xref: /openbmc/linux/include/rdma/ib_verbs.h (revision aa6159ab)
1 /* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */
2 /*
3  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
4  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
5  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
6  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
7  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
8  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
9  * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
10  */
11 
12 #ifndef IB_VERBS_H
13 #define IB_VERBS_H
14 
15 #include <linux/ethtool.h>
16 #include <linux/types.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/kref.h>
20 #include <linux/list.h>
21 #include <linux/rwsem.h>
22 #include <linux/workqueue.h>
23 #include <linux/irq_poll.h>
24 #include <uapi/linux/if_ether.h>
25 #include <net/ipv6.h>
26 #include <net/ip.h>
27 #include <linux/string.h>
28 #include <linux/slab.h>
29 #include <linux/netdevice.h>
30 #include <linux/refcount.h>
31 #include <linux/if_link.h>
32 #include <linux/atomic.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/uaccess.h>
35 #include <linux/cgroup_rdma.h>
36 #include <linux/irqflags.h>
37 #include <linux/preempt.h>
38 #include <linux/dim.h>
39 #include <uapi/rdma/ib_user_verbs.h>
40 #include <rdma/rdma_counter.h>
41 #include <rdma/restrack.h>
42 #include <rdma/signature.h>
43 #include <uapi/rdma/rdma_user_ioctl.h>
44 #include <uapi/rdma/ib_user_ioctl_verbs.h>
45 
46 #define IB_FW_VERSION_NAME_MAX	ETHTOOL_FWVERS_LEN
47 
48 struct ib_umem_odp;
49 struct ib_uqp_object;
50 struct ib_usrq_object;
51 struct ib_uwq_object;
52 struct rdma_cm_id;
53 
54 extern struct workqueue_struct *ib_wq;
55 extern struct workqueue_struct *ib_comp_wq;
56 extern struct workqueue_struct *ib_comp_unbound_wq;
57 
58 struct ib_ucq_object;
59 
60 __printf(3, 4) __cold
61 void ibdev_printk(const char *level, const struct ib_device *ibdev,
62 		  const char *format, ...);
63 __printf(2, 3) __cold
64 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
65 __printf(2, 3) __cold
66 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
67 __printf(2, 3) __cold
68 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
69 __printf(2, 3) __cold
70 void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
71 __printf(2, 3) __cold
72 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
73 __printf(2, 3) __cold
74 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
75 __printf(2, 3) __cold
76 void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
77 
78 #if defined(CONFIG_DYNAMIC_DEBUG) || \
79 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
80 #define ibdev_dbg(__dev, format, args...)                       \
81 	dynamic_ibdev_dbg(__dev, format, ##args)
82 #else
83 __printf(2, 3) __cold
84 static inline
85 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
86 #endif
87 
88 #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...)           \
89 do {                                                                    \
90 	static DEFINE_RATELIMIT_STATE(_rs,                              \
91 				      DEFAULT_RATELIMIT_INTERVAL,       \
92 				      DEFAULT_RATELIMIT_BURST);         \
93 	if (__ratelimit(&_rs))                                          \
94 		ibdev_level(ibdev, fmt, ##__VA_ARGS__);                 \
95 } while (0)
96 
97 #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
98 	ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
99 #define ibdev_alert_ratelimited(ibdev, fmt, ...) \
100 	ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
101 #define ibdev_crit_ratelimited(ibdev, fmt, ...) \
102 	ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
103 #define ibdev_err_ratelimited(ibdev, fmt, ...) \
104 	ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
105 #define ibdev_warn_ratelimited(ibdev, fmt, ...) \
106 	ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
107 #define ibdev_notice_ratelimited(ibdev, fmt, ...) \
108 	ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
109 #define ibdev_info_ratelimited(ibdev, fmt, ...) \
110 	ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
111 
112 #if defined(CONFIG_DYNAMIC_DEBUG) || \
113 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
114 /* descriptor check is first to prevent flooding with "callbacks suppressed" */
115 #define ibdev_dbg_ratelimited(ibdev, fmt, ...)                          \
116 do {                                                                    \
117 	static DEFINE_RATELIMIT_STATE(_rs,                              \
118 				      DEFAULT_RATELIMIT_INTERVAL,       \
119 				      DEFAULT_RATELIMIT_BURST);         \
120 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt);                 \
121 	if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs))      \
122 		__dynamic_ibdev_dbg(&descriptor, ibdev, fmt,            \
123 				    ##__VA_ARGS__);                     \
124 } while (0)
125 #else
126 __printf(2, 3) __cold
127 static inline
128 void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
129 #endif
130 
131 union ib_gid {
132 	u8	raw[16];
133 	struct {
134 		__be64	subnet_prefix;
135 		__be64	interface_id;
136 	} global;
137 };
138 
139 extern union ib_gid zgid;
140 
141 enum ib_gid_type {
142 	IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB,
143 	IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1,
144 	IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2,
145 	IB_GID_TYPE_SIZE
146 };
147 
148 #define ROCE_V2_UDP_DPORT      4791
149 struct ib_gid_attr {
150 	struct net_device __rcu	*ndev;
151 	struct ib_device	*device;
152 	union ib_gid		gid;
153 	enum ib_gid_type	gid_type;
154 	u16			index;
155 	u8			port_num;
156 };
157 
158 enum {
159 	/* set the local administered indication */
160 	IB_SA_WELL_KNOWN_GUID	= BIT_ULL(57) | 2,
161 };
162 
163 enum rdma_transport_type {
164 	RDMA_TRANSPORT_IB,
165 	RDMA_TRANSPORT_IWARP,
166 	RDMA_TRANSPORT_USNIC,
167 	RDMA_TRANSPORT_USNIC_UDP,
168 	RDMA_TRANSPORT_UNSPECIFIED,
169 };
170 
171 enum rdma_protocol_type {
172 	RDMA_PROTOCOL_IB,
173 	RDMA_PROTOCOL_IBOE,
174 	RDMA_PROTOCOL_IWARP,
175 	RDMA_PROTOCOL_USNIC_UDP
176 };
177 
178 __attribute_const__ enum rdma_transport_type
179 rdma_node_get_transport(unsigned int node_type);
180 
181 enum rdma_network_type {
182 	RDMA_NETWORK_IB,
183 	RDMA_NETWORK_ROCE_V1,
184 	RDMA_NETWORK_IPV4,
185 	RDMA_NETWORK_IPV6
186 };
187 
188 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
189 {
190 	if (network_type == RDMA_NETWORK_IPV4 ||
191 	    network_type == RDMA_NETWORK_IPV6)
192 		return IB_GID_TYPE_ROCE_UDP_ENCAP;
193 	else if (network_type == RDMA_NETWORK_ROCE_V1)
194 		return IB_GID_TYPE_ROCE;
195 	else
196 		return IB_GID_TYPE_IB;
197 }
198 
199 static inline enum rdma_network_type
200 rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
201 {
202 	if (attr->gid_type == IB_GID_TYPE_IB)
203 		return RDMA_NETWORK_IB;
204 
205 	if (attr->gid_type == IB_GID_TYPE_ROCE)
206 		return RDMA_NETWORK_ROCE_V1;
207 
208 	if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
209 		return RDMA_NETWORK_IPV4;
210 	else
211 		return RDMA_NETWORK_IPV6;
212 }
213 
214 enum rdma_link_layer {
215 	IB_LINK_LAYER_UNSPECIFIED,
216 	IB_LINK_LAYER_INFINIBAND,
217 	IB_LINK_LAYER_ETHERNET,
218 };
219 
220 enum ib_device_cap_flags {
221 	IB_DEVICE_RESIZE_MAX_WR			= (1 << 0),
222 	IB_DEVICE_BAD_PKEY_CNTR			= (1 << 1),
223 	IB_DEVICE_BAD_QKEY_CNTR			= (1 << 2),
224 	IB_DEVICE_RAW_MULTI			= (1 << 3),
225 	IB_DEVICE_AUTO_PATH_MIG			= (1 << 4),
226 	IB_DEVICE_CHANGE_PHY_PORT		= (1 << 5),
227 	IB_DEVICE_UD_AV_PORT_ENFORCE		= (1 << 6),
228 	IB_DEVICE_CURR_QP_STATE_MOD		= (1 << 7),
229 	IB_DEVICE_SHUTDOWN_PORT			= (1 << 8),
230 	/* Not in use, former INIT_TYPE		= (1 << 9),*/
231 	IB_DEVICE_PORT_ACTIVE_EVENT		= (1 << 10),
232 	IB_DEVICE_SYS_IMAGE_GUID		= (1 << 11),
233 	IB_DEVICE_RC_RNR_NAK_GEN		= (1 << 12),
234 	IB_DEVICE_SRQ_RESIZE			= (1 << 13),
235 	IB_DEVICE_N_NOTIFY_CQ			= (1 << 14),
236 
237 	/*
238 	 * This device supports a per-device lkey or stag that can be
239 	 * used without performing a memory registration for the local
240 	 * memory.  Note that ULPs should never check this flag, but
241 	 * instead of use the local_dma_lkey flag in the ib_pd structure,
242 	 * which will always contain a usable lkey.
243 	 */
244 	IB_DEVICE_LOCAL_DMA_LKEY		= (1 << 15),
245 	/* Reserved, old SEND_W_INV		= (1 << 16),*/
246 	IB_DEVICE_MEM_WINDOW			= (1 << 17),
247 	/*
248 	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
249 	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
250 	 * messages and can verify the validity of checksum for
251 	 * incoming messages.  Setting this flag implies that the
252 	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
253 	 */
254 	IB_DEVICE_UD_IP_CSUM			= (1 << 18),
255 	IB_DEVICE_UD_TSO			= (1 << 19),
256 	IB_DEVICE_XRC				= (1 << 20),
257 
258 	/*
259 	 * This device supports the IB "base memory management extension",
260 	 * which includes support for fast registrations (IB_WR_REG_MR,
261 	 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs).  This flag should
262 	 * also be set by any iWarp device which must support FRs to comply
263 	 * to the iWarp verbs spec.  iWarp devices also support the
264 	 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
265 	 * stag.
266 	 */
267 	IB_DEVICE_MEM_MGT_EXTENSIONS		= (1 << 21),
268 	IB_DEVICE_BLOCK_MULTICAST_LOOPBACK	= (1 << 22),
269 	IB_DEVICE_MEM_WINDOW_TYPE_2A		= (1 << 23),
270 	IB_DEVICE_MEM_WINDOW_TYPE_2B		= (1 << 24),
271 	IB_DEVICE_RC_IP_CSUM			= (1 << 25),
272 	/* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
273 	IB_DEVICE_RAW_IP_CSUM			= (1 << 26),
274 	/*
275 	 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
276 	 * support execution of WQEs that involve synchronization
277 	 * of I/O operations with single completion queue managed
278 	 * by hardware.
279 	 */
280 	IB_DEVICE_CROSS_CHANNEL			= (1 << 27),
281 	IB_DEVICE_MANAGED_FLOW_STEERING		= (1 << 29),
282 	IB_DEVICE_INTEGRITY_HANDOVER		= (1 << 30),
283 	IB_DEVICE_ON_DEMAND_PAGING		= (1ULL << 31),
284 	IB_DEVICE_SG_GAPS_REG			= (1ULL << 32),
285 	IB_DEVICE_VIRTUAL_FUNCTION		= (1ULL << 33),
286 	/* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
287 	IB_DEVICE_RAW_SCATTER_FCS		= (1ULL << 34),
288 	IB_DEVICE_RDMA_NETDEV_OPA		= (1ULL << 35),
289 	/* The device supports padding incoming writes to cacheline. */
290 	IB_DEVICE_PCI_WRITE_END_PADDING		= (1ULL << 36),
291 	IB_DEVICE_ALLOW_USER_UNREG		= (1ULL << 37),
292 };
293 
294 enum ib_atomic_cap {
295 	IB_ATOMIC_NONE,
296 	IB_ATOMIC_HCA,
297 	IB_ATOMIC_GLOB
298 };
299 
300 enum ib_odp_general_cap_bits {
301 	IB_ODP_SUPPORT		= 1 << 0,
302 	IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
303 };
304 
305 enum ib_odp_transport_cap_bits {
306 	IB_ODP_SUPPORT_SEND	= 1 << 0,
307 	IB_ODP_SUPPORT_RECV	= 1 << 1,
308 	IB_ODP_SUPPORT_WRITE	= 1 << 2,
309 	IB_ODP_SUPPORT_READ	= 1 << 3,
310 	IB_ODP_SUPPORT_ATOMIC	= 1 << 4,
311 	IB_ODP_SUPPORT_SRQ_RECV	= 1 << 5,
312 };
313 
314 struct ib_odp_caps {
315 	uint64_t general_caps;
316 	struct {
317 		uint32_t  rc_odp_caps;
318 		uint32_t  uc_odp_caps;
319 		uint32_t  ud_odp_caps;
320 		uint32_t  xrc_odp_caps;
321 	} per_transport_caps;
322 };
323 
324 struct ib_rss_caps {
325 	/* Corresponding bit will be set if qp type from
326 	 * 'enum ib_qp_type' is supported, e.g.
327 	 * supported_qpts |= 1 << IB_QPT_UD
328 	 */
329 	u32 supported_qpts;
330 	u32 max_rwq_indirection_tables;
331 	u32 max_rwq_indirection_table_size;
332 };
333 
334 enum ib_tm_cap_flags {
335 	/*  Support tag matching with rendezvous offload for RC transport */
336 	IB_TM_CAP_RNDV_RC = 1 << 0,
337 };
338 
339 struct ib_tm_caps {
340 	/* Max size of RNDV header */
341 	u32 max_rndv_hdr_size;
342 	/* Max number of entries in tag matching list */
343 	u32 max_num_tags;
344 	/* From enum ib_tm_cap_flags */
345 	u32 flags;
346 	/* Max number of outstanding list operations */
347 	u32 max_ops;
348 	/* Max number of SGE in tag matching entry */
349 	u32 max_sge;
350 };
351 
352 struct ib_cq_init_attr {
353 	unsigned int	cqe;
354 	u32		comp_vector;
355 	u32		flags;
356 };
357 
358 enum ib_cq_attr_mask {
359 	IB_CQ_MODERATE = 1 << 0,
360 };
361 
362 struct ib_cq_caps {
363 	u16     max_cq_moderation_count;
364 	u16     max_cq_moderation_period;
365 };
366 
367 struct ib_dm_mr_attr {
368 	u64		length;
369 	u64		offset;
370 	u32		access_flags;
371 };
372 
373 struct ib_dm_alloc_attr {
374 	u64	length;
375 	u32	alignment;
376 	u32	flags;
377 };
378 
379 struct ib_device_attr {
380 	u64			fw_ver;
381 	__be64			sys_image_guid;
382 	u64			max_mr_size;
383 	u64			page_size_cap;
384 	u32			vendor_id;
385 	u32			vendor_part_id;
386 	u32			hw_ver;
387 	int			max_qp;
388 	int			max_qp_wr;
389 	u64			device_cap_flags;
390 	int			max_send_sge;
391 	int			max_recv_sge;
392 	int			max_sge_rd;
393 	int			max_cq;
394 	int			max_cqe;
395 	int			max_mr;
396 	int			max_pd;
397 	int			max_qp_rd_atom;
398 	int			max_ee_rd_atom;
399 	int			max_res_rd_atom;
400 	int			max_qp_init_rd_atom;
401 	int			max_ee_init_rd_atom;
402 	enum ib_atomic_cap	atomic_cap;
403 	enum ib_atomic_cap	masked_atomic_cap;
404 	int			max_ee;
405 	int			max_rdd;
406 	int			max_mw;
407 	int			max_raw_ipv6_qp;
408 	int			max_raw_ethy_qp;
409 	int			max_mcast_grp;
410 	int			max_mcast_qp_attach;
411 	int			max_total_mcast_qp_attach;
412 	int			max_ah;
413 	int			max_srq;
414 	int			max_srq_wr;
415 	int			max_srq_sge;
416 	unsigned int		max_fast_reg_page_list_len;
417 	unsigned int		max_pi_fast_reg_page_list_len;
418 	u16			max_pkeys;
419 	u8			local_ca_ack_delay;
420 	int			sig_prot_cap;
421 	int			sig_guard_cap;
422 	struct ib_odp_caps	odp_caps;
423 	uint64_t		timestamp_mask;
424 	uint64_t		hca_core_clock; /* in KHZ */
425 	struct ib_rss_caps	rss_caps;
426 	u32			max_wq_type_rq;
427 	u32			raw_packet_caps; /* Use ib_raw_packet_caps enum */
428 	struct ib_tm_caps	tm_caps;
429 	struct ib_cq_caps       cq_caps;
430 	u64			max_dm_size;
431 	/* Max entries for sgl for optimized performance per READ */
432 	u32			max_sgl_rd;
433 };
434 
435 enum ib_mtu {
436 	IB_MTU_256  = 1,
437 	IB_MTU_512  = 2,
438 	IB_MTU_1024 = 3,
439 	IB_MTU_2048 = 4,
440 	IB_MTU_4096 = 5
441 };
442 
443 enum opa_mtu {
444 	OPA_MTU_8192 = 6,
445 	OPA_MTU_10240 = 7
446 };
447 
448 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
449 {
450 	switch (mtu) {
451 	case IB_MTU_256:  return  256;
452 	case IB_MTU_512:  return  512;
453 	case IB_MTU_1024: return 1024;
454 	case IB_MTU_2048: return 2048;
455 	case IB_MTU_4096: return 4096;
456 	default: 	  return -1;
457 	}
458 }
459 
460 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
461 {
462 	if (mtu >= 4096)
463 		return IB_MTU_4096;
464 	else if (mtu >= 2048)
465 		return IB_MTU_2048;
466 	else if (mtu >= 1024)
467 		return IB_MTU_1024;
468 	else if (mtu >= 512)
469 		return IB_MTU_512;
470 	else
471 		return IB_MTU_256;
472 }
473 
474 static inline int opa_mtu_enum_to_int(enum opa_mtu mtu)
475 {
476 	switch (mtu) {
477 	case OPA_MTU_8192:
478 		return 8192;
479 	case OPA_MTU_10240:
480 		return 10240;
481 	default:
482 		return(ib_mtu_enum_to_int((enum ib_mtu)mtu));
483 	}
484 }
485 
486 static inline enum opa_mtu opa_mtu_int_to_enum(int mtu)
487 {
488 	if (mtu >= 10240)
489 		return OPA_MTU_10240;
490 	else if (mtu >= 8192)
491 		return OPA_MTU_8192;
492 	else
493 		return ((enum opa_mtu)ib_mtu_int_to_enum(mtu));
494 }
495 
496 enum ib_port_state {
497 	IB_PORT_NOP		= 0,
498 	IB_PORT_DOWN		= 1,
499 	IB_PORT_INIT		= 2,
500 	IB_PORT_ARMED		= 3,
501 	IB_PORT_ACTIVE		= 4,
502 	IB_PORT_ACTIVE_DEFER	= 5
503 };
504 
505 enum ib_port_phys_state {
506 	IB_PORT_PHYS_STATE_SLEEP = 1,
507 	IB_PORT_PHYS_STATE_POLLING = 2,
508 	IB_PORT_PHYS_STATE_DISABLED = 3,
509 	IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
510 	IB_PORT_PHYS_STATE_LINK_UP = 5,
511 	IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
512 	IB_PORT_PHYS_STATE_PHY_TEST = 7,
513 };
514 
515 enum ib_port_width {
516 	IB_WIDTH_1X	= 1,
517 	IB_WIDTH_2X	= 16,
518 	IB_WIDTH_4X	= 2,
519 	IB_WIDTH_8X	= 4,
520 	IB_WIDTH_12X	= 8
521 };
522 
523 static inline int ib_width_enum_to_int(enum ib_port_width width)
524 {
525 	switch (width) {
526 	case IB_WIDTH_1X:  return  1;
527 	case IB_WIDTH_2X:  return  2;
528 	case IB_WIDTH_4X:  return  4;
529 	case IB_WIDTH_8X:  return  8;
530 	case IB_WIDTH_12X: return 12;
531 	default: 	  return -1;
532 	}
533 }
534 
535 enum ib_port_speed {
536 	IB_SPEED_SDR	= 1,
537 	IB_SPEED_DDR	= 2,
538 	IB_SPEED_QDR	= 4,
539 	IB_SPEED_FDR10	= 8,
540 	IB_SPEED_FDR	= 16,
541 	IB_SPEED_EDR	= 32,
542 	IB_SPEED_HDR	= 64,
543 	IB_SPEED_NDR	= 128,
544 };
545 
546 /**
547  * struct rdma_hw_stats
548  * @lock - Mutex to protect parallel write access to lifespan and values
549  *    of counters, which are 64bits and not guaranteeed to be written
550  *    atomicaly on 32bits systems.
551  * @timestamp - Used by the core code to track when the last update was
552  * @lifespan - Used by the core code to determine how old the counters
553  *   should be before being updated again.  Stored in jiffies, defaults
554  *   to 10 milliseconds, drivers can override the default be specifying
555  *   their own value during their allocation routine.
556  * @name - Array of pointers to static names used for the counters in
557  *   directory.
558  * @num_counters - How many hardware counters there are.  If name is
559  *   shorter than this number, a kernel oops will result.  Driver authors
560  *   are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
561  *   in their code to prevent this.
562  * @value - Array of u64 counters that are accessed by the sysfs code and
563  *   filled in by the drivers get_stats routine
564  */
565 struct rdma_hw_stats {
566 	struct mutex	lock; /* Protect lifespan and values[] */
567 	unsigned long	timestamp;
568 	unsigned long	lifespan;
569 	const char * const *names;
570 	int		num_counters;
571 	u64		value[];
572 };
573 
574 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
575 /**
576  * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
577  *   for drivers.
578  * @names - Array of static const char *
579  * @num_counters - How many elements in array
580  * @lifespan - How many milliseconds between updates
581  */
582 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
583 		const char * const *names, int num_counters,
584 		unsigned long lifespan)
585 {
586 	struct rdma_hw_stats *stats;
587 
588 	stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
589 			GFP_KERNEL);
590 	if (!stats)
591 		return NULL;
592 	stats->names = names;
593 	stats->num_counters = num_counters;
594 	stats->lifespan = msecs_to_jiffies(lifespan);
595 
596 	return stats;
597 }
598 
599 
600 /* Define bits for the various functionality this port needs to be supported by
601  * the core.
602  */
603 /* Management                           0x00000FFF */
604 #define RDMA_CORE_CAP_IB_MAD            0x00000001
605 #define RDMA_CORE_CAP_IB_SMI            0x00000002
606 #define RDMA_CORE_CAP_IB_CM             0x00000004
607 #define RDMA_CORE_CAP_IW_CM             0x00000008
608 #define RDMA_CORE_CAP_IB_SA             0x00000010
609 #define RDMA_CORE_CAP_OPA_MAD           0x00000020
610 
611 /* Address format                       0x000FF000 */
612 #define RDMA_CORE_CAP_AF_IB             0x00001000
613 #define RDMA_CORE_CAP_ETH_AH            0x00002000
614 #define RDMA_CORE_CAP_OPA_AH            0x00004000
615 #define RDMA_CORE_CAP_IB_GRH_REQUIRED   0x00008000
616 
617 /* Protocol                             0xFFF00000 */
618 #define RDMA_CORE_CAP_PROT_IB           0x00100000
619 #define RDMA_CORE_CAP_PROT_ROCE         0x00200000
620 #define RDMA_CORE_CAP_PROT_IWARP        0x00400000
621 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
622 #define RDMA_CORE_CAP_PROT_RAW_PACKET   0x01000000
623 #define RDMA_CORE_CAP_PROT_USNIC        0x02000000
624 
625 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
626 					| RDMA_CORE_CAP_PROT_ROCE     \
627 					| RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
628 
629 #define RDMA_CORE_PORT_IBA_IB          (RDMA_CORE_CAP_PROT_IB  \
630 					| RDMA_CORE_CAP_IB_MAD \
631 					| RDMA_CORE_CAP_IB_SMI \
632 					| RDMA_CORE_CAP_IB_CM  \
633 					| RDMA_CORE_CAP_IB_SA  \
634 					| RDMA_CORE_CAP_AF_IB)
635 #define RDMA_CORE_PORT_IBA_ROCE        (RDMA_CORE_CAP_PROT_ROCE \
636 					| RDMA_CORE_CAP_IB_MAD  \
637 					| RDMA_CORE_CAP_IB_CM   \
638 					| RDMA_CORE_CAP_AF_IB   \
639 					| RDMA_CORE_CAP_ETH_AH)
640 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP			\
641 					(RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
642 					| RDMA_CORE_CAP_IB_MAD  \
643 					| RDMA_CORE_CAP_IB_CM   \
644 					| RDMA_CORE_CAP_AF_IB   \
645 					| RDMA_CORE_CAP_ETH_AH)
646 #define RDMA_CORE_PORT_IWARP           (RDMA_CORE_CAP_PROT_IWARP \
647 					| RDMA_CORE_CAP_IW_CM)
648 #define RDMA_CORE_PORT_INTEL_OPA       (RDMA_CORE_PORT_IBA_IB  \
649 					| RDMA_CORE_CAP_OPA_MAD)
650 
651 #define RDMA_CORE_PORT_RAW_PACKET	(RDMA_CORE_CAP_PROT_RAW_PACKET)
652 
653 #define RDMA_CORE_PORT_USNIC		(RDMA_CORE_CAP_PROT_USNIC)
654 
655 struct ib_port_attr {
656 	u64			subnet_prefix;
657 	enum ib_port_state	state;
658 	enum ib_mtu		max_mtu;
659 	enum ib_mtu		active_mtu;
660 	u32                     phys_mtu;
661 	int			gid_tbl_len;
662 	unsigned int		ip_gids:1;
663 	/* This is the value from PortInfo CapabilityMask, defined by IBA */
664 	u32			port_cap_flags;
665 	u32			max_msg_sz;
666 	u32			bad_pkey_cntr;
667 	u32			qkey_viol_cntr;
668 	u16			pkey_tbl_len;
669 	u32			sm_lid;
670 	u32			lid;
671 	u8			lmc;
672 	u8			max_vl_num;
673 	u8			sm_sl;
674 	u8			subnet_timeout;
675 	u8			init_type_reply;
676 	u8			active_width;
677 	u16			active_speed;
678 	u8                      phys_state;
679 	u16			port_cap_flags2;
680 };
681 
682 enum ib_device_modify_flags {
683 	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
684 	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
685 };
686 
687 #define IB_DEVICE_NODE_DESC_MAX 64
688 
689 struct ib_device_modify {
690 	u64	sys_image_guid;
691 	char	node_desc[IB_DEVICE_NODE_DESC_MAX];
692 };
693 
694 enum ib_port_modify_flags {
695 	IB_PORT_SHUTDOWN		= 1,
696 	IB_PORT_INIT_TYPE		= (1<<2),
697 	IB_PORT_RESET_QKEY_CNTR		= (1<<3),
698 	IB_PORT_OPA_MASK_CHG		= (1<<4)
699 };
700 
701 struct ib_port_modify {
702 	u32	set_port_cap_mask;
703 	u32	clr_port_cap_mask;
704 	u8	init_type;
705 };
706 
707 enum ib_event_type {
708 	IB_EVENT_CQ_ERR,
709 	IB_EVENT_QP_FATAL,
710 	IB_EVENT_QP_REQ_ERR,
711 	IB_EVENT_QP_ACCESS_ERR,
712 	IB_EVENT_COMM_EST,
713 	IB_EVENT_SQ_DRAINED,
714 	IB_EVENT_PATH_MIG,
715 	IB_EVENT_PATH_MIG_ERR,
716 	IB_EVENT_DEVICE_FATAL,
717 	IB_EVENT_PORT_ACTIVE,
718 	IB_EVENT_PORT_ERR,
719 	IB_EVENT_LID_CHANGE,
720 	IB_EVENT_PKEY_CHANGE,
721 	IB_EVENT_SM_CHANGE,
722 	IB_EVENT_SRQ_ERR,
723 	IB_EVENT_SRQ_LIMIT_REACHED,
724 	IB_EVENT_QP_LAST_WQE_REACHED,
725 	IB_EVENT_CLIENT_REREGISTER,
726 	IB_EVENT_GID_CHANGE,
727 	IB_EVENT_WQ_FATAL,
728 };
729 
730 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
731 
732 struct ib_event {
733 	struct ib_device	*device;
734 	union {
735 		struct ib_cq	*cq;
736 		struct ib_qp	*qp;
737 		struct ib_srq	*srq;
738 		struct ib_wq	*wq;
739 		u8		port_num;
740 	} element;
741 	enum ib_event_type	event;
742 };
743 
744 struct ib_event_handler {
745 	struct ib_device *device;
746 	void            (*handler)(struct ib_event_handler *, struct ib_event *);
747 	struct list_head  list;
748 };
749 
750 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
751 	do {							\
752 		(_ptr)->device  = _device;			\
753 		(_ptr)->handler = _handler;			\
754 		INIT_LIST_HEAD(&(_ptr)->list);			\
755 	} while (0)
756 
757 struct ib_global_route {
758 	const struct ib_gid_attr *sgid_attr;
759 	union ib_gid	dgid;
760 	u32		flow_label;
761 	u8		sgid_index;
762 	u8		hop_limit;
763 	u8		traffic_class;
764 };
765 
766 struct ib_grh {
767 	__be32		version_tclass_flow;
768 	__be16		paylen;
769 	u8		next_hdr;
770 	u8		hop_limit;
771 	union ib_gid	sgid;
772 	union ib_gid	dgid;
773 };
774 
775 union rdma_network_hdr {
776 	struct ib_grh ibgrh;
777 	struct {
778 		/* The IB spec states that if it's IPv4, the header
779 		 * is located in the last 20 bytes of the header.
780 		 */
781 		u8		reserved[20];
782 		struct iphdr	roce4grh;
783 	};
784 };
785 
786 #define IB_QPN_MASK		0xFFFFFF
787 
788 enum {
789 	IB_MULTICAST_QPN = 0xffffff
790 };
791 
792 #define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
793 #define IB_MULTICAST_LID_BASE	cpu_to_be16(0xC000)
794 
795 enum ib_ah_flags {
796 	IB_AH_GRH	= 1
797 };
798 
799 enum ib_rate {
800 	IB_RATE_PORT_CURRENT = 0,
801 	IB_RATE_2_5_GBPS = 2,
802 	IB_RATE_5_GBPS   = 5,
803 	IB_RATE_10_GBPS  = 3,
804 	IB_RATE_20_GBPS  = 6,
805 	IB_RATE_30_GBPS  = 4,
806 	IB_RATE_40_GBPS  = 7,
807 	IB_RATE_60_GBPS  = 8,
808 	IB_RATE_80_GBPS  = 9,
809 	IB_RATE_120_GBPS = 10,
810 	IB_RATE_14_GBPS  = 11,
811 	IB_RATE_56_GBPS  = 12,
812 	IB_RATE_112_GBPS = 13,
813 	IB_RATE_168_GBPS = 14,
814 	IB_RATE_25_GBPS  = 15,
815 	IB_RATE_100_GBPS = 16,
816 	IB_RATE_200_GBPS = 17,
817 	IB_RATE_300_GBPS = 18,
818 	IB_RATE_28_GBPS  = 19,
819 	IB_RATE_50_GBPS  = 20,
820 	IB_RATE_400_GBPS = 21,
821 	IB_RATE_600_GBPS = 22,
822 };
823 
824 /**
825  * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
826  * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
827  * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
828  * @rate: rate to convert.
829  */
830 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
831 
832 /**
833  * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
834  * For example, IB_RATE_2_5_GBPS will be converted to 2500.
835  * @rate: rate to convert.
836  */
837 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
838 
839 
840 /**
841  * enum ib_mr_type - memory region type
842  * @IB_MR_TYPE_MEM_REG:       memory region that is used for
843  *                            normal registration
844  * @IB_MR_TYPE_SG_GAPS:       memory region that is capable to
845  *                            register any arbitrary sg lists (without
846  *                            the normal mr constraints - see
847  *                            ib_map_mr_sg)
848  * @IB_MR_TYPE_DM:            memory region that is used for device
849  *                            memory registration
850  * @IB_MR_TYPE_USER:          memory region that is used for the user-space
851  *                            application
852  * @IB_MR_TYPE_DMA:           memory region that is used for DMA operations
853  *                            without address translations (VA=PA)
854  * @IB_MR_TYPE_INTEGRITY:     memory region that is used for
855  *                            data integrity operations
856  */
857 enum ib_mr_type {
858 	IB_MR_TYPE_MEM_REG,
859 	IB_MR_TYPE_SG_GAPS,
860 	IB_MR_TYPE_DM,
861 	IB_MR_TYPE_USER,
862 	IB_MR_TYPE_DMA,
863 	IB_MR_TYPE_INTEGRITY,
864 };
865 
866 enum ib_mr_status_check {
867 	IB_MR_CHECK_SIG_STATUS = 1,
868 };
869 
870 /**
871  * struct ib_mr_status - Memory region status container
872  *
873  * @fail_status: Bitmask of MR checks status. For each
874  *     failed check a corresponding status bit is set.
875  * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
876  *     failure.
877  */
878 struct ib_mr_status {
879 	u32		    fail_status;
880 	struct ib_sig_err   sig_err;
881 };
882 
883 /**
884  * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
885  * enum.
886  * @mult: multiple to convert.
887  */
888 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
889 
890 struct rdma_ah_init_attr {
891 	struct rdma_ah_attr *ah_attr;
892 	u32 flags;
893 	struct net_device *xmit_slave;
894 };
895 
896 enum rdma_ah_attr_type {
897 	RDMA_AH_ATTR_TYPE_UNDEFINED,
898 	RDMA_AH_ATTR_TYPE_IB,
899 	RDMA_AH_ATTR_TYPE_ROCE,
900 	RDMA_AH_ATTR_TYPE_OPA,
901 };
902 
903 struct ib_ah_attr {
904 	u16			dlid;
905 	u8			src_path_bits;
906 };
907 
908 struct roce_ah_attr {
909 	u8			dmac[ETH_ALEN];
910 };
911 
912 struct opa_ah_attr {
913 	u32			dlid;
914 	u8			src_path_bits;
915 	bool			make_grd;
916 };
917 
918 struct rdma_ah_attr {
919 	struct ib_global_route	grh;
920 	u8			sl;
921 	u8			static_rate;
922 	u8			port_num;
923 	u8			ah_flags;
924 	enum rdma_ah_attr_type type;
925 	union {
926 		struct ib_ah_attr ib;
927 		struct roce_ah_attr roce;
928 		struct opa_ah_attr opa;
929 	};
930 };
931 
932 enum ib_wc_status {
933 	IB_WC_SUCCESS,
934 	IB_WC_LOC_LEN_ERR,
935 	IB_WC_LOC_QP_OP_ERR,
936 	IB_WC_LOC_EEC_OP_ERR,
937 	IB_WC_LOC_PROT_ERR,
938 	IB_WC_WR_FLUSH_ERR,
939 	IB_WC_MW_BIND_ERR,
940 	IB_WC_BAD_RESP_ERR,
941 	IB_WC_LOC_ACCESS_ERR,
942 	IB_WC_REM_INV_REQ_ERR,
943 	IB_WC_REM_ACCESS_ERR,
944 	IB_WC_REM_OP_ERR,
945 	IB_WC_RETRY_EXC_ERR,
946 	IB_WC_RNR_RETRY_EXC_ERR,
947 	IB_WC_LOC_RDD_VIOL_ERR,
948 	IB_WC_REM_INV_RD_REQ_ERR,
949 	IB_WC_REM_ABORT_ERR,
950 	IB_WC_INV_EECN_ERR,
951 	IB_WC_INV_EEC_STATE_ERR,
952 	IB_WC_FATAL_ERR,
953 	IB_WC_RESP_TIMEOUT_ERR,
954 	IB_WC_GENERAL_ERR
955 };
956 
957 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
958 
959 enum ib_wc_opcode {
960 	IB_WC_SEND = IB_UVERBS_WC_SEND,
961 	IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE,
962 	IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ,
963 	IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP,
964 	IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD,
965 	IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW,
966 	IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV,
967 	IB_WC_LSO = IB_UVERBS_WC_TSO,
968 	IB_WC_REG_MR,
969 	IB_WC_MASKED_COMP_SWAP,
970 	IB_WC_MASKED_FETCH_ADD,
971 /*
972  * Set value of IB_WC_RECV so consumers can test if a completion is a
973  * receive by testing (opcode & IB_WC_RECV).
974  */
975 	IB_WC_RECV			= 1 << 7,
976 	IB_WC_RECV_RDMA_WITH_IMM
977 };
978 
979 enum ib_wc_flags {
980 	IB_WC_GRH		= 1,
981 	IB_WC_WITH_IMM		= (1<<1),
982 	IB_WC_WITH_INVALIDATE	= (1<<2),
983 	IB_WC_IP_CSUM_OK	= (1<<3),
984 	IB_WC_WITH_SMAC		= (1<<4),
985 	IB_WC_WITH_VLAN		= (1<<5),
986 	IB_WC_WITH_NETWORK_HDR_TYPE	= (1<<6),
987 };
988 
989 struct ib_wc {
990 	union {
991 		u64		wr_id;
992 		struct ib_cqe	*wr_cqe;
993 	};
994 	enum ib_wc_status	status;
995 	enum ib_wc_opcode	opcode;
996 	u32			vendor_err;
997 	u32			byte_len;
998 	struct ib_qp	       *qp;
999 	union {
1000 		__be32		imm_data;
1001 		u32		invalidate_rkey;
1002 	} ex;
1003 	u32			src_qp;
1004 	u32			slid;
1005 	int			wc_flags;
1006 	u16			pkey_index;
1007 	u8			sl;
1008 	u8			dlid_path_bits;
1009 	u8			port_num;	/* valid only for DR SMPs on switches */
1010 	u8			smac[ETH_ALEN];
1011 	u16			vlan_id;
1012 	u8			network_hdr_type;
1013 };
1014 
1015 enum ib_cq_notify_flags {
1016 	IB_CQ_SOLICITED			= 1 << 0,
1017 	IB_CQ_NEXT_COMP			= 1 << 1,
1018 	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1019 	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
1020 };
1021 
1022 enum ib_srq_type {
1023 	IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC,
1024 	IB_SRQT_XRC = IB_UVERBS_SRQT_XRC,
1025 	IB_SRQT_TM = IB_UVERBS_SRQT_TM,
1026 };
1027 
1028 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1029 {
1030 	return srq_type == IB_SRQT_XRC ||
1031 	       srq_type == IB_SRQT_TM;
1032 }
1033 
1034 enum ib_srq_attr_mask {
1035 	IB_SRQ_MAX_WR	= 1 << 0,
1036 	IB_SRQ_LIMIT	= 1 << 1,
1037 };
1038 
1039 struct ib_srq_attr {
1040 	u32	max_wr;
1041 	u32	max_sge;
1042 	u32	srq_limit;
1043 };
1044 
1045 struct ib_srq_init_attr {
1046 	void		      (*event_handler)(struct ib_event *, void *);
1047 	void		       *srq_context;
1048 	struct ib_srq_attr	attr;
1049 	enum ib_srq_type	srq_type;
1050 
1051 	struct {
1052 		struct ib_cq   *cq;
1053 		union {
1054 			struct {
1055 				struct ib_xrcd *xrcd;
1056 			} xrc;
1057 
1058 			struct {
1059 				u32		max_num_tags;
1060 			} tag_matching;
1061 		};
1062 	} ext;
1063 };
1064 
1065 struct ib_qp_cap {
1066 	u32	max_send_wr;
1067 	u32	max_recv_wr;
1068 	u32	max_send_sge;
1069 	u32	max_recv_sge;
1070 	u32	max_inline_data;
1071 
1072 	/*
1073 	 * Maximum number of rdma_rw_ctx structures in flight at a time.
1074 	 * ib_create_qp() will calculate the right amount of neededed WRs
1075 	 * and MRs based on this.
1076 	 */
1077 	u32	max_rdma_ctxs;
1078 };
1079 
1080 enum ib_sig_type {
1081 	IB_SIGNAL_ALL_WR,
1082 	IB_SIGNAL_REQ_WR
1083 };
1084 
1085 enum ib_qp_type {
1086 	/*
1087 	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1088 	 * here (and in that order) since the MAD layer uses them as
1089 	 * indices into a 2-entry table.
1090 	 */
1091 	IB_QPT_SMI,
1092 	IB_QPT_GSI,
1093 
1094 	IB_QPT_RC = IB_UVERBS_QPT_RC,
1095 	IB_QPT_UC = IB_UVERBS_QPT_UC,
1096 	IB_QPT_UD = IB_UVERBS_QPT_UD,
1097 	IB_QPT_RAW_IPV6,
1098 	IB_QPT_RAW_ETHERTYPE,
1099 	IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET,
1100 	IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI,
1101 	IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT,
1102 	IB_QPT_MAX,
1103 	IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER,
1104 	/* Reserve a range for qp types internal to the low level driver.
1105 	 * These qp types will not be visible at the IB core layer, so the
1106 	 * IB_QPT_MAX usages should not be affected in the core layer
1107 	 */
1108 	IB_QPT_RESERVED1 = 0x1000,
1109 	IB_QPT_RESERVED2,
1110 	IB_QPT_RESERVED3,
1111 	IB_QPT_RESERVED4,
1112 	IB_QPT_RESERVED5,
1113 	IB_QPT_RESERVED6,
1114 	IB_QPT_RESERVED7,
1115 	IB_QPT_RESERVED8,
1116 	IB_QPT_RESERVED9,
1117 	IB_QPT_RESERVED10,
1118 };
1119 
1120 enum ib_qp_create_flags {
1121 	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
1122 	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	=
1123 		IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK,
1124 	IB_QP_CREATE_CROSS_CHANNEL              = 1 << 2,
1125 	IB_QP_CREATE_MANAGED_SEND               = 1 << 3,
1126 	IB_QP_CREATE_MANAGED_RECV               = 1 << 4,
1127 	IB_QP_CREATE_NETIF_QP			= 1 << 5,
1128 	IB_QP_CREATE_INTEGRITY_EN		= 1 << 6,
1129 	IB_QP_CREATE_NETDEV_USE			= 1 << 7,
1130 	IB_QP_CREATE_SCATTER_FCS		=
1131 		IB_UVERBS_QP_CREATE_SCATTER_FCS,
1132 	IB_QP_CREATE_CVLAN_STRIPPING		=
1133 		IB_UVERBS_QP_CREATE_CVLAN_STRIPPING,
1134 	IB_QP_CREATE_SOURCE_QPN			= 1 << 10,
1135 	IB_QP_CREATE_PCI_WRITE_END_PADDING	=
1136 		IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING,
1137 	/* reserve bits 26-31 for low level drivers' internal use */
1138 	IB_QP_CREATE_RESERVED_START		= 1 << 26,
1139 	IB_QP_CREATE_RESERVED_END		= 1 << 31,
1140 };
1141 
1142 /*
1143  * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1144  * callback to destroy the passed in QP.
1145  */
1146 
1147 struct ib_qp_init_attr {
1148 	/* Consumer's event_handler callback must not block */
1149 	void                  (*event_handler)(struct ib_event *, void *);
1150 
1151 	void		       *qp_context;
1152 	struct ib_cq	       *send_cq;
1153 	struct ib_cq	       *recv_cq;
1154 	struct ib_srq	       *srq;
1155 	struct ib_xrcd	       *xrcd;     /* XRC TGT QPs only */
1156 	struct ib_qp_cap	cap;
1157 	enum ib_sig_type	sq_sig_type;
1158 	enum ib_qp_type		qp_type;
1159 	u32			create_flags;
1160 
1161 	/*
1162 	 * Only needed for special QP types, or when using the RW API.
1163 	 */
1164 	u8			port_num;
1165 	struct ib_rwq_ind_table *rwq_ind_tbl;
1166 	u32			source_qpn;
1167 };
1168 
1169 struct ib_qp_open_attr {
1170 	void                  (*event_handler)(struct ib_event *, void *);
1171 	void		       *qp_context;
1172 	u32			qp_num;
1173 	enum ib_qp_type		qp_type;
1174 };
1175 
1176 enum ib_rnr_timeout {
1177 	IB_RNR_TIMER_655_36 =  0,
1178 	IB_RNR_TIMER_000_01 =  1,
1179 	IB_RNR_TIMER_000_02 =  2,
1180 	IB_RNR_TIMER_000_03 =  3,
1181 	IB_RNR_TIMER_000_04 =  4,
1182 	IB_RNR_TIMER_000_06 =  5,
1183 	IB_RNR_TIMER_000_08 =  6,
1184 	IB_RNR_TIMER_000_12 =  7,
1185 	IB_RNR_TIMER_000_16 =  8,
1186 	IB_RNR_TIMER_000_24 =  9,
1187 	IB_RNR_TIMER_000_32 = 10,
1188 	IB_RNR_TIMER_000_48 = 11,
1189 	IB_RNR_TIMER_000_64 = 12,
1190 	IB_RNR_TIMER_000_96 = 13,
1191 	IB_RNR_TIMER_001_28 = 14,
1192 	IB_RNR_TIMER_001_92 = 15,
1193 	IB_RNR_TIMER_002_56 = 16,
1194 	IB_RNR_TIMER_003_84 = 17,
1195 	IB_RNR_TIMER_005_12 = 18,
1196 	IB_RNR_TIMER_007_68 = 19,
1197 	IB_RNR_TIMER_010_24 = 20,
1198 	IB_RNR_TIMER_015_36 = 21,
1199 	IB_RNR_TIMER_020_48 = 22,
1200 	IB_RNR_TIMER_030_72 = 23,
1201 	IB_RNR_TIMER_040_96 = 24,
1202 	IB_RNR_TIMER_061_44 = 25,
1203 	IB_RNR_TIMER_081_92 = 26,
1204 	IB_RNR_TIMER_122_88 = 27,
1205 	IB_RNR_TIMER_163_84 = 28,
1206 	IB_RNR_TIMER_245_76 = 29,
1207 	IB_RNR_TIMER_327_68 = 30,
1208 	IB_RNR_TIMER_491_52 = 31
1209 };
1210 
1211 enum ib_qp_attr_mask {
1212 	IB_QP_STATE			= 1,
1213 	IB_QP_CUR_STATE			= (1<<1),
1214 	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
1215 	IB_QP_ACCESS_FLAGS		= (1<<3),
1216 	IB_QP_PKEY_INDEX		= (1<<4),
1217 	IB_QP_PORT			= (1<<5),
1218 	IB_QP_QKEY			= (1<<6),
1219 	IB_QP_AV			= (1<<7),
1220 	IB_QP_PATH_MTU			= (1<<8),
1221 	IB_QP_TIMEOUT			= (1<<9),
1222 	IB_QP_RETRY_CNT			= (1<<10),
1223 	IB_QP_RNR_RETRY			= (1<<11),
1224 	IB_QP_RQ_PSN			= (1<<12),
1225 	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
1226 	IB_QP_ALT_PATH			= (1<<14),
1227 	IB_QP_MIN_RNR_TIMER		= (1<<15),
1228 	IB_QP_SQ_PSN			= (1<<16),
1229 	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
1230 	IB_QP_PATH_MIG_STATE		= (1<<18),
1231 	IB_QP_CAP			= (1<<19),
1232 	IB_QP_DEST_QPN			= (1<<20),
1233 	IB_QP_RESERVED1			= (1<<21),
1234 	IB_QP_RESERVED2			= (1<<22),
1235 	IB_QP_RESERVED3			= (1<<23),
1236 	IB_QP_RESERVED4			= (1<<24),
1237 	IB_QP_RATE_LIMIT		= (1<<25),
1238 };
1239 
1240 enum ib_qp_state {
1241 	IB_QPS_RESET,
1242 	IB_QPS_INIT,
1243 	IB_QPS_RTR,
1244 	IB_QPS_RTS,
1245 	IB_QPS_SQD,
1246 	IB_QPS_SQE,
1247 	IB_QPS_ERR
1248 };
1249 
1250 enum ib_mig_state {
1251 	IB_MIG_MIGRATED,
1252 	IB_MIG_REARM,
1253 	IB_MIG_ARMED
1254 };
1255 
1256 enum ib_mw_type {
1257 	IB_MW_TYPE_1 = 1,
1258 	IB_MW_TYPE_2 = 2
1259 };
1260 
1261 struct ib_qp_attr {
1262 	enum ib_qp_state	qp_state;
1263 	enum ib_qp_state	cur_qp_state;
1264 	enum ib_mtu		path_mtu;
1265 	enum ib_mig_state	path_mig_state;
1266 	u32			qkey;
1267 	u32			rq_psn;
1268 	u32			sq_psn;
1269 	u32			dest_qp_num;
1270 	int			qp_access_flags;
1271 	struct ib_qp_cap	cap;
1272 	struct rdma_ah_attr	ah_attr;
1273 	struct rdma_ah_attr	alt_ah_attr;
1274 	u16			pkey_index;
1275 	u16			alt_pkey_index;
1276 	u8			en_sqd_async_notify;
1277 	u8			sq_draining;
1278 	u8			max_rd_atomic;
1279 	u8			max_dest_rd_atomic;
1280 	u8			min_rnr_timer;
1281 	u8			port_num;
1282 	u8			timeout;
1283 	u8			retry_cnt;
1284 	u8			rnr_retry;
1285 	u8			alt_port_num;
1286 	u8			alt_timeout;
1287 	u32			rate_limit;
1288 	struct net_device	*xmit_slave;
1289 };
1290 
1291 enum ib_wr_opcode {
1292 	/* These are shared with userspace */
1293 	IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1294 	IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1295 	IB_WR_SEND = IB_UVERBS_WR_SEND,
1296 	IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1297 	IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1298 	IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1299 	IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1300 	IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW,
1301 	IB_WR_LSO = IB_UVERBS_WR_TSO,
1302 	IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1303 	IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1304 	IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1305 	IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1306 		IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1307 	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1308 		IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1309 
1310 	/* These are kernel only and can not be issued by userspace */
1311 	IB_WR_REG_MR = 0x20,
1312 	IB_WR_REG_MR_INTEGRITY,
1313 
1314 	/* reserve values for low level drivers' internal use.
1315 	 * These values will not be used at all in the ib core layer.
1316 	 */
1317 	IB_WR_RESERVED1 = 0xf0,
1318 	IB_WR_RESERVED2,
1319 	IB_WR_RESERVED3,
1320 	IB_WR_RESERVED4,
1321 	IB_WR_RESERVED5,
1322 	IB_WR_RESERVED6,
1323 	IB_WR_RESERVED7,
1324 	IB_WR_RESERVED8,
1325 	IB_WR_RESERVED9,
1326 	IB_WR_RESERVED10,
1327 };
1328 
1329 enum ib_send_flags {
1330 	IB_SEND_FENCE		= 1,
1331 	IB_SEND_SIGNALED	= (1<<1),
1332 	IB_SEND_SOLICITED	= (1<<2),
1333 	IB_SEND_INLINE		= (1<<3),
1334 	IB_SEND_IP_CSUM		= (1<<4),
1335 
1336 	/* reserve bits 26-31 for low level drivers' internal use */
1337 	IB_SEND_RESERVED_START	= (1 << 26),
1338 	IB_SEND_RESERVED_END	= (1 << 31),
1339 };
1340 
1341 struct ib_sge {
1342 	u64	addr;
1343 	u32	length;
1344 	u32	lkey;
1345 };
1346 
1347 struct ib_cqe {
1348 	void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1349 };
1350 
1351 struct ib_send_wr {
1352 	struct ib_send_wr      *next;
1353 	union {
1354 		u64		wr_id;
1355 		struct ib_cqe	*wr_cqe;
1356 	};
1357 	struct ib_sge	       *sg_list;
1358 	int			num_sge;
1359 	enum ib_wr_opcode	opcode;
1360 	int			send_flags;
1361 	union {
1362 		__be32		imm_data;
1363 		u32		invalidate_rkey;
1364 	} ex;
1365 };
1366 
1367 struct ib_rdma_wr {
1368 	struct ib_send_wr	wr;
1369 	u64			remote_addr;
1370 	u32			rkey;
1371 };
1372 
1373 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1374 {
1375 	return container_of(wr, struct ib_rdma_wr, wr);
1376 }
1377 
1378 struct ib_atomic_wr {
1379 	struct ib_send_wr	wr;
1380 	u64			remote_addr;
1381 	u64			compare_add;
1382 	u64			swap;
1383 	u64			compare_add_mask;
1384 	u64			swap_mask;
1385 	u32			rkey;
1386 };
1387 
1388 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1389 {
1390 	return container_of(wr, struct ib_atomic_wr, wr);
1391 }
1392 
1393 struct ib_ud_wr {
1394 	struct ib_send_wr	wr;
1395 	struct ib_ah		*ah;
1396 	void			*header;
1397 	int			hlen;
1398 	int			mss;
1399 	u32			remote_qpn;
1400 	u32			remote_qkey;
1401 	u16			pkey_index; /* valid for GSI only */
1402 	u8			port_num;   /* valid for DR SMPs on switch only */
1403 };
1404 
1405 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1406 {
1407 	return container_of(wr, struct ib_ud_wr, wr);
1408 }
1409 
1410 struct ib_reg_wr {
1411 	struct ib_send_wr	wr;
1412 	struct ib_mr		*mr;
1413 	u32			key;
1414 	int			access;
1415 };
1416 
1417 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1418 {
1419 	return container_of(wr, struct ib_reg_wr, wr);
1420 }
1421 
1422 struct ib_recv_wr {
1423 	struct ib_recv_wr      *next;
1424 	union {
1425 		u64		wr_id;
1426 		struct ib_cqe	*wr_cqe;
1427 	};
1428 	struct ib_sge	       *sg_list;
1429 	int			num_sge;
1430 };
1431 
1432 enum ib_access_flags {
1433 	IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1434 	IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1435 	IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1436 	IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1437 	IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1438 	IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1439 	IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1440 	IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1441 	IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
1442 
1443 	IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1444 	IB_ACCESS_SUPPORTED =
1445 		((IB_ACCESS_HUGETLB << 1) - 1) | IB_ACCESS_OPTIONAL,
1446 };
1447 
1448 /*
1449  * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1450  * are hidden here instead of a uapi header!
1451  */
1452 enum ib_mr_rereg_flags {
1453 	IB_MR_REREG_TRANS	= 1,
1454 	IB_MR_REREG_PD		= (1<<1),
1455 	IB_MR_REREG_ACCESS	= (1<<2),
1456 	IB_MR_REREG_SUPPORTED	= ((IB_MR_REREG_ACCESS << 1) - 1)
1457 };
1458 
1459 struct ib_umem;
1460 
1461 enum rdma_remove_reason {
1462 	/*
1463 	 * Userspace requested uobject deletion or initial try
1464 	 * to remove uobject via cleanup. Call could fail
1465 	 */
1466 	RDMA_REMOVE_DESTROY,
1467 	/* Context deletion. This call should delete the actual object itself */
1468 	RDMA_REMOVE_CLOSE,
1469 	/* Driver is being hot-unplugged. This call should delete the actual object itself */
1470 	RDMA_REMOVE_DRIVER_REMOVE,
1471 	/* uobj is being cleaned-up before being committed */
1472 	RDMA_REMOVE_ABORT,
1473 };
1474 
1475 struct ib_rdmacg_object {
1476 #ifdef CONFIG_CGROUP_RDMA
1477 	struct rdma_cgroup	*cg;		/* owner rdma cgroup */
1478 #endif
1479 };
1480 
1481 struct ib_ucontext {
1482 	struct ib_device       *device;
1483 	struct ib_uverbs_file  *ufile;
1484 
1485 	bool cleanup_retryable;
1486 
1487 	struct ib_rdmacg_object	cg_obj;
1488 	/*
1489 	 * Implementation details of the RDMA core, don't use in drivers:
1490 	 */
1491 	struct rdma_restrack_entry res;
1492 	struct xarray mmap_xa;
1493 };
1494 
1495 struct ib_uobject {
1496 	u64			user_handle;	/* handle given to us by userspace */
1497 	/* ufile & ucontext owning this object */
1498 	struct ib_uverbs_file  *ufile;
1499 	/* FIXME, save memory: ufile->context == context */
1500 	struct ib_ucontext     *context;	/* associated user context */
1501 	void		       *object;		/* containing object */
1502 	struct list_head	list;		/* link to context's list */
1503 	struct ib_rdmacg_object	cg_obj;		/* rdmacg object */
1504 	int			id;		/* index into kernel idr */
1505 	struct kref		ref;
1506 	atomic_t		usecnt;		/* protects exclusive access */
1507 	struct rcu_head		rcu;		/* kfree_rcu() overhead */
1508 
1509 	const struct uverbs_api_object *uapi_object;
1510 };
1511 
1512 struct ib_udata {
1513 	const void __user *inbuf;
1514 	void __user *outbuf;
1515 	size_t       inlen;
1516 	size_t       outlen;
1517 };
1518 
1519 struct ib_pd {
1520 	u32			local_dma_lkey;
1521 	u32			flags;
1522 	struct ib_device       *device;
1523 	struct ib_uobject      *uobject;
1524 	atomic_t          	usecnt; /* count all resources */
1525 
1526 	u32			unsafe_global_rkey;
1527 
1528 	/*
1529 	 * Implementation details of the RDMA core, don't use in drivers:
1530 	 */
1531 	struct ib_mr	       *__internal_mr;
1532 	struct rdma_restrack_entry res;
1533 };
1534 
1535 struct ib_xrcd {
1536 	struct ib_device       *device;
1537 	atomic_t		usecnt; /* count all exposed resources */
1538 	struct inode	       *inode;
1539 	struct rw_semaphore	tgt_qps_rwsem;
1540 	struct xarray		tgt_qps;
1541 };
1542 
1543 struct ib_ah {
1544 	struct ib_device	*device;
1545 	struct ib_pd		*pd;
1546 	struct ib_uobject	*uobject;
1547 	const struct ib_gid_attr *sgid_attr;
1548 	enum rdma_ah_attr_type	type;
1549 };
1550 
1551 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1552 
1553 enum ib_poll_context {
1554 	IB_POLL_SOFTIRQ,	   /* poll from softirq context */
1555 	IB_POLL_WORKQUEUE,	   /* poll from workqueue */
1556 	IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1557 	IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE,
1558 
1559 	IB_POLL_DIRECT,		   /* caller context, no hw completions */
1560 };
1561 
1562 struct ib_cq {
1563 	struct ib_device       *device;
1564 	struct ib_ucq_object   *uobject;
1565 	ib_comp_handler   	comp_handler;
1566 	void                  (*event_handler)(struct ib_event *, void *);
1567 	void                   *cq_context;
1568 	int               	cqe;
1569 	unsigned int		cqe_used;
1570 	atomic_t          	usecnt; /* count number of work queues */
1571 	enum ib_poll_context	poll_ctx;
1572 	struct ib_wc		*wc;
1573 	struct list_head        pool_entry;
1574 	union {
1575 		struct irq_poll		iop;
1576 		struct work_struct	work;
1577 	};
1578 	struct workqueue_struct *comp_wq;
1579 	struct dim *dim;
1580 
1581 	/* updated only by trace points */
1582 	ktime_t timestamp;
1583 	u8 interrupt:1;
1584 	u8 shared:1;
1585 	unsigned int comp_vector;
1586 
1587 	/*
1588 	 * Implementation details of the RDMA core, don't use in drivers:
1589 	 */
1590 	struct rdma_restrack_entry res;
1591 };
1592 
1593 struct ib_srq {
1594 	struct ib_device       *device;
1595 	struct ib_pd	       *pd;
1596 	struct ib_usrq_object  *uobject;
1597 	void		      (*event_handler)(struct ib_event *, void *);
1598 	void		       *srq_context;
1599 	enum ib_srq_type	srq_type;
1600 	atomic_t		usecnt;
1601 
1602 	struct {
1603 		struct ib_cq   *cq;
1604 		union {
1605 			struct {
1606 				struct ib_xrcd *xrcd;
1607 				u32		srq_num;
1608 			} xrc;
1609 		};
1610 	} ext;
1611 };
1612 
1613 enum ib_raw_packet_caps {
1614 	/* Strip cvlan from incoming packet and report it in the matching work
1615 	 * completion is supported.
1616 	 */
1617 	IB_RAW_PACKET_CAP_CVLAN_STRIPPING	= (1 << 0),
1618 	/* Scatter FCS field of an incoming packet to host memory is supported.
1619 	 */
1620 	IB_RAW_PACKET_CAP_SCATTER_FCS		= (1 << 1),
1621 	/* Checksum offloads are supported (for both send and receive). */
1622 	IB_RAW_PACKET_CAP_IP_CSUM		= (1 << 2),
1623 	/* When a packet is received for an RQ with no receive WQEs, the
1624 	 * packet processing is delayed.
1625 	 */
1626 	IB_RAW_PACKET_CAP_DELAY_DROP		= (1 << 3),
1627 };
1628 
1629 enum ib_wq_type {
1630 	IB_WQT_RQ = IB_UVERBS_WQT_RQ,
1631 };
1632 
1633 enum ib_wq_state {
1634 	IB_WQS_RESET,
1635 	IB_WQS_RDY,
1636 	IB_WQS_ERR
1637 };
1638 
1639 struct ib_wq {
1640 	struct ib_device       *device;
1641 	struct ib_uwq_object   *uobject;
1642 	void		    *wq_context;
1643 	void		    (*event_handler)(struct ib_event *, void *);
1644 	struct ib_pd	       *pd;
1645 	struct ib_cq	       *cq;
1646 	u32		wq_num;
1647 	enum ib_wq_state       state;
1648 	enum ib_wq_type	wq_type;
1649 	atomic_t		usecnt;
1650 };
1651 
1652 enum ib_wq_flags {
1653 	IB_WQ_FLAGS_CVLAN_STRIPPING	= IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING,
1654 	IB_WQ_FLAGS_SCATTER_FCS		= IB_UVERBS_WQ_FLAGS_SCATTER_FCS,
1655 	IB_WQ_FLAGS_DELAY_DROP		= IB_UVERBS_WQ_FLAGS_DELAY_DROP,
1656 	IB_WQ_FLAGS_PCI_WRITE_END_PADDING =
1657 				IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING,
1658 };
1659 
1660 struct ib_wq_init_attr {
1661 	void		       *wq_context;
1662 	enum ib_wq_type	wq_type;
1663 	u32		max_wr;
1664 	u32		max_sge;
1665 	struct	ib_cq	       *cq;
1666 	void		    (*event_handler)(struct ib_event *, void *);
1667 	u32		create_flags; /* Use enum ib_wq_flags */
1668 };
1669 
1670 enum ib_wq_attr_mask {
1671 	IB_WQ_STATE		= 1 << 0,
1672 	IB_WQ_CUR_STATE		= 1 << 1,
1673 	IB_WQ_FLAGS		= 1 << 2,
1674 };
1675 
1676 struct ib_wq_attr {
1677 	enum	ib_wq_state	wq_state;
1678 	enum	ib_wq_state	curr_wq_state;
1679 	u32			flags; /* Use enum ib_wq_flags */
1680 	u32			flags_mask; /* Use enum ib_wq_flags */
1681 };
1682 
1683 struct ib_rwq_ind_table {
1684 	struct ib_device	*device;
1685 	struct ib_uobject      *uobject;
1686 	atomic_t		usecnt;
1687 	u32		ind_tbl_num;
1688 	u32		log_ind_tbl_size;
1689 	struct ib_wq	**ind_tbl;
1690 };
1691 
1692 struct ib_rwq_ind_table_init_attr {
1693 	u32		log_ind_tbl_size;
1694 	/* Each entry is a pointer to Receive Work Queue */
1695 	struct ib_wq	**ind_tbl;
1696 };
1697 
1698 enum port_pkey_state {
1699 	IB_PORT_PKEY_NOT_VALID = 0,
1700 	IB_PORT_PKEY_VALID = 1,
1701 	IB_PORT_PKEY_LISTED = 2,
1702 };
1703 
1704 struct ib_qp_security;
1705 
1706 struct ib_port_pkey {
1707 	enum port_pkey_state	state;
1708 	u16			pkey_index;
1709 	u8			port_num;
1710 	struct list_head	qp_list;
1711 	struct list_head	to_error_list;
1712 	struct ib_qp_security  *sec;
1713 };
1714 
1715 struct ib_ports_pkeys {
1716 	struct ib_port_pkey	main;
1717 	struct ib_port_pkey	alt;
1718 };
1719 
1720 struct ib_qp_security {
1721 	struct ib_qp	       *qp;
1722 	struct ib_device       *dev;
1723 	/* Hold this mutex when changing port and pkey settings. */
1724 	struct mutex		mutex;
1725 	struct ib_ports_pkeys  *ports_pkeys;
1726 	/* A list of all open shared QP handles.  Required to enforce security
1727 	 * properly for all users of a shared QP.
1728 	 */
1729 	struct list_head        shared_qp_list;
1730 	void                   *security;
1731 	bool			destroying;
1732 	atomic_t		error_list_count;
1733 	struct completion	error_complete;
1734 	int			error_comps_pending;
1735 };
1736 
1737 /*
1738  * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1739  * @max_read_sge:  Maximum SGE elements per RDMA READ request.
1740  */
1741 struct ib_qp {
1742 	struct ib_device       *device;
1743 	struct ib_pd	       *pd;
1744 	struct ib_cq	       *send_cq;
1745 	struct ib_cq	       *recv_cq;
1746 	spinlock_t		mr_lock;
1747 	int			mrs_used;
1748 	struct list_head	rdma_mrs;
1749 	struct list_head	sig_mrs;
1750 	struct ib_srq	       *srq;
1751 	struct ib_xrcd	       *xrcd; /* XRC TGT QPs only */
1752 	struct list_head	xrcd_list;
1753 
1754 	/* count times opened, mcast attaches, flow attaches */
1755 	atomic_t		usecnt;
1756 	struct list_head	open_list;
1757 	struct ib_qp           *real_qp;
1758 	struct ib_uqp_object   *uobject;
1759 	void                  (*event_handler)(struct ib_event *, void *);
1760 	void		       *qp_context;
1761 	/* sgid_attrs associated with the AV's */
1762 	const struct ib_gid_attr *av_sgid_attr;
1763 	const struct ib_gid_attr *alt_path_sgid_attr;
1764 	u32			qp_num;
1765 	u32			max_write_sge;
1766 	u32			max_read_sge;
1767 	enum ib_qp_type		qp_type;
1768 	struct ib_rwq_ind_table *rwq_ind_tbl;
1769 	struct ib_qp_security  *qp_sec;
1770 	u8			port;
1771 
1772 	bool			integrity_en;
1773 	/*
1774 	 * Implementation details of the RDMA core, don't use in drivers:
1775 	 */
1776 	struct rdma_restrack_entry     res;
1777 
1778 	/* The counter the qp is bind to */
1779 	struct rdma_counter    *counter;
1780 };
1781 
1782 struct ib_dm {
1783 	struct ib_device  *device;
1784 	u32		   length;
1785 	u32		   flags;
1786 	struct ib_uobject *uobject;
1787 	atomic_t	   usecnt;
1788 };
1789 
1790 struct ib_mr {
1791 	struct ib_device  *device;
1792 	struct ib_pd	  *pd;
1793 	u32		   lkey;
1794 	u32		   rkey;
1795 	u64		   iova;
1796 	u64		   length;
1797 	unsigned int	   page_size;
1798 	enum ib_mr_type	   type;
1799 	bool		   need_inval;
1800 	union {
1801 		struct ib_uobject	*uobject;	/* user */
1802 		struct list_head	qp_entry;	/* FR */
1803 	};
1804 
1805 	struct ib_dm      *dm;
1806 	struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1807 	/*
1808 	 * Implementation details of the RDMA core, don't use in drivers:
1809 	 */
1810 	struct rdma_restrack_entry res;
1811 };
1812 
1813 struct ib_mw {
1814 	struct ib_device	*device;
1815 	struct ib_pd		*pd;
1816 	struct ib_uobject	*uobject;
1817 	u32			rkey;
1818 	enum ib_mw_type         type;
1819 };
1820 
1821 /* Supported steering options */
1822 enum ib_flow_attr_type {
1823 	/* steering according to rule specifications */
1824 	IB_FLOW_ATTR_NORMAL		= 0x0,
1825 	/* default unicast and multicast rule -
1826 	 * receive all Eth traffic which isn't steered to any QP
1827 	 */
1828 	IB_FLOW_ATTR_ALL_DEFAULT	= 0x1,
1829 	/* default multicast rule -
1830 	 * receive all Eth multicast traffic which isn't steered to any QP
1831 	 */
1832 	IB_FLOW_ATTR_MC_DEFAULT		= 0x2,
1833 	/* sniffer rule - receive all port traffic */
1834 	IB_FLOW_ATTR_SNIFFER		= 0x3
1835 };
1836 
1837 /* Supported steering header types */
1838 enum ib_flow_spec_type {
1839 	/* L2 headers*/
1840 	IB_FLOW_SPEC_ETH		= 0x20,
1841 	IB_FLOW_SPEC_IB			= 0x22,
1842 	/* L3 header*/
1843 	IB_FLOW_SPEC_IPV4		= 0x30,
1844 	IB_FLOW_SPEC_IPV6		= 0x31,
1845 	IB_FLOW_SPEC_ESP                = 0x34,
1846 	/* L4 headers*/
1847 	IB_FLOW_SPEC_TCP		= 0x40,
1848 	IB_FLOW_SPEC_UDP		= 0x41,
1849 	IB_FLOW_SPEC_VXLAN_TUNNEL	= 0x50,
1850 	IB_FLOW_SPEC_GRE		= 0x51,
1851 	IB_FLOW_SPEC_MPLS		= 0x60,
1852 	IB_FLOW_SPEC_INNER		= 0x100,
1853 	/* Actions */
1854 	IB_FLOW_SPEC_ACTION_TAG         = 0x1000,
1855 	IB_FLOW_SPEC_ACTION_DROP        = 0x1001,
1856 	IB_FLOW_SPEC_ACTION_HANDLE	= 0x1002,
1857 	IB_FLOW_SPEC_ACTION_COUNT       = 0x1003,
1858 };
1859 #define IB_FLOW_SPEC_LAYER_MASK	0xF0
1860 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1861 
1862 enum ib_flow_flags {
1863 	IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1864 	IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1865 	IB_FLOW_ATTR_FLAGS_RESERVED  = 1UL << 3  /* Must be last */
1866 };
1867 
1868 struct ib_flow_eth_filter {
1869 	u8	dst_mac[6];
1870 	u8	src_mac[6];
1871 	__be16	ether_type;
1872 	__be16	vlan_tag;
1873 	/* Must be last */
1874 	u8	real_sz[];
1875 };
1876 
1877 struct ib_flow_spec_eth {
1878 	u32			  type;
1879 	u16			  size;
1880 	struct ib_flow_eth_filter val;
1881 	struct ib_flow_eth_filter mask;
1882 };
1883 
1884 struct ib_flow_ib_filter {
1885 	__be16 dlid;
1886 	__u8   sl;
1887 	/* Must be last */
1888 	u8	real_sz[];
1889 };
1890 
1891 struct ib_flow_spec_ib {
1892 	u32			 type;
1893 	u16			 size;
1894 	struct ib_flow_ib_filter val;
1895 	struct ib_flow_ib_filter mask;
1896 };
1897 
1898 /* IPv4 header flags */
1899 enum ib_ipv4_flags {
1900 	IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1901 	IB_IPV4_MORE_FRAG = 0X4  /* For All fragmented packets except the
1902 				    last have this flag set */
1903 };
1904 
1905 struct ib_flow_ipv4_filter {
1906 	__be32	src_ip;
1907 	__be32	dst_ip;
1908 	u8	proto;
1909 	u8	tos;
1910 	u8	ttl;
1911 	u8	flags;
1912 	/* Must be last */
1913 	u8	real_sz[];
1914 };
1915 
1916 struct ib_flow_spec_ipv4 {
1917 	u32			   type;
1918 	u16			   size;
1919 	struct ib_flow_ipv4_filter val;
1920 	struct ib_flow_ipv4_filter mask;
1921 };
1922 
1923 struct ib_flow_ipv6_filter {
1924 	u8	src_ip[16];
1925 	u8	dst_ip[16];
1926 	__be32	flow_label;
1927 	u8	next_hdr;
1928 	u8	traffic_class;
1929 	u8	hop_limit;
1930 	/* Must be last */
1931 	u8	real_sz[];
1932 };
1933 
1934 struct ib_flow_spec_ipv6 {
1935 	u32			   type;
1936 	u16			   size;
1937 	struct ib_flow_ipv6_filter val;
1938 	struct ib_flow_ipv6_filter mask;
1939 };
1940 
1941 struct ib_flow_tcp_udp_filter {
1942 	__be16	dst_port;
1943 	__be16	src_port;
1944 	/* Must be last */
1945 	u8	real_sz[];
1946 };
1947 
1948 struct ib_flow_spec_tcp_udp {
1949 	u32			      type;
1950 	u16			      size;
1951 	struct ib_flow_tcp_udp_filter val;
1952 	struct ib_flow_tcp_udp_filter mask;
1953 };
1954 
1955 struct ib_flow_tunnel_filter {
1956 	__be32	tunnel_id;
1957 	u8	real_sz[];
1958 };
1959 
1960 /* ib_flow_spec_tunnel describes the Vxlan tunnel
1961  * the tunnel_id from val has the vni value
1962  */
1963 struct ib_flow_spec_tunnel {
1964 	u32			      type;
1965 	u16			      size;
1966 	struct ib_flow_tunnel_filter  val;
1967 	struct ib_flow_tunnel_filter  mask;
1968 };
1969 
1970 struct ib_flow_esp_filter {
1971 	__be32	spi;
1972 	__be32  seq;
1973 	/* Must be last */
1974 	u8	real_sz[];
1975 };
1976 
1977 struct ib_flow_spec_esp {
1978 	u32                           type;
1979 	u16			      size;
1980 	struct ib_flow_esp_filter     val;
1981 	struct ib_flow_esp_filter     mask;
1982 };
1983 
1984 struct ib_flow_gre_filter {
1985 	__be16 c_ks_res0_ver;
1986 	__be16 protocol;
1987 	__be32 key;
1988 	/* Must be last */
1989 	u8	real_sz[];
1990 };
1991 
1992 struct ib_flow_spec_gre {
1993 	u32                           type;
1994 	u16			      size;
1995 	struct ib_flow_gre_filter     val;
1996 	struct ib_flow_gre_filter     mask;
1997 };
1998 
1999 struct ib_flow_mpls_filter {
2000 	__be32 tag;
2001 	/* Must be last */
2002 	u8	real_sz[];
2003 };
2004 
2005 struct ib_flow_spec_mpls {
2006 	u32                           type;
2007 	u16			      size;
2008 	struct ib_flow_mpls_filter     val;
2009 	struct ib_flow_mpls_filter     mask;
2010 };
2011 
2012 struct ib_flow_spec_action_tag {
2013 	enum ib_flow_spec_type	      type;
2014 	u16			      size;
2015 	u32                           tag_id;
2016 };
2017 
2018 struct ib_flow_spec_action_drop {
2019 	enum ib_flow_spec_type	      type;
2020 	u16			      size;
2021 };
2022 
2023 struct ib_flow_spec_action_handle {
2024 	enum ib_flow_spec_type	      type;
2025 	u16			      size;
2026 	struct ib_flow_action	     *act;
2027 };
2028 
2029 enum ib_counters_description {
2030 	IB_COUNTER_PACKETS,
2031 	IB_COUNTER_BYTES,
2032 };
2033 
2034 struct ib_flow_spec_action_count {
2035 	enum ib_flow_spec_type type;
2036 	u16 size;
2037 	struct ib_counters *counters;
2038 };
2039 
2040 union ib_flow_spec {
2041 	struct {
2042 		u32			type;
2043 		u16			size;
2044 	};
2045 	struct ib_flow_spec_eth		eth;
2046 	struct ib_flow_spec_ib		ib;
2047 	struct ib_flow_spec_ipv4        ipv4;
2048 	struct ib_flow_spec_tcp_udp	tcp_udp;
2049 	struct ib_flow_spec_ipv6        ipv6;
2050 	struct ib_flow_spec_tunnel      tunnel;
2051 	struct ib_flow_spec_esp		esp;
2052 	struct ib_flow_spec_gre		gre;
2053 	struct ib_flow_spec_mpls	mpls;
2054 	struct ib_flow_spec_action_tag  flow_tag;
2055 	struct ib_flow_spec_action_drop drop;
2056 	struct ib_flow_spec_action_handle action;
2057 	struct ib_flow_spec_action_count flow_count;
2058 };
2059 
2060 struct ib_flow_attr {
2061 	enum ib_flow_attr_type type;
2062 	u16	     size;
2063 	u16	     priority;
2064 	u32	     flags;
2065 	u8	     num_of_specs;
2066 	u8	     port;
2067 	union ib_flow_spec flows[];
2068 };
2069 
2070 struct ib_flow {
2071 	struct ib_qp		*qp;
2072 	struct ib_device	*device;
2073 	struct ib_uobject	*uobject;
2074 };
2075 
2076 enum ib_flow_action_type {
2077 	IB_FLOW_ACTION_UNSPECIFIED,
2078 	IB_FLOW_ACTION_ESP = 1,
2079 };
2080 
2081 struct ib_flow_action_attrs_esp_keymats {
2082 	enum ib_uverbs_flow_action_esp_keymat			protocol;
2083 	union {
2084 		struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2085 	} keymat;
2086 };
2087 
2088 struct ib_flow_action_attrs_esp_replays {
2089 	enum ib_uverbs_flow_action_esp_replay			protocol;
2090 	union {
2091 		struct ib_uverbs_flow_action_esp_replay_bmp	bmp;
2092 	} replay;
2093 };
2094 
2095 enum ib_flow_action_attrs_esp_flags {
2096 	/* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2097 	 * This is done in order to share the same flags between user-space and
2098 	 * kernel and spare an unnecessary translation.
2099 	 */
2100 
2101 	/* Kernel flags */
2102 	IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED	= 1ULL << 32,
2103 	IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS	= 1ULL << 33,
2104 };
2105 
2106 struct ib_flow_spec_list {
2107 	struct ib_flow_spec_list	*next;
2108 	union ib_flow_spec		spec;
2109 };
2110 
2111 struct ib_flow_action_attrs_esp {
2112 	struct ib_flow_action_attrs_esp_keymats		*keymat;
2113 	struct ib_flow_action_attrs_esp_replays		*replay;
2114 	struct ib_flow_spec_list			*encap;
2115 	/* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2116 	 * Value of 0 is a valid value.
2117 	 */
2118 	u32						esn;
2119 	u32						spi;
2120 	u32						seq;
2121 	u32						tfc_pad;
2122 	/* Use enum ib_flow_action_attrs_esp_flags */
2123 	u64						flags;
2124 	u64						hard_limit_pkts;
2125 };
2126 
2127 struct ib_flow_action {
2128 	struct ib_device		*device;
2129 	struct ib_uobject		*uobject;
2130 	enum ib_flow_action_type	type;
2131 	atomic_t			usecnt;
2132 };
2133 
2134 struct ib_mad;
2135 struct ib_grh;
2136 
2137 enum ib_process_mad_flags {
2138 	IB_MAD_IGNORE_MKEY	= 1,
2139 	IB_MAD_IGNORE_BKEY	= 2,
2140 	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2141 };
2142 
2143 enum ib_mad_result {
2144 	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
2145 	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
2146 	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
2147 	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
2148 };
2149 
2150 struct ib_port_cache {
2151 	u64		      subnet_prefix;
2152 	struct ib_pkey_cache  *pkey;
2153 	struct ib_gid_table   *gid;
2154 	u8                     lmc;
2155 	enum ib_port_state     port_state;
2156 };
2157 
2158 struct ib_port_immutable {
2159 	int                           pkey_tbl_len;
2160 	int                           gid_tbl_len;
2161 	u32                           core_cap_flags;
2162 	u32                           max_mad_size;
2163 };
2164 
2165 struct ib_port_data {
2166 	struct ib_device *ib_dev;
2167 
2168 	struct ib_port_immutable immutable;
2169 
2170 	spinlock_t pkey_list_lock;
2171 	struct list_head pkey_list;
2172 
2173 	struct ib_port_cache cache;
2174 
2175 	spinlock_t netdev_lock;
2176 	struct net_device __rcu *netdev;
2177 	struct hlist_node ndev_hash_link;
2178 	struct rdma_port_counter port_counter;
2179 	struct rdma_hw_stats *hw_stats;
2180 };
2181 
2182 /* rdma netdev type - specifies protocol type */
2183 enum rdma_netdev_t {
2184 	RDMA_NETDEV_OPA_VNIC,
2185 	RDMA_NETDEV_IPOIB,
2186 };
2187 
2188 /**
2189  * struct rdma_netdev - rdma netdev
2190  * For cases where netstack interfacing is required.
2191  */
2192 struct rdma_netdev {
2193 	void              *clnt_priv;
2194 	struct ib_device  *hca;
2195 	u8                 port_num;
2196 	int                mtu;
2197 
2198 	/*
2199 	 * cleanup function must be specified.
2200 	 * FIXME: This is only used for OPA_VNIC and that usage should be
2201 	 * removed too.
2202 	 */
2203 	void (*free_rdma_netdev)(struct net_device *netdev);
2204 
2205 	/* control functions */
2206 	void (*set_id)(struct net_device *netdev, int id);
2207 	/* send packet */
2208 	int (*send)(struct net_device *dev, struct sk_buff *skb,
2209 		    struct ib_ah *address, u32 dqpn);
2210 	/* multicast */
2211 	int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2212 			    union ib_gid *gid, u16 mlid,
2213 			    int set_qkey, u32 qkey);
2214 	int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2215 			    union ib_gid *gid, u16 mlid);
2216 };
2217 
2218 struct rdma_netdev_alloc_params {
2219 	size_t sizeof_priv;
2220 	unsigned int txqs;
2221 	unsigned int rxqs;
2222 	void *param;
2223 
2224 	int (*initialize_rdma_netdev)(struct ib_device *device, u8 port_num,
2225 				      struct net_device *netdev, void *param);
2226 };
2227 
2228 struct ib_odp_counters {
2229 	atomic64_t faults;
2230 	atomic64_t invalidations;
2231 	atomic64_t prefetch;
2232 };
2233 
2234 struct ib_counters {
2235 	struct ib_device	*device;
2236 	struct ib_uobject	*uobject;
2237 	/* num of objects attached */
2238 	atomic_t	usecnt;
2239 };
2240 
2241 struct ib_counters_read_attr {
2242 	u64	*counters_buff;
2243 	u32	ncounters;
2244 	u32	flags; /* use enum ib_read_counters_flags */
2245 };
2246 
2247 struct uverbs_attr_bundle;
2248 struct iw_cm_id;
2249 struct iw_cm_conn_param;
2250 
2251 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member)                      \
2252 	.size_##ib_struct =                                                    \
2253 		(sizeof(struct drv_struct) +                                   \
2254 		 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) +      \
2255 		 BUILD_BUG_ON_ZERO(                                            \
2256 			 !__same_type(((struct drv_struct *)NULL)->member,     \
2257 				      struct ib_struct)))
2258 
2259 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp)                         \
2260 	((struct ib_type *)kzalloc(ib_dev->ops.size_##ib_type, gfp))
2261 
2262 #define rdma_zalloc_drv_obj(ib_dev, ib_type)                                   \
2263 	rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2264 
2265 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2266 
2267 struct rdma_user_mmap_entry {
2268 	struct kref ref;
2269 	struct ib_ucontext *ucontext;
2270 	unsigned long start_pgoff;
2271 	size_t npages;
2272 	bool driver_removed;
2273 };
2274 
2275 /* Return the offset (in bytes) the user should pass to libc's mmap() */
2276 static inline u64
2277 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2278 {
2279 	return (u64)entry->start_pgoff << PAGE_SHIFT;
2280 }
2281 
2282 /**
2283  * struct ib_device_ops - InfiniBand device operations
2284  * This structure defines all the InfiniBand device operations, providers will
2285  * need to define the supported operations, otherwise they will be set to null.
2286  */
2287 struct ib_device_ops {
2288 	struct module *owner;
2289 	enum rdma_driver_id driver_id;
2290 	u32 uverbs_abi_ver;
2291 	unsigned int uverbs_no_driver_id_binding:1;
2292 
2293 	int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2294 			 const struct ib_send_wr **bad_send_wr);
2295 	int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2296 			 const struct ib_recv_wr **bad_recv_wr);
2297 	void (*drain_rq)(struct ib_qp *qp);
2298 	void (*drain_sq)(struct ib_qp *qp);
2299 	int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2300 	int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2301 	int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2302 	int (*req_ncomp_notif)(struct ib_cq *cq, int wc_cnt);
2303 	int (*post_srq_recv)(struct ib_srq *srq,
2304 			     const struct ib_recv_wr *recv_wr,
2305 			     const struct ib_recv_wr **bad_recv_wr);
2306 	int (*process_mad)(struct ib_device *device, int process_mad_flags,
2307 			   u8 port_num, const struct ib_wc *in_wc,
2308 			   const struct ib_grh *in_grh,
2309 			   const struct ib_mad *in_mad, struct ib_mad *out_mad,
2310 			   size_t *out_mad_size, u16 *out_mad_pkey_index);
2311 	int (*query_device)(struct ib_device *device,
2312 			    struct ib_device_attr *device_attr,
2313 			    struct ib_udata *udata);
2314 	int (*modify_device)(struct ib_device *device, int device_modify_mask,
2315 			     struct ib_device_modify *device_modify);
2316 	void (*get_dev_fw_str)(struct ib_device *device, char *str);
2317 	const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2318 						     int comp_vector);
2319 	int (*query_port)(struct ib_device *device, u8 port_num,
2320 			  struct ib_port_attr *port_attr);
2321 	int (*modify_port)(struct ib_device *device, u8 port_num,
2322 			   int port_modify_mask,
2323 			   struct ib_port_modify *port_modify);
2324 	/**
2325 	 * The following mandatory functions are used only at device
2326 	 * registration.  Keep functions such as these at the end of this
2327 	 * structure to avoid cache line misses when accessing struct ib_device
2328 	 * in fast paths.
2329 	 */
2330 	int (*get_port_immutable)(struct ib_device *device, u8 port_num,
2331 				  struct ib_port_immutable *immutable);
2332 	enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2333 					       u8 port_num);
2334 	/**
2335 	 * When calling get_netdev, the HW vendor's driver should return the
2336 	 * net device of device @device at port @port_num or NULL if such
2337 	 * a net device doesn't exist. The vendor driver should call dev_hold
2338 	 * on this net device. The HW vendor's device driver must guarantee
2339 	 * that this function returns NULL before the net device has finished
2340 	 * NETDEV_UNREGISTER state.
2341 	 */
2342 	struct net_device *(*get_netdev)(struct ib_device *device, u8 port_num);
2343 	/**
2344 	 * rdma netdev operation
2345 	 *
2346 	 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2347 	 * must return -EOPNOTSUPP if it doesn't support the specified type.
2348 	 */
2349 	struct net_device *(*alloc_rdma_netdev)(
2350 		struct ib_device *device, u8 port_num, enum rdma_netdev_t type,
2351 		const char *name, unsigned char name_assign_type,
2352 		void (*setup)(struct net_device *));
2353 
2354 	int (*rdma_netdev_get_params)(struct ib_device *device, u8 port_num,
2355 				      enum rdma_netdev_t type,
2356 				      struct rdma_netdev_alloc_params *params);
2357 	/**
2358 	 * query_gid should be return GID value for @device, when @port_num
2359 	 * link layer is either IB or iWarp. It is no-op if @port_num port
2360 	 * is RoCE link layer.
2361 	 */
2362 	int (*query_gid)(struct ib_device *device, u8 port_num, int index,
2363 			 union ib_gid *gid);
2364 	/**
2365 	 * When calling add_gid, the HW vendor's driver should add the gid
2366 	 * of device of port at gid index available at @attr. Meta-info of
2367 	 * that gid (for example, the network device related to this gid) is
2368 	 * available at @attr. @context allows the HW vendor driver to store
2369 	 * extra information together with a GID entry. The HW vendor driver may
2370 	 * allocate memory to contain this information and store it in @context
2371 	 * when a new GID entry is written to. Params are consistent until the
2372 	 * next call of add_gid or delete_gid. The function should return 0 on
2373 	 * success or error otherwise. The function could be called
2374 	 * concurrently for different ports. This function is only called when
2375 	 * roce_gid_table is used.
2376 	 */
2377 	int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2378 	/**
2379 	 * When calling del_gid, the HW vendor's driver should delete the
2380 	 * gid of device @device at gid index gid_index of port port_num
2381 	 * available in @attr.
2382 	 * Upon the deletion of a GID entry, the HW vendor must free any
2383 	 * allocated memory. The caller will clear @context afterwards.
2384 	 * This function is only called when roce_gid_table is used.
2385 	 */
2386 	int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2387 	int (*query_pkey)(struct ib_device *device, u8 port_num, u16 index,
2388 			  u16 *pkey);
2389 	int (*alloc_ucontext)(struct ib_ucontext *context,
2390 			      struct ib_udata *udata);
2391 	void (*dealloc_ucontext)(struct ib_ucontext *context);
2392 	int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2393 	/**
2394 	 * This will be called once refcount of an entry in mmap_xa reaches
2395 	 * zero. The type of the memory that was mapped may differ between
2396 	 * entries and is opaque to the rdma_user_mmap interface.
2397 	 * Therefore needs to be implemented by the driver in mmap_free.
2398 	 */
2399 	void (*mmap_free)(struct rdma_user_mmap_entry *entry);
2400 	void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2401 	int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2402 	int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2403 	int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2404 			 struct ib_udata *udata);
2405 	int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2406 	int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2407 	int (*destroy_ah)(struct ib_ah *ah, u32 flags);
2408 	int (*create_srq)(struct ib_srq *srq,
2409 			  struct ib_srq_init_attr *srq_init_attr,
2410 			  struct ib_udata *udata);
2411 	int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2412 			  enum ib_srq_attr_mask srq_attr_mask,
2413 			  struct ib_udata *udata);
2414 	int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2415 	int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2416 	struct ib_qp *(*create_qp)(struct ib_pd *pd,
2417 				   struct ib_qp_init_attr *qp_init_attr,
2418 				   struct ib_udata *udata);
2419 	int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2420 			 int qp_attr_mask, struct ib_udata *udata);
2421 	int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2422 			int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2423 	int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2424 	int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2425 			 struct ib_udata *udata);
2426 	int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2427 	int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2428 	int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2429 	struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2430 	struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2431 				     u64 virt_addr, int mr_access_flags,
2432 				     struct ib_udata *udata);
2433 	int (*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start, u64 length,
2434 			     u64 virt_addr, int mr_access_flags,
2435 			     struct ib_pd *pd, struct ib_udata *udata);
2436 	int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2437 	struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2438 				  u32 max_num_sg);
2439 	struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2440 					    u32 max_num_data_sg,
2441 					    u32 max_num_meta_sg);
2442 	int (*advise_mr)(struct ib_pd *pd,
2443 			 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2444 			 struct ib_sge *sg_list, u32 num_sge,
2445 			 struct uverbs_attr_bundle *attrs);
2446 	int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2447 			 unsigned int *sg_offset);
2448 	int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2449 			       struct ib_mr_status *mr_status);
2450 	int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata);
2451 	int (*dealloc_mw)(struct ib_mw *mw);
2452 	int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2453 	int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2454 	int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2455 	int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2456 	struct ib_flow *(*create_flow)(struct ib_qp *qp,
2457 				       struct ib_flow_attr *flow_attr,
2458 				       struct ib_udata *udata);
2459 	int (*destroy_flow)(struct ib_flow *flow_id);
2460 	struct ib_flow_action *(*create_flow_action_esp)(
2461 		struct ib_device *device,
2462 		const struct ib_flow_action_attrs_esp *attr,
2463 		struct uverbs_attr_bundle *attrs);
2464 	int (*destroy_flow_action)(struct ib_flow_action *action);
2465 	int (*modify_flow_action_esp)(
2466 		struct ib_flow_action *action,
2467 		const struct ib_flow_action_attrs_esp *attr,
2468 		struct uverbs_attr_bundle *attrs);
2469 	int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2470 				 int state);
2471 	int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2472 			     struct ifla_vf_info *ivf);
2473 	int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2474 			    struct ifla_vf_stats *stats);
2475 	int (*get_vf_guid)(struct ib_device *device, int vf, u8 port,
2476 			    struct ifla_vf_guid *node_guid,
2477 			    struct ifla_vf_guid *port_guid);
2478 	int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2479 			   int type);
2480 	struct ib_wq *(*create_wq)(struct ib_pd *pd,
2481 				   struct ib_wq_init_attr *init_attr,
2482 				   struct ib_udata *udata);
2483 	int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2484 	int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2485 			 u32 wq_attr_mask, struct ib_udata *udata);
2486 	int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table,
2487 				    struct ib_rwq_ind_table_init_attr *init_attr,
2488 				    struct ib_udata *udata);
2489 	int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2490 	struct ib_dm *(*alloc_dm)(struct ib_device *device,
2491 				  struct ib_ucontext *context,
2492 				  struct ib_dm_alloc_attr *attr,
2493 				  struct uverbs_attr_bundle *attrs);
2494 	int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2495 	struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2496 				   struct ib_dm_mr_attr *attr,
2497 				   struct uverbs_attr_bundle *attrs);
2498 	int (*create_counters)(struct ib_counters *counters,
2499 			       struct uverbs_attr_bundle *attrs);
2500 	int (*destroy_counters)(struct ib_counters *counters);
2501 	int (*read_counters)(struct ib_counters *counters,
2502 			     struct ib_counters_read_attr *counters_read_attr,
2503 			     struct uverbs_attr_bundle *attrs);
2504 	int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2505 			    int data_sg_nents, unsigned int *data_sg_offset,
2506 			    struct scatterlist *meta_sg, int meta_sg_nents,
2507 			    unsigned int *meta_sg_offset);
2508 
2509 	/**
2510 	 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2511 	 *   driver initialized data.  The struct is kfree()'ed by the sysfs
2512 	 *   core when the device is removed.  A lifespan of -1 in the return
2513 	 *   struct tells the core to set a default lifespan.
2514 	 */
2515 	struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
2516 						u8 port_num);
2517 	/**
2518 	 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2519 	 * @index - The index in the value array we wish to have updated, or
2520 	 *   num_counters if we want all stats updated
2521 	 * Return codes -
2522 	 *   < 0 - Error, no counters updated
2523 	 *   index - Updated the single counter pointed to by index
2524 	 *   num_counters - Updated all counters (will reset the timestamp
2525 	 *     and prevent further calls for lifespan milliseconds)
2526 	 * Drivers are allowed to update all counters in leiu of just the
2527 	 *   one given in index at their option
2528 	 */
2529 	int (*get_hw_stats)(struct ib_device *device,
2530 			    struct rdma_hw_stats *stats, u8 port, int index);
2531 	/*
2532 	 * This function is called once for each port when a ib device is
2533 	 * registered.
2534 	 */
2535 	int (*init_port)(struct ib_device *device, u8 port_num,
2536 			 struct kobject *port_sysfs);
2537 	/**
2538 	 * Allows rdma drivers to add their own restrack attributes.
2539 	 */
2540 	int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2541 	int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr);
2542 	int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq);
2543 	int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq);
2544 	int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp);
2545 	int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp);
2546 	int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id);
2547 
2548 	/* Device lifecycle callbacks */
2549 	/*
2550 	 * Called after the device becomes registered, before clients are
2551 	 * attached
2552 	 */
2553 	int (*enable_driver)(struct ib_device *dev);
2554 	/*
2555 	 * This is called as part of ib_dealloc_device().
2556 	 */
2557 	void (*dealloc_driver)(struct ib_device *dev);
2558 
2559 	/* iWarp CM callbacks */
2560 	void (*iw_add_ref)(struct ib_qp *qp);
2561 	void (*iw_rem_ref)(struct ib_qp *qp);
2562 	struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2563 	int (*iw_connect)(struct iw_cm_id *cm_id,
2564 			  struct iw_cm_conn_param *conn_param);
2565 	int (*iw_accept)(struct iw_cm_id *cm_id,
2566 			 struct iw_cm_conn_param *conn_param);
2567 	int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2568 			 u8 pdata_len);
2569 	int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2570 	int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
2571 	/**
2572 	 * counter_bind_qp - Bind a QP to a counter.
2573 	 * @counter - The counter to be bound. If counter->id is zero then
2574 	 *   the driver needs to allocate a new counter and set counter->id
2575 	 */
2576 	int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp);
2577 	/**
2578 	 * counter_unbind_qp - Unbind the qp from the dynamically-allocated
2579 	 *   counter and bind it onto the default one
2580 	 */
2581 	int (*counter_unbind_qp)(struct ib_qp *qp);
2582 	/**
2583 	 * counter_dealloc -De-allocate the hw counter
2584 	 */
2585 	int (*counter_dealloc)(struct rdma_counter *counter);
2586 	/**
2587 	 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2588 	 * the driver initialized data.
2589 	 */
2590 	struct rdma_hw_stats *(*counter_alloc_stats)(
2591 		struct rdma_counter *counter);
2592 	/**
2593 	 * counter_update_stats - Query the stats value of this counter
2594 	 */
2595 	int (*counter_update_stats)(struct rdma_counter *counter);
2596 
2597 	/**
2598 	 * Allows rdma drivers to add their own restrack attributes
2599 	 * dumped via 'rdma stat' iproute2 command.
2600 	 */
2601 	int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2602 
2603 	/* query driver for its ucontext properties */
2604 	int (*query_ucontext)(struct ib_ucontext *context,
2605 			      struct uverbs_attr_bundle *attrs);
2606 
2607 	DECLARE_RDMA_OBJ_SIZE(ib_ah);
2608 	DECLARE_RDMA_OBJ_SIZE(ib_counters);
2609 	DECLARE_RDMA_OBJ_SIZE(ib_cq);
2610 	DECLARE_RDMA_OBJ_SIZE(ib_mw);
2611 	DECLARE_RDMA_OBJ_SIZE(ib_pd);
2612 	DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table);
2613 	DECLARE_RDMA_OBJ_SIZE(ib_srq);
2614 	DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2615 	DECLARE_RDMA_OBJ_SIZE(ib_xrcd);
2616 };
2617 
2618 struct ib_core_device {
2619 	/* device must be the first element in structure until,
2620 	 * union of ib_core_device and device exists in ib_device.
2621 	 */
2622 	struct device dev;
2623 	possible_net_t rdma_net;
2624 	struct kobject *ports_kobj;
2625 	struct list_head port_list;
2626 	struct ib_device *owner; /* reach back to owner ib_device */
2627 };
2628 
2629 struct rdma_restrack_root;
2630 struct ib_device {
2631 	/* Do not access @dma_device directly from ULP nor from HW drivers. */
2632 	struct device                *dma_device;
2633 	struct ib_device_ops	     ops;
2634 	char                          name[IB_DEVICE_NAME_MAX];
2635 	struct rcu_head rcu_head;
2636 
2637 	struct list_head              event_handler_list;
2638 	/* Protects event_handler_list */
2639 	struct rw_semaphore event_handler_rwsem;
2640 
2641 	/* Protects QP's event_handler calls and open_qp list */
2642 	spinlock_t qp_open_list_lock;
2643 
2644 	struct rw_semaphore	      client_data_rwsem;
2645 	struct xarray                 client_data;
2646 	struct mutex                  unregistration_lock;
2647 
2648 	/* Synchronize GID, Pkey cache entries, subnet prefix, LMC */
2649 	rwlock_t cache_lock;
2650 	/**
2651 	 * port_data is indexed by port number
2652 	 */
2653 	struct ib_port_data *port_data;
2654 
2655 	int			      num_comp_vectors;
2656 
2657 	union {
2658 		struct device		dev;
2659 		struct ib_core_device	coredev;
2660 	};
2661 
2662 	/* First group for device attributes,
2663 	 * Second group for driver provided attributes (optional).
2664 	 * It is NULL terminated array.
2665 	 */
2666 	const struct attribute_group	*groups[3];
2667 
2668 	u64			     uverbs_cmd_mask;
2669 	u64			     uverbs_ex_cmd_mask;
2670 
2671 	char			     node_desc[IB_DEVICE_NODE_DESC_MAX];
2672 	__be64			     node_guid;
2673 	u32			     local_dma_lkey;
2674 	u16                          is_switch:1;
2675 	/* Indicates kernel verbs support, should not be used in drivers */
2676 	u16                          kverbs_provider:1;
2677 	/* CQ adaptive moderation (RDMA DIM) */
2678 	u16                          use_cq_dim:1;
2679 	u8                           node_type;
2680 	u8                           phys_port_cnt;
2681 	struct ib_device_attr        attrs;
2682 	struct attribute_group	     *hw_stats_ag;
2683 	struct rdma_hw_stats         *hw_stats;
2684 
2685 #ifdef CONFIG_CGROUP_RDMA
2686 	struct rdmacg_device         cg_device;
2687 #endif
2688 
2689 	u32                          index;
2690 
2691 	spinlock_t                   cq_pools_lock;
2692 	struct list_head             cq_pools[IB_POLL_LAST_POOL_TYPE + 1];
2693 
2694 	struct rdma_restrack_root *res;
2695 
2696 	const struct uapi_definition   *driver_def;
2697 
2698 	/*
2699 	 * Positive refcount indicates that the device is currently
2700 	 * registered and cannot be unregistered.
2701 	 */
2702 	refcount_t refcount;
2703 	struct completion unreg_completion;
2704 	struct work_struct unregistration_work;
2705 
2706 	const struct rdma_link_ops *link_ops;
2707 
2708 	/* Protects compat_devs xarray modifications */
2709 	struct mutex compat_devs_mutex;
2710 	/* Maintains compat devices for each net namespace */
2711 	struct xarray compat_devs;
2712 
2713 	/* Used by iWarp CM */
2714 	char iw_ifname[IFNAMSIZ];
2715 	u32 iw_driver_flags;
2716 	u32 lag_flags;
2717 };
2718 
2719 struct ib_client_nl_info;
2720 struct ib_client {
2721 	const char *name;
2722 	int (*add)(struct ib_device *ibdev);
2723 	void (*remove)(struct ib_device *, void *client_data);
2724 	void (*rename)(struct ib_device *dev, void *client_data);
2725 	int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2726 			   struct ib_client_nl_info *res);
2727 	int (*get_global_nl_info)(struct ib_client_nl_info *res);
2728 
2729 	/* Returns the net_dev belonging to this ib_client and matching the
2730 	 * given parameters.
2731 	 * @dev:	 An RDMA device that the net_dev use for communication.
2732 	 * @port:	 A physical port number on the RDMA device.
2733 	 * @pkey:	 P_Key that the net_dev uses if applicable.
2734 	 * @gid:	 A GID that the net_dev uses to communicate.
2735 	 * @addr:	 An IP address the net_dev is configured with.
2736 	 * @client_data: The device's client data set by ib_set_client_data().
2737 	 *
2738 	 * An ib_client that implements a net_dev on top of RDMA devices
2739 	 * (such as IP over IB) should implement this callback, allowing the
2740 	 * rdma_cm module to find the right net_dev for a given request.
2741 	 *
2742 	 * The caller is responsible for calling dev_put on the returned
2743 	 * netdev. */
2744 	struct net_device *(*get_net_dev_by_params)(
2745 			struct ib_device *dev,
2746 			u8 port,
2747 			u16 pkey,
2748 			const union ib_gid *gid,
2749 			const struct sockaddr *addr,
2750 			void *client_data);
2751 
2752 	refcount_t uses;
2753 	struct completion uses_zero;
2754 	u32 client_id;
2755 
2756 	/* kverbs are not required by the client */
2757 	u8 no_kverbs_req:1;
2758 };
2759 
2760 /*
2761  * IB block DMA iterator
2762  *
2763  * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2764  * to a HW supported page size.
2765  */
2766 struct ib_block_iter {
2767 	/* internal states */
2768 	struct scatterlist *__sg;	/* sg holding the current aligned block */
2769 	dma_addr_t __dma_addr;		/* unaligned DMA address of this block */
2770 	unsigned int __sg_nents;	/* number of SG entries */
2771 	unsigned int __sg_advance;	/* number of bytes to advance in sg in next step */
2772 	unsigned int __pg_bit;		/* alignment of current block */
2773 };
2774 
2775 struct ib_device *_ib_alloc_device(size_t size);
2776 #define ib_alloc_device(drv_struct, member)                                    \
2777 	container_of(_ib_alloc_device(sizeof(struct drv_struct) +              \
2778 				      BUILD_BUG_ON_ZERO(offsetof(              \
2779 					      struct drv_struct, member))),    \
2780 		     struct drv_struct, member)
2781 
2782 void ib_dealloc_device(struct ib_device *device);
2783 
2784 void ib_get_device_fw_str(struct ib_device *device, char *str);
2785 
2786 int ib_register_device(struct ib_device *device, const char *name,
2787 		       struct device *dma_device);
2788 void ib_unregister_device(struct ib_device *device);
2789 void ib_unregister_driver(enum rdma_driver_id driver_id);
2790 void ib_unregister_device_and_put(struct ib_device *device);
2791 void ib_unregister_device_queued(struct ib_device *ib_dev);
2792 
2793 int ib_register_client   (struct ib_client *client);
2794 void ib_unregister_client(struct ib_client *client);
2795 
2796 void __rdma_block_iter_start(struct ib_block_iter *biter,
2797 			     struct scatterlist *sglist,
2798 			     unsigned int nents,
2799 			     unsigned long pgsz);
2800 bool __rdma_block_iter_next(struct ib_block_iter *biter);
2801 
2802 /**
2803  * rdma_block_iter_dma_address - get the aligned dma address of the current
2804  * block held by the block iterator.
2805  * @biter: block iterator holding the memory block
2806  */
2807 static inline dma_addr_t
2808 rdma_block_iter_dma_address(struct ib_block_iter *biter)
2809 {
2810 	return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2811 }
2812 
2813 /**
2814  * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2815  * @sglist: sglist to iterate over
2816  * @biter: block iterator holding the memory block
2817  * @nents: maximum number of sg entries to iterate over
2818  * @pgsz: best HW supported page size to use
2819  *
2820  * Callers may use rdma_block_iter_dma_address() to get each
2821  * blocks aligned DMA address.
2822  */
2823 #define rdma_for_each_block(sglist, biter, nents, pgsz)		\
2824 	for (__rdma_block_iter_start(biter, sglist, nents,	\
2825 				     pgsz);			\
2826 	     __rdma_block_iter_next(biter);)
2827 
2828 /**
2829  * ib_get_client_data - Get IB client context
2830  * @device:Device to get context for
2831  * @client:Client to get context for
2832  *
2833  * ib_get_client_data() returns the client context data set with
2834  * ib_set_client_data(). This can only be called while the client is
2835  * registered to the device, once the ib_client remove() callback returns this
2836  * cannot be called.
2837  */
2838 static inline void *ib_get_client_data(struct ib_device *device,
2839 				       struct ib_client *client)
2840 {
2841 	return xa_load(&device->client_data, client->client_id);
2842 }
2843 void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
2844 			 void *data);
2845 void ib_set_device_ops(struct ib_device *device,
2846 		       const struct ib_device_ops *ops);
2847 
2848 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2849 		      unsigned long pfn, unsigned long size, pgprot_t prot,
2850 		      struct rdma_user_mmap_entry *entry);
2851 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
2852 				struct rdma_user_mmap_entry *entry,
2853 				size_t length);
2854 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
2855 				      struct rdma_user_mmap_entry *entry,
2856 				      size_t length, u32 min_pgoff,
2857 				      u32 max_pgoff);
2858 
2859 struct rdma_user_mmap_entry *
2860 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
2861 			       unsigned long pgoff);
2862 struct rdma_user_mmap_entry *
2863 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
2864 			 struct vm_area_struct *vma);
2865 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
2866 
2867 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
2868 
2869 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2870 {
2871 	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2872 }
2873 
2874 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2875 {
2876 	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2877 }
2878 
2879 static inline bool ib_is_buffer_cleared(const void __user *p,
2880 					size_t len)
2881 {
2882 	bool ret;
2883 	u8 *buf;
2884 
2885 	if (len > USHRT_MAX)
2886 		return false;
2887 
2888 	buf = memdup_user(p, len);
2889 	if (IS_ERR(buf))
2890 		return false;
2891 
2892 	ret = !memchr_inv(buf, 0, len);
2893 	kfree(buf);
2894 	return ret;
2895 }
2896 
2897 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2898 				       size_t offset,
2899 				       size_t len)
2900 {
2901 	return ib_is_buffer_cleared(udata->inbuf + offset, len);
2902 }
2903 
2904 /**
2905  * ib_is_destroy_retryable - Check whether the uobject destruction
2906  * is retryable.
2907  * @ret: The initial destruction return code
2908  * @why: remove reason
2909  * @uobj: The uobject that is destroyed
2910  *
2911  * This function is a helper function that IB layer and low-level drivers
2912  * can use to consider whether the destruction of the given uobject is
2913  * retry-able.
2914  * It checks the original return code, if it wasn't success the destruction
2915  * is retryable according to the ucontext state (i.e. cleanup_retryable) and
2916  * the remove reason. (i.e. why).
2917  * Must be called with the object locked for destroy.
2918  */
2919 static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why,
2920 					   struct ib_uobject *uobj)
2921 {
2922 	return ret && (why == RDMA_REMOVE_DESTROY ||
2923 		       uobj->context->cleanup_retryable);
2924 }
2925 
2926 /**
2927  * ib_destroy_usecnt - Called during destruction to check the usecnt
2928  * @usecnt: The usecnt atomic
2929  * @why: remove reason
2930  * @uobj: The uobject that is destroyed
2931  *
2932  * Non-zero usecnts will block destruction unless destruction was triggered by
2933  * a ucontext cleanup.
2934  */
2935 static inline int ib_destroy_usecnt(atomic_t *usecnt,
2936 				    enum rdma_remove_reason why,
2937 				    struct ib_uobject *uobj)
2938 {
2939 	if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj))
2940 		return -EBUSY;
2941 	return 0;
2942 }
2943 
2944 /**
2945  * ib_modify_qp_is_ok - Check that the supplied attribute mask
2946  * contains all required attributes and no attributes not allowed for
2947  * the given QP state transition.
2948  * @cur_state: Current QP state
2949  * @next_state: Next QP state
2950  * @type: QP type
2951  * @mask: Mask of supplied QP attributes
2952  *
2953  * This function is a helper function that a low-level driver's
2954  * modify_qp method can use to validate the consumer's input.  It
2955  * checks that cur_state and next_state are valid QP states, that a
2956  * transition from cur_state to next_state is allowed by the IB spec,
2957  * and that the attribute mask supplied is allowed for the transition.
2958  */
2959 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2960 			enum ib_qp_type type, enum ib_qp_attr_mask mask);
2961 
2962 void ib_register_event_handler(struct ib_event_handler *event_handler);
2963 void ib_unregister_event_handler(struct ib_event_handler *event_handler);
2964 void ib_dispatch_event(const struct ib_event *event);
2965 
2966 int ib_query_port(struct ib_device *device,
2967 		  u8 port_num, struct ib_port_attr *port_attr);
2968 
2969 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2970 					       u8 port_num);
2971 
2972 /**
2973  * rdma_cap_ib_switch - Check if the device is IB switch
2974  * @device: Device to check
2975  *
2976  * Device driver is responsible for setting is_switch bit on
2977  * in ib_device structure at init time.
2978  *
2979  * Return: true if the device is IB switch.
2980  */
2981 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2982 {
2983 	return device->is_switch;
2984 }
2985 
2986 /**
2987  * rdma_start_port - Return the first valid port number for the device
2988  * specified
2989  *
2990  * @device: Device to be checked
2991  *
2992  * Return start port number
2993  */
2994 static inline u8 rdma_start_port(const struct ib_device *device)
2995 {
2996 	return rdma_cap_ib_switch(device) ? 0 : 1;
2997 }
2998 
2999 /**
3000  * rdma_for_each_port - Iterate over all valid port numbers of the IB device
3001  * @device - The struct ib_device * to iterate over
3002  * @iter - The unsigned int to store the port number
3003  */
3004 #define rdma_for_each_port(device, iter)                                       \
3005 	for (iter = rdma_start_port(device + BUILD_BUG_ON_ZERO(!__same_type(   \
3006 						     unsigned int, iter)));    \
3007 	     iter <= rdma_end_port(device); (iter)++)
3008 
3009 /**
3010  * rdma_end_port - Return the last valid port number for the device
3011  * specified
3012  *
3013  * @device: Device to be checked
3014  *
3015  * Return last port number
3016  */
3017 static inline u8 rdma_end_port(const struct ib_device *device)
3018 {
3019 	return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
3020 }
3021 
3022 static inline int rdma_is_port_valid(const struct ib_device *device,
3023 				     unsigned int port)
3024 {
3025 	return (port >= rdma_start_port(device) &&
3026 		port <= rdma_end_port(device));
3027 }
3028 
3029 static inline bool rdma_is_grh_required(const struct ib_device *device,
3030 					u8 port_num)
3031 {
3032 	return device->port_data[port_num].immutable.core_cap_flags &
3033 	       RDMA_CORE_PORT_IB_GRH_REQUIRED;
3034 }
3035 
3036 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
3037 {
3038 	return device->port_data[port_num].immutable.core_cap_flags &
3039 	       RDMA_CORE_CAP_PROT_IB;
3040 }
3041 
3042 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
3043 {
3044 	return device->port_data[port_num].immutable.core_cap_flags &
3045 	       (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
3046 }
3047 
3048 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
3049 {
3050 	return device->port_data[port_num].immutable.core_cap_flags &
3051 	       RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
3052 }
3053 
3054 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
3055 {
3056 	return device->port_data[port_num].immutable.core_cap_flags &
3057 	       RDMA_CORE_CAP_PROT_ROCE;
3058 }
3059 
3060 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
3061 {
3062 	return device->port_data[port_num].immutable.core_cap_flags &
3063 	       RDMA_CORE_CAP_PROT_IWARP;
3064 }
3065 
3066 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
3067 {
3068 	return rdma_protocol_ib(device, port_num) ||
3069 		rdma_protocol_roce(device, port_num);
3070 }
3071 
3072 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
3073 {
3074 	return device->port_data[port_num].immutable.core_cap_flags &
3075 	       RDMA_CORE_CAP_PROT_RAW_PACKET;
3076 }
3077 
3078 static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
3079 {
3080 	return device->port_data[port_num].immutable.core_cap_flags &
3081 	       RDMA_CORE_CAP_PROT_USNIC;
3082 }
3083 
3084 /**
3085  * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
3086  * Management Datagrams.
3087  * @device: Device to check
3088  * @port_num: Port number to check
3089  *
3090  * Management Datagrams (MAD) are a required part of the InfiniBand
3091  * specification and are supported on all InfiniBand devices.  A slightly
3092  * extended version are also supported on OPA interfaces.
3093  *
3094  * Return: true if the port supports sending/receiving of MAD packets.
3095  */
3096 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
3097 {
3098 	return device->port_data[port_num].immutable.core_cap_flags &
3099 	       RDMA_CORE_CAP_IB_MAD;
3100 }
3101 
3102 /**
3103  * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3104  * Management Datagrams.
3105  * @device: Device to check
3106  * @port_num: Port number to check
3107  *
3108  * Intel OmniPath devices extend and/or replace the InfiniBand Management
3109  * datagrams with their own versions.  These OPA MADs share many but not all of
3110  * the characteristics of InfiniBand MADs.
3111  *
3112  * OPA MADs differ in the following ways:
3113  *
3114  *    1) MADs are variable size up to 2K
3115  *       IBTA defined MADs remain fixed at 256 bytes
3116  *    2) OPA SMPs must carry valid PKeys
3117  *    3) OPA SMP packets are a different format
3118  *
3119  * Return: true if the port supports OPA MAD packet formats.
3120  */
3121 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
3122 {
3123 	return device->port_data[port_num].immutable.core_cap_flags &
3124 		RDMA_CORE_CAP_OPA_MAD;
3125 }
3126 
3127 /**
3128  * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3129  * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3130  * @device: Device to check
3131  * @port_num: Port number to check
3132  *
3133  * Each InfiniBand node is required to provide a Subnet Management Agent
3134  * that the subnet manager can access.  Prior to the fabric being fully
3135  * configured by the subnet manager, the SMA is accessed via a well known
3136  * interface called the Subnet Management Interface (SMI).  This interface
3137  * uses directed route packets to communicate with the SM to get around the
3138  * chicken and egg problem of the SM needing to know what's on the fabric
3139  * in order to configure the fabric, and needing to configure the fabric in
3140  * order to send packets to the devices on the fabric.  These directed
3141  * route packets do not need the fabric fully configured in order to reach
3142  * their destination.  The SMI is the only method allowed to send
3143  * directed route packets on an InfiniBand fabric.
3144  *
3145  * Return: true if the port provides an SMI.
3146  */
3147 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
3148 {
3149 	return device->port_data[port_num].immutable.core_cap_flags &
3150 	       RDMA_CORE_CAP_IB_SMI;
3151 }
3152 
3153 /**
3154  * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3155  * Communication Manager.
3156  * @device: Device to check
3157  * @port_num: Port number to check
3158  *
3159  * The InfiniBand Communication Manager is one of many pre-defined General
3160  * Service Agents (GSA) that are accessed via the General Service
3161  * Interface (GSI).  It's role is to facilitate establishment of connections
3162  * between nodes as well as other management related tasks for established
3163  * connections.
3164  *
3165  * Return: true if the port supports an IB CM (this does not guarantee that
3166  * a CM is actually running however).
3167  */
3168 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
3169 {
3170 	return device->port_data[port_num].immutable.core_cap_flags &
3171 	       RDMA_CORE_CAP_IB_CM;
3172 }
3173 
3174 /**
3175  * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3176  * Communication Manager.
3177  * @device: Device to check
3178  * @port_num: Port number to check
3179  *
3180  * Similar to above, but specific to iWARP connections which have a different
3181  * managment protocol than InfiniBand.
3182  *
3183  * Return: true if the port supports an iWARP CM (this does not guarantee that
3184  * a CM is actually running however).
3185  */
3186 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
3187 {
3188 	return device->port_data[port_num].immutable.core_cap_flags &
3189 	       RDMA_CORE_CAP_IW_CM;
3190 }
3191 
3192 /**
3193  * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3194  * Subnet Administration.
3195  * @device: Device to check
3196  * @port_num: Port number to check
3197  *
3198  * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3199  * Service Agent (GSA) provided by the Subnet Manager (SM).  On InfiniBand
3200  * fabrics, devices should resolve routes to other hosts by contacting the
3201  * SA to query the proper route.
3202  *
3203  * Return: true if the port should act as a client to the fabric Subnet
3204  * Administration interface.  This does not imply that the SA service is
3205  * running locally.
3206  */
3207 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
3208 {
3209 	return device->port_data[port_num].immutable.core_cap_flags &
3210 	       RDMA_CORE_CAP_IB_SA;
3211 }
3212 
3213 /**
3214  * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3215  * Multicast.
3216  * @device: Device to check
3217  * @port_num: Port number to check
3218  *
3219  * InfiniBand multicast registration is more complex than normal IPv4 or
3220  * IPv6 multicast registration.  Each Host Channel Adapter must register
3221  * with the Subnet Manager when it wishes to join a multicast group.  It
3222  * should do so only once regardless of how many queue pairs it subscribes
3223  * to this group.  And it should leave the group only after all queue pairs
3224  * attached to the group have been detached.
3225  *
3226  * Return: true if the port must undertake the additional adminstrative
3227  * overhead of registering/unregistering with the SM and tracking of the
3228  * total number of queue pairs attached to the multicast group.
3229  */
3230 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
3231 {
3232 	return rdma_cap_ib_sa(device, port_num);
3233 }
3234 
3235 /**
3236  * rdma_cap_af_ib - Check if the port of device has the capability
3237  * Native Infiniband Address.
3238  * @device: Device to check
3239  * @port_num: Port number to check
3240  *
3241  * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3242  * GID.  RoCE uses a different mechanism, but still generates a GID via
3243  * a prescribed mechanism and port specific data.
3244  *
3245  * Return: true if the port uses a GID address to identify devices on the
3246  * network.
3247  */
3248 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
3249 {
3250 	return device->port_data[port_num].immutable.core_cap_flags &
3251 	       RDMA_CORE_CAP_AF_IB;
3252 }
3253 
3254 /**
3255  * rdma_cap_eth_ah - Check if the port of device has the capability
3256  * Ethernet Address Handle.
3257  * @device: Device to check
3258  * @port_num: Port number to check
3259  *
3260  * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3261  * to fabricate GIDs over Ethernet/IP specific addresses native to the
3262  * port.  Normally, packet headers are generated by the sending host
3263  * adapter, but when sending connectionless datagrams, we must manually
3264  * inject the proper headers for the fabric we are communicating over.
3265  *
3266  * Return: true if we are running as a RoCE port and must force the
3267  * addition of a Global Route Header built from our Ethernet Address
3268  * Handle into our header list for connectionless packets.
3269  */
3270 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
3271 {
3272 	return device->port_data[port_num].immutable.core_cap_flags &
3273 	       RDMA_CORE_CAP_ETH_AH;
3274 }
3275 
3276 /**
3277  * rdma_cap_opa_ah - Check if the port of device supports
3278  * OPA Address handles
3279  * @device: Device to check
3280  * @port_num: Port number to check
3281  *
3282  * Return: true if we are running on an OPA device which supports
3283  * the extended OPA addressing.
3284  */
3285 static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
3286 {
3287 	return (device->port_data[port_num].immutable.core_cap_flags &
3288 		RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3289 }
3290 
3291 /**
3292  * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3293  *
3294  * @device: Device
3295  * @port_num: Port number
3296  *
3297  * This MAD size includes the MAD headers and MAD payload.  No other headers
3298  * are included.
3299  *
3300  * Return the max MAD size required by the Port.  Will return 0 if the port
3301  * does not support MADs
3302  */
3303 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
3304 {
3305 	return device->port_data[port_num].immutable.max_mad_size;
3306 }
3307 
3308 /**
3309  * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3310  * @device: Device to check
3311  * @port_num: Port number to check
3312  *
3313  * RoCE GID table mechanism manages the various GIDs for a device.
3314  *
3315  * NOTE: if allocating the port's GID table has failed, this call will still
3316  * return true, but any RoCE GID table API will fail.
3317  *
3318  * Return: true if the port uses RoCE GID table mechanism in order to manage
3319  * its GIDs.
3320  */
3321 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3322 					   u8 port_num)
3323 {
3324 	return rdma_protocol_roce(device, port_num) &&
3325 		device->ops.add_gid && device->ops.del_gid;
3326 }
3327 
3328 /*
3329  * Check if the device supports READ W/ INVALIDATE.
3330  */
3331 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3332 {
3333 	/*
3334 	 * iWarp drivers must support READ W/ INVALIDATE.  No other protocol
3335 	 * has support for it yet.
3336 	 */
3337 	return rdma_protocol_iwarp(dev, port_num);
3338 }
3339 
3340 /**
3341  * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not.
3342  * @device: Device
3343  * @port_num: 1 based Port number
3344  *
3345  * Return true if port is an Intel OPA port , false if not
3346  */
3347 static inline bool rdma_core_cap_opa_port(struct ib_device *device,
3348 					  u32 port_num)
3349 {
3350 	return (device->port_data[port_num].immutable.core_cap_flags &
3351 		RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA;
3352 }
3353 
3354 /**
3355  * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value.
3356  * @device: Device
3357  * @port_num: Port number
3358  * @mtu: enum value of MTU
3359  *
3360  * Return the MTU size supported by the port as an integer value. Will return
3361  * -1 if enum value of mtu is not supported.
3362  */
3363 static inline int rdma_mtu_enum_to_int(struct ib_device *device, u8 port,
3364 				       int mtu)
3365 {
3366 	if (rdma_core_cap_opa_port(device, port))
3367 		return opa_mtu_enum_to_int((enum opa_mtu)mtu);
3368 	else
3369 		return ib_mtu_enum_to_int((enum ib_mtu)mtu);
3370 }
3371 
3372 /**
3373  * rdma_mtu_from_attr - Return the mtu of the port from the port attribute.
3374  * @device: Device
3375  * @port_num: Port number
3376  * @attr: port attribute
3377  *
3378  * Return the MTU size supported by the port as an integer value.
3379  */
3380 static inline int rdma_mtu_from_attr(struct ib_device *device, u8 port,
3381 				     struct ib_port_attr *attr)
3382 {
3383 	if (rdma_core_cap_opa_port(device, port))
3384 		return attr->phys_mtu;
3385 	else
3386 		return ib_mtu_enum_to_int(attr->max_mtu);
3387 }
3388 
3389 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
3390 			 int state);
3391 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
3392 		     struct ifla_vf_info *info);
3393 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
3394 		    struct ifla_vf_stats *stats);
3395 int ib_get_vf_guid(struct ib_device *device, int vf, u8 port,
3396 		    struct ifla_vf_guid *node_guid,
3397 		    struct ifla_vf_guid *port_guid);
3398 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
3399 		   int type);
3400 
3401 int ib_query_pkey(struct ib_device *device,
3402 		  u8 port_num, u16 index, u16 *pkey);
3403 
3404 int ib_modify_device(struct ib_device *device,
3405 		     int device_modify_mask,
3406 		     struct ib_device_modify *device_modify);
3407 
3408 int ib_modify_port(struct ib_device *device,
3409 		   u8 port_num, int port_modify_mask,
3410 		   struct ib_port_modify *port_modify);
3411 
3412 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3413 		u8 *port_num, u16 *index);
3414 
3415 int ib_find_pkey(struct ib_device *device,
3416 		 u8 port_num, u16 pkey, u16 *index);
3417 
3418 enum ib_pd_flags {
3419 	/*
3420 	 * Create a memory registration for all memory in the system and place
3421 	 * the rkey for it into pd->unsafe_global_rkey.  This can be used by
3422 	 * ULPs to avoid the overhead of dynamic MRs.
3423 	 *
3424 	 * This flag is generally considered unsafe and must only be used in
3425 	 * extremly trusted environments.  Every use of it will log a warning
3426 	 * in the kernel log.
3427 	 */
3428 	IB_PD_UNSAFE_GLOBAL_RKEY	= 0x01,
3429 };
3430 
3431 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3432 		const char *caller);
3433 
3434 #define ib_alloc_pd(device, flags) \
3435 	__ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3436 
3437 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3438 
3439 /**
3440  * ib_dealloc_pd - Deallocate kernel PD
3441  * @pd: The protection domain
3442  *
3443  * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3444  */
3445 static inline void ib_dealloc_pd(struct ib_pd *pd)
3446 {
3447 	int ret = ib_dealloc_pd_user(pd, NULL);
3448 
3449 	WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail");
3450 }
3451 
3452 enum rdma_create_ah_flags {
3453 	/* In a sleepable context */
3454 	RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3455 };
3456 
3457 /**
3458  * rdma_create_ah - Creates an address handle for the given address vector.
3459  * @pd: The protection domain associated with the address handle.
3460  * @ah_attr: The attributes of the address vector.
3461  * @flags: Create address handle flags (see enum rdma_create_ah_flags).
3462  *
3463  * The address handle is used to reference a local or global destination
3464  * in all UD QP post sends.
3465  */
3466 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3467 			     u32 flags);
3468 
3469 /**
3470  * rdma_create_user_ah - Creates an address handle for the given address vector.
3471  * It resolves destination mac address for ah attribute of RoCE type.
3472  * @pd: The protection domain associated with the address handle.
3473  * @ah_attr: The attributes of the address vector.
3474  * @udata: pointer to user's input output buffer information need by
3475  *         provider driver.
3476  *
3477  * It returns 0 on success and returns appropriate error code on error.
3478  * The address handle is used to reference a local or global destination
3479  * in all UD QP post sends.
3480  */
3481 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3482 				  struct rdma_ah_attr *ah_attr,
3483 				  struct ib_udata *udata);
3484 /**
3485  * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3486  *   work completion.
3487  * @hdr: the L3 header to parse
3488  * @net_type: type of header to parse
3489  * @sgid: place to store source gid
3490  * @dgid: place to store destination gid
3491  */
3492 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3493 			      enum rdma_network_type net_type,
3494 			      union ib_gid *sgid, union ib_gid *dgid);
3495 
3496 /**
3497  * ib_get_rdma_header_version - Get the header version
3498  * @hdr: the L3 header to parse
3499  */
3500 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3501 
3502 /**
3503  * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3504  *   work completion.
3505  * @device: Device on which the received message arrived.
3506  * @port_num: Port on which the received message arrived.
3507  * @wc: Work completion associated with the received message.
3508  * @grh: References the received global route header.  This parameter is
3509  *   ignored unless the work completion indicates that the GRH is valid.
3510  * @ah_attr: Returned attributes that can be used when creating an address
3511  *   handle for replying to the message.
3512  * When ib_init_ah_attr_from_wc() returns success,
3513  * (a) for IB link layer it optionally contains a reference to SGID attribute
3514  * when GRH is present for IB link layer.
3515  * (b) for RoCE link layer it contains a reference to SGID attribute.
3516  * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3517  * attributes which are initialized using ib_init_ah_attr_from_wc().
3518  *
3519  */
3520 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
3521 			    const struct ib_wc *wc, const struct ib_grh *grh,
3522 			    struct rdma_ah_attr *ah_attr);
3523 
3524 /**
3525  * ib_create_ah_from_wc - Creates an address handle associated with the
3526  *   sender of the specified work completion.
3527  * @pd: The protection domain associated with the address handle.
3528  * @wc: Work completion information associated with a received message.
3529  * @grh: References the received global route header.  This parameter is
3530  *   ignored unless the work completion indicates that the GRH is valid.
3531  * @port_num: The outbound port number to associate with the address.
3532  *
3533  * The address handle is used to reference a local or global destination
3534  * in all UD QP post sends.
3535  */
3536 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3537 				   const struct ib_grh *grh, u8 port_num);
3538 
3539 /**
3540  * rdma_modify_ah - Modifies the address vector associated with an address
3541  *   handle.
3542  * @ah: The address handle to modify.
3543  * @ah_attr: The new address vector attributes to associate with the
3544  *   address handle.
3545  */
3546 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3547 
3548 /**
3549  * rdma_query_ah - Queries the address vector associated with an address
3550  *   handle.
3551  * @ah: The address handle to query.
3552  * @ah_attr: The address vector attributes associated with the address
3553  *   handle.
3554  */
3555 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3556 
3557 enum rdma_destroy_ah_flags {
3558 	/* In a sleepable context */
3559 	RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3560 };
3561 
3562 /**
3563  * rdma_destroy_ah_user - Destroys an address handle.
3564  * @ah: The address handle to destroy.
3565  * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3566  * @udata: Valid user data or NULL for kernel objects
3567  */
3568 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3569 
3570 /**
3571  * rdma_destroy_ah - Destroys an kernel address handle.
3572  * @ah: The address handle to destroy.
3573  * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3574  *
3575  * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3576  */
3577 static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3578 {
3579 	int ret = rdma_destroy_ah_user(ah, flags, NULL);
3580 
3581 	WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail");
3582 }
3583 
3584 struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
3585 				  struct ib_srq_init_attr *srq_init_attr,
3586 				  struct ib_usrq_object *uobject,
3587 				  struct ib_udata *udata);
3588 static inline struct ib_srq *
3589 ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr)
3590 {
3591 	if (!pd->device->ops.create_srq)
3592 		return ERR_PTR(-EOPNOTSUPP);
3593 
3594 	return ib_create_srq_user(pd, srq_init_attr, NULL, NULL);
3595 }
3596 
3597 /**
3598  * ib_modify_srq - Modifies the attributes for the specified SRQ.
3599  * @srq: The SRQ to modify.
3600  * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
3601  *   the current values of selected SRQ attributes are returned.
3602  * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3603  *   are being modified.
3604  *
3605  * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3606  * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3607  * the number of receives queued drops below the limit.
3608  */
3609 int ib_modify_srq(struct ib_srq *srq,
3610 		  struct ib_srq_attr *srq_attr,
3611 		  enum ib_srq_attr_mask srq_attr_mask);
3612 
3613 /**
3614  * ib_query_srq - Returns the attribute list and current values for the
3615  *   specified SRQ.
3616  * @srq: The SRQ to query.
3617  * @srq_attr: The attributes of the specified SRQ.
3618  */
3619 int ib_query_srq(struct ib_srq *srq,
3620 		 struct ib_srq_attr *srq_attr);
3621 
3622 /**
3623  * ib_destroy_srq_user - Destroys the specified SRQ.
3624  * @srq: The SRQ to destroy.
3625  * @udata: Valid user data or NULL for kernel objects
3626  */
3627 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3628 
3629 /**
3630  * ib_destroy_srq - Destroys the specified kernel SRQ.
3631  * @srq: The SRQ to destroy.
3632  *
3633  * NOTE: for user srq use ib_destroy_srq_user with valid udata!
3634  */
3635 static inline void ib_destroy_srq(struct ib_srq *srq)
3636 {
3637 	int ret = ib_destroy_srq_user(srq, NULL);
3638 
3639 	WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail");
3640 }
3641 
3642 /**
3643  * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3644  * @srq: The SRQ to post the work request on.
3645  * @recv_wr: A list of work requests to post on the receive queue.
3646  * @bad_recv_wr: On an immediate failure, this parameter will reference
3647  *   the work request that failed to be posted on the QP.
3648  */
3649 static inline int ib_post_srq_recv(struct ib_srq *srq,
3650 				   const struct ib_recv_wr *recv_wr,
3651 				   const struct ib_recv_wr **bad_recv_wr)
3652 {
3653 	const struct ib_recv_wr *dummy;
3654 
3655 	return srq->device->ops.post_srq_recv(srq, recv_wr,
3656 					      bad_recv_wr ? : &dummy);
3657 }
3658 
3659 struct ib_qp *ib_create_qp(struct ib_pd *pd,
3660 			   struct ib_qp_init_attr *qp_init_attr);
3661 
3662 /**
3663  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3664  * @qp: The QP to modify.
3665  * @attr: On input, specifies the QP attributes to modify.  On output,
3666  *   the current values of selected QP attributes are returned.
3667  * @attr_mask: A bit-mask used to specify which attributes of the QP
3668  *   are being modified.
3669  * @udata: pointer to user's input output buffer information
3670  *   are being modified.
3671  * It returns 0 on success and returns appropriate error code on error.
3672  */
3673 int ib_modify_qp_with_udata(struct ib_qp *qp,
3674 			    struct ib_qp_attr *attr,
3675 			    int attr_mask,
3676 			    struct ib_udata *udata);
3677 
3678 /**
3679  * ib_modify_qp - Modifies the attributes for the specified QP and then
3680  *   transitions the QP to the given state.
3681  * @qp: The QP to modify.
3682  * @qp_attr: On input, specifies the QP attributes to modify.  On output,
3683  *   the current values of selected QP attributes are returned.
3684  * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3685  *   are being modified.
3686  */
3687 int ib_modify_qp(struct ib_qp *qp,
3688 		 struct ib_qp_attr *qp_attr,
3689 		 int qp_attr_mask);
3690 
3691 /**
3692  * ib_query_qp - Returns the attribute list and current values for the
3693  *   specified QP.
3694  * @qp: The QP to query.
3695  * @qp_attr: The attributes of the specified QP.
3696  * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3697  * @qp_init_attr: Additional attributes of the selected QP.
3698  *
3699  * The qp_attr_mask may be used to limit the query to gathering only the
3700  * selected attributes.
3701  */
3702 int ib_query_qp(struct ib_qp *qp,
3703 		struct ib_qp_attr *qp_attr,
3704 		int qp_attr_mask,
3705 		struct ib_qp_init_attr *qp_init_attr);
3706 
3707 /**
3708  * ib_destroy_qp - Destroys the specified QP.
3709  * @qp: The QP to destroy.
3710  * @udata: Valid udata or NULL for kernel objects
3711  */
3712 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3713 
3714 /**
3715  * ib_destroy_qp - Destroys the specified kernel QP.
3716  * @qp: The QP to destroy.
3717  *
3718  * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3719  */
3720 static inline int ib_destroy_qp(struct ib_qp *qp)
3721 {
3722 	return ib_destroy_qp_user(qp, NULL);
3723 }
3724 
3725 /**
3726  * ib_open_qp - Obtain a reference to an existing sharable QP.
3727  * @xrcd - XRC domain
3728  * @qp_open_attr: Attributes identifying the QP to open.
3729  *
3730  * Returns a reference to a sharable QP.
3731  */
3732 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3733 			 struct ib_qp_open_attr *qp_open_attr);
3734 
3735 /**
3736  * ib_close_qp - Release an external reference to a QP.
3737  * @qp: The QP handle to release
3738  *
3739  * The opened QP handle is released by the caller.  The underlying
3740  * shared QP is not destroyed until all internal references are released.
3741  */
3742 int ib_close_qp(struct ib_qp *qp);
3743 
3744 /**
3745  * ib_post_send - Posts a list of work requests to the send queue of
3746  *   the specified QP.
3747  * @qp: The QP to post the work request on.
3748  * @send_wr: A list of work requests to post on the send queue.
3749  * @bad_send_wr: On an immediate failure, this parameter will reference
3750  *   the work request that failed to be posted on the QP.
3751  *
3752  * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3753  * error is returned, the QP state shall not be affected,
3754  * ib_post_send() will return an immediate error after queueing any
3755  * earlier work requests in the list.
3756  */
3757 static inline int ib_post_send(struct ib_qp *qp,
3758 			       const struct ib_send_wr *send_wr,
3759 			       const struct ib_send_wr **bad_send_wr)
3760 {
3761 	const struct ib_send_wr *dummy;
3762 
3763 	return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
3764 }
3765 
3766 /**
3767  * ib_post_recv - Posts a list of work requests to the receive queue of
3768  *   the specified QP.
3769  * @qp: The QP to post the work request on.
3770  * @recv_wr: A list of work requests to post on the receive queue.
3771  * @bad_recv_wr: On an immediate failure, this parameter will reference
3772  *   the work request that failed to be posted on the QP.
3773  */
3774 static inline int ib_post_recv(struct ib_qp *qp,
3775 			       const struct ib_recv_wr *recv_wr,
3776 			       const struct ib_recv_wr **bad_recv_wr)
3777 {
3778 	const struct ib_recv_wr *dummy;
3779 
3780 	return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3781 }
3782 
3783 struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe,
3784 			    int comp_vector, enum ib_poll_context poll_ctx,
3785 			    const char *caller);
3786 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3787 					int nr_cqe, int comp_vector,
3788 					enum ib_poll_context poll_ctx)
3789 {
3790 	return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx,
3791 			     KBUILD_MODNAME);
3792 }
3793 
3794 struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3795 				int nr_cqe, enum ib_poll_context poll_ctx,
3796 				const char *caller);
3797 
3798 /**
3799  * ib_alloc_cq_any: Allocate kernel CQ
3800  * @dev: The IB device
3801  * @private: Private data attached to the CQE
3802  * @nr_cqe: Number of CQEs in the CQ
3803  * @poll_ctx: Context used for polling the CQ
3804  */
3805 static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
3806 					    void *private, int nr_cqe,
3807 					    enum ib_poll_context poll_ctx)
3808 {
3809 	return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
3810 				 KBUILD_MODNAME);
3811 }
3812 
3813 void ib_free_cq(struct ib_cq *cq);
3814 int ib_process_cq_direct(struct ib_cq *cq, int budget);
3815 
3816 /**
3817  * ib_create_cq - Creates a CQ on the specified device.
3818  * @device: The device on which to create the CQ.
3819  * @comp_handler: A user-specified callback that is invoked when a
3820  *   completion event occurs on the CQ.
3821  * @event_handler: A user-specified callback that is invoked when an
3822  *   asynchronous event not associated with a completion occurs on the CQ.
3823  * @cq_context: Context associated with the CQ returned to the user via
3824  *   the associated completion and event handlers.
3825  * @cq_attr: The attributes the CQ should be created upon.
3826  *
3827  * Users can examine the cq structure to determine the actual CQ size.
3828  */
3829 struct ib_cq *__ib_create_cq(struct ib_device *device,
3830 			     ib_comp_handler comp_handler,
3831 			     void (*event_handler)(struct ib_event *, void *),
3832 			     void *cq_context,
3833 			     const struct ib_cq_init_attr *cq_attr,
3834 			     const char *caller);
3835 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3836 	__ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
3837 
3838 /**
3839  * ib_resize_cq - Modifies the capacity of the CQ.
3840  * @cq: The CQ to resize.
3841  * @cqe: The minimum size of the CQ.
3842  *
3843  * Users can examine the cq structure to determine the actual CQ size.
3844  */
3845 int ib_resize_cq(struct ib_cq *cq, int cqe);
3846 
3847 /**
3848  * rdma_set_cq_moderation - Modifies moderation params of the CQ
3849  * @cq: The CQ to modify.
3850  * @cq_count: number of CQEs that will trigger an event
3851  * @cq_period: max period of time in usec before triggering an event
3852  *
3853  */
3854 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3855 
3856 /**
3857  * ib_destroy_cq_user - Destroys the specified CQ.
3858  * @cq: The CQ to destroy.
3859  * @udata: Valid user data or NULL for kernel objects
3860  */
3861 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3862 
3863 /**
3864  * ib_destroy_cq - Destroys the specified kernel CQ.
3865  * @cq: The CQ to destroy.
3866  *
3867  * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3868  */
3869 static inline void ib_destroy_cq(struct ib_cq *cq)
3870 {
3871 	int ret = ib_destroy_cq_user(cq, NULL);
3872 
3873 	WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail");
3874 }
3875 
3876 /**
3877  * ib_poll_cq - poll a CQ for completion(s)
3878  * @cq:the CQ being polled
3879  * @num_entries:maximum number of completions to return
3880  * @wc:array of at least @num_entries &struct ib_wc where completions
3881  *   will be returned
3882  *
3883  * Poll a CQ for (possibly multiple) completions.  If the return value
3884  * is < 0, an error occurred.  If the return value is >= 0, it is the
3885  * number of completions returned.  If the return value is
3886  * non-negative and < num_entries, then the CQ was emptied.
3887  */
3888 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3889 			     struct ib_wc *wc)
3890 {
3891 	return cq->device->ops.poll_cq(cq, num_entries, wc);
3892 }
3893 
3894 /**
3895  * ib_req_notify_cq - Request completion notification on a CQ.
3896  * @cq: The CQ to generate an event for.
3897  * @flags:
3898  *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3899  *   to request an event on the next solicited event or next work
3900  *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3901  *   may also be |ed in to request a hint about missed events, as
3902  *   described below.
3903  *
3904  * Return Value:
3905  *    < 0 means an error occurred while requesting notification
3906  *   == 0 means notification was requested successfully, and if
3907  *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3908  *        were missed and it is safe to wait for another event.  In
3909  *        this case is it guaranteed that any work completions added
3910  *        to the CQ since the last CQ poll will trigger a completion
3911  *        notification event.
3912  *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3913  *        in.  It means that the consumer must poll the CQ again to
3914  *        make sure it is empty to avoid missing an event because of a
3915  *        race between requesting notification and an entry being
3916  *        added to the CQ.  This return value means it is possible
3917  *        (but not guaranteed) that a work completion has been added
3918  *        to the CQ since the last poll without triggering a
3919  *        completion notification event.
3920  */
3921 static inline int ib_req_notify_cq(struct ib_cq *cq,
3922 				   enum ib_cq_notify_flags flags)
3923 {
3924 	return cq->device->ops.req_notify_cq(cq, flags);
3925 }
3926 
3927 struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe,
3928 			     int comp_vector_hint,
3929 			     enum ib_poll_context poll_ctx);
3930 
3931 void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe);
3932 
3933 /**
3934  * ib_req_ncomp_notif - Request completion notification when there are
3935  *   at least the specified number of unreaped completions on the CQ.
3936  * @cq: The CQ to generate an event for.
3937  * @wc_cnt: The number of unreaped completions that should be on the
3938  *   CQ before an event is generated.
3939  */
3940 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
3941 {
3942 	return cq->device->ops.req_ncomp_notif ?
3943 		cq->device->ops.req_ncomp_notif(cq, wc_cnt) :
3944 		-ENOSYS;
3945 }
3946 
3947 /**
3948  * ib_dma_mapping_error - check a DMA addr for error
3949  * @dev: The device for which the dma_addr was created
3950  * @dma_addr: The DMA address to check
3951  */
3952 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3953 {
3954 	return dma_mapping_error(dev->dma_device, dma_addr);
3955 }
3956 
3957 /**
3958  * ib_dma_map_single - Map a kernel virtual address to DMA address
3959  * @dev: The device for which the dma_addr is to be created
3960  * @cpu_addr: The kernel virtual address
3961  * @size: The size of the region in bytes
3962  * @direction: The direction of the DMA
3963  */
3964 static inline u64 ib_dma_map_single(struct ib_device *dev,
3965 				    void *cpu_addr, size_t size,
3966 				    enum dma_data_direction direction)
3967 {
3968 	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
3969 }
3970 
3971 /**
3972  * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3973  * @dev: The device for which the DMA address was created
3974  * @addr: The DMA address
3975  * @size: The size of the region in bytes
3976  * @direction: The direction of the DMA
3977  */
3978 static inline void ib_dma_unmap_single(struct ib_device *dev,
3979 				       u64 addr, size_t size,
3980 				       enum dma_data_direction direction)
3981 {
3982 	dma_unmap_single(dev->dma_device, addr, size, direction);
3983 }
3984 
3985 /**
3986  * ib_dma_map_page - Map a physical page to DMA address
3987  * @dev: The device for which the dma_addr is to be created
3988  * @page: The page to be mapped
3989  * @offset: The offset within the page
3990  * @size: The size of the region in bytes
3991  * @direction: The direction of the DMA
3992  */
3993 static inline u64 ib_dma_map_page(struct ib_device *dev,
3994 				  struct page *page,
3995 				  unsigned long offset,
3996 				  size_t size,
3997 					 enum dma_data_direction direction)
3998 {
3999 	return dma_map_page(dev->dma_device, page, offset, size, direction);
4000 }
4001 
4002 /**
4003  * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
4004  * @dev: The device for which the DMA address was created
4005  * @addr: The DMA address
4006  * @size: The size of the region in bytes
4007  * @direction: The direction of the DMA
4008  */
4009 static inline void ib_dma_unmap_page(struct ib_device *dev,
4010 				     u64 addr, size_t size,
4011 				     enum dma_data_direction direction)
4012 {
4013 	dma_unmap_page(dev->dma_device, addr, size, direction);
4014 }
4015 
4016 /**
4017  * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
4018  * @dev: The device for which the DMA addresses are to be created
4019  * @sg: The array of scatter/gather entries
4020  * @nents: The number of scatter/gather entries
4021  * @direction: The direction of the DMA
4022  */
4023 static inline int ib_dma_map_sg(struct ib_device *dev,
4024 				struct scatterlist *sg, int nents,
4025 				enum dma_data_direction direction)
4026 {
4027 	return dma_map_sg(dev->dma_device, sg, nents, direction);
4028 }
4029 
4030 /**
4031  * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4032  * @dev: The device for which the DMA addresses were created
4033  * @sg: The array of scatter/gather entries
4034  * @nents: The number of scatter/gather entries
4035  * @direction: The direction of the DMA
4036  */
4037 static inline void ib_dma_unmap_sg(struct ib_device *dev,
4038 				   struct scatterlist *sg, int nents,
4039 				   enum dma_data_direction direction)
4040 {
4041 	dma_unmap_sg(dev->dma_device, sg, nents, direction);
4042 }
4043 
4044 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4045 				      struct scatterlist *sg, int nents,
4046 				      enum dma_data_direction direction,
4047 				      unsigned long dma_attrs)
4048 {
4049 	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4050 				dma_attrs);
4051 }
4052 
4053 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4054 					 struct scatterlist *sg, int nents,
4055 					 enum dma_data_direction direction,
4056 					 unsigned long dma_attrs)
4057 {
4058 	dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
4059 }
4060 
4061 /**
4062  * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4063  * @dev: The device to query
4064  *
4065  * The returned value represents a size in bytes.
4066  */
4067 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
4068 {
4069 	return dma_get_max_seg_size(dev->dma_device);
4070 }
4071 
4072 /**
4073  * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4074  * @dev: The device for which the DMA address was created
4075  * @addr: The DMA address
4076  * @size: The size of the region in bytes
4077  * @dir: The direction of the DMA
4078  */
4079 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4080 					      u64 addr,
4081 					      size_t size,
4082 					      enum dma_data_direction dir)
4083 {
4084 	dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
4085 }
4086 
4087 /**
4088  * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4089  * @dev: The device for which the DMA address was created
4090  * @addr: The DMA address
4091  * @size: The size of the region in bytes
4092  * @dir: The direction of the DMA
4093  */
4094 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4095 						 u64 addr,
4096 						 size_t size,
4097 						 enum dma_data_direction dir)
4098 {
4099 	dma_sync_single_for_device(dev->dma_device, addr, size, dir);
4100 }
4101 
4102 /**
4103  * ib_dma_alloc_coherent - Allocate memory and map it for DMA
4104  * @dev: The device for which the DMA address is requested
4105  * @size: The size of the region to allocate in bytes
4106  * @dma_handle: A pointer for returning the DMA address of the region
4107  * @flag: memory allocator flags
4108  */
4109 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
4110 					   size_t size,
4111 					   dma_addr_t *dma_handle,
4112 					   gfp_t flag)
4113 {
4114 	return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
4115 }
4116 
4117 /**
4118  * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
4119  * @dev: The device for which the DMA addresses were allocated
4120  * @size: The size of the region
4121  * @cpu_addr: the address returned by ib_dma_alloc_coherent()
4122  * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
4123  */
4124 static inline void ib_dma_free_coherent(struct ib_device *dev,
4125 					size_t size, void *cpu_addr,
4126 					dma_addr_t dma_handle)
4127 {
4128 	dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
4129 }
4130 
4131 /* ib_reg_user_mr - register a memory region for virtual addresses from kernel
4132  * space. This function should be called when 'current' is the owning MM.
4133  */
4134 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
4135 			     u64 virt_addr, int mr_access_flags);
4136 
4137 /* ib_advise_mr -  give an advice about an address range in a memory region */
4138 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
4139 		 u32 flags, struct ib_sge *sg_list, u32 num_sge);
4140 /**
4141  * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4142  *   HCA translation table.
4143  * @mr: The memory region to deregister.
4144  * @udata: Valid user data or NULL for kernel object
4145  *
4146  * This function can fail, if the memory region has memory windows bound to it.
4147  */
4148 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4149 
4150 /**
4151  * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
4152  *   HCA translation table.
4153  * @mr: The memory region to deregister.
4154  *
4155  * This function can fail, if the memory region has memory windows bound to it.
4156  *
4157  * NOTE: for user mr use ib_dereg_mr_user with valid udata!
4158  */
4159 static inline int ib_dereg_mr(struct ib_mr *mr)
4160 {
4161 	return ib_dereg_mr_user(mr, NULL);
4162 }
4163 
4164 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
4165 			  u32 max_num_sg);
4166 
4167 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4168 				    u32 max_num_data_sg,
4169 				    u32 max_num_meta_sg);
4170 
4171 /**
4172  * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4173  *   R_Key and L_Key.
4174  * @mr - struct ib_mr pointer to be updated.
4175  * @newkey - new key to be used.
4176  */
4177 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4178 {
4179 	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4180 	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4181 }
4182 
4183 /**
4184  * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4185  * for calculating a new rkey for type 2 memory windows.
4186  * @rkey - the rkey to increment.
4187  */
4188 static inline u32 ib_inc_rkey(u32 rkey)
4189 {
4190 	const u32 mask = 0x000000ff;
4191 	return ((rkey + 1) & mask) | (rkey & ~mask);
4192 }
4193 
4194 /**
4195  * ib_attach_mcast - Attaches the specified QP to a multicast group.
4196  * @qp: QP to attach to the multicast group.  The QP must be type
4197  *   IB_QPT_UD.
4198  * @gid: Multicast group GID.
4199  * @lid: Multicast group LID in host byte order.
4200  *
4201  * In order to send and receive multicast packets, subnet
4202  * administration must have created the multicast group and configured
4203  * the fabric appropriately.  The port associated with the specified
4204  * QP must also be a member of the multicast group.
4205  */
4206 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4207 
4208 /**
4209  * ib_detach_mcast - Detaches the specified QP from a multicast group.
4210  * @qp: QP to detach from the multicast group.
4211  * @gid: Multicast group GID.
4212  * @lid: Multicast group LID in host byte order.
4213  */
4214 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4215 
4216 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
4217 				   struct inode *inode, struct ib_udata *udata);
4218 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata);
4219 
4220 static inline int ib_check_mr_access(int flags)
4221 {
4222 	/*
4223 	 * Local write permission is required if remote write or
4224 	 * remote atomic permission is also requested.
4225 	 */
4226 	if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4227 	    !(flags & IB_ACCESS_LOCAL_WRITE))
4228 		return -EINVAL;
4229 
4230 	if (flags & ~IB_ACCESS_SUPPORTED)
4231 		return -EINVAL;
4232 
4233 	return 0;
4234 }
4235 
4236 static inline bool ib_access_writable(int access_flags)
4237 {
4238 	/*
4239 	 * We have writable memory backing the MR if any of the following
4240 	 * access flags are set.  "Local write" and "remote write" obviously
4241 	 * require write access.  "Remote atomic" can do things like fetch and
4242 	 * add, which will modify memory, and "MW bind" can change permissions
4243 	 * by binding a window.
4244 	 */
4245 	return access_flags &
4246 		(IB_ACCESS_LOCAL_WRITE   | IB_ACCESS_REMOTE_WRITE |
4247 		 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4248 }
4249 
4250 /**
4251  * ib_check_mr_status: lightweight check of MR status.
4252  *     This routine may provide status checks on a selected
4253  *     ib_mr. first use is for signature status check.
4254  *
4255  * @mr: A memory region.
4256  * @check_mask: Bitmask of which checks to perform from
4257  *     ib_mr_status_check enumeration.
4258  * @mr_status: The container of relevant status checks.
4259  *     failed checks will be indicated in the status bitmask
4260  *     and the relevant info shall be in the error item.
4261  */
4262 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4263 		       struct ib_mr_status *mr_status);
4264 
4265 /**
4266  * ib_device_try_get: Hold a registration lock
4267  * device: The device to lock
4268  *
4269  * A device under an active registration lock cannot become unregistered. It
4270  * is only possible to obtain a registration lock on a device that is fully
4271  * registered, otherwise this function returns false.
4272  *
4273  * The registration lock is only necessary for actions which require the
4274  * device to still be registered. Uses that only require the device pointer to
4275  * be valid should use get_device(&ibdev->dev) to hold the memory.
4276  *
4277  */
4278 static inline bool ib_device_try_get(struct ib_device *dev)
4279 {
4280 	return refcount_inc_not_zero(&dev->refcount);
4281 }
4282 
4283 void ib_device_put(struct ib_device *device);
4284 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4285 					  enum rdma_driver_id driver_id);
4286 struct ib_device *ib_device_get_by_name(const char *name,
4287 					enum rdma_driver_id driver_id);
4288 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
4289 					    u16 pkey, const union ib_gid *gid,
4290 					    const struct sockaddr *addr);
4291 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4292 			 unsigned int port);
4293 struct net_device *ib_device_netdev(struct ib_device *dev, u8 port);
4294 
4295 struct ib_wq *ib_create_wq(struct ib_pd *pd,
4296 			   struct ib_wq_init_attr *init_attr);
4297 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata);
4298 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
4299 		 u32 wq_attr_mask);
4300 
4301 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4302 		 unsigned int *sg_offset, unsigned int page_size);
4303 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4304 		    int data_sg_nents, unsigned int *data_sg_offset,
4305 		    struct scatterlist *meta_sg, int meta_sg_nents,
4306 		    unsigned int *meta_sg_offset, unsigned int page_size);
4307 
4308 static inline int
4309 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4310 		  unsigned int *sg_offset, unsigned int page_size)
4311 {
4312 	int n;
4313 
4314 	n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4315 	mr->iova = 0;
4316 
4317 	return n;
4318 }
4319 
4320 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
4321 		unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4322 
4323 void ib_drain_rq(struct ib_qp *qp);
4324 void ib_drain_sq(struct ib_qp *qp);
4325 void ib_drain_qp(struct ib_qp *qp);
4326 
4327 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u16 *speed, u8 *width);
4328 
4329 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4330 {
4331 	if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4332 		return attr->roce.dmac;
4333 	return NULL;
4334 }
4335 
4336 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
4337 {
4338 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4339 		attr->ib.dlid = (u16)dlid;
4340 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4341 		attr->opa.dlid = dlid;
4342 }
4343 
4344 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
4345 {
4346 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4347 		return attr->ib.dlid;
4348 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4349 		return attr->opa.dlid;
4350 	return 0;
4351 }
4352 
4353 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4354 {
4355 	attr->sl = sl;
4356 }
4357 
4358 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4359 {
4360 	return attr->sl;
4361 }
4362 
4363 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4364 					 u8 src_path_bits)
4365 {
4366 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4367 		attr->ib.src_path_bits = src_path_bits;
4368 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4369 		attr->opa.src_path_bits = src_path_bits;
4370 }
4371 
4372 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4373 {
4374 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4375 		return attr->ib.src_path_bits;
4376 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4377 		return attr->opa.src_path_bits;
4378 	return 0;
4379 }
4380 
4381 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4382 					bool make_grd)
4383 {
4384 	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4385 		attr->opa.make_grd = make_grd;
4386 }
4387 
4388 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4389 {
4390 	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4391 		return attr->opa.make_grd;
4392 	return false;
4393 }
4394 
4395 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num)
4396 {
4397 	attr->port_num = port_num;
4398 }
4399 
4400 static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4401 {
4402 	return attr->port_num;
4403 }
4404 
4405 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4406 					   u8 static_rate)
4407 {
4408 	attr->static_rate = static_rate;
4409 }
4410 
4411 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4412 {
4413 	return attr->static_rate;
4414 }
4415 
4416 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4417 					enum ib_ah_flags flag)
4418 {
4419 	attr->ah_flags = flag;
4420 }
4421 
4422 static inline enum ib_ah_flags
4423 		rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4424 {
4425 	return attr->ah_flags;
4426 }
4427 
4428 static inline const struct ib_global_route
4429 		*rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4430 {
4431 	return &attr->grh;
4432 }
4433 
4434 /*To retrieve and modify the grh */
4435 static inline struct ib_global_route
4436 		*rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4437 {
4438 	return &attr->grh;
4439 }
4440 
4441 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4442 {
4443 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4444 
4445 	memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4446 }
4447 
4448 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4449 					     __be64 prefix)
4450 {
4451 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4452 
4453 	grh->dgid.global.subnet_prefix = prefix;
4454 }
4455 
4456 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4457 					    __be64 if_id)
4458 {
4459 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4460 
4461 	grh->dgid.global.interface_id = if_id;
4462 }
4463 
4464 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4465 				   union ib_gid *dgid, u32 flow_label,
4466 				   u8 sgid_index, u8 hop_limit,
4467 				   u8 traffic_class)
4468 {
4469 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4470 
4471 	attr->ah_flags = IB_AH_GRH;
4472 	if (dgid)
4473 		grh->dgid = *dgid;
4474 	grh->flow_label = flow_label;
4475 	grh->sgid_index = sgid_index;
4476 	grh->hop_limit = hop_limit;
4477 	grh->traffic_class = traffic_class;
4478 	grh->sgid_attr = NULL;
4479 }
4480 
4481 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4482 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4483 			     u32 flow_label, u8 hop_limit, u8 traffic_class,
4484 			     const struct ib_gid_attr *sgid_attr);
4485 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4486 		       const struct rdma_ah_attr *src);
4487 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4488 			  const struct rdma_ah_attr *new);
4489 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4490 
4491 /**
4492  * rdma_ah_find_type - Return address handle type.
4493  *
4494  * @dev: Device to be checked
4495  * @port_num: Port number
4496  */
4497 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4498 						       u8 port_num)
4499 {
4500 	if (rdma_protocol_roce(dev, port_num))
4501 		return RDMA_AH_ATTR_TYPE_ROCE;
4502 	if (rdma_protocol_ib(dev, port_num)) {
4503 		if (rdma_cap_opa_ah(dev, port_num))
4504 			return RDMA_AH_ATTR_TYPE_OPA;
4505 		return RDMA_AH_ATTR_TYPE_IB;
4506 	}
4507 
4508 	return RDMA_AH_ATTR_TYPE_UNDEFINED;
4509 }
4510 
4511 /**
4512  * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4513  *     In the current implementation the only way to get
4514  *     get the 32bit lid is from other sources for OPA.
4515  *     For IB, lids will always be 16bits so cast the
4516  *     value accordingly.
4517  *
4518  * @lid: A 32bit LID
4519  */
4520 static inline u16 ib_lid_cpu16(u32 lid)
4521 {
4522 	WARN_ON_ONCE(lid & 0xFFFF0000);
4523 	return (u16)lid;
4524 }
4525 
4526 /**
4527  * ib_lid_be16 - Return lid in 16bit BE encoding.
4528  *
4529  * @lid: A 32bit LID
4530  */
4531 static inline __be16 ib_lid_be16(u32 lid)
4532 {
4533 	WARN_ON_ONCE(lid & 0xFFFF0000);
4534 	return cpu_to_be16((u16)lid);
4535 }
4536 
4537 /**
4538  * ib_get_vector_affinity - Get the affinity mappings of a given completion
4539  *   vector
4540  * @device:         the rdma device
4541  * @comp_vector:    index of completion vector
4542  *
4543  * Returns NULL on failure, otherwise a corresponding cpu map of the
4544  * completion vector (returns all-cpus map if the device driver doesn't
4545  * implement get_vector_affinity).
4546  */
4547 static inline const struct cpumask *
4548 ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4549 {
4550 	if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4551 	    !device->ops.get_vector_affinity)
4552 		return NULL;
4553 
4554 	return device->ops.get_vector_affinity(device, comp_vector);
4555 
4556 }
4557 
4558 /**
4559  * rdma_roce_rescan_device - Rescan all of the network devices in the system
4560  * and add their gids, as needed, to the relevant RoCE devices.
4561  *
4562  * @device:         the rdma device
4563  */
4564 void rdma_roce_rescan_device(struct ib_device *ibdev);
4565 
4566 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
4567 
4568 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
4569 
4570 struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
4571 				     enum rdma_netdev_t type, const char *name,
4572 				     unsigned char name_assign_type,
4573 				     void (*setup)(struct net_device *));
4574 
4575 int rdma_init_netdev(struct ib_device *device, u8 port_num,
4576 		     enum rdma_netdev_t type, const char *name,
4577 		     unsigned char name_assign_type,
4578 		     void (*setup)(struct net_device *),
4579 		     struct net_device *netdev);
4580 
4581 /**
4582  * rdma_set_device_sysfs_group - Set device attributes group to have
4583  *				 driver specific sysfs entries at
4584  *				 for infiniband class.
4585  *
4586  * @device:	device pointer for which attributes to be created
4587  * @group:	Pointer to group which should be added when device
4588  *		is registered with sysfs.
4589  * rdma_set_device_sysfs_group() allows existing drivers to expose one
4590  * group per device to have sysfs attributes.
4591  *
4592  * NOTE: New drivers should not make use of this API; instead new device
4593  * parameter should be exposed via netlink command. This API and mechanism
4594  * exist only for existing drivers.
4595  */
4596 static inline void
4597 rdma_set_device_sysfs_group(struct ib_device *dev,
4598 			    const struct attribute_group *group)
4599 {
4600 	dev->groups[1] = group;
4601 }
4602 
4603 /**
4604  * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4605  *
4606  * @device:	device pointer for which ib_device pointer to retrieve
4607  *
4608  * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4609  *
4610  */
4611 static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4612 {
4613 	struct ib_core_device *coredev =
4614 		container_of(device, struct ib_core_device, dev);
4615 
4616 	return coredev->owner;
4617 }
4618 
4619 /**
4620  * rdma_device_to_drv_device - Helper macro to reach back to driver's
4621  *			       ib_device holder structure from device pointer.
4622  *
4623  * NOTE: New drivers should not make use of this API; This API is only for
4624  * existing drivers who have exposed sysfs entries using
4625  * rdma_set_device_sysfs_group().
4626  */
4627 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member)           \
4628 	container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
4629 
4630 bool rdma_dev_access_netns(const struct ib_device *device,
4631 			   const struct net *net);
4632 
4633 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000)
4634 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF)
4635 #define IB_GRH_FLOWLABEL_MASK (0x000FFFFF)
4636 
4637 /**
4638  * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based
4639  *                               on the flow_label
4640  *
4641  * This function will convert the 20 bit flow_label input to a valid RoCE v2
4642  * UDP src port 14 bit value. All RoCE V2 drivers should use this same
4643  * convention.
4644  */
4645 static inline u16 rdma_flow_label_to_udp_sport(u32 fl)
4646 {
4647 	u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000;
4648 
4649 	fl_low ^= fl_high >> 14;
4650 	return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN);
4651 }
4652 
4653 /**
4654  * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on
4655  *                        local and remote qpn values
4656  *
4657  * This function folded the multiplication results of two qpns, 24 bit each,
4658  * fields, and converts it to a 20 bit results.
4659  *
4660  * This function will create symmetric flow_label value based on the local
4661  * and remote qpn values. this will allow both the requester and responder
4662  * to calculate the same flow_label for a given connection.
4663  *
4664  * This helper function should be used by driver in case the upper layer
4665  * provide a zero flow_label value. This is to improve entropy of RDMA
4666  * traffic in the network.
4667  */
4668 static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn)
4669 {
4670 	u64 v = (u64)lqpn * rqpn;
4671 
4672 	v ^= v >> 20;
4673 	v ^= v >> 40;
4674 
4675 	return (u32)(v & IB_GRH_FLOWLABEL_MASK);
4676 }
4677 #endif /* IB_VERBS_H */
4678