ib_grh ibgrh; 780 struct { 781 /* The IB spec states that if it's IPv4, the header 782 * is located in the last 20 bytes of the header. 783 */ 784 u8 reserved[20]; 785 struct iphdr roce4grh; 786 }; 787 }; 788 789 #define IB_QPN_MASK 0xFFFFFF 790 791 enum { 792 IB_MULTICAST_QPN = 0xffffff 793 }; 794 795 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 796 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000) 797 798 enum ib_ah_flags { 799 IB_AH_GRH = 1 800 }; 801 802 enum ib_rate { 803 IB_RATE_PORT_CURRENT = 0, 804 IB_RATE_2_5_GBPS = 2, 805 IB_RATE_5_GBPS = 5, 806 IB_RATE_10_GBPS = 3, 807 IB_RATE_20_GBPS = 6, 808 IB_RATE_30_GBPS = 4, 809 IB_RATE_40_GBPS = 7, 810 IB_RATE_60_GBPS = 8, 811 IB_RATE_80_GBPS = 9, 812 IB_RATE_120_GBPS = 10, 813 IB_RATE_14_GBPS = 11, 814 IB_RATE_56_GBPS = 12, 815 IB_RATE_112_GBPS = 13, 816 IB_RATE_168_GBPS = 14, 817 IB_RATE_25_GBPS = 15, 818 IB_RATE_100_GBPS = 16, 819 IB_RATE_200_GBPS = 17, 820 IB_RATE_300_GBPS = 18, 821 IB_RATE_28_GBPS = 19, 822 IB_RATE_50_GBPS = 20, 823 IB_RATE_400_GBPS = 21, 824 IB_RATE_600_GBPS = 22, 825 }; 826 827 /** 828 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 829 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 830 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 831 * @rate: rate to convert. 832 */ 833 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 834 835 /** 836 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 837 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 838 * @rate: rate to convert. 839 */ 840 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 841 842 843 /** 844 * enum ib_mr_type - memory region type 845 * @IB_MR_TYPE_MEM_REG: memory region that is used for 846 * normal registration 847 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to 848 * register any arbitrary sg lists (without 849 * the normal mr constraints - see 850 * ib_map_mr_sg) 851 * @IB_MR_TYPE_DM: memory region that is used for device 852 * memory registration 853 * @IB_MR_TYPE_USER: memory region that is used for the user-space 854 * application 855 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations 856 * without address translations (VA=PA) 857 * @IB_MR_TYPE_INTEGRITY: memory region that is used for 858 * data integrity operations 859 */ 860 enum ib_mr_type { 861 IB_MR_TYPE_MEM_REG, 862 IB_MR_TYPE_SG_GAPS, 863 IB_MR_TYPE_DM, 864 IB_MR_TYPE_USER, 865 IB_MR_TYPE_DMA, 866 IB_MR_TYPE_INTEGRITY, 867 }; 868 869 enum ib_mr_status_check { 870 IB_MR_CHECK_SIG_STATUS = 1, 871 }; 872 873 /** 874 * struct ib_mr_status - Memory region status container 875 * 876 * @fail_status: Bitmask of MR checks status. For each 877 * failed check a corresponding status bit is set. 878 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 879 * failure. 880 */ 881 struct ib_mr_status { 882 u32 fail_status; 883 struct ib_sig_err sig_err; 884 }; 885 886 /** 887 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 888 * enum. 889 * @mult: multiple to convert. 890 */ 891 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 892 893 struct rdma_ah_init_attr { 894 struct rdma_ah_attr *ah_attr; 895 u32 flags; 896 struct net_device *xmit_slave; 897 }; 898 899 enum rdma_ah_attr_type { 900 RDMA_AH_ATTR_TYPE_UNDEFINED, 901 RDMA_AH_ATTR_TYPE_IB, 902 RDMA_AH_ATTR_TYPE_ROCE, 903 RDMA_AH_ATTR_TYPE_OPA, 904 }; 905 906 struct ib_ah_attr { 907 u16 dlid; 908 u8 src_path_bits; 909 }; 910 911 struct roce_ah_attr { 912 u8 dmac[ETH_ALEN]; 913 }; 914 915 struct opa_ah_attr { 916 u32 dlid; 917 u8 src_path_bits; 918 bool make_grd; 919 }; 920 921 struct rdma_ah_attr { 922 struct ib_global_route grh; 923 u8 sl; 924 u8 static_rate; 925 u32 port_num; 926 u8 ah_flags; 927 enum rdma_ah_attr_type type; 928 union { 929 struct ib_ah_attr ib; 930 struct roce_ah_attr roce; 931 struct opa_ah_attr opa; 932 }; 933 }; 934 935 enum ib_wc_status { 936 IB_WC_SUCCESS, 937 IB_WC_LOC_LEN_ERR, 938 IB_WC_LOC_QP_OP_ERR, 939 IB_WC_LOC_EEC_OP_ERR, 940 IB_WC_LOC_PROT_ERR, 941 IB_WC_WR_FLUSH_ERR, 942 IB_WC_MW_BIND_ERR, 943 IB_WC_BAD_RESP_ERR, 944 IB_WC_LOC_ACCESS_ERR, 945 IB_WC_REM_INV_REQ_ERR, 946 IB_WC_REM_ACCESS_ERR, 947 IB_WC_REM_OP_ERR, 948 IB_WC_RETRY_EXC_ERR, 949 IB_WC_RNR_RETRY_EXC_ERR, 950 IB_WC_LOC_RDD_VIOL_ERR, 951 IB_WC_REM_INV_RD_REQ_ERR, 952 IB_WC_REM_ABORT_ERR, 953 IB_WC_INV_EECN_ERR, 954 IB_WC_INV_EEC_STATE_ERR, 955 IB_WC_FATAL_ERR, 956 IB_WC_RESP_TIMEOUT_ERR, 957 IB_WC_GENERAL_ERR 958 }; 959 960 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); 961 962 enum ib_wc_opcode { 963 IB_WC_SEND = IB_UVERBS_WC_SEND, 964 IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE, 965 IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ, 966 IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP, 967 IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD, 968 IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW, 969 IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV, 970 IB_WC_LSO = IB_UVERBS_WC_TSO, 971 IB_WC_REG_MR, 972 IB_WC_MASKED_COMP_SWAP, 973 IB_WC_MASKED_FETCH_ADD, 974 /* 975 * Set value of IB_WC_RECV so consumers can test if a completion is a 976 * receive by testing (opcode & IB_WC_RECV). 977 */ 978 IB_WC_RECV = 1 << 7, 979 IB_WC_RECV_RDMA_WITH_IMM 980 }; 981 982 enum ib_wc_flags { 983 IB_WC_GRH = 1, 984 IB_WC_WITH_IMM = (1<<1), 985 IB_WC_WITH_INVALIDATE = (1<<2), 986 IB_WC_IP_CSUM_OK = (1<<3), 987 IB_WC_WITH_SMAC = (1<<4), 988 IB_WC_WITH_VLAN = (1<<5), 989 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), 990 }; 991 992 struct ib_wc { 993 union { 994 u64 wr_id; 995 struct ib_cqe *wr_cqe; 996 }; 997 enum ib_wc_status status; 998 enum ib_wc_opcode opcode; 999 u32 vendor_err; 1000 u32 byte_len; 1001 struct ib_qp *qp; 1002 union { 1003 __be32 imm_data; 1004 u32 invalidate_rkey; 1005 } ex; 1006 u32 src_qp; 1007 u32 slid; 1008 int wc_flags; 1009 u16 pkey_index; 1010 u8 sl; 1011 u8 dlid_path_bits; 1012 u32 port_num; /* valid only for DR SMPs on switches */ 1013 u8 smac[ETH_ALEN]; 1014 u16 vlan_id; 1015 u8 network_hdr_type; 1016 }; 1017 1018 enum ib_cq_notify_flags { 1019 IB_CQ_SOLICITED = 1 << 0, 1020 IB_CQ_NEXT_COMP = 1 << 1, 1021 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 1022 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 1023 }; 1024 1025 enum ib_srq_type { 1026 IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC, 1027 IB_SRQT_XRC = IB_UVERBS_SRQT_XRC, 1028 IB_SRQT_TM = IB_UVERBS_SRQT_TM, 1029 }; 1030 1031 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type) 1032 { 1033 return srq_type == IB_SRQT_XRC || 1034 srq_type == IB_SRQT_TM; 1035 } 1036 1037 enum ib_srq_attr_mask { 1038 IB_SRQ_MAX_WR = 1 << 0, 1039 IB_SRQ_LIMIT = 1 << 1, 1040 }; 1041 1042 struct ib_srq_attr { 1043 u32 max_wr; 1044 u32 max_sge; 1045 u32 srq_limit; 1046 }; 1047 1048 struct ib_srq_init_attr { 1049 void (*event_handler)(struct ib_event *, void *); 1050 void *srq_context; 1051 struct ib_srq_attr attr; 1052 enum ib_srq_type srq_type; 1053 1054 struct { 1055 struct ib_cq *cq; 1056 union { 1057 struct { 1058 struct ib_xrcd *xrcd; 1059 } xrc; 1060 1061 struct { 1062 u32 max_num_tags; 1063 } tag_matching; 1064 }; 1065 } ext; 1066 }; 1067 1068 struct ib_qp_cap { 1069 u32 max_send_wr; 1070 u32 max_recv_wr; 1071 u32 max_send_sge; 1072 u32 max_recv_sge; 1073 u32 max_inline_data; 1074 1075 /* 1076 * Maximum number of rdma_rw_ctx structures in flight at a time. 1077 * ib_create_qp() will calculate the right amount of neededed WRs 1078 * and MRs based on this. 1079 */ 1080 u32 max_rdma_ctxs; 1081 }; 1082 1083 enum ib_sig_type { 1084 IB_SIGNAL_ALL_WR, 1085 IB_SIGNAL_REQ_WR 1086 }; 1087 1088 enum ib_qp_type { 1089 /* 1090 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 1091 * here (and in that order) since the MAD layer uses them as 1092 * indices into a 2-entry table. 1093 */ 1094 IB_QPT_SMI, 1095 IB_QPT_GSI, 1096 1097 IB_QPT_RC = IB_UVERBS_QPT_RC, 1098 IB_QPT_UC = IB_UVERBS_QPT_UC, 1099 IB_QPT_UD = IB_UVERBS_QPT_UD, 1100 IB_QPT_RAW_IPV6, 1101 IB_QPT_RAW_ETHERTYPE, 1102 IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET, 1103 IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI, 1104 IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT, 1105 IB_QPT_MAX, 1106 IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER, 1107 /* Reserve a range for qp types internal to the low level driver. 1108 * These qp types will not be visible at the IB core layer, so the 1109 * IB_QPT_MAX usages should not be affected in the core layer 1110 */ 1111 IB_QPT_RESERVED1 = 0x1000, 1112 IB_QPT_RESERVED2, 1113 IB_QPT_RESERVED3, 1114 IB_QPT_RESERVED4, 1115 IB_QPT_RESERVED5, 1116 IB_QPT_RESERVED6, 1117 IB_QPT_RESERVED7, 1118 IB_QPT_RESERVED8, 1119 IB_QPT_RESERVED9, 1120 IB_QPT_RESERVED10, 1121 }; 1122 1123 enum ib_qp_create_flags { 1124 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 1125 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1126 IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK, 1127 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 1128 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 1129 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 1130 IB_QP_CREATE_NETIF_QP = 1 << 5, 1131 IB_QP_CREATE_INTEGRITY_EN = 1 << 6, 1132 IB_QP_CREATE_NETDEV_USE = 1 << 7, 1133 IB_QP_CREATE_SCATTER_FCS = 1134 IB_UVERBS_QP_CREATE_SCATTER_FCS, 1135 IB_QP_CREATE_CVLAN_STRIPPING = 1136 IB_UVERBS_QP_CREATE_CVLAN_STRIPPING, 1137 IB_QP_CREATE_SOURCE_QPN = 1 << 10, 1138 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1139 IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING, 1140 /* reserve bits 26-31 for low level drivers' internal use */ 1141 IB_QP_CREATE_RESERVED_START = 1 << 26, 1142 IB_QP_CREATE_RESERVED_END = 1 << 31, 1143 }; 1144 1145 /* 1146 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 1147 * callback to destroy the passed in QP. 1148 */ 1149 1150 struct ib_qp_init_attr { 1151 /* Consumer's event_handler callback must not block */ 1152 void (*event_handler)(struct ib_event *, void *); 1153 1154 void *qp_context; 1155 struct ib_cq *send_cq; 1156 struct ib_cq *recv_cq; 1157 struct ib_srq *srq; 1158 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1159 struct ib_qp_cap cap; 1160 enum ib_sig_type sq_sig_type; 1161 enum ib_qp_type qp_type; 1162 u32 create_flags; 1163 1164 /* 1165 * Only needed for special QP types, or when using the RW API. 1166 */ 1167 u32 port_num; 1168 struct ib_rwq_ind_table *rwq_ind_tbl; 1169 u32 source_qpn; 1170 }; 1171 1172 struct ib_qp_open_attr { 1173 void (*event_handler)(struct ib_event *, void *); 1174 void *qp_context; 1175 u32 qp_num; 1176 enum ib_qp_type qp_type; 1177 }; 1178 1179 enum ib_rnr_timeout { 1180 IB_RNR_TIMER_655_36 = 0, 1181 IB_RNR_TIMER_000_01 = 1, 1182 IB_RNR_TIMER_000_02 = 2, 1183 IB_RNR_TIMER_000_03 = 3, 1184 IB_RNR_TIMER_000_04 = 4, 1185 IB_RNR_TIMER_000_06 = 5, 1186 IB_RNR_TIMER_000_08 = 6, 1187 IB_RNR_TIMER_000_12 = 7, 1188 IB_RNR_TIMER_000_16 = 8, 1189 IB_RNR_TIMER_000_24 = 9, 1190 IB_RNR_TIMER_000_32 = 10, 1191 IB_RNR_TIMER_000_48 = 11, 1192 IB_RNR_TIMER_000_64 = 12, 1193 IB_RNR_TIMER_000_96 = 13, 1194 IB_RNR_TIMER_001_28 = 14, 1195 IB_RNR_TIMER_001_92 = 15, 1196 IB_RNR_TIMER_002_56 = 16, 1197 IB_RNR_TIMER_003_84 = 17, 1198 IB_RNR_TIMER_005_12 = 18, 1199 IB_RNR_TIMER_007_68 = 19, 1200 IB_RNR_TIMER_010_24 = 20, 1201 IB_RNR_TIMER_015_36 = 21, 1202 IB_RNR_TIMER_020_48 = 22, 1203 IB_RNR_TIMER_030_72 = 23, 1204 IB_RNR_TIMER_040_96 = 24, 1205 IB_RNR_TIMER_061_44 = 25, 1206 IB_RNR_TIMER_081_92 = 26, 1207 IB_RNR_TIMER_122_88 = 27, 1208 IB_RNR_TIMER_163_84 = 28, 1209 IB_RNR_TIMER_245_76 = 29, 1210 IB_RNR_TIMER_327_68 = 30, 1211 IB_RNR_TIMER_491_52 = 31 1212 }; 1213 1214 enum ib_qp_attr_mask { 1215 IB_QP_STATE = 1, 1216 IB_QP_CUR_STATE = (1<<1), 1217 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 1218 IB_QP_ACCESS_FLAGS = (1<<3), 1219 IB_QP_PKEY_INDEX = (1<<4), 1220 IB_QP_PORT = (1<<5), 1221 IB_QP_QKEY = (1<<6), 1222 IB_QP_AV = (1<<7), 1223 IB_QP_PATH_MTU = (1<<8), 1224 IB_QP_TIMEOUT = (1<<9), 1225 IB_QP_RETRY_CNT = (1<<10), 1226 IB_QP_RNR_RETRY = (1<<11), 1227 IB_QP_RQ_PSN = (1<<12), 1228 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 1229 IB_QP_ALT_PATH = (1<<14), 1230 IB_QP_MIN_RNR_TIMER = (1<<15), 1231 IB_QP_SQ_PSN = (1<<16), 1232 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 1233 IB_QP_PATH_MIG_STATE = (1<<18), 1234 IB_QP_CAP = (1<<19), 1235 IB_QP_DEST_QPN = (1<<20), 1236 IB_QP_RESERVED1 = (1<<21), 1237 IB_QP_RESERVED2 = (1<<22), 1238 IB_QP_RESERVED3 = (1<<23), 1239 IB_QP_RESERVED4 = (1<<24), 1240 IB_QP_RATE_LIMIT = (1<<25), 1241 1242 IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0), 1243 }; 1244 1245 enum ib_qp_state { 1246 IB_QPS_RESET, 1247 IB_QPS_INIT, 1248 IB_QPS_RTR, 1249 IB_QPS_RTS, 1250 IB_QPS_SQD, 1251 IB_QPS_SQE, 1252 IB_QPS_ERR 1253 }; 1254 1255 enum ib_mig_state { 1256 IB_MIG_MIGRATED, 1257 IB_MIG_REARM, 1258 IB_MIG_ARMED 1259 }; 1260 1261 enum ib_mw_type { 1262 IB_MW_TYPE_1 = 1, 1263 IB_MW_TYPE_2 = 2 1264 }; 1265 1266 struct ib_qp_attr { 1267 enum ib_qp_state qp_state; 1268 enum ib_qp_state cur_qp_state; 1269 enum ib_mtu path_mtu; 1270 enum ib_mig_state path_mig_state; 1271 u32 qkey; 1272 u32 rq_psn; 1273 u32 sq_psn; 1274 u32 dest_qp_num; 1275 int qp_access_flags; 1276 struct ib_qp_cap cap; 1277 struct rdma_ah_attr ah_attr; 1278 struct rdma_ah_attr alt_ah_attr; 1279 u16 pkey_index; 1280 u16 alt_pkey_index; 1281 u8 en_sqd_async_notify; 1282 u8 sq_draining; 1283 u8 max_rd_atomic; 1284 u8 max_dest_rd_atomic; 1285 u8 min_rnr_timer; 1286 u32 port_num; 1287 u8 timeout; 1288 u8 retry_cnt; 1289 u8 rnr_retry; 1290 u32 alt_port_num; 1291 u8 alt_timeout; 1292 u32 rate_limit; 1293 struct net_device *xmit_slave; 1294 }; 1295 1296 enum ib_wr_opcode { 1297 /* These are shared with userspace */ 1298 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE, 1299 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM, 1300 IB_WR_SEND = IB_UVERBS_WR_SEND, 1301 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM, 1302 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ, 1303 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP, 1304 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD, 1305 IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW, 1306 IB_WR_LSO = IB_UVERBS_WR_TSO, 1307 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV, 1308 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV, 1309 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV, 1310 IB_WR_MASKED_ATOMIC_CMP_AND_SWP = 1311 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP, 1312 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD = 1313 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1314 1315 /* These are kernel only and can not be issued by userspace */ 1316 IB_WR_REG_MR = 0x20, 1317 IB_WR_REG_MR_INTEGRITY, 1318 1319 /* reserve values for low level drivers' internal use. 1320 * These values will not be used at all in the ib core layer. 1321 */ 1322 IB_WR_RESERVED1 = 0xf0, 1323 IB_WR_RESERVED2, 1324 IB_WR_RESERVED3, 1325 IB_WR_RESERVED4, 1326 IB_WR_RESERVED5, 1327 IB_WR_RESERVED6, 1328 IB_WR_RESERVED7, 1329 IB_WR_RESERVED8, 1330 IB_WR_RESERVED9, 1331 IB_WR_RESERVED10, 1332 }; 1333 1334 enum ib_send_flags { 1335 IB_SEND_FENCE = 1, 1336 IB_SEND_SIGNALED = (1<<1), 1337 IB_SEND_SOLICITED = (1<<2), 1338 IB_SEND_INLINE = (1<<3), 1339 IB_SEND_IP_CSUM = (1<<4), 1340 1341 /* reserve bits 26-31 for low level drivers' internal use */ 1342 IB_SEND_RESERVED_START = (1 << 26), 1343 IB_SEND_RESERVED_END = (1 << 31), 1344 }; 1345 1346 struct ib_sge { 1347 u64 addr; 1348 u32 length; 1349 u32 lkey; 1350 }; 1351 1352 struct ib_cqe { 1353 void (*done)(struct ib_cq *cq, struct ib_wc *wc); 1354 }; 1355 1356 struct ib_send_wr { 1357 struct ib_send_wr *next; 1358 union { 1359 u64 wr_id; 1360 struct ib_cqe *wr_cqe; 1361 }; 1362 struct ib_sge *sg_list; 1363 int num_sge; 1364 enum ib_wr_opcode opcode; 1365 int send_flags; 1366 union { 1367 __be32 imm_data; 1368 u32 invalidate_rkey; 1369 } ex; 1370 }; 1371 1372 struct ib_rdma_wr { 1373 struct ib_send_wr wr; 1374 u64 remote_addr; 1375 u32 rkey; 1376 }; 1377 1378 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr) 1379 { 1380 return container_of(wr, struct ib_rdma_wr, wr); 1381 } 1382 1383 struct ib_atomic_wr { 1384 struct ib_send_wr wr; 1385 u64 remote_addr; 1386 u64 compare_add; 1387 u64 swap; 1388 u64 compare_add_mask; 1389 u64 swap_mask; 1390 u32 rkey; 1391 }; 1392 1393 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr) 1394 { 1395 return container_of(wr, struct ib_atomic_wr, wr); 1396 } 1397 1398 struct ib_ud_wr { 1399 struct ib_send_wr wr; 1400 struct ib_ah *ah; 1401 void *header; 1402 int hlen; 1403 int mss; 1404 u32 remote_qpn; 1405 u32 remote_qkey; 1406 u16 pkey_index; /* valid for GSI only */ 1407 u32 port_num; /* valid for DR SMPs on switch only */ 1408 }; 1409 1410 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr) 1411 { 1412 return container_of(wr, struct ib_ud_wr, wr); 1413 } 1414 1415 struct ib_reg_wr { 1416 struct ib_send_wr wr; 1417 struct ib_mr *mr; 1418 u32 key; 1419 int access; 1420 }; 1421 1422 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr) 1423 { 1424 return container_of(wr, struct ib_reg_wr, wr); 1425 } 1426 1427 struct ib_recv_wr { 1428 struct ib_recv_wr *next; 1429 union { 1430 u64 wr_id; 1431 struct ib_cqe *wr_cqe; 1432 }; 1433 struct ib_sge *sg_list; 1434 int num_sge; 1435 }; 1436 1437 enum ib_access_flags { 1438 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE, 1439 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE, 1440 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ, 1441 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC, 1442 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND, 1443 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED, 1444 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND, 1445 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB, 1446 IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING, 1447 1448 IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE, 1449 IB_ACCESS_SUPPORTED = 1450 ((IB_ACCESS_HUGETLB << 1) - 1) | IB_ACCESS_OPTIONAL, 1451 }; 1452 1453 /* 1454 * XXX: these are apparently used for ->rereg_user_mr, no idea why they 1455 * are hidden here instead of a uapi header! 1456 */ 1457 enum ib_mr_rereg_flags { 1458 IB_MR_REREG_TRANS = 1, 1459 IB_MR_REREG_PD = (1<<1), 1460 IB_MR_REREG_ACCESS = (1<<2), 1461 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1462 }; 1463 1464 struct ib_umem; 1465 1466 enum rdma_remove_reason { 1467 /* 1468 * Userspace requested uobject deletion or initial try 1469 * to remove uobject via cleanup. Call could fail 1470 */ 1471 RDMA_REMOVE_DESTROY, 1472 /* Context deletion. This call should delete the actual object itself */ 1473 RDMA_REMOVE_CLOSE, 1474 /* Driver is being hot-unplugged. This call should delete the actual object itself */ 1475 RDMA_REMOVE_DRIVER_REMOVE, 1476 /* uobj is being cleaned-up before being committed */ 1477 RDMA_REMOVE_ABORT, 1478 /* The driver failed to destroy the uobject and is being disconnected */ 1479 RDMA_REMOVE_DRIVER_FAILURE, 1480 }; 1481 1482 struct ib_rdmacg_object { 1483 #ifdef CONFIG_CGROUP_RDMA 1484 struct rdma_cgroup *cg; /* owner rdma cgroup */ 1485 #endif 1486 }; 1487 1488 struct ib_ucontext { 1489 struct ib_device *device; 1490 struct ib_uverbs_file *ufile; 1491 1492 struct ib_rdmacg_object cg_obj; 1493 /* 1494 * Implementation details of the RDMA core, don't use in drivers: 1495 */ 1496 struct rdma_restrack_entry res; 1497 struct xarray mmap_xa; 1498 }; 1499 1500 struct ib_uobject { 1501 u64 user_handle; /* handle given to us by userspace */ 1502 /* ufile & ucontext owning this object */ 1503 struct ib_uverbs_file *ufile; 1504 /* FIXME, save memory: ufile->context == context */ 1505 struct ib_ucontext *context; /* associated user context */ 1506 void *object; /* containing object */ 1507 struct list_head list; /* link to context's list */ 1508 struct ib_rdmacg_object cg_obj; /* rdmacg object */ 1509 int id; /* index into kernel idr */ 1510 struct kref ref; 1511 atomic_t usecnt; /* protects exclusive access */ 1512 struct rcu_head rcu; /* kfree_rcu() overhead */ 1513 1514 const struct uverbs_api_object *uapi_object; 1515 }; 1516 1517 struct ib_udata { 1518 const void __user *inbuf; 1519 void __user *outbuf; 1520 size_t inlen; 1521 size_t outlen; 1522 }; 1523 1524 struct ib_pd { 1525 u32 local_dma_lkey; 1526 u32 flags; 1527 struct ib_device *device; 1528 struct ib_uobject *uobject; 1529 atomic_t usecnt; /* count all resources */ 1530 1531 u32 unsafe_global_rkey; 1532 1533 /* 1534 * Implementation details of the RDMA core, don't use in drivers: 1535 */ 1536 struct ib_mr *__internal_mr; 1537 struct rdma_restrack_entry res; 1538 }; 1539 1540 struct ib_xrcd { 1541 struct ib_device *device; 1542 atomic_t usecnt; /* count all exposed resources */ 1543 struct inode *inode; 1544 struct rw_semaphore tgt_qps_rwsem; 1545 struct xarray tgt_qps; 1546 }; 1547 1548 struct ib_ah { 1549 struct ib_device *device; 1550 struct ib_pd *pd; 1551 struct ib_uobject *uobject; 1552 const struct ib_gid_attr *sgid_attr; 1553 enum rdma_ah_attr_type type; 1554 }; 1555 1556 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1557 1558 enum ib_poll_context { 1559 IB_POLL_SOFTIRQ, /* poll from softirq context */ 1560 IB_POLL_WORKQUEUE, /* poll from workqueue */ 1561 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */ 1562 IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE, 1563 1564 IB_POLL_DIRECT, /* caller context, no hw completions */ 1565 }; 1566 1567 struct ib_cq { 1568 struct ib_device *device; 1569 struct ib_ucq_object *uobject; 1570 ib_comp_handler comp_handler; 1571 void (*event_handler)(struct ib_event *, void *); 1572 void *cq_context; 1573 int cqe; 1574 unsigned int cqe_used; 1575 atomic_t usecnt; /* count number of work queues */ 1576 enum ib_poll_context poll_ctx; 1577 struct ib_wc *wc; 1578 struct list_head pool_entry; 1579 union { 1580 struct irq_poll iop; 1581 struct work_struct work; 1582 }; 1583 struct workqueue_struct *comp_wq; 1584 struct dim *dim; 1585 1586 /* updated only by trace points */ 1587 ktime_t timestamp; 1588 u8 interrupt:1; 1589 u8 shared:1; 1590 unsigned int comp_vector; 1591 1592 /* 1593 * Implementation details of the RDMA core, don't use in drivers: 1594 */ 1595 struct rdma_restrack_entry res; 1596 }; 1597 1598 struct ib_srq { 1599 struct ib_device *device; 1600 struct ib_pd *pd; 1601 struct ib_usrq_object *uobject; 1602 void (*event_handler)(struct ib_event *, void *); 1603 void *srq_context; 1604 enum ib_srq_type srq_type; 1605 atomic_t usecnt; 1606 1607 struct { 1608 struct ib_cq *cq; 1609 union { 1610 struct { 1611 struct ib_xrcd *xrcd; 1612 u32 srq_num; 1613 } xrc; 1614 }; 1615 } ext; 1616 1617 /* 1618 * Implementation details of the RDMA core, don't use in drivers: 1619 */ 1620 struct rdma_restrack_entry res; 1621 }; 1622 1623 enum ib_raw_packet_caps { 1624 /* Strip cvlan from incoming packet and report it in the matching work 1625 * completion is supported. 1626 */ 1627 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0), 1628 /* Scatter FCS field of an incoming packet to host memory is supported. 1629 */ 1630 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1), 1631 /* Checksum offloads are supported (for both send and receive). */ 1632 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2), 1633 /* When a packet is received for an RQ with no receive WQEs, the 1634 * packet processing is delayed. 1635 */ 1636 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3), 1637 }; 1638 1639 enum ib_wq_type { 1640 IB_WQT_RQ = IB_UVERBS_WQT_RQ, 1641 }; 1642 1643 enum ib_wq_state { 1644 IB_WQS_RESET, 1645 IB_WQS_RDY, 1646 IB_WQS_ERR 1647 }; 1648 1649 struct ib_wq { 1650 struct ib_device *device; 1651 struct ib_uwq_object *uobject; 1652 void *wq_context; 1653 void (*event_handler)(struct ib_event *, void *); 1654 struct ib_pd *pd; 1655 struct ib_cq *cq; 1656 u32 wq_num; 1657 enum ib_wq_state state; 1658 enum ib_wq_type wq_type; 1659 atomic_t usecnt; 1660 }; 1661 1662 enum ib_wq_flags { 1663 IB_WQ_FLAGS_CVLAN_STRIPPING = IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING, 1664 IB_WQ_FLAGS_SCATTER_FCS = IB_UVERBS_WQ_FLAGS_SCATTER_FCS, 1665 IB_WQ_FLAGS_DELAY_DROP = IB_UVERBS_WQ_FLAGS_DELAY_DROP, 1666 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1667 IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING, 1668 }; 1669 1670 struct ib_wq_init_attr { 1671 void *wq_context; 1672 enum ib_wq_type wq_type; 1673 u32 max_wr; 1674 u32 max_sge; 1675 struct ib_cq *cq; 1676 void (*event_handler)(struct ib_event *, void *); 1677 u32 create_flags; /* Use enum ib_wq_flags */ 1678 }; 1679 1680 enum ib_wq_attr_mask { 1681 IB_WQ_STATE = 1 << 0, 1682 IB_WQ_CUR_STATE = 1 << 1, 1683 IB_WQ_FLAGS = 1 << 2, 1684 }; 1685 1686 struct ib_wq_attr { 1687 enum ib_wq_state wq_state; 1688 enum ib_wq_state curr_wq_state; 1689 u32 flags; /* Use enum ib_wq_flags */ 1690 u32 flags_mask; /* Use enum ib_wq_flags */ 1691 }; 1692 1693 struct ib_rwq_ind_table { 1694 struct ib_device *device; 1695 struct ib_uobject *uobject; 1696 atomic_t usecnt; 1697 u32 ind_tbl_num; 1698 u32 log_ind_tbl_size; 1699 struct ib_wq **ind_tbl; 1700 }; 1701 1702 struct ib_rwq_ind_table_init_attr { 1703 u32 log_ind_tbl_size; 1704 /* Each entry is a pointer to Receive Work Queue */ 1705 struct ib_wq **ind_tbl; 1706 }; 1707 1708 enum port_pkey_state { 1709 IB_PORT_PKEY_NOT_VALID = 0, 1710 IB_PORT_PKEY_VALID = 1, 1711 IB_PORT_PKEY_LISTED = 2, 1712 }; 1713 1714 struct ib_qp_security; 1715 1716 struct ib_port_pkey { 1717 enum port_pkey_state state; 1718 u16 pkey_index; 1719 u32 port_num; 1720 struct list_head qp_list; 1721 struct list_head to_error_list; 1722 struct ib_qp_security *sec; 1723 }; 1724 1725 struct ib_ports_pkeys { 1726 struct ib_port_pkey main; 1727 struct ib_port_pkey alt; 1728 }; 1729 1730 struct ib_qp_security { 1731 struct ib_qp *qp; 1732 struct ib_device *dev; 1733 /* Hold this mutex when changing port and pkey settings. */ 1734 struct mutex mutex; 1735 struct ib_ports_pkeys *ports_pkeys; 1736 /* A list of all open shared QP handles. Required to enforce security 1737 * properly for all users of a shared QP. 1738 */ 1739 struct list_head shared_qp_list; 1740 void *security; 1741 bool destroying; 1742 atomic_t error_list_count; 1743 struct completion error_complete; 1744 int error_comps_pending; 1745 }; 1746 1747 /* 1748 * @max_write_sge: Maximum SGE elements per RDMA WRITE request. 1749 * @max_read_sge: Maximum SGE elements per RDMA READ request. 1750 */ 1751 struct ib_qp { 1752 struct ib_device *device; 1753 struct ib_pd *pd; 1754 struct ib_cq *send_cq; 1755 struct ib_cq *recv_cq; 1756 spinlock_t mr_lock; 1757 int mrs_used; 1758 struct list_head rdma_mrs; 1759 struct list_head sig_mrs; 1760 struct ib_srq *srq; 1761 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1762 struct list_head xrcd_list; 1763 1764 /* count times opened, mcast attaches, flow attaches */ 1765 atomic_t usecnt; 1766 struct list_head open_list; 1767 struct ib_qp *real_qp; 1768 struct ib_uqp_object *uobject; 1769 void (*event_handler)(struct ib_event *, void *); 1770 void *qp_context; 1771 /* sgid_attrs associated with the AV's */ 1772 const struct ib_gid_attr *av_sgid_attr; 1773 const struct ib_gid_attr *alt_path_sgid_attr; 1774 u32 qp_num; 1775 u32 max_write_sge; 1776 u32 max_read_sge; 1777 enum ib_qp_type qp_type; 1778 struct ib_rwq_ind_table *rwq_ind_tbl; 1779 struct ib_qp_security *qp_sec; 1780 u32 port; 1781 1782 bool integrity_en; 1783 /* 1784 * Implementation details of the RDMA core, don't use in drivers: 1785 */ 1786 struct rdma_restrack_entry res; 1787 1788 /* The counter the qp is bind to */ 1789 struct rdma_counter *counter; 1790 }; 1791 1792 struct ib_dm { 1793 struct ib_device *device; 1794 u32 length; 1795 u32 flags; 1796 struct ib_uobject *uobject; 1797 atomic_t usecnt; 1798 }; 1799 1800 struct ib_mr { 1801 struct ib_device *device; 1802 struct ib_pd *pd; 1803 u32 lkey; 1804 u32 rkey; 1805 u64 iova; 1806 u64 length; 1807 unsigned int page_size; 1808 enum ib_mr_type type; 1809 bool need_inval; 1810 union { 1811 struct ib_uobject *uobject; /* user */ 1812 struct list_head qp_entry; /* FR */ 1813 }; 1814 1815 struct ib_dm *dm; 1816 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */ 1817 /* 1818 * Implementation details of the RDMA core, don't use in drivers: 1819 */ 1820 struct rdma_restrack_entry res; 1821 }; 1822 1823 struct ib_mw { 1824 struct ib_device *device; 1825 struct ib_pd *pd; 1826 struct ib_uobject *uobject; 1827 u32 rkey; 1828 enum ib_mw_type type; 1829 }; 1830 1831 /* Supported steering options */ 1832 enum ib_flow_attr_type { 1833 /* steering according to rule specifications */ 1834 IB_FLOW_ATTR_NORMAL = 0x0, 1835 /* default unicast and multicast rule - 1836 * receive all Eth traffic which isn't steered to any QP 1837 */ 1838 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1839 /* default multicast rule - 1840 * receive all Eth multicast traffic which isn't steered to any QP 1841 */ 1842 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1843 /* sniffer rule - receive all port traffic */ 1844 IB_FLOW_ATTR_SNIFFER = 0x3 1845 }; 1846 1847 /* Supported steering header types */ 1848 enum ib_flow_spec_type { 1849 /* L2 headers*/ 1850 IB_FLOW_SPEC_ETH = 0x20, 1851 IB_FLOW_SPEC_IB = 0x22, 1852 /* L3 header*/ 1853 IB_FLOW_SPEC_IPV4 = 0x30, 1854 IB_FLOW_SPEC_IPV6 = 0x31, 1855 IB_FLOW_SPEC_ESP = 0x34, 1856 /* L4 headers*/ 1857 IB_FLOW_SPEC_TCP = 0x40, 1858 IB_FLOW_SPEC_UDP = 0x41, 1859 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50, 1860 IB_FLOW_SPEC_GRE = 0x51, 1861 IB_FLOW_SPEC_MPLS = 0x60, 1862 IB_FLOW_SPEC_INNER = 0x100, 1863 /* Actions */ 1864 IB_FLOW_SPEC_ACTION_TAG = 0x1000, 1865 IB_FLOW_SPEC_ACTION_DROP = 0x1001, 1866 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002, 1867 IB_FLOW_SPEC_ACTION_COUNT = 0x1003, 1868 }; 1869 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1870 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10 1871 1872 enum ib_flow_flags { 1873 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */ 1874 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */ 1875 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */ 1876 }; 1877 1878 struct ib_flow_eth_filter { 1879 u8 dst_mac[6]; 1880 u8 src_mac[6]; 1881 __be16 ether_type; 1882 __be16 vlan_tag; 1883 /* Must be last */ 1884 u8 real_sz[]; 1885 }; 1886 1887 struct ib_flow_spec_eth { 1888 u32 type; 1889 u16 size; 1890 struct ib_flow_eth_filter val; 1891 struct ib_flow_eth_filter mask; 1892 }; 1893 1894 struct ib_flow_ib_filter { 1895 __be16 dlid; 1896 __u8 sl; 1897 /* Must be last */ 1898 u8 real_sz[]; 1899 }; 1900 1901 struct ib_flow_spec_ib { 1902 u32 type; 1903 u16 size; 1904 struct ib_flow_ib_filter val; 1905 struct ib_flow_ib_filter mask; 1906 }; 1907 1908 /* IPv4 header flags */ 1909 enum ib_ipv4_flags { 1910 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */ 1911 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the 1912 last have this flag set */ 1913 }; 1914 1915 struct ib_flow_ipv4_filter { 1916 __be32 src_ip; 1917 __be32 dst_ip; 1918 u8 proto; 1919 u8 tos; 1920 u8 ttl; 1921 u8 flags; 1922 /* Must be last */ 1923 u8 real_sz[]; 1924 }; 1925 1926 struct ib_flow_spec_ipv4 { 1927 u32 type; 1928 u16 size; 1929 struct ib_flow_ipv4_filter val; 1930 struct ib_flow_ipv4_filter mask; 1931 }; 1932 1933 struct ib_flow_ipv6_filter { 1934 u8 src_ip[16]; 1935 u8 dst_ip[16]; 1936 __be32 flow_label; 1937 u8 next_hdr; 1938 u8 traffic_class; 1939 u8 hop_limit; 1940 /* Must be last */ 1941 u8 real_sz[]; 1942 }; 1943 1944 struct ib_flow_spec_ipv6 { 1945 u32 type; 1946 u16 size; 1947 struct ib_flow_ipv6_filter val; 1948 struct ib_flow_ipv6_filter mask; 1949 }; 1950 1951 struct ib_flow_tcp_udp_filter { 1952 __be16 dst_port; 1953 __be16 src_port; 1954 /* Must be last */ 1955 u8 real_sz[]; 1956 }; 1957 1958 struct ib_flow_spec_tcp_udp { 1959 u32 type; 1960 u16 size; 1961 struct ib_flow_tcp_udp_filter val; 1962 struct ib_flow_tcp_udp_filter mask; 1963 }; 1964 1965 struct ib_flow_tunnel_filter { 1966 __be32 tunnel_id; 1967 u8 real_sz[]; 1968 }; 1969 1970 /* ib_flow_spec_tunnel describes the Vxlan tunnel 1971 * the tunnel_id from val has the vni value 1972 */ 1973 struct ib_flow_spec_tunnel { 1974 u32 type; 1975 u16 size; 1976 struct ib_flow_tunnel_filter val; 1977 struct ib_flow_tunnel_filter mask; 1978 }; 1979 1980 struct ib_flow_esp_filter { 1981 __be32 spi; 1982 __be32 seq; 1983 /* Must be last */ 1984 u8 real_sz[]; 1985 }; 1986 1987 struct ib_flow_spec_esp { 1988 u32 type; 1989 u16 size; 1990 struct ib_flow_esp_filter val; 1991 struct ib_flow_esp_filter mask; 1992 }; 1993 1994 struct ib_flow_gre_filter { 1995 __be16 c_ks_res0_ver; 1996 __be16 protocol; 1997 __be32 key; 1998 /* Must be last */ 1999 u8 real_sz[]; 2000 }; 2001 2002 struct ib_flow_spec_gre { 2003 u32 type; 2004 u16 size; 2005 struct ib_flow_gre_filter val; 2006 struct ib_flow_gre_filter mask; 2007 }; 2008 2009 struct ib_flow_mpls_filter { 2010 __be32 tag; 2011 /* Must be last */ 2012 u8 real_sz[]; 2013 }; 2014 2015 struct ib_flow_spec_mpls { 2016 u32 type; 2017 u16 size; 2018 struct ib_flow_mpls_filter val; 2019 struct ib_flow_mpls_filter mask; 2020 }; 2021 2022 struct ib_flow_spec_action_tag { 2023 enum ib_flow_spec_type type; 2024 u16 size; 2025 u32 tag_id; 2026 }; 2027 2028 struct ib_flow_spec_action_drop { 2029 enum ib_flow_spec_type type; 2030 u16 size; 2031 }; 2032 2033 struct ib_flow_spec_action_handle { 2034 enum ib_flow_spec_type type; 2035 u16 size; 2036 struct ib_flow_action *act; 2037 }; 2038 2039 enum ib_counters_description { 2040 IB_COUNTER_PACKETS, 2041 IB_COUNTER_BYTES, 2042 }; 2043 2044 struct ib_flow_spec_action_count { 2045 enum ib_flow_spec_type type; 2046 u16 size; 2047 struct ib_counters *counters; 2048 }; 2049 2050 union ib_flow_spec { 2051 struct { 2052 u32 type; 2053 u16 size; 2054 }; 2055 struct ib_flow_spec_eth eth; 2056 struct ib_flow_spec_ib ib; 2057 struct ib_flow_spec_ipv4 ipv4; 2058 struct ib_flow_spec_tcp_udp tcp_udp; 2059 struct ib_flow_spec_ipv6 ipv6; 2060 struct ib_flow_spec_tunnel tunnel; 2061 struct ib_flow_spec_esp esp; 2062 struct ib_flow_spec_gre gre; 2063 struct ib_flow_spec_mpls mpls; 2064 struct ib_flow_spec_action_tag flow_tag; 2065 struct ib_flow_spec_action_drop drop; 2066 struct ib_flow_spec_action_handle action; 2067 struct ib_flow_spec_action_count flow_count; 2068 }; 2069 2070 struct ib_flow_attr { 2071 enum ib_flow_attr_type type; 2072 u16 size; 2073 u16 priority; 2074 u32 flags; 2075 u8 num_of_specs; 2076 u32 port; 2077 union ib_flow_spec flows[]; 2078 }; 2079 2080 struct ib_flow { 2081 struct ib_qp *qp; 2082 struct ib_device *device; 2083 struct ib_uobject *uobject; 2084 }; 2085 2086 enum ib_flow_action_type { 2087 IB_FLOW_ACTION_UNSPECIFIED, 2088 IB_FLOW_ACTION_ESP = 1, 2089 }; 2090 2091 struct ib_flow_action_attrs_esp_keymats { 2092 enum ib_uverbs_flow_action_esp_keymat protocol; 2093 union { 2094 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm; 2095 } keymat; 2096 }; 2097 2098 struct ib_flow_action_attrs_esp_replays { 2099 enum ib_uverbs_flow_action_esp_replay protocol; 2100 union { 2101 struct ib_uverbs_flow_action_esp_replay_bmp bmp; 2102 } replay; 2103 }; 2104 2105 enum ib_flow_action_attrs_esp_flags { 2106 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags 2107 * This is done in order to share the same flags between user-space and 2108 * kernel and spare an unnecessary translation. 2109 */ 2110 2111 /* Kernel flags */ 2112 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32, 2113 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33, 2114 }; 2115 2116 struct ib_flow_spec_list { 2117 struct ib_flow_spec_list *next; 2118 union ib_flow_spec spec; 2119 }; 2120 2121 struct ib_flow_action_attrs_esp { 2122 struct ib_flow_action_attrs_esp_keymats *keymat; 2123 struct ib_flow_action_attrs_esp_replays *replay; 2124 struct ib_flow_spec_list *encap; 2125 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled. 2126 * Value of 0 is a valid value. 2127 */ 2128 u32 esn; 2129 u32 spi; 2130 u32 seq; 2131 u32 tfc_pad; 2132 /* Use enum ib_flow_action_attrs_esp_flags */ 2133 u64 flags; 2134 u64 hard_limit_pkts; 2135 }; 2136 2137 struct ib_flow_action { 2138 struct ib_device *device; 2139 struct ib_uobject *uobject; 2140 enum ib_flow_action_type type; 2141 atomic_t usecnt; 2142 }; 2143 2144 struct ib_mad; 2145 2146 enum ib_process_mad_flags { 2147 IB_MAD_IGNORE_MKEY = 1, 2148 IB_MAD_IGNORE_BKEY = 2, 2149 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 2150 }; 2151 2152 enum ib_mad_result { 2153 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 2154 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 2155 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 2156 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 2157 }; 2158 2159 struct ib_port_cache { 2160 u64 subnet_prefix; 2161 struct ib_pkey_cache *pkey; 2162 struct ib_gid_table *gid; 2163 u8 lmc; 2164 enum ib_port_state port_state; 2165 }; 2166 2167 struct ib_port_immutable { 2168 int pkey_tbl_len; 2169 int gid_tbl_len; 2170 u32 core_cap_flags; 2171 u32 max_mad_size; 2172 }; 2173 2174 struct ib_port_data { 2175 struct ib_device *ib_dev; 2176 2177 struct ib_port_immutable immutable; 2178 2179 spinlock_t pkey_list_lock; 2180 2181 spinlock_t netdev_lock; 2182 2183 struct list_head pkey_list; 2184 2185 struct ib_port_cache cache; 2186 2187 struct net_device __rcu *netdev; 2188 struct hlist_node ndev_hash_link; 2189 struct rdma_port_counter port_counter; 2190 struct ib_port *sysfs; 2191 }; 2192 2193 /* rdma netdev type - specifies protocol type */ 2194 enum rdma_netdev_t { 2195 RDMA_NETDEV_OPA_VNIC, 2196 RDMA_NETDEV_IPOIB, 2197 }; 2198 2199 /** 2200 * struct rdma_netdev - rdma netdev 2201 * For cases where netstack interfacing is required. 2202 */ 2203 struct rdma_netdev { 2204 void *clnt_priv; 2205 struct ib_device *hca; 2206 u32 port_num; 2207 int mtu; 2208 2209 /* 2210 * cleanup function must be specified. 2211 * FIXME: This is only used for OPA_VNIC and that usage should be 2212 * removed too. 2213 */ 2214 void (*free_rdma_netdev)(struct net_device *netdev); 2215 2216 /* control functions */ 2217 void (*set_id)(struct net_device *netdev, int id); 2218 /* send packet */ 2219 int (*send)(struct net_device *dev, struct sk_buff *skb, 2220 struct ib_ah *address, u32 dqpn); 2221 /* multicast */ 2222 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca, 2223 union ib_gid *gid, u16 mlid, 2224 int set_qkey, u32 qkey); 2225 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca, 2226 union ib_gid *gid, u16 mlid); 2227 /* timeout */ 2228 void (*tx_timeout)(struct net_device *dev, unsigned int txqueue); 2229 }; 2230 2231 struct rdma_netdev_alloc_params { 2232 size_t sizeof_priv; 2233 unsigned int txqs; 2234 unsigned int rxqs; 2235 void *param; 2236 2237 int (*initialize_rdma_netdev)(struct ib_device *device, u32 port_num, 2238 struct net_device *netdev, void *param); 2239 }; 2240 2241 struct ib_odp_counters { 2242 atomic64_t faults; 2243 atomic64_t invalidations; 2244 atomic64_t prefetch; 2245 }; 2246 2247 struct ib_counters { 2248 struct ib_device *device; 2249 struct ib_uobject *uobject; 2250 /* num of objects attached */ 2251 atomic_t usecnt; 2252 }; 2253 2254 struct ib_counters_read_attr { 2255 u64 *counters_buff; 2256 u32 ncounters; 2257 u32 flags; /* use enum ib_read_counters_flags */ 2258 }; 2259 2260 struct uverbs_attr_bundle; 2261 struct iw_cm_id; 2262 struct iw_cm_conn_param; 2263 2264 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \ 2265 .size_##ib_struct = \ 2266 (sizeof(struct drv_struct) + \ 2267 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \ 2268 BUILD_BUG_ON_ZERO( \ 2269 !__same_type(((struct drv_struct *)NULL)->member, \ 2270 struct ib_struct))) 2271 2272 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \ 2273 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \ 2274 gfp, false)) 2275 2276 #define rdma_zalloc_drv_obj_numa(ib_dev, ib_type) \ 2277 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \ 2278 GFP_KERNEL, true)) 2279 2280 #define rdma_zalloc_drv_obj(ib_dev, ib_type) \ 2281 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL) 2282 2283 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct 2284 2285 struct rdma_user_mmap_entry { 2286 struct kref ref; 2287 struct ib_ucontext *ucontext; 2288 unsigned long start_pgoff; 2289 size_t npages; 2290 bool driver_removed; 2291 }; 2292 2293 /* Return the offset (in bytes) the user should pass to libc's mmap() */ 2294 static inline u64 2295 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry) 2296 { 2297 return (u64)entry->start_pgoff << PAGE_SHIFT; 2298 } 2299 2300 /** 2301 * struct ib_device_ops - InfiniBand device operations 2302 * This structure defines all the InfiniBand device operations, providers will 2303 * need to define the supported operations, otherwise they will be set to null. 2304 */ 2305 struct ib_device_ops { 2306 struct module *owner; 2307 enum rdma_driver_id driver_id; 2308 u32 uverbs_abi_ver; 2309 unsigned int uverbs_no_driver_id_binding:1; 2310 2311 /* 2312 * NOTE: New drivers should not make use of device_group; instead new 2313 * device parameter should be exposed via netlink command. This 2314 * mechanism exists only for existing drivers. 2315 */ 2316 const struct attribute_group *device_group; 2317 const struct attribute_group **port_groups; 2318 2319 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr, 2320 const struct ib_send_wr **bad_send_wr); 2321 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr, 2322 const struct ib_recv_wr **bad_recv_wr); 2323 void (*drain_rq)(struct ib_qp *qp); 2324 void (*drain_sq)(struct ib_qp *qp); 2325 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc); 2326 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 2327 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags); 2328 int (*post_srq_recv)(struct ib_srq *srq, 2329 const struct ib_recv_wr *recv_wr, 2330 const struct ib_recv_wr **bad_recv_wr); 2331 int (*process_mad)(struct ib_device *device, int process_mad_flags, 2332 u32 port_num, const struct ib_wc *in_wc, 2333 const struct ib_grh *in_grh, 2334 const struct ib_mad *in_mad, struct ib_mad *out_mad, 2335 size_t *out_mad_size, u16 *out_mad_pkey_index); 2336 int (*query_device)(struct ib_device *device, 2337 struct ib_device_attr *device_attr, 2338 struct ib_udata *udata); 2339 int (*modify_device)(struct ib_device *device, int device_modify_mask, 2340 struct ib_device_modify *device_modify); 2341 void (*get_dev_fw_str)(struct ib_device *device, char *str); 2342 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev, 2343 int comp_vector); 2344 int (*query_port)(struct ib_device *device, u32 port_num, 2345 struct ib_port_attr *port_attr); 2346 int (*modify_port)(struct ib_device *device, u32 port_num, 2347 int port_modify_mask, 2348 struct ib_port_modify *port_modify); 2349 /** 2350 * The following mandatory functions are used only at device 2351 * registration. Keep functions such as these at the end of this 2352 * structure to avoid cache line misses when accessing struct ib_device 2353 * in fast paths. 2354 */ 2355 int (*get_port_immutable)(struct ib_device *device, u32 port_num, 2356 struct ib_port_immutable *immutable); 2357 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 2358 u32 port_num); 2359 /** 2360 * When calling get_netdev, the HW vendor's driver should return the 2361 * net device of device @device at port @port_num or NULL if such 2362 * a net device doesn't exist. The vendor driver should call dev_hold 2363 * on this net device. The HW vendor's device driver must guarantee 2364 * that this function returns NULL before the net device has finished 2365 * NETDEV_UNREGISTER state. 2366 */ 2367 struct net_device *(*get_netdev)(struct ib_device *device, 2368 u32 port_num); 2369 /** 2370 * rdma netdev operation 2371 * 2372 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params 2373 * must return -EOPNOTSUPP if it doesn't support the specified type. 2374 */ 2375 struct net_device *(*alloc_rdma_netdev)( 2376 struct ib_device *device, u32 port_num, enum rdma_netdev_t type, 2377 const char *name, unsigned char name_assign_type, 2378 void (*setup)(struct net_device *)); 2379 2380 int (*rdma_netdev_get_params)(struct ib_device *device, u32 port_num, 2381 enum rdma_netdev_t type, 2382 struct rdma_netdev_alloc_params *params); 2383 /** 2384 * query_gid should be return GID value for @device, when @port_num 2385 * link layer is either IB or iWarp. It is no-op if @port_num port 2386 * is RoCE link layer. 2387 */ 2388 int (*query_gid)(struct ib_device *device, u32 port_num, int index, 2389 union ib_gid *gid); 2390 /** 2391 * When calling add_gid, the HW vendor's driver should add the gid 2392 * of device of port at gid index available at @attr. Meta-info of 2393 * that gid (for example, the network device related to this gid) is 2394 * available at @attr. @context allows the HW vendor driver to store 2395 * extra information together with a GID entry. The HW vendor driver may 2396 * allocate memory to contain this information and store it in @context 2397 * when a new GID entry is written to. Params are consistent until the 2398 * next call of add_gid or delete_gid. The function should return 0 on 2399 * success or error otherwise. The function could be called 2400 * concurrently for different ports. This function is only called when 2401 * roce_gid_table is used. 2402 */ 2403 int (*add_gid)(const struct ib_gid_attr *attr, void **context); 2404 /** 2405 * When calling del_gid, the HW vendor's driver should delete the 2406 * gid of device @device at gid index gid_index of port port_num 2407 * available in @attr. 2408 * Upon the deletion of a GID entry, the HW vendor must free any 2409 * allocated memory. The caller will clear @context afterwards. 2410 * This function is only called when roce_gid_table is used. 2411 */ 2412 int (*del_gid)(const struct ib_gid_attr *attr, void **context); 2413 int (*query_pkey)(struct ib_device *device, u32 port_num, u16 index, 2414 u16 *pkey); 2415 int (*alloc_ucontext)(struct ib_ucontext *context, 2416 struct ib_udata *udata); 2417 void (*dealloc_ucontext)(struct ib_ucontext *context); 2418 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma); 2419 /** 2420 * This will be called once refcount of an entry in mmap_xa reaches 2421 * zero. The type of the memory that was mapped may differ between 2422 * entries and is opaque to the rdma_user_mmap interface. 2423 * Therefore needs to be implemented by the driver in mmap_free. 2424 */ 2425 void (*mmap_free)(struct rdma_user_mmap_entry *entry); 2426 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 2427 int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata); 2428 int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata); 2429 int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr, 2430 struct ib_udata *udata); 2431 int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr, 2432 struct ib_udata *udata); 2433 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2434 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2435 int (*destroy_ah)(struct ib_ah *ah, u32 flags); 2436 int (*create_srq)(struct ib_srq *srq, 2437 struct ib_srq_init_attr *srq_init_attr, 2438 struct ib_udata *udata); 2439 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr, 2440 enum ib_srq_attr_mask srq_attr_mask, 2441 struct ib_udata *udata); 2442 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr); 2443 int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata); 2444 int (*create_qp)(struct ib_qp *qp, struct ib_qp_init_attr *qp_init_attr, 2445 struct ib_udata *udata); 2446 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, 2447 int qp_attr_mask, struct ib_udata *udata); 2448 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, 2449 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr); 2450 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata); 2451 int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr, 2452 struct ib_udata *udata); 2453 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period); 2454 int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata); 2455 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata); 2456 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags); 2457 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length, 2458 u64 virt_addr, int mr_access_flags, 2459 struct ib_udata *udata); 2460 struct ib_mr *(*reg_user_mr_dmabuf)(struct ib_pd *pd, u64 offset, 2461 u64 length, u64 virt_addr, int fd, 2462 int mr_access_flags, 2463 struct ib_udata *udata); 2464 struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start, 2465 u64 length, u64 virt_addr, 2466 int mr_access_flags, struct ib_pd *pd, 2467 struct ib_udata *udata); 2468 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata); 2469 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type, 2470 u32 max_num_sg); 2471 struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd, 2472 u32 max_num_data_sg, 2473 u32 max_num_meta_sg); 2474 int (*advise_mr)(struct ib_pd *pd, 2475 enum ib_uverbs_advise_mr_advice advice, u32 flags, 2476 struct ib_sge *sg_list, u32 num_sge, 2477 struct uverbs_attr_bundle *attrs); 2478 2479 /* 2480 * Kernel users should universally support relaxed ordering (RO), as 2481 * they are designed to read data only after observing the CQE and use 2482 * the DMA API correctly. 2483 * 2484 * Some drivers implicitly enable RO if platform supports it. 2485 */ 2486 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 2487 unsigned int *sg_offset); 2488 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 2489 struct ib_mr_status *mr_status); 2490 int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata); 2491 int (*dealloc_mw)(struct ib_mw *mw); 2492 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2493 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2494 int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata); 2495 int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata); 2496 struct ib_flow *(*create_flow)(struct ib_qp *qp, 2497 struct ib_flow_attr *flow_attr, 2498 struct ib_udata *udata); 2499 int (*destroy_flow)(struct ib_flow *flow_id); 2500 struct ib_flow_action *(*create_flow_action_esp)( 2501 struct ib_device *device, 2502 const struct ib_flow_action_attrs_esp *attr, 2503 struct uverbs_attr_bundle *attrs); 2504 int (*destroy_flow_action)(struct ib_flow_action *action); 2505 int (*modify_flow_action_esp)( 2506 struct ib_flow_action *action, 2507 const struct ib_flow_action_attrs_esp *attr, 2508 struct uverbs_attr_bundle *attrs); 2509 int (*set_vf_link_state)(struct ib_device *device, int vf, u32 port, 2510 int state); 2511 int (*get_vf_config)(struct ib_device *device, int vf, u32 port, 2512 struct ifla_vf_info *ivf); 2513 int (*get_vf_stats)(struct ib_device *device, int vf, u32 port, 2514 struct ifla_vf_stats *stats); 2515 int (*get_vf_guid)(struct ib_device *device, int vf, u32 port, 2516 struct ifla_vf_guid *node_guid, 2517 struct ifla_vf_guid *port_guid); 2518 int (*set_vf_guid)(struct ib_device *device, int vf, u32 port, u64 guid, 2519 int type); 2520 struct ib_wq *(*create_wq)(struct ib_pd *pd, 2521 struct ib_wq_init_attr *init_attr, 2522 struct ib_udata *udata); 2523 int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata); 2524 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr, 2525 u32 wq_attr_mask, struct ib_udata *udata); 2526 int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table, 2527 struct ib_rwq_ind_table_init_attr *init_attr, 2528 struct ib_udata *udata); 2529 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table); 2530 struct ib_dm *(*alloc_dm)(struct ib_device *device, 2531 struct ib_ucontext *context, 2532 struct ib_dm_alloc_attr *attr, 2533 struct uverbs_attr_bundle *attrs); 2534 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs); 2535 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm, 2536 struct ib_dm_mr_attr *attr, 2537 struct uverbs_attr_bundle *attrs); 2538 int (*create_counters)(struct ib_counters *counters, 2539 struct uverbs_attr_bundle *attrs); 2540 int (*destroy_counters)(struct ib_counters *counters); 2541 int (*read_counters)(struct ib_counters *counters, 2542 struct ib_counters_read_attr *counters_read_attr, 2543 struct uverbs_attr_bundle *attrs); 2544 int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg, 2545 int data_sg_nents, unsigned int *data_sg_offset, 2546 struct scatterlist *meta_sg, int meta_sg_nents, 2547 unsigned int *meta_sg_offset); 2548 2549 /** 2550 * alloc_hw_[device,port]_stats - Allocate a struct rdma_hw_stats and 2551 * fill in the driver initialized data. The struct is kfree()'ed by 2552 * the sysfs core when the device is removed. A lifespan of -1 in the 2553 * return struct tells the core to set a default lifespan. 2554 */ 2555 struct rdma_hw_stats *(*alloc_hw_device_stats)(struct ib_device *device); 2556 struct rdma_hw_stats *(*alloc_hw_port_stats)(struct ib_device *device, 2557 u32 port_num); 2558 /** 2559 * get_hw_stats - Fill in the counter value(s) in the stats struct. 2560 * @index - The index in the value array we wish to have updated, or 2561 * num_counters if we want all stats updated 2562 * Return codes - 2563 * < 0 - Error, no counters updated 2564 * index - Updated the single counter pointed to by index 2565 * num_counters - Updated all counters (will reset the timestamp 2566 * and prevent further calls for lifespan milliseconds) 2567 * Drivers are allowed to update all counters in leiu of just the 2568 * one given in index at their option 2569 */ 2570 int (*get_hw_stats)(struct ib_device *device, 2571 struct rdma_hw_stats *stats, u32 port, int index); 2572 2573 /** 2574 * modify_hw_stat - Modify the counter configuration 2575 * @enable: true/false when enable/disable a counter 2576 * Return codes - 0 on success or error code otherwise. 2577 */ 2578 int (*modify_hw_stat)(struct ib_device *device, u32 port, 2579 unsigned int counter_index, bool enable); 2580 /** 2581 * Allows rdma drivers to add their own restrack attributes. 2582 */ 2583 int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr); 2584 int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr); 2585 int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq); 2586 int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq); 2587 int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp); 2588 int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp); 2589 int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id); 2590 2591 /* Device lifecycle callbacks */ 2592 /* 2593 * Called after the device becomes registered, before clients are 2594 * attached 2595 */ 2596 int (*enable_driver)(struct ib_device *dev); 2597 /* 2598 * This is called as part of ib_dealloc_device(). 2599 */ 2600 void (*dealloc_driver)(struct ib_device *dev); 2601 2602 /* iWarp CM callbacks */ 2603 void (*iw_add_ref)(struct ib_qp *qp); 2604 void (*iw_rem_ref)(struct ib_qp *qp); 2605 struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn); 2606 int (*iw_connect)(struct iw_cm_id *cm_id, 2607 struct iw_cm_conn_param *conn_param); 2608 int (*iw_accept)(struct iw_cm_id *cm_id, 2609 struct iw_cm_conn_param *conn_param); 2610 int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata, 2611 u8 pdata_len); 2612 int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog); 2613 int (*iw_destroy_listen)(struct iw_cm_id *cm_id); 2614 /** 2615 * counter_bind_qp - Bind a QP to a counter. 2616 * @counter - The counter to be bound. If counter->id is zero then 2617 * the driver needs to allocate a new counter and set counter->id 2618 */ 2619 int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp); 2620 /** 2621 * counter_unbind_qp - Unbind the qp from the dynamically-allocated 2622 * counter and bind it onto the default one 2623 */ 2624 int (*counter_unbind_qp)(struct ib_qp *qp); 2625 /** 2626 * counter_dealloc -De-allocate the hw counter 2627 */ 2628 int (*counter_dealloc)(struct rdma_counter *counter); 2629 /** 2630 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in 2631 * the driver initialized data. 2632 */ 2633 struct rdma_hw_stats *(*counter_alloc_stats)( 2634 struct rdma_counter *counter); 2635 /** 2636 * counter_update_stats - Query the stats value of this counter 2637 */ 2638 int (*counter_update_stats)(struct rdma_counter *counter); 2639 2640 /** 2641 * Allows rdma drivers to add their own restrack attributes 2642 * dumped via 'rdma stat' iproute2 command. 2643 */ 2644 int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr); 2645 2646 /* query driver for its ucontext properties */ 2647 int (*query_ucontext)(struct ib_ucontext *context, 2648 struct uverbs_attr_bundle *attrs); 2649 2650 /* 2651 * Provide NUMA node. This API exists for rdmavt/hfi1 only. 2652 * Everyone else relies on Linux memory management model. 2653 */ 2654 int (*get_numa_node)(struct ib_device *dev); 2655 2656 DECLARE_RDMA_OBJ_SIZE(ib_ah); 2657 DECLARE_RDMA_OBJ_SIZE(ib_counters); 2658 DECLARE_RDMA_OBJ_SIZE(ib_cq); 2659 DECLARE_RDMA_OBJ_SIZE(ib_mw); 2660 DECLARE_RDMA_OBJ_SIZE(ib_pd); 2661 DECLARE_RDMA_OBJ_SIZE(ib_qp); 2662 DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table); 2663 DECLARE_RDMA_OBJ_SIZE(ib_srq); 2664 DECLARE_RDMA_OBJ_SIZE(ib_ucontext); 2665 DECLARE_RDMA_OBJ_SIZE(ib_xrcd); 2666 }; 2667 2668 struct ib_core_device { 2669 /* device must be the first element in structure until, 2670 * union of ib_core_device and device exists in ib_device. 2671 */ 2672 struct device dev; 2673 possible_net_t rdma_net; 2674 struct kobject *ports_kobj; 2675 struct list_head port_list; 2676 struct ib_device *owner; /* reach back to owner ib_device */ 2677 }; 2678 2679 struct rdma_restrack_root; 2680 struct ib_device { 2681 /* Do not access @dma_device directly from ULP nor from HW drivers. */ 2682 struct device *dma_device; 2683 struct ib_device_ops ops; 2684 char name[IB_DEVICE_NAME_MAX]; 2685 struct rcu_head rcu_head; 2686 2687 struct list_head event_handler_list; 2688 /* Protects event_handler_list */ 2689 struct rw_semaphore event_handler_rwsem; 2690 2691 /* Protects QP's event_handler calls and open_qp list */ 2692 spinlock_t qp_open_list_lock; 2693 2694 struct rw_semaphore client_data_rwsem; 2695 struct xarray client_data; 2696 struct mutex unregistration_lock; 2697 2698 /* Synchronize GID, Pkey cache entries, subnet prefix, LMC */ 2699 rwlock_t cache_lock; 2700 /** 2701 * port_data is indexed by port number 2702 */ 2703 struct ib_port_data *port_data; 2704 2705 int num_comp_vectors; 2706 2707 union { 2708 struct device dev; 2709 struct ib_core_device coredev; 2710 }; 2711 2712 /* First group is for device attributes, 2713 * Second group is for driver provided attributes (optional). 2714 * Third group is for the hw_stats 2715 * It is a NULL terminated array. 2716 */ 2717 const struct attribute_group *groups[4]; 2718 2719 u64 uverbs_cmd_mask; 2720 2721 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 2722 __be64 node_guid; 2723 u32 local_dma_lkey; 2724 u16 is_switch:1; 2725 /* Indicates kernel verbs support, should not be used in drivers */ 2726 u16 kverbs_provider:1; 2727 /* CQ adaptive moderation (RDMA DIM) */ 2728 u16 use_cq_dim:1; 2729 u8 node_type; 2730 u32 phys_port_cnt; 2731 struct ib_device_attr attrs; 2732 struct hw_stats_device_data *hw_stats_data; 2733 2734 #ifdef CONFIG_CGROUP_RDMA 2735 struct rdmacg_device cg_device; 2736 #endif 2737 2738 u32 index; 2739 2740 spinlock_t cq_pools_lock; 2741 struct list_head cq_pools[IB_POLL_LAST_POOL_TYPE + 1]; 2742 2743 struct rdma_restrack_root *res; 2744 2745 const struct uapi_definition *driver_def; 2746 2747 /* 2748 * Positive refcount indicates that the device is currently 2749 * registered and cannot be unregistered. 2750 */ 2751 refcount_t refcount; 2752 struct completion unreg_completion; 2753 struct work_struct unregistration_work; 2754 2755 const struct rdma_link_ops *link_ops; 2756 2757 /* Protects compat_devs xarray modifications */ 2758 struct mutex compat_devs_mutex; 2759 /* Maintains compat devices for each net namespace */ 2760 struct xarray compat_devs; 2761 2762 /* Used by iWarp CM */ 2763 char iw_ifname[IFNAMSIZ]; 2764 u32 iw_driver_flags; 2765 u32 lag_flags; 2766 }; 2767 2768 static inline void *rdma_zalloc_obj(struct ib_device *dev, size_t size, 2769 gfp_t gfp, bool is_numa_aware) 2770 { 2771 if (is_numa_aware && dev->ops.get_numa_node) 2772 return kzalloc_node(size, gfp, dev->ops.get_numa_node(dev)); 2773 2774 return kzalloc(size, gfp); 2775 } 2776 2777 struct ib_client_nl_info; 2778 struct ib_client { 2779 const char *name; 2780 int (*add)(struct ib_device *ibdev); 2781 void (*remove)(struct ib_device *, void *client_data); 2782 void (*rename)(struct ib_device *dev, void *client_data); 2783 int (*get_nl_info)(struct ib_device *ibdev, void *client_data, 2784 struct ib_client_nl_info *res); 2785 int (*get_global_nl_info)(struct ib_client_nl_info *res); 2786 2787 /* Returns the net_dev belonging to this ib_client and matching the 2788 * given parameters. 2789 * @dev: An RDMA device that the net_dev use for communication. 2790 * @port: A physical port number on the RDMA device. 2791 * @pkey: P_Key that the net_dev uses if applicable. 2792 * @gid: A GID that the net_dev uses to communicate. 2793 * @addr: An IP address the net_dev is configured with. 2794 * @client_data: The device's client data set by ib_set_client_data(). 2795 * 2796 * An ib_client that implements a net_dev on top of RDMA devices 2797 * (such as IP over IB) should implement this callback, allowing the 2798 * rdma_cm module to find the right net_dev for a given request. 2799 * 2800 * The caller is responsible for calling dev_put on the returned 2801 * netdev. */ 2802 struct net_device *(*get_net_dev_by_params)( 2803 struct ib_device *dev, 2804 u32 port, 2805 u16 pkey, 2806 const union ib_gid *gid, 2807 const struct sockaddr *addr, 2808 void *client_data); 2809 2810 refcount_t uses; 2811 struct completion uses_zero; 2812 u32 client_id; 2813 2814 /* kverbs are not required by the client */ 2815 u8 no_kverbs_req:1; 2816 }; 2817 2818 /* 2819 * IB block DMA iterator 2820 * 2821 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned 2822 * to a HW supported page size. 2823 */ 2824 struct ib_block_iter { 2825 /* internal states */ 2826 struct scatterlist *__sg; /* sg holding the current aligned block */ 2827 dma_addr_t __dma_addr; /* unaligned DMA address of this block */ 2828 unsigned int __sg_nents; /* number of SG entries */ 2829 unsigned int __sg_advance; /* number of bytes to advance in sg in next step */ 2830 unsigned int __pg_bit; /* alignment of current block */ 2831 }; 2832 2833 struct ib_device *_ib_alloc_device(size_t size); 2834 #define ib_alloc_device(drv_struct, member) \ 2835 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \ 2836 BUILD_BUG_ON_ZERO(offsetof( \ 2837 struct drv_struct, member))), \ 2838 struct drv_struct, member) 2839 2840 void ib_dealloc_device(struct ib_device *device); 2841 2842 void ib_get_device_fw_str(struct ib_device *device, char *str); 2843 2844 int ib_register_device(struct ib_device *device, const char *name, 2845 struct device *dma_device); 2846 void ib_unregister_device(struct ib_device *device); 2847 void ib_unregister_driver(enum rdma_driver_id driver_id); 2848 void ib_unregister_device_and_put(struct ib_device *device); 2849 void ib_unregister_device_queued(struct ib_device *ib_dev); 2850 2851 int ib_register_client (struct ib_client *client); 2852 void ib_unregister_client(struct ib_client *client); 2853 2854 void __rdma_block_iter_start(struct ib_block_iter *biter, 2855 struct scatterlist *sglist, 2856 unsigned int nents, 2857 unsigned long pgsz); 2858 bool __rdma_block_iter_next(struct ib_block_iter *biter); 2859 2860 /** 2861 * rdma_block_iter_dma_address - get the aligned dma address of the current 2862 * block held by the block iterator. 2863 * @biter: block iterator holding the memory block 2864 */ 2865 static inline dma_addr_t 2866 rdma_block_iter_dma_address(struct ib_block_iter *biter) 2867 { 2868 return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1); 2869 } 2870 2871 /** 2872 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list 2873 * @sglist: sglist to iterate over 2874 * @biter: block iterator holding the memory block 2875 * @nents: maximum number of sg entries to iterate over 2876 * @pgsz: best HW supported page size to use 2877 * 2878 * Callers may use rdma_block_iter_dma_address() to get each 2879 * blocks aligned DMA address. 2880 */ 2881 #define rdma_for_each_block(sglist, biter, nents, pgsz) \ 2882 for (__rdma_block_iter_start(biter, sglist, nents, \ 2883 pgsz); \ 2884 __rdma_block_iter_next(biter);) 2885 2886 /** 2887 * ib_get_client_data - Get IB client context 2888 * @device:Device to get context for 2889 * @client:Client to get context for 2890 * 2891 * ib_get_client_data() returns the client context data set with 2892 * ib_set_client_data(). This can only be called while the client is 2893 * registered to the device, once the ib_client remove() callback returns this 2894 * cannot be called. 2895 */ 2896 static inline void *ib_get_client_data(struct ib_device *device, 2897 struct ib_client *client) 2898 { 2899 return xa_load(&device->client_data, client->client_id); 2900 } 2901 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 2902 void *data); 2903 void ib_set_device_ops(struct ib_device *device, 2904 const struct ib_device_ops *ops); 2905 2906 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma, 2907 unsigned long pfn, unsigned long size, pgprot_t prot, 2908 struct rdma_user_mmap_entry *entry); 2909 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext, 2910 struct rdma_user_mmap_entry *entry, 2911 size_t length); 2912 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext, 2913 struct rdma_user_mmap_entry *entry, 2914 size_t length, u32 min_pgoff, 2915 u32 max_pgoff); 2916 2917 static inline int 2918 rdma_user_mmap_entry_insert_exact(struct ib_ucontext *ucontext, 2919 struct rdma_user_mmap_entry *entry, 2920 size_t length, u32 pgoff) 2921 { 2922 return rdma_user_mmap_entry_insert_range(ucontext, entry, length, pgoff, 2923 pgoff); 2924 } 2925 2926 struct rdma_user_mmap_entry * 2927 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext, 2928 unsigned long pgoff); 2929 struct rdma_user_mmap_entry * 2930 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext, 2931 struct vm_area_struct *vma); 2932 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry); 2933 2934 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry); 2935 2936 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 2937 { 2938 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 2939 } 2940 2941 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 2942 { 2943 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 2944 } 2945 2946 static inline bool ib_is_buffer_cleared(const void __user *p, 2947 size_t len) 2948 { 2949 bool ret; 2950 u8 *buf; 2951 2952 if (len > USHRT_MAX) 2953 return false; 2954 2955 buf = memdup_user(p, len); 2956 if (IS_ERR(buf)) 2957 return false; 2958 2959 ret = !memchr_inv(buf, 0, len); 2960 kfree(buf); 2961 return ret; 2962 } 2963 2964 static inline bool ib_is_udata_cleared(struct ib_udata *udata, 2965 size_t offset, 2966 size_t len) 2967 { 2968 return ib_is_buffer_cleared(udata->inbuf + offset, len); 2969 } 2970 2971 /** 2972 * ib_modify_qp_is_ok - Check that the supplied attribute mask 2973 * contains all required attributes and no attributes not allowed for 2974 * the given QP state transition. 2975 * @cur_state: Current QP state 2976 * @next_state: Next QP state 2977 * @type: QP type 2978 * @mask: Mask of supplied QP attributes 2979 * 2980 * This function is a helper function that a low-level driver's 2981 * modify_qp method can use to validate the consumer's input. It 2982 * checks that cur_state and next_state are valid QP states, that a 2983 * transition from cur_state to next_state is allowed by the IB spec, 2984 * and that the attribute mask supplied is allowed for the transition. 2985 */ 2986 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 2987 enum ib_qp_type type, enum ib_qp_attr_mask mask); 2988 2989 void ib_register_event_handler(struct ib_event_handler *event_handler); 2990 void ib_unregister_event_handler(struct ib_event_handler *event_handler); 2991 void ib_dispatch_event(const struct ib_event *event); 2992 2993 int ib_query_port(struct ib_device *device, 2994 u32 port_num, struct ib_port_attr *port_attr); 2995 2996 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 2997 u32 port_num); 2998 2999 /** 3000 * rdma_cap_ib_switch - Check if the device is IB switch 3001 * @device: Device to check 3002 * 3003 * Device driver is responsible for setting is_switch bit on 3004 * in ib_device structure at init time. 3005 * 3006 * Return: true if the device is IB switch. 3007 */ 3008 static inline bool rdma_cap_ib_switch(const struct ib_device *device) 3009 { 3010 return device->is_switch; 3011 } 3012 3013 /** 3014 * rdma_start_port - Return the first valid port number for the device 3015 * specified 3016 * 3017 * @device: Device to be checked 3018 * 3019 * Return start port number 3020 */ 3021 static inline u32 rdma_start_port(const struct ib_device *device) 3022 { 3023 return rdma_cap_ib_switch(device) ? 0 : 1; 3024 } 3025 3026 /** 3027 * rdma_for_each_port - Iterate over all valid port numbers of the IB device 3028 * @device - The struct ib_device * to iterate over 3029 * @iter - The unsigned int to store the port number 3030 */ 3031 #define rdma_for_each_port(device, iter) \ 3032 for (iter = rdma_start_port(device + \ 3033 BUILD_BUG_ON_ZERO(!__same_type(u32, \ 3034 iter))); \ 3035 iter <= rdma_end_port(device); iter++) 3036 3037 /** 3038 * rdma_end_port - Return the last valid port number for the device 3039 * specified 3040 * 3041 * @device: Device to be checked 3042 * 3043 * Return last port number 3044 */ 3045 static inline u32 rdma_end_port(const struct ib_device *device) 3046 { 3047 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 3048 } 3049 3050 static inline int rdma_is_port_valid(const struct ib_device *device, 3051 unsigned int port) 3052 { 3053 return (port >= rdma_start_port(device) && 3054 port <= rdma_end_port(device)); 3055 } 3056 3057 static inline bool rdma_is_grh_required(const struct ib_device *device, 3058 u32 port_num) 3059 { 3060 return device->port_data[port_num].immutable.core_cap_flags & 3061 RDMA_CORE_PORT_IB_GRH_REQUIRED; 3062 } 3063 3064 static inline bool rdma_protocol_ib(const struct ib_device *device, 3065 u32 port_num) 3066 { 3067 return device->port_data[port_num].immutable.core_cap_flags & 3068 RDMA_CORE_CAP_PROT_IB; 3069 } 3070 3071 static inline bool rdma_protocol_roce(const struct ib_device *device, 3072 u32 port_num) 3073 { 3074 return device->port_data[port_num].immutable.core_cap_flags & 3075 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); 3076 } 3077 3078 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, 3079 u32 port_num) 3080 { 3081 return device->port_data[port_num].immutable.core_cap_flags & 3082 RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; 3083 } 3084 3085 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, 3086 u32 port_num) 3087 { 3088 return device->port_data[port_num].immutable.core_cap_flags & 3089 RDMA_CORE_CAP_PROT_ROCE; 3090 } 3091 3092 static inline bool rdma_protocol_iwarp(const struct ib_device *device, 3093 u32 port_num) 3094 { 3095 return device->port_data[port_num].immutable.core_cap_flags & 3096 RDMA_CORE_CAP_PROT_IWARP; 3097 } 3098 3099 static inline bool rdma_ib_or_roce(const struct ib_device *device, 3100 u32 port_num) 3101 { 3102 return rdma_protocol_ib(device, port_num) || 3103 rdma_protocol_roce(device, port_num); 3104 } 3105 3106 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, 3107 u32 port_num) 3108 { 3109 return device->port_data[port_num].immutable.core_cap_flags & 3110 RDMA_CORE_CAP_PROT_RAW_PACKET; 3111 } 3112 3113 static inline bool rdma_protocol_usnic(const struct ib_device *device, 3114 u32 port_num) 3115 { 3116 return device->port_data[port_num].immutable.core_cap_flags & 3117 RDMA_CORE_CAP_PROT_USNIC; 3118 } 3119 3120 /** 3121 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 3122 * Management Datagrams. 3123 * @device: Device to check 3124 * @port_num: Port number to check 3125 * 3126 * Management Datagrams (MAD) are a required part of the InfiniBand 3127 * specification and are supported on all InfiniBand devices. A slightly 3128 * extended version are also supported on OPA interfaces. 3129 * 3130 * Return: true if the port supports sending/receiving of MAD packets. 3131 */ 3132 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u32 port_num) 3133 { 3134 return device->port_data[port_num].immutable.core_cap_flags & 3135 RDMA_CORE_CAP_IB_MAD; 3136 } 3137 3138 /** 3139 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 3140 * Management Datagrams. 3141 * @device: Device to check 3142 * @port_num: Port number to check 3143 * 3144 * Intel OmniPath devices extend and/or replace the InfiniBand Management 3145 * datagrams with their own versions. These OPA MADs share many but not all of 3146 * the characteristics of InfiniBand MADs. 3147 * 3148 * OPA MADs differ in the following ways: 3149 * 3150 * 1) MADs are variable size up to 2K 3151 * IBTA defined MADs remain fixed at 256 bytes 3152 * 2) OPA SMPs must carry valid PKeys 3153 * 3) OPA SMP packets are a different format 3154 * 3155 * Return: true if the port supports OPA MAD packet formats. 3156 */ 3157 static inline bool rdma_cap_opa_mad(struct ib_device *device, u32 port_num) 3158 { 3159 return device->port_data[port_num].immutable.core_cap_flags & 3160 RDMA_CORE_CAP_OPA_MAD; 3161 } 3162 3163 /** 3164 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 3165 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 3166 * @device: Device to check 3167 * @port_num: Port number to check 3168 * 3169 * Each InfiniBand node is required to provide a Subnet Management Agent 3170 * that the subnet manager can access. Prior to the fabric being fully 3171 * configured by the subnet manager, the SMA is accessed via a well known 3172 * interface called the Subnet Management Interface (SMI). This interface 3173 * uses directed route packets to communicate with the SM to get around the 3174 * chicken and egg problem of the SM needing to know what's on the fabric 3175 * in order to configure the fabric, and needing to configure the fabric in 3176 * order to send packets to the devices on the fabric. These directed 3177 * route packets do not need the fabric fully configured in order to reach 3178 * their destination. The SMI is the only method allowed to send 3179 * directed route packets on an InfiniBand fabric. 3180 * 3181 * Return: true if the port provides an SMI. 3182 */ 3183 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u32 port_num) 3184 { 3185 return device->port_data[port_num].immutable.core_cap_flags & 3186 RDMA_CORE_CAP_IB_SMI; 3187 } 3188 3189 /** 3190 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 3191 * Communication Manager. 3192 * @device: Device to check 3193 * @port_num: Port number to check 3194 * 3195 * The InfiniBand Communication Manager is one of many pre-defined General 3196 * Service Agents (GSA) that are accessed via the General Service 3197 * Interface (GSI). It's role is to facilitate establishment of connections 3198 * between nodes as well as other management related tasks for established 3199 * connections. 3200 * 3201 * Return: true if the port supports an IB CM (this does not guarantee that 3202 * a CM is actually running however). 3203 */ 3204 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u32 port_num) 3205 { 3206 return device->port_data[port_num].immutable.core_cap_flags & 3207 RDMA_CORE_CAP_IB_CM; 3208 } 3209 3210 /** 3211 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 3212 * Communication Manager. 3213 * @device: Device to check 3214 * @port_num: Port number to check 3215 * 3216 * Similar to above, but specific to iWARP connections which have a different 3217 * managment protocol than InfiniBand. 3218 * 3219 * Return: true if the port supports an iWARP CM (this does not guarantee that 3220 * a CM is actually running however). 3221 */ 3222 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u32 port_num) 3223 { 3224 return device->port_data[port_num].immutable.core_cap_flags & 3225 RDMA_CORE_CAP_IW_CM; 3226 } 3227 3228 /** 3229 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 3230 * Subnet Administration. 3231 * @device: Device to check 3232 * @port_num: Port number to check 3233 * 3234 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 3235 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 3236 * fabrics, devices should resolve routes to other hosts by contacting the 3237 * SA to query the proper route. 3238 * 3239 * Return: true if the port should act as a client to the fabric Subnet 3240 * Administration interface. This does not imply that the SA service is 3241 * running locally. 3242 */ 3243 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u32 port_num) 3244 { 3245 return device->port_data[port_num].immutable.core_cap_flags & 3246 RDMA_CORE_CAP_IB_SA; 3247 } 3248 3249 /** 3250 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 3251 * Multicast. 3252 * @device: Device to check 3253 * @port_num: Port number to check 3254 * 3255 * InfiniBand multicast registration is more complex than normal IPv4 or 3256 * IPv6 multicast registration. Each Host Channel Adapter must register 3257 * with the Subnet Manager when it wishes to join a multicast group. It 3258 * should do so only once regardless of how many queue pairs it subscribes 3259 * to this group. And it should leave the group only after all queue pairs 3260 * attached to the group have been detached. 3261 * 3262 * Return: true if the port must undertake the additional adminstrative 3263 * overhead of registering/unregistering with the SM and tracking of the 3264 * total number of queue pairs attached to the multicast group. 3265 */ 3266 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, 3267 u32 port_num) 3268 { 3269 return rdma_cap_ib_sa(device, port_num); 3270 } 3271 3272 /** 3273 * rdma_cap_af_ib - Check if the port of device has the capability 3274 * Native Infiniband Address. 3275 * @device: Device to check 3276 * @port_num: Port number to check 3277 * 3278 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 3279 * GID. RoCE uses a different mechanism, but still generates a GID via 3280 * a prescribed mechanism and port specific data. 3281 * 3282 * Return: true if the port uses a GID address to identify devices on the 3283 * network. 3284 */ 3285 static inline bool rdma_cap_af_ib(const struct ib_device *device, u32 port_num) 3286 { 3287 return device->port_data[port_num].immutable.core_cap_flags & 3288 RDMA_CORE_CAP_AF_IB; 3289 } 3290 3291 /** 3292 * rdma_cap_eth_ah - Check if the port of device has the capability 3293 * Ethernet Address Handle. 3294 * @device: Device to check 3295 * @port_num: Port number to check 3296 * 3297 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 3298 * to fabricate GIDs over Ethernet/IP specific addresses native to the 3299 * port. Normally, packet headers are generated by the sending host 3300 * adapter, but when sending connectionless datagrams, we must manually 3301 * inject the proper headers for the fabric we are communicating over. 3302 * 3303 * Return: true if we are running as a RoCE port and must force the 3304 * addition of a Global Route Header built from our Ethernet Address 3305 * Handle into our header list for connectionless packets. 3306 */ 3307 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u32 port_num) 3308 { 3309 return device->port_data[port_num].immutable.core_cap_flags & 3310 RDMA_CORE_CAP_ETH_AH; 3311 } 3312 3313 /** 3314 * rdma_cap_opa_ah - Check if the port of device supports 3315 * OPA Address handles 3316 * @device: Device to check 3317 * @port_num: Port number to check 3318 * 3319 * Return: true if we are running on an OPA device which supports 3320 * the extended OPA addressing. 3321 */ 3322 static inline bool rdma_cap_opa_ah(struct ib_device *device, u32 port_num) 3323 { 3324 return (device->port_data[port_num].immutable.core_cap_flags & 3325 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH; 3326 } 3327 3328 /** 3329 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 3330 * 3331 * @device: Device 3332 * @port_num: Port number 3333 * 3334 * This MAD size includes the MAD headers and MAD payload. No other headers 3335 * are included. 3336 * 3337 * Return the max MAD size required by the Port. Will return 0 if the port 3338 * does not support MADs 3339 */ 3340 static inline size_t rdma_max_mad_size(const struct ib_device *device, 3341 u32 port_num) 3342 { 3343 return device->port_data[port_num].immutable.max_mad_size; 3344 } 3345 3346 /** 3347 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 3348 * @device: Device to check 3349 * @port_num: Port number to check 3350 * 3351 * RoCE GID table mechanism manages the various GIDs for a device. 3352 * 3353 * NOTE: if allocating the port's GID table has failed, this call will still 3354 * return true, but any RoCE GID table API will fail. 3355 * 3356 * Return: true if the port uses RoCE GID table mechanism in order to manage 3357 * its GIDs. 3358 */ 3359 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 3360 u32 port_num) 3361 { 3362 return rdma_protocol_roce(device, port_num) && 3363 device->ops.add_gid && device->ops.del_gid; 3364 } 3365 3366 /* 3367 * Check if the device supports READ W/ INVALIDATE. 3368 */ 3369 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num) 3370 { 3371 /* 3372 * iWarp drivers must support READ W/ INVALIDATE. No other protocol 3373 * has support for it yet. 3374 */ 3375 return rdma_protocol_iwarp(dev, port_num); 3376 } 3377 3378 /** 3379 * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not. 3380 * @device: Device 3381 * @port_num: 1 based Port number 3382 * 3383 * Return true if port is an Intel OPA port , false if not 3384 */ 3385 static inline bool rdma_core_cap_opa_port(struct ib_device *device, 3386 u32 port_num) 3387 { 3388 return (device->port_data[port_num].immutable.core_cap_flags & 3389 RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA; 3390 } 3391 3392 /** 3393 * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value. 3394 * @device: Device 3395 * @port_num: Port number 3396 * @mtu: enum value of MTU 3397 * 3398 * Return the MTU size supported by the port as an integer value. Will return 3399 * -1 if enum value of mtu is not supported. 3400 */ 3401 static inline int rdma_mtu_enum_to_int(struct ib_device *device, u32 port, 3402 int mtu) 3403 { 3404 if (rdma_core_cap_opa_port(device, port)) 3405 return opa_mtu_enum_to_int((enum opa_mtu)mtu); 3406 else 3407 return ib_mtu_enum_to_int((enum ib_mtu)mtu); 3408 } 3409 3410 /** 3411 * rdma_mtu_from_attr - Return the mtu of the port from the port attribute. 3412 * @device: Device 3413 * @port_num: Port number 3414 * @attr: port attribute 3415 * 3416 * Return the MTU size supported by the port as an integer value. 3417 */ 3418 static inline int rdma_mtu_from_attr(struct ib_device *device, u32 port, 3419 struct ib_port_attr *attr) 3420 { 3421 if (rdma_core_cap_opa_port(device, port)) 3422 return attr->phys_mtu; 3423 else 3424 return ib_mtu_enum_to_int(attr->max_mtu); 3425 } 3426 3427 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port, 3428 int state); 3429 int ib_get_vf_config(struct ib_device *device, int vf, u32 port, 3430 struct ifla_vf_info *info); 3431 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port, 3432 struct ifla_vf_stats *stats); 3433 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port, 3434 struct ifla_vf_guid *node_guid, 3435 struct ifla_vf_guid *port_guid); 3436 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid, 3437 int type); 3438 3439 int ib_query_pkey(struct ib_device *device, 3440 u32 port_num, u16 index, u16 *pkey); 3441 3442 int ib_modify_device(struct ib_device *device, 3443 int device_modify_mask, 3444 struct ib_device_modify *device_modify); 3445 3446 int ib_modify_port(struct ib_device *device, 3447 u32 port_num, int port_modify_mask, 3448 struct ib_port_modify *port_modify); 3449 3450 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 3451 u32 *port_num, u16 *index); 3452 3453 int ib_find_pkey(struct ib_device *device, 3454 u32 port_num, u16 pkey, u16 *index); 3455 3456 enum ib_pd_flags { 3457 /* 3458 * Create a memory registration for all memory in the system and place 3459 * the rkey for it into pd->unsafe_global_rkey. This can be used by 3460 * ULPs to avoid the overhead of dynamic MRs. 3461 * 3462 * This flag is generally considered unsafe and must only be used in 3463 * extremly trusted environments. Every use of it will log a warning 3464 * in the kernel log. 3465 */ 3466 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01, 3467 }; 3468 3469 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 3470 const char *caller); 3471 3472 /** 3473 * ib_alloc_pd - Allocates an unused protection domain. 3474 * @device: The device on which to allocate the protection domain. 3475 * @flags: protection domain flags 3476 * 3477 * A protection domain object provides an association between QPs, shared 3478 * receive queues, address handles, memory regions, and memory windows. 3479 * 3480 * Every PD has a local_dma_lkey which can be used as the lkey value for local 3481 * memory operations. 3482 */ 3483 #define ib_alloc_pd(device, flags) \ 3484 __ib_alloc_pd((device), (flags), KBUILD_MODNAME) 3485 3486 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata); 3487 3488 /** 3489 * ib_dealloc_pd - Deallocate kernel PD 3490 * @pd: The protection domain 3491 * 3492 * NOTE: for user PD use ib_dealloc_pd_user with valid udata! 3493 */ 3494 static inline void ib_dealloc_pd(struct ib_pd *pd) 3495 { 3496 int ret = ib_dealloc_pd_user(pd, NULL); 3497 3498 WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail"); 3499 } 3500 3501 enum rdma_create_ah_flags { 3502 /* In a sleepable context */ 3503 RDMA_CREATE_AH_SLEEPABLE = BIT(0), 3504 }; 3505 3506 /** 3507 * rdma_create_ah - Creates an address handle for the given address vector. 3508 * @pd: The protection domain associated with the address handle. 3509 * @ah_attr: The attributes of the address vector. 3510 * @flags: Create address handle flags (see enum rdma_create_ah_flags). 3511 * 3512 * The address handle is used to reference a local or global destination 3513 * in all UD QP post sends. 3514 */ 3515 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr, 3516 u32 flags); 3517 3518 /** 3519 * rdma_create_user_ah - Creates an address handle for the given address vector. 3520 * It resolves destination mac address for ah attribute of RoCE type. 3521 * @pd: The protection domain associated with the address handle. 3522 * @ah_attr: The attributes of the address vector. 3523 * @udata: pointer to user's input output buffer information need by 3524 * provider driver. 3525 * 3526 * It returns 0 on success and returns appropriate error code on error. 3527 * The address handle is used to reference a local or global destination 3528 * in all UD QP post sends. 3529 */ 3530 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd, 3531 struct rdma_ah_attr *ah_attr, 3532 struct ib_udata *udata); 3533 /** 3534 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header 3535 * work completion. 3536 * @hdr: the L3 header to parse 3537 * @net_type: type of header to parse 3538 * @sgid: place to store source gid 3539 * @dgid: place to store destination gid 3540 */ 3541 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 3542 enum rdma_network_type net_type, 3543 union ib_gid *sgid, union ib_gid *dgid); 3544 3545 /** 3546 * ib_get_rdma_header_version - Get the header version 3547 * @hdr: the L3 header to parse 3548 */ 3549 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr); 3550 3551 /** 3552 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a 3553 * work completion. 3554 * @device: Device on which the received message arrived. 3555 * @port_num: Port on which the received message arrived. 3556 * @wc: Work completion associated with the received message. 3557 * @grh: References the received global route header. This parameter is 3558 * ignored unless the work completion indicates that the GRH is valid. 3559 * @ah_attr: Returned attributes that can be used when creating an address 3560 * handle for replying to the message. 3561 * When ib_init_ah_attr_from_wc() returns success, 3562 * (a) for IB link layer it optionally contains a reference to SGID attribute 3563 * when GRH is present for IB link layer. 3564 * (b) for RoCE link layer it contains a reference to SGID attribute. 3565 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID 3566 * attributes which are initialized using ib_init_ah_attr_from_wc(). 3567 * 3568 */ 3569 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num, 3570 const struct ib_wc *wc, const struct ib_grh *grh, 3571 struct rdma_ah_attr *ah_attr); 3572 3573 /** 3574 * ib_create_ah_from_wc - Creates an address handle associated with the 3575 * sender of the specified work completion. 3576 * @pd: The protection domain associated with the address handle. 3577 * @wc: Work completion information associated with a received message. 3578 * @grh: References the received global route header. This parameter is 3579 * ignored unless the work completion indicates that the GRH is valid. 3580 * @port_num: The outbound port number to associate with the address. 3581 * 3582 * The address handle is used to reference a local or global destination 3583 * in all UD QP post sends. 3584 */ 3585 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 3586 const struct ib_grh *grh, u32 port_num); 3587 3588 /** 3589 * rdma_modify_ah - Modifies the address vector associated with an address 3590 * handle. 3591 * @ah: The address handle to modify. 3592 * @ah_attr: The new address vector attributes to associate with the 3593 * address handle. 3594 */ 3595 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3596 3597 /** 3598 * rdma_query_ah - Queries the address vector associated with an address 3599 * handle. 3600 * @ah: The address handle to query. 3601 * @ah_attr: The address vector attributes associated with the address 3602 * handle. 3603 */ 3604 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3605 3606 enum rdma_destroy_ah_flags { 3607 /* In a sleepable context */ 3608 RDMA_DESTROY_AH_SLEEPABLE = BIT(0), 3609 }; 3610 3611 /** 3612 * rdma_destroy_ah_user - Destroys an address handle. 3613 * @ah: The address handle to destroy. 3614 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3615 * @udata: Valid user data or NULL for kernel objects 3616 */ 3617 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata); 3618 3619 /** 3620 * rdma_destroy_ah - Destroys an kernel address handle. 3621 * @ah: The address handle to destroy. 3622 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3623 * 3624 * NOTE: for user ah use rdma_destroy_ah_user with valid udata! 3625 */ 3626 static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags) 3627 { 3628 int ret = rdma_destroy_ah_user(ah, flags, NULL); 3629 3630 WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail"); 3631 } 3632 3633 struct ib_srq *ib_create_srq_user(struct ib_pd *pd, 3634 struct ib_srq_init_attr *srq_init_attr, 3635 struct ib_usrq_object *uobject, 3636 struct ib_udata *udata); 3637 static inline struct ib_srq * 3638 ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr) 3639 { 3640 if (!pd->device->ops.create_srq) 3641 return ERR_PTR(-EOPNOTSUPP); 3642 3643 return ib_create_srq_user(pd, srq_init_attr, NULL, NULL); 3644 } 3645 3646 /** 3647 * ib_modify_srq - Modifies the attributes for the specified SRQ. 3648 * @srq: The SRQ to modify. 3649 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 3650 * the current values of selected SRQ attributes are returned. 3651 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 3652 * are being modified. 3653 * 3654 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 3655 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 3656 * the number of receives queued drops below the limit. 3657 */ 3658 int ib_modify_srq(struct ib_srq *srq, 3659 struct ib_srq_attr *srq_attr, 3660 enum ib_srq_attr_mask srq_attr_mask); 3661 3662 /** 3663 * ib_query_srq - Returns the attribute list and current values for the 3664 * specified SRQ. 3665 * @srq: The SRQ to query. 3666 * @srq_attr: The attributes of the specified SRQ. 3667 */ 3668 int ib_query_srq(struct ib_srq *srq, 3669 struct ib_srq_attr *srq_attr); 3670 3671 /** 3672 * ib_destroy_srq_user - Destroys the specified SRQ. 3673 * @srq: The SRQ to destroy. 3674 * @udata: Valid user data or NULL for kernel objects 3675 */ 3676 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata); 3677 3678 /** 3679 * ib_destroy_srq - Destroys the specified kernel SRQ. 3680 * @srq: The SRQ to destroy. 3681 * 3682 * NOTE: for user srq use ib_destroy_srq_user with valid udata! 3683 */ 3684 static inline void ib_destroy_srq(struct ib_srq *srq) 3685 { 3686 int ret = ib_destroy_srq_user(srq, NULL); 3687 3688 WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail"); 3689 } 3690 3691 /** 3692 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 3693 * @srq: The SRQ to post the work request on. 3694 * @recv_wr: A list of work requests to post on the receive queue. 3695 * @bad_recv_wr: On an immediate failure, this parameter will reference 3696 * the work request that failed to be posted on the QP. 3697 */ 3698 static inline int ib_post_srq_recv(struct ib_srq *srq, 3699 const struct ib_recv_wr *recv_wr, 3700 const struct ib_recv_wr **bad_recv_wr) 3701 { 3702 const struct ib_recv_wr *dummy; 3703 3704 return srq->device->ops.post_srq_recv(srq, recv_wr, 3705 bad_recv_wr ? : &dummy); 3706 } 3707 3708 struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd, 3709 struct ib_qp_init_attr *qp_init_attr, 3710 const char *caller); 3711 /** 3712 * ib_create_qp - Creates a kernel QP associated with the specific protection 3713 * domain. 3714 * @pd: The protection domain associated with the QP. 3715 * @init_attr: A list of initial attributes required to create the 3716 * QP. If QP creation succeeds, then the attributes are updated to 3717 * the actual capabilities of the created QP. 3718 */ 3719 static inline struct ib_qp *ib_create_qp(struct ib_pd *pd, 3720 struct ib_qp_init_attr *init_attr) 3721 { 3722 return ib_create_qp_kernel(pd, init_attr, KBUILD_MODNAME); 3723 } 3724 3725 /** 3726 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 3727 * @qp: The QP to modify. 3728 * @attr: On input, specifies the QP attributes to modify. On output, 3729 * the current values of selected QP attributes are returned. 3730 * @attr_mask: A bit-mask used to specify which attributes of the QP 3731 * are being modified. 3732 * @udata: pointer to user's input output buffer information 3733 * are being modified. 3734 * It returns 0 on success and returns appropriate error code on error. 3735 */ 3736 int ib_modify_qp_with_udata(struct ib_qp *qp, 3737 struct ib_qp_attr *attr, 3738 int attr_mask, 3739 struct ib_udata *udata); 3740 3741 /** 3742 * ib_modify_qp - Modifies the attributes for the specified QP and then 3743 * transitions the QP to the given state. 3744 * @qp: The QP to modify. 3745 * @qp_attr: On input, specifies the QP attributes to modify. On output, 3746 * the current values of selected QP attributes are returned. 3747 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 3748 * are being modified. 3749 */ 3750 int ib_modify_qp(struct ib_qp *qp, 3751 struct ib_qp_attr *qp_attr, 3752 int qp_attr_mask); 3753 3754 /** 3755 * ib_query_qp - Returns the attribute list and current values for the 3756 * specified QP. 3757 * @qp: The QP to query. 3758 * @qp_attr: The attributes of the specified QP. 3759 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 3760 * @qp_init_attr: Additional attributes of the selected QP. 3761 * 3762 * The qp_attr_mask may be used to limit the query to gathering only the 3763 * selected attributes. 3764 */ 3765 int ib_query_qp(struct ib_qp *qp, 3766 struct ib_qp_attr *qp_attr, 3767 int qp_attr_mask, 3768 struct ib_qp_init_attr *qp_init_attr); 3769 3770 /** 3771 * ib_destroy_qp - Destroys the specified QP. 3772 * @qp: The QP to destroy. 3773 * @udata: Valid udata or NULL for kernel objects 3774 */ 3775 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata); 3776 3777 /** 3778 * ib_destroy_qp - Destroys the specified kernel QP. 3779 * @qp: The QP to destroy. 3780 * 3781 * NOTE: for user qp use ib_destroy_qp_user with valid udata! 3782 */ 3783 static inline int ib_destroy_qp(struct ib_qp *qp) 3784 { 3785 return ib_destroy_qp_user(qp, NULL); 3786 } 3787 3788 /** 3789 * ib_open_qp - Obtain a reference to an existing sharable QP. 3790 * @xrcd - XRC domain 3791 * @qp_open_attr: Attributes identifying the QP to open. 3792 * 3793 * Returns a reference to a sharable QP. 3794 */ 3795 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 3796 struct ib_qp_open_attr *qp_open_attr); 3797 3798 /** 3799 * ib_close_qp - Release an external reference to a QP. 3800 * @qp: The QP handle to release 3801 * 3802 * The opened QP handle is released by the caller. The underlying 3803 * shared QP is not destroyed until all internal references are released. 3804 */ 3805 int ib_close_qp(struct ib_qp *qp); 3806 3807 /** 3808 * ib_post_send - Posts a list of work requests to the send queue of 3809 * the specified QP. 3810 * @qp: The QP to post the work request on. 3811 * @send_wr: A list of work requests to post on the send queue. 3812 * @bad_send_wr: On an immediate failure, this parameter will reference 3813 * the work request that failed to be posted on the QP. 3814 * 3815 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 3816 * error is returned, the QP state shall not be affected, 3817 * ib_post_send() will return an immediate error after queueing any 3818 * earlier work requests in the list. 3819 */ 3820 static inline int ib_post_send(struct ib_qp *qp, 3821 const struct ib_send_wr *send_wr, 3822 const struct ib_send_wr **bad_send_wr) 3823 { 3824 const struct ib_send_wr *dummy; 3825 3826 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy); 3827 } 3828 3829 /** 3830 * ib_post_recv - Posts a list of work requests to the receive queue of 3831 * the specified QP. 3832 * @qp: The QP to post the work request on. 3833 * @recv_wr: A list of work requests to post on the receive queue. 3834 * @bad_recv_wr: On an immediate failure, this parameter will reference 3835 * the work request that failed to be posted on the QP. 3836 */ 3837 static inline int ib_post_recv(struct ib_qp *qp, 3838 const struct ib_recv_wr *recv_wr, 3839 const struct ib_recv_wr **bad_recv_wr) 3840 { 3841 const struct ib_recv_wr *dummy; 3842 3843 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy); 3844 } 3845 3846 struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe, 3847 int comp_vector, enum ib_poll_context poll_ctx, 3848 const char *caller); 3849 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private, 3850 int nr_cqe, int comp_vector, 3851 enum ib_poll_context poll_ctx) 3852 { 3853 return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx, 3854 KBUILD_MODNAME); 3855 } 3856 3857 struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private, 3858 int nr_cqe, enum ib_poll_context poll_ctx, 3859 const char *caller); 3860 3861 /** 3862 * ib_alloc_cq_any: Allocate kernel CQ 3863 * @dev: The IB device 3864 * @private: Private data attached to the CQE 3865 * @nr_cqe: Number of CQEs in the CQ 3866 * @poll_ctx: Context used for polling the CQ 3867 */ 3868 static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev, 3869 void *private, int nr_cqe, 3870 enum ib_poll_context poll_ctx) 3871 { 3872 return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx, 3873 KBUILD_MODNAME); 3874 } 3875 3876 void ib_free_cq(struct ib_cq *cq); 3877 int ib_process_cq_direct(struct ib_cq *cq, int budget); 3878 3879 /** 3880 * ib_create_cq - Creates a CQ on the specified device. 3881 * @device: The device on which to create the CQ. 3882 * @comp_handler: A user-specified callback that is invoked when a 3883 * completion event occurs on the CQ. 3884 * @event_handler: A user-specified callback that is invoked when an 3885 * asynchronous event not associated with a completion occurs on the CQ. 3886 * @cq_context: Context associated with the CQ returned to the user via 3887 * the associated completion and event handlers. 3888 * @cq_attr: The attributes the CQ should be created upon. 3889 * 3890 * Users can examine the cq structure to determine the actual CQ size. 3891 */ 3892 struct ib_cq *__ib_create_cq(struct ib_device *device, 3893 ib_comp_handler comp_handler, 3894 void (*event_handler)(struct ib_event *, void *), 3895 void *cq_context, 3896 const struct ib_cq_init_attr *cq_attr, 3897 const char *caller); 3898 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \ 3899 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME) 3900 3901 /** 3902 * ib_resize_cq - Modifies the capacity of the CQ. 3903 * @cq: The CQ to resize. 3904 * @cqe: The minimum size of the CQ. 3905 * 3906 * Users can examine the cq structure to determine the actual CQ size. 3907 */ 3908 int ib_resize_cq(struct ib_cq *cq, int cqe); 3909 3910 /** 3911 * rdma_set_cq_moderation - Modifies moderation params of the CQ 3912 * @cq: The CQ to modify. 3913 * @cq_count: number of CQEs that will trigger an event 3914 * @cq_period: max period of time in usec before triggering an event 3915 * 3916 */ 3917 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period); 3918 3919 /** 3920 * ib_destroy_cq_user - Destroys the specified CQ. 3921 * @cq: The CQ to destroy. 3922 * @udata: Valid user data or NULL for kernel objects 3923 */ 3924 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata); 3925 3926 /** 3927 * ib_destroy_cq - Destroys the specified kernel CQ. 3928 * @cq: The CQ to destroy. 3929 * 3930 * NOTE: for user cq use ib_destroy_cq_user with valid udata! 3931 */ 3932 static inline void ib_destroy_cq(struct ib_cq *cq) 3933 { 3934 int ret = ib_destroy_cq_user(cq, NULL); 3935 3936 WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail"); 3937 } 3938 3939 /** 3940 * ib_poll_cq - poll a CQ for completion(s) 3941 * @cq:the CQ being polled 3942 * @num_entries:maximum number of completions to return 3943 * @wc:array of at least @num_entries &struct ib_wc where completions 3944 * will be returned 3945 * 3946 * Poll a CQ for (possibly multiple) completions. If the return value 3947 * is < 0, an error occurred. If the return value is >= 0, it is the 3948 * number of completions returned. If the return value is 3949 * non-negative and < num_entries, then the CQ was emptied. 3950 */ 3951 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 3952 struct ib_wc *wc) 3953 { 3954 return cq->device->ops.poll_cq(cq, num_entries, wc); 3955 } 3956 3957 /** 3958 * ib_req_notify_cq - Request completion notification on a CQ. 3959 * @cq: The CQ to generate an event for. 3960 * @flags: 3961 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 3962 * to request an event on the next solicited event or next work 3963 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 3964 * may also be |ed in to request a hint about missed events, as 3965 * described below. 3966 * 3967 * Return Value: 3968 * < 0 means an error occurred while requesting notification 3969 * == 0 means notification was requested successfully, and if 3970 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 3971 * were missed and it is safe to wait for another event. In 3972 * this case is it guaranteed that any work completions added 3973 * to the CQ since the last CQ poll will trigger a completion 3974 * notification event. 3975 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 3976 * in. It means that the consumer must poll the CQ again to 3977 * make sure it is empty to avoid missing an event because of a 3978 * race between requesting notification and an entry being 3979 * added to the CQ. This return value means it is possible 3980 * (but not guaranteed) that a work completion has been added 3981 * to the CQ since the last poll without triggering a 3982 * completion notification event. 3983 */ 3984 static inline int ib_req_notify_cq(struct ib_cq *cq, 3985 enum ib_cq_notify_flags flags) 3986 { 3987 return cq->device->ops.req_notify_cq(cq, flags); 3988 } 3989 3990 struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe, 3991 int comp_vector_hint, 3992 enum ib_poll_context poll_ctx); 3993 3994 void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe); 3995 3996 /* 3997 * Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to 3998 * NULL. This causes the ib_dma* helpers to just stash the kernel virtual 3999 * address into the dma address. 4000 */ 4001 static inline bool ib_uses_virt_dma(struct ib_device *dev) 4002 { 4003 return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device; 4004 } 4005 4006 /** 4007 * ib_dma_mapping_error - check a DMA addr for error 4008 * @dev: The device for which the dma_addr was created 4009 * @dma_addr: The DMA address to check 4010 */ 4011 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 4012 { 4013 if (ib_uses_virt_dma(dev)) 4014 return 0; 4015 return dma_mapping_error(dev->dma_device, dma_addr); 4016 } 4017 4018 /** 4019 * ib_dma_map_single - Map a kernel virtual address to DMA address 4020 * @dev: The device for which the dma_addr is to be created 4021 * @cpu_addr: The kernel virtual address 4022 * @size: The size of the region in bytes 4023 * @direction: The direction of the DMA 4024 */ 4025 static inline u64 ib_dma_map_single(struct ib_device *dev, 4026 void *cpu_addr, size_t size, 4027 enum dma_data_direction direction) 4028 { 4029 if (ib_uses_virt_dma(dev)) 4030 return (uintptr_t)cpu_addr; 4031 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 4032 } 4033 4034 /** 4035 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 4036 * @dev: The device for which the DMA address was created 4037 * @addr: The DMA address 4038 * @size: The size of the region in bytes 4039 * @direction: The direction of the DMA 4040 */ 4041 static inline void ib_dma_unmap_single(struct ib_device *dev, 4042 u64 addr, size_t size, 4043 enum dma_data_direction direction) 4044 { 4045 if (!ib_uses_virt_dma(dev)) 4046 dma_unmap_single(dev->dma_device, addr, size, direction); 4047 } 4048 4049 /** 4050 * ib_dma_map_page - Map a physical page to DMA address 4051 * @dev: The device for which the dma_addr is to be created 4052 * @page: The page to be mapped 4053 * @offset: The offset within the page 4054 * @size: The size of the region in bytes 4055 * @direction: The direction of the DMA 4056 */ 4057 static inline u64 ib_dma_map_page(struct ib_device *dev, 4058 struct page *page, 4059 unsigned long offset, 4060 size_t size, 4061 enum dma_data_direction direction) 4062 { 4063 if (ib_uses_virt_dma(dev)) 4064 return (uintptr_t)(page_address(page) + offset); 4065 return dma_map_page(dev->dma_device, page, offset, size, direction); 4066 } 4067 4068 /** 4069 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 4070 * @dev: The device for which the DMA address was created 4071 * @addr: The DMA address 4072 * @size: The size of the region in bytes 4073 * @direction: The direction of the DMA 4074 */ 4075 static inline void ib_dma_unmap_page(struct ib_device *dev, 4076 u64 addr, size_t size, 4077 enum dma_data_direction direction) 4078 { 4079 if (!ib_uses_virt_dma(dev)) 4080 dma_unmap_page(dev->dma_device, addr, size, direction); 4081 } 4082 4083 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents); 4084 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 4085 struct scatterlist *sg, int nents, 4086 enum dma_data_direction direction, 4087 unsigned long dma_attrs) 4088 { 4089 if (ib_uses_virt_dma(dev)) 4090 return ib_dma_virt_map_sg(dev, sg, nents); 4091 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, 4092 dma_attrs); 4093 } 4094 4095 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 4096 struct scatterlist *sg, int nents, 4097 enum dma_data_direction direction, 4098 unsigned long dma_attrs) 4099 { 4100 if (!ib_uses_virt_dma(dev)) 4101 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, 4102 dma_attrs); 4103 } 4104 4105 /** 4106 * ib_dma_map_sgtable_attrs - Map a scatter/gather table to DMA addresses 4107 * @dev: The device for which the DMA addresses are to be created 4108 * @sg: The sg_table object describing the buffer 4109 * @direction: The direction of the DMA 4110 * @attrs: Optional DMA attributes for the map operation 4111 */ 4112 static inline int ib_dma_map_sgtable_attrs(struct ib_device *dev, 4113 struct sg_table *sgt, 4114 enum dma_data_direction direction, 4115 unsigned long dma_attrs) 4116 { 4117 int nents; 4118 4119 if (ib_uses_virt_dma(dev)) { 4120 nents = ib_dma_virt_map_sg(dev, sgt->sgl, sgt->orig_nents); 4121 if (!nents) 4122 return -EIO; 4123 sgt->nents = nents; 4124 return 0; 4125 } 4126 return dma_map_sgtable(dev->dma_device, sgt, direction, dma_attrs); 4127 } 4128 4129 static inline void ib_dma_unmap_sgtable_attrs(struct ib_device *dev, 4130 struct sg_table *sgt, 4131 enum dma_data_direction direction, 4132 unsigned long dma_attrs) 4133 { 4134 if (!ib_uses_virt_dma(dev)) 4135 dma_unmap_sgtable(dev->dma_device, sgt, direction, dma_attrs); 4136 } 4137 4138 /** 4139 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 4140 * @dev: The device for which the DMA addresses are to be created 4141 * @sg: The array of scatter/gather entries 4142 * @nents: The number of scatter/gather entries 4143 * @direction: The direction of the DMA 4144 */ 4145 static inline int ib_dma_map_sg(struct ib_device *dev, 4146 struct scatterlist *sg, int nents, 4147 enum dma_data_direction direction) 4148 { 4149 return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0); 4150 } 4151 4152 /** 4153 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 4154 * @dev: The device for which the DMA addresses were created 4155 * @sg: The array of scatter/gather entries 4156 * @nents: The number of scatter/gather entries 4157 * @direction: The direction of the DMA 4158 */ 4159 static inline void ib_dma_unmap_sg(struct ib_device *dev, 4160 struct scatterlist *sg, int nents, 4161 enum dma_data_direction direction) 4162 { 4163 ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0); 4164 } 4165 4166 /** 4167 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer 4168 * @dev: The device to query 4169 * 4170 * The returned value represents a size in bytes. 4171 */ 4172 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev) 4173 { 4174 if (ib_uses_virt_dma(dev)) 4175 return UINT_MAX; 4176 return dma_get_max_seg_size(dev->dma_device); 4177 } 4178 4179 /** 4180 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 4181 * @dev: The device for which the DMA address was created 4182 * @addr: The DMA address 4183 * @size: The size of the region in bytes 4184 * @dir: The direction of the DMA 4185 */ 4186 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 4187 u64 addr, 4188 size_t size, 4189 enum dma_data_direction dir) 4190 { 4191 if (!ib_uses_virt_dma(dev)) 4192 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 4193 } 4194 4195 /** 4196 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 4197 * @dev: The device for which the DMA address was created 4198 * @addr: The DMA address 4199 * @size: The size of the region in bytes 4200 * @dir: The direction of the DMA 4201 */ 4202 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 4203 u64 addr, 4204 size_t size, 4205 enum dma_data_direction dir) 4206 { 4207 if (!ib_uses_virt_dma(dev)) 4208 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 4209 } 4210 4211 /* ib_reg_user_mr - register a memory region for virtual addresses from kernel 4212 * space. This function should be called when 'current' is the owning MM. 4213 */ 4214 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 4215 u64 virt_addr, int mr_access_flags); 4216 4217 /* ib_advise_mr - give an advice about an address range in a memory region */ 4218 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice, 4219 u32 flags, struct ib_sge *sg_list, u32 num_sge); 4220 /** 4221 * ib_dereg_mr_user - Deregisters a memory region and removes it from the 4222 * HCA translation table. 4223 * @mr: The memory region to deregister. 4224 * @udata: Valid user data or NULL for kernel object 4225 * 4226 * This function can fail, if the memory region has memory windows bound to it. 4227 */ 4228 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata); 4229 4230 /** 4231 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the 4232 * HCA translation table. 4233 * @mr: The memory region to deregister. 4234 * 4235 * This function can fail, if the memory region has memory windows bound to it. 4236 * 4237 * NOTE: for user mr use ib_dereg_mr_user with valid udata! 4238 */ 4239 static inline int ib_dereg_mr(struct ib_mr *mr) 4240 { 4241 return ib_dereg_mr_user(mr, NULL); 4242 } 4243 4244 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 4245 u32 max_num_sg); 4246 4247 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd, 4248 u32 max_num_data_sg, 4249 u32 max_num_meta_sg); 4250 4251 /** 4252 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 4253 * R_Key and L_Key. 4254 * @mr - struct ib_mr pointer to be updated. 4255 * @newkey - new key to be used. 4256 */ 4257 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 4258 { 4259 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 4260 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 4261 } 4262 4263 /** 4264 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 4265 * for calculating a new rkey for type 2 memory windows. 4266 * @rkey - the rkey to increment. 4267 */ 4268 static inline u32 ib_inc_rkey(u32 rkey) 4269 { 4270 const u32 mask = 0x000000ff; 4271 return ((rkey + 1) & mask) | (rkey & ~mask); 4272 } 4273 4274 /** 4275 * ib_attach_mcast - Attaches the specified QP to a multicast group. 4276 * @qp: QP to attach to the multicast group. The QP must be type 4277 * IB_QPT_UD. 4278 * @gid: Multicast group GID. 4279 * @lid: Multicast group LID in host byte order. 4280 * 4281 * In order to send and receive multicast packets, subnet 4282 * administration must have created the multicast group and configured 4283 * the fabric appropriately. The port associated with the specified 4284 * QP must also be a member of the multicast group. 4285 */ 4286 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 4287 4288 /** 4289 * ib_detach_mcast - Detaches the specified QP from a multicast group. 4290 * @qp: QP to detach from the multicast group. 4291 * @gid: Multicast group GID. 4292 * @lid: Multicast group LID in host byte order. 4293 */ 4294 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 4295 4296 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device, 4297 struct inode *inode, struct ib_udata *udata); 4298 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata); 4299 4300 static inline int ib_check_mr_access(struct ib_device *ib_dev, 4301 unsigned int flags) 4302 { 4303 /* 4304 * Local write permission is required if remote write or 4305 * remote atomic permission is also requested. 4306 */ 4307 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 4308 !(flags & IB_ACCESS_LOCAL_WRITE)) 4309 return -EINVAL; 4310 4311 if (flags & ~IB_ACCESS_SUPPORTED) 4312 return -EINVAL; 4313 4314 if (flags & IB_ACCESS_ON_DEMAND && 4315 !(ib_dev->attrs.device_cap_flags & IB_DEVICE_ON_DEMAND_PAGING)) 4316 return -EINVAL; 4317 return 0; 4318 } 4319 4320 static inline bool ib_access_writable(int access_flags) 4321 { 4322 /* 4323 * We have writable memory backing the MR if any of the following 4324 * access flags are set. "Local write" and "remote write" obviously 4325 * require write access. "Remote atomic" can do things like fetch and 4326 * add, which will modify memory, and "MW bind" can change permissions 4327 * by binding a window. 4328 */ 4329 return access_flags & 4330 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | 4331 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND); 4332 } 4333 4334 /** 4335 * ib_check_mr_status: lightweight check of MR status. 4336 * This routine may provide status checks on a selected 4337 * ib_mr. first use is for signature status check. 4338 * 4339 * @mr: A memory region. 4340 * @check_mask: Bitmask of which checks to perform from 4341 * ib_mr_status_check enumeration. 4342 * @mr_status: The container of relevant status checks. 4343 * failed checks will be indicated in the status bitmask 4344 * and the relevant info shall be in the error item. 4345 */ 4346 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 4347 struct ib_mr_status *mr_status); 4348 4349 /** 4350 * ib_device_try_get: Hold a registration lock 4351 * device: The device to lock 4352 * 4353 * A device under an active registration lock cannot become unregistered. It 4354 * is only possible to obtain a registration lock on a device that is fully 4355 * registered, otherwise this function returns false. 4356 * 4357 * The registration lock is only necessary for actions which require the 4358 * device to still be registered. Uses that only require the device pointer to 4359 * be valid should use get_device(&ibdev->dev) to hold the memory. 4360 * 4361 */ 4362 static inline bool ib_device_try_get(struct ib_device *dev) 4363 { 4364 return refcount_inc_not_zero(&dev->refcount); 4365 } 4366 4367 void ib_device_put(struct ib_device *device); 4368 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev, 4369 enum rdma_driver_id driver_id); 4370 struct ib_device *ib_device_get_by_name(const char *name, 4371 enum rdma_driver_id driver_id); 4372 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u32 port, 4373 u16 pkey, const union ib_gid *gid, 4374 const struct sockaddr *addr); 4375 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev, 4376 unsigned int port); 4377 struct net_device *ib_device_netdev(struct ib_device *dev, u32 port); 4378 4379 struct ib_wq *ib_create_wq(struct ib_pd *pd, 4380 struct ib_wq_init_attr *init_attr); 4381 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata); 4382 4383 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 4384 unsigned int *sg_offset, unsigned int page_size); 4385 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg, 4386 int data_sg_nents, unsigned int *data_sg_offset, 4387 struct scatterlist *meta_sg, int meta_sg_nents, 4388 unsigned int *meta_sg_offset, unsigned int page_size); 4389 4390 static inline int 4391 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 4392 unsigned int *sg_offset, unsigned int page_size) 4393 { 4394 int n; 4395 4396 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size); 4397 mr->iova = 0; 4398 4399 return n; 4400 } 4401 4402 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 4403 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64)); 4404 4405 void ib_drain_rq(struct ib_qp *qp); 4406 void ib_drain_sq(struct ib_qp *qp); 4407 void ib_drain_qp(struct ib_qp *qp); 4408 4409 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed, 4410 u8 *width); 4411 4412 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr) 4413 { 4414 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE) 4415 return attr->roce.dmac; 4416 return NULL; 4417 } 4418 4419 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid) 4420 { 4421 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4422 attr->ib.dlid = (u16)dlid; 4423 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4424 attr->opa.dlid = dlid; 4425 } 4426 4427 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr) 4428 { 4429 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4430 return attr->ib.dlid; 4431 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4432 return attr->opa.dlid; 4433 return 0; 4434 } 4435 4436 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl) 4437 { 4438 attr->sl = sl; 4439 } 4440 4441 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr) 4442 { 4443 return attr->sl; 4444 } 4445 4446 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr, 4447 u8 src_path_bits) 4448 { 4449 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4450 attr->ib.src_path_bits = src_path_bits; 4451 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4452 attr->opa.src_path_bits = src_path_bits; 4453 } 4454 4455 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr) 4456 { 4457 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4458 return attr->ib.src_path_bits; 4459 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4460 return attr->opa.src_path_bits; 4461 return 0; 4462 } 4463 4464 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr, 4465 bool make_grd) 4466 { 4467 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4468 attr->opa.make_grd = make_grd; 4469 } 4470 4471 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr) 4472 { 4473 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4474 return attr->opa.make_grd; 4475 return false; 4476 } 4477 4478 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u32 port_num) 4479 { 4480 attr->port_num = port_num; 4481 } 4482 4483 static inline u32 rdma_ah_get_port_num(const struct rdma_ah_attr *attr) 4484 { 4485 return attr->port_num; 4486 } 4487 4488 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr, 4489 u8 static_rate) 4490 { 4491 attr->static_rate = static_rate; 4492 } 4493 4494 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr) 4495 { 4496 return attr->static_rate; 4497 } 4498 4499 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr, 4500 enum ib_ah_flags flag) 4501 { 4502 attr->ah_flags = flag; 4503 } 4504 4505 static inline enum ib_ah_flags 4506 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr) 4507 { 4508 return attr->ah_flags; 4509 } 4510 4511 static inline const struct ib_global_route 4512 *rdma_ah_read_grh(const struct rdma_ah_attr *attr) 4513 { 4514 return &attr->grh; 4515 } 4516 4517 /*To retrieve and modify the grh */ 4518 static inline struct ib_global_route 4519 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr) 4520 { 4521 return &attr->grh; 4522 } 4523 4524 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid) 4525 { 4526 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4527 4528 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid)); 4529 } 4530 4531 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr, 4532 __be64 prefix) 4533 { 4534 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4535 4536 grh->dgid.global.subnet_prefix = prefix; 4537 } 4538 4539 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr, 4540 __be64 if_id) 4541 { 4542 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4543 4544 grh->dgid.global.interface_id = if_id; 4545 } 4546 4547 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr, 4548 union ib_gid *dgid, u32 flow_label, 4549 u8 sgid_index, u8 hop_limit, 4550 u8 traffic_class) 4551 { 4552 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4553 4554 attr->ah_flags = IB_AH_GRH; 4555 if (dgid) 4556 grh->dgid = *dgid; 4557 grh->flow_label = flow_label; 4558 grh->sgid_index = sgid_index; 4559 grh->hop_limit = hop_limit; 4560 grh->traffic_class = traffic_class; 4561 grh->sgid_attr = NULL; 4562 } 4563 4564 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr); 4565 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid, 4566 u32 flow_label, u8 hop_limit, u8 traffic_class, 4567 const struct ib_gid_attr *sgid_attr); 4568 void rdma_copy_ah_attr(struct rdma_ah_attr *dest, 4569 const struct rdma_ah_attr *src); 4570 void rdma_replace_ah_attr(struct rdma_ah_attr *old, 4571 const struct rdma_ah_attr *new); 4572 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src); 4573 4574 /** 4575 * rdma_ah_find_type - Return address handle type. 4576 * 4577 * @dev: Device to be checked 4578 * @port_num: Port number 4579 */ 4580 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev, 4581 u32 port_num) 4582 { 4583 if (rdma_protocol_roce(dev, port_num)) 4584 return RDMA_AH_ATTR_TYPE_ROCE; 4585 if (rdma_protocol_ib(dev, port_num)) { 4586 if (rdma_cap_opa_ah(dev, port_num)) 4587 return RDMA_AH_ATTR_TYPE_OPA; 4588 return RDMA_AH_ATTR_TYPE_IB; 4589 } 4590 4591 return RDMA_AH_ATTR_TYPE_UNDEFINED; 4592 } 4593 4594 /** 4595 * ib_lid_cpu16 - Return lid in 16bit CPU encoding. 4596 * In the current implementation the only way to get 4597 * get the 32bit lid is from other sources for OPA. 4598 * For IB, lids will always be 16bits so cast the 4599 * value accordingly. 4600 * 4601 * @lid: A 32bit LID 4602 */ 4603 static inline u16 ib_lid_cpu16(u32 lid) 4604 { 4605 WARN_ON_ONCE(lid & 0xFFFF0000); 4606 return (u16)lid; 4607 } 4608 4609 /** 4610 * ib_lid_be16 - Return lid in 16bit BE encoding. 4611 * 4612 * @lid: A 32bit LID 4613 */ 4614 static inline __be16 ib_lid_be16(u32 lid) 4615 { 4616 WARN_ON_ONCE(lid & 0xFFFF0000); 4617 return cpu_to_be16((u16)lid); 4618 } 4619 4620 /** 4621 * ib_get_vector_affinity - Get the affinity mappings of a given completion 4622 * vector 4623 * @device: the rdma device 4624 * @comp_vector: index of completion vector 4625 * 4626 * Returns NULL on failure, otherwise a corresponding cpu map of the 4627 * completion vector (returns all-cpus map if the device driver doesn't 4628 * implement get_vector_affinity). 4629 */ 4630 static inline const struct cpumask * 4631 ib_get_vector_affinity(struct ib_device *device, int comp_vector) 4632 { 4633 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors || 4634 !device->ops.get_vector_affinity) 4635 return NULL; 4636 4637 return device->ops.get_vector_affinity(device, comp_vector); 4638 4639 } 4640 4641 /** 4642 * rdma_roce_rescan_device - Rescan all of the network devices in the system 4643 * and add their gids, as needed, to the relevant RoCE devices. 4644 * 4645 * @device: the rdma device 4646 */ 4647 void rdma_roce_rescan_device(struct ib_device *ibdev); 4648 4649 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile); 4650 4651 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs); 4652 4653 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num, 4654 enum rdma_netdev_t type, const char *name, 4655 unsigned char name_assign_type, 4656 void (*setup)(struct net_device *)); 4657 4658 int rdma_init_netdev(struct ib_device *device, u32 port_num, 4659 enum rdma_netdev_t type, const char *name, 4660 unsigned char name_assign_type, 4661 void (*setup)(struct net_device *), 4662 struct net_device *netdev); 4663 4664 /** 4665 * rdma_device_to_ibdev - Get ib_device pointer from device pointer 4666 * 4667 * @device: device pointer for which ib_device pointer to retrieve 4668 * 4669 * rdma_device_to_ibdev() retrieves ib_device pointer from device. 4670 * 4671 */ 4672 static inline struct ib_device *rdma_device_to_ibdev(struct device *device) 4673 { 4674 struct ib_core_device *coredev = 4675 container_of(device, struct ib_core_device, dev); 4676 4677 return coredev->owner; 4678 } 4679 4680 /** 4681 * ibdev_to_node - return the NUMA node for a given ib_device 4682 * @dev: device to get the NUMA node for. 4683 */ 4684 static inline int ibdev_to_node(struct ib_device *ibdev) 4685 { 4686 struct device *parent = ibdev->dev.parent; 4687 4688 if (!parent) 4689 return NUMA_NO_NODE; 4690 return dev_to_node(parent); 4691 } 4692 4693 /** 4694 * rdma_device_to_drv_device - Helper macro to reach back to driver's 4695 * ib_device holder structure from device pointer. 4696 * 4697 * NOTE: New drivers should not make use of this API; This API is only for 4698 * existing drivers who have exposed sysfs entries using 4699 * ops->device_group. 4700 */ 4701 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \ 4702 container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member) 4703 4704 bool rdma_dev_access_netns(const struct ib_device *device, 4705 const struct net *net); 4706 4707 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000) 4708 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF) 4709 #define IB_GRH_FLOWLABEL_MASK (0x000FFFFF) 4710 4711 /** 4712 * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based 4713 * on the flow_label 4714 * 4715 * This function will convert the 20 bit flow_label input to a valid RoCE v2 4716 * UDP src port 14 bit value. All RoCE V2 drivers should use this same 4717 * convention. 4718 */ 4719 static inline u16 rdma_flow_label_to_udp_sport(u32 fl) 4720 { 4721 u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000; 4722 4723 fl_low ^= fl_high >> 14; 4724 return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN); 4725 } 4726 4727 /** 4728 * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on 4729 * local and remote qpn values 4730 * 4731 * This function folded the multiplication results of two qpns, 24 bit each, 4732 * fields, and converts it to a 20 bit results. 4733 * 4734 * This function will create symmetric flow_label value based on the local 4735 * and remote qpn values. this will allow both the requester and responder 4736 * to calculate the same flow_label for a given connection. 4737 * 4738 * This helper function should be used by driver in case the upper layer 4739 * provide a zero flow_label value. This is to improve entropy of RDMA 4740 * traffic in the network. 4741 */ 4742 static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn) 4743 { 4744 u64 v = (u64)lqpn * rqpn; 4745 4746 v ^= v >> 20; 4747 v ^= v >> 40; 4748 4749 return (u32)(v & IB_GRH_FLOWLABEL_MASK); 4750 } 4751 4752 /** 4753 * rdma_get_udp_sport - Calculate and set UDP source port based on the flow 4754 * label. If flow label is not defined in GRH then 4755 * calculate it based on lqpn/rqpn. 4756 * 4757 * @fl: flow label from GRH 4758 * @lqpn: local qp number 4759 * @rqpn: remote qp number 4760 */ 4761 static inline u16 rdma_get_udp_sport(u32 fl, u32 lqpn, u32 rqpn) 4762 { 4763 if (!fl) 4764 fl = rdma_calc_flow_label(lqpn, rqpn); 4765 4766 return rdma_flow_label_to_udp_sport(fl); 4767 } 4768 4769 const struct ib_port_immutable* 4770 ib_port_immutable_read(struct ib_device *dev, unsigned int port); 4771 #endif /* IB_VERBS_H */ 4772