xref: /openbmc/linux/include/rdma/ib_verbs.h (revision b7019ac5)
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38 
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41 
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/dma-mapping.h>
45 #include <linux/kref.h>
46 #include <linux/list.h>
47 #include <linux/rwsem.h>
48 #include <linux/workqueue.h>
49 #include <linux/irq_poll.h>
50 #include <uapi/linux/if_ether.h>
51 #include <net/ipv6.h>
52 #include <net/ip.h>
53 #include <linux/string.h>
54 #include <linux/slab.h>
55 #include <linux/netdevice.h>
56 #include <linux/refcount.h>
57 #include <linux/if_link.h>
58 #include <linux/atomic.h>
59 #include <linux/mmu_notifier.h>
60 #include <linux/uaccess.h>
61 #include <linux/cgroup_rdma.h>
62 #include <linux/irqflags.h>
63 #include <linux/preempt.h>
64 #include <uapi/rdma/ib_user_verbs.h>
65 #include <rdma/restrack.h>
66 #include <uapi/rdma/rdma_user_ioctl.h>
67 #include <uapi/rdma/ib_user_ioctl_verbs.h>
68 
69 #define IB_FW_VERSION_NAME_MAX	ETHTOOL_FWVERS_LEN
70 
71 struct ib_umem_odp;
72 
73 extern struct workqueue_struct *ib_wq;
74 extern struct workqueue_struct *ib_comp_wq;
75 extern struct workqueue_struct *ib_comp_unbound_wq;
76 
77 __printf(3, 4) __cold
78 void ibdev_printk(const char *level, const struct ib_device *ibdev,
79 		  const char *format, ...);
80 __printf(2, 3) __cold
81 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
82 __printf(2, 3) __cold
83 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
84 __printf(2, 3) __cold
85 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
86 __printf(2, 3) __cold
87 void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
88 __printf(2, 3) __cold
89 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
90 __printf(2, 3) __cold
91 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
92 __printf(2, 3) __cold
93 void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
94 
95 #if defined(CONFIG_DYNAMIC_DEBUG)
96 #define ibdev_dbg(__dev, format, args...)                       \
97 	dynamic_ibdev_dbg(__dev, format, ##args)
98 #elif defined(DEBUG)
99 #define ibdev_dbg(__dev, format, args...)                       \
100 	ibdev_printk(KERN_DEBUG, __dev, format, ##args)
101 #else
102 __printf(2, 3) __cold
103 static inline
104 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
105 #endif
106 
107 union ib_gid {
108 	u8	raw[16];
109 	struct {
110 		__be64	subnet_prefix;
111 		__be64	interface_id;
112 	} global;
113 };
114 
115 extern union ib_gid zgid;
116 
117 enum ib_gid_type {
118 	/* If link layer is Ethernet, this is RoCE V1 */
119 	IB_GID_TYPE_IB        = 0,
120 	IB_GID_TYPE_ROCE      = 0,
121 	IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
122 	IB_GID_TYPE_SIZE
123 };
124 
125 #define ROCE_V2_UDP_DPORT      4791
126 struct ib_gid_attr {
127 	struct net_device __rcu	*ndev;
128 	struct ib_device	*device;
129 	union ib_gid		gid;
130 	enum ib_gid_type	gid_type;
131 	u16			index;
132 	u8			port_num;
133 };
134 
135 enum rdma_node_type {
136 	/* IB values map to NodeInfo:NodeType. */
137 	RDMA_NODE_IB_CA 	= 1,
138 	RDMA_NODE_IB_SWITCH,
139 	RDMA_NODE_IB_ROUTER,
140 	RDMA_NODE_RNIC,
141 	RDMA_NODE_USNIC,
142 	RDMA_NODE_USNIC_UDP,
143 	RDMA_NODE_UNSPECIFIED,
144 };
145 
146 enum {
147 	/* set the local administered indication */
148 	IB_SA_WELL_KNOWN_GUID	= BIT_ULL(57) | 2,
149 };
150 
151 enum rdma_transport_type {
152 	RDMA_TRANSPORT_IB,
153 	RDMA_TRANSPORT_IWARP,
154 	RDMA_TRANSPORT_USNIC,
155 	RDMA_TRANSPORT_USNIC_UDP,
156 	RDMA_TRANSPORT_UNSPECIFIED,
157 };
158 
159 enum rdma_protocol_type {
160 	RDMA_PROTOCOL_IB,
161 	RDMA_PROTOCOL_IBOE,
162 	RDMA_PROTOCOL_IWARP,
163 	RDMA_PROTOCOL_USNIC_UDP
164 };
165 
166 __attribute_const__ enum rdma_transport_type
167 rdma_node_get_transport(enum rdma_node_type node_type);
168 
169 enum rdma_network_type {
170 	RDMA_NETWORK_IB,
171 	RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
172 	RDMA_NETWORK_IPV4,
173 	RDMA_NETWORK_IPV6
174 };
175 
176 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
177 {
178 	if (network_type == RDMA_NETWORK_IPV4 ||
179 	    network_type == RDMA_NETWORK_IPV6)
180 		return IB_GID_TYPE_ROCE_UDP_ENCAP;
181 
182 	/* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
183 	return IB_GID_TYPE_IB;
184 }
185 
186 static inline enum rdma_network_type
187 rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
188 {
189 	if (attr->gid_type == IB_GID_TYPE_IB)
190 		return RDMA_NETWORK_IB;
191 
192 	if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
193 		return RDMA_NETWORK_IPV4;
194 	else
195 		return RDMA_NETWORK_IPV6;
196 }
197 
198 enum rdma_link_layer {
199 	IB_LINK_LAYER_UNSPECIFIED,
200 	IB_LINK_LAYER_INFINIBAND,
201 	IB_LINK_LAYER_ETHERNET,
202 };
203 
204 enum ib_device_cap_flags {
205 	IB_DEVICE_RESIZE_MAX_WR			= (1 << 0),
206 	IB_DEVICE_BAD_PKEY_CNTR			= (1 << 1),
207 	IB_DEVICE_BAD_QKEY_CNTR			= (1 << 2),
208 	IB_DEVICE_RAW_MULTI			= (1 << 3),
209 	IB_DEVICE_AUTO_PATH_MIG			= (1 << 4),
210 	IB_DEVICE_CHANGE_PHY_PORT		= (1 << 5),
211 	IB_DEVICE_UD_AV_PORT_ENFORCE		= (1 << 6),
212 	IB_DEVICE_CURR_QP_STATE_MOD		= (1 << 7),
213 	IB_DEVICE_SHUTDOWN_PORT			= (1 << 8),
214 	/* Not in use, former INIT_TYPE		= (1 << 9),*/
215 	IB_DEVICE_PORT_ACTIVE_EVENT		= (1 << 10),
216 	IB_DEVICE_SYS_IMAGE_GUID		= (1 << 11),
217 	IB_DEVICE_RC_RNR_NAK_GEN		= (1 << 12),
218 	IB_DEVICE_SRQ_RESIZE			= (1 << 13),
219 	IB_DEVICE_N_NOTIFY_CQ			= (1 << 14),
220 
221 	/*
222 	 * This device supports a per-device lkey or stag that can be
223 	 * used without performing a memory registration for the local
224 	 * memory.  Note that ULPs should never check this flag, but
225 	 * instead of use the local_dma_lkey flag in the ib_pd structure,
226 	 * which will always contain a usable lkey.
227 	 */
228 	IB_DEVICE_LOCAL_DMA_LKEY		= (1 << 15),
229 	/* Reserved, old SEND_W_INV		= (1 << 16),*/
230 	IB_DEVICE_MEM_WINDOW			= (1 << 17),
231 	/*
232 	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
233 	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
234 	 * messages and can verify the validity of checksum for
235 	 * incoming messages.  Setting this flag implies that the
236 	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
237 	 */
238 	IB_DEVICE_UD_IP_CSUM			= (1 << 18),
239 	IB_DEVICE_UD_TSO			= (1 << 19),
240 	IB_DEVICE_XRC				= (1 << 20),
241 
242 	/*
243 	 * This device supports the IB "base memory management extension",
244 	 * which includes support for fast registrations (IB_WR_REG_MR,
245 	 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs).  This flag should
246 	 * also be set by any iWarp device which must support FRs to comply
247 	 * to the iWarp verbs spec.  iWarp devices also support the
248 	 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
249 	 * stag.
250 	 */
251 	IB_DEVICE_MEM_MGT_EXTENSIONS		= (1 << 21),
252 	IB_DEVICE_BLOCK_MULTICAST_LOOPBACK	= (1 << 22),
253 	IB_DEVICE_MEM_WINDOW_TYPE_2A		= (1 << 23),
254 	IB_DEVICE_MEM_WINDOW_TYPE_2B		= (1 << 24),
255 	IB_DEVICE_RC_IP_CSUM			= (1 << 25),
256 	/* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
257 	IB_DEVICE_RAW_IP_CSUM			= (1 << 26),
258 	/*
259 	 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
260 	 * support execution of WQEs that involve synchronization
261 	 * of I/O operations with single completion queue managed
262 	 * by hardware.
263 	 */
264 	IB_DEVICE_CROSS_CHANNEL			= (1 << 27),
265 	IB_DEVICE_MANAGED_FLOW_STEERING		= (1 << 29),
266 	IB_DEVICE_SIGNATURE_HANDOVER		= (1 << 30),
267 	IB_DEVICE_ON_DEMAND_PAGING		= (1ULL << 31),
268 	IB_DEVICE_SG_GAPS_REG			= (1ULL << 32),
269 	IB_DEVICE_VIRTUAL_FUNCTION		= (1ULL << 33),
270 	/* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
271 	IB_DEVICE_RAW_SCATTER_FCS		= (1ULL << 34),
272 	IB_DEVICE_RDMA_NETDEV_OPA_VNIC		= (1ULL << 35),
273 	/* The device supports padding incoming writes to cacheline. */
274 	IB_DEVICE_PCI_WRITE_END_PADDING		= (1ULL << 36),
275 	IB_DEVICE_ALLOW_USER_UNREG		= (1ULL << 37),
276 };
277 
278 enum ib_signature_prot_cap {
279 	IB_PROT_T10DIF_TYPE_1 = 1,
280 	IB_PROT_T10DIF_TYPE_2 = 1 << 1,
281 	IB_PROT_T10DIF_TYPE_3 = 1 << 2,
282 };
283 
284 enum ib_signature_guard_cap {
285 	IB_GUARD_T10DIF_CRC	= 1,
286 	IB_GUARD_T10DIF_CSUM	= 1 << 1,
287 };
288 
289 enum ib_atomic_cap {
290 	IB_ATOMIC_NONE,
291 	IB_ATOMIC_HCA,
292 	IB_ATOMIC_GLOB
293 };
294 
295 enum ib_odp_general_cap_bits {
296 	IB_ODP_SUPPORT		= 1 << 0,
297 	IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
298 };
299 
300 enum ib_odp_transport_cap_bits {
301 	IB_ODP_SUPPORT_SEND	= 1 << 0,
302 	IB_ODP_SUPPORT_RECV	= 1 << 1,
303 	IB_ODP_SUPPORT_WRITE	= 1 << 2,
304 	IB_ODP_SUPPORT_READ	= 1 << 3,
305 	IB_ODP_SUPPORT_ATOMIC	= 1 << 4,
306 	IB_ODP_SUPPORT_SRQ_RECV	= 1 << 5,
307 };
308 
309 struct ib_odp_caps {
310 	uint64_t general_caps;
311 	struct {
312 		uint32_t  rc_odp_caps;
313 		uint32_t  uc_odp_caps;
314 		uint32_t  ud_odp_caps;
315 		uint32_t  xrc_odp_caps;
316 	} per_transport_caps;
317 };
318 
319 struct ib_rss_caps {
320 	/* Corresponding bit will be set if qp type from
321 	 * 'enum ib_qp_type' is supported, e.g.
322 	 * supported_qpts |= 1 << IB_QPT_UD
323 	 */
324 	u32 supported_qpts;
325 	u32 max_rwq_indirection_tables;
326 	u32 max_rwq_indirection_table_size;
327 };
328 
329 enum ib_tm_cap_flags {
330 	/*  Support tag matching on RC transport */
331 	IB_TM_CAP_RC		    = 1 << 0,
332 };
333 
334 struct ib_tm_caps {
335 	/* Max size of RNDV header */
336 	u32 max_rndv_hdr_size;
337 	/* Max number of entries in tag matching list */
338 	u32 max_num_tags;
339 	/* From enum ib_tm_cap_flags */
340 	u32 flags;
341 	/* Max number of outstanding list operations */
342 	u32 max_ops;
343 	/* Max number of SGE in tag matching entry */
344 	u32 max_sge;
345 };
346 
347 struct ib_cq_init_attr {
348 	unsigned int	cqe;
349 	int		comp_vector;
350 	u32		flags;
351 };
352 
353 enum ib_cq_attr_mask {
354 	IB_CQ_MODERATE = 1 << 0,
355 };
356 
357 struct ib_cq_caps {
358 	u16     max_cq_moderation_count;
359 	u16     max_cq_moderation_period;
360 };
361 
362 struct ib_dm_mr_attr {
363 	u64		length;
364 	u64		offset;
365 	u32		access_flags;
366 };
367 
368 struct ib_dm_alloc_attr {
369 	u64	length;
370 	u32	alignment;
371 	u32	flags;
372 };
373 
374 struct ib_device_attr {
375 	u64			fw_ver;
376 	__be64			sys_image_guid;
377 	u64			max_mr_size;
378 	u64			page_size_cap;
379 	u32			vendor_id;
380 	u32			vendor_part_id;
381 	u32			hw_ver;
382 	int			max_qp;
383 	int			max_qp_wr;
384 	u64			device_cap_flags;
385 	int			max_send_sge;
386 	int			max_recv_sge;
387 	int			max_sge_rd;
388 	int			max_cq;
389 	int			max_cqe;
390 	int			max_mr;
391 	int			max_pd;
392 	int			max_qp_rd_atom;
393 	int			max_ee_rd_atom;
394 	int			max_res_rd_atom;
395 	int			max_qp_init_rd_atom;
396 	int			max_ee_init_rd_atom;
397 	enum ib_atomic_cap	atomic_cap;
398 	enum ib_atomic_cap	masked_atomic_cap;
399 	int			max_ee;
400 	int			max_rdd;
401 	int			max_mw;
402 	int			max_raw_ipv6_qp;
403 	int			max_raw_ethy_qp;
404 	int			max_mcast_grp;
405 	int			max_mcast_qp_attach;
406 	int			max_total_mcast_qp_attach;
407 	int			max_ah;
408 	int			max_fmr;
409 	int			max_map_per_fmr;
410 	int			max_srq;
411 	int			max_srq_wr;
412 	int			max_srq_sge;
413 	unsigned int		max_fast_reg_page_list_len;
414 	u16			max_pkeys;
415 	u8			local_ca_ack_delay;
416 	int			sig_prot_cap;
417 	int			sig_guard_cap;
418 	struct ib_odp_caps	odp_caps;
419 	uint64_t		timestamp_mask;
420 	uint64_t		hca_core_clock; /* in KHZ */
421 	struct ib_rss_caps	rss_caps;
422 	u32			max_wq_type_rq;
423 	u32			raw_packet_caps; /* Use ib_raw_packet_caps enum */
424 	struct ib_tm_caps	tm_caps;
425 	struct ib_cq_caps       cq_caps;
426 	u64			max_dm_size;
427 };
428 
429 enum ib_mtu {
430 	IB_MTU_256  = 1,
431 	IB_MTU_512  = 2,
432 	IB_MTU_1024 = 3,
433 	IB_MTU_2048 = 4,
434 	IB_MTU_4096 = 5
435 };
436 
437 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
438 {
439 	switch (mtu) {
440 	case IB_MTU_256:  return  256;
441 	case IB_MTU_512:  return  512;
442 	case IB_MTU_1024: return 1024;
443 	case IB_MTU_2048: return 2048;
444 	case IB_MTU_4096: return 4096;
445 	default: 	  return -1;
446 	}
447 }
448 
449 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
450 {
451 	if (mtu >= 4096)
452 		return IB_MTU_4096;
453 	else if (mtu >= 2048)
454 		return IB_MTU_2048;
455 	else if (mtu >= 1024)
456 		return IB_MTU_1024;
457 	else if (mtu >= 512)
458 		return IB_MTU_512;
459 	else
460 		return IB_MTU_256;
461 }
462 
463 enum ib_port_state {
464 	IB_PORT_NOP		= 0,
465 	IB_PORT_DOWN		= 1,
466 	IB_PORT_INIT		= 2,
467 	IB_PORT_ARMED		= 3,
468 	IB_PORT_ACTIVE		= 4,
469 	IB_PORT_ACTIVE_DEFER	= 5
470 };
471 
472 enum ib_port_width {
473 	IB_WIDTH_1X	= 1,
474 	IB_WIDTH_2X	= 16,
475 	IB_WIDTH_4X	= 2,
476 	IB_WIDTH_8X	= 4,
477 	IB_WIDTH_12X	= 8
478 };
479 
480 static inline int ib_width_enum_to_int(enum ib_port_width width)
481 {
482 	switch (width) {
483 	case IB_WIDTH_1X:  return  1;
484 	case IB_WIDTH_2X:  return  2;
485 	case IB_WIDTH_4X:  return  4;
486 	case IB_WIDTH_8X:  return  8;
487 	case IB_WIDTH_12X: return 12;
488 	default: 	  return -1;
489 	}
490 }
491 
492 enum ib_port_speed {
493 	IB_SPEED_SDR	= 1,
494 	IB_SPEED_DDR	= 2,
495 	IB_SPEED_QDR	= 4,
496 	IB_SPEED_FDR10	= 8,
497 	IB_SPEED_FDR	= 16,
498 	IB_SPEED_EDR	= 32,
499 	IB_SPEED_HDR	= 64
500 };
501 
502 /**
503  * struct rdma_hw_stats
504  * @lock - Mutex to protect parallel write access to lifespan and values
505  *    of counters, which are 64bits and not guaranteeed to be written
506  *    atomicaly on 32bits systems.
507  * @timestamp - Used by the core code to track when the last update was
508  * @lifespan - Used by the core code to determine how old the counters
509  *   should be before being updated again.  Stored in jiffies, defaults
510  *   to 10 milliseconds, drivers can override the default be specifying
511  *   their own value during their allocation routine.
512  * @name - Array of pointers to static names used for the counters in
513  *   directory.
514  * @num_counters - How many hardware counters there are.  If name is
515  *   shorter than this number, a kernel oops will result.  Driver authors
516  *   are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
517  *   in their code to prevent this.
518  * @value - Array of u64 counters that are accessed by the sysfs code and
519  *   filled in by the drivers get_stats routine
520  */
521 struct rdma_hw_stats {
522 	struct mutex	lock; /* Protect lifespan and values[] */
523 	unsigned long	timestamp;
524 	unsigned long	lifespan;
525 	const char * const *names;
526 	int		num_counters;
527 	u64		value[];
528 };
529 
530 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
531 /**
532  * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
533  *   for drivers.
534  * @names - Array of static const char *
535  * @num_counters - How many elements in array
536  * @lifespan - How many milliseconds between updates
537  */
538 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
539 		const char * const *names, int num_counters,
540 		unsigned long lifespan)
541 {
542 	struct rdma_hw_stats *stats;
543 
544 	stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
545 			GFP_KERNEL);
546 	if (!stats)
547 		return NULL;
548 	stats->names = names;
549 	stats->num_counters = num_counters;
550 	stats->lifespan = msecs_to_jiffies(lifespan);
551 
552 	return stats;
553 }
554 
555 
556 /* Define bits for the various functionality this port needs to be supported by
557  * the core.
558  */
559 /* Management                           0x00000FFF */
560 #define RDMA_CORE_CAP_IB_MAD            0x00000001
561 #define RDMA_CORE_CAP_IB_SMI            0x00000002
562 #define RDMA_CORE_CAP_IB_CM             0x00000004
563 #define RDMA_CORE_CAP_IW_CM             0x00000008
564 #define RDMA_CORE_CAP_IB_SA             0x00000010
565 #define RDMA_CORE_CAP_OPA_MAD           0x00000020
566 
567 /* Address format                       0x000FF000 */
568 #define RDMA_CORE_CAP_AF_IB             0x00001000
569 #define RDMA_CORE_CAP_ETH_AH            0x00002000
570 #define RDMA_CORE_CAP_OPA_AH            0x00004000
571 #define RDMA_CORE_CAP_IB_GRH_REQUIRED   0x00008000
572 
573 /* Protocol                             0xFFF00000 */
574 #define RDMA_CORE_CAP_PROT_IB           0x00100000
575 #define RDMA_CORE_CAP_PROT_ROCE         0x00200000
576 #define RDMA_CORE_CAP_PROT_IWARP        0x00400000
577 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
578 #define RDMA_CORE_CAP_PROT_RAW_PACKET   0x01000000
579 #define RDMA_CORE_CAP_PROT_USNIC        0x02000000
580 
581 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
582 					| RDMA_CORE_CAP_PROT_ROCE     \
583 					| RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
584 
585 #define RDMA_CORE_PORT_IBA_IB          (RDMA_CORE_CAP_PROT_IB  \
586 					| RDMA_CORE_CAP_IB_MAD \
587 					| RDMA_CORE_CAP_IB_SMI \
588 					| RDMA_CORE_CAP_IB_CM  \
589 					| RDMA_CORE_CAP_IB_SA  \
590 					| RDMA_CORE_CAP_AF_IB)
591 #define RDMA_CORE_PORT_IBA_ROCE        (RDMA_CORE_CAP_PROT_ROCE \
592 					| RDMA_CORE_CAP_IB_MAD  \
593 					| RDMA_CORE_CAP_IB_CM   \
594 					| RDMA_CORE_CAP_AF_IB   \
595 					| RDMA_CORE_CAP_ETH_AH)
596 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP			\
597 					(RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
598 					| RDMA_CORE_CAP_IB_MAD  \
599 					| RDMA_CORE_CAP_IB_CM   \
600 					| RDMA_CORE_CAP_AF_IB   \
601 					| RDMA_CORE_CAP_ETH_AH)
602 #define RDMA_CORE_PORT_IWARP           (RDMA_CORE_CAP_PROT_IWARP \
603 					| RDMA_CORE_CAP_IW_CM)
604 #define RDMA_CORE_PORT_INTEL_OPA       (RDMA_CORE_PORT_IBA_IB  \
605 					| RDMA_CORE_CAP_OPA_MAD)
606 
607 #define RDMA_CORE_PORT_RAW_PACKET	(RDMA_CORE_CAP_PROT_RAW_PACKET)
608 
609 #define RDMA_CORE_PORT_USNIC		(RDMA_CORE_CAP_PROT_USNIC)
610 
611 struct ib_port_attr {
612 	u64			subnet_prefix;
613 	enum ib_port_state	state;
614 	enum ib_mtu		max_mtu;
615 	enum ib_mtu		active_mtu;
616 	int			gid_tbl_len;
617 	unsigned int		ip_gids:1;
618 	/* This is the value from PortInfo CapabilityMask, defined by IBA */
619 	u32			port_cap_flags;
620 	u32			max_msg_sz;
621 	u32			bad_pkey_cntr;
622 	u32			qkey_viol_cntr;
623 	u16			pkey_tbl_len;
624 	u32			sm_lid;
625 	u32			lid;
626 	u8			lmc;
627 	u8			max_vl_num;
628 	u8			sm_sl;
629 	u8			subnet_timeout;
630 	u8			init_type_reply;
631 	u8			active_width;
632 	u8			active_speed;
633 	u8                      phys_state;
634 	u16			port_cap_flags2;
635 };
636 
637 enum ib_device_modify_flags {
638 	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
639 	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
640 };
641 
642 #define IB_DEVICE_NODE_DESC_MAX 64
643 
644 struct ib_device_modify {
645 	u64	sys_image_guid;
646 	char	node_desc[IB_DEVICE_NODE_DESC_MAX];
647 };
648 
649 enum ib_port_modify_flags {
650 	IB_PORT_SHUTDOWN		= 1,
651 	IB_PORT_INIT_TYPE		= (1<<2),
652 	IB_PORT_RESET_QKEY_CNTR		= (1<<3),
653 	IB_PORT_OPA_MASK_CHG		= (1<<4)
654 };
655 
656 struct ib_port_modify {
657 	u32	set_port_cap_mask;
658 	u32	clr_port_cap_mask;
659 	u8	init_type;
660 };
661 
662 enum ib_event_type {
663 	IB_EVENT_CQ_ERR,
664 	IB_EVENT_QP_FATAL,
665 	IB_EVENT_QP_REQ_ERR,
666 	IB_EVENT_QP_ACCESS_ERR,
667 	IB_EVENT_COMM_EST,
668 	IB_EVENT_SQ_DRAINED,
669 	IB_EVENT_PATH_MIG,
670 	IB_EVENT_PATH_MIG_ERR,
671 	IB_EVENT_DEVICE_FATAL,
672 	IB_EVENT_PORT_ACTIVE,
673 	IB_EVENT_PORT_ERR,
674 	IB_EVENT_LID_CHANGE,
675 	IB_EVENT_PKEY_CHANGE,
676 	IB_EVENT_SM_CHANGE,
677 	IB_EVENT_SRQ_ERR,
678 	IB_EVENT_SRQ_LIMIT_REACHED,
679 	IB_EVENT_QP_LAST_WQE_REACHED,
680 	IB_EVENT_CLIENT_REREGISTER,
681 	IB_EVENT_GID_CHANGE,
682 	IB_EVENT_WQ_FATAL,
683 };
684 
685 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
686 
687 struct ib_event {
688 	struct ib_device	*device;
689 	union {
690 		struct ib_cq	*cq;
691 		struct ib_qp	*qp;
692 		struct ib_srq	*srq;
693 		struct ib_wq	*wq;
694 		u8		port_num;
695 	} element;
696 	enum ib_event_type	event;
697 };
698 
699 struct ib_event_handler {
700 	struct ib_device *device;
701 	void            (*handler)(struct ib_event_handler *, struct ib_event *);
702 	struct list_head  list;
703 };
704 
705 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
706 	do {							\
707 		(_ptr)->device  = _device;			\
708 		(_ptr)->handler = _handler;			\
709 		INIT_LIST_HEAD(&(_ptr)->list);			\
710 	} while (0)
711 
712 struct ib_global_route {
713 	const struct ib_gid_attr *sgid_attr;
714 	union ib_gid	dgid;
715 	u32		flow_label;
716 	u8		sgid_index;
717 	u8		hop_limit;
718 	u8		traffic_class;
719 };
720 
721 struct ib_grh {
722 	__be32		version_tclass_flow;
723 	__be16		paylen;
724 	u8		next_hdr;
725 	u8		hop_limit;
726 	union ib_gid	sgid;
727 	union ib_gid	dgid;
728 };
729 
730 union rdma_network_hdr {
731 	struct ib_grh ibgrh;
732 	struct {
733 		/* The IB spec states that if it's IPv4, the header
734 		 * is located in the last 20 bytes of the header.
735 		 */
736 		u8		reserved[20];
737 		struct iphdr	roce4grh;
738 	};
739 };
740 
741 #define IB_QPN_MASK		0xFFFFFF
742 
743 enum {
744 	IB_MULTICAST_QPN = 0xffffff
745 };
746 
747 #define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
748 #define IB_MULTICAST_LID_BASE	cpu_to_be16(0xC000)
749 
750 enum ib_ah_flags {
751 	IB_AH_GRH	= 1
752 };
753 
754 enum ib_rate {
755 	IB_RATE_PORT_CURRENT = 0,
756 	IB_RATE_2_5_GBPS = 2,
757 	IB_RATE_5_GBPS   = 5,
758 	IB_RATE_10_GBPS  = 3,
759 	IB_RATE_20_GBPS  = 6,
760 	IB_RATE_30_GBPS  = 4,
761 	IB_RATE_40_GBPS  = 7,
762 	IB_RATE_60_GBPS  = 8,
763 	IB_RATE_80_GBPS  = 9,
764 	IB_RATE_120_GBPS = 10,
765 	IB_RATE_14_GBPS  = 11,
766 	IB_RATE_56_GBPS  = 12,
767 	IB_RATE_112_GBPS = 13,
768 	IB_RATE_168_GBPS = 14,
769 	IB_RATE_25_GBPS  = 15,
770 	IB_RATE_100_GBPS = 16,
771 	IB_RATE_200_GBPS = 17,
772 	IB_RATE_300_GBPS = 18,
773 	IB_RATE_28_GBPS  = 19,
774 	IB_RATE_50_GBPS  = 20,
775 	IB_RATE_400_GBPS = 21,
776 	IB_RATE_600_GBPS = 22,
777 };
778 
779 /**
780  * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
781  * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
782  * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
783  * @rate: rate to convert.
784  */
785 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
786 
787 /**
788  * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
789  * For example, IB_RATE_2_5_GBPS will be converted to 2500.
790  * @rate: rate to convert.
791  */
792 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
793 
794 
795 /**
796  * enum ib_mr_type - memory region type
797  * @IB_MR_TYPE_MEM_REG:       memory region that is used for
798  *                            normal registration
799  * @IB_MR_TYPE_SIGNATURE:     memory region that is used for
800  *                            signature operations (data-integrity
801  *                            capable regions)
802  * @IB_MR_TYPE_SG_GAPS:       memory region that is capable to
803  *                            register any arbitrary sg lists (without
804  *                            the normal mr constraints - see
805  *                            ib_map_mr_sg)
806  */
807 enum ib_mr_type {
808 	IB_MR_TYPE_MEM_REG,
809 	IB_MR_TYPE_SIGNATURE,
810 	IB_MR_TYPE_SG_GAPS,
811 };
812 
813 /**
814  * Signature types
815  * IB_SIG_TYPE_NONE: Unprotected.
816  * IB_SIG_TYPE_T10_DIF: Type T10-DIF
817  */
818 enum ib_signature_type {
819 	IB_SIG_TYPE_NONE,
820 	IB_SIG_TYPE_T10_DIF,
821 };
822 
823 /**
824  * Signature T10-DIF block-guard types
825  * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
826  * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
827  */
828 enum ib_t10_dif_bg_type {
829 	IB_T10DIF_CRC,
830 	IB_T10DIF_CSUM
831 };
832 
833 /**
834  * struct ib_t10_dif_domain - Parameters specific for T10-DIF
835  *     domain.
836  * @bg_type: T10-DIF block guard type (CRC|CSUM)
837  * @pi_interval: protection information interval.
838  * @bg: seed of guard computation.
839  * @app_tag: application tag of guard block
840  * @ref_tag: initial guard block reference tag.
841  * @ref_remap: Indicate wethear the reftag increments each block
842  * @app_escape: Indicate to skip block check if apptag=0xffff
843  * @ref_escape: Indicate to skip block check if reftag=0xffffffff
844  * @apptag_check_mask: check bitmask of application tag.
845  */
846 struct ib_t10_dif_domain {
847 	enum ib_t10_dif_bg_type bg_type;
848 	u16			pi_interval;
849 	u16			bg;
850 	u16			app_tag;
851 	u32			ref_tag;
852 	bool			ref_remap;
853 	bool			app_escape;
854 	bool			ref_escape;
855 	u16			apptag_check_mask;
856 };
857 
858 /**
859  * struct ib_sig_domain - Parameters for signature domain
860  * @sig_type: specific signauture type
861  * @sig: union of all signature domain attributes that may
862  *     be used to set domain layout.
863  */
864 struct ib_sig_domain {
865 	enum ib_signature_type sig_type;
866 	union {
867 		struct ib_t10_dif_domain dif;
868 	} sig;
869 };
870 
871 /**
872  * struct ib_sig_attrs - Parameters for signature handover operation
873  * @check_mask: bitmask for signature byte check (8 bytes)
874  * @mem: memory domain layout desciptor.
875  * @wire: wire domain layout desciptor.
876  */
877 struct ib_sig_attrs {
878 	u8			check_mask;
879 	struct ib_sig_domain	mem;
880 	struct ib_sig_domain	wire;
881 };
882 
883 enum ib_sig_err_type {
884 	IB_SIG_BAD_GUARD,
885 	IB_SIG_BAD_REFTAG,
886 	IB_SIG_BAD_APPTAG,
887 };
888 
889 /**
890  * Signature check masks (8 bytes in total) according to the T10-PI standard:
891  *  -------- -------- ------------
892  * | GUARD  | APPTAG |   REFTAG   |
893  * |  2B    |  2B    |    4B      |
894  *  -------- -------- ------------
895  */
896 enum {
897 	IB_SIG_CHECK_GUARD	= 0xc0,
898 	IB_SIG_CHECK_APPTAG	= 0x30,
899 	IB_SIG_CHECK_REFTAG	= 0x0f,
900 };
901 
902 /**
903  * struct ib_sig_err - signature error descriptor
904  */
905 struct ib_sig_err {
906 	enum ib_sig_err_type	err_type;
907 	u32			expected;
908 	u32			actual;
909 	u64			sig_err_offset;
910 	u32			key;
911 };
912 
913 enum ib_mr_status_check {
914 	IB_MR_CHECK_SIG_STATUS = 1,
915 };
916 
917 /**
918  * struct ib_mr_status - Memory region status container
919  *
920  * @fail_status: Bitmask of MR checks status. For each
921  *     failed check a corresponding status bit is set.
922  * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
923  *     failure.
924  */
925 struct ib_mr_status {
926 	u32		    fail_status;
927 	struct ib_sig_err   sig_err;
928 };
929 
930 /**
931  * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
932  * enum.
933  * @mult: multiple to convert.
934  */
935 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
936 
937 enum rdma_ah_attr_type {
938 	RDMA_AH_ATTR_TYPE_UNDEFINED,
939 	RDMA_AH_ATTR_TYPE_IB,
940 	RDMA_AH_ATTR_TYPE_ROCE,
941 	RDMA_AH_ATTR_TYPE_OPA,
942 };
943 
944 struct ib_ah_attr {
945 	u16			dlid;
946 	u8			src_path_bits;
947 };
948 
949 struct roce_ah_attr {
950 	u8			dmac[ETH_ALEN];
951 };
952 
953 struct opa_ah_attr {
954 	u32			dlid;
955 	u8			src_path_bits;
956 	bool			make_grd;
957 };
958 
959 struct rdma_ah_attr {
960 	struct ib_global_route	grh;
961 	u8			sl;
962 	u8			static_rate;
963 	u8			port_num;
964 	u8			ah_flags;
965 	enum rdma_ah_attr_type type;
966 	union {
967 		struct ib_ah_attr ib;
968 		struct roce_ah_attr roce;
969 		struct opa_ah_attr opa;
970 	};
971 };
972 
973 enum ib_wc_status {
974 	IB_WC_SUCCESS,
975 	IB_WC_LOC_LEN_ERR,
976 	IB_WC_LOC_QP_OP_ERR,
977 	IB_WC_LOC_EEC_OP_ERR,
978 	IB_WC_LOC_PROT_ERR,
979 	IB_WC_WR_FLUSH_ERR,
980 	IB_WC_MW_BIND_ERR,
981 	IB_WC_BAD_RESP_ERR,
982 	IB_WC_LOC_ACCESS_ERR,
983 	IB_WC_REM_INV_REQ_ERR,
984 	IB_WC_REM_ACCESS_ERR,
985 	IB_WC_REM_OP_ERR,
986 	IB_WC_RETRY_EXC_ERR,
987 	IB_WC_RNR_RETRY_EXC_ERR,
988 	IB_WC_LOC_RDD_VIOL_ERR,
989 	IB_WC_REM_INV_RD_REQ_ERR,
990 	IB_WC_REM_ABORT_ERR,
991 	IB_WC_INV_EECN_ERR,
992 	IB_WC_INV_EEC_STATE_ERR,
993 	IB_WC_FATAL_ERR,
994 	IB_WC_RESP_TIMEOUT_ERR,
995 	IB_WC_GENERAL_ERR
996 };
997 
998 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
999 
1000 enum ib_wc_opcode {
1001 	IB_WC_SEND,
1002 	IB_WC_RDMA_WRITE,
1003 	IB_WC_RDMA_READ,
1004 	IB_WC_COMP_SWAP,
1005 	IB_WC_FETCH_ADD,
1006 	IB_WC_LSO,
1007 	IB_WC_LOCAL_INV,
1008 	IB_WC_REG_MR,
1009 	IB_WC_MASKED_COMP_SWAP,
1010 	IB_WC_MASKED_FETCH_ADD,
1011 /*
1012  * Set value of IB_WC_RECV so consumers can test if a completion is a
1013  * receive by testing (opcode & IB_WC_RECV).
1014  */
1015 	IB_WC_RECV			= 1 << 7,
1016 	IB_WC_RECV_RDMA_WITH_IMM
1017 };
1018 
1019 enum ib_wc_flags {
1020 	IB_WC_GRH		= 1,
1021 	IB_WC_WITH_IMM		= (1<<1),
1022 	IB_WC_WITH_INVALIDATE	= (1<<2),
1023 	IB_WC_IP_CSUM_OK	= (1<<3),
1024 	IB_WC_WITH_SMAC		= (1<<4),
1025 	IB_WC_WITH_VLAN		= (1<<5),
1026 	IB_WC_WITH_NETWORK_HDR_TYPE	= (1<<6),
1027 };
1028 
1029 struct ib_wc {
1030 	union {
1031 		u64		wr_id;
1032 		struct ib_cqe	*wr_cqe;
1033 	};
1034 	enum ib_wc_status	status;
1035 	enum ib_wc_opcode	opcode;
1036 	u32			vendor_err;
1037 	u32			byte_len;
1038 	struct ib_qp	       *qp;
1039 	union {
1040 		__be32		imm_data;
1041 		u32		invalidate_rkey;
1042 	} ex;
1043 	u32			src_qp;
1044 	u32			slid;
1045 	int			wc_flags;
1046 	u16			pkey_index;
1047 	u8			sl;
1048 	u8			dlid_path_bits;
1049 	u8			port_num;	/* valid only for DR SMPs on switches */
1050 	u8			smac[ETH_ALEN];
1051 	u16			vlan_id;
1052 	u8			network_hdr_type;
1053 };
1054 
1055 enum ib_cq_notify_flags {
1056 	IB_CQ_SOLICITED			= 1 << 0,
1057 	IB_CQ_NEXT_COMP			= 1 << 1,
1058 	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1059 	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
1060 };
1061 
1062 enum ib_srq_type {
1063 	IB_SRQT_BASIC,
1064 	IB_SRQT_XRC,
1065 	IB_SRQT_TM,
1066 };
1067 
1068 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1069 {
1070 	return srq_type == IB_SRQT_XRC ||
1071 	       srq_type == IB_SRQT_TM;
1072 }
1073 
1074 enum ib_srq_attr_mask {
1075 	IB_SRQ_MAX_WR	= 1 << 0,
1076 	IB_SRQ_LIMIT	= 1 << 1,
1077 };
1078 
1079 struct ib_srq_attr {
1080 	u32	max_wr;
1081 	u32	max_sge;
1082 	u32	srq_limit;
1083 };
1084 
1085 struct ib_srq_init_attr {
1086 	void		      (*event_handler)(struct ib_event *, void *);
1087 	void		       *srq_context;
1088 	struct ib_srq_attr	attr;
1089 	enum ib_srq_type	srq_type;
1090 
1091 	struct {
1092 		struct ib_cq   *cq;
1093 		union {
1094 			struct {
1095 				struct ib_xrcd *xrcd;
1096 			} xrc;
1097 
1098 			struct {
1099 				u32		max_num_tags;
1100 			} tag_matching;
1101 		};
1102 	} ext;
1103 };
1104 
1105 struct ib_qp_cap {
1106 	u32	max_send_wr;
1107 	u32	max_recv_wr;
1108 	u32	max_send_sge;
1109 	u32	max_recv_sge;
1110 	u32	max_inline_data;
1111 
1112 	/*
1113 	 * Maximum number of rdma_rw_ctx structures in flight at a time.
1114 	 * ib_create_qp() will calculate the right amount of neededed WRs
1115 	 * and MRs based on this.
1116 	 */
1117 	u32	max_rdma_ctxs;
1118 };
1119 
1120 enum ib_sig_type {
1121 	IB_SIGNAL_ALL_WR,
1122 	IB_SIGNAL_REQ_WR
1123 };
1124 
1125 enum ib_qp_type {
1126 	/*
1127 	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1128 	 * here (and in that order) since the MAD layer uses them as
1129 	 * indices into a 2-entry table.
1130 	 */
1131 	IB_QPT_SMI,
1132 	IB_QPT_GSI,
1133 
1134 	IB_QPT_RC,
1135 	IB_QPT_UC,
1136 	IB_QPT_UD,
1137 	IB_QPT_RAW_IPV6,
1138 	IB_QPT_RAW_ETHERTYPE,
1139 	IB_QPT_RAW_PACKET = 8,
1140 	IB_QPT_XRC_INI = 9,
1141 	IB_QPT_XRC_TGT,
1142 	IB_QPT_MAX,
1143 	IB_QPT_DRIVER = 0xFF,
1144 	/* Reserve a range for qp types internal to the low level driver.
1145 	 * These qp types will not be visible at the IB core layer, so the
1146 	 * IB_QPT_MAX usages should not be affected in the core layer
1147 	 */
1148 	IB_QPT_RESERVED1 = 0x1000,
1149 	IB_QPT_RESERVED2,
1150 	IB_QPT_RESERVED3,
1151 	IB_QPT_RESERVED4,
1152 	IB_QPT_RESERVED5,
1153 	IB_QPT_RESERVED6,
1154 	IB_QPT_RESERVED7,
1155 	IB_QPT_RESERVED8,
1156 	IB_QPT_RESERVED9,
1157 	IB_QPT_RESERVED10,
1158 };
1159 
1160 enum ib_qp_create_flags {
1161 	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
1162 	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	= 1 << 1,
1163 	IB_QP_CREATE_CROSS_CHANNEL              = 1 << 2,
1164 	IB_QP_CREATE_MANAGED_SEND               = 1 << 3,
1165 	IB_QP_CREATE_MANAGED_RECV               = 1 << 4,
1166 	IB_QP_CREATE_NETIF_QP			= 1 << 5,
1167 	IB_QP_CREATE_SIGNATURE_EN		= 1 << 6,
1168 	/* FREE					= 1 << 7, */
1169 	IB_QP_CREATE_SCATTER_FCS		= 1 << 8,
1170 	IB_QP_CREATE_CVLAN_STRIPPING		= 1 << 9,
1171 	IB_QP_CREATE_SOURCE_QPN			= 1 << 10,
1172 	IB_QP_CREATE_PCI_WRITE_END_PADDING	= 1 << 11,
1173 	/* reserve bits 26-31 for low level drivers' internal use */
1174 	IB_QP_CREATE_RESERVED_START		= 1 << 26,
1175 	IB_QP_CREATE_RESERVED_END		= 1 << 31,
1176 };
1177 
1178 /*
1179  * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1180  * callback to destroy the passed in QP.
1181  */
1182 
1183 struct ib_qp_init_attr {
1184 	/* Consumer's event_handler callback must not block */
1185 	void                  (*event_handler)(struct ib_event *, void *);
1186 
1187 	void		       *qp_context;
1188 	struct ib_cq	       *send_cq;
1189 	struct ib_cq	       *recv_cq;
1190 	struct ib_srq	       *srq;
1191 	struct ib_xrcd	       *xrcd;     /* XRC TGT QPs only */
1192 	struct ib_qp_cap	cap;
1193 	enum ib_sig_type	sq_sig_type;
1194 	enum ib_qp_type		qp_type;
1195 	u32			create_flags;
1196 
1197 	/*
1198 	 * Only needed for special QP types, or when using the RW API.
1199 	 */
1200 	u8			port_num;
1201 	struct ib_rwq_ind_table *rwq_ind_tbl;
1202 	u32			source_qpn;
1203 };
1204 
1205 struct ib_qp_open_attr {
1206 	void                  (*event_handler)(struct ib_event *, void *);
1207 	void		       *qp_context;
1208 	u32			qp_num;
1209 	enum ib_qp_type		qp_type;
1210 };
1211 
1212 enum ib_rnr_timeout {
1213 	IB_RNR_TIMER_655_36 =  0,
1214 	IB_RNR_TIMER_000_01 =  1,
1215 	IB_RNR_TIMER_000_02 =  2,
1216 	IB_RNR_TIMER_000_03 =  3,
1217 	IB_RNR_TIMER_000_04 =  4,
1218 	IB_RNR_TIMER_000_06 =  5,
1219 	IB_RNR_TIMER_000_08 =  6,
1220 	IB_RNR_TIMER_000_12 =  7,
1221 	IB_RNR_TIMER_000_16 =  8,
1222 	IB_RNR_TIMER_000_24 =  9,
1223 	IB_RNR_TIMER_000_32 = 10,
1224 	IB_RNR_TIMER_000_48 = 11,
1225 	IB_RNR_TIMER_000_64 = 12,
1226 	IB_RNR_TIMER_000_96 = 13,
1227 	IB_RNR_TIMER_001_28 = 14,
1228 	IB_RNR_TIMER_001_92 = 15,
1229 	IB_RNR_TIMER_002_56 = 16,
1230 	IB_RNR_TIMER_003_84 = 17,
1231 	IB_RNR_TIMER_005_12 = 18,
1232 	IB_RNR_TIMER_007_68 = 19,
1233 	IB_RNR_TIMER_010_24 = 20,
1234 	IB_RNR_TIMER_015_36 = 21,
1235 	IB_RNR_TIMER_020_48 = 22,
1236 	IB_RNR_TIMER_030_72 = 23,
1237 	IB_RNR_TIMER_040_96 = 24,
1238 	IB_RNR_TIMER_061_44 = 25,
1239 	IB_RNR_TIMER_081_92 = 26,
1240 	IB_RNR_TIMER_122_88 = 27,
1241 	IB_RNR_TIMER_163_84 = 28,
1242 	IB_RNR_TIMER_245_76 = 29,
1243 	IB_RNR_TIMER_327_68 = 30,
1244 	IB_RNR_TIMER_491_52 = 31
1245 };
1246 
1247 enum ib_qp_attr_mask {
1248 	IB_QP_STATE			= 1,
1249 	IB_QP_CUR_STATE			= (1<<1),
1250 	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
1251 	IB_QP_ACCESS_FLAGS		= (1<<3),
1252 	IB_QP_PKEY_INDEX		= (1<<4),
1253 	IB_QP_PORT			= (1<<5),
1254 	IB_QP_QKEY			= (1<<6),
1255 	IB_QP_AV			= (1<<7),
1256 	IB_QP_PATH_MTU			= (1<<8),
1257 	IB_QP_TIMEOUT			= (1<<9),
1258 	IB_QP_RETRY_CNT			= (1<<10),
1259 	IB_QP_RNR_RETRY			= (1<<11),
1260 	IB_QP_RQ_PSN			= (1<<12),
1261 	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
1262 	IB_QP_ALT_PATH			= (1<<14),
1263 	IB_QP_MIN_RNR_TIMER		= (1<<15),
1264 	IB_QP_SQ_PSN			= (1<<16),
1265 	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
1266 	IB_QP_PATH_MIG_STATE		= (1<<18),
1267 	IB_QP_CAP			= (1<<19),
1268 	IB_QP_DEST_QPN			= (1<<20),
1269 	IB_QP_RESERVED1			= (1<<21),
1270 	IB_QP_RESERVED2			= (1<<22),
1271 	IB_QP_RESERVED3			= (1<<23),
1272 	IB_QP_RESERVED4			= (1<<24),
1273 	IB_QP_RATE_LIMIT		= (1<<25),
1274 };
1275 
1276 enum ib_qp_state {
1277 	IB_QPS_RESET,
1278 	IB_QPS_INIT,
1279 	IB_QPS_RTR,
1280 	IB_QPS_RTS,
1281 	IB_QPS_SQD,
1282 	IB_QPS_SQE,
1283 	IB_QPS_ERR
1284 };
1285 
1286 enum ib_mig_state {
1287 	IB_MIG_MIGRATED,
1288 	IB_MIG_REARM,
1289 	IB_MIG_ARMED
1290 };
1291 
1292 enum ib_mw_type {
1293 	IB_MW_TYPE_1 = 1,
1294 	IB_MW_TYPE_2 = 2
1295 };
1296 
1297 struct ib_qp_attr {
1298 	enum ib_qp_state	qp_state;
1299 	enum ib_qp_state	cur_qp_state;
1300 	enum ib_mtu		path_mtu;
1301 	enum ib_mig_state	path_mig_state;
1302 	u32			qkey;
1303 	u32			rq_psn;
1304 	u32			sq_psn;
1305 	u32			dest_qp_num;
1306 	int			qp_access_flags;
1307 	struct ib_qp_cap	cap;
1308 	struct rdma_ah_attr	ah_attr;
1309 	struct rdma_ah_attr	alt_ah_attr;
1310 	u16			pkey_index;
1311 	u16			alt_pkey_index;
1312 	u8			en_sqd_async_notify;
1313 	u8			sq_draining;
1314 	u8			max_rd_atomic;
1315 	u8			max_dest_rd_atomic;
1316 	u8			min_rnr_timer;
1317 	u8			port_num;
1318 	u8			timeout;
1319 	u8			retry_cnt;
1320 	u8			rnr_retry;
1321 	u8			alt_port_num;
1322 	u8			alt_timeout;
1323 	u32			rate_limit;
1324 };
1325 
1326 enum ib_wr_opcode {
1327 	/* These are shared with userspace */
1328 	IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1329 	IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1330 	IB_WR_SEND = IB_UVERBS_WR_SEND,
1331 	IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1332 	IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1333 	IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1334 	IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1335 	IB_WR_LSO = IB_UVERBS_WR_TSO,
1336 	IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1337 	IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1338 	IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1339 	IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1340 		IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1341 	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1342 		IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1343 
1344 	/* These are kernel only and can not be issued by userspace */
1345 	IB_WR_REG_MR = 0x20,
1346 	IB_WR_REG_SIG_MR,
1347 
1348 	/* reserve values for low level drivers' internal use.
1349 	 * These values will not be used at all in the ib core layer.
1350 	 */
1351 	IB_WR_RESERVED1 = 0xf0,
1352 	IB_WR_RESERVED2,
1353 	IB_WR_RESERVED3,
1354 	IB_WR_RESERVED4,
1355 	IB_WR_RESERVED5,
1356 	IB_WR_RESERVED6,
1357 	IB_WR_RESERVED7,
1358 	IB_WR_RESERVED8,
1359 	IB_WR_RESERVED9,
1360 	IB_WR_RESERVED10,
1361 };
1362 
1363 enum ib_send_flags {
1364 	IB_SEND_FENCE		= 1,
1365 	IB_SEND_SIGNALED	= (1<<1),
1366 	IB_SEND_SOLICITED	= (1<<2),
1367 	IB_SEND_INLINE		= (1<<3),
1368 	IB_SEND_IP_CSUM		= (1<<4),
1369 
1370 	/* reserve bits 26-31 for low level drivers' internal use */
1371 	IB_SEND_RESERVED_START	= (1 << 26),
1372 	IB_SEND_RESERVED_END	= (1 << 31),
1373 };
1374 
1375 struct ib_sge {
1376 	u64	addr;
1377 	u32	length;
1378 	u32	lkey;
1379 };
1380 
1381 struct ib_cqe {
1382 	void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1383 };
1384 
1385 struct ib_send_wr {
1386 	struct ib_send_wr      *next;
1387 	union {
1388 		u64		wr_id;
1389 		struct ib_cqe	*wr_cqe;
1390 	};
1391 	struct ib_sge	       *sg_list;
1392 	int			num_sge;
1393 	enum ib_wr_opcode	opcode;
1394 	int			send_flags;
1395 	union {
1396 		__be32		imm_data;
1397 		u32		invalidate_rkey;
1398 	} ex;
1399 };
1400 
1401 struct ib_rdma_wr {
1402 	struct ib_send_wr	wr;
1403 	u64			remote_addr;
1404 	u32			rkey;
1405 };
1406 
1407 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1408 {
1409 	return container_of(wr, struct ib_rdma_wr, wr);
1410 }
1411 
1412 struct ib_atomic_wr {
1413 	struct ib_send_wr	wr;
1414 	u64			remote_addr;
1415 	u64			compare_add;
1416 	u64			swap;
1417 	u64			compare_add_mask;
1418 	u64			swap_mask;
1419 	u32			rkey;
1420 };
1421 
1422 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1423 {
1424 	return container_of(wr, struct ib_atomic_wr, wr);
1425 }
1426 
1427 struct ib_ud_wr {
1428 	struct ib_send_wr	wr;
1429 	struct ib_ah		*ah;
1430 	void			*header;
1431 	int			hlen;
1432 	int			mss;
1433 	u32			remote_qpn;
1434 	u32			remote_qkey;
1435 	u16			pkey_index; /* valid for GSI only */
1436 	u8			port_num;   /* valid for DR SMPs on switch only */
1437 };
1438 
1439 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1440 {
1441 	return container_of(wr, struct ib_ud_wr, wr);
1442 }
1443 
1444 struct ib_reg_wr {
1445 	struct ib_send_wr	wr;
1446 	struct ib_mr		*mr;
1447 	u32			key;
1448 	int			access;
1449 };
1450 
1451 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1452 {
1453 	return container_of(wr, struct ib_reg_wr, wr);
1454 }
1455 
1456 struct ib_sig_handover_wr {
1457 	struct ib_send_wr	wr;
1458 	struct ib_sig_attrs    *sig_attrs;
1459 	struct ib_mr	       *sig_mr;
1460 	int			access_flags;
1461 	struct ib_sge	       *prot;
1462 };
1463 
1464 static inline const struct ib_sig_handover_wr *
1465 sig_handover_wr(const struct ib_send_wr *wr)
1466 {
1467 	return container_of(wr, struct ib_sig_handover_wr, wr);
1468 }
1469 
1470 struct ib_recv_wr {
1471 	struct ib_recv_wr      *next;
1472 	union {
1473 		u64		wr_id;
1474 		struct ib_cqe	*wr_cqe;
1475 	};
1476 	struct ib_sge	       *sg_list;
1477 	int			num_sge;
1478 };
1479 
1480 enum ib_access_flags {
1481 	IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1482 	IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1483 	IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1484 	IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1485 	IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1486 	IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1487 	IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1488 	IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1489 
1490 	IB_ACCESS_SUPPORTED = ((IB_ACCESS_HUGETLB << 1) - 1)
1491 };
1492 
1493 /*
1494  * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1495  * are hidden here instead of a uapi header!
1496  */
1497 enum ib_mr_rereg_flags {
1498 	IB_MR_REREG_TRANS	= 1,
1499 	IB_MR_REREG_PD		= (1<<1),
1500 	IB_MR_REREG_ACCESS	= (1<<2),
1501 	IB_MR_REREG_SUPPORTED	= ((IB_MR_REREG_ACCESS << 1) - 1)
1502 };
1503 
1504 struct ib_fmr_attr {
1505 	int	max_pages;
1506 	int	max_maps;
1507 	u8	page_shift;
1508 };
1509 
1510 struct ib_umem;
1511 
1512 enum rdma_remove_reason {
1513 	/*
1514 	 * Userspace requested uobject deletion or initial try
1515 	 * to remove uobject via cleanup. Call could fail
1516 	 */
1517 	RDMA_REMOVE_DESTROY,
1518 	/* Context deletion. This call should delete the actual object itself */
1519 	RDMA_REMOVE_CLOSE,
1520 	/* Driver is being hot-unplugged. This call should delete the actual object itself */
1521 	RDMA_REMOVE_DRIVER_REMOVE,
1522 	/* uobj is being cleaned-up before being committed */
1523 	RDMA_REMOVE_ABORT,
1524 };
1525 
1526 struct ib_rdmacg_object {
1527 #ifdef CONFIG_CGROUP_RDMA
1528 	struct rdma_cgroup	*cg;		/* owner rdma cgroup */
1529 #endif
1530 };
1531 
1532 struct ib_ucontext {
1533 	struct ib_device       *device;
1534 	struct ib_uverbs_file  *ufile;
1535 	/*
1536 	 * 'closing' can be read by the driver only during a destroy callback,
1537 	 * it is set when we are closing the file descriptor and indicates
1538 	 * that mm_sem may be locked.
1539 	 */
1540 	bool closing;
1541 
1542 	bool cleanup_retryable;
1543 
1544 	void (*invalidate_range)(struct ib_umem_odp *umem_odp,
1545 				 unsigned long start, unsigned long end);
1546 	struct mutex per_mm_list_lock;
1547 	struct list_head per_mm_list;
1548 
1549 	struct ib_rdmacg_object	cg_obj;
1550 	/*
1551 	 * Implementation details of the RDMA core, don't use in drivers:
1552 	 */
1553 	struct rdma_restrack_entry res;
1554 };
1555 
1556 struct ib_uobject {
1557 	u64			user_handle;	/* handle given to us by userspace */
1558 	/* ufile & ucontext owning this object */
1559 	struct ib_uverbs_file  *ufile;
1560 	/* FIXME, save memory: ufile->context == context */
1561 	struct ib_ucontext     *context;	/* associated user context */
1562 	void		       *object;		/* containing object */
1563 	struct list_head	list;		/* link to context's list */
1564 	struct ib_rdmacg_object	cg_obj;		/* rdmacg object */
1565 	int			id;		/* index into kernel idr */
1566 	struct kref		ref;
1567 	atomic_t		usecnt;		/* protects exclusive access */
1568 	struct rcu_head		rcu;		/* kfree_rcu() overhead */
1569 
1570 	const struct uverbs_api_object *uapi_object;
1571 };
1572 
1573 struct ib_udata {
1574 	const void __user *inbuf;
1575 	void __user *outbuf;
1576 	size_t       inlen;
1577 	size_t       outlen;
1578 };
1579 
1580 struct ib_pd {
1581 	u32			local_dma_lkey;
1582 	u32			flags;
1583 	struct ib_device       *device;
1584 	struct ib_uobject      *uobject;
1585 	atomic_t          	usecnt; /* count all resources */
1586 
1587 	u32			unsafe_global_rkey;
1588 
1589 	/*
1590 	 * Implementation details of the RDMA core, don't use in drivers:
1591 	 */
1592 	struct ib_mr	       *__internal_mr;
1593 	struct rdma_restrack_entry res;
1594 };
1595 
1596 struct ib_xrcd {
1597 	struct ib_device       *device;
1598 	atomic_t		usecnt; /* count all exposed resources */
1599 	struct inode	       *inode;
1600 
1601 	struct mutex		tgt_qp_mutex;
1602 	struct list_head	tgt_qp_list;
1603 };
1604 
1605 struct ib_ah {
1606 	struct ib_device	*device;
1607 	struct ib_pd		*pd;
1608 	struct ib_uobject	*uobject;
1609 	const struct ib_gid_attr *sgid_attr;
1610 	enum rdma_ah_attr_type	type;
1611 };
1612 
1613 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1614 
1615 enum ib_poll_context {
1616 	IB_POLL_DIRECT,		   /* caller context, no hw completions */
1617 	IB_POLL_SOFTIRQ,	   /* poll from softirq context */
1618 	IB_POLL_WORKQUEUE,	   /* poll from workqueue */
1619 	IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1620 };
1621 
1622 struct ib_cq {
1623 	struct ib_device       *device;
1624 	struct ib_uobject      *uobject;
1625 	ib_comp_handler   	comp_handler;
1626 	void                  (*event_handler)(struct ib_event *, void *);
1627 	void                   *cq_context;
1628 	int               	cqe;
1629 	atomic_t          	usecnt; /* count number of work queues */
1630 	enum ib_poll_context	poll_ctx;
1631 	struct ib_wc		*wc;
1632 	union {
1633 		struct irq_poll		iop;
1634 		struct work_struct	work;
1635 	};
1636 	struct workqueue_struct *comp_wq;
1637 	/*
1638 	 * Implementation details of the RDMA core, don't use in drivers:
1639 	 */
1640 	struct rdma_restrack_entry res;
1641 };
1642 
1643 struct ib_srq {
1644 	struct ib_device       *device;
1645 	struct ib_pd	       *pd;
1646 	struct ib_uobject      *uobject;
1647 	void		      (*event_handler)(struct ib_event *, void *);
1648 	void		       *srq_context;
1649 	enum ib_srq_type	srq_type;
1650 	atomic_t		usecnt;
1651 
1652 	struct {
1653 		struct ib_cq   *cq;
1654 		union {
1655 			struct {
1656 				struct ib_xrcd *xrcd;
1657 				u32		srq_num;
1658 			} xrc;
1659 		};
1660 	} ext;
1661 };
1662 
1663 enum ib_raw_packet_caps {
1664 	/* Strip cvlan from incoming packet and report it in the matching work
1665 	 * completion is supported.
1666 	 */
1667 	IB_RAW_PACKET_CAP_CVLAN_STRIPPING	= (1 << 0),
1668 	/* Scatter FCS field of an incoming packet to host memory is supported.
1669 	 */
1670 	IB_RAW_PACKET_CAP_SCATTER_FCS		= (1 << 1),
1671 	/* Checksum offloads are supported (for both send and receive). */
1672 	IB_RAW_PACKET_CAP_IP_CSUM		= (1 << 2),
1673 	/* When a packet is received for an RQ with no receive WQEs, the
1674 	 * packet processing is delayed.
1675 	 */
1676 	IB_RAW_PACKET_CAP_DELAY_DROP		= (1 << 3),
1677 };
1678 
1679 enum ib_wq_type {
1680 	IB_WQT_RQ
1681 };
1682 
1683 enum ib_wq_state {
1684 	IB_WQS_RESET,
1685 	IB_WQS_RDY,
1686 	IB_WQS_ERR
1687 };
1688 
1689 struct ib_wq {
1690 	struct ib_device       *device;
1691 	struct ib_uobject      *uobject;
1692 	void		    *wq_context;
1693 	void		    (*event_handler)(struct ib_event *, void *);
1694 	struct ib_pd	       *pd;
1695 	struct ib_cq	       *cq;
1696 	u32		wq_num;
1697 	enum ib_wq_state       state;
1698 	enum ib_wq_type	wq_type;
1699 	atomic_t		usecnt;
1700 };
1701 
1702 enum ib_wq_flags {
1703 	IB_WQ_FLAGS_CVLAN_STRIPPING	= 1 << 0,
1704 	IB_WQ_FLAGS_SCATTER_FCS		= 1 << 1,
1705 	IB_WQ_FLAGS_DELAY_DROP		= 1 << 2,
1706 	IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3,
1707 };
1708 
1709 struct ib_wq_init_attr {
1710 	void		       *wq_context;
1711 	enum ib_wq_type	wq_type;
1712 	u32		max_wr;
1713 	u32		max_sge;
1714 	struct	ib_cq	       *cq;
1715 	void		    (*event_handler)(struct ib_event *, void *);
1716 	u32		create_flags; /* Use enum ib_wq_flags */
1717 };
1718 
1719 enum ib_wq_attr_mask {
1720 	IB_WQ_STATE		= 1 << 0,
1721 	IB_WQ_CUR_STATE		= 1 << 1,
1722 	IB_WQ_FLAGS		= 1 << 2,
1723 };
1724 
1725 struct ib_wq_attr {
1726 	enum	ib_wq_state	wq_state;
1727 	enum	ib_wq_state	curr_wq_state;
1728 	u32			flags; /* Use enum ib_wq_flags */
1729 	u32			flags_mask; /* Use enum ib_wq_flags */
1730 };
1731 
1732 struct ib_rwq_ind_table {
1733 	struct ib_device	*device;
1734 	struct ib_uobject      *uobject;
1735 	atomic_t		usecnt;
1736 	u32		ind_tbl_num;
1737 	u32		log_ind_tbl_size;
1738 	struct ib_wq	**ind_tbl;
1739 };
1740 
1741 struct ib_rwq_ind_table_init_attr {
1742 	u32		log_ind_tbl_size;
1743 	/* Each entry is a pointer to Receive Work Queue */
1744 	struct ib_wq	**ind_tbl;
1745 };
1746 
1747 enum port_pkey_state {
1748 	IB_PORT_PKEY_NOT_VALID = 0,
1749 	IB_PORT_PKEY_VALID = 1,
1750 	IB_PORT_PKEY_LISTED = 2,
1751 };
1752 
1753 struct ib_qp_security;
1754 
1755 struct ib_port_pkey {
1756 	enum port_pkey_state	state;
1757 	u16			pkey_index;
1758 	u8			port_num;
1759 	struct list_head	qp_list;
1760 	struct list_head	to_error_list;
1761 	struct ib_qp_security  *sec;
1762 };
1763 
1764 struct ib_ports_pkeys {
1765 	struct ib_port_pkey	main;
1766 	struct ib_port_pkey	alt;
1767 };
1768 
1769 struct ib_qp_security {
1770 	struct ib_qp	       *qp;
1771 	struct ib_device       *dev;
1772 	/* Hold this mutex when changing port and pkey settings. */
1773 	struct mutex		mutex;
1774 	struct ib_ports_pkeys  *ports_pkeys;
1775 	/* A list of all open shared QP handles.  Required to enforce security
1776 	 * properly for all users of a shared QP.
1777 	 */
1778 	struct list_head        shared_qp_list;
1779 	void                   *security;
1780 	bool			destroying;
1781 	atomic_t		error_list_count;
1782 	struct completion	error_complete;
1783 	int			error_comps_pending;
1784 };
1785 
1786 /*
1787  * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1788  * @max_read_sge:  Maximum SGE elements per RDMA READ request.
1789  */
1790 struct ib_qp {
1791 	struct ib_device       *device;
1792 	struct ib_pd	       *pd;
1793 	struct ib_cq	       *send_cq;
1794 	struct ib_cq	       *recv_cq;
1795 	spinlock_t		mr_lock;
1796 	int			mrs_used;
1797 	struct list_head	rdma_mrs;
1798 	struct list_head	sig_mrs;
1799 	struct ib_srq	       *srq;
1800 	struct ib_xrcd	       *xrcd; /* XRC TGT QPs only */
1801 	struct list_head	xrcd_list;
1802 
1803 	/* count times opened, mcast attaches, flow attaches */
1804 	atomic_t		usecnt;
1805 	struct list_head	open_list;
1806 	struct ib_qp           *real_qp;
1807 	struct ib_uobject      *uobject;
1808 	void                  (*event_handler)(struct ib_event *, void *);
1809 	void		       *qp_context;
1810 	/* sgid_attrs associated with the AV's */
1811 	const struct ib_gid_attr *av_sgid_attr;
1812 	const struct ib_gid_attr *alt_path_sgid_attr;
1813 	u32			qp_num;
1814 	u32			max_write_sge;
1815 	u32			max_read_sge;
1816 	enum ib_qp_type		qp_type;
1817 	struct ib_rwq_ind_table *rwq_ind_tbl;
1818 	struct ib_qp_security  *qp_sec;
1819 	u8			port;
1820 
1821 	/*
1822 	 * Implementation details of the RDMA core, don't use in drivers:
1823 	 */
1824 	struct rdma_restrack_entry     res;
1825 };
1826 
1827 struct ib_dm {
1828 	struct ib_device  *device;
1829 	u32		   length;
1830 	u32		   flags;
1831 	struct ib_uobject *uobject;
1832 	atomic_t	   usecnt;
1833 };
1834 
1835 struct ib_mr {
1836 	struct ib_device  *device;
1837 	struct ib_pd	  *pd;
1838 	u32		   lkey;
1839 	u32		   rkey;
1840 	u64		   iova;
1841 	u64		   length;
1842 	unsigned int	   page_size;
1843 	bool		   need_inval;
1844 	union {
1845 		struct ib_uobject	*uobject;	/* user */
1846 		struct list_head	qp_entry;	/* FR */
1847 	};
1848 
1849 	struct ib_dm      *dm;
1850 
1851 	/*
1852 	 * Implementation details of the RDMA core, don't use in drivers:
1853 	 */
1854 	struct rdma_restrack_entry res;
1855 };
1856 
1857 struct ib_mw {
1858 	struct ib_device	*device;
1859 	struct ib_pd		*pd;
1860 	struct ib_uobject	*uobject;
1861 	u32			rkey;
1862 	enum ib_mw_type         type;
1863 };
1864 
1865 struct ib_fmr {
1866 	struct ib_device	*device;
1867 	struct ib_pd		*pd;
1868 	struct list_head	list;
1869 	u32			lkey;
1870 	u32			rkey;
1871 };
1872 
1873 /* Supported steering options */
1874 enum ib_flow_attr_type {
1875 	/* steering according to rule specifications */
1876 	IB_FLOW_ATTR_NORMAL		= 0x0,
1877 	/* default unicast and multicast rule -
1878 	 * receive all Eth traffic which isn't steered to any QP
1879 	 */
1880 	IB_FLOW_ATTR_ALL_DEFAULT	= 0x1,
1881 	/* default multicast rule -
1882 	 * receive all Eth multicast traffic which isn't steered to any QP
1883 	 */
1884 	IB_FLOW_ATTR_MC_DEFAULT		= 0x2,
1885 	/* sniffer rule - receive all port traffic */
1886 	IB_FLOW_ATTR_SNIFFER		= 0x3
1887 };
1888 
1889 /* Supported steering header types */
1890 enum ib_flow_spec_type {
1891 	/* L2 headers*/
1892 	IB_FLOW_SPEC_ETH		= 0x20,
1893 	IB_FLOW_SPEC_IB			= 0x22,
1894 	/* L3 header*/
1895 	IB_FLOW_SPEC_IPV4		= 0x30,
1896 	IB_FLOW_SPEC_IPV6		= 0x31,
1897 	IB_FLOW_SPEC_ESP                = 0x34,
1898 	/* L4 headers*/
1899 	IB_FLOW_SPEC_TCP		= 0x40,
1900 	IB_FLOW_SPEC_UDP		= 0x41,
1901 	IB_FLOW_SPEC_VXLAN_TUNNEL	= 0x50,
1902 	IB_FLOW_SPEC_GRE		= 0x51,
1903 	IB_FLOW_SPEC_MPLS		= 0x60,
1904 	IB_FLOW_SPEC_INNER		= 0x100,
1905 	/* Actions */
1906 	IB_FLOW_SPEC_ACTION_TAG         = 0x1000,
1907 	IB_FLOW_SPEC_ACTION_DROP        = 0x1001,
1908 	IB_FLOW_SPEC_ACTION_HANDLE	= 0x1002,
1909 	IB_FLOW_SPEC_ACTION_COUNT       = 0x1003,
1910 };
1911 #define IB_FLOW_SPEC_LAYER_MASK	0xF0
1912 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1913 
1914 /* Flow steering rule priority is set according to it's domain.
1915  * Lower domain value means higher priority.
1916  */
1917 enum ib_flow_domain {
1918 	IB_FLOW_DOMAIN_USER,
1919 	IB_FLOW_DOMAIN_ETHTOOL,
1920 	IB_FLOW_DOMAIN_RFS,
1921 	IB_FLOW_DOMAIN_NIC,
1922 	IB_FLOW_DOMAIN_NUM /* Must be last */
1923 };
1924 
1925 enum ib_flow_flags {
1926 	IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1927 	IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1928 	IB_FLOW_ATTR_FLAGS_RESERVED  = 1UL << 3  /* Must be last */
1929 };
1930 
1931 struct ib_flow_eth_filter {
1932 	u8	dst_mac[6];
1933 	u8	src_mac[6];
1934 	__be16	ether_type;
1935 	__be16	vlan_tag;
1936 	/* Must be last */
1937 	u8	real_sz[0];
1938 };
1939 
1940 struct ib_flow_spec_eth {
1941 	u32			  type;
1942 	u16			  size;
1943 	struct ib_flow_eth_filter val;
1944 	struct ib_flow_eth_filter mask;
1945 };
1946 
1947 struct ib_flow_ib_filter {
1948 	__be16 dlid;
1949 	__u8   sl;
1950 	/* Must be last */
1951 	u8	real_sz[0];
1952 };
1953 
1954 struct ib_flow_spec_ib {
1955 	u32			 type;
1956 	u16			 size;
1957 	struct ib_flow_ib_filter val;
1958 	struct ib_flow_ib_filter mask;
1959 };
1960 
1961 /* IPv4 header flags */
1962 enum ib_ipv4_flags {
1963 	IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1964 	IB_IPV4_MORE_FRAG = 0X4  /* For All fragmented packets except the
1965 				    last have this flag set */
1966 };
1967 
1968 struct ib_flow_ipv4_filter {
1969 	__be32	src_ip;
1970 	__be32	dst_ip;
1971 	u8	proto;
1972 	u8	tos;
1973 	u8	ttl;
1974 	u8	flags;
1975 	/* Must be last */
1976 	u8	real_sz[0];
1977 };
1978 
1979 struct ib_flow_spec_ipv4 {
1980 	u32			   type;
1981 	u16			   size;
1982 	struct ib_flow_ipv4_filter val;
1983 	struct ib_flow_ipv4_filter mask;
1984 };
1985 
1986 struct ib_flow_ipv6_filter {
1987 	u8	src_ip[16];
1988 	u8	dst_ip[16];
1989 	__be32	flow_label;
1990 	u8	next_hdr;
1991 	u8	traffic_class;
1992 	u8	hop_limit;
1993 	/* Must be last */
1994 	u8	real_sz[0];
1995 };
1996 
1997 struct ib_flow_spec_ipv6 {
1998 	u32			   type;
1999 	u16			   size;
2000 	struct ib_flow_ipv6_filter val;
2001 	struct ib_flow_ipv6_filter mask;
2002 };
2003 
2004 struct ib_flow_tcp_udp_filter {
2005 	__be16	dst_port;
2006 	__be16	src_port;
2007 	/* Must be last */
2008 	u8	real_sz[0];
2009 };
2010 
2011 struct ib_flow_spec_tcp_udp {
2012 	u32			      type;
2013 	u16			      size;
2014 	struct ib_flow_tcp_udp_filter val;
2015 	struct ib_flow_tcp_udp_filter mask;
2016 };
2017 
2018 struct ib_flow_tunnel_filter {
2019 	__be32	tunnel_id;
2020 	u8	real_sz[0];
2021 };
2022 
2023 /* ib_flow_spec_tunnel describes the Vxlan tunnel
2024  * the tunnel_id from val has the vni value
2025  */
2026 struct ib_flow_spec_tunnel {
2027 	u32			      type;
2028 	u16			      size;
2029 	struct ib_flow_tunnel_filter  val;
2030 	struct ib_flow_tunnel_filter  mask;
2031 };
2032 
2033 struct ib_flow_esp_filter {
2034 	__be32	spi;
2035 	__be32  seq;
2036 	/* Must be last */
2037 	u8	real_sz[0];
2038 };
2039 
2040 struct ib_flow_spec_esp {
2041 	u32                           type;
2042 	u16			      size;
2043 	struct ib_flow_esp_filter     val;
2044 	struct ib_flow_esp_filter     mask;
2045 };
2046 
2047 struct ib_flow_gre_filter {
2048 	__be16 c_ks_res0_ver;
2049 	__be16 protocol;
2050 	__be32 key;
2051 	/* Must be last */
2052 	u8	real_sz[0];
2053 };
2054 
2055 struct ib_flow_spec_gre {
2056 	u32                           type;
2057 	u16			      size;
2058 	struct ib_flow_gre_filter     val;
2059 	struct ib_flow_gre_filter     mask;
2060 };
2061 
2062 struct ib_flow_mpls_filter {
2063 	__be32 tag;
2064 	/* Must be last */
2065 	u8	real_sz[0];
2066 };
2067 
2068 struct ib_flow_spec_mpls {
2069 	u32                           type;
2070 	u16			      size;
2071 	struct ib_flow_mpls_filter     val;
2072 	struct ib_flow_mpls_filter     mask;
2073 };
2074 
2075 struct ib_flow_spec_action_tag {
2076 	enum ib_flow_spec_type	      type;
2077 	u16			      size;
2078 	u32                           tag_id;
2079 };
2080 
2081 struct ib_flow_spec_action_drop {
2082 	enum ib_flow_spec_type	      type;
2083 	u16			      size;
2084 };
2085 
2086 struct ib_flow_spec_action_handle {
2087 	enum ib_flow_spec_type	      type;
2088 	u16			      size;
2089 	struct ib_flow_action	     *act;
2090 };
2091 
2092 enum ib_counters_description {
2093 	IB_COUNTER_PACKETS,
2094 	IB_COUNTER_BYTES,
2095 };
2096 
2097 struct ib_flow_spec_action_count {
2098 	enum ib_flow_spec_type type;
2099 	u16 size;
2100 	struct ib_counters *counters;
2101 };
2102 
2103 union ib_flow_spec {
2104 	struct {
2105 		u32			type;
2106 		u16			size;
2107 	};
2108 	struct ib_flow_spec_eth		eth;
2109 	struct ib_flow_spec_ib		ib;
2110 	struct ib_flow_spec_ipv4        ipv4;
2111 	struct ib_flow_spec_tcp_udp	tcp_udp;
2112 	struct ib_flow_spec_ipv6        ipv6;
2113 	struct ib_flow_spec_tunnel      tunnel;
2114 	struct ib_flow_spec_esp		esp;
2115 	struct ib_flow_spec_gre		gre;
2116 	struct ib_flow_spec_mpls	mpls;
2117 	struct ib_flow_spec_action_tag  flow_tag;
2118 	struct ib_flow_spec_action_drop drop;
2119 	struct ib_flow_spec_action_handle action;
2120 	struct ib_flow_spec_action_count flow_count;
2121 };
2122 
2123 struct ib_flow_attr {
2124 	enum ib_flow_attr_type type;
2125 	u16	     size;
2126 	u16	     priority;
2127 	u32	     flags;
2128 	u8	     num_of_specs;
2129 	u8	     port;
2130 	union ib_flow_spec flows[];
2131 };
2132 
2133 struct ib_flow {
2134 	struct ib_qp		*qp;
2135 	struct ib_device	*device;
2136 	struct ib_uobject	*uobject;
2137 };
2138 
2139 enum ib_flow_action_type {
2140 	IB_FLOW_ACTION_UNSPECIFIED,
2141 	IB_FLOW_ACTION_ESP = 1,
2142 };
2143 
2144 struct ib_flow_action_attrs_esp_keymats {
2145 	enum ib_uverbs_flow_action_esp_keymat			protocol;
2146 	union {
2147 		struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2148 	} keymat;
2149 };
2150 
2151 struct ib_flow_action_attrs_esp_replays {
2152 	enum ib_uverbs_flow_action_esp_replay			protocol;
2153 	union {
2154 		struct ib_uverbs_flow_action_esp_replay_bmp	bmp;
2155 	} replay;
2156 };
2157 
2158 enum ib_flow_action_attrs_esp_flags {
2159 	/* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2160 	 * This is done in order to share the same flags between user-space and
2161 	 * kernel and spare an unnecessary translation.
2162 	 */
2163 
2164 	/* Kernel flags */
2165 	IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED	= 1ULL << 32,
2166 	IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS	= 1ULL << 33,
2167 };
2168 
2169 struct ib_flow_spec_list {
2170 	struct ib_flow_spec_list	*next;
2171 	union ib_flow_spec		spec;
2172 };
2173 
2174 struct ib_flow_action_attrs_esp {
2175 	struct ib_flow_action_attrs_esp_keymats		*keymat;
2176 	struct ib_flow_action_attrs_esp_replays		*replay;
2177 	struct ib_flow_spec_list			*encap;
2178 	/* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2179 	 * Value of 0 is a valid value.
2180 	 */
2181 	u32						esn;
2182 	u32						spi;
2183 	u32						seq;
2184 	u32						tfc_pad;
2185 	/* Use enum ib_flow_action_attrs_esp_flags */
2186 	u64						flags;
2187 	u64						hard_limit_pkts;
2188 };
2189 
2190 struct ib_flow_action {
2191 	struct ib_device		*device;
2192 	struct ib_uobject		*uobject;
2193 	enum ib_flow_action_type	type;
2194 	atomic_t			usecnt;
2195 };
2196 
2197 struct ib_mad_hdr;
2198 struct ib_grh;
2199 
2200 enum ib_process_mad_flags {
2201 	IB_MAD_IGNORE_MKEY	= 1,
2202 	IB_MAD_IGNORE_BKEY	= 2,
2203 	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2204 };
2205 
2206 enum ib_mad_result {
2207 	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
2208 	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
2209 	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
2210 	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
2211 };
2212 
2213 struct ib_port_cache {
2214 	u64		      subnet_prefix;
2215 	struct ib_pkey_cache  *pkey;
2216 	struct ib_gid_table   *gid;
2217 	u8                     lmc;
2218 	enum ib_port_state     port_state;
2219 };
2220 
2221 struct ib_cache {
2222 	rwlock_t                lock;
2223 	struct ib_event_handler event_handler;
2224 };
2225 
2226 struct ib_port_immutable {
2227 	int                           pkey_tbl_len;
2228 	int                           gid_tbl_len;
2229 	u32                           core_cap_flags;
2230 	u32                           max_mad_size;
2231 };
2232 
2233 struct ib_port_data {
2234 	struct ib_device *ib_dev;
2235 
2236 	struct ib_port_immutable immutable;
2237 
2238 	spinlock_t pkey_list_lock;
2239 	struct list_head pkey_list;
2240 
2241 	struct ib_port_cache cache;
2242 
2243 	spinlock_t netdev_lock;
2244 	struct net_device __rcu *netdev;
2245 	struct hlist_node ndev_hash_link;
2246 };
2247 
2248 /* rdma netdev type - specifies protocol type */
2249 enum rdma_netdev_t {
2250 	RDMA_NETDEV_OPA_VNIC,
2251 	RDMA_NETDEV_IPOIB,
2252 };
2253 
2254 /**
2255  * struct rdma_netdev - rdma netdev
2256  * For cases where netstack interfacing is required.
2257  */
2258 struct rdma_netdev {
2259 	void              *clnt_priv;
2260 	struct ib_device  *hca;
2261 	u8                 port_num;
2262 
2263 	/*
2264 	 * cleanup function must be specified.
2265 	 * FIXME: This is only used for OPA_VNIC and that usage should be
2266 	 * removed too.
2267 	 */
2268 	void (*free_rdma_netdev)(struct net_device *netdev);
2269 
2270 	/* control functions */
2271 	void (*set_id)(struct net_device *netdev, int id);
2272 	/* send packet */
2273 	int (*send)(struct net_device *dev, struct sk_buff *skb,
2274 		    struct ib_ah *address, u32 dqpn);
2275 	/* multicast */
2276 	int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2277 			    union ib_gid *gid, u16 mlid,
2278 			    int set_qkey, u32 qkey);
2279 	int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2280 			    union ib_gid *gid, u16 mlid);
2281 };
2282 
2283 struct rdma_netdev_alloc_params {
2284 	size_t sizeof_priv;
2285 	unsigned int txqs;
2286 	unsigned int rxqs;
2287 	void *param;
2288 
2289 	int (*initialize_rdma_netdev)(struct ib_device *device, u8 port_num,
2290 				      struct net_device *netdev, void *param);
2291 };
2292 
2293 struct ib_counters {
2294 	struct ib_device	*device;
2295 	struct ib_uobject	*uobject;
2296 	/* num of objects attached */
2297 	atomic_t	usecnt;
2298 };
2299 
2300 struct ib_counters_read_attr {
2301 	u64	*counters_buff;
2302 	u32	ncounters;
2303 	u32	flags; /* use enum ib_read_counters_flags */
2304 };
2305 
2306 struct uverbs_attr_bundle;
2307 struct iw_cm_id;
2308 struct iw_cm_conn_param;
2309 
2310 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member)                      \
2311 	.size_##ib_struct =                                                    \
2312 		(sizeof(struct drv_struct) +                                   \
2313 		 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) +      \
2314 		 BUILD_BUG_ON_ZERO(                                            \
2315 			 !__same_type(((struct drv_struct *)NULL)->member,     \
2316 				      struct ib_struct)))
2317 
2318 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp)                         \
2319 	((struct ib_type *)kzalloc(ib_dev->ops.size_##ib_type, gfp))
2320 
2321 #define rdma_zalloc_drv_obj(ib_dev, ib_type)                                   \
2322 	rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2323 
2324 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2325 
2326 /**
2327  * struct ib_device_ops - InfiniBand device operations
2328  * This structure defines all the InfiniBand device operations, providers will
2329  * need to define the supported operations, otherwise they will be set to null.
2330  */
2331 struct ib_device_ops {
2332 	int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2333 			 const struct ib_send_wr **bad_send_wr);
2334 	int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2335 			 const struct ib_recv_wr **bad_recv_wr);
2336 	void (*drain_rq)(struct ib_qp *qp);
2337 	void (*drain_sq)(struct ib_qp *qp);
2338 	int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2339 	int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2340 	int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2341 	int (*req_ncomp_notif)(struct ib_cq *cq, int wc_cnt);
2342 	int (*post_srq_recv)(struct ib_srq *srq,
2343 			     const struct ib_recv_wr *recv_wr,
2344 			     const struct ib_recv_wr **bad_recv_wr);
2345 	int (*process_mad)(struct ib_device *device, int process_mad_flags,
2346 			   u8 port_num, const struct ib_wc *in_wc,
2347 			   const struct ib_grh *in_grh,
2348 			   const struct ib_mad_hdr *in_mad, size_t in_mad_size,
2349 			   struct ib_mad_hdr *out_mad, size_t *out_mad_size,
2350 			   u16 *out_mad_pkey_index);
2351 	int (*query_device)(struct ib_device *device,
2352 			    struct ib_device_attr *device_attr,
2353 			    struct ib_udata *udata);
2354 	int (*modify_device)(struct ib_device *device, int device_modify_mask,
2355 			     struct ib_device_modify *device_modify);
2356 	void (*get_dev_fw_str)(struct ib_device *device, char *str);
2357 	const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2358 						     int comp_vector);
2359 	int (*query_port)(struct ib_device *device, u8 port_num,
2360 			  struct ib_port_attr *port_attr);
2361 	int (*modify_port)(struct ib_device *device, u8 port_num,
2362 			   int port_modify_mask,
2363 			   struct ib_port_modify *port_modify);
2364 	/**
2365 	 * The following mandatory functions are used only at device
2366 	 * registration.  Keep functions such as these at the end of this
2367 	 * structure to avoid cache line misses when accessing struct ib_device
2368 	 * in fast paths.
2369 	 */
2370 	int (*get_port_immutable)(struct ib_device *device, u8 port_num,
2371 				  struct ib_port_immutable *immutable);
2372 	enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2373 					       u8 port_num);
2374 	/**
2375 	 * When calling get_netdev, the HW vendor's driver should return the
2376 	 * net device of device @device at port @port_num or NULL if such
2377 	 * a net device doesn't exist. The vendor driver should call dev_hold
2378 	 * on this net device. The HW vendor's device driver must guarantee
2379 	 * that this function returns NULL before the net device has finished
2380 	 * NETDEV_UNREGISTER state.
2381 	 */
2382 	struct net_device *(*get_netdev)(struct ib_device *device, u8 port_num);
2383 	/**
2384 	 * rdma netdev operation
2385 	 *
2386 	 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2387 	 * must return -EOPNOTSUPP if it doesn't support the specified type.
2388 	 */
2389 	struct net_device *(*alloc_rdma_netdev)(
2390 		struct ib_device *device, u8 port_num, enum rdma_netdev_t type,
2391 		const char *name, unsigned char name_assign_type,
2392 		void (*setup)(struct net_device *));
2393 
2394 	int (*rdma_netdev_get_params)(struct ib_device *device, u8 port_num,
2395 				      enum rdma_netdev_t type,
2396 				      struct rdma_netdev_alloc_params *params);
2397 	/**
2398 	 * query_gid should be return GID value for @device, when @port_num
2399 	 * link layer is either IB or iWarp. It is no-op if @port_num port
2400 	 * is RoCE link layer.
2401 	 */
2402 	int (*query_gid)(struct ib_device *device, u8 port_num, int index,
2403 			 union ib_gid *gid);
2404 	/**
2405 	 * When calling add_gid, the HW vendor's driver should add the gid
2406 	 * of device of port at gid index available at @attr. Meta-info of
2407 	 * that gid (for example, the network device related to this gid) is
2408 	 * available at @attr. @context allows the HW vendor driver to store
2409 	 * extra information together with a GID entry. The HW vendor driver may
2410 	 * allocate memory to contain this information and store it in @context
2411 	 * when a new GID entry is written to. Params are consistent until the
2412 	 * next call of add_gid or delete_gid. The function should return 0 on
2413 	 * success or error otherwise. The function could be called
2414 	 * concurrently for different ports. This function is only called when
2415 	 * roce_gid_table is used.
2416 	 */
2417 	int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2418 	/**
2419 	 * When calling del_gid, the HW vendor's driver should delete the
2420 	 * gid of device @device at gid index gid_index of port port_num
2421 	 * available in @attr.
2422 	 * Upon the deletion of a GID entry, the HW vendor must free any
2423 	 * allocated memory. The caller will clear @context afterwards.
2424 	 * This function is only called when roce_gid_table is used.
2425 	 */
2426 	int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2427 	int (*query_pkey)(struct ib_device *device, u8 port_num, u16 index,
2428 			  u16 *pkey);
2429 	int (*alloc_ucontext)(struct ib_ucontext *context,
2430 			      struct ib_udata *udata);
2431 	void (*dealloc_ucontext)(struct ib_ucontext *context);
2432 	int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2433 	void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2434 	int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2435 	void (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2436 	int (*create_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr,
2437 			 u32 flags, struct ib_udata *udata);
2438 	int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2439 	int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2440 	void (*destroy_ah)(struct ib_ah *ah, u32 flags);
2441 	int (*create_srq)(struct ib_srq *srq,
2442 			  struct ib_srq_init_attr *srq_init_attr,
2443 			  struct ib_udata *udata);
2444 	int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2445 			  enum ib_srq_attr_mask srq_attr_mask,
2446 			  struct ib_udata *udata);
2447 	int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2448 	void (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2449 	struct ib_qp *(*create_qp)(struct ib_pd *pd,
2450 				   struct ib_qp_init_attr *qp_init_attr,
2451 				   struct ib_udata *udata);
2452 	int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2453 			 int qp_attr_mask, struct ib_udata *udata);
2454 	int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2455 			int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2456 	int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2457 	struct ib_cq *(*create_cq)(struct ib_device *device,
2458 				   const struct ib_cq_init_attr *attr,
2459 				   struct ib_udata *udata);
2460 	int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2461 	int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2462 	int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2463 	struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2464 	struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2465 				     u64 virt_addr, int mr_access_flags,
2466 				     struct ib_udata *udata);
2467 	int (*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start, u64 length,
2468 			     u64 virt_addr, int mr_access_flags,
2469 			     struct ib_pd *pd, struct ib_udata *udata);
2470 	int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2471 	struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2472 				  u32 max_num_sg, struct ib_udata *udata);
2473 	int (*advise_mr)(struct ib_pd *pd,
2474 			 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2475 			 struct ib_sge *sg_list, u32 num_sge,
2476 			 struct uverbs_attr_bundle *attrs);
2477 	int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2478 			 unsigned int *sg_offset);
2479 	int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2480 			       struct ib_mr_status *mr_status);
2481 	struct ib_mw *(*alloc_mw)(struct ib_pd *pd, enum ib_mw_type type,
2482 				  struct ib_udata *udata);
2483 	int (*dealloc_mw)(struct ib_mw *mw);
2484 	struct ib_fmr *(*alloc_fmr)(struct ib_pd *pd, int mr_access_flags,
2485 				    struct ib_fmr_attr *fmr_attr);
2486 	int (*map_phys_fmr)(struct ib_fmr *fmr, u64 *page_list, int list_len,
2487 			    u64 iova);
2488 	int (*unmap_fmr)(struct list_head *fmr_list);
2489 	int (*dealloc_fmr)(struct ib_fmr *fmr);
2490 	int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2491 	int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2492 	struct ib_xrcd *(*alloc_xrcd)(struct ib_device *device,
2493 				      struct ib_udata *udata);
2494 	int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2495 	struct ib_flow *(*create_flow)(struct ib_qp *qp,
2496 				       struct ib_flow_attr *flow_attr,
2497 				       int domain, struct ib_udata *udata);
2498 	int (*destroy_flow)(struct ib_flow *flow_id);
2499 	struct ib_flow_action *(*create_flow_action_esp)(
2500 		struct ib_device *device,
2501 		const struct ib_flow_action_attrs_esp *attr,
2502 		struct uverbs_attr_bundle *attrs);
2503 	int (*destroy_flow_action)(struct ib_flow_action *action);
2504 	int (*modify_flow_action_esp)(
2505 		struct ib_flow_action *action,
2506 		const struct ib_flow_action_attrs_esp *attr,
2507 		struct uverbs_attr_bundle *attrs);
2508 	int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2509 				 int state);
2510 	int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2511 			     struct ifla_vf_info *ivf);
2512 	int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2513 			    struct ifla_vf_stats *stats);
2514 	int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2515 			   int type);
2516 	struct ib_wq *(*create_wq)(struct ib_pd *pd,
2517 				   struct ib_wq_init_attr *init_attr,
2518 				   struct ib_udata *udata);
2519 	int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2520 	int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2521 			 u32 wq_attr_mask, struct ib_udata *udata);
2522 	struct ib_rwq_ind_table *(*create_rwq_ind_table)(
2523 		struct ib_device *device,
2524 		struct ib_rwq_ind_table_init_attr *init_attr,
2525 		struct ib_udata *udata);
2526 	int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2527 	struct ib_dm *(*alloc_dm)(struct ib_device *device,
2528 				  struct ib_ucontext *context,
2529 				  struct ib_dm_alloc_attr *attr,
2530 				  struct uverbs_attr_bundle *attrs);
2531 	int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2532 	struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2533 				   struct ib_dm_mr_attr *attr,
2534 				   struct uverbs_attr_bundle *attrs);
2535 	struct ib_counters *(*create_counters)(
2536 		struct ib_device *device, struct uverbs_attr_bundle *attrs);
2537 	int (*destroy_counters)(struct ib_counters *counters);
2538 	int (*read_counters)(struct ib_counters *counters,
2539 			     struct ib_counters_read_attr *counters_read_attr,
2540 			     struct uverbs_attr_bundle *attrs);
2541 	/**
2542 	 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2543 	 *   driver initialized data.  The struct is kfree()'ed by the sysfs
2544 	 *   core when the device is removed.  A lifespan of -1 in the return
2545 	 *   struct tells the core to set a default lifespan.
2546 	 */
2547 	struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
2548 						u8 port_num);
2549 	/**
2550 	 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2551 	 * @index - The index in the value array we wish to have updated, or
2552 	 *   num_counters if we want all stats updated
2553 	 * Return codes -
2554 	 *   < 0 - Error, no counters updated
2555 	 *   index - Updated the single counter pointed to by index
2556 	 *   num_counters - Updated all counters (will reset the timestamp
2557 	 *     and prevent further calls for lifespan milliseconds)
2558 	 * Drivers are allowed to update all counters in leiu of just the
2559 	 *   one given in index at their option
2560 	 */
2561 	int (*get_hw_stats)(struct ib_device *device,
2562 			    struct rdma_hw_stats *stats, u8 port, int index);
2563 	/*
2564 	 * This function is called once for each port when a ib device is
2565 	 * registered.
2566 	 */
2567 	int (*init_port)(struct ib_device *device, u8 port_num,
2568 			 struct kobject *port_sysfs);
2569 	/**
2570 	 * Allows rdma drivers to add their own restrack attributes.
2571 	 */
2572 	int (*fill_res_entry)(struct sk_buff *msg,
2573 			      struct rdma_restrack_entry *entry);
2574 
2575 	/* Device lifecycle callbacks */
2576 	/*
2577 	 * Called after the device becomes registered, before clients are
2578 	 * attached
2579 	 */
2580 	int (*enable_driver)(struct ib_device *dev);
2581 	/*
2582 	 * This is called as part of ib_dealloc_device().
2583 	 */
2584 	void (*dealloc_driver)(struct ib_device *dev);
2585 
2586 	/* iWarp CM callbacks */
2587 	void (*iw_add_ref)(struct ib_qp *qp);
2588 	void (*iw_rem_ref)(struct ib_qp *qp);
2589 	struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2590 	int (*iw_connect)(struct iw_cm_id *cm_id,
2591 			  struct iw_cm_conn_param *conn_param);
2592 	int (*iw_accept)(struct iw_cm_id *cm_id,
2593 			 struct iw_cm_conn_param *conn_param);
2594 	int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2595 			 u8 pdata_len);
2596 	int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2597 	int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
2598 
2599 	DECLARE_RDMA_OBJ_SIZE(ib_ah);
2600 	DECLARE_RDMA_OBJ_SIZE(ib_pd);
2601 	DECLARE_RDMA_OBJ_SIZE(ib_srq);
2602 	DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2603 };
2604 
2605 struct ib_core_device {
2606 	/* device must be the first element in structure until,
2607 	 * union of ib_core_device and device exists in ib_device.
2608 	 */
2609 	struct device dev;
2610 	possible_net_t rdma_net;
2611 	struct kobject *ports_kobj;
2612 	struct list_head port_list;
2613 	struct ib_device *owner; /* reach back to owner ib_device */
2614 };
2615 
2616 struct rdma_restrack_root;
2617 struct ib_device {
2618 	/* Do not access @dma_device directly from ULP nor from HW drivers. */
2619 	struct device                *dma_device;
2620 	struct ib_device_ops	     ops;
2621 	char                          name[IB_DEVICE_NAME_MAX];
2622 	struct rcu_head rcu_head;
2623 
2624 	struct list_head              event_handler_list;
2625 	spinlock_t                    event_handler_lock;
2626 
2627 	struct rw_semaphore	      client_data_rwsem;
2628 	struct xarray                 client_data;
2629 	struct mutex                  unregistration_lock;
2630 
2631 	struct ib_cache               cache;
2632 	/**
2633 	 * port_data is indexed by port number
2634 	 */
2635 	struct ib_port_data *port_data;
2636 
2637 	int			      num_comp_vectors;
2638 
2639 	struct module               *owner;
2640 	union {
2641 		struct device		dev;
2642 		struct ib_core_device	coredev;
2643 	};
2644 
2645 	/* First group for device attributes,
2646 	 * Second group for driver provided attributes (optional).
2647 	 * It is NULL terminated array.
2648 	 */
2649 	const struct attribute_group	*groups[3];
2650 
2651 	int			     uverbs_abi_ver;
2652 	u64			     uverbs_cmd_mask;
2653 	u64			     uverbs_ex_cmd_mask;
2654 
2655 	char			     node_desc[IB_DEVICE_NODE_DESC_MAX];
2656 	__be64			     node_guid;
2657 	u32			     local_dma_lkey;
2658 	u16                          is_switch:1;
2659 	/* Indicates kernel verbs support, should not be used in drivers */
2660 	u16                          kverbs_provider:1;
2661 	u8                           node_type;
2662 	u8                           phys_port_cnt;
2663 	struct ib_device_attr        attrs;
2664 	struct attribute_group	     *hw_stats_ag;
2665 	struct rdma_hw_stats         *hw_stats;
2666 
2667 #ifdef CONFIG_CGROUP_RDMA
2668 	struct rdmacg_device         cg_device;
2669 #endif
2670 
2671 	u32                          index;
2672 	struct rdma_restrack_root *res;
2673 
2674 	const struct uapi_definition   *driver_def;
2675 	enum rdma_driver_id		driver_id;
2676 
2677 	/*
2678 	 * Positive refcount indicates that the device is currently
2679 	 * registered and cannot be unregistered.
2680 	 */
2681 	refcount_t refcount;
2682 	struct completion unreg_completion;
2683 	struct work_struct unregistration_work;
2684 
2685 	const struct rdma_link_ops *link_ops;
2686 
2687 	/* Protects compat_devs xarray modifications */
2688 	struct mutex compat_devs_mutex;
2689 	/* Maintains compat devices for each net namespace */
2690 	struct xarray compat_devs;
2691 
2692 	/* Used by iWarp CM */
2693 	char iw_ifname[IFNAMSIZ];
2694 	u32 iw_driver_flags;
2695 };
2696 
2697 struct ib_client {
2698 	const char *name;
2699 	void (*add)   (struct ib_device *);
2700 	void (*remove)(struct ib_device *, void *client_data);
2701 	void (*rename)(struct ib_device *dev, void *client_data);
2702 
2703 	/* Returns the net_dev belonging to this ib_client and matching the
2704 	 * given parameters.
2705 	 * @dev:	 An RDMA device that the net_dev use for communication.
2706 	 * @port:	 A physical port number on the RDMA device.
2707 	 * @pkey:	 P_Key that the net_dev uses if applicable.
2708 	 * @gid:	 A GID that the net_dev uses to communicate.
2709 	 * @addr:	 An IP address the net_dev is configured with.
2710 	 * @client_data: The device's client data set by ib_set_client_data().
2711 	 *
2712 	 * An ib_client that implements a net_dev on top of RDMA devices
2713 	 * (such as IP over IB) should implement this callback, allowing the
2714 	 * rdma_cm module to find the right net_dev for a given request.
2715 	 *
2716 	 * The caller is responsible for calling dev_put on the returned
2717 	 * netdev. */
2718 	struct net_device *(*get_net_dev_by_params)(
2719 			struct ib_device *dev,
2720 			u8 port,
2721 			u16 pkey,
2722 			const union ib_gid *gid,
2723 			const struct sockaddr *addr,
2724 			void *client_data);
2725 	struct list_head list;
2726 	u32 client_id;
2727 
2728 	/* kverbs are not required by the client */
2729 	u8 no_kverbs_req:1;
2730 };
2731 
2732 /*
2733  * IB block DMA iterator
2734  *
2735  * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2736  * to a HW supported page size.
2737  */
2738 struct ib_block_iter {
2739 	/* internal states */
2740 	struct scatterlist *__sg;	/* sg holding the current aligned block */
2741 	dma_addr_t __dma_addr;		/* unaligned DMA address of this block */
2742 	unsigned int __sg_nents;	/* number of SG entries */
2743 	unsigned int __sg_advance;	/* number of bytes to advance in sg in next step */
2744 	unsigned int __pg_bit;		/* alignment of current block */
2745 };
2746 
2747 struct ib_device *_ib_alloc_device(size_t size);
2748 #define ib_alloc_device(drv_struct, member)                                    \
2749 	container_of(_ib_alloc_device(sizeof(struct drv_struct) +              \
2750 				      BUILD_BUG_ON_ZERO(offsetof(              \
2751 					      struct drv_struct, member))),    \
2752 		     struct drv_struct, member)
2753 
2754 void ib_dealloc_device(struct ib_device *device);
2755 
2756 void ib_get_device_fw_str(struct ib_device *device, char *str);
2757 
2758 int ib_register_device(struct ib_device *device, const char *name);
2759 void ib_unregister_device(struct ib_device *device);
2760 void ib_unregister_driver(enum rdma_driver_id driver_id);
2761 void ib_unregister_device_and_put(struct ib_device *device);
2762 void ib_unregister_device_queued(struct ib_device *ib_dev);
2763 
2764 int ib_register_client   (struct ib_client *client);
2765 void ib_unregister_client(struct ib_client *client);
2766 
2767 void __rdma_block_iter_start(struct ib_block_iter *biter,
2768 			     struct scatterlist *sglist,
2769 			     unsigned int nents,
2770 			     unsigned long pgsz);
2771 bool __rdma_block_iter_next(struct ib_block_iter *biter);
2772 
2773 /**
2774  * rdma_block_iter_dma_address - get the aligned dma address of the current
2775  * block held by the block iterator.
2776  * @biter: block iterator holding the memory block
2777  */
2778 static inline dma_addr_t
2779 rdma_block_iter_dma_address(struct ib_block_iter *biter)
2780 {
2781 	return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2782 }
2783 
2784 /**
2785  * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2786  * @sglist: sglist to iterate over
2787  * @biter: block iterator holding the memory block
2788  * @nents: maximum number of sg entries to iterate over
2789  * @pgsz: best HW supported page size to use
2790  *
2791  * Callers may use rdma_block_iter_dma_address() to get each
2792  * blocks aligned DMA address.
2793  */
2794 #define rdma_for_each_block(sglist, biter, nents, pgsz)		\
2795 	for (__rdma_block_iter_start(biter, sglist, nents,	\
2796 				     pgsz);			\
2797 	     __rdma_block_iter_next(biter);)
2798 
2799 /**
2800  * ib_get_client_data - Get IB client context
2801  * @device:Device to get context for
2802  * @client:Client to get context for
2803  *
2804  * ib_get_client_data() returns the client context data set with
2805  * ib_set_client_data(). This can only be called while the client is
2806  * registered to the device, once the ib_client remove() callback returns this
2807  * cannot be called.
2808  */
2809 static inline void *ib_get_client_data(struct ib_device *device,
2810 				       struct ib_client *client)
2811 {
2812 	return xa_load(&device->client_data, client->client_id);
2813 }
2814 void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
2815 			 void *data);
2816 void ib_set_device_ops(struct ib_device *device,
2817 		       const struct ib_device_ops *ops);
2818 
2819 #if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS)
2820 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2821 		      unsigned long pfn, unsigned long size, pgprot_t prot);
2822 #else
2823 static inline int rdma_user_mmap_io(struct ib_ucontext *ucontext,
2824 				    struct vm_area_struct *vma,
2825 				    unsigned long pfn, unsigned long size,
2826 				    pgprot_t prot)
2827 {
2828 	return -EINVAL;
2829 }
2830 #endif
2831 
2832 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2833 {
2834 	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2835 }
2836 
2837 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2838 {
2839 	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2840 }
2841 
2842 static inline bool ib_is_buffer_cleared(const void __user *p,
2843 					size_t len)
2844 {
2845 	bool ret;
2846 	u8 *buf;
2847 
2848 	if (len > USHRT_MAX)
2849 		return false;
2850 
2851 	buf = memdup_user(p, len);
2852 	if (IS_ERR(buf))
2853 		return false;
2854 
2855 	ret = !memchr_inv(buf, 0, len);
2856 	kfree(buf);
2857 	return ret;
2858 }
2859 
2860 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2861 				       size_t offset,
2862 				       size_t len)
2863 {
2864 	return ib_is_buffer_cleared(udata->inbuf + offset, len);
2865 }
2866 
2867 /**
2868  * ib_is_destroy_retryable - Check whether the uobject destruction
2869  * is retryable.
2870  * @ret: The initial destruction return code
2871  * @why: remove reason
2872  * @uobj: The uobject that is destroyed
2873  *
2874  * This function is a helper function that IB layer and low-level drivers
2875  * can use to consider whether the destruction of the given uobject is
2876  * retry-able.
2877  * It checks the original return code, if it wasn't success the destruction
2878  * is retryable according to the ucontext state (i.e. cleanup_retryable) and
2879  * the remove reason. (i.e. why).
2880  * Must be called with the object locked for destroy.
2881  */
2882 static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why,
2883 					   struct ib_uobject *uobj)
2884 {
2885 	return ret && (why == RDMA_REMOVE_DESTROY ||
2886 		       uobj->context->cleanup_retryable);
2887 }
2888 
2889 /**
2890  * ib_destroy_usecnt - Called during destruction to check the usecnt
2891  * @usecnt: The usecnt atomic
2892  * @why: remove reason
2893  * @uobj: The uobject that is destroyed
2894  *
2895  * Non-zero usecnts will block destruction unless destruction was triggered by
2896  * a ucontext cleanup.
2897  */
2898 static inline int ib_destroy_usecnt(atomic_t *usecnt,
2899 				    enum rdma_remove_reason why,
2900 				    struct ib_uobject *uobj)
2901 {
2902 	if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj))
2903 		return -EBUSY;
2904 	return 0;
2905 }
2906 
2907 /**
2908  * ib_modify_qp_is_ok - Check that the supplied attribute mask
2909  * contains all required attributes and no attributes not allowed for
2910  * the given QP state transition.
2911  * @cur_state: Current QP state
2912  * @next_state: Next QP state
2913  * @type: QP type
2914  * @mask: Mask of supplied QP attributes
2915  *
2916  * This function is a helper function that a low-level driver's
2917  * modify_qp method can use to validate the consumer's input.  It
2918  * checks that cur_state and next_state are valid QP states, that a
2919  * transition from cur_state to next_state is allowed by the IB spec,
2920  * and that the attribute mask supplied is allowed for the transition.
2921  */
2922 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2923 			enum ib_qp_type type, enum ib_qp_attr_mask mask);
2924 
2925 void ib_register_event_handler(struct ib_event_handler *event_handler);
2926 void ib_unregister_event_handler(struct ib_event_handler *event_handler);
2927 void ib_dispatch_event(struct ib_event *event);
2928 
2929 int ib_query_port(struct ib_device *device,
2930 		  u8 port_num, struct ib_port_attr *port_attr);
2931 
2932 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2933 					       u8 port_num);
2934 
2935 /**
2936  * rdma_cap_ib_switch - Check if the device is IB switch
2937  * @device: Device to check
2938  *
2939  * Device driver is responsible for setting is_switch bit on
2940  * in ib_device structure at init time.
2941  *
2942  * Return: true if the device is IB switch.
2943  */
2944 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2945 {
2946 	return device->is_switch;
2947 }
2948 
2949 /**
2950  * rdma_start_port - Return the first valid port number for the device
2951  * specified
2952  *
2953  * @device: Device to be checked
2954  *
2955  * Return start port number
2956  */
2957 static inline u8 rdma_start_port(const struct ib_device *device)
2958 {
2959 	return rdma_cap_ib_switch(device) ? 0 : 1;
2960 }
2961 
2962 /**
2963  * rdma_for_each_port - Iterate over all valid port numbers of the IB device
2964  * @device - The struct ib_device * to iterate over
2965  * @iter - The unsigned int to store the port number
2966  */
2967 #define rdma_for_each_port(device, iter)                                       \
2968 	for (iter = rdma_start_port(device + BUILD_BUG_ON_ZERO(!__same_type(   \
2969 						     unsigned int, iter)));    \
2970 	     iter <= rdma_end_port(device); (iter)++)
2971 
2972 /**
2973  * rdma_end_port - Return the last valid port number for the device
2974  * specified
2975  *
2976  * @device: Device to be checked
2977  *
2978  * Return last port number
2979  */
2980 static inline u8 rdma_end_port(const struct ib_device *device)
2981 {
2982 	return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2983 }
2984 
2985 static inline int rdma_is_port_valid(const struct ib_device *device,
2986 				     unsigned int port)
2987 {
2988 	return (port >= rdma_start_port(device) &&
2989 		port <= rdma_end_port(device));
2990 }
2991 
2992 static inline bool rdma_is_grh_required(const struct ib_device *device,
2993 					u8 port_num)
2994 {
2995 	return device->port_data[port_num].immutable.core_cap_flags &
2996 	       RDMA_CORE_PORT_IB_GRH_REQUIRED;
2997 }
2998 
2999 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
3000 {
3001 	return device->port_data[port_num].immutable.core_cap_flags &
3002 	       RDMA_CORE_CAP_PROT_IB;
3003 }
3004 
3005 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
3006 {
3007 	return device->port_data[port_num].immutable.core_cap_flags &
3008 	       (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
3009 }
3010 
3011 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
3012 {
3013 	return device->port_data[port_num].immutable.core_cap_flags &
3014 	       RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
3015 }
3016 
3017 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
3018 {
3019 	return device->port_data[port_num].immutable.core_cap_flags &
3020 	       RDMA_CORE_CAP_PROT_ROCE;
3021 }
3022 
3023 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
3024 {
3025 	return device->port_data[port_num].immutable.core_cap_flags &
3026 	       RDMA_CORE_CAP_PROT_IWARP;
3027 }
3028 
3029 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
3030 {
3031 	return rdma_protocol_ib(device, port_num) ||
3032 		rdma_protocol_roce(device, port_num);
3033 }
3034 
3035 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
3036 {
3037 	return device->port_data[port_num].immutable.core_cap_flags &
3038 	       RDMA_CORE_CAP_PROT_RAW_PACKET;
3039 }
3040 
3041 static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
3042 {
3043 	return device->port_data[port_num].immutable.core_cap_flags &
3044 	       RDMA_CORE_CAP_PROT_USNIC;
3045 }
3046 
3047 /**
3048  * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
3049  * Management Datagrams.
3050  * @device: Device to check
3051  * @port_num: Port number to check
3052  *
3053  * Management Datagrams (MAD) are a required part of the InfiniBand
3054  * specification and are supported on all InfiniBand devices.  A slightly
3055  * extended version are also supported on OPA interfaces.
3056  *
3057  * Return: true if the port supports sending/receiving of MAD packets.
3058  */
3059 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
3060 {
3061 	return device->port_data[port_num].immutable.core_cap_flags &
3062 	       RDMA_CORE_CAP_IB_MAD;
3063 }
3064 
3065 /**
3066  * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3067  * Management Datagrams.
3068  * @device: Device to check
3069  * @port_num: Port number to check
3070  *
3071  * Intel OmniPath devices extend and/or replace the InfiniBand Management
3072  * datagrams with their own versions.  These OPA MADs share many but not all of
3073  * the characteristics of InfiniBand MADs.
3074  *
3075  * OPA MADs differ in the following ways:
3076  *
3077  *    1) MADs are variable size up to 2K
3078  *       IBTA defined MADs remain fixed at 256 bytes
3079  *    2) OPA SMPs must carry valid PKeys
3080  *    3) OPA SMP packets are a different format
3081  *
3082  * Return: true if the port supports OPA MAD packet formats.
3083  */
3084 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
3085 {
3086 	return device->port_data[port_num].immutable.core_cap_flags &
3087 		RDMA_CORE_CAP_OPA_MAD;
3088 }
3089 
3090 /**
3091  * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3092  * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3093  * @device: Device to check
3094  * @port_num: Port number to check
3095  *
3096  * Each InfiniBand node is required to provide a Subnet Management Agent
3097  * that the subnet manager can access.  Prior to the fabric being fully
3098  * configured by the subnet manager, the SMA is accessed via a well known
3099  * interface called the Subnet Management Interface (SMI).  This interface
3100  * uses directed route packets to communicate with the SM to get around the
3101  * chicken and egg problem of the SM needing to know what's on the fabric
3102  * in order to configure the fabric, and needing to configure the fabric in
3103  * order to send packets to the devices on the fabric.  These directed
3104  * route packets do not need the fabric fully configured in order to reach
3105  * their destination.  The SMI is the only method allowed to send
3106  * directed route packets on an InfiniBand fabric.
3107  *
3108  * Return: true if the port provides an SMI.
3109  */
3110 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
3111 {
3112 	return device->port_data[port_num].immutable.core_cap_flags &
3113 	       RDMA_CORE_CAP_IB_SMI;
3114 }
3115 
3116 /**
3117  * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3118  * Communication Manager.
3119  * @device: Device to check
3120  * @port_num: Port number to check
3121  *
3122  * The InfiniBand Communication Manager is one of many pre-defined General
3123  * Service Agents (GSA) that are accessed via the General Service
3124  * Interface (GSI).  It's role is to facilitate establishment of connections
3125  * between nodes as well as other management related tasks for established
3126  * connections.
3127  *
3128  * Return: true if the port supports an IB CM (this does not guarantee that
3129  * a CM is actually running however).
3130  */
3131 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
3132 {
3133 	return device->port_data[port_num].immutable.core_cap_flags &
3134 	       RDMA_CORE_CAP_IB_CM;
3135 }
3136 
3137 /**
3138  * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3139  * Communication Manager.
3140  * @device: Device to check
3141  * @port_num: Port number to check
3142  *
3143  * Similar to above, but specific to iWARP connections which have a different
3144  * managment protocol than InfiniBand.
3145  *
3146  * Return: true if the port supports an iWARP CM (this does not guarantee that
3147  * a CM is actually running however).
3148  */
3149 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
3150 {
3151 	return device->port_data[port_num].immutable.core_cap_flags &
3152 	       RDMA_CORE_CAP_IW_CM;
3153 }
3154 
3155 /**
3156  * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3157  * Subnet Administration.
3158  * @device: Device to check
3159  * @port_num: Port number to check
3160  *
3161  * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3162  * Service Agent (GSA) provided by the Subnet Manager (SM).  On InfiniBand
3163  * fabrics, devices should resolve routes to other hosts by contacting the
3164  * SA to query the proper route.
3165  *
3166  * Return: true if the port should act as a client to the fabric Subnet
3167  * Administration interface.  This does not imply that the SA service is
3168  * running locally.
3169  */
3170 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
3171 {
3172 	return device->port_data[port_num].immutable.core_cap_flags &
3173 	       RDMA_CORE_CAP_IB_SA;
3174 }
3175 
3176 /**
3177  * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3178  * Multicast.
3179  * @device: Device to check
3180  * @port_num: Port number to check
3181  *
3182  * InfiniBand multicast registration is more complex than normal IPv4 or
3183  * IPv6 multicast registration.  Each Host Channel Adapter must register
3184  * with the Subnet Manager when it wishes to join a multicast group.  It
3185  * should do so only once regardless of how many queue pairs it subscribes
3186  * to this group.  And it should leave the group only after all queue pairs
3187  * attached to the group have been detached.
3188  *
3189  * Return: true if the port must undertake the additional adminstrative
3190  * overhead of registering/unregistering with the SM and tracking of the
3191  * total number of queue pairs attached to the multicast group.
3192  */
3193 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
3194 {
3195 	return rdma_cap_ib_sa(device, port_num);
3196 }
3197 
3198 /**
3199  * rdma_cap_af_ib - Check if the port of device has the capability
3200  * Native Infiniband Address.
3201  * @device: Device to check
3202  * @port_num: Port number to check
3203  *
3204  * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3205  * GID.  RoCE uses a different mechanism, but still generates a GID via
3206  * a prescribed mechanism and port specific data.
3207  *
3208  * Return: true if the port uses a GID address to identify devices on the
3209  * network.
3210  */
3211 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
3212 {
3213 	return device->port_data[port_num].immutable.core_cap_flags &
3214 	       RDMA_CORE_CAP_AF_IB;
3215 }
3216 
3217 /**
3218  * rdma_cap_eth_ah - Check if the port of device has the capability
3219  * Ethernet Address Handle.
3220  * @device: Device to check
3221  * @port_num: Port number to check
3222  *
3223  * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3224  * to fabricate GIDs over Ethernet/IP specific addresses native to the
3225  * port.  Normally, packet headers are generated by the sending host
3226  * adapter, but when sending connectionless datagrams, we must manually
3227  * inject the proper headers for the fabric we are communicating over.
3228  *
3229  * Return: true if we are running as a RoCE port and must force the
3230  * addition of a Global Route Header built from our Ethernet Address
3231  * Handle into our header list for connectionless packets.
3232  */
3233 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
3234 {
3235 	return device->port_data[port_num].immutable.core_cap_flags &
3236 	       RDMA_CORE_CAP_ETH_AH;
3237 }
3238 
3239 /**
3240  * rdma_cap_opa_ah - Check if the port of device supports
3241  * OPA Address handles
3242  * @device: Device to check
3243  * @port_num: Port number to check
3244  *
3245  * Return: true if we are running on an OPA device which supports
3246  * the extended OPA addressing.
3247  */
3248 static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
3249 {
3250 	return (device->port_data[port_num].immutable.core_cap_flags &
3251 		RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3252 }
3253 
3254 /**
3255  * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3256  *
3257  * @device: Device
3258  * @port_num: Port number
3259  *
3260  * This MAD size includes the MAD headers and MAD payload.  No other headers
3261  * are included.
3262  *
3263  * Return the max MAD size required by the Port.  Will return 0 if the port
3264  * does not support MADs
3265  */
3266 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
3267 {
3268 	return device->port_data[port_num].immutable.max_mad_size;
3269 }
3270 
3271 /**
3272  * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3273  * @device: Device to check
3274  * @port_num: Port number to check
3275  *
3276  * RoCE GID table mechanism manages the various GIDs for a device.
3277  *
3278  * NOTE: if allocating the port's GID table has failed, this call will still
3279  * return true, but any RoCE GID table API will fail.
3280  *
3281  * Return: true if the port uses RoCE GID table mechanism in order to manage
3282  * its GIDs.
3283  */
3284 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3285 					   u8 port_num)
3286 {
3287 	return rdma_protocol_roce(device, port_num) &&
3288 		device->ops.add_gid && device->ops.del_gid;
3289 }
3290 
3291 /*
3292  * Check if the device supports READ W/ INVALIDATE.
3293  */
3294 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3295 {
3296 	/*
3297 	 * iWarp drivers must support READ W/ INVALIDATE.  No other protocol
3298 	 * has support for it yet.
3299 	 */
3300 	return rdma_protocol_iwarp(dev, port_num);
3301 }
3302 
3303 /**
3304  * rdma_find_pg_bit - Find page bit given address and HW supported page sizes
3305  *
3306  * @addr: address
3307  * @pgsz_bitmap: bitmap of HW supported page sizes
3308  */
3309 static inline unsigned int rdma_find_pg_bit(unsigned long addr,
3310 					    unsigned long pgsz_bitmap)
3311 {
3312 	unsigned long align;
3313 	unsigned long pgsz;
3314 
3315 	align = addr & -addr;
3316 
3317 	/* Find page bit such that addr is aligned to the highest supported
3318 	 * HW page size
3319 	 */
3320 	pgsz = pgsz_bitmap & ~(-align << 1);
3321 	if (!pgsz)
3322 		return __ffs(pgsz_bitmap);
3323 
3324 	return __fls(pgsz);
3325 }
3326 
3327 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
3328 			 int state);
3329 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
3330 		     struct ifla_vf_info *info);
3331 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
3332 		    struct ifla_vf_stats *stats);
3333 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
3334 		   int type);
3335 
3336 int ib_query_pkey(struct ib_device *device,
3337 		  u8 port_num, u16 index, u16 *pkey);
3338 
3339 int ib_modify_device(struct ib_device *device,
3340 		     int device_modify_mask,
3341 		     struct ib_device_modify *device_modify);
3342 
3343 int ib_modify_port(struct ib_device *device,
3344 		   u8 port_num, int port_modify_mask,
3345 		   struct ib_port_modify *port_modify);
3346 
3347 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3348 		u8 *port_num, u16 *index);
3349 
3350 int ib_find_pkey(struct ib_device *device,
3351 		 u8 port_num, u16 pkey, u16 *index);
3352 
3353 enum ib_pd_flags {
3354 	/*
3355 	 * Create a memory registration for all memory in the system and place
3356 	 * the rkey for it into pd->unsafe_global_rkey.  This can be used by
3357 	 * ULPs to avoid the overhead of dynamic MRs.
3358 	 *
3359 	 * This flag is generally considered unsafe and must only be used in
3360 	 * extremly trusted environments.  Every use of it will log a warning
3361 	 * in the kernel log.
3362 	 */
3363 	IB_PD_UNSAFE_GLOBAL_RKEY	= 0x01,
3364 };
3365 
3366 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3367 		const char *caller);
3368 
3369 #define ib_alloc_pd(device, flags) \
3370 	__ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3371 
3372 /**
3373  * ib_dealloc_pd_user - Deallocate kernel/user PD
3374  * @pd: The protection domain
3375  * @udata: Valid user data or NULL for kernel objects
3376  */
3377 void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3378 
3379 /**
3380  * ib_dealloc_pd - Deallocate kernel PD
3381  * @pd: The protection domain
3382  *
3383  * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3384  */
3385 static inline void ib_dealloc_pd(struct ib_pd *pd)
3386 {
3387 	ib_dealloc_pd_user(pd, NULL);
3388 }
3389 
3390 enum rdma_create_ah_flags {
3391 	/* In a sleepable context */
3392 	RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3393 };
3394 
3395 /**
3396  * rdma_create_ah - Creates an address handle for the given address vector.
3397  * @pd: The protection domain associated with the address handle.
3398  * @ah_attr: The attributes of the address vector.
3399  * @flags: Create address handle flags (see enum rdma_create_ah_flags).
3400  *
3401  * The address handle is used to reference a local or global destination
3402  * in all UD QP post sends.
3403  */
3404 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3405 			     u32 flags);
3406 
3407 /**
3408  * rdma_create_user_ah - Creates an address handle for the given address vector.
3409  * It resolves destination mac address for ah attribute of RoCE type.
3410  * @pd: The protection domain associated with the address handle.
3411  * @ah_attr: The attributes of the address vector.
3412  * @udata: pointer to user's input output buffer information need by
3413  *         provider driver.
3414  *
3415  * It returns 0 on success and returns appropriate error code on error.
3416  * The address handle is used to reference a local or global destination
3417  * in all UD QP post sends.
3418  */
3419 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3420 				  struct rdma_ah_attr *ah_attr,
3421 				  struct ib_udata *udata);
3422 /**
3423  * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3424  *   work completion.
3425  * @hdr: the L3 header to parse
3426  * @net_type: type of header to parse
3427  * @sgid: place to store source gid
3428  * @dgid: place to store destination gid
3429  */
3430 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3431 			      enum rdma_network_type net_type,
3432 			      union ib_gid *sgid, union ib_gid *dgid);
3433 
3434 /**
3435  * ib_get_rdma_header_version - Get the header version
3436  * @hdr: the L3 header to parse
3437  */
3438 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3439 
3440 /**
3441  * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3442  *   work completion.
3443  * @device: Device on which the received message arrived.
3444  * @port_num: Port on which the received message arrived.
3445  * @wc: Work completion associated with the received message.
3446  * @grh: References the received global route header.  This parameter is
3447  *   ignored unless the work completion indicates that the GRH is valid.
3448  * @ah_attr: Returned attributes that can be used when creating an address
3449  *   handle for replying to the message.
3450  * When ib_init_ah_attr_from_wc() returns success,
3451  * (a) for IB link layer it optionally contains a reference to SGID attribute
3452  * when GRH is present for IB link layer.
3453  * (b) for RoCE link layer it contains a reference to SGID attribute.
3454  * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3455  * attributes which are initialized using ib_init_ah_attr_from_wc().
3456  *
3457  */
3458 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
3459 			    const struct ib_wc *wc, const struct ib_grh *grh,
3460 			    struct rdma_ah_attr *ah_attr);
3461 
3462 /**
3463  * ib_create_ah_from_wc - Creates an address handle associated with the
3464  *   sender of the specified work completion.
3465  * @pd: The protection domain associated with the address handle.
3466  * @wc: Work completion information associated with a received message.
3467  * @grh: References the received global route header.  This parameter is
3468  *   ignored unless the work completion indicates that the GRH is valid.
3469  * @port_num: The outbound port number to associate with the address.
3470  *
3471  * The address handle is used to reference a local or global destination
3472  * in all UD QP post sends.
3473  */
3474 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3475 				   const struct ib_grh *grh, u8 port_num);
3476 
3477 /**
3478  * rdma_modify_ah - Modifies the address vector associated with an address
3479  *   handle.
3480  * @ah: The address handle to modify.
3481  * @ah_attr: The new address vector attributes to associate with the
3482  *   address handle.
3483  */
3484 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3485 
3486 /**
3487  * rdma_query_ah - Queries the address vector associated with an address
3488  *   handle.
3489  * @ah: The address handle to query.
3490  * @ah_attr: The address vector attributes associated with the address
3491  *   handle.
3492  */
3493 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3494 
3495 enum rdma_destroy_ah_flags {
3496 	/* In a sleepable context */
3497 	RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3498 };
3499 
3500 /**
3501  * rdma_destroy_ah_user - Destroys an address handle.
3502  * @ah: The address handle to destroy.
3503  * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3504  * @udata: Valid user data or NULL for kernel objects
3505  */
3506 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3507 
3508 /**
3509  * rdma_destroy_ah - Destroys an kernel address handle.
3510  * @ah: The address handle to destroy.
3511  * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3512  *
3513  * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3514  */
3515 static inline int rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3516 {
3517 	return rdma_destroy_ah_user(ah, flags, NULL);
3518 }
3519 
3520 /**
3521  * ib_create_srq - Creates a SRQ associated with the specified protection
3522  *   domain.
3523  * @pd: The protection domain associated with the SRQ.
3524  * @srq_init_attr: A list of initial attributes required to create the
3525  *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
3526  *   the actual capabilities of the created SRQ.
3527  *
3528  * srq_attr->max_wr and srq_attr->max_sge are read the determine the
3529  * requested size of the SRQ, and set to the actual values allocated
3530  * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
3531  * will always be at least as large as the requested values.
3532  */
3533 struct ib_srq *ib_create_srq(struct ib_pd *pd,
3534 			     struct ib_srq_init_attr *srq_init_attr);
3535 
3536 /**
3537  * ib_modify_srq - Modifies the attributes for the specified SRQ.
3538  * @srq: The SRQ to modify.
3539  * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
3540  *   the current values of selected SRQ attributes are returned.
3541  * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3542  *   are being modified.
3543  *
3544  * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3545  * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3546  * the number of receives queued drops below the limit.
3547  */
3548 int ib_modify_srq(struct ib_srq *srq,
3549 		  struct ib_srq_attr *srq_attr,
3550 		  enum ib_srq_attr_mask srq_attr_mask);
3551 
3552 /**
3553  * ib_query_srq - Returns the attribute list and current values for the
3554  *   specified SRQ.
3555  * @srq: The SRQ to query.
3556  * @srq_attr: The attributes of the specified SRQ.
3557  */
3558 int ib_query_srq(struct ib_srq *srq,
3559 		 struct ib_srq_attr *srq_attr);
3560 
3561 /**
3562  * ib_destroy_srq_user - Destroys the specified SRQ.
3563  * @srq: The SRQ to destroy.
3564  * @udata: Valid user data or NULL for kernel objects
3565  */
3566 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3567 
3568 /**
3569  * ib_destroy_srq - Destroys the specified kernel SRQ.
3570  * @srq: The SRQ to destroy.
3571  *
3572  * NOTE: for user srq use ib_destroy_srq_user with valid udata!
3573  */
3574 static inline int ib_destroy_srq(struct ib_srq *srq)
3575 {
3576 	return ib_destroy_srq_user(srq, NULL);
3577 }
3578 
3579 /**
3580  * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3581  * @srq: The SRQ to post the work request on.
3582  * @recv_wr: A list of work requests to post on the receive queue.
3583  * @bad_recv_wr: On an immediate failure, this parameter will reference
3584  *   the work request that failed to be posted on the QP.
3585  */
3586 static inline int ib_post_srq_recv(struct ib_srq *srq,
3587 				   const struct ib_recv_wr *recv_wr,
3588 				   const struct ib_recv_wr **bad_recv_wr)
3589 {
3590 	const struct ib_recv_wr *dummy;
3591 
3592 	return srq->device->ops.post_srq_recv(srq, recv_wr,
3593 					      bad_recv_wr ? : &dummy);
3594 }
3595 
3596 /**
3597  * ib_create_qp_user - Creates a QP associated with the specified protection
3598  *   domain.
3599  * @pd: The protection domain associated with the QP.
3600  * @qp_init_attr: A list of initial attributes required to create the
3601  *   QP.  If QP creation succeeds, then the attributes are updated to
3602  *   the actual capabilities of the created QP.
3603  * @udata: Valid user data or NULL for kernel objects
3604  */
3605 struct ib_qp *ib_create_qp_user(struct ib_pd *pd,
3606 				struct ib_qp_init_attr *qp_init_attr,
3607 				struct ib_udata *udata);
3608 
3609 /**
3610  * ib_create_qp - Creates a kernel QP associated with the specified protection
3611  *   domain.
3612  * @pd: The protection domain associated with the QP.
3613  * @qp_init_attr: A list of initial attributes required to create the
3614  *   QP.  If QP creation succeeds, then the attributes are updated to
3615  *   the actual capabilities of the created QP.
3616  * @udata: Valid user data or NULL for kernel objects
3617  *
3618  * NOTE: for user qp use ib_create_qp_user with valid udata!
3619  */
3620 static inline struct ib_qp *ib_create_qp(struct ib_pd *pd,
3621 					 struct ib_qp_init_attr *qp_init_attr)
3622 {
3623 	return ib_create_qp_user(pd, qp_init_attr, NULL);
3624 }
3625 
3626 /**
3627  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3628  * @qp: The QP to modify.
3629  * @attr: On input, specifies the QP attributes to modify.  On output,
3630  *   the current values of selected QP attributes are returned.
3631  * @attr_mask: A bit-mask used to specify which attributes of the QP
3632  *   are being modified.
3633  * @udata: pointer to user's input output buffer information
3634  *   are being modified.
3635  * It returns 0 on success and returns appropriate error code on error.
3636  */
3637 int ib_modify_qp_with_udata(struct ib_qp *qp,
3638 			    struct ib_qp_attr *attr,
3639 			    int attr_mask,
3640 			    struct ib_udata *udata);
3641 
3642 /**
3643  * ib_modify_qp - Modifies the attributes for the specified QP and then
3644  *   transitions the QP to the given state.
3645  * @qp: The QP to modify.
3646  * @qp_attr: On input, specifies the QP attributes to modify.  On output,
3647  *   the current values of selected QP attributes are returned.
3648  * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3649  *   are being modified.
3650  */
3651 int ib_modify_qp(struct ib_qp *qp,
3652 		 struct ib_qp_attr *qp_attr,
3653 		 int qp_attr_mask);
3654 
3655 /**
3656  * ib_query_qp - Returns the attribute list and current values for the
3657  *   specified QP.
3658  * @qp: The QP to query.
3659  * @qp_attr: The attributes of the specified QP.
3660  * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3661  * @qp_init_attr: Additional attributes of the selected QP.
3662  *
3663  * The qp_attr_mask may be used to limit the query to gathering only the
3664  * selected attributes.
3665  */
3666 int ib_query_qp(struct ib_qp *qp,
3667 		struct ib_qp_attr *qp_attr,
3668 		int qp_attr_mask,
3669 		struct ib_qp_init_attr *qp_init_attr);
3670 
3671 /**
3672  * ib_destroy_qp - Destroys the specified QP.
3673  * @qp: The QP to destroy.
3674  * @udata: Valid udata or NULL for kernel objects
3675  */
3676 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3677 
3678 /**
3679  * ib_destroy_qp - Destroys the specified kernel QP.
3680  * @qp: The QP to destroy.
3681  *
3682  * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3683  */
3684 static inline int ib_destroy_qp(struct ib_qp *qp)
3685 {
3686 	return ib_destroy_qp_user(qp, NULL);
3687 }
3688 
3689 /**
3690  * ib_open_qp - Obtain a reference to an existing sharable QP.
3691  * @xrcd - XRC domain
3692  * @qp_open_attr: Attributes identifying the QP to open.
3693  *
3694  * Returns a reference to a sharable QP.
3695  */
3696 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3697 			 struct ib_qp_open_attr *qp_open_attr);
3698 
3699 /**
3700  * ib_close_qp - Release an external reference to a QP.
3701  * @qp: The QP handle to release
3702  *
3703  * The opened QP handle is released by the caller.  The underlying
3704  * shared QP is not destroyed until all internal references are released.
3705  */
3706 int ib_close_qp(struct ib_qp *qp);
3707 
3708 /**
3709  * ib_post_send - Posts a list of work requests to the send queue of
3710  *   the specified QP.
3711  * @qp: The QP to post the work request on.
3712  * @send_wr: A list of work requests to post on the send queue.
3713  * @bad_send_wr: On an immediate failure, this parameter will reference
3714  *   the work request that failed to be posted on the QP.
3715  *
3716  * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3717  * error is returned, the QP state shall not be affected,
3718  * ib_post_send() will return an immediate error after queueing any
3719  * earlier work requests in the list.
3720  */
3721 static inline int ib_post_send(struct ib_qp *qp,
3722 			       const struct ib_send_wr *send_wr,
3723 			       const struct ib_send_wr **bad_send_wr)
3724 {
3725 	const struct ib_send_wr *dummy;
3726 
3727 	return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
3728 }
3729 
3730 /**
3731  * ib_post_recv - Posts a list of work requests to the receive queue of
3732  *   the specified QP.
3733  * @qp: The QP to post the work request on.
3734  * @recv_wr: A list of work requests to post on the receive queue.
3735  * @bad_recv_wr: On an immediate failure, this parameter will reference
3736  *   the work request that failed to be posted on the QP.
3737  */
3738 static inline int ib_post_recv(struct ib_qp *qp,
3739 			       const struct ib_recv_wr *recv_wr,
3740 			       const struct ib_recv_wr **bad_recv_wr)
3741 {
3742 	const struct ib_recv_wr *dummy;
3743 
3744 	return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3745 }
3746 
3747 struct ib_cq *__ib_alloc_cq_user(struct ib_device *dev, void *private,
3748 				 int nr_cqe, int comp_vector,
3749 				 enum ib_poll_context poll_ctx,
3750 				 const char *caller, struct ib_udata *udata);
3751 
3752 /**
3753  * ib_alloc_cq_user: Allocate kernel/user CQ
3754  * @dev: The IB device
3755  * @private: Private data attached to the CQE
3756  * @nr_cqe: Number of CQEs in the CQ
3757  * @comp_vector: Completion vector used for the IRQs
3758  * @poll_ctx: Context used for polling the CQ
3759  * @udata: Valid user data or NULL for kernel objects
3760  */
3761 static inline struct ib_cq *ib_alloc_cq_user(struct ib_device *dev,
3762 					     void *private, int nr_cqe,
3763 					     int comp_vector,
3764 					     enum ib_poll_context poll_ctx,
3765 					     struct ib_udata *udata)
3766 {
3767 	return __ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx,
3768 				  KBUILD_MODNAME, udata);
3769 }
3770 
3771 /**
3772  * ib_alloc_cq: Allocate kernel CQ
3773  * @dev: The IB device
3774  * @private: Private data attached to the CQE
3775  * @nr_cqe: Number of CQEs in the CQ
3776  * @comp_vector: Completion vector used for the IRQs
3777  * @poll_ctx: Context used for polling the CQ
3778  *
3779  * NOTE: for user cq use ib_alloc_cq_user with valid udata!
3780  */
3781 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3782 					int nr_cqe, int comp_vector,
3783 					enum ib_poll_context poll_ctx)
3784 {
3785 	return ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx,
3786 				NULL);
3787 }
3788 
3789 /**
3790  * ib_free_cq_user - Free kernel/user CQ
3791  * @cq: The CQ to free
3792  * @udata: Valid user data or NULL for kernel objects
3793  */
3794 void ib_free_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3795 
3796 /**
3797  * ib_free_cq - Free kernel CQ
3798  * @cq: The CQ to free
3799  *
3800  * NOTE: for user cq use ib_free_cq_user with valid udata!
3801  */
3802 static inline void ib_free_cq(struct ib_cq *cq)
3803 {
3804 	ib_free_cq_user(cq, NULL);
3805 }
3806 
3807 int ib_process_cq_direct(struct ib_cq *cq, int budget);
3808 
3809 /**
3810  * ib_create_cq - Creates a CQ on the specified device.
3811  * @device: The device on which to create the CQ.
3812  * @comp_handler: A user-specified callback that is invoked when a
3813  *   completion event occurs on the CQ.
3814  * @event_handler: A user-specified callback that is invoked when an
3815  *   asynchronous event not associated with a completion occurs on the CQ.
3816  * @cq_context: Context associated with the CQ returned to the user via
3817  *   the associated completion and event handlers.
3818  * @cq_attr: The attributes the CQ should be created upon.
3819  *
3820  * Users can examine the cq structure to determine the actual CQ size.
3821  */
3822 struct ib_cq *__ib_create_cq(struct ib_device *device,
3823 			     ib_comp_handler comp_handler,
3824 			     void (*event_handler)(struct ib_event *, void *),
3825 			     void *cq_context,
3826 			     const struct ib_cq_init_attr *cq_attr,
3827 			     const char *caller);
3828 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3829 	__ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
3830 
3831 /**
3832  * ib_resize_cq - Modifies the capacity of the CQ.
3833  * @cq: The CQ to resize.
3834  * @cqe: The minimum size of the CQ.
3835  *
3836  * Users can examine the cq structure to determine the actual CQ size.
3837  */
3838 int ib_resize_cq(struct ib_cq *cq, int cqe);
3839 
3840 /**
3841  * rdma_set_cq_moderation - Modifies moderation params of the CQ
3842  * @cq: The CQ to modify.
3843  * @cq_count: number of CQEs that will trigger an event
3844  * @cq_period: max period of time in usec before triggering an event
3845  *
3846  */
3847 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3848 
3849 /**
3850  * ib_destroy_cq_user - Destroys the specified CQ.
3851  * @cq: The CQ to destroy.
3852  * @udata: Valid user data or NULL for kernel objects
3853  */
3854 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3855 
3856 /**
3857  * ib_destroy_cq - Destroys the specified kernel CQ.
3858  * @cq: The CQ to destroy.
3859  *
3860  * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3861  */
3862 static inline int ib_destroy_cq(struct ib_cq *cq)
3863 {
3864 	return ib_destroy_cq_user(cq, NULL);
3865 }
3866 
3867 /**
3868  * ib_poll_cq - poll a CQ for completion(s)
3869  * @cq:the CQ being polled
3870  * @num_entries:maximum number of completions to return
3871  * @wc:array of at least @num_entries &struct ib_wc where completions
3872  *   will be returned
3873  *
3874  * Poll a CQ for (possibly multiple) completions.  If the return value
3875  * is < 0, an error occurred.  If the return value is >= 0, it is the
3876  * number of completions returned.  If the return value is
3877  * non-negative and < num_entries, then the CQ was emptied.
3878  */
3879 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3880 			     struct ib_wc *wc)
3881 {
3882 	return cq->device->ops.poll_cq(cq, num_entries, wc);
3883 }
3884 
3885 /**
3886  * ib_req_notify_cq - Request completion notification on a CQ.
3887  * @cq: The CQ to generate an event for.
3888  * @flags:
3889  *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3890  *   to request an event on the next solicited event or next work
3891  *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3892  *   may also be |ed in to request a hint about missed events, as
3893  *   described below.
3894  *
3895  * Return Value:
3896  *    < 0 means an error occurred while requesting notification
3897  *   == 0 means notification was requested successfully, and if
3898  *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3899  *        were missed and it is safe to wait for another event.  In
3900  *        this case is it guaranteed that any work completions added
3901  *        to the CQ since the last CQ poll will trigger a completion
3902  *        notification event.
3903  *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3904  *        in.  It means that the consumer must poll the CQ again to
3905  *        make sure it is empty to avoid missing an event because of a
3906  *        race between requesting notification and an entry being
3907  *        added to the CQ.  This return value means it is possible
3908  *        (but not guaranteed) that a work completion has been added
3909  *        to the CQ since the last poll without triggering a
3910  *        completion notification event.
3911  */
3912 static inline int ib_req_notify_cq(struct ib_cq *cq,
3913 				   enum ib_cq_notify_flags flags)
3914 {
3915 	return cq->device->ops.req_notify_cq(cq, flags);
3916 }
3917 
3918 /**
3919  * ib_req_ncomp_notif - Request completion notification when there are
3920  *   at least the specified number of unreaped completions on the CQ.
3921  * @cq: The CQ to generate an event for.
3922  * @wc_cnt: The number of unreaped completions that should be on the
3923  *   CQ before an event is generated.
3924  */
3925 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
3926 {
3927 	return cq->device->ops.req_ncomp_notif ?
3928 		cq->device->ops.req_ncomp_notif(cq, wc_cnt) :
3929 		-ENOSYS;
3930 }
3931 
3932 /**
3933  * ib_dma_mapping_error - check a DMA addr for error
3934  * @dev: The device for which the dma_addr was created
3935  * @dma_addr: The DMA address to check
3936  */
3937 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3938 {
3939 	return dma_mapping_error(dev->dma_device, dma_addr);
3940 }
3941 
3942 /**
3943  * ib_dma_map_single - Map a kernel virtual address to DMA address
3944  * @dev: The device for which the dma_addr is to be created
3945  * @cpu_addr: The kernel virtual address
3946  * @size: The size of the region in bytes
3947  * @direction: The direction of the DMA
3948  */
3949 static inline u64 ib_dma_map_single(struct ib_device *dev,
3950 				    void *cpu_addr, size_t size,
3951 				    enum dma_data_direction direction)
3952 {
3953 	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
3954 }
3955 
3956 /**
3957  * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3958  * @dev: The device for which the DMA address was created
3959  * @addr: The DMA address
3960  * @size: The size of the region in bytes
3961  * @direction: The direction of the DMA
3962  */
3963 static inline void ib_dma_unmap_single(struct ib_device *dev,
3964 				       u64 addr, size_t size,
3965 				       enum dma_data_direction direction)
3966 {
3967 	dma_unmap_single(dev->dma_device, addr, size, direction);
3968 }
3969 
3970 /**
3971  * ib_dma_map_page - Map a physical page to DMA address
3972  * @dev: The device for which the dma_addr is to be created
3973  * @page: The page to be mapped
3974  * @offset: The offset within the page
3975  * @size: The size of the region in bytes
3976  * @direction: The direction of the DMA
3977  */
3978 static inline u64 ib_dma_map_page(struct ib_device *dev,
3979 				  struct page *page,
3980 				  unsigned long offset,
3981 				  size_t size,
3982 					 enum dma_data_direction direction)
3983 {
3984 	return dma_map_page(dev->dma_device, page, offset, size, direction);
3985 }
3986 
3987 /**
3988  * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3989  * @dev: The device for which the DMA address was created
3990  * @addr: The DMA address
3991  * @size: The size of the region in bytes
3992  * @direction: The direction of the DMA
3993  */
3994 static inline void ib_dma_unmap_page(struct ib_device *dev,
3995 				     u64 addr, size_t size,
3996 				     enum dma_data_direction direction)
3997 {
3998 	dma_unmap_page(dev->dma_device, addr, size, direction);
3999 }
4000 
4001 /**
4002  * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
4003  * @dev: The device for which the DMA addresses are to be created
4004  * @sg: The array of scatter/gather entries
4005  * @nents: The number of scatter/gather entries
4006  * @direction: The direction of the DMA
4007  */
4008 static inline int ib_dma_map_sg(struct ib_device *dev,
4009 				struct scatterlist *sg, int nents,
4010 				enum dma_data_direction direction)
4011 {
4012 	return dma_map_sg(dev->dma_device, sg, nents, direction);
4013 }
4014 
4015 /**
4016  * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4017  * @dev: The device for which the DMA addresses were created
4018  * @sg: The array of scatter/gather entries
4019  * @nents: The number of scatter/gather entries
4020  * @direction: The direction of the DMA
4021  */
4022 static inline void ib_dma_unmap_sg(struct ib_device *dev,
4023 				   struct scatterlist *sg, int nents,
4024 				   enum dma_data_direction direction)
4025 {
4026 	dma_unmap_sg(dev->dma_device, sg, nents, direction);
4027 }
4028 
4029 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4030 				      struct scatterlist *sg, int nents,
4031 				      enum dma_data_direction direction,
4032 				      unsigned long dma_attrs)
4033 {
4034 	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4035 				dma_attrs);
4036 }
4037 
4038 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4039 					 struct scatterlist *sg, int nents,
4040 					 enum dma_data_direction direction,
4041 					 unsigned long dma_attrs)
4042 {
4043 	dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
4044 }
4045 
4046 /**
4047  * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4048  * @dev: The device to query
4049  *
4050  * The returned value represents a size in bytes.
4051  */
4052 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
4053 {
4054 	struct device_dma_parameters *p = dev->dma_device->dma_parms;
4055 
4056 	return p ? p->max_segment_size : UINT_MAX;
4057 }
4058 
4059 /**
4060  * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4061  * @dev: The device for which the DMA address was created
4062  * @addr: The DMA address
4063  * @size: The size of the region in bytes
4064  * @dir: The direction of the DMA
4065  */
4066 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4067 					      u64 addr,
4068 					      size_t size,
4069 					      enum dma_data_direction dir)
4070 {
4071 	dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
4072 }
4073 
4074 /**
4075  * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4076  * @dev: The device for which the DMA address was created
4077  * @addr: The DMA address
4078  * @size: The size of the region in bytes
4079  * @dir: The direction of the DMA
4080  */
4081 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4082 						 u64 addr,
4083 						 size_t size,
4084 						 enum dma_data_direction dir)
4085 {
4086 	dma_sync_single_for_device(dev->dma_device, addr, size, dir);
4087 }
4088 
4089 /**
4090  * ib_dma_alloc_coherent - Allocate memory and map it for DMA
4091  * @dev: The device for which the DMA address is requested
4092  * @size: The size of the region to allocate in bytes
4093  * @dma_handle: A pointer for returning the DMA address of the region
4094  * @flag: memory allocator flags
4095  */
4096 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
4097 					   size_t size,
4098 					   dma_addr_t *dma_handle,
4099 					   gfp_t flag)
4100 {
4101 	return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
4102 }
4103 
4104 /**
4105  * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
4106  * @dev: The device for which the DMA addresses were allocated
4107  * @size: The size of the region
4108  * @cpu_addr: the address returned by ib_dma_alloc_coherent()
4109  * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
4110  */
4111 static inline void ib_dma_free_coherent(struct ib_device *dev,
4112 					size_t size, void *cpu_addr,
4113 					dma_addr_t dma_handle)
4114 {
4115 	dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
4116 }
4117 
4118 /**
4119  * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4120  *   HCA translation table.
4121  * @mr: The memory region to deregister.
4122  * @udata: Valid user data or NULL for kernel object
4123  *
4124  * This function can fail, if the memory region has memory windows bound to it.
4125  */
4126 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4127 
4128 /**
4129  * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
4130  *   HCA translation table.
4131  * @mr: The memory region to deregister.
4132  *
4133  * This function can fail, if the memory region has memory windows bound to it.
4134  *
4135  * NOTE: for user mr use ib_dereg_mr_user with valid udata!
4136  */
4137 static inline int ib_dereg_mr(struct ib_mr *mr)
4138 {
4139 	return ib_dereg_mr_user(mr, NULL);
4140 }
4141 
4142 struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type,
4143 			       u32 max_num_sg, struct ib_udata *udata);
4144 
4145 static inline struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
4146 					enum ib_mr_type mr_type, u32 max_num_sg)
4147 {
4148 	return ib_alloc_mr_user(pd, mr_type, max_num_sg, NULL);
4149 }
4150 
4151 /**
4152  * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4153  *   R_Key and L_Key.
4154  * @mr - struct ib_mr pointer to be updated.
4155  * @newkey - new key to be used.
4156  */
4157 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4158 {
4159 	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4160 	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4161 }
4162 
4163 /**
4164  * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4165  * for calculating a new rkey for type 2 memory windows.
4166  * @rkey - the rkey to increment.
4167  */
4168 static inline u32 ib_inc_rkey(u32 rkey)
4169 {
4170 	const u32 mask = 0x000000ff;
4171 	return ((rkey + 1) & mask) | (rkey & ~mask);
4172 }
4173 
4174 /**
4175  * ib_alloc_fmr - Allocates a unmapped fast memory region.
4176  * @pd: The protection domain associated with the unmapped region.
4177  * @mr_access_flags: Specifies the memory access rights.
4178  * @fmr_attr: Attributes of the unmapped region.
4179  *
4180  * A fast memory region must be mapped before it can be used as part of
4181  * a work request.
4182  */
4183 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
4184 			    int mr_access_flags,
4185 			    struct ib_fmr_attr *fmr_attr);
4186 
4187 /**
4188  * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
4189  * @fmr: The fast memory region to associate with the pages.
4190  * @page_list: An array of physical pages to map to the fast memory region.
4191  * @list_len: The number of pages in page_list.
4192  * @iova: The I/O virtual address to use with the mapped region.
4193  */
4194 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
4195 				  u64 *page_list, int list_len,
4196 				  u64 iova)
4197 {
4198 	return fmr->device->ops.map_phys_fmr(fmr, page_list, list_len, iova);
4199 }
4200 
4201 /**
4202  * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
4203  * @fmr_list: A linked list of fast memory regions to unmap.
4204  */
4205 int ib_unmap_fmr(struct list_head *fmr_list);
4206 
4207 /**
4208  * ib_dealloc_fmr - Deallocates a fast memory region.
4209  * @fmr: The fast memory region to deallocate.
4210  */
4211 int ib_dealloc_fmr(struct ib_fmr *fmr);
4212 
4213 /**
4214  * ib_attach_mcast - Attaches the specified QP to a multicast group.
4215  * @qp: QP to attach to the multicast group.  The QP must be type
4216  *   IB_QPT_UD.
4217  * @gid: Multicast group GID.
4218  * @lid: Multicast group LID in host byte order.
4219  *
4220  * In order to send and receive multicast packets, subnet
4221  * administration must have created the multicast group and configured
4222  * the fabric appropriately.  The port associated with the specified
4223  * QP must also be a member of the multicast group.
4224  */
4225 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4226 
4227 /**
4228  * ib_detach_mcast - Detaches the specified QP from a multicast group.
4229  * @qp: QP to detach from the multicast group.
4230  * @gid: Multicast group GID.
4231  * @lid: Multicast group LID in host byte order.
4232  */
4233 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4234 
4235 /**
4236  * ib_alloc_xrcd - Allocates an XRC domain.
4237  * @device: The device on which to allocate the XRC domain.
4238  * @caller: Module name for kernel consumers
4239  */
4240 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller);
4241 #define ib_alloc_xrcd(device) \
4242 	__ib_alloc_xrcd((device), KBUILD_MODNAME)
4243 
4244 /**
4245  * ib_dealloc_xrcd - Deallocates an XRC domain.
4246  * @xrcd: The XRC domain to deallocate.
4247  * @udata: Valid user data or NULL for kernel object
4248  */
4249 int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata);
4250 
4251 static inline int ib_check_mr_access(int flags)
4252 {
4253 	/*
4254 	 * Local write permission is required if remote write or
4255 	 * remote atomic permission is also requested.
4256 	 */
4257 	if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4258 	    !(flags & IB_ACCESS_LOCAL_WRITE))
4259 		return -EINVAL;
4260 
4261 	return 0;
4262 }
4263 
4264 static inline bool ib_access_writable(int access_flags)
4265 {
4266 	/*
4267 	 * We have writable memory backing the MR if any of the following
4268 	 * access flags are set.  "Local write" and "remote write" obviously
4269 	 * require write access.  "Remote atomic" can do things like fetch and
4270 	 * add, which will modify memory, and "MW bind" can change permissions
4271 	 * by binding a window.
4272 	 */
4273 	return access_flags &
4274 		(IB_ACCESS_LOCAL_WRITE   | IB_ACCESS_REMOTE_WRITE |
4275 		 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4276 }
4277 
4278 /**
4279  * ib_check_mr_status: lightweight check of MR status.
4280  *     This routine may provide status checks on a selected
4281  *     ib_mr. first use is for signature status check.
4282  *
4283  * @mr: A memory region.
4284  * @check_mask: Bitmask of which checks to perform from
4285  *     ib_mr_status_check enumeration.
4286  * @mr_status: The container of relevant status checks.
4287  *     failed checks will be indicated in the status bitmask
4288  *     and the relevant info shall be in the error item.
4289  */
4290 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4291 		       struct ib_mr_status *mr_status);
4292 
4293 /**
4294  * ib_device_try_get: Hold a registration lock
4295  * device: The device to lock
4296  *
4297  * A device under an active registration lock cannot become unregistered. It
4298  * is only possible to obtain a registration lock on a device that is fully
4299  * registered, otherwise this function returns false.
4300  *
4301  * The registration lock is only necessary for actions which require the
4302  * device to still be registered. Uses that only require the device pointer to
4303  * be valid should use get_device(&ibdev->dev) to hold the memory.
4304  *
4305  */
4306 static inline bool ib_device_try_get(struct ib_device *dev)
4307 {
4308 	return refcount_inc_not_zero(&dev->refcount);
4309 }
4310 
4311 void ib_device_put(struct ib_device *device);
4312 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4313 					  enum rdma_driver_id driver_id);
4314 struct ib_device *ib_device_get_by_name(const char *name,
4315 					enum rdma_driver_id driver_id);
4316 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
4317 					    u16 pkey, const union ib_gid *gid,
4318 					    const struct sockaddr *addr);
4319 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4320 			 unsigned int port);
4321 struct net_device *ib_device_netdev(struct ib_device *dev, u8 port);
4322 
4323 struct ib_wq *ib_create_wq(struct ib_pd *pd,
4324 			   struct ib_wq_init_attr *init_attr);
4325 int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata);
4326 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
4327 		 u32 wq_attr_mask);
4328 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
4329 						 struct ib_rwq_ind_table_init_attr*
4330 						 wq_ind_table_init_attr);
4331 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
4332 
4333 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4334 		 unsigned int *sg_offset, unsigned int page_size);
4335 
4336 static inline int
4337 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4338 		  unsigned int *sg_offset, unsigned int page_size)
4339 {
4340 	int n;
4341 
4342 	n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4343 	mr->iova = 0;
4344 
4345 	return n;
4346 }
4347 
4348 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
4349 		unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4350 
4351 void ib_drain_rq(struct ib_qp *qp);
4352 void ib_drain_sq(struct ib_qp *qp);
4353 void ib_drain_qp(struct ib_qp *qp);
4354 
4355 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width);
4356 
4357 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4358 {
4359 	if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4360 		return attr->roce.dmac;
4361 	return NULL;
4362 }
4363 
4364 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
4365 {
4366 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4367 		attr->ib.dlid = (u16)dlid;
4368 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4369 		attr->opa.dlid = dlid;
4370 }
4371 
4372 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
4373 {
4374 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4375 		return attr->ib.dlid;
4376 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4377 		return attr->opa.dlid;
4378 	return 0;
4379 }
4380 
4381 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4382 {
4383 	attr->sl = sl;
4384 }
4385 
4386 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4387 {
4388 	return attr->sl;
4389 }
4390 
4391 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4392 					 u8 src_path_bits)
4393 {
4394 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4395 		attr->ib.src_path_bits = src_path_bits;
4396 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4397 		attr->opa.src_path_bits = src_path_bits;
4398 }
4399 
4400 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4401 {
4402 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4403 		return attr->ib.src_path_bits;
4404 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4405 		return attr->opa.src_path_bits;
4406 	return 0;
4407 }
4408 
4409 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4410 					bool make_grd)
4411 {
4412 	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4413 		attr->opa.make_grd = make_grd;
4414 }
4415 
4416 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4417 {
4418 	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4419 		return attr->opa.make_grd;
4420 	return false;
4421 }
4422 
4423 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num)
4424 {
4425 	attr->port_num = port_num;
4426 }
4427 
4428 static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4429 {
4430 	return attr->port_num;
4431 }
4432 
4433 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4434 					   u8 static_rate)
4435 {
4436 	attr->static_rate = static_rate;
4437 }
4438 
4439 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4440 {
4441 	return attr->static_rate;
4442 }
4443 
4444 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4445 					enum ib_ah_flags flag)
4446 {
4447 	attr->ah_flags = flag;
4448 }
4449 
4450 static inline enum ib_ah_flags
4451 		rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4452 {
4453 	return attr->ah_flags;
4454 }
4455 
4456 static inline const struct ib_global_route
4457 		*rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4458 {
4459 	return &attr->grh;
4460 }
4461 
4462 /*To retrieve and modify the grh */
4463 static inline struct ib_global_route
4464 		*rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4465 {
4466 	return &attr->grh;
4467 }
4468 
4469 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4470 {
4471 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4472 
4473 	memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4474 }
4475 
4476 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4477 					     __be64 prefix)
4478 {
4479 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4480 
4481 	grh->dgid.global.subnet_prefix = prefix;
4482 }
4483 
4484 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4485 					    __be64 if_id)
4486 {
4487 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4488 
4489 	grh->dgid.global.interface_id = if_id;
4490 }
4491 
4492 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4493 				   union ib_gid *dgid, u32 flow_label,
4494 				   u8 sgid_index, u8 hop_limit,
4495 				   u8 traffic_class)
4496 {
4497 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4498 
4499 	attr->ah_flags = IB_AH_GRH;
4500 	if (dgid)
4501 		grh->dgid = *dgid;
4502 	grh->flow_label = flow_label;
4503 	grh->sgid_index = sgid_index;
4504 	grh->hop_limit = hop_limit;
4505 	grh->traffic_class = traffic_class;
4506 	grh->sgid_attr = NULL;
4507 }
4508 
4509 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4510 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4511 			     u32 flow_label, u8 hop_limit, u8 traffic_class,
4512 			     const struct ib_gid_attr *sgid_attr);
4513 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4514 		       const struct rdma_ah_attr *src);
4515 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4516 			  const struct rdma_ah_attr *new);
4517 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4518 
4519 /**
4520  * rdma_ah_find_type - Return address handle type.
4521  *
4522  * @dev: Device to be checked
4523  * @port_num: Port number
4524  */
4525 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4526 						       u8 port_num)
4527 {
4528 	if (rdma_protocol_roce(dev, port_num))
4529 		return RDMA_AH_ATTR_TYPE_ROCE;
4530 	if (rdma_protocol_ib(dev, port_num)) {
4531 		if (rdma_cap_opa_ah(dev, port_num))
4532 			return RDMA_AH_ATTR_TYPE_OPA;
4533 		return RDMA_AH_ATTR_TYPE_IB;
4534 	}
4535 
4536 	return RDMA_AH_ATTR_TYPE_UNDEFINED;
4537 }
4538 
4539 /**
4540  * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4541  *     In the current implementation the only way to get
4542  *     get the 32bit lid is from other sources for OPA.
4543  *     For IB, lids will always be 16bits so cast the
4544  *     value accordingly.
4545  *
4546  * @lid: A 32bit LID
4547  */
4548 static inline u16 ib_lid_cpu16(u32 lid)
4549 {
4550 	WARN_ON_ONCE(lid & 0xFFFF0000);
4551 	return (u16)lid;
4552 }
4553 
4554 /**
4555  * ib_lid_be16 - Return lid in 16bit BE encoding.
4556  *
4557  * @lid: A 32bit LID
4558  */
4559 static inline __be16 ib_lid_be16(u32 lid)
4560 {
4561 	WARN_ON_ONCE(lid & 0xFFFF0000);
4562 	return cpu_to_be16((u16)lid);
4563 }
4564 
4565 /**
4566  * ib_get_vector_affinity - Get the affinity mappings of a given completion
4567  *   vector
4568  * @device:         the rdma device
4569  * @comp_vector:    index of completion vector
4570  *
4571  * Returns NULL on failure, otherwise a corresponding cpu map of the
4572  * completion vector (returns all-cpus map if the device driver doesn't
4573  * implement get_vector_affinity).
4574  */
4575 static inline const struct cpumask *
4576 ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4577 {
4578 	if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4579 	    !device->ops.get_vector_affinity)
4580 		return NULL;
4581 
4582 	return device->ops.get_vector_affinity(device, comp_vector);
4583 
4584 }
4585 
4586 /**
4587  * rdma_roce_rescan_device - Rescan all of the network devices in the system
4588  * and add their gids, as needed, to the relevant RoCE devices.
4589  *
4590  * @device:         the rdma device
4591  */
4592 void rdma_roce_rescan_device(struct ib_device *ibdev);
4593 
4594 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
4595 
4596 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
4597 
4598 struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
4599 				     enum rdma_netdev_t type, const char *name,
4600 				     unsigned char name_assign_type,
4601 				     void (*setup)(struct net_device *));
4602 
4603 int rdma_init_netdev(struct ib_device *device, u8 port_num,
4604 		     enum rdma_netdev_t type, const char *name,
4605 		     unsigned char name_assign_type,
4606 		     void (*setup)(struct net_device *),
4607 		     struct net_device *netdev);
4608 
4609 /**
4610  * rdma_set_device_sysfs_group - Set device attributes group to have
4611  *				 driver specific sysfs entries at
4612  *				 for infiniband class.
4613  *
4614  * @device:	device pointer for which attributes to be created
4615  * @group:	Pointer to group which should be added when device
4616  *		is registered with sysfs.
4617  * rdma_set_device_sysfs_group() allows existing drivers to expose one
4618  * group per device to have sysfs attributes.
4619  *
4620  * NOTE: New drivers should not make use of this API; instead new device
4621  * parameter should be exposed via netlink command. This API and mechanism
4622  * exist only for existing drivers.
4623  */
4624 static inline void
4625 rdma_set_device_sysfs_group(struct ib_device *dev,
4626 			    const struct attribute_group *group)
4627 {
4628 	dev->groups[1] = group;
4629 }
4630 
4631 /**
4632  * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4633  *
4634  * @device:	device pointer for which ib_device pointer to retrieve
4635  *
4636  * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4637  *
4638  */
4639 static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4640 {
4641 	struct ib_core_device *coredev =
4642 		container_of(device, struct ib_core_device, dev);
4643 
4644 	return coredev->owner;
4645 }
4646 
4647 /**
4648  * rdma_device_to_drv_device - Helper macro to reach back to driver's
4649  *			       ib_device holder structure from device pointer.
4650  *
4651  * NOTE: New drivers should not make use of this API; This API is only for
4652  * existing drivers who have exposed sysfs entries using
4653  * rdma_set_device_sysfs_group().
4654  */
4655 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member)           \
4656 	container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
4657 
4658 bool rdma_dev_access_netns(const struct ib_device *device,
4659 			   const struct net *net);
4660 #endif /* IB_VERBS_H */
4661