1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #if !defined(IB_VERBS_H) 40 #define IB_VERBS_H 41 42 #include <linux/types.h> 43 #include <linux/device.h> 44 #include <linux/mm.h> 45 #include <linux/dma-mapping.h> 46 #include <linux/kref.h> 47 #include <linux/list.h> 48 #include <linux/rwsem.h> 49 #include <linux/scatterlist.h> 50 #include <linux/workqueue.h> 51 #include <linux/socket.h> 52 #include <linux/irq_poll.h> 53 #include <uapi/linux/if_ether.h> 54 #include <net/ipv6.h> 55 #include <net/ip.h> 56 #include <linux/string.h> 57 #include <linux/slab.h> 58 #include <linux/netdevice.h> 59 60 #include <linux/if_link.h> 61 #include <linux/atomic.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/uaccess.h> 64 #include <linux/cgroup_rdma.h> 65 #include <uapi/rdma/ib_user_verbs.h> 66 #include <rdma/restrack.h> 67 68 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN 69 70 extern struct workqueue_struct *ib_wq; 71 extern struct workqueue_struct *ib_comp_wq; 72 73 union ib_gid { 74 u8 raw[16]; 75 struct { 76 __be64 subnet_prefix; 77 __be64 interface_id; 78 } global; 79 }; 80 81 extern union ib_gid zgid; 82 83 enum ib_gid_type { 84 /* If link layer is Ethernet, this is RoCE V1 */ 85 IB_GID_TYPE_IB = 0, 86 IB_GID_TYPE_ROCE = 0, 87 IB_GID_TYPE_ROCE_UDP_ENCAP = 1, 88 IB_GID_TYPE_SIZE 89 }; 90 91 #define ROCE_V2_UDP_DPORT 4791 92 struct ib_gid_attr { 93 enum ib_gid_type gid_type; 94 struct net_device *ndev; 95 }; 96 97 enum rdma_node_type { 98 /* IB values map to NodeInfo:NodeType. */ 99 RDMA_NODE_IB_CA = 1, 100 RDMA_NODE_IB_SWITCH, 101 RDMA_NODE_IB_ROUTER, 102 RDMA_NODE_RNIC, 103 RDMA_NODE_USNIC, 104 RDMA_NODE_USNIC_UDP, 105 }; 106 107 enum { 108 /* set the local administered indication */ 109 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2, 110 }; 111 112 enum rdma_transport_type { 113 RDMA_TRANSPORT_IB, 114 RDMA_TRANSPORT_IWARP, 115 RDMA_TRANSPORT_USNIC, 116 RDMA_TRANSPORT_USNIC_UDP 117 }; 118 119 enum rdma_protocol_type { 120 RDMA_PROTOCOL_IB, 121 RDMA_PROTOCOL_IBOE, 122 RDMA_PROTOCOL_IWARP, 123 RDMA_PROTOCOL_USNIC_UDP 124 }; 125 126 __attribute_const__ enum rdma_transport_type 127 rdma_node_get_transport(enum rdma_node_type node_type); 128 129 enum rdma_network_type { 130 RDMA_NETWORK_IB, 131 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB, 132 RDMA_NETWORK_IPV4, 133 RDMA_NETWORK_IPV6 134 }; 135 136 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) 137 { 138 if (network_type == RDMA_NETWORK_IPV4 || 139 network_type == RDMA_NETWORK_IPV6) 140 return IB_GID_TYPE_ROCE_UDP_ENCAP; 141 142 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */ 143 return IB_GID_TYPE_IB; 144 } 145 146 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type, 147 union ib_gid *gid) 148 { 149 if (gid_type == IB_GID_TYPE_IB) 150 return RDMA_NETWORK_IB; 151 152 if (ipv6_addr_v4mapped((struct in6_addr *)gid)) 153 return RDMA_NETWORK_IPV4; 154 else 155 return RDMA_NETWORK_IPV6; 156 } 157 158 enum rdma_link_layer { 159 IB_LINK_LAYER_UNSPECIFIED, 160 IB_LINK_LAYER_INFINIBAND, 161 IB_LINK_LAYER_ETHERNET, 162 }; 163 164 enum ib_device_cap_flags { 165 IB_DEVICE_RESIZE_MAX_WR = (1 << 0), 166 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1), 167 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2), 168 IB_DEVICE_RAW_MULTI = (1 << 3), 169 IB_DEVICE_AUTO_PATH_MIG = (1 << 4), 170 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5), 171 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6), 172 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7), 173 IB_DEVICE_SHUTDOWN_PORT = (1 << 8), 174 /* Not in use, former INIT_TYPE = (1 << 9),*/ 175 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10), 176 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11), 177 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12), 178 IB_DEVICE_SRQ_RESIZE = (1 << 13), 179 IB_DEVICE_N_NOTIFY_CQ = (1 << 14), 180 181 /* 182 * This device supports a per-device lkey or stag that can be 183 * used without performing a memory registration for the local 184 * memory. Note that ULPs should never check this flag, but 185 * instead of use the local_dma_lkey flag in the ib_pd structure, 186 * which will always contain a usable lkey. 187 */ 188 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15), 189 /* Reserved, old SEND_W_INV = (1 << 16),*/ 190 IB_DEVICE_MEM_WINDOW = (1 << 17), 191 /* 192 * Devices should set IB_DEVICE_UD_IP_SUM if they support 193 * insertion of UDP and TCP checksum on outgoing UD IPoIB 194 * messages and can verify the validity of checksum for 195 * incoming messages. Setting this flag implies that the 196 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 197 */ 198 IB_DEVICE_UD_IP_CSUM = (1 << 18), 199 IB_DEVICE_UD_TSO = (1 << 19), 200 IB_DEVICE_XRC = (1 << 20), 201 202 /* 203 * This device supports the IB "base memory management extension", 204 * which includes support for fast registrations (IB_WR_REG_MR, 205 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should 206 * also be set by any iWarp device which must support FRs to comply 207 * to the iWarp verbs spec. iWarp devices also support the 208 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the 209 * stag. 210 */ 211 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21), 212 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22), 213 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23), 214 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24), 215 IB_DEVICE_RC_IP_CSUM = (1 << 25), 216 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */ 217 IB_DEVICE_RAW_IP_CSUM = (1 << 26), 218 /* 219 * Devices should set IB_DEVICE_CROSS_CHANNEL if they 220 * support execution of WQEs that involve synchronization 221 * of I/O operations with single completion queue managed 222 * by hardware. 223 */ 224 IB_DEVICE_CROSS_CHANNEL = (1 << 27), 225 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29), 226 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30), 227 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31), 228 IB_DEVICE_SG_GAPS_REG = (1ULL << 32), 229 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33), 230 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */ 231 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34), 232 IB_DEVICE_RDMA_NETDEV_OPA_VNIC = (1ULL << 35), 233 /* The device supports padding incoming writes to cacheline. */ 234 IB_DEVICE_PCI_WRITE_END_PADDING = (1ULL << 36), 235 }; 236 237 enum ib_signature_prot_cap { 238 IB_PROT_T10DIF_TYPE_1 = 1, 239 IB_PROT_T10DIF_TYPE_2 = 1 << 1, 240 IB_PROT_T10DIF_TYPE_3 = 1 << 2, 241 }; 242 243 enum ib_signature_guard_cap { 244 IB_GUARD_T10DIF_CRC = 1, 245 IB_GUARD_T10DIF_CSUM = 1 << 1, 246 }; 247 248 enum ib_atomic_cap { 249 IB_ATOMIC_NONE, 250 IB_ATOMIC_HCA, 251 IB_ATOMIC_GLOB 252 }; 253 254 enum ib_odp_general_cap_bits { 255 IB_ODP_SUPPORT = 1 << 0, 256 IB_ODP_SUPPORT_IMPLICIT = 1 << 1, 257 }; 258 259 enum ib_odp_transport_cap_bits { 260 IB_ODP_SUPPORT_SEND = 1 << 0, 261 IB_ODP_SUPPORT_RECV = 1 << 1, 262 IB_ODP_SUPPORT_WRITE = 1 << 2, 263 IB_ODP_SUPPORT_READ = 1 << 3, 264 IB_ODP_SUPPORT_ATOMIC = 1 << 4, 265 }; 266 267 struct ib_odp_caps { 268 uint64_t general_caps; 269 struct { 270 uint32_t rc_odp_caps; 271 uint32_t uc_odp_caps; 272 uint32_t ud_odp_caps; 273 } per_transport_caps; 274 }; 275 276 struct ib_rss_caps { 277 /* Corresponding bit will be set if qp type from 278 * 'enum ib_qp_type' is supported, e.g. 279 * supported_qpts |= 1 << IB_QPT_UD 280 */ 281 u32 supported_qpts; 282 u32 max_rwq_indirection_tables; 283 u32 max_rwq_indirection_table_size; 284 }; 285 286 enum ib_tm_cap_flags { 287 /* Support tag matching on RC transport */ 288 IB_TM_CAP_RC = 1 << 0, 289 }; 290 291 struct ib_tm_caps { 292 /* Max size of RNDV header */ 293 u32 max_rndv_hdr_size; 294 /* Max number of entries in tag matching list */ 295 u32 max_num_tags; 296 /* From enum ib_tm_cap_flags */ 297 u32 flags; 298 /* Max number of outstanding list operations */ 299 u32 max_ops; 300 /* Max number of SGE in tag matching entry */ 301 u32 max_sge; 302 }; 303 304 struct ib_cq_init_attr { 305 unsigned int cqe; 306 int comp_vector; 307 u32 flags; 308 }; 309 310 enum ib_cq_attr_mask { 311 IB_CQ_MODERATE = 1 << 0, 312 }; 313 314 struct ib_cq_caps { 315 u16 max_cq_moderation_count; 316 u16 max_cq_moderation_period; 317 }; 318 319 struct ib_device_attr { 320 u64 fw_ver; 321 __be64 sys_image_guid; 322 u64 max_mr_size; 323 u64 page_size_cap; 324 u32 vendor_id; 325 u32 vendor_part_id; 326 u32 hw_ver; 327 int max_qp; 328 int max_qp_wr; 329 u64 device_cap_flags; 330 int max_sge; 331 int max_sge_rd; 332 int max_cq; 333 int max_cqe; 334 int max_mr; 335 int max_pd; 336 int max_qp_rd_atom; 337 int max_ee_rd_atom; 338 int max_res_rd_atom; 339 int max_qp_init_rd_atom; 340 int max_ee_init_rd_atom; 341 enum ib_atomic_cap atomic_cap; 342 enum ib_atomic_cap masked_atomic_cap; 343 int max_ee; 344 int max_rdd; 345 int max_mw; 346 int max_raw_ipv6_qp; 347 int max_raw_ethy_qp; 348 int max_mcast_grp; 349 int max_mcast_qp_attach; 350 int max_total_mcast_qp_attach; 351 int max_ah; 352 int max_fmr; 353 int max_map_per_fmr; 354 int max_srq; 355 int max_srq_wr; 356 int max_srq_sge; 357 unsigned int max_fast_reg_page_list_len; 358 u16 max_pkeys; 359 u8 local_ca_ack_delay; 360 int sig_prot_cap; 361 int sig_guard_cap; 362 struct ib_odp_caps odp_caps; 363 uint64_t timestamp_mask; 364 uint64_t hca_core_clock; /* in KHZ */ 365 struct ib_rss_caps rss_caps; 366 u32 max_wq_type_rq; 367 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */ 368 struct ib_tm_caps tm_caps; 369 struct ib_cq_caps cq_caps; 370 }; 371 372 enum ib_mtu { 373 IB_MTU_256 = 1, 374 IB_MTU_512 = 2, 375 IB_MTU_1024 = 3, 376 IB_MTU_2048 = 4, 377 IB_MTU_4096 = 5 378 }; 379 380 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 381 { 382 switch (mtu) { 383 case IB_MTU_256: return 256; 384 case IB_MTU_512: return 512; 385 case IB_MTU_1024: return 1024; 386 case IB_MTU_2048: return 2048; 387 case IB_MTU_4096: return 4096; 388 default: return -1; 389 } 390 } 391 392 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu) 393 { 394 if (mtu >= 4096) 395 return IB_MTU_4096; 396 else if (mtu >= 2048) 397 return IB_MTU_2048; 398 else if (mtu >= 1024) 399 return IB_MTU_1024; 400 else if (mtu >= 512) 401 return IB_MTU_512; 402 else 403 return IB_MTU_256; 404 } 405 406 enum ib_port_state { 407 IB_PORT_NOP = 0, 408 IB_PORT_DOWN = 1, 409 IB_PORT_INIT = 2, 410 IB_PORT_ARMED = 3, 411 IB_PORT_ACTIVE = 4, 412 IB_PORT_ACTIVE_DEFER = 5 413 }; 414 415 enum ib_port_cap_flags { 416 IB_PORT_SM = 1 << 1, 417 IB_PORT_NOTICE_SUP = 1 << 2, 418 IB_PORT_TRAP_SUP = 1 << 3, 419 IB_PORT_OPT_IPD_SUP = 1 << 4, 420 IB_PORT_AUTO_MIGR_SUP = 1 << 5, 421 IB_PORT_SL_MAP_SUP = 1 << 6, 422 IB_PORT_MKEY_NVRAM = 1 << 7, 423 IB_PORT_PKEY_NVRAM = 1 << 8, 424 IB_PORT_LED_INFO_SUP = 1 << 9, 425 IB_PORT_SM_DISABLED = 1 << 10, 426 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11, 427 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12, 428 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14, 429 IB_PORT_CM_SUP = 1 << 16, 430 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17, 431 IB_PORT_REINIT_SUP = 1 << 18, 432 IB_PORT_DEVICE_MGMT_SUP = 1 << 19, 433 IB_PORT_VENDOR_CLASS_SUP = 1 << 20, 434 IB_PORT_DR_NOTICE_SUP = 1 << 21, 435 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22, 436 IB_PORT_BOOT_MGMT_SUP = 1 << 23, 437 IB_PORT_LINK_LATENCY_SUP = 1 << 24, 438 IB_PORT_CLIENT_REG_SUP = 1 << 25, 439 IB_PORT_IP_BASED_GIDS = 1 << 26, 440 }; 441 442 enum ib_port_width { 443 IB_WIDTH_1X = 1, 444 IB_WIDTH_4X = 2, 445 IB_WIDTH_8X = 4, 446 IB_WIDTH_12X = 8 447 }; 448 449 static inline int ib_width_enum_to_int(enum ib_port_width width) 450 { 451 switch (width) { 452 case IB_WIDTH_1X: return 1; 453 case IB_WIDTH_4X: return 4; 454 case IB_WIDTH_8X: return 8; 455 case IB_WIDTH_12X: return 12; 456 default: return -1; 457 } 458 } 459 460 enum ib_port_speed { 461 IB_SPEED_SDR = 1, 462 IB_SPEED_DDR = 2, 463 IB_SPEED_QDR = 4, 464 IB_SPEED_FDR10 = 8, 465 IB_SPEED_FDR = 16, 466 IB_SPEED_EDR = 32, 467 IB_SPEED_HDR = 64 468 }; 469 470 /** 471 * struct rdma_hw_stats 472 * @timestamp - Used by the core code to track when the last update was 473 * @lifespan - Used by the core code to determine how old the counters 474 * should be before being updated again. Stored in jiffies, defaults 475 * to 10 milliseconds, drivers can override the default be specifying 476 * their own value during their allocation routine. 477 * @name - Array of pointers to static names used for the counters in 478 * directory. 479 * @num_counters - How many hardware counters there are. If name is 480 * shorter than this number, a kernel oops will result. Driver authors 481 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters) 482 * in their code to prevent this. 483 * @value - Array of u64 counters that are accessed by the sysfs code and 484 * filled in by the drivers get_stats routine 485 */ 486 struct rdma_hw_stats { 487 unsigned long timestamp; 488 unsigned long lifespan; 489 const char * const *names; 490 int num_counters; 491 u64 value[]; 492 }; 493 494 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10 495 /** 496 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct 497 * for drivers. 498 * @names - Array of static const char * 499 * @num_counters - How many elements in array 500 * @lifespan - How many milliseconds between updates 501 */ 502 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 503 const char * const *names, int num_counters, 504 unsigned long lifespan) 505 { 506 struct rdma_hw_stats *stats; 507 508 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64), 509 GFP_KERNEL); 510 if (!stats) 511 return NULL; 512 stats->names = names; 513 stats->num_counters = num_counters; 514 stats->lifespan = msecs_to_jiffies(lifespan); 515 516 return stats; 517 } 518 519 520 /* Define bits for the various functionality this port needs to be supported by 521 * the core. 522 */ 523 /* Management 0x00000FFF */ 524 #define RDMA_CORE_CAP_IB_MAD 0x00000001 525 #define RDMA_CORE_CAP_IB_SMI 0x00000002 526 #define RDMA_CORE_CAP_IB_CM 0x00000004 527 #define RDMA_CORE_CAP_IW_CM 0x00000008 528 #define RDMA_CORE_CAP_IB_SA 0x00000010 529 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 530 531 /* Address format 0x000FF000 */ 532 #define RDMA_CORE_CAP_AF_IB 0x00001000 533 #define RDMA_CORE_CAP_ETH_AH 0x00002000 534 #define RDMA_CORE_CAP_OPA_AH 0x00004000 535 536 /* Protocol 0xFFF00000 */ 537 #define RDMA_CORE_CAP_PROT_IB 0x00100000 538 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 539 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 540 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 541 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000 542 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000 543 544 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 545 | RDMA_CORE_CAP_IB_MAD \ 546 | RDMA_CORE_CAP_IB_SMI \ 547 | RDMA_CORE_CAP_IB_CM \ 548 | RDMA_CORE_CAP_IB_SA \ 549 | RDMA_CORE_CAP_AF_IB) 550 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 551 | RDMA_CORE_CAP_IB_MAD \ 552 | RDMA_CORE_CAP_IB_CM \ 553 | RDMA_CORE_CAP_AF_IB \ 554 | RDMA_CORE_CAP_ETH_AH) 555 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ 556 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ 557 | RDMA_CORE_CAP_IB_MAD \ 558 | RDMA_CORE_CAP_IB_CM \ 559 | RDMA_CORE_CAP_AF_IB \ 560 | RDMA_CORE_CAP_ETH_AH) 561 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 562 | RDMA_CORE_CAP_IW_CM) 563 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 564 | RDMA_CORE_CAP_OPA_MAD) 565 566 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET) 567 568 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC) 569 570 struct ib_port_attr { 571 u64 subnet_prefix; 572 enum ib_port_state state; 573 enum ib_mtu max_mtu; 574 enum ib_mtu active_mtu; 575 int gid_tbl_len; 576 u32 port_cap_flags; 577 u32 max_msg_sz; 578 u32 bad_pkey_cntr; 579 u32 qkey_viol_cntr; 580 u16 pkey_tbl_len; 581 u32 sm_lid; 582 u32 lid; 583 u8 lmc; 584 u8 max_vl_num; 585 u8 sm_sl; 586 u8 subnet_timeout; 587 u8 init_type_reply; 588 u8 active_width; 589 u8 active_speed; 590 u8 phys_state; 591 bool grh_required; 592 }; 593 594 enum ib_device_modify_flags { 595 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 596 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 597 }; 598 599 #define IB_DEVICE_NODE_DESC_MAX 64 600 601 struct ib_device_modify { 602 u64 sys_image_guid; 603 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 604 }; 605 606 enum ib_port_modify_flags { 607 IB_PORT_SHUTDOWN = 1, 608 IB_PORT_INIT_TYPE = (1<<2), 609 IB_PORT_RESET_QKEY_CNTR = (1<<3), 610 IB_PORT_OPA_MASK_CHG = (1<<4) 611 }; 612 613 struct ib_port_modify { 614 u32 set_port_cap_mask; 615 u32 clr_port_cap_mask; 616 u8 init_type; 617 }; 618 619 enum ib_event_type { 620 IB_EVENT_CQ_ERR, 621 IB_EVENT_QP_FATAL, 622 IB_EVENT_QP_REQ_ERR, 623 IB_EVENT_QP_ACCESS_ERR, 624 IB_EVENT_COMM_EST, 625 IB_EVENT_SQ_DRAINED, 626 IB_EVENT_PATH_MIG, 627 IB_EVENT_PATH_MIG_ERR, 628 IB_EVENT_DEVICE_FATAL, 629 IB_EVENT_PORT_ACTIVE, 630 IB_EVENT_PORT_ERR, 631 IB_EVENT_LID_CHANGE, 632 IB_EVENT_PKEY_CHANGE, 633 IB_EVENT_SM_CHANGE, 634 IB_EVENT_SRQ_ERR, 635 IB_EVENT_SRQ_LIMIT_REACHED, 636 IB_EVENT_QP_LAST_WQE_REACHED, 637 IB_EVENT_CLIENT_REREGISTER, 638 IB_EVENT_GID_CHANGE, 639 IB_EVENT_WQ_FATAL, 640 }; 641 642 const char *__attribute_const__ ib_event_msg(enum ib_event_type event); 643 644 struct ib_event { 645 struct ib_device *device; 646 union { 647 struct ib_cq *cq; 648 struct ib_qp *qp; 649 struct ib_srq *srq; 650 struct ib_wq *wq; 651 u8 port_num; 652 } element; 653 enum ib_event_type event; 654 }; 655 656 struct ib_event_handler { 657 struct ib_device *device; 658 void (*handler)(struct ib_event_handler *, struct ib_event *); 659 struct list_head list; 660 }; 661 662 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 663 do { \ 664 (_ptr)->device = _device; \ 665 (_ptr)->handler = _handler; \ 666 INIT_LIST_HEAD(&(_ptr)->list); \ 667 } while (0) 668 669 struct ib_global_route { 670 union ib_gid dgid; 671 u32 flow_label; 672 u8 sgid_index; 673 u8 hop_limit; 674 u8 traffic_class; 675 }; 676 677 struct ib_grh { 678 __be32 version_tclass_flow; 679 __be16 paylen; 680 u8 next_hdr; 681 u8 hop_limit; 682 union ib_gid sgid; 683 union ib_gid dgid; 684 }; 685 686 union rdma_network_hdr { 687 struct ib_grh ibgrh; 688 struct { 689 /* The IB spec states that if it's IPv4, the header 690 * is located in the last 20 bytes of the header. 691 */ 692 u8 reserved[20]; 693 struct iphdr roce4grh; 694 }; 695 }; 696 697 #define IB_QPN_MASK 0xFFFFFF 698 699 enum { 700 IB_MULTICAST_QPN = 0xffffff 701 }; 702 703 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 704 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000) 705 706 enum ib_ah_flags { 707 IB_AH_GRH = 1 708 }; 709 710 enum ib_rate { 711 IB_RATE_PORT_CURRENT = 0, 712 IB_RATE_2_5_GBPS = 2, 713 IB_RATE_5_GBPS = 5, 714 IB_RATE_10_GBPS = 3, 715 IB_RATE_20_GBPS = 6, 716 IB_RATE_30_GBPS = 4, 717 IB_RATE_40_GBPS = 7, 718 IB_RATE_60_GBPS = 8, 719 IB_RATE_80_GBPS = 9, 720 IB_RATE_120_GBPS = 10, 721 IB_RATE_14_GBPS = 11, 722 IB_RATE_56_GBPS = 12, 723 IB_RATE_112_GBPS = 13, 724 IB_RATE_168_GBPS = 14, 725 IB_RATE_25_GBPS = 15, 726 IB_RATE_100_GBPS = 16, 727 IB_RATE_200_GBPS = 17, 728 IB_RATE_300_GBPS = 18 729 }; 730 731 /** 732 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 733 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 734 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 735 * @rate: rate to convert. 736 */ 737 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 738 739 /** 740 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 741 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 742 * @rate: rate to convert. 743 */ 744 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 745 746 747 /** 748 * enum ib_mr_type - memory region type 749 * @IB_MR_TYPE_MEM_REG: memory region that is used for 750 * normal registration 751 * @IB_MR_TYPE_SIGNATURE: memory region that is used for 752 * signature operations (data-integrity 753 * capable regions) 754 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to 755 * register any arbitrary sg lists (without 756 * the normal mr constraints - see 757 * ib_map_mr_sg) 758 */ 759 enum ib_mr_type { 760 IB_MR_TYPE_MEM_REG, 761 IB_MR_TYPE_SIGNATURE, 762 IB_MR_TYPE_SG_GAPS, 763 }; 764 765 /** 766 * Signature types 767 * IB_SIG_TYPE_NONE: Unprotected. 768 * IB_SIG_TYPE_T10_DIF: Type T10-DIF 769 */ 770 enum ib_signature_type { 771 IB_SIG_TYPE_NONE, 772 IB_SIG_TYPE_T10_DIF, 773 }; 774 775 /** 776 * Signature T10-DIF block-guard types 777 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules. 778 * IB_T10DIF_CSUM: Corresponds to IP checksum rules. 779 */ 780 enum ib_t10_dif_bg_type { 781 IB_T10DIF_CRC, 782 IB_T10DIF_CSUM 783 }; 784 785 /** 786 * struct ib_t10_dif_domain - Parameters specific for T10-DIF 787 * domain. 788 * @bg_type: T10-DIF block guard type (CRC|CSUM) 789 * @pi_interval: protection information interval. 790 * @bg: seed of guard computation. 791 * @app_tag: application tag of guard block 792 * @ref_tag: initial guard block reference tag. 793 * @ref_remap: Indicate wethear the reftag increments each block 794 * @app_escape: Indicate to skip block check if apptag=0xffff 795 * @ref_escape: Indicate to skip block check if reftag=0xffffffff 796 * @apptag_check_mask: check bitmask of application tag. 797 */ 798 struct ib_t10_dif_domain { 799 enum ib_t10_dif_bg_type bg_type; 800 u16 pi_interval; 801 u16 bg; 802 u16 app_tag; 803 u32 ref_tag; 804 bool ref_remap; 805 bool app_escape; 806 bool ref_escape; 807 u16 apptag_check_mask; 808 }; 809 810 /** 811 * struct ib_sig_domain - Parameters for signature domain 812 * @sig_type: specific signauture type 813 * @sig: union of all signature domain attributes that may 814 * be used to set domain layout. 815 */ 816 struct ib_sig_domain { 817 enum ib_signature_type sig_type; 818 union { 819 struct ib_t10_dif_domain dif; 820 } sig; 821 }; 822 823 /** 824 * struct ib_sig_attrs - Parameters for signature handover operation 825 * @check_mask: bitmask for signature byte check (8 bytes) 826 * @mem: memory domain layout desciptor. 827 * @wire: wire domain layout desciptor. 828 */ 829 struct ib_sig_attrs { 830 u8 check_mask; 831 struct ib_sig_domain mem; 832 struct ib_sig_domain wire; 833 }; 834 835 enum ib_sig_err_type { 836 IB_SIG_BAD_GUARD, 837 IB_SIG_BAD_REFTAG, 838 IB_SIG_BAD_APPTAG, 839 }; 840 841 /** 842 * struct ib_sig_err - signature error descriptor 843 */ 844 struct ib_sig_err { 845 enum ib_sig_err_type err_type; 846 u32 expected; 847 u32 actual; 848 u64 sig_err_offset; 849 u32 key; 850 }; 851 852 enum ib_mr_status_check { 853 IB_MR_CHECK_SIG_STATUS = 1, 854 }; 855 856 /** 857 * struct ib_mr_status - Memory region status container 858 * 859 * @fail_status: Bitmask of MR checks status. For each 860 * failed check a corresponding status bit is set. 861 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 862 * failure. 863 */ 864 struct ib_mr_status { 865 u32 fail_status; 866 struct ib_sig_err sig_err; 867 }; 868 869 /** 870 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 871 * enum. 872 * @mult: multiple to convert. 873 */ 874 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 875 876 enum rdma_ah_attr_type { 877 RDMA_AH_ATTR_TYPE_UNDEFINED, 878 RDMA_AH_ATTR_TYPE_IB, 879 RDMA_AH_ATTR_TYPE_ROCE, 880 RDMA_AH_ATTR_TYPE_OPA, 881 }; 882 883 struct ib_ah_attr { 884 u16 dlid; 885 u8 src_path_bits; 886 }; 887 888 struct roce_ah_attr { 889 u8 dmac[ETH_ALEN]; 890 }; 891 892 struct opa_ah_attr { 893 u32 dlid; 894 u8 src_path_bits; 895 bool make_grd; 896 }; 897 898 struct rdma_ah_attr { 899 struct ib_global_route grh; 900 u8 sl; 901 u8 static_rate; 902 u8 port_num; 903 u8 ah_flags; 904 enum rdma_ah_attr_type type; 905 union { 906 struct ib_ah_attr ib; 907 struct roce_ah_attr roce; 908 struct opa_ah_attr opa; 909 }; 910 }; 911 912 enum ib_wc_status { 913 IB_WC_SUCCESS, 914 IB_WC_LOC_LEN_ERR, 915 IB_WC_LOC_QP_OP_ERR, 916 IB_WC_LOC_EEC_OP_ERR, 917 IB_WC_LOC_PROT_ERR, 918 IB_WC_WR_FLUSH_ERR, 919 IB_WC_MW_BIND_ERR, 920 IB_WC_BAD_RESP_ERR, 921 IB_WC_LOC_ACCESS_ERR, 922 IB_WC_REM_INV_REQ_ERR, 923 IB_WC_REM_ACCESS_ERR, 924 IB_WC_REM_OP_ERR, 925 IB_WC_RETRY_EXC_ERR, 926 IB_WC_RNR_RETRY_EXC_ERR, 927 IB_WC_LOC_RDD_VIOL_ERR, 928 IB_WC_REM_INV_RD_REQ_ERR, 929 IB_WC_REM_ABORT_ERR, 930 IB_WC_INV_EECN_ERR, 931 IB_WC_INV_EEC_STATE_ERR, 932 IB_WC_FATAL_ERR, 933 IB_WC_RESP_TIMEOUT_ERR, 934 IB_WC_GENERAL_ERR 935 }; 936 937 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); 938 939 enum ib_wc_opcode { 940 IB_WC_SEND, 941 IB_WC_RDMA_WRITE, 942 IB_WC_RDMA_READ, 943 IB_WC_COMP_SWAP, 944 IB_WC_FETCH_ADD, 945 IB_WC_LSO, 946 IB_WC_LOCAL_INV, 947 IB_WC_REG_MR, 948 IB_WC_MASKED_COMP_SWAP, 949 IB_WC_MASKED_FETCH_ADD, 950 /* 951 * Set value of IB_WC_RECV so consumers can test if a completion is a 952 * receive by testing (opcode & IB_WC_RECV). 953 */ 954 IB_WC_RECV = 1 << 7, 955 IB_WC_RECV_RDMA_WITH_IMM 956 }; 957 958 enum ib_wc_flags { 959 IB_WC_GRH = 1, 960 IB_WC_WITH_IMM = (1<<1), 961 IB_WC_WITH_INVALIDATE = (1<<2), 962 IB_WC_IP_CSUM_OK = (1<<3), 963 IB_WC_WITH_SMAC = (1<<4), 964 IB_WC_WITH_VLAN = (1<<5), 965 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), 966 }; 967 968 struct ib_wc { 969 union { 970 u64 wr_id; 971 struct ib_cqe *wr_cqe; 972 }; 973 enum ib_wc_status status; 974 enum ib_wc_opcode opcode; 975 u32 vendor_err; 976 u32 byte_len; 977 struct ib_qp *qp; 978 union { 979 __be32 imm_data; 980 u32 invalidate_rkey; 981 } ex; 982 u32 src_qp; 983 u32 slid; 984 int wc_flags; 985 u16 pkey_index; 986 u8 sl; 987 u8 dlid_path_bits; 988 u8 port_num; /* valid only for DR SMPs on switches */ 989 u8 smac[ETH_ALEN]; 990 u16 vlan_id; 991 u8 network_hdr_type; 992 }; 993 994 enum ib_cq_notify_flags { 995 IB_CQ_SOLICITED = 1 << 0, 996 IB_CQ_NEXT_COMP = 1 << 1, 997 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 998 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 999 }; 1000 1001 enum ib_srq_type { 1002 IB_SRQT_BASIC, 1003 IB_SRQT_XRC, 1004 IB_SRQT_TM, 1005 }; 1006 1007 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type) 1008 { 1009 return srq_type == IB_SRQT_XRC || 1010 srq_type == IB_SRQT_TM; 1011 } 1012 1013 enum ib_srq_attr_mask { 1014 IB_SRQ_MAX_WR = 1 << 0, 1015 IB_SRQ_LIMIT = 1 << 1, 1016 }; 1017 1018 struct ib_srq_attr { 1019 u32 max_wr; 1020 u32 max_sge; 1021 u32 srq_limit; 1022 }; 1023 1024 struct ib_srq_init_attr { 1025 void (*event_handler)(struct ib_event *, void *); 1026 void *srq_context; 1027 struct ib_srq_attr attr; 1028 enum ib_srq_type srq_type; 1029 1030 struct { 1031 struct ib_cq *cq; 1032 union { 1033 struct { 1034 struct ib_xrcd *xrcd; 1035 } xrc; 1036 1037 struct { 1038 u32 max_num_tags; 1039 } tag_matching; 1040 }; 1041 } ext; 1042 }; 1043 1044 struct ib_qp_cap { 1045 u32 max_send_wr; 1046 u32 max_recv_wr; 1047 u32 max_send_sge; 1048 u32 max_recv_sge; 1049 u32 max_inline_data; 1050 1051 /* 1052 * Maximum number of rdma_rw_ctx structures in flight at a time. 1053 * ib_create_qp() will calculate the right amount of neededed WRs 1054 * and MRs based on this. 1055 */ 1056 u32 max_rdma_ctxs; 1057 }; 1058 1059 enum ib_sig_type { 1060 IB_SIGNAL_ALL_WR, 1061 IB_SIGNAL_REQ_WR 1062 }; 1063 1064 enum ib_qp_type { 1065 /* 1066 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 1067 * here (and in that order) since the MAD layer uses them as 1068 * indices into a 2-entry table. 1069 */ 1070 IB_QPT_SMI, 1071 IB_QPT_GSI, 1072 1073 IB_QPT_RC, 1074 IB_QPT_UC, 1075 IB_QPT_UD, 1076 IB_QPT_RAW_IPV6, 1077 IB_QPT_RAW_ETHERTYPE, 1078 IB_QPT_RAW_PACKET = 8, 1079 IB_QPT_XRC_INI = 9, 1080 IB_QPT_XRC_TGT, 1081 IB_QPT_MAX, 1082 IB_QPT_DRIVER = 0xFF, 1083 /* Reserve a range for qp types internal to the low level driver. 1084 * These qp types will not be visible at the IB core layer, so the 1085 * IB_QPT_MAX usages should not be affected in the core layer 1086 */ 1087 IB_QPT_RESERVED1 = 0x1000, 1088 IB_QPT_RESERVED2, 1089 IB_QPT_RESERVED3, 1090 IB_QPT_RESERVED4, 1091 IB_QPT_RESERVED5, 1092 IB_QPT_RESERVED6, 1093 IB_QPT_RESERVED7, 1094 IB_QPT_RESERVED8, 1095 IB_QPT_RESERVED9, 1096 IB_QPT_RESERVED10, 1097 }; 1098 1099 enum ib_qp_create_flags { 1100 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 1101 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1, 1102 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 1103 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 1104 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 1105 IB_QP_CREATE_NETIF_QP = 1 << 5, 1106 IB_QP_CREATE_SIGNATURE_EN = 1 << 6, 1107 /* FREE = 1 << 7, */ 1108 IB_QP_CREATE_SCATTER_FCS = 1 << 8, 1109 IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9, 1110 IB_QP_CREATE_SOURCE_QPN = 1 << 10, 1111 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1 << 11, 1112 /* reserve bits 26-31 for low level drivers' internal use */ 1113 IB_QP_CREATE_RESERVED_START = 1 << 26, 1114 IB_QP_CREATE_RESERVED_END = 1 << 31, 1115 }; 1116 1117 /* 1118 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 1119 * callback to destroy the passed in QP. 1120 */ 1121 1122 struct ib_qp_init_attr { 1123 void (*event_handler)(struct ib_event *, void *); 1124 void *qp_context; 1125 struct ib_cq *send_cq; 1126 struct ib_cq *recv_cq; 1127 struct ib_srq *srq; 1128 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1129 struct ib_qp_cap cap; 1130 enum ib_sig_type sq_sig_type; 1131 enum ib_qp_type qp_type; 1132 enum ib_qp_create_flags create_flags; 1133 1134 /* 1135 * Only needed for special QP types, or when using the RW API. 1136 */ 1137 u8 port_num; 1138 struct ib_rwq_ind_table *rwq_ind_tbl; 1139 u32 source_qpn; 1140 }; 1141 1142 struct ib_qp_open_attr { 1143 void (*event_handler)(struct ib_event *, void *); 1144 void *qp_context; 1145 u32 qp_num; 1146 enum ib_qp_type qp_type; 1147 }; 1148 1149 enum ib_rnr_timeout { 1150 IB_RNR_TIMER_655_36 = 0, 1151 IB_RNR_TIMER_000_01 = 1, 1152 IB_RNR_TIMER_000_02 = 2, 1153 IB_RNR_TIMER_000_03 = 3, 1154 IB_RNR_TIMER_000_04 = 4, 1155 IB_RNR_TIMER_000_06 = 5, 1156 IB_RNR_TIMER_000_08 = 6, 1157 IB_RNR_TIMER_000_12 = 7, 1158 IB_RNR_TIMER_000_16 = 8, 1159 IB_RNR_TIMER_000_24 = 9, 1160 IB_RNR_TIMER_000_32 = 10, 1161 IB_RNR_TIMER_000_48 = 11, 1162 IB_RNR_TIMER_000_64 = 12, 1163 IB_RNR_TIMER_000_96 = 13, 1164 IB_RNR_TIMER_001_28 = 14, 1165 IB_RNR_TIMER_001_92 = 15, 1166 IB_RNR_TIMER_002_56 = 16, 1167 IB_RNR_TIMER_003_84 = 17, 1168 IB_RNR_TIMER_005_12 = 18, 1169 IB_RNR_TIMER_007_68 = 19, 1170 IB_RNR_TIMER_010_24 = 20, 1171 IB_RNR_TIMER_015_36 = 21, 1172 IB_RNR_TIMER_020_48 = 22, 1173 IB_RNR_TIMER_030_72 = 23, 1174 IB_RNR_TIMER_040_96 = 24, 1175 IB_RNR_TIMER_061_44 = 25, 1176 IB_RNR_TIMER_081_92 = 26, 1177 IB_RNR_TIMER_122_88 = 27, 1178 IB_RNR_TIMER_163_84 = 28, 1179 IB_RNR_TIMER_245_76 = 29, 1180 IB_RNR_TIMER_327_68 = 30, 1181 IB_RNR_TIMER_491_52 = 31 1182 }; 1183 1184 enum ib_qp_attr_mask { 1185 IB_QP_STATE = 1, 1186 IB_QP_CUR_STATE = (1<<1), 1187 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 1188 IB_QP_ACCESS_FLAGS = (1<<3), 1189 IB_QP_PKEY_INDEX = (1<<4), 1190 IB_QP_PORT = (1<<5), 1191 IB_QP_QKEY = (1<<6), 1192 IB_QP_AV = (1<<7), 1193 IB_QP_PATH_MTU = (1<<8), 1194 IB_QP_TIMEOUT = (1<<9), 1195 IB_QP_RETRY_CNT = (1<<10), 1196 IB_QP_RNR_RETRY = (1<<11), 1197 IB_QP_RQ_PSN = (1<<12), 1198 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 1199 IB_QP_ALT_PATH = (1<<14), 1200 IB_QP_MIN_RNR_TIMER = (1<<15), 1201 IB_QP_SQ_PSN = (1<<16), 1202 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 1203 IB_QP_PATH_MIG_STATE = (1<<18), 1204 IB_QP_CAP = (1<<19), 1205 IB_QP_DEST_QPN = (1<<20), 1206 IB_QP_RESERVED1 = (1<<21), 1207 IB_QP_RESERVED2 = (1<<22), 1208 IB_QP_RESERVED3 = (1<<23), 1209 IB_QP_RESERVED4 = (1<<24), 1210 IB_QP_RATE_LIMIT = (1<<25), 1211 }; 1212 1213 enum ib_qp_state { 1214 IB_QPS_RESET, 1215 IB_QPS_INIT, 1216 IB_QPS_RTR, 1217 IB_QPS_RTS, 1218 IB_QPS_SQD, 1219 IB_QPS_SQE, 1220 IB_QPS_ERR 1221 }; 1222 1223 enum ib_mig_state { 1224 IB_MIG_MIGRATED, 1225 IB_MIG_REARM, 1226 IB_MIG_ARMED 1227 }; 1228 1229 enum ib_mw_type { 1230 IB_MW_TYPE_1 = 1, 1231 IB_MW_TYPE_2 = 2 1232 }; 1233 1234 struct ib_qp_attr { 1235 enum ib_qp_state qp_state; 1236 enum ib_qp_state cur_qp_state; 1237 enum ib_mtu path_mtu; 1238 enum ib_mig_state path_mig_state; 1239 u32 qkey; 1240 u32 rq_psn; 1241 u32 sq_psn; 1242 u32 dest_qp_num; 1243 int qp_access_flags; 1244 struct ib_qp_cap cap; 1245 struct rdma_ah_attr ah_attr; 1246 struct rdma_ah_attr alt_ah_attr; 1247 u16 pkey_index; 1248 u16 alt_pkey_index; 1249 u8 en_sqd_async_notify; 1250 u8 sq_draining; 1251 u8 max_rd_atomic; 1252 u8 max_dest_rd_atomic; 1253 u8 min_rnr_timer; 1254 u8 port_num; 1255 u8 timeout; 1256 u8 retry_cnt; 1257 u8 rnr_retry; 1258 u8 alt_port_num; 1259 u8 alt_timeout; 1260 u32 rate_limit; 1261 }; 1262 1263 enum ib_wr_opcode { 1264 IB_WR_RDMA_WRITE, 1265 IB_WR_RDMA_WRITE_WITH_IMM, 1266 IB_WR_SEND, 1267 IB_WR_SEND_WITH_IMM, 1268 IB_WR_RDMA_READ, 1269 IB_WR_ATOMIC_CMP_AND_SWP, 1270 IB_WR_ATOMIC_FETCH_AND_ADD, 1271 IB_WR_LSO, 1272 IB_WR_SEND_WITH_INV, 1273 IB_WR_RDMA_READ_WITH_INV, 1274 IB_WR_LOCAL_INV, 1275 IB_WR_REG_MR, 1276 IB_WR_MASKED_ATOMIC_CMP_AND_SWP, 1277 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1278 IB_WR_REG_SIG_MR, 1279 /* reserve values for low level drivers' internal use. 1280 * These values will not be used at all in the ib core layer. 1281 */ 1282 IB_WR_RESERVED1 = 0xf0, 1283 IB_WR_RESERVED2, 1284 IB_WR_RESERVED3, 1285 IB_WR_RESERVED4, 1286 IB_WR_RESERVED5, 1287 IB_WR_RESERVED6, 1288 IB_WR_RESERVED7, 1289 IB_WR_RESERVED8, 1290 IB_WR_RESERVED9, 1291 IB_WR_RESERVED10, 1292 }; 1293 1294 enum ib_send_flags { 1295 IB_SEND_FENCE = 1, 1296 IB_SEND_SIGNALED = (1<<1), 1297 IB_SEND_SOLICITED = (1<<2), 1298 IB_SEND_INLINE = (1<<3), 1299 IB_SEND_IP_CSUM = (1<<4), 1300 1301 /* reserve bits 26-31 for low level drivers' internal use */ 1302 IB_SEND_RESERVED_START = (1 << 26), 1303 IB_SEND_RESERVED_END = (1 << 31), 1304 }; 1305 1306 struct ib_sge { 1307 u64 addr; 1308 u32 length; 1309 u32 lkey; 1310 }; 1311 1312 struct ib_cqe { 1313 void (*done)(struct ib_cq *cq, struct ib_wc *wc); 1314 }; 1315 1316 struct ib_send_wr { 1317 struct ib_send_wr *next; 1318 union { 1319 u64 wr_id; 1320 struct ib_cqe *wr_cqe; 1321 }; 1322 struct ib_sge *sg_list; 1323 int num_sge; 1324 enum ib_wr_opcode opcode; 1325 int send_flags; 1326 union { 1327 __be32 imm_data; 1328 u32 invalidate_rkey; 1329 } ex; 1330 }; 1331 1332 struct ib_rdma_wr { 1333 struct ib_send_wr wr; 1334 u64 remote_addr; 1335 u32 rkey; 1336 }; 1337 1338 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr) 1339 { 1340 return container_of(wr, struct ib_rdma_wr, wr); 1341 } 1342 1343 struct ib_atomic_wr { 1344 struct ib_send_wr wr; 1345 u64 remote_addr; 1346 u64 compare_add; 1347 u64 swap; 1348 u64 compare_add_mask; 1349 u64 swap_mask; 1350 u32 rkey; 1351 }; 1352 1353 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr) 1354 { 1355 return container_of(wr, struct ib_atomic_wr, wr); 1356 } 1357 1358 struct ib_ud_wr { 1359 struct ib_send_wr wr; 1360 struct ib_ah *ah; 1361 void *header; 1362 int hlen; 1363 int mss; 1364 u32 remote_qpn; 1365 u32 remote_qkey; 1366 u16 pkey_index; /* valid for GSI only */ 1367 u8 port_num; /* valid for DR SMPs on switch only */ 1368 }; 1369 1370 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr) 1371 { 1372 return container_of(wr, struct ib_ud_wr, wr); 1373 } 1374 1375 struct ib_reg_wr { 1376 struct ib_send_wr wr; 1377 struct ib_mr *mr; 1378 u32 key; 1379 int access; 1380 }; 1381 1382 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr) 1383 { 1384 return container_of(wr, struct ib_reg_wr, wr); 1385 } 1386 1387 struct ib_sig_handover_wr { 1388 struct ib_send_wr wr; 1389 struct ib_sig_attrs *sig_attrs; 1390 struct ib_mr *sig_mr; 1391 int access_flags; 1392 struct ib_sge *prot; 1393 }; 1394 1395 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr) 1396 { 1397 return container_of(wr, struct ib_sig_handover_wr, wr); 1398 } 1399 1400 struct ib_recv_wr { 1401 struct ib_recv_wr *next; 1402 union { 1403 u64 wr_id; 1404 struct ib_cqe *wr_cqe; 1405 }; 1406 struct ib_sge *sg_list; 1407 int num_sge; 1408 }; 1409 1410 enum ib_access_flags { 1411 IB_ACCESS_LOCAL_WRITE = 1, 1412 IB_ACCESS_REMOTE_WRITE = (1<<1), 1413 IB_ACCESS_REMOTE_READ = (1<<2), 1414 IB_ACCESS_REMOTE_ATOMIC = (1<<3), 1415 IB_ACCESS_MW_BIND = (1<<4), 1416 IB_ZERO_BASED = (1<<5), 1417 IB_ACCESS_ON_DEMAND = (1<<6), 1418 IB_ACCESS_HUGETLB = (1<<7), 1419 }; 1420 1421 /* 1422 * XXX: these are apparently used for ->rereg_user_mr, no idea why they 1423 * are hidden here instead of a uapi header! 1424 */ 1425 enum ib_mr_rereg_flags { 1426 IB_MR_REREG_TRANS = 1, 1427 IB_MR_REREG_PD = (1<<1), 1428 IB_MR_REREG_ACCESS = (1<<2), 1429 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1430 }; 1431 1432 struct ib_fmr_attr { 1433 int max_pages; 1434 int max_maps; 1435 u8 page_shift; 1436 }; 1437 1438 struct ib_umem; 1439 1440 enum rdma_remove_reason { 1441 /* Userspace requested uobject deletion. Call could fail */ 1442 RDMA_REMOVE_DESTROY, 1443 /* Context deletion. This call should delete the actual object itself */ 1444 RDMA_REMOVE_CLOSE, 1445 /* Driver is being hot-unplugged. This call should delete the actual object itself */ 1446 RDMA_REMOVE_DRIVER_REMOVE, 1447 /* Context is being cleaned-up, but commit was just completed */ 1448 RDMA_REMOVE_DURING_CLEANUP, 1449 }; 1450 1451 struct ib_rdmacg_object { 1452 #ifdef CONFIG_CGROUP_RDMA 1453 struct rdma_cgroup *cg; /* owner rdma cgroup */ 1454 #endif 1455 }; 1456 1457 struct ib_ucontext { 1458 struct ib_device *device; 1459 struct ib_uverbs_file *ufile; 1460 int closing; 1461 1462 /* locking the uobjects_list */ 1463 struct mutex uobjects_lock; 1464 struct list_head uobjects; 1465 /* protects cleanup process from other actions */ 1466 struct rw_semaphore cleanup_rwsem; 1467 enum rdma_remove_reason cleanup_reason; 1468 1469 struct pid *tgid; 1470 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING 1471 struct rb_root_cached umem_tree; 1472 /* 1473 * Protects .umem_rbroot and tree, as well as odp_mrs_count and 1474 * mmu notifiers registration. 1475 */ 1476 struct rw_semaphore umem_rwsem; 1477 void (*invalidate_range)(struct ib_umem *umem, 1478 unsigned long start, unsigned long end); 1479 1480 struct mmu_notifier mn; 1481 atomic_t notifier_count; 1482 /* A list of umems that don't have private mmu notifier counters yet. */ 1483 struct list_head no_private_counters; 1484 int odp_mrs_count; 1485 #endif 1486 1487 struct ib_rdmacg_object cg_obj; 1488 }; 1489 1490 struct ib_uobject { 1491 u64 user_handle; /* handle given to us by userspace */ 1492 struct ib_ucontext *context; /* associated user context */ 1493 void *object; /* containing object */ 1494 struct list_head list; /* link to context's list */ 1495 struct ib_rdmacg_object cg_obj; /* rdmacg object */ 1496 int id; /* index into kernel idr */ 1497 struct kref ref; 1498 atomic_t usecnt; /* protects exclusive access */ 1499 struct rcu_head rcu; /* kfree_rcu() overhead */ 1500 1501 const struct uverbs_obj_type *type; 1502 }; 1503 1504 struct ib_uobject_file { 1505 struct ib_uobject uobj; 1506 /* ufile contains the lock between context release and file close */ 1507 struct ib_uverbs_file *ufile; 1508 }; 1509 1510 struct ib_udata { 1511 const void __user *inbuf; 1512 void __user *outbuf; 1513 size_t inlen; 1514 size_t outlen; 1515 }; 1516 1517 struct ib_pd { 1518 u32 local_dma_lkey; 1519 u32 flags; 1520 struct ib_device *device; 1521 struct ib_uobject *uobject; 1522 atomic_t usecnt; /* count all resources */ 1523 1524 u32 unsafe_global_rkey; 1525 1526 /* 1527 * Implementation details of the RDMA core, don't use in drivers: 1528 */ 1529 struct ib_mr *__internal_mr; 1530 struct rdma_restrack_entry res; 1531 }; 1532 1533 struct ib_xrcd { 1534 struct ib_device *device; 1535 atomic_t usecnt; /* count all exposed resources */ 1536 struct inode *inode; 1537 1538 struct mutex tgt_qp_mutex; 1539 struct list_head tgt_qp_list; 1540 }; 1541 1542 struct ib_ah { 1543 struct ib_device *device; 1544 struct ib_pd *pd; 1545 struct ib_uobject *uobject; 1546 enum rdma_ah_attr_type type; 1547 }; 1548 1549 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1550 1551 enum ib_poll_context { 1552 IB_POLL_DIRECT, /* caller context, no hw completions */ 1553 IB_POLL_SOFTIRQ, /* poll from softirq context */ 1554 IB_POLL_WORKQUEUE, /* poll from workqueue */ 1555 }; 1556 1557 struct ib_cq { 1558 struct ib_device *device; 1559 struct ib_uobject *uobject; 1560 ib_comp_handler comp_handler; 1561 void (*event_handler)(struct ib_event *, void *); 1562 void *cq_context; 1563 int cqe; 1564 atomic_t usecnt; /* count number of work queues */ 1565 enum ib_poll_context poll_ctx; 1566 struct ib_wc *wc; 1567 union { 1568 struct irq_poll iop; 1569 struct work_struct work; 1570 }; 1571 /* 1572 * Implementation details of the RDMA core, don't use in drivers: 1573 */ 1574 struct rdma_restrack_entry res; 1575 }; 1576 1577 struct ib_srq { 1578 struct ib_device *device; 1579 struct ib_pd *pd; 1580 struct ib_uobject *uobject; 1581 void (*event_handler)(struct ib_event *, void *); 1582 void *srq_context; 1583 enum ib_srq_type srq_type; 1584 atomic_t usecnt; 1585 1586 struct { 1587 struct ib_cq *cq; 1588 union { 1589 struct { 1590 struct ib_xrcd *xrcd; 1591 u32 srq_num; 1592 } xrc; 1593 }; 1594 } ext; 1595 }; 1596 1597 enum ib_raw_packet_caps { 1598 /* Strip cvlan from incoming packet and report it in the matching work 1599 * completion is supported. 1600 */ 1601 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0), 1602 /* Scatter FCS field of an incoming packet to host memory is supported. 1603 */ 1604 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1), 1605 /* Checksum offloads are supported (for both send and receive). */ 1606 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2), 1607 /* When a packet is received for an RQ with no receive WQEs, the 1608 * packet processing is delayed. 1609 */ 1610 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3), 1611 }; 1612 1613 enum ib_wq_type { 1614 IB_WQT_RQ 1615 }; 1616 1617 enum ib_wq_state { 1618 IB_WQS_RESET, 1619 IB_WQS_RDY, 1620 IB_WQS_ERR 1621 }; 1622 1623 struct ib_wq { 1624 struct ib_device *device; 1625 struct ib_uobject *uobject; 1626 void *wq_context; 1627 void (*event_handler)(struct ib_event *, void *); 1628 struct ib_pd *pd; 1629 struct ib_cq *cq; 1630 u32 wq_num; 1631 enum ib_wq_state state; 1632 enum ib_wq_type wq_type; 1633 atomic_t usecnt; 1634 }; 1635 1636 enum ib_wq_flags { 1637 IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0, 1638 IB_WQ_FLAGS_SCATTER_FCS = 1 << 1, 1639 IB_WQ_FLAGS_DELAY_DROP = 1 << 2, 1640 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3, 1641 }; 1642 1643 struct ib_wq_init_attr { 1644 void *wq_context; 1645 enum ib_wq_type wq_type; 1646 u32 max_wr; 1647 u32 max_sge; 1648 struct ib_cq *cq; 1649 void (*event_handler)(struct ib_event *, void *); 1650 u32 create_flags; /* Use enum ib_wq_flags */ 1651 }; 1652 1653 enum ib_wq_attr_mask { 1654 IB_WQ_STATE = 1 << 0, 1655 IB_WQ_CUR_STATE = 1 << 1, 1656 IB_WQ_FLAGS = 1 << 2, 1657 }; 1658 1659 struct ib_wq_attr { 1660 enum ib_wq_state wq_state; 1661 enum ib_wq_state curr_wq_state; 1662 u32 flags; /* Use enum ib_wq_flags */ 1663 u32 flags_mask; /* Use enum ib_wq_flags */ 1664 }; 1665 1666 struct ib_rwq_ind_table { 1667 struct ib_device *device; 1668 struct ib_uobject *uobject; 1669 atomic_t usecnt; 1670 u32 ind_tbl_num; 1671 u32 log_ind_tbl_size; 1672 struct ib_wq **ind_tbl; 1673 }; 1674 1675 struct ib_rwq_ind_table_init_attr { 1676 u32 log_ind_tbl_size; 1677 /* Each entry is a pointer to Receive Work Queue */ 1678 struct ib_wq **ind_tbl; 1679 }; 1680 1681 enum port_pkey_state { 1682 IB_PORT_PKEY_NOT_VALID = 0, 1683 IB_PORT_PKEY_VALID = 1, 1684 IB_PORT_PKEY_LISTED = 2, 1685 }; 1686 1687 struct ib_qp_security; 1688 1689 struct ib_port_pkey { 1690 enum port_pkey_state state; 1691 u16 pkey_index; 1692 u8 port_num; 1693 struct list_head qp_list; 1694 struct list_head to_error_list; 1695 struct ib_qp_security *sec; 1696 }; 1697 1698 struct ib_ports_pkeys { 1699 struct ib_port_pkey main; 1700 struct ib_port_pkey alt; 1701 }; 1702 1703 struct ib_qp_security { 1704 struct ib_qp *qp; 1705 struct ib_device *dev; 1706 /* Hold this mutex when changing port and pkey settings. */ 1707 struct mutex mutex; 1708 struct ib_ports_pkeys *ports_pkeys; 1709 /* A list of all open shared QP handles. Required to enforce security 1710 * properly for all users of a shared QP. 1711 */ 1712 struct list_head shared_qp_list; 1713 void *security; 1714 bool destroying; 1715 atomic_t error_list_count; 1716 struct completion error_complete; 1717 int error_comps_pending; 1718 }; 1719 1720 /* 1721 * @max_write_sge: Maximum SGE elements per RDMA WRITE request. 1722 * @max_read_sge: Maximum SGE elements per RDMA READ request. 1723 */ 1724 struct ib_qp { 1725 struct ib_device *device; 1726 struct ib_pd *pd; 1727 struct ib_cq *send_cq; 1728 struct ib_cq *recv_cq; 1729 spinlock_t mr_lock; 1730 int mrs_used; 1731 struct list_head rdma_mrs; 1732 struct list_head sig_mrs; 1733 struct ib_srq *srq; 1734 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1735 struct list_head xrcd_list; 1736 1737 /* count times opened, mcast attaches, flow attaches */ 1738 atomic_t usecnt; 1739 struct list_head open_list; 1740 struct ib_qp *real_qp; 1741 struct ib_uobject *uobject; 1742 void (*event_handler)(struct ib_event *, void *); 1743 void *qp_context; 1744 u32 qp_num; 1745 u32 max_write_sge; 1746 u32 max_read_sge; 1747 enum ib_qp_type qp_type; 1748 struct ib_rwq_ind_table *rwq_ind_tbl; 1749 struct ib_qp_security *qp_sec; 1750 u8 port; 1751 1752 /* 1753 * Implementation details of the RDMA core, don't use in drivers: 1754 */ 1755 struct rdma_restrack_entry res; 1756 }; 1757 1758 struct ib_mr { 1759 struct ib_device *device; 1760 struct ib_pd *pd; 1761 u32 lkey; 1762 u32 rkey; 1763 u64 iova; 1764 u64 length; 1765 unsigned int page_size; 1766 bool need_inval; 1767 union { 1768 struct ib_uobject *uobject; /* user */ 1769 struct list_head qp_entry; /* FR */ 1770 }; 1771 }; 1772 1773 struct ib_mw { 1774 struct ib_device *device; 1775 struct ib_pd *pd; 1776 struct ib_uobject *uobject; 1777 u32 rkey; 1778 enum ib_mw_type type; 1779 }; 1780 1781 struct ib_fmr { 1782 struct ib_device *device; 1783 struct ib_pd *pd; 1784 struct list_head list; 1785 u32 lkey; 1786 u32 rkey; 1787 }; 1788 1789 /* Supported steering options */ 1790 enum ib_flow_attr_type { 1791 /* steering according to rule specifications */ 1792 IB_FLOW_ATTR_NORMAL = 0x0, 1793 /* default unicast and multicast rule - 1794 * receive all Eth traffic which isn't steered to any QP 1795 */ 1796 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1797 /* default multicast rule - 1798 * receive all Eth multicast traffic which isn't steered to any QP 1799 */ 1800 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1801 /* sniffer rule - receive all port traffic */ 1802 IB_FLOW_ATTR_SNIFFER = 0x3 1803 }; 1804 1805 /* Supported steering header types */ 1806 enum ib_flow_spec_type { 1807 /* L2 headers*/ 1808 IB_FLOW_SPEC_ETH = 0x20, 1809 IB_FLOW_SPEC_IB = 0x22, 1810 /* L3 header*/ 1811 IB_FLOW_SPEC_IPV4 = 0x30, 1812 IB_FLOW_SPEC_IPV6 = 0x31, 1813 /* L4 headers*/ 1814 IB_FLOW_SPEC_TCP = 0x40, 1815 IB_FLOW_SPEC_UDP = 0x41, 1816 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50, 1817 IB_FLOW_SPEC_INNER = 0x100, 1818 /* Actions */ 1819 IB_FLOW_SPEC_ACTION_TAG = 0x1000, 1820 IB_FLOW_SPEC_ACTION_DROP = 0x1001, 1821 }; 1822 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1823 #define IB_FLOW_SPEC_SUPPORT_LAYERS 8 1824 1825 /* Flow steering rule priority is set according to it's domain. 1826 * Lower domain value means higher priority. 1827 */ 1828 enum ib_flow_domain { 1829 IB_FLOW_DOMAIN_USER, 1830 IB_FLOW_DOMAIN_ETHTOOL, 1831 IB_FLOW_DOMAIN_RFS, 1832 IB_FLOW_DOMAIN_NIC, 1833 IB_FLOW_DOMAIN_NUM /* Must be last */ 1834 }; 1835 1836 enum ib_flow_flags { 1837 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */ 1838 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */ 1839 }; 1840 1841 struct ib_flow_eth_filter { 1842 u8 dst_mac[6]; 1843 u8 src_mac[6]; 1844 __be16 ether_type; 1845 __be16 vlan_tag; 1846 /* Must be last */ 1847 u8 real_sz[0]; 1848 }; 1849 1850 struct ib_flow_spec_eth { 1851 u32 type; 1852 u16 size; 1853 struct ib_flow_eth_filter val; 1854 struct ib_flow_eth_filter mask; 1855 }; 1856 1857 struct ib_flow_ib_filter { 1858 __be16 dlid; 1859 __u8 sl; 1860 /* Must be last */ 1861 u8 real_sz[0]; 1862 }; 1863 1864 struct ib_flow_spec_ib { 1865 u32 type; 1866 u16 size; 1867 struct ib_flow_ib_filter val; 1868 struct ib_flow_ib_filter mask; 1869 }; 1870 1871 /* IPv4 header flags */ 1872 enum ib_ipv4_flags { 1873 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */ 1874 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the 1875 last have this flag set */ 1876 }; 1877 1878 struct ib_flow_ipv4_filter { 1879 __be32 src_ip; 1880 __be32 dst_ip; 1881 u8 proto; 1882 u8 tos; 1883 u8 ttl; 1884 u8 flags; 1885 /* Must be last */ 1886 u8 real_sz[0]; 1887 }; 1888 1889 struct ib_flow_spec_ipv4 { 1890 u32 type; 1891 u16 size; 1892 struct ib_flow_ipv4_filter val; 1893 struct ib_flow_ipv4_filter mask; 1894 }; 1895 1896 struct ib_flow_ipv6_filter { 1897 u8 src_ip[16]; 1898 u8 dst_ip[16]; 1899 __be32 flow_label; 1900 u8 next_hdr; 1901 u8 traffic_class; 1902 u8 hop_limit; 1903 /* Must be last */ 1904 u8 real_sz[0]; 1905 }; 1906 1907 struct ib_flow_spec_ipv6 { 1908 u32 type; 1909 u16 size; 1910 struct ib_flow_ipv6_filter val; 1911 struct ib_flow_ipv6_filter mask; 1912 }; 1913 1914 struct ib_flow_tcp_udp_filter { 1915 __be16 dst_port; 1916 __be16 src_port; 1917 /* Must be last */ 1918 u8 real_sz[0]; 1919 }; 1920 1921 struct ib_flow_spec_tcp_udp { 1922 u32 type; 1923 u16 size; 1924 struct ib_flow_tcp_udp_filter val; 1925 struct ib_flow_tcp_udp_filter mask; 1926 }; 1927 1928 struct ib_flow_tunnel_filter { 1929 __be32 tunnel_id; 1930 u8 real_sz[0]; 1931 }; 1932 1933 /* ib_flow_spec_tunnel describes the Vxlan tunnel 1934 * the tunnel_id from val has the vni value 1935 */ 1936 struct ib_flow_spec_tunnel { 1937 u32 type; 1938 u16 size; 1939 struct ib_flow_tunnel_filter val; 1940 struct ib_flow_tunnel_filter mask; 1941 }; 1942 1943 struct ib_flow_spec_action_tag { 1944 enum ib_flow_spec_type type; 1945 u16 size; 1946 u32 tag_id; 1947 }; 1948 1949 struct ib_flow_spec_action_drop { 1950 enum ib_flow_spec_type type; 1951 u16 size; 1952 }; 1953 1954 union ib_flow_spec { 1955 struct { 1956 u32 type; 1957 u16 size; 1958 }; 1959 struct ib_flow_spec_eth eth; 1960 struct ib_flow_spec_ib ib; 1961 struct ib_flow_spec_ipv4 ipv4; 1962 struct ib_flow_spec_tcp_udp tcp_udp; 1963 struct ib_flow_spec_ipv6 ipv6; 1964 struct ib_flow_spec_tunnel tunnel; 1965 struct ib_flow_spec_action_tag flow_tag; 1966 struct ib_flow_spec_action_drop drop; 1967 }; 1968 1969 struct ib_flow_attr { 1970 enum ib_flow_attr_type type; 1971 u16 size; 1972 u16 priority; 1973 u32 flags; 1974 u8 num_of_specs; 1975 u8 port; 1976 /* Following are the optional layers according to user request 1977 * struct ib_flow_spec_xxx 1978 * struct ib_flow_spec_yyy 1979 */ 1980 }; 1981 1982 struct ib_flow { 1983 struct ib_qp *qp; 1984 struct ib_uobject *uobject; 1985 }; 1986 1987 struct ib_mad_hdr; 1988 struct ib_grh; 1989 1990 enum ib_process_mad_flags { 1991 IB_MAD_IGNORE_MKEY = 1, 1992 IB_MAD_IGNORE_BKEY = 2, 1993 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 1994 }; 1995 1996 enum ib_mad_result { 1997 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 1998 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 1999 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 2000 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 2001 }; 2002 2003 struct ib_port_cache { 2004 u64 subnet_prefix; 2005 struct ib_pkey_cache *pkey; 2006 struct ib_gid_table *gid; 2007 u8 lmc; 2008 enum ib_port_state port_state; 2009 }; 2010 2011 struct ib_cache { 2012 rwlock_t lock; 2013 struct ib_event_handler event_handler; 2014 struct ib_port_cache *ports; 2015 }; 2016 2017 struct iw_cm_verbs; 2018 2019 struct ib_port_immutable { 2020 int pkey_tbl_len; 2021 int gid_tbl_len; 2022 u32 core_cap_flags; 2023 u32 max_mad_size; 2024 }; 2025 2026 /* rdma netdev type - specifies protocol type */ 2027 enum rdma_netdev_t { 2028 RDMA_NETDEV_OPA_VNIC, 2029 RDMA_NETDEV_IPOIB, 2030 }; 2031 2032 /** 2033 * struct rdma_netdev - rdma netdev 2034 * For cases where netstack interfacing is required. 2035 */ 2036 struct rdma_netdev { 2037 void *clnt_priv; 2038 struct ib_device *hca; 2039 u8 port_num; 2040 2041 /* cleanup function must be specified */ 2042 void (*free_rdma_netdev)(struct net_device *netdev); 2043 2044 /* control functions */ 2045 void (*set_id)(struct net_device *netdev, int id); 2046 /* send packet */ 2047 int (*send)(struct net_device *dev, struct sk_buff *skb, 2048 struct ib_ah *address, u32 dqpn); 2049 /* multicast */ 2050 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca, 2051 union ib_gid *gid, u16 mlid, 2052 int set_qkey, u32 qkey); 2053 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca, 2054 union ib_gid *gid, u16 mlid); 2055 }; 2056 2057 struct ib_port_pkey_list { 2058 /* Lock to hold while modifying the list. */ 2059 spinlock_t list_lock; 2060 struct list_head pkey_list; 2061 }; 2062 2063 struct ib_device { 2064 /* Do not access @dma_device directly from ULP nor from HW drivers. */ 2065 struct device *dma_device; 2066 2067 char name[IB_DEVICE_NAME_MAX]; 2068 2069 struct list_head event_handler_list; 2070 spinlock_t event_handler_lock; 2071 2072 spinlock_t client_data_lock; 2073 struct list_head core_list; 2074 /* Access to the client_data_list is protected by the client_data_lock 2075 * spinlock and the lists_rwsem read-write semaphore */ 2076 struct list_head client_data_list; 2077 2078 struct ib_cache cache; 2079 /** 2080 * port_immutable is indexed by port number 2081 */ 2082 struct ib_port_immutable *port_immutable; 2083 2084 int num_comp_vectors; 2085 2086 struct ib_port_pkey_list *port_pkey_list; 2087 2088 struct iw_cm_verbs *iwcm; 2089 2090 /** 2091 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the 2092 * driver initialized data. The struct is kfree()'ed by the sysfs 2093 * core when the device is removed. A lifespan of -1 in the return 2094 * struct tells the core to set a default lifespan. 2095 */ 2096 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device, 2097 u8 port_num); 2098 /** 2099 * get_hw_stats - Fill in the counter value(s) in the stats struct. 2100 * @index - The index in the value array we wish to have updated, or 2101 * num_counters if we want all stats updated 2102 * Return codes - 2103 * < 0 - Error, no counters updated 2104 * index - Updated the single counter pointed to by index 2105 * num_counters - Updated all counters (will reset the timestamp 2106 * and prevent further calls for lifespan milliseconds) 2107 * Drivers are allowed to update all counters in leiu of just the 2108 * one given in index at their option 2109 */ 2110 int (*get_hw_stats)(struct ib_device *device, 2111 struct rdma_hw_stats *stats, 2112 u8 port, int index); 2113 int (*query_device)(struct ib_device *device, 2114 struct ib_device_attr *device_attr, 2115 struct ib_udata *udata); 2116 int (*query_port)(struct ib_device *device, 2117 u8 port_num, 2118 struct ib_port_attr *port_attr); 2119 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 2120 u8 port_num); 2121 /* When calling get_netdev, the HW vendor's driver should return the 2122 * net device of device @device at port @port_num or NULL if such 2123 * a net device doesn't exist. The vendor driver should call dev_hold 2124 * on this net device. The HW vendor's device driver must guarantee 2125 * that this function returns NULL before the net device has finished 2126 * NETDEV_UNREGISTER state. 2127 */ 2128 struct net_device *(*get_netdev)(struct ib_device *device, 2129 u8 port_num); 2130 int (*query_gid)(struct ib_device *device, 2131 u8 port_num, int index, 2132 union ib_gid *gid); 2133 /* When calling add_gid, the HW vendor's driver should 2134 * add the gid of device @device at gid index @index of 2135 * port @port_num to be @gid. Meta-info of that gid (for example, 2136 * the network device related to this gid is available 2137 * at @attr. @context allows the HW vendor driver to store extra 2138 * information together with a GID entry. The HW vendor may allocate 2139 * memory to contain this information and store it in @context when a 2140 * new GID entry is written to. Params are consistent until the next 2141 * call of add_gid or delete_gid. The function should return 0 on 2142 * success or error otherwise. The function could be called 2143 * concurrently for different ports. This function is only called 2144 * when roce_gid_table is used. 2145 */ 2146 int (*add_gid)(struct ib_device *device, 2147 u8 port_num, 2148 unsigned int index, 2149 const union ib_gid *gid, 2150 const struct ib_gid_attr *attr, 2151 void **context); 2152 /* When calling del_gid, the HW vendor's driver should delete the 2153 * gid of device @device at gid index @index of port @port_num. 2154 * Upon the deletion of a GID entry, the HW vendor must free any 2155 * allocated memory. The caller will clear @context afterwards. 2156 * This function is only called when roce_gid_table is used. 2157 */ 2158 int (*del_gid)(struct ib_device *device, 2159 u8 port_num, 2160 unsigned int index, 2161 void **context); 2162 int (*query_pkey)(struct ib_device *device, 2163 u8 port_num, u16 index, u16 *pkey); 2164 int (*modify_device)(struct ib_device *device, 2165 int device_modify_mask, 2166 struct ib_device_modify *device_modify); 2167 int (*modify_port)(struct ib_device *device, 2168 u8 port_num, int port_modify_mask, 2169 struct ib_port_modify *port_modify); 2170 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device, 2171 struct ib_udata *udata); 2172 int (*dealloc_ucontext)(struct ib_ucontext *context); 2173 int (*mmap)(struct ib_ucontext *context, 2174 struct vm_area_struct *vma); 2175 struct ib_pd * (*alloc_pd)(struct ib_device *device, 2176 struct ib_ucontext *context, 2177 struct ib_udata *udata); 2178 int (*dealloc_pd)(struct ib_pd *pd); 2179 struct ib_ah * (*create_ah)(struct ib_pd *pd, 2180 struct rdma_ah_attr *ah_attr, 2181 struct ib_udata *udata); 2182 int (*modify_ah)(struct ib_ah *ah, 2183 struct rdma_ah_attr *ah_attr); 2184 int (*query_ah)(struct ib_ah *ah, 2185 struct rdma_ah_attr *ah_attr); 2186 int (*destroy_ah)(struct ib_ah *ah); 2187 struct ib_srq * (*create_srq)(struct ib_pd *pd, 2188 struct ib_srq_init_attr *srq_init_attr, 2189 struct ib_udata *udata); 2190 int (*modify_srq)(struct ib_srq *srq, 2191 struct ib_srq_attr *srq_attr, 2192 enum ib_srq_attr_mask srq_attr_mask, 2193 struct ib_udata *udata); 2194 int (*query_srq)(struct ib_srq *srq, 2195 struct ib_srq_attr *srq_attr); 2196 int (*destroy_srq)(struct ib_srq *srq); 2197 int (*post_srq_recv)(struct ib_srq *srq, 2198 struct ib_recv_wr *recv_wr, 2199 struct ib_recv_wr **bad_recv_wr); 2200 struct ib_qp * (*create_qp)(struct ib_pd *pd, 2201 struct ib_qp_init_attr *qp_init_attr, 2202 struct ib_udata *udata); 2203 int (*modify_qp)(struct ib_qp *qp, 2204 struct ib_qp_attr *qp_attr, 2205 int qp_attr_mask, 2206 struct ib_udata *udata); 2207 int (*query_qp)(struct ib_qp *qp, 2208 struct ib_qp_attr *qp_attr, 2209 int qp_attr_mask, 2210 struct ib_qp_init_attr *qp_init_attr); 2211 int (*destroy_qp)(struct ib_qp *qp); 2212 int (*post_send)(struct ib_qp *qp, 2213 struct ib_send_wr *send_wr, 2214 struct ib_send_wr **bad_send_wr); 2215 int (*post_recv)(struct ib_qp *qp, 2216 struct ib_recv_wr *recv_wr, 2217 struct ib_recv_wr **bad_recv_wr); 2218 struct ib_cq * (*create_cq)(struct ib_device *device, 2219 const struct ib_cq_init_attr *attr, 2220 struct ib_ucontext *context, 2221 struct ib_udata *udata); 2222 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, 2223 u16 cq_period); 2224 int (*destroy_cq)(struct ib_cq *cq); 2225 int (*resize_cq)(struct ib_cq *cq, int cqe, 2226 struct ib_udata *udata); 2227 int (*poll_cq)(struct ib_cq *cq, int num_entries, 2228 struct ib_wc *wc); 2229 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 2230 int (*req_notify_cq)(struct ib_cq *cq, 2231 enum ib_cq_notify_flags flags); 2232 int (*req_ncomp_notif)(struct ib_cq *cq, 2233 int wc_cnt); 2234 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, 2235 int mr_access_flags); 2236 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, 2237 u64 start, u64 length, 2238 u64 virt_addr, 2239 int mr_access_flags, 2240 struct ib_udata *udata); 2241 int (*rereg_user_mr)(struct ib_mr *mr, 2242 int flags, 2243 u64 start, u64 length, 2244 u64 virt_addr, 2245 int mr_access_flags, 2246 struct ib_pd *pd, 2247 struct ib_udata *udata); 2248 int (*dereg_mr)(struct ib_mr *mr); 2249 struct ib_mr * (*alloc_mr)(struct ib_pd *pd, 2250 enum ib_mr_type mr_type, 2251 u32 max_num_sg); 2252 int (*map_mr_sg)(struct ib_mr *mr, 2253 struct scatterlist *sg, 2254 int sg_nents, 2255 unsigned int *sg_offset); 2256 struct ib_mw * (*alloc_mw)(struct ib_pd *pd, 2257 enum ib_mw_type type, 2258 struct ib_udata *udata); 2259 int (*dealloc_mw)(struct ib_mw *mw); 2260 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, 2261 int mr_access_flags, 2262 struct ib_fmr_attr *fmr_attr); 2263 int (*map_phys_fmr)(struct ib_fmr *fmr, 2264 u64 *page_list, int list_len, 2265 u64 iova); 2266 int (*unmap_fmr)(struct list_head *fmr_list); 2267 int (*dealloc_fmr)(struct ib_fmr *fmr); 2268 int (*attach_mcast)(struct ib_qp *qp, 2269 union ib_gid *gid, 2270 u16 lid); 2271 int (*detach_mcast)(struct ib_qp *qp, 2272 union ib_gid *gid, 2273 u16 lid); 2274 int (*process_mad)(struct ib_device *device, 2275 int process_mad_flags, 2276 u8 port_num, 2277 const struct ib_wc *in_wc, 2278 const struct ib_grh *in_grh, 2279 const struct ib_mad_hdr *in_mad, 2280 size_t in_mad_size, 2281 struct ib_mad_hdr *out_mad, 2282 size_t *out_mad_size, 2283 u16 *out_mad_pkey_index); 2284 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device, 2285 struct ib_ucontext *ucontext, 2286 struct ib_udata *udata); 2287 int (*dealloc_xrcd)(struct ib_xrcd *xrcd); 2288 struct ib_flow * (*create_flow)(struct ib_qp *qp, 2289 struct ib_flow_attr 2290 *flow_attr, 2291 int domain); 2292 int (*destroy_flow)(struct ib_flow *flow_id); 2293 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 2294 struct ib_mr_status *mr_status); 2295 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 2296 void (*drain_rq)(struct ib_qp *qp); 2297 void (*drain_sq)(struct ib_qp *qp); 2298 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port, 2299 int state); 2300 int (*get_vf_config)(struct ib_device *device, int vf, u8 port, 2301 struct ifla_vf_info *ivf); 2302 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port, 2303 struct ifla_vf_stats *stats); 2304 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid, 2305 int type); 2306 struct ib_wq * (*create_wq)(struct ib_pd *pd, 2307 struct ib_wq_init_attr *init_attr, 2308 struct ib_udata *udata); 2309 int (*destroy_wq)(struct ib_wq *wq); 2310 int (*modify_wq)(struct ib_wq *wq, 2311 struct ib_wq_attr *attr, 2312 u32 wq_attr_mask, 2313 struct ib_udata *udata); 2314 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device, 2315 struct ib_rwq_ind_table_init_attr *init_attr, 2316 struct ib_udata *udata); 2317 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table); 2318 /** 2319 * rdma netdev operation 2320 * 2321 * Driver implementing alloc_rdma_netdev must return -EOPNOTSUPP if it 2322 * doesn't support the specified rdma netdev type. 2323 */ 2324 struct net_device *(*alloc_rdma_netdev)( 2325 struct ib_device *device, 2326 u8 port_num, 2327 enum rdma_netdev_t type, 2328 const char *name, 2329 unsigned char name_assign_type, 2330 void (*setup)(struct net_device *)); 2331 2332 struct module *owner; 2333 struct device dev; 2334 struct kobject *ports_parent; 2335 struct list_head port_list; 2336 2337 enum { 2338 IB_DEV_UNINITIALIZED, 2339 IB_DEV_REGISTERED, 2340 IB_DEV_UNREGISTERED 2341 } reg_state; 2342 2343 int uverbs_abi_ver; 2344 u64 uverbs_cmd_mask; 2345 u64 uverbs_ex_cmd_mask; 2346 2347 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 2348 __be64 node_guid; 2349 u32 local_dma_lkey; 2350 u16 is_switch:1; 2351 u8 node_type; 2352 u8 phys_port_cnt; 2353 struct ib_device_attr attrs; 2354 struct attribute_group *hw_stats_ag; 2355 struct rdma_hw_stats *hw_stats; 2356 2357 #ifdef CONFIG_CGROUP_RDMA 2358 struct rdmacg_device cg_device; 2359 #endif 2360 2361 u32 index; 2362 /* 2363 * Implementation details of the RDMA core, don't use in drivers 2364 */ 2365 struct rdma_restrack_root res; 2366 2367 /** 2368 * The following mandatory functions are used only at device 2369 * registration. Keep functions such as these at the end of this 2370 * structure to avoid cache line misses when accessing struct ib_device 2371 * in fast paths. 2372 */ 2373 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *); 2374 void (*get_dev_fw_str)(struct ib_device *, char *str); 2375 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev, 2376 int comp_vector); 2377 2378 struct uverbs_root_spec *specs_root; 2379 }; 2380 2381 struct ib_client { 2382 char *name; 2383 void (*add) (struct ib_device *); 2384 void (*remove)(struct ib_device *, void *client_data); 2385 2386 /* Returns the net_dev belonging to this ib_client and matching the 2387 * given parameters. 2388 * @dev: An RDMA device that the net_dev use for communication. 2389 * @port: A physical port number on the RDMA device. 2390 * @pkey: P_Key that the net_dev uses if applicable. 2391 * @gid: A GID that the net_dev uses to communicate. 2392 * @addr: An IP address the net_dev is configured with. 2393 * @client_data: The device's client data set by ib_set_client_data(). 2394 * 2395 * An ib_client that implements a net_dev on top of RDMA devices 2396 * (such as IP over IB) should implement this callback, allowing the 2397 * rdma_cm module to find the right net_dev for a given request. 2398 * 2399 * The caller is responsible for calling dev_put on the returned 2400 * netdev. */ 2401 struct net_device *(*get_net_dev_by_params)( 2402 struct ib_device *dev, 2403 u8 port, 2404 u16 pkey, 2405 const union ib_gid *gid, 2406 const struct sockaddr *addr, 2407 void *client_data); 2408 struct list_head list; 2409 }; 2410 2411 struct ib_device *ib_alloc_device(size_t size); 2412 void ib_dealloc_device(struct ib_device *device); 2413 2414 void ib_get_device_fw_str(struct ib_device *device, char *str); 2415 2416 int ib_register_device(struct ib_device *device, 2417 int (*port_callback)(struct ib_device *, 2418 u8, struct kobject *)); 2419 void ib_unregister_device(struct ib_device *device); 2420 2421 int ib_register_client (struct ib_client *client); 2422 void ib_unregister_client(struct ib_client *client); 2423 2424 void *ib_get_client_data(struct ib_device *device, struct ib_client *client); 2425 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 2426 void *data); 2427 2428 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 2429 { 2430 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 2431 } 2432 2433 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 2434 { 2435 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 2436 } 2437 2438 static inline bool ib_is_udata_cleared(struct ib_udata *udata, 2439 size_t offset, 2440 size_t len) 2441 { 2442 const void __user *p = udata->inbuf + offset; 2443 bool ret; 2444 u8 *buf; 2445 2446 if (len > USHRT_MAX) 2447 return false; 2448 2449 buf = memdup_user(p, len); 2450 if (IS_ERR(buf)) 2451 return false; 2452 2453 ret = !memchr_inv(buf, 0, len); 2454 kfree(buf); 2455 return ret; 2456 } 2457 2458 /** 2459 * ib_modify_qp_is_ok - Check that the supplied attribute mask 2460 * contains all required attributes and no attributes not allowed for 2461 * the given QP state transition. 2462 * @cur_state: Current QP state 2463 * @next_state: Next QP state 2464 * @type: QP type 2465 * @mask: Mask of supplied QP attributes 2466 * @ll : link layer of port 2467 * 2468 * This function is a helper function that a low-level driver's 2469 * modify_qp method can use to validate the consumer's input. It 2470 * checks that cur_state and next_state are valid QP states, that a 2471 * transition from cur_state to next_state is allowed by the IB spec, 2472 * and that the attribute mask supplied is allowed for the transition. 2473 */ 2474 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 2475 enum ib_qp_type type, enum ib_qp_attr_mask mask, 2476 enum rdma_link_layer ll); 2477 2478 void ib_register_event_handler(struct ib_event_handler *event_handler); 2479 void ib_unregister_event_handler(struct ib_event_handler *event_handler); 2480 void ib_dispatch_event(struct ib_event *event); 2481 2482 int ib_query_port(struct ib_device *device, 2483 u8 port_num, struct ib_port_attr *port_attr); 2484 2485 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 2486 u8 port_num); 2487 2488 /** 2489 * rdma_cap_ib_switch - Check if the device is IB switch 2490 * @device: Device to check 2491 * 2492 * Device driver is responsible for setting is_switch bit on 2493 * in ib_device structure at init time. 2494 * 2495 * Return: true if the device is IB switch. 2496 */ 2497 static inline bool rdma_cap_ib_switch(const struct ib_device *device) 2498 { 2499 return device->is_switch; 2500 } 2501 2502 /** 2503 * rdma_start_port - Return the first valid port number for the device 2504 * specified 2505 * 2506 * @device: Device to be checked 2507 * 2508 * Return start port number 2509 */ 2510 static inline u8 rdma_start_port(const struct ib_device *device) 2511 { 2512 return rdma_cap_ib_switch(device) ? 0 : 1; 2513 } 2514 2515 /** 2516 * rdma_end_port - Return the last valid port number for the device 2517 * specified 2518 * 2519 * @device: Device to be checked 2520 * 2521 * Return last port number 2522 */ 2523 static inline u8 rdma_end_port(const struct ib_device *device) 2524 { 2525 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 2526 } 2527 2528 static inline int rdma_is_port_valid(const struct ib_device *device, 2529 unsigned int port) 2530 { 2531 return (port >= rdma_start_port(device) && 2532 port <= rdma_end_port(device)); 2533 } 2534 2535 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num) 2536 { 2537 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB; 2538 } 2539 2540 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num) 2541 { 2542 return device->port_immutable[port_num].core_cap_flags & 2543 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); 2544 } 2545 2546 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num) 2547 { 2548 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; 2549 } 2550 2551 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num) 2552 { 2553 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE; 2554 } 2555 2556 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num) 2557 { 2558 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP; 2559 } 2560 2561 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num) 2562 { 2563 return rdma_protocol_ib(device, port_num) || 2564 rdma_protocol_roce(device, port_num); 2565 } 2566 2567 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num) 2568 { 2569 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_RAW_PACKET; 2570 } 2571 2572 static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num) 2573 { 2574 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_USNIC; 2575 } 2576 2577 /** 2578 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 2579 * Management Datagrams. 2580 * @device: Device to check 2581 * @port_num: Port number to check 2582 * 2583 * Management Datagrams (MAD) are a required part of the InfiniBand 2584 * specification and are supported on all InfiniBand devices. A slightly 2585 * extended version are also supported on OPA interfaces. 2586 * 2587 * Return: true if the port supports sending/receiving of MAD packets. 2588 */ 2589 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num) 2590 { 2591 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD; 2592 } 2593 2594 /** 2595 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 2596 * Management Datagrams. 2597 * @device: Device to check 2598 * @port_num: Port number to check 2599 * 2600 * Intel OmniPath devices extend and/or replace the InfiniBand Management 2601 * datagrams with their own versions. These OPA MADs share many but not all of 2602 * the characteristics of InfiniBand MADs. 2603 * 2604 * OPA MADs differ in the following ways: 2605 * 2606 * 1) MADs are variable size up to 2K 2607 * IBTA defined MADs remain fixed at 256 bytes 2608 * 2) OPA SMPs must carry valid PKeys 2609 * 3) OPA SMP packets are a different format 2610 * 2611 * Return: true if the port supports OPA MAD packet formats. 2612 */ 2613 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num) 2614 { 2615 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD) 2616 == RDMA_CORE_CAP_OPA_MAD; 2617 } 2618 2619 /** 2620 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 2621 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 2622 * @device: Device to check 2623 * @port_num: Port number to check 2624 * 2625 * Each InfiniBand node is required to provide a Subnet Management Agent 2626 * that the subnet manager can access. Prior to the fabric being fully 2627 * configured by the subnet manager, the SMA is accessed via a well known 2628 * interface called the Subnet Management Interface (SMI). This interface 2629 * uses directed route packets to communicate with the SM to get around the 2630 * chicken and egg problem of the SM needing to know what's on the fabric 2631 * in order to configure the fabric, and needing to configure the fabric in 2632 * order to send packets to the devices on the fabric. These directed 2633 * route packets do not need the fabric fully configured in order to reach 2634 * their destination. The SMI is the only method allowed to send 2635 * directed route packets on an InfiniBand fabric. 2636 * 2637 * Return: true if the port provides an SMI. 2638 */ 2639 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num) 2640 { 2641 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI; 2642 } 2643 2644 /** 2645 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 2646 * Communication Manager. 2647 * @device: Device to check 2648 * @port_num: Port number to check 2649 * 2650 * The InfiniBand Communication Manager is one of many pre-defined General 2651 * Service Agents (GSA) that are accessed via the General Service 2652 * Interface (GSI). It's role is to facilitate establishment of connections 2653 * between nodes as well as other management related tasks for established 2654 * connections. 2655 * 2656 * Return: true if the port supports an IB CM (this does not guarantee that 2657 * a CM is actually running however). 2658 */ 2659 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num) 2660 { 2661 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM; 2662 } 2663 2664 /** 2665 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 2666 * Communication Manager. 2667 * @device: Device to check 2668 * @port_num: Port number to check 2669 * 2670 * Similar to above, but specific to iWARP connections which have a different 2671 * managment protocol than InfiniBand. 2672 * 2673 * Return: true if the port supports an iWARP CM (this does not guarantee that 2674 * a CM is actually running however). 2675 */ 2676 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num) 2677 { 2678 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM; 2679 } 2680 2681 /** 2682 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 2683 * Subnet Administration. 2684 * @device: Device to check 2685 * @port_num: Port number to check 2686 * 2687 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 2688 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 2689 * fabrics, devices should resolve routes to other hosts by contacting the 2690 * SA to query the proper route. 2691 * 2692 * Return: true if the port should act as a client to the fabric Subnet 2693 * Administration interface. This does not imply that the SA service is 2694 * running locally. 2695 */ 2696 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num) 2697 { 2698 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA; 2699 } 2700 2701 /** 2702 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 2703 * Multicast. 2704 * @device: Device to check 2705 * @port_num: Port number to check 2706 * 2707 * InfiniBand multicast registration is more complex than normal IPv4 or 2708 * IPv6 multicast registration. Each Host Channel Adapter must register 2709 * with the Subnet Manager when it wishes to join a multicast group. It 2710 * should do so only once regardless of how many queue pairs it subscribes 2711 * to this group. And it should leave the group only after all queue pairs 2712 * attached to the group have been detached. 2713 * 2714 * Return: true if the port must undertake the additional adminstrative 2715 * overhead of registering/unregistering with the SM and tracking of the 2716 * total number of queue pairs attached to the multicast group. 2717 */ 2718 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num) 2719 { 2720 return rdma_cap_ib_sa(device, port_num); 2721 } 2722 2723 /** 2724 * rdma_cap_af_ib - Check if the port of device has the capability 2725 * Native Infiniband Address. 2726 * @device: Device to check 2727 * @port_num: Port number to check 2728 * 2729 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 2730 * GID. RoCE uses a different mechanism, but still generates a GID via 2731 * a prescribed mechanism and port specific data. 2732 * 2733 * Return: true if the port uses a GID address to identify devices on the 2734 * network. 2735 */ 2736 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num) 2737 { 2738 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB; 2739 } 2740 2741 /** 2742 * rdma_cap_eth_ah - Check if the port of device has the capability 2743 * Ethernet Address Handle. 2744 * @device: Device to check 2745 * @port_num: Port number to check 2746 * 2747 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 2748 * to fabricate GIDs over Ethernet/IP specific addresses native to the 2749 * port. Normally, packet headers are generated by the sending host 2750 * adapter, but when sending connectionless datagrams, we must manually 2751 * inject the proper headers for the fabric we are communicating over. 2752 * 2753 * Return: true if we are running as a RoCE port and must force the 2754 * addition of a Global Route Header built from our Ethernet Address 2755 * Handle into our header list for connectionless packets. 2756 */ 2757 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num) 2758 { 2759 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH; 2760 } 2761 2762 /** 2763 * rdma_cap_opa_ah - Check if the port of device supports 2764 * OPA Address handles 2765 * @device: Device to check 2766 * @port_num: Port number to check 2767 * 2768 * Return: true if we are running on an OPA device which supports 2769 * the extended OPA addressing. 2770 */ 2771 static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num) 2772 { 2773 return (device->port_immutable[port_num].core_cap_flags & 2774 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH; 2775 } 2776 2777 /** 2778 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 2779 * 2780 * @device: Device 2781 * @port_num: Port number 2782 * 2783 * This MAD size includes the MAD headers and MAD payload. No other headers 2784 * are included. 2785 * 2786 * Return the max MAD size required by the Port. Will return 0 if the port 2787 * does not support MADs 2788 */ 2789 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num) 2790 { 2791 return device->port_immutable[port_num].max_mad_size; 2792 } 2793 2794 /** 2795 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 2796 * @device: Device to check 2797 * @port_num: Port number to check 2798 * 2799 * RoCE GID table mechanism manages the various GIDs for a device. 2800 * 2801 * NOTE: if allocating the port's GID table has failed, this call will still 2802 * return true, but any RoCE GID table API will fail. 2803 * 2804 * Return: true if the port uses RoCE GID table mechanism in order to manage 2805 * its GIDs. 2806 */ 2807 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 2808 u8 port_num) 2809 { 2810 return rdma_protocol_roce(device, port_num) && 2811 device->add_gid && device->del_gid; 2812 } 2813 2814 /* 2815 * Check if the device supports READ W/ INVALIDATE. 2816 */ 2817 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num) 2818 { 2819 /* 2820 * iWarp drivers must support READ W/ INVALIDATE. No other protocol 2821 * has support for it yet. 2822 */ 2823 return rdma_protocol_iwarp(dev, port_num); 2824 } 2825 2826 int ib_query_gid(struct ib_device *device, 2827 u8 port_num, int index, union ib_gid *gid, 2828 struct ib_gid_attr *attr); 2829 2830 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 2831 int state); 2832 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 2833 struct ifla_vf_info *info); 2834 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 2835 struct ifla_vf_stats *stats); 2836 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 2837 int type); 2838 2839 int ib_query_pkey(struct ib_device *device, 2840 u8 port_num, u16 index, u16 *pkey); 2841 2842 int ib_modify_device(struct ib_device *device, 2843 int device_modify_mask, 2844 struct ib_device_modify *device_modify); 2845 2846 int ib_modify_port(struct ib_device *device, 2847 u8 port_num, int port_modify_mask, 2848 struct ib_port_modify *port_modify); 2849 2850 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 2851 struct net_device *ndev, u8 *port_num, u16 *index); 2852 2853 int ib_find_pkey(struct ib_device *device, 2854 u8 port_num, u16 pkey, u16 *index); 2855 2856 enum ib_pd_flags { 2857 /* 2858 * Create a memory registration for all memory in the system and place 2859 * the rkey for it into pd->unsafe_global_rkey. This can be used by 2860 * ULPs to avoid the overhead of dynamic MRs. 2861 * 2862 * This flag is generally considered unsafe and must only be used in 2863 * extremly trusted environments. Every use of it will log a warning 2864 * in the kernel log. 2865 */ 2866 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01, 2867 }; 2868 2869 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 2870 const char *caller); 2871 #define ib_alloc_pd(device, flags) \ 2872 __ib_alloc_pd((device), (flags), KBUILD_MODNAME) 2873 void ib_dealloc_pd(struct ib_pd *pd); 2874 2875 /** 2876 * rdma_create_ah - Creates an address handle for the given address vector. 2877 * @pd: The protection domain associated with the address handle. 2878 * @ah_attr: The attributes of the address vector. 2879 * 2880 * The address handle is used to reference a local or global destination 2881 * in all UD QP post sends. 2882 */ 2883 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr); 2884 2885 /** 2886 * rdma_create_user_ah - Creates an address handle for the given address vector. 2887 * It resolves destination mac address for ah attribute of RoCE type. 2888 * @pd: The protection domain associated with the address handle. 2889 * @ah_attr: The attributes of the address vector. 2890 * @udata: pointer to user's input output buffer information need by 2891 * provider driver. 2892 * 2893 * It returns 0 on success and returns appropriate error code on error. 2894 * The address handle is used to reference a local or global destination 2895 * in all UD QP post sends. 2896 */ 2897 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd, 2898 struct rdma_ah_attr *ah_attr, 2899 struct ib_udata *udata); 2900 /** 2901 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header 2902 * work completion. 2903 * @hdr: the L3 header to parse 2904 * @net_type: type of header to parse 2905 * @sgid: place to store source gid 2906 * @dgid: place to store destination gid 2907 */ 2908 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 2909 enum rdma_network_type net_type, 2910 union ib_gid *sgid, union ib_gid *dgid); 2911 2912 /** 2913 * ib_get_rdma_header_version - Get the header version 2914 * @hdr: the L3 header to parse 2915 */ 2916 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr); 2917 2918 /** 2919 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a 2920 * work completion. 2921 * @device: Device on which the received message arrived. 2922 * @port_num: Port on which the received message arrived. 2923 * @wc: Work completion associated with the received message. 2924 * @grh: References the received global route header. This parameter is 2925 * ignored unless the work completion indicates that the GRH is valid. 2926 * @ah_attr: Returned attributes that can be used when creating an address 2927 * handle for replying to the message. 2928 */ 2929 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num, 2930 const struct ib_wc *wc, const struct ib_grh *grh, 2931 struct rdma_ah_attr *ah_attr); 2932 2933 /** 2934 * ib_create_ah_from_wc - Creates an address handle associated with the 2935 * sender of the specified work completion. 2936 * @pd: The protection domain associated with the address handle. 2937 * @wc: Work completion information associated with a received message. 2938 * @grh: References the received global route header. This parameter is 2939 * ignored unless the work completion indicates that the GRH is valid. 2940 * @port_num: The outbound port number to associate with the address. 2941 * 2942 * The address handle is used to reference a local or global destination 2943 * in all UD QP post sends. 2944 */ 2945 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 2946 const struct ib_grh *grh, u8 port_num); 2947 2948 /** 2949 * rdma_modify_ah - Modifies the address vector associated with an address 2950 * handle. 2951 * @ah: The address handle to modify. 2952 * @ah_attr: The new address vector attributes to associate with the 2953 * address handle. 2954 */ 2955 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2956 2957 /** 2958 * rdma_query_ah - Queries the address vector associated with an address 2959 * handle. 2960 * @ah: The address handle to query. 2961 * @ah_attr: The address vector attributes associated with the address 2962 * handle. 2963 */ 2964 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2965 2966 /** 2967 * rdma_destroy_ah - Destroys an address handle. 2968 * @ah: The address handle to destroy. 2969 */ 2970 int rdma_destroy_ah(struct ib_ah *ah); 2971 2972 /** 2973 * ib_create_srq - Creates a SRQ associated with the specified protection 2974 * domain. 2975 * @pd: The protection domain associated with the SRQ. 2976 * @srq_init_attr: A list of initial attributes required to create the 2977 * SRQ. If SRQ creation succeeds, then the attributes are updated to 2978 * the actual capabilities of the created SRQ. 2979 * 2980 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 2981 * requested size of the SRQ, and set to the actual values allocated 2982 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 2983 * will always be at least as large as the requested values. 2984 */ 2985 struct ib_srq *ib_create_srq(struct ib_pd *pd, 2986 struct ib_srq_init_attr *srq_init_attr); 2987 2988 /** 2989 * ib_modify_srq - Modifies the attributes for the specified SRQ. 2990 * @srq: The SRQ to modify. 2991 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 2992 * the current values of selected SRQ attributes are returned. 2993 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 2994 * are being modified. 2995 * 2996 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 2997 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 2998 * the number of receives queued drops below the limit. 2999 */ 3000 int ib_modify_srq(struct ib_srq *srq, 3001 struct ib_srq_attr *srq_attr, 3002 enum ib_srq_attr_mask srq_attr_mask); 3003 3004 /** 3005 * ib_query_srq - Returns the attribute list and current values for the 3006 * specified SRQ. 3007 * @srq: The SRQ to query. 3008 * @srq_attr: The attributes of the specified SRQ. 3009 */ 3010 int ib_query_srq(struct ib_srq *srq, 3011 struct ib_srq_attr *srq_attr); 3012 3013 /** 3014 * ib_destroy_srq - Destroys the specified SRQ. 3015 * @srq: The SRQ to destroy. 3016 */ 3017 int ib_destroy_srq(struct ib_srq *srq); 3018 3019 /** 3020 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 3021 * @srq: The SRQ to post the work request on. 3022 * @recv_wr: A list of work requests to post on the receive queue. 3023 * @bad_recv_wr: On an immediate failure, this parameter will reference 3024 * the work request that failed to be posted on the QP. 3025 */ 3026 static inline int ib_post_srq_recv(struct ib_srq *srq, 3027 struct ib_recv_wr *recv_wr, 3028 struct ib_recv_wr **bad_recv_wr) 3029 { 3030 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr); 3031 } 3032 3033 /** 3034 * ib_create_qp - Creates a QP associated with the specified protection 3035 * domain. 3036 * @pd: The protection domain associated with the QP. 3037 * @qp_init_attr: A list of initial attributes required to create the 3038 * QP. If QP creation succeeds, then the attributes are updated to 3039 * the actual capabilities of the created QP. 3040 */ 3041 struct ib_qp *ib_create_qp(struct ib_pd *pd, 3042 struct ib_qp_init_attr *qp_init_attr); 3043 3044 /** 3045 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 3046 * @qp: The QP to modify. 3047 * @attr: On input, specifies the QP attributes to modify. On output, 3048 * the current values of selected QP attributes are returned. 3049 * @attr_mask: A bit-mask used to specify which attributes of the QP 3050 * are being modified. 3051 * @udata: pointer to user's input output buffer information 3052 * are being modified. 3053 * It returns 0 on success and returns appropriate error code on error. 3054 */ 3055 int ib_modify_qp_with_udata(struct ib_qp *qp, 3056 struct ib_qp_attr *attr, 3057 int attr_mask, 3058 struct ib_udata *udata); 3059 3060 /** 3061 * ib_modify_qp - Modifies the attributes for the specified QP and then 3062 * transitions the QP to the given state. 3063 * @qp: The QP to modify. 3064 * @qp_attr: On input, specifies the QP attributes to modify. On output, 3065 * the current values of selected QP attributes are returned. 3066 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 3067 * are being modified. 3068 */ 3069 int ib_modify_qp(struct ib_qp *qp, 3070 struct ib_qp_attr *qp_attr, 3071 int qp_attr_mask); 3072 3073 /** 3074 * ib_query_qp - Returns the attribute list and current values for the 3075 * specified QP. 3076 * @qp: The QP to query. 3077 * @qp_attr: The attributes of the specified QP. 3078 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 3079 * @qp_init_attr: Additional attributes of the selected QP. 3080 * 3081 * The qp_attr_mask may be used to limit the query to gathering only the 3082 * selected attributes. 3083 */ 3084 int ib_query_qp(struct ib_qp *qp, 3085 struct ib_qp_attr *qp_attr, 3086 int qp_attr_mask, 3087 struct ib_qp_init_attr *qp_init_attr); 3088 3089 /** 3090 * ib_destroy_qp - Destroys the specified QP. 3091 * @qp: The QP to destroy. 3092 */ 3093 int ib_destroy_qp(struct ib_qp *qp); 3094 3095 /** 3096 * ib_open_qp - Obtain a reference to an existing sharable QP. 3097 * @xrcd - XRC domain 3098 * @qp_open_attr: Attributes identifying the QP to open. 3099 * 3100 * Returns a reference to a sharable QP. 3101 */ 3102 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 3103 struct ib_qp_open_attr *qp_open_attr); 3104 3105 /** 3106 * ib_close_qp - Release an external reference to a QP. 3107 * @qp: The QP handle to release 3108 * 3109 * The opened QP handle is released by the caller. The underlying 3110 * shared QP is not destroyed until all internal references are released. 3111 */ 3112 int ib_close_qp(struct ib_qp *qp); 3113 3114 /** 3115 * ib_post_send - Posts a list of work requests to the send queue of 3116 * the specified QP. 3117 * @qp: The QP to post the work request on. 3118 * @send_wr: A list of work requests to post on the send queue. 3119 * @bad_send_wr: On an immediate failure, this parameter will reference 3120 * the work request that failed to be posted on the QP. 3121 * 3122 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 3123 * error is returned, the QP state shall not be affected, 3124 * ib_post_send() will return an immediate error after queueing any 3125 * earlier work requests in the list. 3126 */ 3127 static inline int ib_post_send(struct ib_qp *qp, 3128 struct ib_send_wr *send_wr, 3129 struct ib_send_wr **bad_send_wr) 3130 { 3131 return qp->device->post_send(qp, send_wr, bad_send_wr); 3132 } 3133 3134 /** 3135 * ib_post_recv - Posts a list of work requests to the receive queue of 3136 * the specified QP. 3137 * @qp: The QP to post the work request on. 3138 * @recv_wr: A list of work requests to post on the receive queue. 3139 * @bad_recv_wr: On an immediate failure, this parameter will reference 3140 * the work request that failed to be posted on the QP. 3141 */ 3142 static inline int ib_post_recv(struct ib_qp *qp, 3143 struct ib_recv_wr *recv_wr, 3144 struct ib_recv_wr **bad_recv_wr) 3145 { 3146 return qp->device->post_recv(qp, recv_wr, bad_recv_wr); 3147 } 3148 3149 struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, 3150 int nr_cqe, int comp_vector, 3151 enum ib_poll_context poll_ctx, const char *caller); 3152 #define ib_alloc_cq(device, priv, nr_cqe, comp_vect, poll_ctx) \ 3153 __ib_alloc_cq((device), (priv), (nr_cqe), (comp_vect), (poll_ctx), KBUILD_MODNAME) 3154 3155 void ib_free_cq(struct ib_cq *cq); 3156 int ib_process_cq_direct(struct ib_cq *cq, int budget); 3157 3158 /** 3159 * ib_create_cq - Creates a CQ on the specified device. 3160 * @device: The device on which to create the CQ. 3161 * @comp_handler: A user-specified callback that is invoked when a 3162 * completion event occurs on the CQ. 3163 * @event_handler: A user-specified callback that is invoked when an 3164 * asynchronous event not associated with a completion occurs on the CQ. 3165 * @cq_context: Context associated with the CQ returned to the user via 3166 * the associated completion and event handlers. 3167 * @cq_attr: The attributes the CQ should be created upon. 3168 * 3169 * Users can examine the cq structure to determine the actual CQ size. 3170 */ 3171 struct ib_cq *ib_create_cq(struct ib_device *device, 3172 ib_comp_handler comp_handler, 3173 void (*event_handler)(struct ib_event *, void *), 3174 void *cq_context, 3175 const struct ib_cq_init_attr *cq_attr); 3176 3177 /** 3178 * ib_resize_cq - Modifies the capacity of the CQ. 3179 * @cq: The CQ to resize. 3180 * @cqe: The minimum size of the CQ. 3181 * 3182 * Users can examine the cq structure to determine the actual CQ size. 3183 */ 3184 int ib_resize_cq(struct ib_cq *cq, int cqe); 3185 3186 /** 3187 * rdma_set_cq_moderation - Modifies moderation params of the CQ 3188 * @cq: The CQ to modify. 3189 * @cq_count: number of CQEs that will trigger an event 3190 * @cq_period: max period of time in usec before triggering an event 3191 * 3192 */ 3193 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period); 3194 3195 /** 3196 * ib_destroy_cq - Destroys the specified CQ. 3197 * @cq: The CQ to destroy. 3198 */ 3199 int ib_destroy_cq(struct ib_cq *cq); 3200 3201 /** 3202 * ib_poll_cq - poll a CQ for completion(s) 3203 * @cq:the CQ being polled 3204 * @num_entries:maximum number of completions to return 3205 * @wc:array of at least @num_entries &struct ib_wc where completions 3206 * will be returned 3207 * 3208 * Poll a CQ for (possibly multiple) completions. If the return value 3209 * is < 0, an error occurred. If the return value is >= 0, it is the 3210 * number of completions returned. If the return value is 3211 * non-negative and < num_entries, then the CQ was emptied. 3212 */ 3213 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 3214 struct ib_wc *wc) 3215 { 3216 return cq->device->poll_cq(cq, num_entries, wc); 3217 } 3218 3219 /** 3220 * ib_peek_cq - Returns the number of unreaped completions currently 3221 * on the specified CQ. 3222 * @cq: The CQ to peek. 3223 * @wc_cnt: A minimum number of unreaped completions to check for. 3224 * 3225 * If the number of unreaped completions is greater than or equal to wc_cnt, 3226 * this function returns wc_cnt, otherwise, it returns the actual number of 3227 * unreaped completions. 3228 */ 3229 int ib_peek_cq(struct ib_cq *cq, int wc_cnt); 3230 3231 /** 3232 * ib_req_notify_cq - Request completion notification on a CQ. 3233 * @cq: The CQ to generate an event for. 3234 * @flags: 3235 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 3236 * to request an event on the next solicited event or next work 3237 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 3238 * may also be |ed in to request a hint about missed events, as 3239 * described below. 3240 * 3241 * Return Value: 3242 * < 0 means an error occurred while requesting notification 3243 * == 0 means notification was requested successfully, and if 3244 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 3245 * were missed and it is safe to wait for another event. In 3246 * this case is it guaranteed that any work completions added 3247 * to the CQ since the last CQ poll will trigger a completion 3248 * notification event. 3249 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 3250 * in. It means that the consumer must poll the CQ again to 3251 * make sure it is empty to avoid missing an event because of a 3252 * race between requesting notification and an entry being 3253 * added to the CQ. This return value means it is possible 3254 * (but not guaranteed) that a work completion has been added 3255 * to the CQ since the last poll without triggering a 3256 * completion notification event. 3257 */ 3258 static inline int ib_req_notify_cq(struct ib_cq *cq, 3259 enum ib_cq_notify_flags flags) 3260 { 3261 return cq->device->req_notify_cq(cq, flags); 3262 } 3263 3264 /** 3265 * ib_req_ncomp_notif - Request completion notification when there are 3266 * at least the specified number of unreaped completions on the CQ. 3267 * @cq: The CQ to generate an event for. 3268 * @wc_cnt: The number of unreaped completions that should be on the 3269 * CQ before an event is generated. 3270 */ 3271 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 3272 { 3273 return cq->device->req_ncomp_notif ? 3274 cq->device->req_ncomp_notif(cq, wc_cnt) : 3275 -ENOSYS; 3276 } 3277 3278 /** 3279 * ib_dma_mapping_error - check a DMA addr for error 3280 * @dev: The device for which the dma_addr was created 3281 * @dma_addr: The DMA address to check 3282 */ 3283 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 3284 { 3285 return dma_mapping_error(dev->dma_device, dma_addr); 3286 } 3287 3288 /** 3289 * ib_dma_map_single - Map a kernel virtual address to DMA address 3290 * @dev: The device for which the dma_addr is to be created 3291 * @cpu_addr: The kernel virtual address 3292 * @size: The size of the region in bytes 3293 * @direction: The direction of the DMA 3294 */ 3295 static inline u64 ib_dma_map_single(struct ib_device *dev, 3296 void *cpu_addr, size_t size, 3297 enum dma_data_direction direction) 3298 { 3299 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 3300 } 3301 3302 /** 3303 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 3304 * @dev: The device for which the DMA address was created 3305 * @addr: The DMA address 3306 * @size: The size of the region in bytes 3307 * @direction: The direction of the DMA 3308 */ 3309 static inline void ib_dma_unmap_single(struct ib_device *dev, 3310 u64 addr, size_t size, 3311 enum dma_data_direction direction) 3312 { 3313 dma_unmap_single(dev->dma_device, addr, size, direction); 3314 } 3315 3316 /** 3317 * ib_dma_map_page - Map a physical page to DMA address 3318 * @dev: The device for which the dma_addr is to be created 3319 * @page: The page to be mapped 3320 * @offset: The offset within the page 3321 * @size: The size of the region in bytes 3322 * @direction: The direction of the DMA 3323 */ 3324 static inline u64 ib_dma_map_page(struct ib_device *dev, 3325 struct page *page, 3326 unsigned long offset, 3327 size_t size, 3328 enum dma_data_direction direction) 3329 { 3330 return dma_map_page(dev->dma_device, page, offset, size, direction); 3331 } 3332 3333 /** 3334 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 3335 * @dev: The device for which the DMA address was created 3336 * @addr: The DMA address 3337 * @size: The size of the region in bytes 3338 * @direction: The direction of the DMA 3339 */ 3340 static inline void ib_dma_unmap_page(struct ib_device *dev, 3341 u64 addr, size_t size, 3342 enum dma_data_direction direction) 3343 { 3344 dma_unmap_page(dev->dma_device, addr, size, direction); 3345 } 3346 3347 /** 3348 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 3349 * @dev: The device for which the DMA addresses are to be created 3350 * @sg: The array of scatter/gather entries 3351 * @nents: The number of scatter/gather entries 3352 * @direction: The direction of the DMA 3353 */ 3354 static inline int ib_dma_map_sg(struct ib_device *dev, 3355 struct scatterlist *sg, int nents, 3356 enum dma_data_direction direction) 3357 { 3358 return dma_map_sg(dev->dma_device, sg, nents, direction); 3359 } 3360 3361 /** 3362 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 3363 * @dev: The device for which the DMA addresses were created 3364 * @sg: The array of scatter/gather entries 3365 * @nents: The number of scatter/gather entries 3366 * @direction: The direction of the DMA 3367 */ 3368 static inline void ib_dma_unmap_sg(struct ib_device *dev, 3369 struct scatterlist *sg, int nents, 3370 enum dma_data_direction direction) 3371 { 3372 dma_unmap_sg(dev->dma_device, sg, nents, direction); 3373 } 3374 3375 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 3376 struct scatterlist *sg, int nents, 3377 enum dma_data_direction direction, 3378 unsigned long dma_attrs) 3379 { 3380 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, 3381 dma_attrs); 3382 } 3383 3384 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 3385 struct scatterlist *sg, int nents, 3386 enum dma_data_direction direction, 3387 unsigned long dma_attrs) 3388 { 3389 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs); 3390 } 3391 /** 3392 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry 3393 * @dev: The device for which the DMA addresses were created 3394 * @sg: The scatter/gather entry 3395 * 3396 * Note: this function is obsolete. To do: change all occurrences of 3397 * ib_sg_dma_address() into sg_dma_address(). 3398 */ 3399 static inline u64 ib_sg_dma_address(struct ib_device *dev, 3400 struct scatterlist *sg) 3401 { 3402 return sg_dma_address(sg); 3403 } 3404 3405 /** 3406 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry 3407 * @dev: The device for which the DMA addresses were created 3408 * @sg: The scatter/gather entry 3409 * 3410 * Note: this function is obsolete. To do: change all occurrences of 3411 * ib_sg_dma_len() into sg_dma_len(). 3412 */ 3413 static inline unsigned int ib_sg_dma_len(struct ib_device *dev, 3414 struct scatterlist *sg) 3415 { 3416 return sg_dma_len(sg); 3417 } 3418 3419 /** 3420 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 3421 * @dev: The device for which the DMA address was created 3422 * @addr: The DMA address 3423 * @size: The size of the region in bytes 3424 * @dir: The direction of the DMA 3425 */ 3426 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 3427 u64 addr, 3428 size_t size, 3429 enum dma_data_direction dir) 3430 { 3431 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 3432 } 3433 3434 /** 3435 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 3436 * @dev: The device for which the DMA address was created 3437 * @addr: The DMA address 3438 * @size: The size of the region in bytes 3439 * @dir: The direction of the DMA 3440 */ 3441 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 3442 u64 addr, 3443 size_t size, 3444 enum dma_data_direction dir) 3445 { 3446 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 3447 } 3448 3449 /** 3450 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 3451 * @dev: The device for which the DMA address is requested 3452 * @size: The size of the region to allocate in bytes 3453 * @dma_handle: A pointer for returning the DMA address of the region 3454 * @flag: memory allocator flags 3455 */ 3456 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 3457 size_t size, 3458 dma_addr_t *dma_handle, 3459 gfp_t flag) 3460 { 3461 return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag); 3462 } 3463 3464 /** 3465 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 3466 * @dev: The device for which the DMA addresses were allocated 3467 * @size: The size of the region 3468 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 3469 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 3470 */ 3471 static inline void ib_dma_free_coherent(struct ib_device *dev, 3472 size_t size, void *cpu_addr, 3473 dma_addr_t dma_handle) 3474 { 3475 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 3476 } 3477 3478 /** 3479 * ib_dereg_mr - Deregisters a memory region and removes it from the 3480 * HCA translation table. 3481 * @mr: The memory region to deregister. 3482 * 3483 * This function can fail, if the memory region has memory windows bound to it. 3484 */ 3485 int ib_dereg_mr(struct ib_mr *mr); 3486 3487 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, 3488 enum ib_mr_type mr_type, 3489 u32 max_num_sg); 3490 3491 /** 3492 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 3493 * R_Key and L_Key. 3494 * @mr - struct ib_mr pointer to be updated. 3495 * @newkey - new key to be used. 3496 */ 3497 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 3498 { 3499 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 3500 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 3501 } 3502 3503 /** 3504 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 3505 * for calculating a new rkey for type 2 memory windows. 3506 * @rkey - the rkey to increment. 3507 */ 3508 static inline u32 ib_inc_rkey(u32 rkey) 3509 { 3510 const u32 mask = 0x000000ff; 3511 return ((rkey + 1) & mask) | (rkey & ~mask); 3512 } 3513 3514 /** 3515 * ib_alloc_fmr - Allocates a unmapped fast memory region. 3516 * @pd: The protection domain associated with the unmapped region. 3517 * @mr_access_flags: Specifies the memory access rights. 3518 * @fmr_attr: Attributes of the unmapped region. 3519 * 3520 * A fast memory region must be mapped before it can be used as part of 3521 * a work request. 3522 */ 3523 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 3524 int mr_access_flags, 3525 struct ib_fmr_attr *fmr_attr); 3526 3527 /** 3528 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 3529 * @fmr: The fast memory region to associate with the pages. 3530 * @page_list: An array of physical pages to map to the fast memory region. 3531 * @list_len: The number of pages in page_list. 3532 * @iova: The I/O virtual address to use with the mapped region. 3533 */ 3534 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 3535 u64 *page_list, int list_len, 3536 u64 iova) 3537 { 3538 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); 3539 } 3540 3541 /** 3542 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 3543 * @fmr_list: A linked list of fast memory regions to unmap. 3544 */ 3545 int ib_unmap_fmr(struct list_head *fmr_list); 3546 3547 /** 3548 * ib_dealloc_fmr - Deallocates a fast memory region. 3549 * @fmr: The fast memory region to deallocate. 3550 */ 3551 int ib_dealloc_fmr(struct ib_fmr *fmr); 3552 3553 /** 3554 * ib_attach_mcast - Attaches the specified QP to a multicast group. 3555 * @qp: QP to attach to the multicast group. The QP must be type 3556 * IB_QPT_UD. 3557 * @gid: Multicast group GID. 3558 * @lid: Multicast group LID in host byte order. 3559 * 3560 * In order to send and receive multicast packets, subnet 3561 * administration must have created the multicast group and configured 3562 * the fabric appropriately. The port associated with the specified 3563 * QP must also be a member of the multicast group. 3564 */ 3565 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3566 3567 /** 3568 * ib_detach_mcast - Detaches the specified QP from a multicast group. 3569 * @qp: QP to detach from the multicast group. 3570 * @gid: Multicast group GID. 3571 * @lid: Multicast group LID in host byte order. 3572 */ 3573 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3574 3575 /** 3576 * ib_alloc_xrcd - Allocates an XRC domain. 3577 * @device: The device on which to allocate the XRC domain. 3578 * @caller: Module name for kernel consumers 3579 */ 3580 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller); 3581 #define ib_alloc_xrcd(device) \ 3582 __ib_alloc_xrcd((device), KBUILD_MODNAME) 3583 3584 /** 3585 * ib_dealloc_xrcd - Deallocates an XRC domain. 3586 * @xrcd: The XRC domain to deallocate. 3587 */ 3588 int ib_dealloc_xrcd(struct ib_xrcd *xrcd); 3589 3590 struct ib_flow *ib_create_flow(struct ib_qp *qp, 3591 struct ib_flow_attr *flow_attr, int domain); 3592 int ib_destroy_flow(struct ib_flow *flow_id); 3593 3594 static inline int ib_check_mr_access(int flags) 3595 { 3596 /* 3597 * Local write permission is required if remote write or 3598 * remote atomic permission is also requested. 3599 */ 3600 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 3601 !(flags & IB_ACCESS_LOCAL_WRITE)) 3602 return -EINVAL; 3603 3604 return 0; 3605 } 3606 3607 /** 3608 * ib_check_mr_status: lightweight check of MR status. 3609 * This routine may provide status checks on a selected 3610 * ib_mr. first use is for signature status check. 3611 * 3612 * @mr: A memory region. 3613 * @check_mask: Bitmask of which checks to perform from 3614 * ib_mr_status_check enumeration. 3615 * @mr_status: The container of relevant status checks. 3616 * failed checks will be indicated in the status bitmask 3617 * and the relevant info shall be in the error item. 3618 */ 3619 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 3620 struct ib_mr_status *mr_status); 3621 3622 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port, 3623 u16 pkey, const union ib_gid *gid, 3624 const struct sockaddr *addr); 3625 struct ib_wq *ib_create_wq(struct ib_pd *pd, 3626 struct ib_wq_init_attr *init_attr); 3627 int ib_destroy_wq(struct ib_wq *wq); 3628 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr, 3629 u32 wq_attr_mask); 3630 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device, 3631 struct ib_rwq_ind_table_init_attr* 3632 wq_ind_table_init_attr); 3633 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table); 3634 3635 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3636 unsigned int *sg_offset, unsigned int page_size); 3637 3638 static inline int 3639 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3640 unsigned int *sg_offset, unsigned int page_size) 3641 { 3642 int n; 3643 3644 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size); 3645 mr->iova = 0; 3646 3647 return n; 3648 } 3649 3650 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 3651 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64)); 3652 3653 void ib_drain_rq(struct ib_qp *qp); 3654 void ib_drain_sq(struct ib_qp *qp); 3655 void ib_drain_qp(struct ib_qp *qp); 3656 3657 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width); 3658 3659 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr) 3660 { 3661 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE) 3662 return attr->roce.dmac; 3663 return NULL; 3664 } 3665 3666 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid) 3667 { 3668 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 3669 attr->ib.dlid = (u16)dlid; 3670 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 3671 attr->opa.dlid = dlid; 3672 } 3673 3674 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr) 3675 { 3676 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 3677 return attr->ib.dlid; 3678 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 3679 return attr->opa.dlid; 3680 return 0; 3681 } 3682 3683 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl) 3684 { 3685 attr->sl = sl; 3686 } 3687 3688 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr) 3689 { 3690 return attr->sl; 3691 } 3692 3693 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr, 3694 u8 src_path_bits) 3695 { 3696 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 3697 attr->ib.src_path_bits = src_path_bits; 3698 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 3699 attr->opa.src_path_bits = src_path_bits; 3700 } 3701 3702 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr) 3703 { 3704 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 3705 return attr->ib.src_path_bits; 3706 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 3707 return attr->opa.src_path_bits; 3708 return 0; 3709 } 3710 3711 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr, 3712 bool make_grd) 3713 { 3714 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 3715 attr->opa.make_grd = make_grd; 3716 } 3717 3718 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr) 3719 { 3720 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 3721 return attr->opa.make_grd; 3722 return false; 3723 } 3724 3725 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num) 3726 { 3727 attr->port_num = port_num; 3728 } 3729 3730 static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr) 3731 { 3732 return attr->port_num; 3733 } 3734 3735 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr, 3736 u8 static_rate) 3737 { 3738 attr->static_rate = static_rate; 3739 } 3740 3741 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr) 3742 { 3743 return attr->static_rate; 3744 } 3745 3746 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr, 3747 enum ib_ah_flags flag) 3748 { 3749 attr->ah_flags = flag; 3750 } 3751 3752 static inline enum ib_ah_flags 3753 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr) 3754 { 3755 return attr->ah_flags; 3756 } 3757 3758 static inline const struct ib_global_route 3759 *rdma_ah_read_grh(const struct rdma_ah_attr *attr) 3760 { 3761 return &attr->grh; 3762 } 3763 3764 /*To retrieve and modify the grh */ 3765 static inline struct ib_global_route 3766 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr) 3767 { 3768 return &attr->grh; 3769 } 3770 3771 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid) 3772 { 3773 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 3774 3775 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid)); 3776 } 3777 3778 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr, 3779 __be64 prefix) 3780 { 3781 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 3782 3783 grh->dgid.global.subnet_prefix = prefix; 3784 } 3785 3786 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr, 3787 __be64 if_id) 3788 { 3789 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 3790 3791 grh->dgid.global.interface_id = if_id; 3792 } 3793 3794 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr, 3795 union ib_gid *dgid, u32 flow_label, 3796 u8 sgid_index, u8 hop_limit, 3797 u8 traffic_class) 3798 { 3799 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 3800 3801 attr->ah_flags = IB_AH_GRH; 3802 if (dgid) 3803 grh->dgid = *dgid; 3804 grh->flow_label = flow_label; 3805 grh->sgid_index = sgid_index; 3806 grh->hop_limit = hop_limit; 3807 grh->traffic_class = traffic_class; 3808 } 3809 3810 /** 3811 * rdma_ah_find_type - Return address handle type. 3812 * 3813 * @dev: Device to be checked 3814 * @port_num: Port number 3815 */ 3816 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev, 3817 u8 port_num) 3818 { 3819 if (rdma_protocol_roce(dev, port_num)) 3820 return RDMA_AH_ATTR_TYPE_ROCE; 3821 if (rdma_protocol_ib(dev, port_num)) { 3822 if (rdma_cap_opa_ah(dev, port_num)) 3823 return RDMA_AH_ATTR_TYPE_OPA; 3824 return RDMA_AH_ATTR_TYPE_IB; 3825 } 3826 3827 return RDMA_AH_ATTR_TYPE_UNDEFINED; 3828 } 3829 3830 /** 3831 * ib_lid_cpu16 - Return lid in 16bit CPU encoding. 3832 * In the current implementation the only way to get 3833 * get the 32bit lid is from other sources for OPA. 3834 * For IB, lids will always be 16bits so cast the 3835 * value accordingly. 3836 * 3837 * @lid: A 32bit LID 3838 */ 3839 static inline u16 ib_lid_cpu16(u32 lid) 3840 { 3841 WARN_ON_ONCE(lid & 0xFFFF0000); 3842 return (u16)lid; 3843 } 3844 3845 /** 3846 * ib_lid_be16 - Return lid in 16bit BE encoding. 3847 * 3848 * @lid: A 32bit LID 3849 */ 3850 static inline __be16 ib_lid_be16(u32 lid) 3851 { 3852 WARN_ON_ONCE(lid & 0xFFFF0000); 3853 return cpu_to_be16((u16)lid); 3854 } 3855 3856 /** 3857 * ib_get_vector_affinity - Get the affinity mappings of a given completion 3858 * vector 3859 * @device: the rdma device 3860 * @comp_vector: index of completion vector 3861 * 3862 * Returns NULL on failure, otherwise a corresponding cpu map of the 3863 * completion vector (returns all-cpus map if the device driver doesn't 3864 * implement get_vector_affinity). 3865 */ 3866 static inline const struct cpumask * 3867 ib_get_vector_affinity(struct ib_device *device, int comp_vector) 3868 { 3869 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors || 3870 !device->get_vector_affinity) 3871 return NULL; 3872 3873 return device->get_vector_affinity(device, comp_vector); 3874 3875 } 3876 3877 /** 3878 * rdma_roce_rescan_device - Rescan all of the network devices in the system 3879 * and add their gids, as needed, to the relevant RoCE devices. 3880 * 3881 * @device: the rdma device 3882 */ 3883 void rdma_roce_rescan_device(struct ib_device *ibdev); 3884 3885 #endif /* IB_VERBS_H */ 3886