1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #if !defined(IB_VERBS_H) 40 #define IB_VERBS_H 41 42 #include <linux/types.h> 43 #include <linux/device.h> 44 #include <linux/mm.h> 45 #include <linux/dma-mapping.h> 46 #include <linux/kref.h> 47 #include <linux/list.h> 48 #include <linux/rwsem.h> 49 #include <linux/scatterlist.h> 50 #include <linux/workqueue.h> 51 #include <linux/socket.h> 52 #include <linux/irq_poll.h> 53 #include <uapi/linux/if_ether.h> 54 #include <net/ipv6.h> 55 #include <net/ip.h> 56 #include <linux/string.h> 57 #include <linux/slab.h> 58 59 #include <linux/if_link.h> 60 #include <linux/atomic.h> 61 #include <linux/mmu_notifier.h> 62 #include <linux/uaccess.h> 63 64 extern struct workqueue_struct *ib_wq; 65 extern struct workqueue_struct *ib_comp_wq; 66 67 union ib_gid { 68 u8 raw[16]; 69 struct { 70 __be64 subnet_prefix; 71 __be64 interface_id; 72 } global; 73 }; 74 75 extern union ib_gid zgid; 76 77 enum ib_gid_type { 78 /* If link layer is Ethernet, this is RoCE V1 */ 79 IB_GID_TYPE_IB = 0, 80 IB_GID_TYPE_ROCE = 0, 81 IB_GID_TYPE_ROCE_UDP_ENCAP = 1, 82 IB_GID_TYPE_SIZE 83 }; 84 85 #define ROCE_V2_UDP_DPORT 4791 86 struct ib_gid_attr { 87 enum ib_gid_type gid_type; 88 struct net_device *ndev; 89 }; 90 91 enum rdma_node_type { 92 /* IB values map to NodeInfo:NodeType. */ 93 RDMA_NODE_IB_CA = 1, 94 RDMA_NODE_IB_SWITCH, 95 RDMA_NODE_IB_ROUTER, 96 RDMA_NODE_RNIC, 97 RDMA_NODE_USNIC, 98 RDMA_NODE_USNIC_UDP, 99 }; 100 101 enum { 102 /* set the local administered indication */ 103 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2, 104 }; 105 106 enum rdma_transport_type { 107 RDMA_TRANSPORT_IB, 108 RDMA_TRANSPORT_IWARP, 109 RDMA_TRANSPORT_USNIC, 110 RDMA_TRANSPORT_USNIC_UDP 111 }; 112 113 enum rdma_protocol_type { 114 RDMA_PROTOCOL_IB, 115 RDMA_PROTOCOL_IBOE, 116 RDMA_PROTOCOL_IWARP, 117 RDMA_PROTOCOL_USNIC_UDP 118 }; 119 120 __attribute_const__ enum rdma_transport_type 121 rdma_node_get_transport(enum rdma_node_type node_type); 122 123 enum rdma_network_type { 124 RDMA_NETWORK_IB, 125 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB, 126 RDMA_NETWORK_IPV4, 127 RDMA_NETWORK_IPV6 128 }; 129 130 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) 131 { 132 if (network_type == RDMA_NETWORK_IPV4 || 133 network_type == RDMA_NETWORK_IPV6) 134 return IB_GID_TYPE_ROCE_UDP_ENCAP; 135 136 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */ 137 return IB_GID_TYPE_IB; 138 } 139 140 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type, 141 union ib_gid *gid) 142 { 143 if (gid_type == IB_GID_TYPE_IB) 144 return RDMA_NETWORK_IB; 145 146 if (ipv6_addr_v4mapped((struct in6_addr *)gid)) 147 return RDMA_NETWORK_IPV4; 148 else 149 return RDMA_NETWORK_IPV6; 150 } 151 152 enum rdma_link_layer { 153 IB_LINK_LAYER_UNSPECIFIED, 154 IB_LINK_LAYER_INFINIBAND, 155 IB_LINK_LAYER_ETHERNET, 156 }; 157 158 enum ib_device_cap_flags { 159 IB_DEVICE_RESIZE_MAX_WR = (1 << 0), 160 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1), 161 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2), 162 IB_DEVICE_RAW_MULTI = (1 << 3), 163 IB_DEVICE_AUTO_PATH_MIG = (1 << 4), 164 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5), 165 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6), 166 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7), 167 IB_DEVICE_SHUTDOWN_PORT = (1 << 8), 168 IB_DEVICE_INIT_TYPE = (1 << 9), 169 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10), 170 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11), 171 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12), 172 IB_DEVICE_SRQ_RESIZE = (1 << 13), 173 IB_DEVICE_N_NOTIFY_CQ = (1 << 14), 174 175 /* 176 * This device supports a per-device lkey or stag that can be 177 * used without performing a memory registration for the local 178 * memory. Note that ULPs should never check this flag, but 179 * instead of use the local_dma_lkey flag in the ib_pd structure, 180 * which will always contain a usable lkey. 181 */ 182 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15), 183 IB_DEVICE_RESERVED /* old SEND_W_INV */ = (1 << 16), 184 IB_DEVICE_MEM_WINDOW = (1 << 17), 185 /* 186 * Devices should set IB_DEVICE_UD_IP_SUM if they support 187 * insertion of UDP and TCP checksum on outgoing UD IPoIB 188 * messages and can verify the validity of checksum for 189 * incoming messages. Setting this flag implies that the 190 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 191 */ 192 IB_DEVICE_UD_IP_CSUM = (1 << 18), 193 IB_DEVICE_UD_TSO = (1 << 19), 194 IB_DEVICE_XRC = (1 << 20), 195 196 /* 197 * This device supports the IB "base memory management extension", 198 * which includes support for fast registrations (IB_WR_REG_MR, 199 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should 200 * also be set by any iWarp device which must support FRs to comply 201 * to the iWarp verbs spec. iWarp devices also support the 202 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the 203 * stag. 204 */ 205 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21), 206 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22), 207 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23), 208 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24), 209 IB_DEVICE_RC_IP_CSUM = (1 << 25), 210 IB_DEVICE_RAW_IP_CSUM = (1 << 26), 211 /* 212 * Devices should set IB_DEVICE_CROSS_CHANNEL if they 213 * support execution of WQEs that involve synchronization 214 * of I/O operations with single completion queue managed 215 * by hardware. 216 */ 217 IB_DEVICE_CROSS_CHANNEL = (1 << 27), 218 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29), 219 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30), 220 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31), 221 IB_DEVICE_SG_GAPS_REG = (1ULL << 32), 222 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33), 223 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34), 224 }; 225 226 enum ib_signature_prot_cap { 227 IB_PROT_T10DIF_TYPE_1 = 1, 228 IB_PROT_T10DIF_TYPE_2 = 1 << 1, 229 IB_PROT_T10DIF_TYPE_3 = 1 << 2, 230 }; 231 232 enum ib_signature_guard_cap { 233 IB_GUARD_T10DIF_CRC = 1, 234 IB_GUARD_T10DIF_CSUM = 1 << 1, 235 }; 236 237 enum ib_atomic_cap { 238 IB_ATOMIC_NONE, 239 IB_ATOMIC_HCA, 240 IB_ATOMIC_GLOB 241 }; 242 243 enum ib_odp_general_cap_bits { 244 IB_ODP_SUPPORT = 1 << 0, 245 }; 246 247 enum ib_odp_transport_cap_bits { 248 IB_ODP_SUPPORT_SEND = 1 << 0, 249 IB_ODP_SUPPORT_RECV = 1 << 1, 250 IB_ODP_SUPPORT_WRITE = 1 << 2, 251 IB_ODP_SUPPORT_READ = 1 << 3, 252 IB_ODP_SUPPORT_ATOMIC = 1 << 4, 253 }; 254 255 struct ib_odp_caps { 256 uint64_t general_caps; 257 struct { 258 uint32_t rc_odp_caps; 259 uint32_t uc_odp_caps; 260 uint32_t ud_odp_caps; 261 } per_transport_caps; 262 }; 263 264 struct ib_rss_caps { 265 /* Corresponding bit will be set if qp type from 266 * 'enum ib_qp_type' is supported, e.g. 267 * supported_qpts |= 1 << IB_QPT_UD 268 */ 269 u32 supported_qpts; 270 u32 max_rwq_indirection_tables; 271 u32 max_rwq_indirection_table_size; 272 }; 273 274 enum ib_cq_creation_flags { 275 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0, 276 IB_CQ_FLAGS_IGNORE_OVERRUN = 1 << 1, 277 }; 278 279 struct ib_cq_init_attr { 280 unsigned int cqe; 281 int comp_vector; 282 u32 flags; 283 }; 284 285 struct ib_device_attr { 286 u64 fw_ver; 287 __be64 sys_image_guid; 288 u64 max_mr_size; 289 u64 page_size_cap; 290 u32 vendor_id; 291 u32 vendor_part_id; 292 u32 hw_ver; 293 int max_qp; 294 int max_qp_wr; 295 u64 device_cap_flags; 296 int max_sge; 297 int max_sge_rd; 298 int max_cq; 299 int max_cqe; 300 int max_mr; 301 int max_pd; 302 int max_qp_rd_atom; 303 int max_ee_rd_atom; 304 int max_res_rd_atom; 305 int max_qp_init_rd_atom; 306 int max_ee_init_rd_atom; 307 enum ib_atomic_cap atomic_cap; 308 enum ib_atomic_cap masked_atomic_cap; 309 int max_ee; 310 int max_rdd; 311 int max_mw; 312 int max_raw_ipv6_qp; 313 int max_raw_ethy_qp; 314 int max_mcast_grp; 315 int max_mcast_qp_attach; 316 int max_total_mcast_qp_attach; 317 int max_ah; 318 int max_fmr; 319 int max_map_per_fmr; 320 int max_srq; 321 int max_srq_wr; 322 int max_srq_sge; 323 unsigned int max_fast_reg_page_list_len; 324 u16 max_pkeys; 325 u8 local_ca_ack_delay; 326 int sig_prot_cap; 327 int sig_guard_cap; 328 struct ib_odp_caps odp_caps; 329 uint64_t timestamp_mask; 330 uint64_t hca_core_clock; /* in KHZ */ 331 struct ib_rss_caps rss_caps; 332 u32 max_wq_type_rq; 333 }; 334 335 enum ib_mtu { 336 IB_MTU_256 = 1, 337 IB_MTU_512 = 2, 338 IB_MTU_1024 = 3, 339 IB_MTU_2048 = 4, 340 IB_MTU_4096 = 5 341 }; 342 343 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 344 { 345 switch (mtu) { 346 case IB_MTU_256: return 256; 347 case IB_MTU_512: return 512; 348 case IB_MTU_1024: return 1024; 349 case IB_MTU_2048: return 2048; 350 case IB_MTU_4096: return 4096; 351 default: return -1; 352 } 353 } 354 355 enum ib_port_state { 356 IB_PORT_NOP = 0, 357 IB_PORT_DOWN = 1, 358 IB_PORT_INIT = 2, 359 IB_PORT_ARMED = 3, 360 IB_PORT_ACTIVE = 4, 361 IB_PORT_ACTIVE_DEFER = 5 362 }; 363 364 enum ib_port_cap_flags { 365 IB_PORT_SM = 1 << 1, 366 IB_PORT_NOTICE_SUP = 1 << 2, 367 IB_PORT_TRAP_SUP = 1 << 3, 368 IB_PORT_OPT_IPD_SUP = 1 << 4, 369 IB_PORT_AUTO_MIGR_SUP = 1 << 5, 370 IB_PORT_SL_MAP_SUP = 1 << 6, 371 IB_PORT_MKEY_NVRAM = 1 << 7, 372 IB_PORT_PKEY_NVRAM = 1 << 8, 373 IB_PORT_LED_INFO_SUP = 1 << 9, 374 IB_PORT_SM_DISABLED = 1 << 10, 375 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11, 376 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12, 377 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14, 378 IB_PORT_CM_SUP = 1 << 16, 379 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17, 380 IB_PORT_REINIT_SUP = 1 << 18, 381 IB_PORT_DEVICE_MGMT_SUP = 1 << 19, 382 IB_PORT_VENDOR_CLASS_SUP = 1 << 20, 383 IB_PORT_DR_NOTICE_SUP = 1 << 21, 384 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22, 385 IB_PORT_BOOT_MGMT_SUP = 1 << 23, 386 IB_PORT_LINK_LATENCY_SUP = 1 << 24, 387 IB_PORT_CLIENT_REG_SUP = 1 << 25, 388 IB_PORT_IP_BASED_GIDS = 1 << 26, 389 }; 390 391 enum ib_port_width { 392 IB_WIDTH_1X = 1, 393 IB_WIDTH_4X = 2, 394 IB_WIDTH_8X = 4, 395 IB_WIDTH_12X = 8 396 }; 397 398 static inline int ib_width_enum_to_int(enum ib_port_width width) 399 { 400 switch (width) { 401 case IB_WIDTH_1X: return 1; 402 case IB_WIDTH_4X: return 4; 403 case IB_WIDTH_8X: return 8; 404 case IB_WIDTH_12X: return 12; 405 default: return -1; 406 } 407 } 408 409 enum ib_port_speed { 410 IB_SPEED_SDR = 1, 411 IB_SPEED_DDR = 2, 412 IB_SPEED_QDR = 4, 413 IB_SPEED_FDR10 = 8, 414 IB_SPEED_FDR = 16, 415 IB_SPEED_EDR = 32 416 }; 417 418 /** 419 * struct rdma_hw_stats 420 * @timestamp - Used by the core code to track when the last update was 421 * @lifespan - Used by the core code to determine how old the counters 422 * should be before being updated again. Stored in jiffies, defaults 423 * to 10 milliseconds, drivers can override the default be specifying 424 * their own value during their allocation routine. 425 * @name - Array of pointers to static names used for the counters in 426 * directory. 427 * @num_counters - How many hardware counters there are. If name is 428 * shorter than this number, a kernel oops will result. Driver authors 429 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters) 430 * in their code to prevent this. 431 * @value - Array of u64 counters that are accessed by the sysfs code and 432 * filled in by the drivers get_stats routine 433 */ 434 struct rdma_hw_stats { 435 unsigned long timestamp; 436 unsigned long lifespan; 437 const char * const *names; 438 int num_counters; 439 u64 value[]; 440 }; 441 442 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10 443 /** 444 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct 445 * for drivers. 446 * @names - Array of static const char * 447 * @num_counters - How many elements in array 448 * @lifespan - How many milliseconds between updates 449 */ 450 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 451 const char * const *names, int num_counters, 452 unsigned long lifespan) 453 { 454 struct rdma_hw_stats *stats; 455 456 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64), 457 GFP_KERNEL); 458 if (!stats) 459 return NULL; 460 stats->names = names; 461 stats->num_counters = num_counters; 462 stats->lifespan = msecs_to_jiffies(lifespan); 463 464 return stats; 465 } 466 467 468 /* Define bits for the various functionality this port needs to be supported by 469 * the core. 470 */ 471 /* Management 0x00000FFF */ 472 #define RDMA_CORE_CAP_IB_MAD 0x00000001 473 #define RDMA_CORE_CAP_IB_SMI 0x00000002 474 #define RDMA_CORE_CAP_IB_CM 0x00000004 475 #define RDMA_CORE_CAP_IW_CM 0x00000008 476 #define RDMA_CORE_CAP_IB_SA 0x00000010 477 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 478 479 /* Address format 0x000FF000 */ 480 #define RDMA_CORE_CAP_AF_IB 0x00001000 481 #define RDMA_CORE_CAP_ETH_AH 0x00002000 482 483 /* Protocol 0xFFF00000 */ 484 #define RDMA_CORE_CAP_PROT_IB 0x00100000 485 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 486 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 487 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 488 489 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 490 | RDMA_CORE_CAP_IB_MAD \ 491 | RDMA_CORE_CAP_IB_SMI \ 492 | RDMA_CORE_CAP_IB_CM \ 493 | RDMA_CORE_CAP_IB_SA \ 494 | RDMA_CORE_CAP_AF_IB) 495 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 496 | RDMA_CORE_CAP_IB_MAD \ 497 | RDMA_CORE_CAP_IB_CM \ 498 | RDMA_CORE_CAP_AF_IB \ 499 | RDMA_CORE_CAP_ETH_AH) 500 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ 501 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ 502 | RDMA_CORE_CAP_IB_MAD \ 503 | RDMA_CORE_CAP_IB_CM \ 504 | RDMA_CORE_CAP_AF_IB \ 505 | RDMA_CORE_CAP_ETH_AH) 506 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 507 | RDMA_CORE_CAP_IW_CM) 508 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 509 | RDMA_CORE_CAP_OPA_MAD) 510 511 struct ib_port_attr { 512 u64 subnet_prefix; 513 enum ib_port_state state; 514 enum ib_mtu max_mtu; 515 enum ib_mtu active_mtu; 516 int gid_tbl_len; 517 u32 port_cap_flags; 518 u32 max_msg_sz; 519 u32 bad_pkey_cntr; 520 u32 qkey_viol_cntr; 521 u16 pkey_tbl_len; 522 u16 lid; 523 u16 sm_lid; 524 u8 lmc; 525 u8 max_vl_num; 526 u8 sm_sl; 527 u8 subnet_timeout; 528 u8 init_type_reply; 529 u8 active_width; 530 u8 active_speed; 531 u8 phys_state; 532 bool grh_required; 533 }; 534 535 enum ib_device_modify_flags { 536 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 537 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 538 }; 539 540 #define IB_DEVICE_NODE_DESC_MAX 64 541 542 struct ib_device_modify { 543 u64 sys_image_guid; 544 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 545 }; 546 547 enum ib_port_modify_flags { 548 IB_PORT_SHUTDOWN = 1, 549 IB_PORT_INIT_TYPE = (1<<2), 550 IB_PORT_RESET_QKEY_CNTR = (1<<3) 551 }; 552 553 struct ib_port_modify { 554 u32 set_port_cap_mask; 555 u32 clr_port_cap_mask; 556 u8 init_type; 557 }; 558 559 enum ib_event_type { 560 IB_EVENT_CQ_ERR, 561 IB_EVENT_QP_FATAL, 562 IB_EVENT_QP_REQ_ERR, 563 IB_EVENT_QP_ACCESS_ERR, 564 IB_EVENT_COMM_EST, 565 IB_EVENT_SQ_DRAINED, 566 IB_EVENT_PATH_MIG, 567 IB_EVENT_PATH_MIG_ERR, 568 IB_EVENT_DEVICE_FATAL, 569 IB_EVENT_PORT_ACTIVE, 570 IB_EVENT_PORT_ERR, 571 IB_EVENT_LID_CHANGE, 572 IB_EVENT_PKEY_CHANGE, 573 IB_EVENT_SM_CHANGE, 574 IB_EVENT_SRQ_ERR, 575 IB_EVENT_SRQ_LIMIT_REACHED, 576 IB_EVENT_QP_LAST_WQE_REACHED, 577 IB_EVENT_CLIENT_REREGISTER, 578 IB_EVENT_GID_CHANGE, 579 IB_EVENT_WQ_FATAL, 580 }; 581 582 const char *__attribute_const__ ib_event_msg(enum ib_event_type event); 583 584 struct ib_event { 585 struct ib_device *device; 586 union { 587 struct ib_cq *cq; 588 struct ib_qp *qp; 589 struct ib_srq *srq; 590 struct ib_wq *wq; 591 u8 port_num; 592 } element; 593 enum ib_event_type event; 594 }; 595 596 struct ib_event_handler { 597 struct ib_device *device; 598 void (*handler)(struct ib_event_handler *, struct ib_event *); 599 struct list_head list; 600 }; 601 602 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 603 do { \ 604 (_ptr)->device = _device; \ 605 (_ptr)->handler = _handler; \ 606 INIT_LIST_HEAD(&(_ptr)->list); \ 607 } while (0) 608 609 struct ib_global_route { 610 union ib_gid dgid; 611 u32 flow_label; 612 u8 sgid_index; 613 u8 hop_limit; 614 u8 traffic_class; 615 }; 616 617 struct ib_grh { 618 __be32 version_tclass_flow; 619 __be16 paylen; 620 u8 next_hdr; 621 u8 hop_limit; 622 union ib_gid sgid; 623 union ib_gid dgid; 624 }; 625 626 union rdma_network_hdr { 627 struct ib_grh ibgrh; 628 struct { 629 /* The IB spec states that if it's IPv4, the header 630 * is located in the last 20 bytes of the header. 631 */ 632 u8 reserved[20]; 633 struct iphdr roce4grh; 634 }; 635 }; 636 637 enum { 638 IB_MULTICAST_QPN = 0xffffff 639 }; 640 641 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 642 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000) 643 644 enum ib_ah_flags { 645 IB_AH_GRH = 1 646 }; 647 648 enum ib_rate { 649 IB_RATE_PORT_CURRENT = 0, 650 IB_RATE_2_5_GBPS = 2, 651 IB_RATE_5_GBPS = 5, 652 IB_RATE_10_GBPS = 3, 653 IB_RATE_20_GBPS = 6, 654 IB_RATE_30_GBPS = 4, 655 IB_RATE_40_GBPS = 7, 656 IB_RATE_60_GBPS = 8, 657 IB_RATE_80_GBPS = 9, 658 IB_RATE_120_GBPS = 10, 659 IB_RATE_14_GBPS = 11, 660 IB_RATE_56_GBPS = 12, 661 IB_RATE_112_GBPS = 13, 662 IB_RATE_168_GBPS = 14, 663 IB_RATE_25_GBPS = 15, 664 IB_RATE_100_GBPS = 16, 665 IB_RATE_200_GBPS = 17, 666 IB_RATE_300_GBPS = 18 667 }; 668 669 /** 670 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 671 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 672 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 673 * @rate: rate to convert. 674 */ 675 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 676 677 /** 678 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 679 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 680 * @rate: rate to convert. 681 */ 682 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 683 684 685 /** 686 * enum ib_mr_type - memory region type 687 * @IB_MR_TYPE_MEM_REG: memory region that is used for 688 * normal registration 689 * @IB_MR_TYPE_SIGNATURE: memory region that is used for 690 * signature operations (data-integrity 691 * capable regions) 692 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to 693 * register any arbitrary sg lists (without 694 * the normal mr constraints - see 695 * ib_map_mr_sg) 696 */ 697 enum ib_mr_type { 698 IB_MR_TYPE_MEM_REG, 699 IB_MR_TYPE_SIGNATURE, 700 IB_MR_TYPE_SG_GAPS, 701 }; 702 703 /** 704 * Signature types 705 * IB_SIG_TYPE_NONE: Unprotected. 706 * IB_SIG_TYPE_T10_DIF: Type T10-DIF 707 */ 708 enum ib_signature_type { 709 IB_SIG_TYPE_NONE, 710 IB_SIG_TYPE_T10_DIF, 711 }; 712 713 /** 714 * Signature T10-DIF block-guard types 715 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules. 716 * IB_T10DIF_CSUM: Corresponds to IP checksum rules. 717 */ 718 enum ib_t10_dif_bg_type { 719 IB_T10DIF_CRC, 720 IB_T10DIF_CSUM 721 }; 722 723 /** 724 * struct ib_t10_dif_domain - Parameters specific for T10-DIF 725 * domain. 726 * @bg_type: T10-DIF block guard type (CRC|CSUM) 727 * @pi_interval: protection information interval. 728 * @bg: seed of guard computation. 729 * @app_tag: application tag of guard block 730 * @ref_tag: initial guard block reference tag. 731 * @ref_remap: Indicate wethear the reftag increments each block 732 * @app_escape: Indicate to skip block check if apptag=0xffff 733 * @ref_escape: Indicate to skip block check if reftag=0xffffffff 734 * @apptag_check_mask: check bitmask of application tag. 735 */ 736 struct ib_t10_dif_domain { 737 enum ib_t10_dif_bg_type bg_type; 738 u16 pi_interval; 739 u16 bg; 740 u16 app_tag; 741 u32 ref_tag; 742 bool ref_remap; 743 bool app_escape; 744 bool ref_escape; 745 u16 apptag_check_mask; 746 }; 747 748 /** 749 * struct ib_sig_domain - Parameters for signature domain 750 * @sig_type: specific signauture type 751 * @sig: union of all signature domain attributes that may 752 * be used to set domain layout. 753 */ 754 struct ib_sig_domain { 755 enum ib_signature_type sig_type; 756 union { 757 struct ib_t10_dif_domain dif; 758 } sig; 759 }; 760 761 /** 762 * struct ib_sig_attrs - Parameters for signature handover operation 763 * @check_mask: bitmask for signature byte check (8 bytes) 764 * @mem: memory domain layout desciptor. 765 * @wire: wire domain layout desciptor. 766 */ 767 struct ib_sig_attrs { 768 u8 check_mask; 769 struct ib_sig_domain mem; 770 struct ib_sig_domain wire; 771 }; 772 773 enum ib_sig_err_type { 774 IB_SIG_BAD_GUARD, 775 IB_SIG_BAD_REFTAG, 776 IB_SIG_BAD_APPTAG, 777 }; 778 779 /** 780 * struct ib_sig_err - signature error descriptor 781 */ 782 struct ib_sig_err { 783 enum ib_sig_err_type err_type; 784 u32 expected; 785 u32 actual; 786 u64 sig_err_offset; 787 u32 key; 788 }; 789 790 enum ib_mr_status_check { 791 IB_MR_CHECK_SIG_STATUS = 1, 792 }; 793 794 /** 795 * struct ib_mr_status - Memory region status container 796 * 797 * @fail_status: Bitmask of MR checks status. For each 798 * failed check a corresponding status bit is set. 799 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 800 * failure. 801 */ 802 struct ib_mr_status { 803 u32 fail_status; 804 struct ib_sig_err sig_err; 805 }; 806 807 /** 808 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 809 * enum. 810 * @mult: multiple to convert. 811 */ 812 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 813 814 struct ib_ah_attr { 815 struct ib_global_route grh; 816 u16 dlid; 817 u8 sl; 818 u8 src_path_bits; 819 u8 static_rate; 820 u8 ah_flags; 821 u8 port_num; 822 u8 dmac[ETH_ALEN]; 823 }; 824 825 enum ib_wc_status { 826 IB_WC_SUCCESS, 827 IB_WC_LOC_LEN_ERR, 828 IB_WC_LOC_QP_OP_ERR, 829 IB_WC_LOC_EEC_OP_ERR, 830 IB_WC_LOC_PROT_ERR, 831 IB_WC_WR_FLUSH_ERR, 832 IB_WC_MW_BIND_ERR, 833 IB_WC_BAD_RESP_ERR, 834 IB_WC_LOC_ACCESS_ERR, 835 IB_WC_REM_INV_REQ_ERR, 836 IB_WC_REM_ACCESS_ERR, 837 IB_WC_REM_OP_ERR, 838 IB_WC_RETRY_EXC_ERR, 839 IB_WC_RNR_RETRY_EXC_ERR, 840 IB_WC_LOC_RDD_VIOL_ERR, 841 IB_WC_REM_INV_RD_REQ_ERR, 842 IB_WC_REM_ABORT_ERR, 843 IB_WC_INV_EECN_ERR, 844 IB_WC_INV_EEC_STATE_ERR, 845 IB_WC_FATAL_ERR, 846 IB_WC_RESP_TIMEOUT_ERR, 847 IB_WC_GENERAL_ERR 848 }; 849 850 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); 851 852 enum ib_wc_opcode { 853 IB_WC_SEND, 854 IB_WC_RDMA_WRITE, 855 IB_WC_RDMA_READ, 856 IB_WC_COMP_SWAP, 857 IB_WC_FETCH_ADD, 858 IB_WC_LSO, 859 IB_WC_LOCAL_INV, 860 IB_WC_REG_MR, 861 IB_WC_MASKED_COMP_SWAP, 862 IB_WC_MASKED_FETCH_ADD, 863 /* 864 * Set value of IB_WC_RECV so consumers can test if a completion is a 865 * receive by testing (opcode & IB_WC_RECV). 866 */ 867 IB_WC_RECV = 1 << 7, 868 IB_WC_RECV_RDMA_WITH_IMM 869 }; 870 871 enum ib_wc_flags { 872 IB_WC_GRH = 1, 873 IB_WC_WITH_IMM = (1<<1), 874 IB_WC_WITH_INVALIDATE = (1<<2), 875 IB_WC_IP_CSUM_OK = (1<<3), 876 IB_WC_WITH_SMAC = (1<<4), 877 IB_WC_WITH_VLAN = (1<<5), 878 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), 879 }; 880 881 struct ib_wc { 882 union { 883 u64 wr_id; 884 struct ib_cqe *wr_cqe; 885 }; 886 enum ib_wc_status status; 887 enum ib_wc_opcode opcode; 888 u32 vendor_err; 889 u32 byte_len; 890 struct ib_qp *qp; 891 union { 892 __be32 imm_data; 893 u32 invalidate_rkey; 894 } ex; 895 u32 src_qp; 896 int wc_flags; 897 u16 pkey_index; 898 u16 slid; 899 u8 sl; 900 u8 dlid_path_bits; 901 u8 port_num; /* valid only for DR SMPs on switches */ 902 u8 smac[ETH_ALEN]; 903 u16 vlan_id; 904 u8 network_hdr_type; 905 }; 906 907 enum ib_cq_notify_flags { 908 IB_CQ_SOLICITED = 1 << 0, 909 IB_CQ_NEXT_COMP = 1 << 1, 910 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 911 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 912 }; 913 914 enum ib_srq_type { 915 IB_SRQT_BASIC, 916 IB_SRQT_XRC 917 }; 918 919 enum ib_srq_attr_mask { 920 IB_SRQ_MAX_WR = 1 << 0, 921 IB_SRQ_LIMIT = 1 << 1, 922 }; 923 924 struct ib_srq_attr { 925 u32 max_wr; 926 u32 max_sge; 927 u32 srq_limit; 928 }; 929 930 struct ib_srq_init_attr { 931 void (*event_handler)(struct ib_event *, void *); 932 void *srq_context; 933 struct ib_srq_attr attr; 934 enum ib_srq_type srq_type; 935 936 union { 937 struct { 938 struct ib_xrcd *xrcd; 939 struct ib_cq *cq; 940 } xrc; 941 } ext; 942 }; 943 944 struct ib_qp_cap { 945 u32 max_send_wr; 946 u32 max_recv_wr; 947 u32 max_send_sge; 948 u32 max_recv_sge; 949 u32 max_inline_data; 950 951 /* 952 * Maximum number of rdma_rw_ctx structures in flight at a time. 953 * ib_create_qp() will calculate the right amount of neededed WRs 954 * and MRs based on this. 955 */ 956 u32 max_rdma_ctxs; 957 }; 958 959 enum ib_sig_type { 960 IB_SIGNAL_ALL_WR, 961 IB_SIGNAL_REQ_WR 962 }; 963 964 enum ib_qp_type { 965 /* 966 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 967 * here (and in that order) since the MAD layer uses them as 968 * indices into a 2-entry table. 969 */ 970 IB_QPT_SMI, 971 IB_QPT_GSI, 972 973 IB_QPT_RC, 974 IB_QPT_UC, 975 IB_QPT_UD, 976 IB_QPT_RAW_IPV6, 977 IB_QPT_RAW_ETHERTYPE, 978 IB_QPT_RAW_PACKET = 8, 979 IB_QPT_XRC_INI = 9, 980 IB_QPT_XRC_TGT, 981 IB_QPT_MAX, 982 /* Reserve a range for qp types internal to the low level driver. 983 * These qp types will not be visible at the IB core layer, so the 984 * IB_QPT_MAX usages should not be affected in the core layer 985 */ 986 IB_QPT_RESERVED1 = 0x1000, 987 IB_QPT_RESERVED2, 988 IB_QPT_RESERVED3, 989 IB_QPT_RESERVED4, 990 IB_QPT_RESERVED5, 991 IB_QPT_RESERVED6, 992 IB_QPT_RESERVED7, 993 IB_QPT_RESERVED8, 994 IB_QPT_RESERVED9, 995 IB_QPT_RESERVED10, 996 }; 997 998 enum ib_qp_create_flags { 999 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 1000 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1, 1001 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 1002 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 1003 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 1004 IB_QP_CREATE_NETIF_QP = 1 << 5, 1005 IB_QP_CREATE_SIGNATURE_EN = 1 << 6, 1006 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7, 1007 IB_QP_CREATE_SCATTER_FCS = 1 << 8, 1008 /* reserve bits 26-31 for low level drivers' internal use */ 1009 IB_QP_CREATE_RESERVED_START = 1 << 26, 1010 IB_QP_CREATE_RESERVED_END = 1 << 31, 1011 }; 1012 1013 /* 1014 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 1015 * callback to destroy the passed in QP. 1016 */ 1017 1018 struct ib_qp_init_attr { 1019 void (*event_handler)(struct ib_event *, void *); 1020 void *qp_context; 1021 struct ib_cq *send_cq; 1022 struct ib_cq *recv_cq; 1023 struct ib_srq *srq; 1024 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1025 struct ib_qp_cap cap; 1026 enum ib_sig_type sq_sig_type; 1027 enum ib_qp_type qp_type; 1028 enum ib_qp_create_flags create_flags; 1029 1030 /* 1031 * Only needed for special QP types, or when using the RW API. 1032 */ 1033 u8 port_num; 1034 struct ib_rwq_ind_table *rwq_ind_tbl; 1035 }; 1036 1037 struct ib_qp_open_attr { 1038 void (*event_handler)(struct ib_event *, void *); 1039 void *qp_context; 1040 u32 qp_num; 1041 enum ib_qp_type qp_type; 1042 }; 1043 1044 enum ib_rnr_timeout { 1045 IB_RNR_TIMER_655_36 = 0, 1046 IB_RNR_TIMER_000_01 = 1, 1047 IB_RNR_TIMER_000_02 = 2, 1048 IB_RNR_TIMER_000_03 = 3, 1049 IB_RNR_TIMER_000_04 = 4, 1050 IB_RNR_TIMER_000_06 = 5, 1051 IB_RNR_TIMER_000_08 = 6, 1052 IB_RNR_TIMER_000_12 = 7, 1053 IB_RNR_TIMER_000_16 = 8, 1054 IB_RNR_TIMER_000_24 = 9, 1055 IB_RNR_TIMER_000_32 = 10, 1056 IB_RNR_TIMER_000_48 = 11, 1057 IB_RNR_TIMER_000_64 = 12, 1058 IB_RNR_TIMER_000_96 = 13, 1059 IB_RNR_TIMER_001_28 = 14, 1060 IB_RNR_TIMER_001_92 = 15, 1061 IB_RNR_TIMER_002_56 = 16, 1062 IB_RNR_TIMER_003_84 = 17, 1063 IB_RNR_TIMER_005_12 = 18, 1064 IB_RNR_TIMER_007_68 = 19, 1065 IB_RNR_TIMER_010_24 = 20, 1066 IB_RNR_TIMER_015_36 = 21, 1067 IB_RNR_TIMER_020_48 = 22, 1068 IB_RNR_TIMER_030_72 = 23, 1069 IB_RNR_TIMER_040_96 = 24, 1070 IB_RNR_TIMER_061_44 = 25, 1071 IB_RNR_TIMER_081_92 = 26, 1072 IB_RNR_TIMER_122_88 = 27, 1073 IB_RNR_TIMER_163_84 = 28, 1074 IB_RNR_TIMER_245_76 = 29, 1075 IB_RNR_TIMER_327_68 = 30, 1076 IB_RNR_TIMER_491_52 = 31 1077 }; 1078 1079 enum ib_qp_attr_mask { 1080 IB_QP_STATE = 1, 1081 IB_QP_CUR_STATE = (1<<1), 1082 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 1083 IB_QP_ACCESS_FLAGS = (1<<3), 1084 IB_QP_PKEY_INDEX = (1<<4), 1085 IB_QP_PORT = (1<<5), 1086 IB_QP_QKEY = (1<<6), 1087 IB_QP_AV = (1<<7), 1088 IB_QP_PATH_MTU = (1<<8), 1089 IB_QP_TIMEOUT = (1<<9), 1090 IB_QP_RETRY_CNT = (1<<10), 1091 IB_QP_RNR_RETRY = (1<<11), 1092 IB_QP_RQ_PSN = (1<<12), 1093 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 1094 IB_QP_ALT_PATH = (1<<14), 1095 IB_QP_MIN_RNR_TIMER = (1<<15), 1096 IB_QP_SQ_PSN = (1<<16), 1097 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 1098 IB_QP_PATH_MIG_STATE = (1<<18), 1099 IB_QP_CAP = (1<<19), 1100 IB_QP_DEST_QPN = (1<<20), 1101 IB_QP_RESERVED1 = (1<<21), 1102 IB_QP_RESERVED2 = (1<<22), 1103 IB_QP_RESERVED3 = (1<<23), 1104 IB_QP_RESERVED4 = (1<<24), 1105 IB_QP_RATE_LIMIT = (1<<25), 1106 }; 1107 1108 enum ib_qp_state { 1109 IB_QPS_RESET, 1110 IB_QPS_INIT, 1111 IB_QPS_RTR, 1112 IB_QPS_RTS, 1113 IB_QPS_SQD, 1114 IB_QPS_SQE, 1115 IB_QPS_ERR 1116 }; 1117 1118 enum ib_mig_state { 1119 IB_MIG_MIGRATED, 1120 IB_MIG_REARM, 1121 IB_MIG_ARMED 1122 }; 1123 1124 enum ib_mw_type { 1125 IB_MW_TYPE_1 = 1, 1126 IB_MW_TYPE_2 = 2 1127 }; 1128 1129 struct ib_qp_attr { 1130 enum ib_qp_state qp_state; 1131 enum ib_qp_state cur_qp_state; 1132 enum ib_mtu path_mtu; 1133 enum ib_mig_state path_mig_state; 1134 u32 qkey; 1135 u32 rq_psn; 1136 u32 sq_psn; 1137 u32 dest_qp_num; 1138 int qp_access_flags; 1139 struct ib_qp_cap cap; 1140 struct ib_ah_attr ah_attr; 1141 struct ib_ah_attr alt_ah_attr; 1142 u16 pkey_index; 1143 u16 alt_pkey_index; 1144 u8 en_sqd_async_notify; 1145 u8 sq_draining; 1146 u8 max_rd_atomic; 1147 u8 max_dest_rd_atomic; 1148 u8 min_rnr_timer; 1149 u8 port_num; 1150 u8 timeout; 1151 u8 retry_cnt; 1152 u8 rnr_retry; 1153 u8 alt_port_num; 1154 u8 alt_timeout; 1155 u32 rate_limit; 1156 }; 1157 1158 enum ib_wr_opcode { 1159 IB_WR_RDMA_WRITE, 1160 IB_WR_RDMA_WRITE_WITH_IMM, 1161 IB_WR_SEND, 1162 IB_WR_SEND_WITH_IMM, 1163 IB_WR_RDMA_READ, 1164 IB_WR_ATOMIC_CMP_AND_SWP, 1165 IB_WR_ATOMIC_FETCH_AND_ADD, 1166 IB_WR_LSO, 1167 IB_WR_SEND_WITH_INV, 1168 IB_WR_RDMA_READ_WITH_INV, 1169 IB_WR_LOCAL_INV, 1170 IB_WR_REG_MR, 1171 IB_WR_MASKED_ATOMIC_CMP_AND_SWP, 1172 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1173 IB_WR_REG_SIG_MR, 1174 /* reserve values for low level drivers' internal use. 1175 * These values will not be used at all in the ib core layer. 1176 */ 1177 IB_WR_RESERVED1 = 0xf0, 1178 IB_WR_RESERVED2, 1179 IB_WR_RESERVED3, 1180 IB_WR_RESERVED4, 1181 IB_WR_RESERVED5, 1182 IB_WR_RESERVED6, 1183 IB_WR_RESERVED7, 1184 IB_WR_RESERVED8, 1185 IB_WR_RESERVED9, 1186 IB_WR_RESERVED10, 1187 }; 1188 1189 enum ib_send_flags { 1190 IB_SEND_FENCE = 1, 1191 IB_SEND_SIGNALED = (1<<1), 1192 IB_SEND_SOLICITED = (1<<2), 1193 IB_SEND_INLINE = (1<<3), 1194 IB_SEND_IP_CSUM = (1<<4), 1195 1196 /* reserve bits 26-31 for low level drivers' internal use */ 1197 IB_SEND_RESERVED_START = (1 << 26), 1198 IB_SEND_RESERVED_END = (1 << 31), 1199 }; 1200 1201 struct ib_sge { 1202 u64 addr; 1203 u32 length; 1204 u32 lkey; 1205 }; 1206 1207 struct ib_cqe { 1208 void (*done)(struct ib_cq *cq, struct ib_wc *wc); 1209 }; 1210 1211 struct ib_send_wr { 1212 struct ib_send_wr *next; 1213 union { 1214 u64 wr_id; 1215 struct ib_cqe *wr_cqe; 1216 }; 1217 struct ib_sge *sg_list; 1218 int num_sge; 1219 enum ib_wr_opcode opcode; 1220 int send_flags; 1221 union { 1222 __be32 imm_data; 1223 u32 invalidate_rkey; 1224 } ex; 1225 }; 1226 1227 struct ib_rdma_wr { 1228 struct ib_send_wr wr; 1229 u64 remote_addr; 1230 u32 rkey; 1231 }; 1232 1233 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr) 1234 { 1235 return container_of(wr, struct ib_rdma_wr, wr); 1236 } 1237 1238 struct ib_atomic_wr { 1239 struct ib_send_wr wr; 1240 u64 remote_addr; 1241 u64 compare_add; 1242 u64 swap; 1243 u64 compare_add_mask; 1244 u64 swap_mask; 1245 u32 rkey; 1246 }; 1247 1248 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr) 1249 { 1250 return container_of(wr, struct ib_atomic_wr, wr); 1251 } 1252 1253 struct ib_ud_wr { 1254 struct ib_send_wr wr; 1255 struct ib_ah *ah; 1256 void *header; 1257 int hlen; 1258 int mss; 1259 u32 remote_qpn; 1260 u32 remote_qkey; 1261 u16 pkey_index; /* valid for GSI only */ 1262 u8 port_num; /* valid for DR SMPs on switch only */ 1263 }; 1264 1265 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr) 1266 { 1267 return container_of(wr, struct ib_ud_wr, wr); 1268 } 1269 1270 struct ib_reg_wr { 1271 struct ib_send_wr wr; 1272 struct ib_mr *mr; 1273 u32 key; 1274 int access; 1275 }; 1276 1277 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr) 1278 { 1279 return container_of(wr, struct ib_reg_wr, wr); 1280 } 1281 1282 struct ib_sig_handover_wr { 1283 struct ib_send_wr wr; 1284 struct ib_sig_attrs *sig_attrs; 1285 struct ib_mr *sig_mr; 1286 int access_flags; 1287 struct ib_sge *prot; 1288 }; 1289 1290 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr) 1291 { 1292 return container_of(wr, struct ib_sig_handover_wr, wr); 1293 } 1294 1295 struct ib_recv_wr { 1296 struct ib_recv_wr *next; 1297 union { 1298 u64 wr_id; 1299 struct ib_cqe *wr_cqe; 1300 }; 1301 struct ib_sge *sg_list; 1302 int num_sge; 1303 }; 1304 1305 enum ib_access_flags { 1306 IB_ACCESS_LOCAL_WRITE = 1, 1307 IB_ACCESS_REMOTE_WRITE = (1<<1), 1308 IB_ACCESS_REMOTE_READ = (1<<2), 1309 IB_ACCESS_REMOTE_ATOMIC = (1<<3), 1310 IB_ACCESS_MW_BIND = (1<<4), 1311 IB_ZERO_BASED = (1<<5), 1312 IB_ACCESS_ON_DEMAND = (1<<6), 1313 }; 1314 1315 /* 1316 * XXX: these are apparently used for ->rereg_user_mr, no idea why they 1317 * are hidden here instead of a uapi header! 1318 */ 1319 enum ib_mr_rereg_flags { 1320 IB_MR_REREG_TRANS = 1, 1321 IB_MR_REREG_PD = (1<<1), 1322 IB_MR_REREG_ACCESS = (1<<2), 1323 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1324 }; 1325 1326 struct ib_fmr_attr { 1327 int max_pages; 1328 int max_maps; 1329 u8 page_shift; 1330 }; 1331 1332 struct ib_umem; 1333 1334 struct ib_ucontext { 1335 struct ib_device *device; 1336 struct list_head pd_list; 1337 struct list_head mr_list; 1338 struct list_head mw_list; 1339 struct list_head cq_list; 1340 struct list_head qp_list; 1341 struct list_head srq_list; 1342 struct list_head ah_list; 1343 struct list_head xrcd_list; 1344 struct list_head rule_list; 1345 struct list_head wq_list; 1346 struct list_head rwq_ind_tbl_list; 1347 int closing; 1348 1349 struct pid *tgid; 1350 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING 1351 struct rb_root umem_tree; 1352 /* 1353 * Protects .umem_rbroot and tree, as well as odp_mrs_count and 1354 * mmu notifiers registration. 1355 */ 1356 struct rw_semaphore umem_rwsem; 1357 void (*invalidate_range)(struct ib_umem *umem, 1358 unsigned long start, unsigned long end); 1359 1360 struct mmu_notifier mn; 1361 atomic_t notifier_count; 1362 /* A list of umems that don't have private mmu notifier counters yet. */ 1363 struct list_head no_private_counters; 1364 int odp_mrs_count; 1365 #endif 1366 }; 1367 1368 struct ib_uobject { 1369 u64 user_handle; /* handle given to us by userspace */ 1370 struct ib_ucontext *context; /* associated user context */ 1371 void *object; /* containing object */ 1372 struct list_head list; /* link to context's list */ 1373 int id; /* index into kernel idr */ 1374 struct kref ref; 1375 struct rw_semaphore mutex; /* protects .live */ 1376 struct rcu_head rcu; /* kfree_rcu() overhead */ 1377 int live; 1378 }; 1379 1380 struct ib_udata { 1381 const void __user *inbuf; 1382 void __user *outbuf; 1383 size_t inlen; 1384 size_t outlen; 1385 }; 1386 1387 struct ib_pd { 1388 u32 local_dma_lkey; 1389 u32 flags; 1390 struct ib_device *device; 1391 struct ib_uobject *uobject; 1392 atomic_t usecnt; /* count all resources */ 1393 1394 u32 unsafe_global_rkey; 1395 1396 /* 1397 * Implementation details of the RDMA core, don't use in drivers: 1398 */ 1399 struct ib_mr *__internal_mr; 1400 }; 1401 1402 struct ib_xrcd { 1403 struct ib_device *device; 1404 atomic_t usecnt; /* count all exposed resources */ 1405 struct inode *inode; 1406 1407 struct mutex tgt_qp_mutex; 1408 struct list_head tgt_qp_list; 1409 }; 1410 1411 struct ib_ah { 1412 struct ib_device *device; 1413 struct ib_pd *pd; 1414 struct ib_uobject *uobject; 1415 }; 1416 1417 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1418 1419 enum ib_poll_context { 1420 IB_POLL_DIRECT, /* caller context, no hw completions */ 1421 IB_POLL_SOFTIRQ, /* poll from softirq context */ 1422 IB_POLL_WORKQUEUE, /* poll from workqueue */ 1423 }; 1424 1425 struct ib_cq { 1426 struct ib_device *device; 1427 struct ib_uobject *uobject; 1428 ib_comp_handler comp_handler; 1429 void (*event_handler)(struct ib_event *, void *); 1430 void *cq_context; 1431 int cqe; 1432 atomic_t usecnt; /* count number of work queues */ 1433 enum ib_poll_context poll_ctx; 1434 struct ib_wc *wc; 1435 union { 1436 struct irq_poll iop; 1437 struct work_struct work; 1438 }; 1439 }; 1440 1441 struct ib_srq { 1442 struct ib_device *device; 1443 struct ib_pd *pd; 1444 struct ib_uobject *uobject; 1445 void (*event_handler)(struct ib_event *, void *); 1446 void *srq_context; 1447 enum ib_srq_type srq_type; 1448 atomic_t usecnt; 1449 1450 union { 1451 struct { 1452 struct ib_xrcd *xrcd; 1453 struct ib_cq *cq; 1454 u32 srq_num; 1455 } xrc; 1456 } ext; 1457 }; 1458 1459 enum ib_wq_type { 1460 IB_WQT_RQ 1461 }; 1462 1463 enum ib_wq_state { 1464 IB_WQS_RESET, 1465 IB_WQS_RDY, 1466 IB_WQS_ERR 1467 }; 1468 1469 struct ib_wq { 1470 struct ib_device *device; 1471 struct ib_uobject *uobject; 1472 void *wq_context; 1473 void (*event_handler)(struct ib_event *, void *); 1474 struct ib_pd *pd; 1475 struct ib_cq *cq; 1476 u32 wq_num; 1477 enum ib_wq_state state; 1478 enum ib_wq_type wq_type; 1479 atomic_t usecnt; 1480 }; 1481 1482 struct ib_wq_init_attr { 1483 void *wq_context; 1484 enum ib_wq_type wq_type; 1485 u32 max_wr; 1486 u32 max_sge; 1487 struct ib_cq *cq; 1488 void (*event_handler)(struct ib_event *, void *); 1489 }; 1490 1491 enum ib_wq_attr_mask { 1492 IB_WQ_STATE = 1 << 0, 1493 IB_WQ_CUR_STATE = 1 << 1, 1494 }; 1495 1496 struct ib_wq_attr { 1497 enum ib_wq_state wq_state; 1498 enum ib_wq_state curr_wq_state; 1499 }; 1500 1501 struct ib_rwq_ind_table { 1502 struct ib_device *device; 1503 struct ib_uobject *uobject; 1504 atomic_t usecnt; 1505 u32 ind_tbl_num; 1506 u32 log_ind_tbl_size; 1507 struct ib_wq **ind_tbl; 1508 }; 1509 1510 struct ib_rwq_ind_table_init_attr { 1511 u32 log_ind_tbl_size; 1512 /* Each entry is a pointer to Receive Work Queue */ 1513 struct ib_wq **ind_tbl; 1514 }; 1515 1516 /* 1517 * @max_write_sge: Maximum SGE elements per RDMA WRITE request. 1518 * @max_read_sge: Maximum SGE elements per RDMA READ request. 1519 */ 1520 struct ib_qp { 1521 struct ib_device *device; 1522 struct ib_pd *pd; 1523 struct ib_cq *send_cq; 1524 struct ib_cq *recv_cq; 1525 spinlock_t mr_lock; 1526 int mrs_used; 1527 struct list_head rdma_mrs; 1528 struct list_head sig_mrs; 1529 struct ib_srq *srq; 1530 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1531 struct list_head xrcd_list; 1532 1533 /* count times opened, mcast attaches, flow attaches */ 1534 atomic_t usecnt; 1535 struct list_head open_list; 1536 struct ib_qp *real_qp; 1537 struct ib_uobject *uobject; 1538 void (*event_handler)(struct ib_event *, void *); 1539 void *qp_context; 1540 u32 qp_num; 1541 u32 max_write_sge; 1542 u32 max_read_sge; 1543 enum ib_qp_type qp_type; 1544 struct ib_rwq_ind_table *rwq_ind_tbl; 1545 }; 1546 1547 struct ib_mr { 1548 struct ib_device *device; 1549 struct ib_pd *pd; 1550 u32 lkey; 1551 u32 rkey; 1552 u64 iova; 1553 u32 length; 1554 unsigned int page_size; 1555 bool need_inval; 1556 union { 1557 struct ib_uobject *uobject; /* user */ 1558 struct list_head qp_entry; /* FR */ 1559 }; 1560 }; 1561 1562 struct ib_mw { 1563 struct ib_device *device; 1564 struct ib_pd *pd; 1565 struct ib_uobject *uobject; 1566 u32 rkey; 1567 enum ib_mw_type type; 1568 }; 1569 1570 struct ib_fmr { 1571 struct ib_device *device; 1572 struct ib_pd *pd; 1573 struct list_head list; 1574 u32 lkey; 1575 u32 rkey; 1576 }; 1577 1578 /* Supported steering options */ 1579 enum ib_flow_attr_type { 1580 /* steering according to rule specifications */ 1581 IB_FLOW_ATTR_NORMAL = 0x0, 1582 /* default unicast and multicast rule - 1583 * receive all Eth traffic which isn't steered to any QP 1584 */ 1585 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1586 /* default multicast rule - 1587 * receive all Eth multicast traffic which isn't steered to any QP 1588 */ 1589 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1590 /* sniffer rule - receive all port traffic */ 1591 IB_FLOW_ATTR_SNIFFER = 0x3 1592 }; 1593 1594 /* Supported steering header types */ 1595 enum ib_flow_spec_type { 1596 /* L2 headers*/ 1597 IB_FLOW_SPEC_ETH = 0x20, 1598 IB_FLOW_SPEC_IB = 0x22, 1599 /* L3 header*/ 1600 IB_FLOW_SPEC_IPV4 = 0x30, 1601 IB_FLOW_SPEC_IPV6 = 0x31, 1602 /* L4 headers*/ 1603 IB_FLOW_SPEC_TCP = 0x40, 1604 IB_FLOW_SPEC_UDP = 0x41, 1605 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50, 1606 IB_FLOW_SPEC_INNER = 0x100, 1607 }; 1608 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1609 #define IB_FLOW_SPEC_SUPPORT_LAYERS 8 1610 1611 /* Flow steering rule priority is set according to it's domain. 1612 * Lower domain value means higher priority. 1613 */ 1614 enum ib_flow_domain { 1615 IB_FLOW_DOMAIN_USER, 1616 IB_FLOW_DOMAIN_ETHTOOL, 1617 IB_FLOW_DOMAIN_RFS, 1618 IB_FLOW_DOMAIN_NIC, 1619 IB_FLOW_DOMAIN_NUM /* Must be last */ 1620 }; 1621 1622 enum ib_flow_flags { 1623 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */ 1624 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */ 1625 }; 1626 1627 struct ib_flow_eth_filter { 1628 u8 dst_mac[6]; 1629 u8 src_mac[6]; 1630 __be16 ether_type; 1631 __be16 vlan_tag; 1632 /* Must be last */ 1633 u8 real_sz[0]; 1634 }; 1635 1636 struct ib_flow_spec_eth { 1637 u32 type; 1638 u16 size; 1639 struct ib_flow_eth_filter val; 1640 struct ib_flow_eth_filter mask; 1641 }; 1642 1643 struct ib_flow_ib_filter { 1644 __be16 dlid; 1645 __u8 sl; 1646 /* Must be last */ 1647 u8 real_sz[0]; 1648 }; 1649 1650 struct ib_flow_spec_ib { 1651 u32 type; 1652 u16 size; 1653 struct ib_flow_ib_filter val; 1654 struct ib_flow_ib_filter mask; 1655 }; 1656 1657 /* IPv4 header flags */ 1658 enum ib_ipv4_flags { 1659 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */ 1660 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the 1661 last have this flag set */ 1662 }; 1663 1664 struct ib_flow_ipv4_filter { 1665 __be32 src_ip; 1666 __be32 dst_ip; 1667 u8 proto; 1668 u8 tos; 1669 u8 ttl; 1670 u8 flags; 1671 /* Must be last */ 1672 u8 real_sz[0]; 1673 }; 1674 1675 struct ib_flow_spec_ipv4 { 1676 u32 type; 1677 u16 size; 1678 struct ib_flow_ipv4_filter val; 1679 struct ib_flow_ipv4_filter mask; 1680 }; 1681 1682 struct ib_flow_ipv6_filter { 1683 u8 src_ip[16]; 1684 u8 dst_ip[16]; 1685 __be32 flow_label; 1686 u8 next_hdr; 1687 u8 traffic_class; 1688 u8 hop_limit; 1689 /* Must be last */ 1690 u8 real_sz[0]; 1691 }; 1692 1693 struct ib_flow_spec_ipv6 { 1694 u32 type; 1695 u16 size; 1696 struct ib_flow_ipv6_filter val; 1697 struct ib_flow_ipv6_filter mask; 1698 }; 1699 1700 struct ib_flow_tcp_udp_filter { 1701 __be16 dst_port; 1702 __be16 src_port; 1703 /* Must be last */ 1704 u8 real_sz[0]; 1705 }; 1706 1707 struct ib_flow_spec_tcp_udp { 1708 u32 type; 1709 u16 size; 1710 struct ib_flow_tcp_udp_filter val; 1711 struct ib_flow_tcp_udp_filter mask; 1712 }; 1713 1714 struct ib_flow_tunnel_filter { 1715 __be32 tunnel_id; 1716 u8 real_sz[0]; 1717 }; 1718 1719 /* ib_flow_spec_tunnel describes the Vxlan tunnel 1720 * the tunnel_id from val has the vni value 1721 */ 1722 struct ib_flow_spec_tunnel { 1723 u32 type; 1724 u16 size; 1725 struct ib_flow_tunnel_filter val; 1726 struct ib_flow_tunnel_filter mask; 1727 }; 1728 1729 union ib_flow_spec { 1730 struct { 1731 u32 type; 1732 u16 size; 1733 }; 1734 struct ib_flow_spec_eth eth; 1735 struct ib_flow_spec_ib ib; 1736 struct ib_flow_spec_ipv4 ipv4; 1737 struct ib_flow_spec_tcp_udp tcp_udp; 1738 struct ib_flow_spec_ipv6 ipv6; 1739 struct ib_flow_spec_tunnel tunnel; 1740 }; 1741 1742 struct ib_flow_attr { 1743 enum ib_flow_attr_type type; 1744 u16 size; 1745 u16 priority; 1746 u32 flags; 1747 u8 num_of_specs; 1748 u8 port; 1749 /* Following are the optional layers according to user request 1750 * struct ib_flow_spec_xxx 1751 * struct ib_flow_spec_yyy 1752 */ 1753 }; 1754 1755 struct ib_flow { 1756 struct ib_qp *qp; 1757 struct ib_uobject *uobject; 1758 }; 1759 1760 struct ib_mad_hdr; 1761 struct ib_grh; 1762 1763 enum ib_process_mad_flags { 1764 IB_MAD_IGNORE_MKEY = 1, 1765 IB_MAD_IGNORE_BKEY = 2, 1766 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 1767 }; 1768 1769 enum ib_mad_result { 1770 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 1771 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 1772 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 1773 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 1774 }; 1775 1776 #define IB_DEVICE_NAME_MAX 64 1777 1778 struct ib_cache { 1779 rwlock_t lock; 1780 struct ib_event_handler event_handler; 1781 struct ib_pkey_cache **pkey_cache; 1782 struct ib_gid_table **gid_cache; 1783 u8 *lmc_cache; 1784 }; 1785 1786 struct ib_dma_mapping_ops { 1787 int (*mapping_error)(struct ib_device *dev, 1788 u64 dma_addr); 1789 u64 (*map_single)(struct ib_device *dev, 1790 void *ptr, size_t size, 1791 enum dma_data_direction direction); 1792 void (*unmap_single)(struct ib_device *dev, 1793 u64 addr, size_t size, 1794 enum dma_data_direction direction); 1795 u64 (*map_page)(struct ib_device *dev, 1796 struct page *page, unsigned long offset, 1797 size_t size, 1798 enum dma_data_direction direction); 1799 void (*unmap_page)(struct ib_device *dev, 1800 u64 addr, size_t size, 1801 enum dma_data_direction direction); 1802 int (*map_sg)(struct ib_device *dev, 1803 struct scatterlist *sg, int nents, 1804 enum dma_data_direction direction); 1805 void (*unmap_sg)(struct ib_device *dev, 1806 struct scatterlist *sg, int nents, 1807 enum dma_data_direction direction); 1808 int (*map_sg_attrs)(struct ib_device *dev, 1809 struct scatterlist *sg, int nents, 1810 enum dma_data_direction direction, 1811 unsigned long attrs); 1812 void (*unmap_sg_attrs)(struct ib_device *dev, 1813 struct scatterlist *sg, int nents, 1814 enum dma_data_direction direction, 1815 unsigned long attrs); 1816 void (*sync_single_for_cpu)(struct ib_device *dev, 1817 u64 dma_handle, 1818 size_t size, 1819 enum dma_data_direction dir); 1820 void (*sync_single_for_device)(struct ib_device *dev, 1821 u64 dma_handle, 1822 size_t size, 1823 enum dma_data_direction dir); 1824 void *(*alloc_coherent)(struct ib_device *dev, 1825 size_t size, 1826 u64 *dma_handle, 1827 gfp_t flag); 1828 void (*free_coherent)(struct ib_device *dev, 1829 size_t size, void *cpu_addr, 1830 u64 dma_handle); 1831 }; 1832 1833 struct iw_cm_verbs; 1834 1835 struct ib_port_immutable { 1836 int pkey_tbl_len; 1837 int gid_tbl_len; 1838 u32 core_cap_flags; 1839 u32 max_mad_size; 1840 }; 1841 1842 struct ib_device { 1843 struct device *dma_device; 1844 1845 char name[IB_DEVICE_NAME_MAX]; 1846 1847 struct list_head event_handler_list; 1848 spinlock_t event_handler_lock; 1849 1850 spinlock_t client_data_lock; 1851 struct list_head core_list; 1852 /* Access to the client_data_list is protected by the client_data_lock 1853 * spinlock and the lists_rwsem read-write semaphore */ 1854 struct list_head client_data_list; 1855 1856 struct ib_cache cache; 1857 /** 1858 * port_immutable is indexed by port number 1859 */ 1860 struct ib_port_immutable *port_immutable; 1861 1862 int num_comp_vectors; 1863 1864 struct iw_cm_verbs *iwcm; 1865 1866 /** 1867 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the 1868 * driver initialized data. The struct is kfree()'ed by the sysfs 1869 * core when the device is removed. A lifespan of -1 in the return 1870 * struct tells the core to set a default lifespan. 1871 */ 1872 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device, 1873 u8 port_num); 1874 /** 1875 * get_hw_stats - Fill in the counter value(s) in the stats struct. 1876 * @index - The index in the value array we wish to have updated, or 1877 * num_counters if we want all stats updated 1878 * Return codes - 1879 * < 0 - Error, no counters updated 1880 * index - Updated the single counter pointed to by index 1881 * num_counters - Updated all counters (will reset the timestamp 1882 * and prevent further calls for lifespan milliseconds) 1883 * Drivers are allowed to update all counters in leiu of just the 1884 * one given in index at their option 1885 */ 1886 int (*get_hw_stats)(struct ib_device *device, 1887 struct rdma_hw_stats *stats, 1888 u8 port, int index); 1889 int (*query_device)(struct ib_device *device, 1890 struct ib_device_attr *device_attr, 1891 struct ib_udata *udata); 1892 int (*query_port)(struct ib_device *device, 1893 u8 port_num, 1894 struct ib_port_attr *port_attr); 1895 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 1896 u8 port_num); 1897 /* When calling get_netdev, the HW vendor's driver should return the 1898 * net device of device @device at port @port_num or NULL if such 1899 * a net device doesn't exist. The vendor driver should call dev_hold 1900 * on this net device. The HW vendor's device driver must guarantee 1901 * that this function returns NULL before the net device reaches 1902 * NETDEV_UNREGISTER_FINAL state. 1903 */ 1904 struct net_device *(*get_netdev)(struct ib_device *device, 1905 u8 port_num); 1906 int (*query_gid)(struct ib_device *device, 1907 u8 port_num, int index, 1908 union ib_gid *gid); 1909 /* When calling add_gid, the HW vendor's driver should 1910 * add the gid of device @device at gid index @index of 1911 * port @port_num to be @gid. Meta-info of that gid (for example, 1912 * the network device related to this gid is available 1913 * at @attr. @context allows the HW vendor driver to store extra 1914 * information together with a GID entry. The HW vendor may allocate 1915 * memory to contain this information and store it in @context when a 1916 * new GID entry is written to. Params are consistent until the next 1917 * call of add_gid or delete_gid. The function should return 0 on 1918 * success or error otherwise. The function could be called 1919 * concurrently for different ports. This function is only called 1920 * when roce_gid_table is used. 1921 */ 1922 int (*add_gid)(struct ib_device *device, 1923 u8 port_num, 1924 unsigned int index, 1925 const union ib_gid *gid, 1926 const struct ib_gid_attr *attr, 1927 void **context); 1928 /* When calling del_gid, the HW vendor's driver should delete the 1929 * gid of device @device at gid index @index of port @port_num. 1930 * Upon the deletion of a GID entry, the HW vendor must free any 1931 * allocated memory. The caller will clear @context afterwards. 1932 * This function is only called when roce_gid_table is used. 1933 */ 1934 int (*del_gid)(struct ib_device *device, 1935 u8 port_num, 1936 unsigned int index, 1937 void **context); 1938 int (*query_pkey)(struct ib_device *device, 1939 u8 port_num, u16 index, u16 *pkey); 1940 int (*modify_device)(struct ib_device *device, 1941 int device_modify_mask, 1942 struct ib_device_modify *device_modify); 1943 int (*modify_port)(struct ib_device *device, 1944 u8 port_num, int port_modify_mask, 1945 struct ib_port_modify *port_modify); 1946 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device, 1947 struct ib_udata *udata); 1948 int (*dealloc_ucontext)(struct ib_ucontext *context); 1949 int (*mmap)(struct ib_ucontext *context, 1950 struct vm_area_struct *vma); 1951 struct ib_pd * (*alloc_pd)(struct ib_device *device, 1952 struct ib_ucontext *context, 1953 struct ib_udata *udata); 1954 int (*dealloc_pd)(struct ib_pd *pd); 1955 struct ib_ah * (*create_ah)(struct ib_pd *pd, 1956 struct ib_ah_attr *ah_attr, 1957 struct ib_udata *udata); 1958 int (*modify_ah)(struct ib_ah *ah, 1959 struct ib_ah_attr *ah_attr); 1960 int (*query_ah)(struct ib_ah *ah, 1961 struct ib_ah_attr *ah_attr); 1962 int (*destroy_ah)(struct ib_ah *ah); 1963 struct ib_srq * (*create_srq)(struct ib_pd *pd, 1964 struct ib_srq_init_attr *srq_init_attr, 1965 struct ib_udata *udata); 1966 int (*modify_srq)(struct ib_srq *srq, 1967 struct ib_srq_attr *srq_attr, 1968 enum ib_srq_attr_mask srq_attr_mask, 1969 struct ib_udata *udata); 1970 int (*query_srq)(struct ib_srq *srq, 1971 struct ib_srq_attr *srq_attr); 1972 int (*destroy_srq)(struct ib_srq *srq); 1973 int (*post_srq_recv)(struct ib_srq *srq, 1974 struct ib_recv_wr *recv_wr, 1975 struct ib_recv_wr **bad_recv_wr); 1976 struct ib_qp * (*create_qp)(struct ib_pd *pd, 1977 struct ib_qp_init_attr *qp_init_attr, 1978 struct ib_udata *udata); 1979 int (*modify_qp)(struct ib_qp *qp, 1980 struct ib_qp_attr *qp_attr, 1981 int qp_attr_mask, 1982 struct ib_udata *udata); 1983 int (*query_qp)(struct ib_qp *qp, 1984 struct ib_qp_attr *qp_attr, 1985 int qp_attr_mask, 1986 struct ib_qp_init_attr *qp_init_attr); 1987 int (*destroy_qp)(struct ib_qp *qp); 1988 int (*post_send)(struct ib_qp *qp, 1989 struct ib_send_wr *send_wr, 1990 struct ib_send_wr **bad_send_wr); 1991 int (*post_recv)(struct ib_qp *qp, 1992 struct ib_recv_wr *recv_wr, 1993 struct ib_recv_wr **bad_recv_wr); 1994 struct ib_cq * (*create_cq)(struct ib_device *device, 1995 const struct ib_cq_init_attr *attr, 1996 struct ib_ucontext *context, 1997 struct ib_udata *udata); 1998 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, 1999 u16 cq_period); 2000 int (*destroy_cq)(struct ib_cq *cq); 2001 int (*resize_cq)(struct ib_cq *cq, int cqe, 2002 struct ib_udata *udata); 2003 int (*poll_cq)(struct ib_cq *cq, int num_entries, 2004 struct ib_wc *wc); 2005 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 2006 int (*req_notify_cq)(struct ib_cq *cq, 2007 enum ib_cq_notify_flags flags); 2008 int (*req_ncomp_notif)(struct ib_cq *cq, 2009 int wc_cnt); 2010 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, 2011 int mr_access_flags); 2012 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, 2013 u64 start, u64 length, 2014 u64 virt_addr, 2015 int mr_access_flags, 2016 struct ib_udata *udata); 2017 int (*rereg_user_mr)(struct ib_mr *mr, 2018 int flags, 2019 u64 start, u64 length, 2020 u64 virt_addr, 2021 int mr_access_flags, 2022 struct ib_pd *pd, 2023 struct ib_udata *udata); 2024 int (*dereg_mr)(struct ib_mr *mr); 2025 struct ib_mr * (*alloc_mr)(struct ib_pd *pd, 2026 enum ib_mr_type mr_type, 2027 u32 max_num_sg); 2028 int (*map_mr_sg)(struct ib_mr *mr, 2029 struct scatterlist *sg, 2030 int sg_nents, 2031 unsigned int *sg_offset); 2032 struct ib_mw * (*alloc_mw)(struct ib_pd *pd, 2033 enum ib_mw_type type, 2034 struct ib_udata *udata); 2035 int (*dealloc_mw)(struct ib_mw *mw); 2036 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, 2037 int mr_access_flags, 2038 struct ib_fmr_attr *fmr_attr); 2039 int (*map_phys_fmr)(struct ib_fmr *fmr, 2040 u64 *page_list, int list_len, 2041 u64 iova); 2042 int (*unmap_fmr)(struct list_head *fmr_list); 2043 int (*dealloc_fmr)(struct ib_fmr *fmr); 2044 int (*attach_mcast)(struct ib_qp *qp, 2045 union ib_gid *gid, 2046 u16 lid); 2047 int (*detach_mcast)(struct ib_qp *qp, 2048 union ib_gid *gid, 2049 u16 lid); 2050 int (*process_mad)(struct ib_device *device, 2051 int process_mad_flags, 2052 u8 port_num, 2053 const struct ib_wc *in_wc, 2054 const struct ib_grh *in_grh, 2055 const struct ib_mad_hdr *in_mad, 2056 size_t in_mad_size, 2057 struct ib_mad_hdr *out_mad, 2058 size_t *out_mad_size, 2059 u16 *out_mad_pkey_index); 2060 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device, 2061 struct ib_ucontext *ucontext, 2062 struct ib_udata *udata); 2063 int (*dealloc_xrcd)(struct ib_xrcd *xrcd); 2064 struct ib_flow * (*create_flow)(struct ib_qp *qp, 2065 struct ib_flow_attr 2066 *flow_attr, 2067 int domain); 2068 int (*destroy_flow)(struct ib_flow *flow_id); 2069 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 2070 struct ib_mr_status *mr_status); 2071 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 2072 void (*drain_rq)(struct ib_qp *qp); 2073 void (*drain_sq)(struct ib_qp *qp); 2074 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port, 2075 int state); 2076 int (*get_vf_config)(struct ib_device *device, int vf, u8 port, 2077 struct ifla_vf_info *ivf); 2078 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port, 2079 struct ifla_vf_stats *stats); 2080 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid, 2081 int type); 2082 struct ib_wq * (*create_wq)(struct ib_pd *pd, 2083 struct ib_wq_init_attr *init_attr, 2084 struct ib_udata *udata); 2085 int (*destroy_wq)(struct ib_wq *wq); 2086 int (*modify_wq)(struct ib_wq *wq, 2087 struct ib_wq_attr *attr, 2088 u32 wq_attr_mask, 2089 struct ib_udata *udata); 2090 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device, 2091 struct ib_rwq_ind_table_init_attr *init_attr, 2092 struct ib_udata *udata); 2093 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table); 2094 struct ib_dma_mapping_ops *dma_ops; 2095 2096 struct module *owner; 2097 struct device dev; 2098 struct kobject *ports_parent; 2099 struct list_head port_list; 2100 2101 enum { 2102 IB_DEV_UNINITIALIZED, 2103 IB_DEV_REGISTERED, 2104 IB_DEV_UNREGISTERED 2105 } reg_state; 2106 2107 int uverbs_abi_ver; 2108 u64 uverbs_cmd_mask; 2109 u64 uverbs_ex_cmd_mask; 2110 2111 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 2112 __be64 node_guid; 2113 u32 local_dma_lkey; 2114 u16 is_switch:1; 2115 u8 node_type; 2116 u8 phys_port_cnt; 2117 struct ib_device_attr attrs; 2118 struct attribute_group *hw_stats_ag; 2119 struct rdma_hw_stats *hw_stats; 2120 2121 /** 2122 * The following mandatory functions are used only at device 2123 * registration. Keep functions such as these at the end of this 2124 * structure to avoid cache line misses when accessing struct ib_device 2125 * in fast paths. 2126 */ 2127 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *); 2128 void (*get_dev_fw_str)(struct ib_device *, char *str, size_t str_len); 2129 }; 2130 2131 struct ib_client { 2132 char *name; 2133 void (*add) (struct ib_device *); 2134 void (*remove)(struct ib_device *, void *client_data); 2135 2136 /* Returns the net_dev belonging to this ib_client and matching the 2137 * given parameters. 2138 * @dev: An RDMA device that the net_dev use for communication. 2139 * @port: A physical port number on the RDMA device. 2140 * @pkey: P_Key that the net_dev uses if applicable. 2141 * @gid: A GID that the net_dev uses to communicate. 2142 * @addr: An IP address the net_dev is configured with. 2143 * @client_data: The device's client data set by ib_set_client_data(). 2144 * 2145 * An ib_client that implements a net_dev on top of RDMA devices 2146 * (such as IP over IB) should implement this callback, allowing the 2147 * rdma_cm module to find the right net_dev for a given request. 2148 * 2149 * The caller is responsible for calling dev_put on the returned 2150 * netdev. */ 2151 struct net_device *(*get_net_dev_by_params)( 2152 struct ib_device *dev, 2153 u8 port, 2154 u16 pkey, 2155 const union ib_gid *gid, 2156 const struct sockaddr *addr, 2157 void *client_data); 2158 struct list_head list; 2159 }; 2160 2161 struct ib_device *ib_alloc_device(size_t size); 2162 void ib_dealloc_device(struct ib_device *device); 2163 2164 void ib_get_device_fw_str(struct ib_device *device, char *str, size_t str_len); 2165 2166 int ib_register_device(struct ib_device *device, 2167 int (*port_callback)(struct ib_device *, 2168 u8, struct kobject *)); 2169 void ib_unregister_device(struct ib_device *device); 2170 2171 int ib_register_client (struct ib_client *client); 2172 void ib_unregister_client(struct ib_client *client); 2173 2174 void *ib_get_client_data(struct ib_device *device, struct ib_client *client); 2175 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 2176 void *data); 2177 2178 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 2179 { 2180 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 2181 } 2182 2183 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 2184 { 2185 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 2186 } 2187 2188 static inline bool ib_is_udata_cleared(struct ib_udata *udata, 2189 size_t offset, 2190 size_t len) 2191 { 2192 const void __user *p = udata->inbuf + offset; 2193 bool ret; 2194 u8 *buf; 2195 2196 if (len > USHRT_MAX) 2197 return false; 2198 2199 buf = memdup_user(p, len); 2200 if (IS_ERR(buf)) 2201 return false; 2202 2203 ret = !memchr_inv(buf, 0, len); 2204 kfree(buf); 2205 return ret; 2206 } 2207 2208 /** 2209 * ib_modify_qp_is_ok - Check that the supplied attribute mask 2210 * contains all required attributes and no attributes not allowed for 2211 * the given QP state transition. 2212 * @cur_state: Current QP state 2213 * @next_state: Next QP state 2214 * @type: QP type 2215 * @mask: Mask of supplied QP attributes 2216 * @ll : link layer of port 2217 * 2218 * This function is a helper function that a low-level driver's 2219 * modify_qp method can use to validate the consumer's input. It 2220 * checks that cur_state and next_state are valid QP states, that a 2221 * transition from cur_state to next_state is allowed by the IB spec, 2222 * and that the attribute mask supplied is allowed for the transition. 2223 */ 2224 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 2225 enum ib_qp_type type, enum ib_qp_attr_mask mask, 2226 enum rdma_link_layer ll); 2227 2228 int ib_register_event_handler (struct ib_event_handler *event_handler); 2229 int ib_unregister_event_handler(struct ib_event_handler *event_handler); 2230 void ib_dispatch_event(struct ib_event *event); 2231 2232 int ib_query_port(struct ib_device *device, 2233 u8 port_num, struct ib_port_attr *port_attr); 2234 2235 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 2236 u8 port_num); 2237 2238 /** 2239 * rdma_cap_ib_switch - Check if the device is IB switch 2240 * @device: Device to check 2241 * 2242 * Device driver is responsible for setting is_switch bit on 2243 * in ib_device structure at init time. 2244 * 2245 * Return: true if the device is IB switch. 2246 */ 2247 static inline bool rdma_cap_ib_switch(const struct ib_device *device) 2248 { 2249 return device->is_switch; 2250 } 2251 2252 /** 2253 * rdma_start_port - Return the first valid port number for the device 2254 * specified 2255 * 2256 * @device: Device to be checked 2257 * 2258 * Return start port number 2259 */ 2260 static inline u8 rdma_start_port(const struct ib_device *device) 2261 { 2262 return rdma_cap_ib_switch(device) ? 0 : 1; 2263 } 2264 2265 /** 2266 * rdma_end_port - Return the last valid port number for the device 2267 * specified 2268 * 2269 * @device: Device to be checked 2270 * 2271 * Return last port number 2272 */ 2273 static inline u8 rdma_end_port(const struct ib_device *device) 2274 { 2275 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 2276 } 2277 2278 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num) 2279 { 2280 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB; 2281 } 2282 2283 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num) 2284 { 2285 return device->port_immutable[port_num].core_cap_flags & 2286 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); 2287 } 2288 2289 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num) 2290 { 2291 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; 2292 } 2293 2294 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num) 2295 { 2296 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE; 2297 } 2298 2299 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num) 2300 { 2301 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP; 2302 } 2303 2304 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num) 2305 { 2306 return rdma_protocol_ib(device, port_num) || 2307 rdma_protocol_roce(device, port_num); 2308 } 2309 2310 /** 2311 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 2312 * Management Datagrams. 2313 * @device: Device to check 2314 * @port_num: Port number to check 2315 * 2316 * Management Datagrams (MAD) are a required part of the InfiniBand 2317 * specification and are supported on all InfiniBand devices. A slightly 2318 * extended version are also supported on OPA interfaces. 2319 * 2320 * Return: true if the port supports sending/receiving of MAD packets. 2321 */ 2322 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num) 2323 { 2324 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD; 2325 } 2326 2327 /** 2328 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 2329 * Management Datagrams. 2330 * @device: Device to check 2331 * @port_num: Port number to check 2332 * 2333 * Intel OmniPath devices extend and/or replace the InfiniBand Management 2334 * datagrams with their own versions. These OPA MADs share many but not all of 2335 * the characteristics of InfiniBand MADs. 2336 * 2337 * OPA MADs differ in the following ways: 2338 * 2339 * 1) MADs are variable size up to 2K 2340 * IBTA defined MADs remain fixed at 256 bytes 2341 * 2) OPA SMPs must carry valid PKeys 2342 * 3) OPA SMP packets are a different format 2343 * 2344 * Return: true if the port supports OPA MAD packet formats. 2345 */ 2346 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num) 2347 { 2348 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD) 2349 == RDMA_CORE_CAP_OPA_MAD; 2350 } 2351 2352 /** 2353 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 2354 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 2355 * @device: Device to check 2356 * @port_num: Port number to check 2357 * 2358 * Each InfiniBand node is required to provide a Subnet Management Agent 2359 * that the subnet manager can access. Prior to the fabric being fully 2360 * configured by the subnet manager, the SMA is accessed via a well known 2361 * interface called the Subnet Management Interface (SMI). This interface 2362 * uses directed route packets to communicate with the SM to get around the 2363 * chicken and egg problem of the SM needing to know what's on the fabric 2364 * in order to configure the fabric, and needing to configure the fabric in 2365 * order to send packets to the devices on the fabric. These directed 2366 * route packets do not need the fabric fully configured in order to reach 2367 * their destination. The SMI is the only method allowed to send 2368 * directed route packets on an InfiniBand fabric. 2369 * 2370 * Return: true if the port provides an SMI. 2371 */ 2372 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num) 2373 { 2374 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI; 2375 } 2376 2377 /** 2378 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 2379 * Communication Manager. 2380 * @device: Device to check 2381 * @port_num: Port number to check 2382 * 2383 * The InfiniBand Communication Manager is one of many pre-defined General 2384 * Service Agents (GSA) that are accessed via the General Service 2385 * Interface (GSI). It's role is to facilitate establishment of connections 2386 * between nodes as well as other management related tasks for established 2387 * connections. 2388 * 2389 * Return: true if the port supports an IB CM (this does not guarantee that 2390 * a CM is actually running however). 2391 */ 2392 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num) 2393 { 2394 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM; 2395 } 2396 2397 /** 2398 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 2399 * Communication Manager. 2400 * @device: Device to check 2401 * @port_num: Port number to check 2402 * 2403 * Similar to above, but specific to iWARP connections which have a different 2404 * managment protocol than InfiniBand. 2405 * 2406 * Return: true if the port supports an iWARP CM (this does not guarantee that 2407 * a CM is actually running however). 2408 */ 2409 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num) 2410 { 2411 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM; 2412 } 2413 2414 /** 2415 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 2416 * Subnet Administration. 2417 * @device: Device to check 2418 * @port_num: Port number to check 2419 * 2420 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 2421 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 2422 * fabrics, devices should resolve routes to other hosts by contacting the 2423 * SA to query the proper route. 2424 * 2425 * Return: true if the port should act as a client to the fabric Subnet 2426 * Administration interface. This does not imply that the SA service is 2427 * running locally. 2428 */ 2429 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num) 2430 { 2431 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA; 2432 } 2433 2434 /** 2435 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 2436 * Multicast. 2437 * @device: Device to check 2438 * @port_num: Port number to check 2439 * 2440 * InfiniBand multicast registration is more complex than normal IPv4 or 2441 * IPv6 multicast registration. Each Host Channel Adapter must register 2442 * with the Subnet Manager when it wishes to join a multicast group. It 2443 * should do so only once regardless of how many queue pairs it subscribes 2444 * to this group. And it should leave the group only after all queue pairs 2445 * attached to the group have been detached. 2446 * 2447 * Return: true if the port must undertake the additional adminstrative 2448 * overhead of registering/unregistering with the SM and tracking of the 2449 * total number of queue pairs attached to the multicast group. 2450 */ 2451 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num) 2452 { 2453 return rdma_cap_ib_sa(device, port_num); 2454 } 2455 2456 /** 2457 * rdma_cap_af_ib - Check if the port of device has the capability 2458 * Native Infiniband Address. 2459 * @device: Device to check 2460 * @port_num: Port number to check 2461 * 2462 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 2463 * GID. RoCE uses a different mechanism, but still generates a GID via 2464 * a prescribed mechanism and port specific data. 2465 * 2466 * Return: true if the port uses a GID address to identify devices on the 2467 * network. 2468 */ 2469 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num) 2470 { 2471 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB; 2472 } 2473 2474 /** 2475 * rdma_cap_eth_ah - Check if the port of device has the capability 2476 * Ethernet Address Handle. 2477 * @device: Device to check 2478 * @port_num: Port number to check 2479 * 2480 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 2481 * to fabricate GIDs over Ethernet/IP specific addresses native to the 2482 * port. Normally, packet headers are generated by the sending host 2483 * adapter, but when sending connectionless datagrams, we must manually 2484 * inject the proper headers for the fabric we are communicating over. 2485 * 2486 * Return: true if we are running as a RoCE port and must force the 2487 * addition of a Global Route Header built from our Ethernet Address 2488 * Handle into our header list for connectionless packets. 2489 */ 2490 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num) 2491 { 2492 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH; 2493 } 2494 2495 /** 2496 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 2497 * 2498 * @device: Device 2499 * @port_num: Port number 2500 * 2501 * This MAD size includes the MAD headers and MAD payload. No other headers 2502 * are included. 2503 * 2504 * Return the max MAD size required by the Port. Will return 0 if the port 2505 * does not support MADs 2506 */ 2507 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num) 2508 { 2509 return device->port_immutable[port_num].max_mad_size; 2510 } 2511 2512 /** 2513 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 2514 * @device: Device to check 2515 * @port_num: Port number to check 2516 * 2517 * RoCE GID table mechanism manages the various GIDs for a device. 2518 * 2519 * NOTE: if allocating the port's GID table has failed, this call will still 2520 * return true, but any RoCE GID table API will fail. 2521 * 2522 * Return: true if the port uses RoCE GID table mechanism in order to manage 2523 * its GIDs. 2524 */ 2525 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 2526 u8 port_num) 2527 { 2528 return rdma_protocol_roce(device, port_num) && 2529 device->add_gid && device->del_gid; 2530 } 2531 2532 /* 2533 * Check if the device supports READ W/ INVALIDATE. 2534 */ 2535 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num) 2536 { 2537 /* 2538 * iWarp drivers must support READ W/ INVALIDATE. No other protocol 2539 * has support for it yet. 2540 */ 2541 return rdma_protocol_iwarp(dev, port_num); 2542 } 2543 2544 int ib_query_gid(struct ib_device *device, 2545 u8 port_num, int index, union ib_gid *gid, 2546 struct ib_gid_attr *attr); 2547 2548 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 2549 int state); 2550 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 2551 struct ifla_vf_info *info); 2552 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 2553 struct ifla_vf_stats *stats); 2554 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 2555 int type); 2556 2557 int ib_query_pkey(struct ib_device *device, 2558 u8 port_num, u16 index, u16 *pkey); 2559 2560 int ib_modify_device(struct ib_device *device, 2561 int device_modify_mask, 2562 struct ib_device_modify *device_modify); 2563 2564 int ib_modify_port(struct ib_device *device, 2565 u8 port_num, int port_modify_mask, 2566 struct ib_port_modify *port_modify); 2567 2568 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 2569 enum ib_gid_type gid_type, struct net_device *ndev, 2570 u8 *port_num, u16 *index); 2571 2572 int ib_find_pkey(struct ib_device *device, 2573 u8 port_num, u16 pkey, u16 *index); 2574 2575 enum ib_pd_flags { 2576 /* 2577 * Create a memory registration for all memory in the system and place 2578 * the rkey for it into pd->unsafe_global_rkey. This can be used by 2579 * ULPs to avoid the overhead of dynamic MRs. 2580 * 2581 * This flag is generally considered unsafe and must only be used in 2582 * extremly trusted environments. Every use of it will log a warning 2583 * in the kernel log. 2584 */ 2585 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01, 2586 }; 2587 2588 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 2589 const char *caller); 2590 #define ib_alloc_pd(device, flags) \ 2591 __ib_alloc_pd((device), (flags), __func__) 2592 void ib_dealloc_pd(struct ib_pd *pd); 2593 2594 /** 2595 * ib_create_ah - Creates an address handle for the given address vector. 2596 * @pd: The protection domain associated with the address handle. 2597 * @ah_attr: The attributes of the address vector. 2598 * 2599 * The address handle is used to reference a local or global destination 2600 * in all UD QP post sends. 2601 */ 2602 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr); 2603 2604 /** 2605 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header 2606 * work completion. 2607 * @hdr: the L3 header to parse 2608 * @net_type: type of header to parse 2609 * @sgid: place to store source gid 2610 * @dgid: place to store destination gid 2611 */ 2612 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 2613 enum rdma_network_type net_type, 2614 union ib_gid *sgid, union ib_gid *dgid); 2615 2616 /** 2617 * ib_get_rdma_header_version - Get the header version 2618 * @hdr: the L3 header to parse 2619 */ 2620 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr); 2621 2622 /** 2623 * ib_init_ah_from_wc - Initializes address handle attributes from a 2624 * work completion. 2625 * @device: Device on which the received message arrived. 2626 * @port_num: Port on which the received message arrived. 2627 * @wc: Work completion associated with the received message. 2628 * @grh: References the received global route header. This parameter is 2629 * ignored unless the work completion indicates that the GRH is valid. 2630 * @ah_attr: Returned attributes that can be used when creating an address 2631 * handle for replying to the message. 2632 */ 2633 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, 2634 const struct ib_wc *wc, const struct ib_grh *grh, 2635 struct ib_ah_attr *ah_attr); 2636 2637 /** 2638 * ib_create_ah_from_wc - Creates an address handle associated with the 2639 * sender of the specified work completion. 2640 * @pd: The protection domain associated with the address handle. 2641 * @wc: Work completion information associated with a received message. 2642 * @grh: References the received global route header. This parameter is 2643 * ignored unless the work completion indicates that the GRH is valid. 2644 * @port_num: The outbound port number to associate with the address. 2645 * 2646 * The address handle is used to reference a local or global destination 2647 * in all UD QP post sends. 2648 */ 2649 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 2650 const struct ib_grh *grh, u8 port_num); 2651 2652 /** 2653 * ib_modify_ah - Modifies the address vector associated with an address 2654 * handle. 2655 * @ah: The address handle to modify. 2656 * @ah_attr: The new address vector attributes to associate with the 2657 * address handle. 2658 */ 2659 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 2660 2661 /** 2662 * ib_query_ah - Queries the address vector associated with an address 2663 * handle. 2664 * @ah: The address handle to query. 2665 * @ah_attr: The address vector attributes associated with the address 2666 * handle. 2667 */ 2668 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 2669 2670 /** 2671 * ib_destroy_ah - Destroys an address handle. 2672 * @ah: The address handle to destroy. 2673 */ 2674 int ib_destroy_ah(struct ib_ah *ah); 2675 2676 /** 2677 * ib_create_srq - Creates a SRQ associated with the specified protection 2678 * domain. 2679 * @pd: The protection domain associated with the SRQ. 2680 * @srq_init_attr: A list of initial attributes required to create the 2681 * SRQ. If SRQ creation succeeds, then the attributes are updated to 2682 * the actual capabilities of the created SRQ. 2683 * 2684 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 2685 * requested size of the SRQ, and set to the actual values allocated 2686 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 2687 * will always be at least as large as the requested values. 2688 */ 2689 struct ib_srq *ib_create_srq(struct ib_pd *pd, 2690 struct ib_srq_init_attr *srq_init_attr); 2691 2692 /** 2693 * ib_modify_srq - Modifies the attributes for the specified SRQ. 2694 * @srq: The SRQ to modify. 2695 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 2696 * the current values of selected SRQ attributes are returned. 2697 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 2698 * are being modified. 2699 * 2700 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 2701 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 2702 * the number of receives queued drops below the limit. 2703 */ 2704 int ib_modify_srq(struct ib_srq *srq, 2705 struct ib_srq_attr *srq_attr, 2706 enum ib_srq_attr_mask srq_attr_mask); 2707 2708 /** 2709 * ib_query_srq - Returns the attribute list and current values for the 2710 * specified SRQ. 2711 * @srq: The SRQ to query. 2712 * @srq_attr: The attributes of the specified SRQ. 2713 */ 2714 int ib_query_srq(struct ib_srq *srq, 2715 struct ib_srq_attr *srq_attr); 2716 2717 /** 2718 * ib_destroy_srq - Destroys the specified SRQ. 2719 * @srq: The SRQ to destroy. 2720 */ 2721 int ib_destroy_srq(struct ib_srq *srq); 2722 2723 /** 2724 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 2725 * @srq: The SRQ to post the work request on. 2726 * @recv_wr: A list of work requests to post on the receive queue. 2727 * @bad_recv_wr: On an immediate failure, this parameter will reference 2728 * the work request that failed to be posted on the QP. 2729 */ 2730 static inline int ib_post_srq_recv(struct ib_srq *srq, 2731 struct ib_recv_wr *recv_wr, 2732 struct ib_recv_wr **bad_recv_wr) 2733 { 2734 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr); 2735 } 2736 2737 /** 2738 * ib_create_qp - Creates a QP associated with the specified protection 2739 * domain. 2740 * @pd: The protection domain associated with the QP. 2741 * @qp_init_attr: A list of initial attributes required to create the 2742 * QP. If QP creation succeeds, then the attributes are updated to 2743 * the actual capabilities of the created QP. 2744 */ 2745 struct ib_qp *ib_create_qp(struct ib_pd *pd, 2746 struct ib_qp_init_attr *qp_init_attr); 2747 2748 /** 2749 * ib_modify_qp - Modifies the attributes for the specified QP and then 2750 * transitions the QP to the given state. 2751 * @qp: The QP to modify. 2752 * @qp_attr: On input, specifies the QP attributes to modify. On output, 2753 * the current values of selected QP attributes are returned. 2754 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 2755 * are being modified. 2756 */ 2757 int ib_modify_qp(struct ib_qp *qp, 2758 struct ib_qp_attr *qp_attr, 2759 int qp_attr_mask); 2760 2761 /** 2762 * ib_query_qp - Returns the attribute list and current values for the 2763 * specified QP. 2764 * @qp: The QP to query. 2765 * @qp_attr: The attributes of the specified QP. 2766 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 2767 * @qp_init_attr: Additional attributes of the selected QP. 2768 * 2769 * The qp_attr_mask may be used to limit the query to gathering only the 2770 * selected attributes. 2771 */ 2772 int ib_query_qp(struct ib_qp *qp, 2773 struct ib_qp_attr *qp_attr, 2774 int qp_attr_mask, 2775 struct ib_qp_init_attr *qp_init_attr); 2776 2777 /** 2778 * ib_destroy_qp - Destroys the specified QP. 2779 * @qp: The QP to destroy. 2780 */ 2781 int ib_destroy_qp(struct ib_qp *qp); 2782 2783 /** 2784 * ib_open_qp - Obtain a reference to an existing sharable QP. 2785 * @xrcd - XRC domain 2786 * @qp_open_attr: Attributes identifying the QP to open. 2787 * 2788 * Returns a reference to a sharable QP. 2789 */ 2790 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 2791 struct ib_qp_open_attr *qp_open_attr); 2792 2793 /** 2794 * ib_close_qp - Release an external reference to a QP. 2795 * @qp: The QP handle to release 2796 * 2797 * The opened QP handle is released by the caller. The underlying 2798 * shared QP is not destroyed until all internal references are released. 2799 */ 2800 int ib_close_qp(struct ib_qp *qp); 2801 2802 /** 2803 * ib_post_send - Posts a list of work requests to the send queue of 2804 * the specified QP. 2805 * @qp: The QP to post the work request on. 2806 * @send_wr: A list of work requests to post on the send queue. 2807 * @bad_send_wr: On an immediate failure, this parameter will reference 2808 * the work request that failed to be posted on the QP. 2809 * 2810 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 2811 * error is returned, the QP state shall not be affected, 2812 * ib_post_send() will return an immediate error after queueing any 2813 * earlier work requests in the list. 2814 */ 2815 static inline int ib_post_send(struct ib_qp *qp, 2816 struct ib_send_wr *send_wr, 2817 struct ib_send_wr **bad_send_wr) 2818 { 2819 return qp->device->post_send(qp, send_wr, bad_send_wr); 2820 } 2821 2822 /** 2823 * ib_post_recv - Posts a list of work requests to the receive queue of 2824 * the specified QP. 2825 * @qp: The QP to post the work request on. 2826 * @recv_wr: A list of work requests to post on the receive queue. 2827 * @bad_recv_wr: On an immediate failure, this parameter will reference 2828 * the work request that failed to be posted on the QP. 2829 */ 2830 static inline int ib_post_recv(struct ib_qp *qp, 2831 struct ib_recv_wr *recv_wr, 2832 struct ib_recv_wr **bad_recv_wr) 2833 { 2834 return qp->device->post_recv(qp, recv_wr, bad_recv_wr); 2835 } 2836 2837 struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private, 2838 int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx); 2839 void ib_free_cq(struct ib_cq *cq); 2840 int ib_process_cq_direct(struct ib_cq *cq, int budget); 2841 2842 /** 2843 * ib_create_cq - Creates a CQ on the specified device. 2844 * @device: The device on which to create the CQ. 2845 * @comp_handler: A user-specified callback that is invoked when a 2846 * completion event occurs on the CQ. 2847 * @event_handler: A user-specified callback that is invoked when an 2848 * asynchronous event not associated with a completion occurs on the CQ. 2849 * @cq_context: Context associated with the CQ returned to the user via 2850 * the associated completion and event handlers. 2851 * @cq_attr: The attributes the CQ should be created upon. 2852 * 2853 * Users can examine the cq structure to determine the actual CQ size. 2854 */ 2855 struct ib_cq *ib_create_cq(struct ib_device *device, 2856 ib_comp_handler comp_handler, 2857 void (*event_handler)(struct ib_event *, void *), 2858 void *cq_context, 2859 const struct ib_cq_init_attr *cq_attr); 2860 2861 /** 2862 * ib_resize_cq - Modifies the capacity of the CQ. 2863 * @cq: The CQ to resize. 2864 * @cqe: The minimum size of the CQ. 2865 * 2866 * Users can examine the cq structure to determine the actual CQ size. 2867 */ 2868 int ib_resize_cq(struct ib_cq *cq, int cqe); 2869 2870 /** 2871 * ib_modify_cq - Modifies moderation params of the CQ 2872 * @cq: The CQ to modify. 2873 * @cq_count: number of CQEs that will trigger an event 2874 * @cq_period: max period of time in usec before triggering an event 2875 * 2876 */ 2877 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period); 2878 2879 /** 2880 * ib_destroy_cq - Destroys the specified CQ. 2881 * @cq: The CQ to destroy. 2882 */ 2883 int ib_destroy_cq(struct ib_cq *cq); 2884 2885 /** 2886 * ib_poll_cq - poll a CQ for completion(s) 2887 * @cq:the CQ being polled 2888 * @num_entries:maximum number of completions to return 2889 * @wc:array of at least @num_entries &struct ib_wc where completions 2890 * will be returned 2891 * 2892 * Poll a CQ for (possibly multiple) completions. If the return value 2893 * is < 0, an error occurred. If the return value is >= 0, it is the 2894 * number of completions returned. If the return value is 2895 * non-negative and < num_entries, then the CQ was emptied. 2896 */ 2897 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 2898 struct ib_wc *wc) 2899 { 2900 return cq->device->poll_cq(cq, num_entries, wc); 2901 } 2902 2903 /** 2904 * ib_peek_cq - Returns the number of unreaped completions currently 2905 * on the specified CQ. 2906 * @cq: The CQ to peek. 2907 * @wc_cnt: A minimum number of unreaped completions to check for. 2908 * 2909 * If the number of unreaped completions is greater than or equal to wc_cnt, 2910 * this function returns wc_cnt, otherwise, it returns the actual number of 2911 * unreaped completions. 2912 */ 2913 int ib_peek_cq(struct ib_cq *cq, int wc_cnt); 2914 2915 /** 2916 * ib_req_notify_cq - Request completion notification on a CQ. 2917 * @cq: The CQ to generate an event for. 2918 * @flags: 2919 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 2920 * to request an event on the next solicited event or next work 2921 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 2922 * may also be |ed in to request a hint about missed events, as 2923 * described below. 2924 * 2925 * Return Value: 2926 * < 0 means an error occurred while requesting notification 2927 * == 0 means notification was requested successfully, and if 2928 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 2929 * were missed and it is safe to wait for another event. In 2930 * this case is it guaranteed that any work completions added 2931 * to the CQ since the last CQ poll will trigger a completion 2932 * notification event. 2933 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 2934 * in. It means that the consumer must poll the CQ again to 2935 * make sure it is empty to avoid missing an event because of a 2936 * race between requesting notification and an entry being 2937 * added to the CQ. This return value means it is possible 2938 * (but not guaranteed) that a work completion has been added 2939 * to the CQ since the last poll without triggering a 2940 * completion notification event. 2941 */ 2942 static inline int ib_req_notify_cq(struct ib_cq *cq, 2943 enum ib_cq_notify_flags flags) 2944 { 2945 return cq->device->req_notify_cq(cq, flags); 2946 } 2947 2948 /** 2949 * ib_req_ncomp_notif - Request completion notification when there are 2950 * at least the specified number of unreaped completions on the CQ. 2951 * @cq: The CQ to generate an event for. 2952 * @wc_cnt: The number of unreaped completions that should be on the 2953 * CQ before an event is generated. 2954 */ 2955 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 2956 { 2957 return cq->device->req_ncomp_notif ? 2958 cq->device->req_ncomp_notif(cq, wc_cnt) : 2959 -ENOSYS; 2960 } 2961 2962 /** 2963 * ib_dma_mapping_error - check a DMA addr for error 2964 * @dev: The device for which the dma_addr was created 2965 * @dma_addr: The DMA address to check 2966 */ 2967 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 2968 { 2969 if (dev->dma_ops) 2970 return dev->dma_ops->mapping_error(dev, dma_addr); 2971 return dma_mapping_error(dev->dma_device, dma_addr); 2972 } 2973 2974 /** 2975 * ib_dma_map_single - Map a kernel virtual address to DMA address 2976 * @dev: The device for which the dma_addr is to be created 2977 * @cpu_addr: The kernel virtual address 2978 * @size: The size of the region in bytes 2979 * @direction: The direction of the DMA 2980 */ 2981 static inline u64 ib_dma_map_single(struct ib_device *dev, 2982 void *cpu_addr, size_t size, 2983 enum dma_data_direction direction) 2984 { 2985 if (dev->dma_ops) 2986 return dev->dma_ops->map_single(dev, cpu_addr, size, direction); 2987 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 2988 } 2989 2990 /** 2991 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 2992 * @dev: The device for which the DMA address was created 2993 * @addr: The DMA address 2994 * @size: The size of the region in bytes 2995 * @direction: The direction of the DMA 2996 */ 2997 static inline void ib_dma_unmap_single(struct ib_device *dev, 2998 u64 addr, size_t size, 2999 enum dma_data_direction direction) 3000 { 3001 if (dev->dma_ops) 3002 dev->dma_ops->unmap_single(dev, addr, size, direction); 3003 else 3004 dma_unmap_single(dev->dma_device, addr, size, direction); 3005 } 3006 3007 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev, 3008 void *cpu_addr, size_t size, 3009 enum dma_data_direction direction, 3010 unsigned long dma_attrs) 3011 { 3012 return dma_map_single_attrs(dev->dma_device, cpu_addr, size, 3013 direction, dma_attrs); 3014 } 3015 3016 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev, 3017 u64 addr, size_t size, 3018 enum dma_data_direction direction, 3019 unsigned long dma_attrs) 3020 { 3021 return dma_unmap_single_attrs(dev->dma_device, addr, size, 3022 direction, dma_attrs); 3023 } 3024 3025 /** 3026 * ib_dma_map_page - Map a physical page to DMA address 3027 * @dev: The device for which the dma_addr is to be created 3028 * @page: The page to be mapped 3029 * @offset: The offset within the page 3030 * @size: The size of the region in bytes 3031 * @direction: The direction of the DMA 3032 */ 3033 static inline u64 ib_dma_map_page(struct ib_device *dev, 3034 struct page *page, 3035 unsigned long offset, 3036 size_t size, 3037 enum dma_data_direction direction) 3038 { 3039 if (dev->dma_ops) 3040 return dev->dma_ops->map_page(dev, page, offset, size, direction); 3041 return dma_map_page(dev->dma_device, page, offset, size, direction); 3042 } 3043 3044 /** 3045 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 3046 * @dev: The device for which the DMA address was created 3047 * @addr: The DMA address 3048 * @size: The size of the region in bytes 3049 * @direction: The direction of the DMA 3050 */ 3051 static inline void ib_dma_unmap_page(struct ib_device *dev, 3052 u64 addr, size_t size, 3053 enum dma_data_direction direction) 3054 { 3055 if (dev->dma_ops) 3056 dev->dma_ops->unmap_page(dev, addr, size, direction); 3057 else 3058 dma_unmap_page(dev->dma_device, addr, size, direction); 3059 } 3060 3061 /** 3062 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 3063 * @dev: The device for which the DMA addresses are to be created 3064 * @sg: The array of scatter/gather entries 3065 * @nents: The number of scatter/gather entries 3066 * @direction: The direction of the DMA 3067 */ 3068 static inline int ib_dma_map_sg(struct ib_device *dev, 3069 struct scatterlist *sg, int nents, 3070 enum dma_data_direction direction) 3071 { 3072 if (dev->dma_ops) 3073 return dev->dma_ops->map_sg(dev, sg, nents, direction); 3074 return dma_map_sg(dev->dma_device, sg, nents, direction); 3075 } 3076 3077 /** 3078 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 3079 * @dev: The device for which the DMA addresses were created 3080 * @sg: The array of scatter/gather entries 3081 * @nents: The number of scatter/gather entries 3082 * @direction: The direction of the DMA 3083 */ 3084 static inline void ib_dma_unmap_sg(struct ib_device *dev, 3085 struct scatterlist *sg, int nents, 3086 enum dma_data_direction direction) 3087 { 3088 if (dev->dma_ops) 3089 dev->dma_ops->unmap_sg(dev, sg, nents, direction); 3090 else 3091 dma_unmap_sg(dev->dma_device, sg, nents, direction); 3092 } 3093 3094 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 3095 struct scatterlist *sg, int nents, 3096 enum dma_data_direction direction, 3097 unsigned long dma_attrs) 3098 { 3099 if (dev->dma_ops) 3100 return dev->dma_ops->map_sg_attrs(dev, sg, nents, direction, 3101 dma_attrs); 3102 else 3103 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, 3104 dma_attrs); 3105 } 3106 3107 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 3108 struct scatterlist *sg, int nents, 3109 enum dma_data_direction direction, 3110 unsigned long dma_attrs) 3111 { 3112 if (dev->dma_ops) 3113 return dev->dma_ops->unmap_sg_attrs(dev, sg, nents, direction, 3114 dma_attrs); 3115 else 3116 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, 3117 dma_attrs); 3118 } 3119 /** 3120 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry 3121 * @dev: The device for which the DMA addresses were created 3122 * @sg: The scatter/gather entry 3123 * 3124 * Note: this function is obsolete. To do: change all occurrences of 3125 * ib_sg_dma_address() into sg_dma_address(). 3126 */ 3127 static inline u64 ib_sg_dma_address(struct ib_device *dev, 3128 struct scatterlist *sg) 3129 { 3130 return sg_dma_address(sg); 3131 } 3132 3133 /** 3134 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry 3135 * @dev: The device for which the DMA addresses were created 3136 * @sg: The scatter/gather entry 3137 * 3138 * Note: this function is obsolete. To do: change all occurrences of 3139 * ib_sg_dma_len() into sg_dma_len(). 3140 */ 3141 static inline unsigned int ib_sg_dma_len(struct ib_device *dev, 3142 struct scatterlist *sg) 3143 { 3144 return sg_dma_len(sg); 3145 } 3146 3147 /** 3148 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 3149 * @dev: The device for which the DMA address was created 3150 * @addr: The DMA address 3151 * @size: The size of the region in bytes 3152 * @dir: The direction of the DMA 3153 */ 3154 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 3155 u64 addr, 3156 size_t size, 3157 enum dma_data_direction dir) 3158 { 3159 if (dev->dma_ops) 3160 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir); 3161 else 3162 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 3163 } 3164 3165 /** 3166 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 3167 * @dev: The device for which the DMA address was created 3168 * @addr: The DMA address 3169 * @size: The size of the region in bytes 3170 * @dir: The direction of the DMA 3171 */ 3172 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 3173 u64 addr, 3174 size_t size, 3175 enum dma_data_direction dir) 3176 { 3177 if (dev->dma_ops) 3178 dev->dma_ops->sync_single_for_device(dev, addr, size, dir); 3179 else 3180 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 3181 } 3182 3183 /** 3184 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 3185 * @dev: The device for which the DMA address is requested 3186 * @size: The size of the region to allocate in bytes 3187 * @dma_handle: A pointer for returning the DMA address of the region 3188 * @flag: memory allocator flags 3189 */ 3190 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 3191 size_t size, 3192 u64 *dma_handle, 3193 gfp_t flag) 3194 { 3195 if (dev->dma_ops) 3196 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag); 3197 else { 3198 dma_addr_t handle; 3199 void *ret; 3200 3201 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag); 3202 *dma_handle = handle; 3203 return ret; 3204 } 3205 } 3206 3207 /** 3208 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 3209 * @dev: The device for which the DMA addresses were allocated 3210 * @size: The size of the region 3211 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 3212 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 3213 */ 3214 static inline void ib_dma_free_coherent(struct ib_device *dev, 3215 size_t size, void *cpu_addr, 3216 u64 dma_handle) 3217 { 3218 if (dev->dma_ops) 3219 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle); 3220 else 3221 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 3222 } 3223 3224 /** 3225 * ib_dereg_mr - Deregisters a memory region and removes it from the 3226 * HCA translation table. 3227 * @mr: The memory region to deregister. 3228 * 3229 * This function can fail, if the memory region has memory windows bound to it. 3230 */ 3231 int ib_dereg_mr(struct ib_mr *mr); 3232 3233 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, 3234 enum ib_mr_type mr_type, 3235 u32 max_num_sg); 3236 3237 /** 3238 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 3239 * R_Key and L_Key. 3240 * @mr - struct ib_mr pointer to be updated. 3241 * @newkey - new key to be used. 3242 */ 3243 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 3244 { 3245 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 3246 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 3247 } 3248 3249 /** 3250 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 3251 * for calculating a new rkey for type 2 memory windows. 3252 * @rkey - the rkey to increment. 3253 */ 3254 static inline u32 ib_inc_rkey(u32 rkey) 3255 { 3256 const u32 mask = 0x000000ff; 3257 return ((rkey + 1) & mask) | (rkey & ~mask); 3258 } 3259 3260 /** 3261 * ib_alloc_fmr - Allocates a unmapped fast memory region. 3262 * @pd: The protection domain associated with the unmapped region. 3263 * @mr_access_flags: Specifies the memory access rights. 3264 * @fmr_attr: Attributes of the unmapped region. 3265 * 3266 * A fast memory region must be mapped before it can be used as part of 3267 * a work request. 3268 */ 3269 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 3270 int mr_access_flags, 3271 struct ib_fmr_attr *fmr_attr); 3272 3273 /** 3274 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 3275 * @fmr: The fast memory region to associate with the pages. 3276 * @page_list: An array of physical pages to map to the fast memory region. 3277 * @list_len: The number of pages in page_list. 3278 * @iova: The I/O virtual address to use with the mapped region. 3279 */ 3280 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 3281 u64 *page_list, int list_len, 3282 u64 iova) 3283 { 3284 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); 3285 } 3286 3287 /** 3288 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 3289 * @fmr_list: A linked list of fast memory regions to unmap. 3290 */ 3291 int ib_unmap_fmr(struct list_head *fmr_list); 3292 3293 /** 3294 * ib_dealloc_fmr - Deallocates a fast memory region. 3295 * @fmr: The fast memory region to deallocate. 3296 */ 3297 int ib_dealloc_fmr(struct ib_fmr *fmr); 3298 3299 /** 3300 * ib_attach_mcast - Attaches the specified QP to a multicast group. 3301 * @qp: QP to attach to the multicast group. The QP must be type 3302 * IB_QPT_UD. 3303 * @gid: Multicast group GID. 3304 * @lid: Multicast group LID in host byte order. 3305 * 3306 * In order to send and receive multicast packets, subnet 3307 * administration must have created the multicast group and configured 3308 * the fabric appropriately. The port associated with the specified 3309 * QP must also be a member of the multicast group. 3310 */ 3311 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3312 3313 /** 3314 * ib_detach_mcast - Detaches the specified QP from a multicast group. 3315 * @qp: QP to detach from the multicast group. 3316 * @gid: Multicast group GID. 3317 * @lid: Multicast group LID in host byte order. 3318 */ 3319 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3320 3321 /** 3322 * ib_alloc_xrcd - Allocates an XRC domain. 3323 * @device: The device on which to allocate the XRC domain. 3324 */ 3325 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device); 3326 3327 /** 3328 * ib_dealloc_xrcd - Deallocates an XRC domain. 3329 * @xrcd: The XRC domain to deallocate. 3330 */ 3331 int ib_dealloc_xrcd(struct ib_xrcd *xrcd); 3332 3333 struct ib_flow *ib_create_flow(struct ib_qp *qp, 3334 struct ib_flow_attr *flow_attr, int domain); 3335 int ib_destroy_flow(struct ib_flow *flow_id); 3336 3337 static inline int ib_check_mr_access(int flags) 3338 { 3339 /* 3340 * Local write permission is required if remote write or 3341 * remote atomic permission is also requested. 3342 */ 3343 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 3344 !(flags & IB_ACCESS_LOCAL_WRITE)) 3345 return -EINVAL; 3346 3347 return 0; 3348 } 3349 3350 /** 3351 * ib_check_mr_status: lightweight check of MR status. 3352 * This routine may provide status checks on a selected 3353 * ib_mr. first use is for signature status check. 3354 * 3355 * @mr: A memory region. 3356 * @check_mask: Bitmask of which checks to perform from 3357 * ib_mr_status_check enumeration. 3358 * @mr_status: The container of relevant status checks. 3359 * failed checks will be indicated in the status bitmask 3360 * and the relevant info shall be in the error item. 3361 */ 3362 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 3363 struct ib_mr_status *mr_status); 3364 3365 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port, 3366 u16 pkey, const union ib_gid *gid, 3367 const struct sockaddr *addr); 3368 struct ib_wq *ib_create_wq(struct ib_pd *pd, 3369 struct ib_wq_init_attr *init_attr); 3370 int ib_destroy_wq(struct ib_wq *wq); 3371 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr, 3372 u32 wq_attr_mask); 3373 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device, 3374 struct ib_rwq_ind_table_init_attr* 3375 wq_ind_table_init_attr); 3376 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table); 3377 3378 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3379 unsigned int *sg_offset, unsigned int page_size); 3380 3381 static inline int 3382 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3383 unsigned int *sg_offset, unsigned int page_size) 3384 { 3385 int n; 3386 3387 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size); 3388 mr->iova = 0; 3389 3390 return n; 3391 } 3392 3393 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 3394 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64)); 3395 3396 void ib_drain_rq(struct ib_qp *qp); 3397 void ib_drain_sq(struct ib_qp *qp); 3398 void ib_drain_qp(struct ib_qp *qp); 3399 3400 int ib_resolve_eth_dmac(struct ib_device *device, 3401 struct ib_ah_attr *ah_attr); 3402 #endif /* IB_VERBS_H */ 3403