xref: /openbmc/linux/include/rdma/ib_verbs.h (revision a8da474e)
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38 
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41 
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
51 #include <linux/socket.h>
52 #include <uapi/linux/if_ether.h>
53 
54 #include <linux/atomic.h>
55 #include <linux/mmu_notifier.h>
56 #include <asm/uaccess.h>
57 
58 extern struct workqueue_struct *ib_wq;
59 
60 union ib_gid {
61 	u8	raw[16];
62 	struct {
63 		__be64	subnet_prefix;
64 		__be64	interface_id;
65 	} global;
66 };
67 
68 extern union ib_gid zgid;
69 
70 struct ib_gid_attr {
71 	struct net_device	*ndev;
72 };
73 
74 enum rdma_node_type {
75 	/* IB values map to NodeInfo:NodeType. */
76 	RDMA_NODE_IB_CA 	= 1,
77 	RDMA_NODE_IB_SWITCH,
78 	RDMA_NODE_IB_ROUTER,
79 	RDMA_NODE_RNIC,
80 	RDMA_NODE_USNIC,
81 	RDMA_NODE_USNIC_UDP,
82 };
83 
84 enum rdma_transport_type {
85 	RDMA_TRANSPORT_IB,
86 	RDMA_TRANSPORT_IWARP,
87 	RDMA_TRANSPORT_USNIC,
88 	RDMA_TRANSPORT_USNIC_UDP
89 };
90 
91 enum rdma_protocol_type {
92 	RDMA_PROTOCOL_IB,
93 	RDMA_PROTOCOL_IBOE,
94 	RDMA_PROTOCOL_IWARP,
95 	RDMA_PROTOCOL_USNIC_UDP
96 };
97 
98 __attribute_const__ enum rdma_transport_type
99 rdma_node_get_transport(enum rdma_node_type node_type);
100 
101 enum rdma_link_layer {
102 	IB_LINK_LAYER_UNSPECIFIED,
103 	IB_LINK_LAYER_INFINIBAND,
104 	IB_LINK_LAYER_ETHERNET,
105 };
106 
107 enum ib_device_cap_flags {
108 	IB_DEVICE_RESIZE_MAX_WR		= 1,
109 	IB_DEVICE_BAD_PKEY_CNTR		= (1<<1),
110 	IB_DEVICE_BAD_QKEY_CNTR		= (1<<2),
111 	IB_DEVICE_RAW_MULTI		= (1<<3),
112 	IB_DEVICE_AUTO_PATH_MIG		= (1<<4),
113 	IB_DEVICE_CHANGE_PHY_PORT	= (1<<5),
114 	IB_DEVICE_UD_AV_PORT_ENFORCE	= (1<<6),
115 	IB_DEVICE_CURR_QP_STATE_MOD	= (1<<7),
116 	IB_DEVICE_SHUTDOWN_PORT		= (1<<8),
117 	IB_DEVICE_INIT_TYPE		= (1<<9),
118 	IB_DEVICE_PORT_ACTIVE_EVENT	= (1<<10),
119 	IB_DEVICE_SYS_IMAGE_GUID	= (1<<11),
120 	IB_DEVICE_RC_RNR_NAK_GEN	= (1<<12),
121 	IB_DEVICE_SRQ_RESIZE		= (1<<13),
122 	IB_DEVICE_N_NOTIFY_CQ		= (1<<14),
123 	IB_DEVICE_LOCAL_DMA_LKEY	= (1<<15),
124 	IB_DEVICE_RESERVED		= (1<<16), /* old SEND_W_INV */
125 	IB_DEVICE_MEM_WINDOW		= (1<<17),
126 	/*
127 	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
128 	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
129 	 * messages and can verify the validity of checksum for
130 	 * incoming messages.  Setting this flag implies that the
131 	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
132 	 */
133 	IB_DEVICE_UD_IP_CSUM		= (1<<18),
134 	IB_DEVICE_UD_TSO		= (1<<19),
135 	IB_DEVICE_XRC			= (1<<20),
136 	IB_DEVICE_MEM_MGT_EXTENSIONS	= (1<<21),
137 	IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
138 	IB_DEVICE_MEM_WINDOW_TYPE_2A	= (1<<23),
139 	IB_DEVICE_MEM_WINDOW_TYPE_2B	= (1<<24),
140 	IB_DEVICE_RC_IP_CSUM		= (1<<25),
141 	IB_DEVICE_RAW_IP_CSUM		= (1<<26),
142 	IB_DEVICE_MANAGED_FLOW_STEERING = (1<<29),
143 	IB_DEVICE_SIGNATURE_HANDOVER	= (1<<30),
144 	IB_DEVICE_ON_DEMAND_PAGING	= (1<<31),
145 };
146 
147 enum ib_signature_prot_cap {
148 	IB_PROT_T10DIF_TYPE_1 = 1,
149 	IB_PROT_T10DIF_TYPE_2 = 1 << 1,
150 	IB_PROT_T10DIF_TYPE_3 = 1 << 2,
151 };
152 
153 enum ib_signature_guard_cap {
154 	IB_GUARD_T10DIF_CRC	= 1,
155 	IB_GUARD_T10DIF_CSUM	= 1 << 1,
156 };
157 
158 enum ib_atomic_cap {
159 	IB_ATOMIC_NONE,
160 	IB_ATOMIC_HCA,
161 	IB_ATOMIC_GLOB
162 };
163 
164 enum ib_odp_general_cap_bits {
165 	IB_ODP_SUPPORT = 1 << 0,
166 };
167 
168 enum ib_odp_transport_cap_bits {
169 	IB_ODP_SUPPORT_SEND	= 1 << 0,
170 	IB_ODP_SUPPORT_RECV	= 1 << 1,
171 	IB_ODP_SUPPORT_WRITE	= 1 << 2,
172 	IB_ODP_SUPPORT_READ	= 1 << 3,
173 	IB_ODP_SUPPORT_ATOMIC	= 1 << 4,
174 };
175 
176 struct ib_odp_caps {
177 	uint64_t general_caps;
178 	struct {
179 		uint32_t  rc_odp_caps;
180 		uint32_t  uc_odp_caps;
181 		uint32_t  ud_odp_caps;
182 	} per_transport_caps;
183 };
184 
185 enum ib_cq_creation_flags {
186 	IB_CQ_FLAGS_TIMESTAMP_COMPLETION   = 1 << 0,
187 };
188 
189 struct ib_cq_init_attr {
190 	unsigned int	cqe;
191 	int		comp_vector;
192 	u32		flags;
193 };
194 
195 struct ib_device_attr {
196 	u64			fw_ver;
197 	__be64			sys_image_guid;
198 	u64			max_mr_size;
199 	u64			page_size_cap;
200 	u32			vendor_id;
201 	u32			vendor_part_id;
202 	u32			hw_ver;
203 	int			max_qp;
204 	int			max_qp_wr;
205 	int			device_cap_flags;
206 	int			max_sge;
207 	int			max_sge_rd;
208 	int			max_cq;
209 	int			max_cqe;
210 	int			max_mr;
211 	int			max_pd;
212 	int			max_qp_rd_atom;
213 	int			max_ee_rd_atom;
214 	int			max_res_rd_atom;
215 	int			max_qp_init_rd_atom;
216 	int			max_ee_init_rd_atom;
217 	enum ib_atomic_cap	atomic_cap;
218 	enum ib_atomic_cap	masked_atomic_cap;
219 	int			max_ee;
220 	int			max_rdd;
221 	int			max_mw;
222 	int			max_raw_ipv6_qp;
223 	int			max_raw_ethy_qp;
224 	int			max_mcast_grp;
225 	int			max_mcast_qp_attach;
226 	int			max_total_mcast_qp_attach;
227 	int			max_ah;
228 	int			max_fmr;
229 	int			max_map_per_fmr;
230 	int			max_srq;
231 	int			max_srq_wr;
232 	int			max_srq_sge;
233 	unsigned int		max_fast_reg_page_list_len;
234 	u16			max_pkeys;
235 	u8			local_ca_ack_delay;
236 	int			sig_prot_cap;
237 	int			sig_guard_cap;
238 	struct ib_odp_caps	odp_caps;
239 	uint64_t		timestamp_mask;
240 	uint64_t		hca_core_clock; /* in KHZ */
241 };
242 
243 enum ib_mtu {
244 	IB_MTU_256  = 1,
245 	IB_MTU_512  = 2,
246 	IB_MTU_1024 = 3,
247 	IB_MTU_2048 = 4,
248 	IB_MTU_4096 = 5
249 };
250 
251 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
252 {
253 	switch (mtu) {
254 	case IB_MTU_256:  return  256;
255 	case IB_MTU_512:  return  512;
256 	case IB_MTU_1024: return 1024;
257 	case IB_MTU_2048: return 2048;
258 	case IB_MTU_4096: return 4096;
259 	default: 	  return -1;
260 	}
261 }
262 
263 enum ib_port_state {
264 	IB_PORT_NOP		= 0,
265 	IB_PORT_DOWN		= 1,
266 	IB_PORT_INIT		= 2,
267 	IB_PORT_ARMED		= 3,
268 	IB_PORT_ACTIVE		= 4,
269 	IB_PORT_ACTIVE_DEFER	= 5
270 };
271 
272 enum ib_port_cap_flags {
273 	IB_PORT_SM				= 1 <<  1,
274 	IB_PORT_NOTICE_SUP			= 1 <<  2,
275 	IB_PORT_TRAP_SUP			= 1 <<  3,
276 	IB_PORT_OPT_IPD_SUP                     = 1 <<  4,
277 	IB_PORT_AUTO_MIGR_SUP			= 1 <<  5,
278 	IB_PORT_SL_MAP_SUP			= 1 <<  6,
279 	IB_PORT_MKEY_NVRAM			= 1 <<  7,
280 	IB_PORT_PKEY_NVRAM			= 1 <<  8,
281 	IB_PORT_LED_INFO_SUP			= 1 <<  9,
282 	IB_PORT_SM_DISABLED			= 1 << 10,
283 	IB_PORT_SYS_IMAGE_GUID_SUP		= 1 << 11,
284 	IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP	= 1 << 12,
285 	IB_PORT_EXTENDED_SPEEDS_SUP             = 1 << 14,
286 	IB_PORT_CM_SUP				= 1 << 16,
287 	IB_PORT_SNMP_TUNNEL_SUP			= 1 << 17,
288 	IB_PORT_REINIT_SUP			= 1 << 18,
289 	IB_PORT_DEVICE_MGMT_SUP			= 1 << 19,
290 	IB_PORT_VENDOR_CLASS_SUP		= 1 << 20,
291 	IB_PORT_DR_NOTICE_SUP			= 1 << 21,
292 	IB_PORT_CAP_MASK_NOTICE_SUP		= 1 << 22,
293 	IB_PORT_BOOT_MGMT_SUP			= 1 << 23,
294 	IB_PORT_LINK_LATENCY_SUP		= 1 << 24,
295 	IB_PORT_CLIENT_REG_SUP			= 1 << 25,
296 	IB_PORT_IP_BASED_GIDS			= 1 << 26,
297 };
298 
299 enum ib_port_width {
300 	IB_WIDTH_1X	= 1,
301 	IB_WIDTH_4X	= 2,
302 	IB_WIDTH_8X	= 4,
303 	IB_WIDTH_12X	= 8
304 };
305 
306 static inline int ib_width_enum_to_int(enum ib_port_width width)
307 {
308 	switch (width) {
309 	case IB_WIDTH_1X:  return  1;
310 	case IB_WIDTH_4X:  return  4;
311 	case IB_WIDTH_8X:  return  8;
312 	case IB_WIDTH_12X: return 12;
313 	default: 	  return -1;
314 	}
315 }
316 
317 enum ib_port_speed {
318 	IB_SPEED_SDR	= 1,
319 	IB_SPEED_DDR	= 2,
320 	IB_SPEED_QDR	= 4,
321 	IB_SPEED_FDR10	= 8,
322 	IB_SPEED_FDR	= 16,
323 	IB_SPEED_EDR	= 32
324 };
325 
326 struct ib_protocol_stats {
327 	/* TBD... */
328 };
329 
330 struct iw_protocol_stats {
331 	u64	ipInReceives;
332 	u64	ipInHdrErrors;
333 	u64	ipInTooBigErrors;
334 	u64	ipInNoRoutes;
335 	u64	ipInAddrErrors;
336 	u64	ipInUnknownProtos;
337 	u64	ipInTruncatedPkts;
338 	u64	ipInDiscards;
339 	u64	ipInDelivers;
340 	u64	ipOutForwDatagrams;
341 	u64	ipOutRequests;
342 	u64	ipOutDiscards;
343 	u64	ipOutNoRoutes;
344 	u64	ipReasmTimeout;
345 	u64	ipReasmReqds;
346 	u64	ipReasmOKs;
347 	u64	ipReasmFails;
348 	u64	ipFragOKs;
349 	u64	ipFragFails;
350 	u64	ipFragCreates;
351 	u64	ipInMcastPkts;
352 	u64	ipOutMcastPkts;
353 	u64	ipInBcastPkts;
354 	u64	ipOutBcastPkts;
355 
356 	u64	tcpRtoAlgorithm;
357 	u64	tcpRtoMin;
358 	u64	tcpRtoMax;
359 	u64	tcpMaxConn;
360 	u64	tcpActiveOpens;
361 	u64	tcpPassiveOpens;
362 	u64	tcpAttemptFails;
363 	u64	tcpEstabResets;
364 	u64	tcpCurrEstab;
365 	u64	tcpInSegs;
366 	u64	tcpOutSegs;
367 	u64	tcpRetransSegs;
368 	u64	tcpInErrs;
369 	u64	tcpOutRsts;
370 };
371 
372 union rdma_protocol_stats {
373 	struct ib_protocol_stats	ib;
374 	struct iw_protocol_stats	iw;
375 };
376 
377 /* Define bits for the various functionality this port needs to be supported by
378  * the core.
379  */
380 /* Management                           0x00000FFF */
381 #define RDMA_CORE_CAP_IB_MAD            0x00000001
382 #define RDMA_CORE_CAP_IB_SMI            0x00000002
383 #define RDMA_CORE_CAP_IB_CM             0x00000004
384 #define RDMA_CORE_CAP_IW_CM             0x00000008
385 #define RDMA_CORE_CAP_IB_SA             0x00000010
386 #define RDMA_CORE_CAP_OPA_MAD           0x00000020
387 
388 /* Address format                       0x000FF000 */
389 #define RDMA_CORE_CAP_AF_IB             0x00001000
390 #define RDMA_CORE_CAP_ETH_AH            0x00002000
391 
392 /* Protocol                             0xFFF00000 */
393 #define RDMA_CORE_CAP_PROT_IB           0x00100000
394 #define RDMA_CORE_CAP_PROT_ROCE         0x00200000
395 #define RDMA_CORE_CAP_PROT_IWARP        0x00400000
396 
397 #define RDMA_CORE_PORT_IBA_IB          (RDMA_CORE_CAP_PROT_IB  \
398 					| RDMA_CORE_CAP_IB_MAD \
399 					| RDMA_CORE_CAP_IB_SMI \
400 					| RDMA_CORE_CAP_IB_CM  \
401 					| RDMA_CORE_CAP_IB_SA  \
402 					| RDMA_CORE_CAP_AF_IB)
403 #define RDMA_CORE_PORT_IBA_ROCE        (RDMA_CORE_CAP_PROT_ROCE \
404 					| RDMA_CORE_CAP_IB_MAD  \
405 					| RDMA_CORE_CAP_IB_CM   \
406 					| RDMA_CORE_CAP_AF_IB   \
407 					| RDMA_CORE_CAP_ETH_AH)
408 #define RDMA_CORE_PORT_IWARP           (RDMA_CORE_CAP_PROT_IWARP \
409 					| RDMA_CORE_CAP_IW_CM)
410 #define RDMA_CORE_PORT_INTEL_OPA       (RDMA_CORE_PORT_IBA_IB  \
411 					| RDMA_CORE_CAP_OPA_MAD)
412 
413 struct ib_port_attr {
414 	enum ib_port_state	state;
415 	enum ib_mtu		max_mtu;
416 	enum ib_mtu		active_mtu;
417 	int			gid_tbl_len;
418 	u32			port_cap_flags;
419 	u32			max_msg_sz;
420 	u32			bad_pkey_cntr;
421 	u32			qkey_viol_cntr;
422 	u16			pkey_tbl_len;
423 	u16			lid;
424 	u16			sm_lid;
425 	u8			lmc;
426 	u8			max_vl_num;
427 	u8			sm_sl;
428 	u8			subnet_timeout;
429 	u8			init_type_reply;
430 	u8			active_width;
431 	u8			active_speed;
432 	u8                      phys_state;
433 };
434 
435 enum ib_device_modify_flags {
436 	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
437 	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
438 };
439 
440 struct ib_device_modify {
441 	u64	sys_image_guid;
442 	char	node_desc[64];
443 };
444 
445 enum ib_port_modify_flags {
446 	IB_PORT_SHUTDOWN		= 1,
447 	IB_PORT_INIT_TYPE		= (1<<2),
448 	IB_PORT_RESET_QKEY_CNTR		= (1<<3)
449 };
450 
451 struct ib_port_modify {
452 	u32	set_port_cap_mask;
453 	u32	clr_port_cap_mask;
454 	u8	init_type;
455 };
456 
457 enum ib_event_type {
458 	IB_EVENT_CQ_ERR,
459 	IB_EVENT_QP_FATAL,
460 	IB_EVENT_QP_REQ_ERR,
461 	IB_EVENT_QP_ACCESS_ERR,
462 	IB_EVENT_COMM_EST,
463 	IB_EVENT_SQ_DRAINED,
464 	IB_EVENT_PATH_MIG,
465 	IB_EVENT_PATH_MIG_ERR,
466 	IB_EVENT_DEVICE_FATAL,
467 	IB_EVENT_PORT_ACTIVE,
468 	IB_EVENT_PORT_ERR,
469 	IB_EVENT_LID_CHANGE,
470 	IB_EVENT_PKEY_CHANGE,
471 	IB_EVENT_SM_CHANGE,
472 	IB_EVENT_SRQ_ERR,
473 	IB_EVENT_SRQ_LIMIT_REACHED,
474 	IB_EVENT_QP_LAST_WQE_REACHED,
475 	IB_EVENT_CLIENT_REREGISTER,
476 	IB_EVENT_GID_CHANGE,
477 };
478 
479 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
480 
481 struct ib_event {
482 	struct ib_device	*device;
483 	union {
484 		struct ib_cq	*cq;
485 		struct ib_qp	*qp;
486 		struct ib_srq	*srq;
487 		u8		port_num;
488 	} element;
489 	enum ib_event_type	event;
490 };
491 
492 struct ib_event_handler {
493 	struct ib_device *device;
494 	void            (*handler)(struct ib_event_handler *, struct ib_event *);
495 	struct list_head  list;
496 };
497 
498 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
499 	do {							\
500 		(_ptr)->device  = _device;			\
501 		(_ptr)->handler = _handler;			\
502 		INIT_LIST_HEAD(&(_ptr)->list);			\
503 	} while (0)
504 
505 struct ib_global_route {
506 	union ib_gid	dgid;
507 	u32		flow_label;
508 	u8		sgid_index;
509 	u8		hop_limit;
510 	u8		traffic_class;
511 };
512 
513 struct ib_grh {
514 	__be32		version_tclass_flow;
515 	__be16		paylen;
516 	u8		next_hdr;
517 	u8		hop_limit;
518 	union ib_gid	sgid;
519 	union ib_gid	dgid;
520 };
521 
522 enum {
523 	IB_MULTICAST_QPN = 0xffffff
524 };
525 
526 #define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
527 
528 enum ib_ah_flags {
529 	IB_AH_GRH	= 1
530 };
531 
532 enum ib_rate {
533 	IB_RATE_PORT_CURRENT = 0,
534 	IB_RATE_2_5_GBPS = 2,
535 	IB_RATE_5_GBPS   = 5,
536 	IB_RATE_10_GBPS  = 3,
537 	IB_RATE_20_GBPS  = 6,
538 	IB_RATE_30_GBPS  = 4,
539 	IB_RATE_40_GBPS  = 7,
540 	IB_RATE_60_GBPS  = 8,
541 	IB_RATE_80_GBPS  = 9,
542 	IB_RATE_120_GBPS = 10,
543 	IB_RATE_14_GBPS  = 11,
544 	IB_RATE_56_GBPS  = 12,
545 	IB_RATE_112_GBPS = 13,
546 	IB_RATE_168_GBPS = 14,
547 	IB_RATE_25_GBPS  = 15,
548 	IB_RATE_100_GBPS = 16,
549 	IB_RATE_200_GBPS = 17,
550 	IB_RATE_300_GBPS = 18
551 };
552 
553 /**
554  * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
555  * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
556  * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
557  * @rate: rate to convert.
558  */
559 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
560 
561 /**
562  * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
563  * For example, IB_RATE_2_5_GBPS will be converted to 2500.
564  * @rate: rate to convert.
565  */
566 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
567 
568 
569 /**
570  * enum ib_mr_type - memory region type
571  * @IB_MR_TYPE_MEM_REG:       memory region that is used for
572  *                            normal registration
573  * @IB_MR_TYPE_SIGNATURE:     memory region that is used for
574  *                            signature operations (data-integrity
575  *                            capable regions)
576  */
577 enum ib_mr_type {
578 	IB_MR_TYPE_MEM_REG,
579 	IB_MR_TYPE_SIGNATURE,
580 };
581 
582 /**
583  * Signature types
584  * IB_SIG_TYPE_NONE: Unprotected.
585  * IB_SIG_TYPE_T10_DIF: Type T10-DIF
586  */
587 enum ib_signature_type {
588 	IB_SIG_TYPE_NONE,
589 	IB_SIG_TYPE_T10_DIF,
590 };
591 
592 /**
593  * Signature T10-DIF block-guard types
594  * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
595  * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
596  */
597 enum ib_t10_dif_bg_type {
598 	IB_T10DIF_CRC,
599 	IB_T10DIF_CSUM
600 };
601 
602 /**
603  * struct ib_t10_dif_domain - Parameters specific for T10-DIF
604  *     domain.
605  * @bg_type: T10-DIF block guard type (CRC|CSUM)
606  * @pi_interval: protection information interval.
607  * @bg: seed of guard computation.
608  * @app_tag: application tag of guard block
609  * @ref_tag: initial guard block reference tag.
610  * @ref_remap: Indicate wethear the reftag increments each block
611  * @app_escape: Indicate to skip block check if apptag=0xffff
612  * @ref_escape: Indicate to skip block check if reftag=0xffffffff
613  * @apptag_check_mask: check bitmask of application tag.
614  */
615 struct ib_t10_dif_domain {
616 	enum ib_t10_dif_bg_type bg_type;
617 	u16			pi_interval;
618 	u16			bg;
619 	u16			app_tag;
620 	u32			ref_tag;
621 	bool			ref_remap;
622 	bool			app_escape;
623 	bool			ref_escape;
624 	u16			apptag_check_mask;
625 };
626 
627 /**
628  * struct ib_sig_domain - Parameters for signature domain
629  * @sig_type: specific signauture type
630  * @sig: union of all signature domain attributes that may
631  *     be used to set domain layout.
632  */
633 struct ib_sig_domain {
634 	enum ib_signature_type sig_type;
635 	union {
636 		struct ib_t10_dif_domain dif;
637 	} sig;
638 };
639 
640 /**
641  * struct ib_sig_attrs - Parameters for signature handover operation
642  * @check_mask: bitmask for signature byte check (8 bytes)
643  * @mem: memory domain layout desciptor.
644  * @wire: wire domain layout desciptor.
645  */
646 struct ib_sig_attrs {
647 	u8			check_mask;
648 	struct ib_sig_domain	mem;
649 	struct ib_sig_domain	wire;
650 };
651 
652 enum ib_sig_err_type {
653 	IB_SIG_BAD_GUARD,
654 	IB_SIG_BAD_REFTAG,
655 	IB_SIG_BAD_APPTAG,
656 };
657 
658 /**
659  * struct ib_sig_err - signature error descriptor
660  */
661 struct ib_sig_err {
662 	enum ib_sig_err_type	err_type;
663 	u32			expected;
664 	u32			actual;
665 	u64			sig_err_offset;
666 	u32			key;
667 };
668 
669 enum ib_mr_status_check {
670 	IB_MR_CHECK_SIG_STATUS = 1,
671 };
672 
673 /**
674  * struct ib_mr_status - Memory region status container
675  *
676  * @fail_status: Bitmask of MR checks status. For each
677  *     failed check a corresponding status bit is set.
678  * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
679  *     failure.
680  */
681 struct ib_mr_status {
682 	u32		    fail_status;
683 	struct ib_sig_err   sig_err;
684 };
685 
686 /**
687  * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
688  * enum.
689  * @mult: multiple to convert.
690  */
691 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
692 
693 struct ib_ah_attr {
694 	struct ib_global_route	grh;
695 	u16			dlid;
696 	u8			sl;
697 	u8			src_path_bits;
698 	u8			static_rate;
699 	u8			ah_flags;
700 	u8			port_num;
701 	u8			dmac[ETH_ALEN];
702 };
703 
704 enum ib_wc_status {
705 	IB_WC_SUCCESS,
706 	IB_WC_LOC_LEN_ERR,
707 	IB_WC_LOC_QP_OP_ERR,
708 	IB_WC_LOC_EEC_OP_ERR,
709 	IB_WC_LOC_PROT_ERR,
710 	IB_WC_WR_FLUSH_ERR,
711 	IB_WC_MW_BIND_ERR,
712 	IB_WC_BAD_RESP_ERR,
713 	IB_WC_LOC_ACCESS_ERR,
714 	IB_WC_REM_INV_REQ_ERR,
715 	IB_WC_REM_ACCESS_ERR,
716 	IB_WC_REM_OP_ERR,
717 	IB_WC_RETRY_EXC_ERR,
718 	IB_WC_RNR_RETRY_EXC_ERR,
719 	IB_WC_LOC_RDD_VIOL_ERR,
720 	IB_WC_REM_INV_RD_REQ_ERR,
721 	IB_WC_REM_ABORT_ERR,
722 	IB_WC_INV_EECN_ERR,
723 	IB_WC_INV_EEC_STATE_ERR,
724 	IB_WC_FATAL_ERR,
725 	IB_WC_RESP_TIMEOUT_ERR,
726 	IB_WC_GENERAL_ERR
727 };
728 
729 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
730 
731 enum ib_wc_opcode {
732 	IB_WC_SEND,
733 	IB_WC_RDMA_WRITE,
734 	IB_WC_RDMA_READ,
735 	IB_WC_COMP_SWAP,
736 	IB_WC_FETCH_ADD,
737 	IB_WC_BIND_MW,
738 	IB_WC_LSO,
739 	IB_WC_LOCAL_INV,
740 	IB_WC_REG_MR,
741 	IB_WC_MASKED_COMP_SWAP,
742 	IB_WC_MASKED_FETCH_ADD,
743 /*
744  * Set value of IB_WC_RECV so consumers can test if a completion is a
745  * receive by testing (opcode & IB_WC_RECV).
746  */
747 	IB_WC_RECV			= 1 << 7,
748 	IB_WC_RECV_RDMA_WITH_IMM
749 };
750 
751 enum ib_wc_flags {
752 	IB_WC_GRH		= 1,
753 	IB_WC_WITH_IMM		= (1<<1),
754 	IB_WC_WITH_INVALIDATE	= (1<<2),
755 	IB_WC_IP_CSUM_OK	= (1<<3),
756 	IB_WC_WITH_SMAC		= (1<<4),
757 	IB_WC_WITH_VLAN		= (1<<5),
758 };
759 
760 struct ib_wc {
761 	u64			wr_id;
762 	enum ib_wc_status	status;
763 	enum ib_wc_opcode	opcode;
764 	u32			vendor_err;
765 	u32			byte_len;
766 	struct ib_qp	       *qp;
767 	union {
768 		__be32		imm_data;
769 		u32		invalidate_rkey;
770 	} ex;
771 	u32			src_qp;
772 	int			wc_flags;
773 	u16			pkey_index;
774 	u16			slid;
775 	u8			sl;
776 	u8			dlid_path_bits;
777 	u8			port_num;	/* valid only for DR SMPs on switches */
778 	u8			smac[ETH_ALEN];
779 	u16			vlan_id;
780 };
781 
782 enum ib_cq_notify_flags {
783 	IB_CQ_SOLICITED			= 1 << 0,
784 	IB_CQ_NEXT_COMP			= 1 << 1,
785 	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
786 	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
787 };
788 
789 enum ib_srq_type {
790 	IB_SRQT_BASIC,
791 	IB_SRQT_XRC
792 };
793 
794 enum ib_srq_attr_mask {
795 	IB_SRQ_MAX_WR	= 1 << 0,
796 	IB_SRQ_LIMIT	= 1 << 1,
797 };
798 
799 struct ib_srq_attr {
800 	u32	max_wr;
801 	u32	max_sge;
802 	u32	srq_limit;
803 };
804 
805 struct ib_srq_init_attr {
806 	void		      (*event_handler)(struct ib_event *, void *);
807 	void		       *srq_context;
808 	struct ib_srq_attr	attr;
809 	enum ib_srq_type	srq_type;
810 
811 	union {
812 		struct {
813 			struct ib_xrcd *xrcd;
814 			struct ib_cq   *cq;
815 		} xrc;
816 	} ext;
817 };
818 
819 struct ib_qp_cap {
820 	u32	max_send_wr;
821 	u32	max_recv_wr;
822 	u32	max_send_sge;
823 	u32	max_recv_sge;
824 	u32	max_inline_data;
825 };
826 
827 enum ib_sig_type {
828 	IB_SIGNAL_ALL_WR,
829 	IB_SIGNAL_REQ_WR
830 };
831 
832 enum ib_qp_type {
833 	/*
834 	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
835 	 * here (and in that order) since the MAD layer uses them as
836 	 * indices into a 2-entry table.
837 	 */
838 	IB_QPT_SMI,
839 	IB_QPT_GSI,
840 
841 	IB_QPT_RC,
842 	IB_QPT_UC,
843 	IB_QPT_UD,
844 	IB_QPT_RAW_IPV6,
845 	IB_QPT_RAW_ETHERTYPE,
846 	IB_QPT_RAW_PACKET = 8,
847 	IB_QPT_XRC_INI = 9,
848 	IB_QPT_XRC_TGT,
849 	IB_QPT_MAX,
850 	/* Reserve a range for qp types internal to the low level driver.
851 	 * These qp types will not be visible at the IB core layer, so the
852 	 * IB_QPT_MAX usages should not be affected in the core layer
853 	 */
854 	IB_QPT_RESERVED1 = 0x1000,
855 	IB_QPT_RESERVED2,
856 	IB_QPT_RESERVED3,
857 	IB_QPT_RESERVED4,
858 	IB_QPT_RESERVED5,
859 	IB_QPT_RESERVED6,
860 	IB_QPT_RESERVED7,
861 	IB_QPT_RESERVED8,
862 	IB_QPT_RESERVED9,
863 	IB_QPT_RESERVED10,
864 };
865 
866 enum ib_qp_create_flags {
867 	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
868 	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	= 1 << 1,
869 	IB_QP_CREATE_NETIF_QP			= 1 << 5,
870 	IB_QP_CREATE_SIGNATURE_EN		= 1 << 6,
871 	IB_QP_CREATE_USE_GFP_NOIO		= 1 << 7,
872 	/* reserve bits 26-31 for low level drivers' internal use */
873 	IB_QP_CREATE_RESERVED_START		= 1 << 26,
874 	IB_QP_CREATE_RESERVED_END		= 1 << 31,
875 };
876 
877 /*
878  * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
879  * callback to destroy the passed in QP.
880  */
881 
882 struct ib_qp_init_attr {
883 	void                  (*event_handler)(struct ib_event *, void *);
884 	void		       *qp_context;
885 	struct ib_cq	       *send_cq;
886 	struct ib_cq	       *recv_cq;
887 	struct ib_srq	       *srq;
888 	struct ib_xrcd	       *xrcd;     /* XRC TGT QPs only */
889 	struct ib_qp_cap	cap;
890 	enum ib_sig_type	sq_sig_type;
891 	enum ib_qp_type		qp_type;
892 	enum ib_qp_create_flags	create_flags;
893 	u8			port_num; /* special QP types only */
894 };
895 
896 struct ib_qp_open_attr {
897 	void                  (*event_handler)(struct ib_event *, void *);
898 	void		       *qp_context;
899 	u32			qp_num;
900 	enum ib_qp_type		qp_type;
901 };
902 
903 enum ib_rnr_timeout {
904 	IB_RNR_TIMER_655_36 =  0,
905 	IB_RNR_TIMER_000_01 =  1,
906 	IB_RNR_TIMER_000_02 =  2,
907 	IB_RNR_TIMER_000_03 =  3,
908 	IB_RNR_TIMER_000_04 =  4,
909 	IB_RNR_TIMER_000_06 =  5,
910 	IB_RNR_TIMER_000_08 =  6,
911 	IB_RNR_TIMER_000_12 =  7,
912 	IB_RNR_TIMER_000_16 =  8,
913 	IB_RNR_TIMER_000_24 =  9,
914 	IB_RNR_TIMER_000_32 = 10,
915 	IB_RNR_TIMER_000_48 = 11,
916 	IB_RNR_TIMER_000_64 = 12,
917 	IB_RNR_TIMER_000_96 = 13,
918 	IB_RNR_TIMER_001_28 = 14,
919 	IB_RNR_TIMER_001_92 = 15,
920 	IB_RNR_TIMER_002_56 = 16,
921 	IB_RNR_TIMER_003_84 = 17,
922 	IB_RNR_TIMER_005_12 = 18,
923 	IB_RNR_TIMER_007_68 = 19,
924 	IB_RNR_TIMER_010_24 = 20,
925 	IB_RNR_TIMER_015_36 = 21,
926 	IB_RNR_TIMER_020_48 = 22,
927 	IB_RNR_TIMER_030_72 = 23,
928 	IB_RNR_TIMER_040_96 = 24,
929 	IB_RNR_TIMER_061_44 = 25,
930 	IB_RNR_TIMER_081_92 = 26,
931 	IB_RNR_TIMER_122_88 = 27,
932 	IB_RNR_TIMER_163_84 = 28,
933 	IB_RNR_TIMER_245_76 = 29,
934 	IB_RNR_TIMER_327_68 = 30,
935 	IB_RNR_TIMER_491_52 = 31
936 };
937 
938 enum ib_qp_attr_mask {
939 	IB_QP_STATE			= 1,
940 	IB_QP_CUR_STATE			= (1<<1),
941 	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
942 	IB_QP_ACCESS_FLAGS		= (1<<3),
943 	IB_QP_PKEY_INDEX		= (1<<4),
944 	IB_QP_PORT			= (1<<5),
945 	IB_QP_QKEY			= (1<<6),
946 	IB_QP_AV			= (1<<7),
947 	IB_QP_PATH_MTU			= (1<<8),
948 	IB_QP_TIMEOUT			= (1<<9),
949 	IB_QP_RETRY_CNT			= (1<<10),
950 	IB_QP_RNR_RETRY			= (1<<11),
951 	IB_QP_RQ_PSN			= (1<<12),
952 	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
953 	IB_QP_ALT_PATH			= (1<<14),
954 	IB_QP_MIN_RNR_TIMER		= (1<<15),
955 	IB_QP_SQ_PSN			= (1<<16),
956 	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
957 	IB_QP_PATH_MIG_STATE		= (1<<18),
958 	IB_QP_CAP			= (1<<19),
959 	IB_QP_DEST_QPN			= (1<<20),
960 	IB_QP_RESERVED1			= (1<<21),
961 	IB_QP_RESERVED2			= (1<<22),
962 	IB_QP_RESERVED3			= (1<<23),
963 	IB_QP_RESERVED4			= (1<<24),
964 };
965 
966 enum ib_qp_state {
967 	IB_QPS_RESET,
968 	IB_QPS_INIT,
969 	IB_QPS_RTR,
970 	IB_QPS_RTS,
971 	IB_QPS_SQD,
972 	IB_QPS_SQE,
973 	IB_QPS_ERR
974 };
975 
976 enum ib_mig_state {
977 	IB_MIG_MIGRATED,
978 	IB_MIG_REARM,
979 	IB_MIG_ARMED
980 };
981 
982 enum ib_mw_type {
983 	IB_MW_TYPE_1 = 1,
984 	IB_MW_TYPE_2 = 2
985 };
986 
987 struct ib_qp_attr {
988 	enum ib_qp_state	qp_state;
989 	enum ib_qp_state	cur_qp_state;
990 	enum ib_mtu		path_mtu;
991 	enum ib_mig_state	path_mig_state;
992 	u32			qkey;
993 	u32			rq_psn;
994 	u32			sq_psn;
995 	u32			dest_qp_num;
996 	int			qp_access_flags;
997 	struct ib_qp_cap	cap;
998 	struct ib_ah_attr	ah_attr;
999 	struct ib_ah_attr	alt_ah_attr;
1000 	u16			pkey_index;
1001 	u16			alt_pkey_index;
1002 	u8			en_sqd_async_notify;
1003 	u8			sq_draining;
1004 	u8			max_rd_atomic;
1005 	u8			max_dest_rd_atomic;
1006 	u8			min_rnr_timer;
1007 	u8			port_num;
1008 	u8			timeout;
1009 	u8			retry_cnt;
1010 	u8			rnr_retry;
1011 	u8			alt_port_num;
1012 	u8			alt_timeout;
1013 };
1014 
1015 enum ib_wr_opcode {
1016 	IB_WR_RDMA_WRITE,
1017 	IB_WR_RDMA_WRITE_WITH_IMM,
1018 	IB_WR_SEND,
1019 	IB_WR_SEND_WITH_IMM,
1020 	IB_WR_RDMA_READ,
1021 	IB_WR_ATOMIC_CMP_AND_SWP,
1022 	IB_WR_ATOMIC_FETCH_AND_ADD,
1023 	IB_WR_LSO,
1024 	IB_WR_SEND_WITH_INV,
1025 	IB_WR_RDMA_READ_WITH_INV,
1026 	IB_WR_LOCAL_INV,
1027 	IB_WR_REG_MR,
1028 	IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1029 	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1030 	IB_WR_BIND_MW,
1031 	IB_WR_REG_SIG_MR,
1032 	/* reserve values for low level drivers' internal use.
1033 	 * These values will not be used at all in the ib core layer.
1034 	 */
1035 	IB_WR_RESERVED1 = 0xf0,
1036 	IB_WR_RESERVED2,
1037 	IB_WR_RESERVED3,
1038 	IB_WR_RESERVED4,
1039 	IB_WR_RESERVED5,
1040 	IB_WR_RESERVED6,
1041 	IB_WR_RESERVED7,
1042 	IB_WR_RESERVED8,
1043 	IB_WR_RESERVED9,
1044 	IB_WR_RESERVED10,
1045 };
1046 
1047 enum ib_send_flags {
1048 	IB_SEND_FENCE		= 1,
1049 	IB_SEND_SIGNALED	= (1<<1),
1050 	IB_SEND_SOLICITED	= (1<<2),
1051 	IB_SEND_INLINE		= (1<<3),
1052 	IB_SEND_IP_CSUM		= (1<<4),
1053 
1054 	/* reserve bits 26-31 for low level drivers' internal use */
1055 	IB_SEND_RESERVED_START	= (1 << 26),
1056 	IB_SEND_RESERVED_END	= (1 << 31),
1057 };
1058 
1059 struct ib_sge {
1060 	u64	addr;
1061 	u32	length;
1062 	u32	lkey;
1063 };
1064 
1065 /**
1066  * struct ib_mw_bind_info - Parameters for a memory window bind operation.
1067  * @mr: A memory region to bind the memory window to.
1068  * @addr: The address where the memory window should begin.
1069  * @length: The length of the memory window, in bytes.
1070  * @mw_access_flags: Access flags from enum ib_access_flags for the window.
1071  *
1072  * This struct contains the shared parameters for type 1 and type 2
1073  * memory window bind operations.
1074  */
1075 struct ib_mw_bind_info {
1076 	struct ib_mr   *mr;
1077 	u64		addr;
1078 	u64		length;
1079 	int		mw_access_flags;
1080 };
1081 
1082 struct ib_send_wr {
1083 	struct ib_send_wr      *next;
1084 	u64			wr_id;
1085 	struct ib_sge	       *sg_list;
1086 	int			num_sge;
1087 	enum ib_wr_opcode	opcode;
1088 	int			send_flags;
1089 	union {
1090 		__be32		imm_data;
1091 		u32		invalidate_rkey;
1092 	} ex;
1093 };
1094 
1095 struct ib_rdma_wr {
1096 	struct ib_send_wr	wr;
1097 	u64			remote_addr;
1098 	u32			rkey;
1099 };
1100 
1101 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1102 {
1103 	return container_of(wr, struct ib_rdma_wr, wr);
1104 }
1105 
1106 struct ib_atomic_wr {
1107 	struct ib_send_wr	wr;
1108 	u64			remote_addr;
1109 	u64			compare_add;
1110 	u64			swap;
1111 	u64			compare_add_mask;
1112 	u64			swap_mask;
1113 	u32			rkey;
1114 };
1115 
1116 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1117 {
1118 	return container_of(wr, struct ib_atomic_wr, wr);
1119 }
1120 
1121 struct ib_ud_wr {
1122 	struct ib_send_wr	wr;
1123 	struct ib_ah		*ah;
1124 	void			*header;
1125 	int			hlen;
1126 	int			mss;
1127 	u32			remote_qpn;
1128 	u32			remote_qkey;
1129 	u16			pkey_index; /* valid for GSI only */
1130 	u8			port_num;   /* valid for DR SMPs on switch only */
1131 };
1132 
1133 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1134 {
1135 	return container_of(wr, struct ib_ud_wr, wr);
1136 }
1137 
1138 struct ib_reg_wr {
1139 	struct ib_send_wr	wr;
1140 	struct ib_mr		*mr;
1141 	u32			key;
1142 	int			access;
1143 };
1144 
1145 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1146 {
1147 	return container_of(wr, struct ib_reg_wr, wr);
1148 }
1149 
1150 struct ib_bind_mw_wr {
1151 	struct ib_send_wr	wr;
1152 	struct ib_mw		*mw;
1153 	/* The new rkey for the memory window. */
1154 	u32			rkey;
1155 	struct ib_mw_bind_info	bind_info;
1156 };
1157 
1158 static inline struct ib_bind_mw_wr *bind_mw_wr(struct ib_send_wr *wr)
1159 {
1160 	return container_of(wr, struct ib_bind_mw_wr, wr);
1161 }
1162 
1163 struct ib_sig_handover_wr {
1164 	struct ib_send_wr	wr;
1165 	struct ib_sig_attrs    *sig_attrs;
1166 	struct ib_mr	       *sig_mr;
1167 	int			access_flags;
1168 	struct ib_sge	       *prot;
1169 };
1170 
1171 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1172 {
1173 	return container_of(wr, struct ib_sig_handover_wr, wr);
1174 }
1175 
1176 struct ib_recv_wr {
1177 	struct ib_recv_wr      *next;
1178 	u64			wr_id;
1179 	struct ib_sge	       *sg_list;
1180 	int			num_sge;
1181 };
1182 
1183 enum ib_access_flags {
1184 	IB_ACCESS_LOCAL_WRITE	= 1,
1185 	IB_ACCESS_REMOTE_WRITE	= (1<<1),
1186 	IB_ACCESS_REMOTE_READ	= (1<<2),
1187 	IB_ACCESS_REMOTE_ATOMIC	= (1<<3),
1188 	IB_ACCESS_MW_BIND	= (1<<4),
1189 	IB_ZERO_BASED		= (1<<5),
1190 	IB_ACCESS_ON_DEMAND     = (1<<6),
1191 };
1192 
1193 struct ib_phys_buf {
1194 	u64      addr;
1195 	u64      size;
1196 };
1197 
1198 struct ib_mr_attr {
1199 	struct ib_pd	*pd;
1200 	u64		device_virt_addr;
1201 	u64		size;
1202 	int		mr_access_flags;
1203 	u32		lkey;
1204 	u32		rkey;
1205 };
1206 
1207 enum ib_mr_rereg_flags {
1208 	IB_MR_REREG_TRANS	= 1,
1209 	IB_MR_REREG_PD		= (1<<1),
1210 	IB_MR_REREG_ACCESS	= (1<<2),
1211 	IB_MR_REREG_SUPPORTED	= ((IB_MR_REREG_ACCESS << 1) - 1)
1212 };
1213 
1214 /**
1215  * struct ib_mw_bind - Parameters for a type 1 memory window bind operation.
1216  * @wr_id:      Work request id.
1217  * @send_flags: Flags from ib_send_flags enum.
1218  * @bind_info:  More parameters of the bind operation.
1219  */
1220 struct ib_mw_bind {
1221 	u64                    wr_id;
1222 	int                    send_flags;
1223 	struct ib_mw_bind_info bind_info;
1224 };
1225 
1226 struct ib_fmr_attr {
1227 	int	max_pages;
1228 	int	max_maps;
1229 	u8	page_shift;
1230 };
1231 
1232 struct ib_umem;
1233 
1234 struct ib_ucontext {
1235 	struct ib_device       *device;
1236 	struct list_head	pd_list;
1237 	struct list_head	mr_list;
1238 	struct list_head	mw_list;
1239 	struct list_head	cq_list;
1240 	struct list_head	qp_list;
1241 	struct list_head	srq_list;
1242 	struct list_head	ah_list;
1243 	struct list_head	xrcd_list;
1244 	struct list_head	rule_list;
1245 	int			closing;
1246 
1247 	struct pid             *tgid;
1248 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1249 	struct rb_root      umem_tree;
1250 	/*
1251 	 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1252 	 * mmu notifiers registration.
1253 	 */
1254 	struct rw_semaphore	umem_rwsem;
1255 	void (*invalidate_range)(struct ib_umem *umem,
1256 				 unsigned long start, unsigned long end);
1257 
1258 	struct mmu_notifier	mn;
1259 	atomic_t		notifier_count;
1260 	/* A list of umems that don't have private mmu notifier counters yet. */
1261 	struct list_head	no_private_counters;
1262 	int                     odp_mrs_count;
1263 #endif
1264 };
1265 
1266 struct ib_uobject {
1267 	u64			user_handle;	/* handle given to us by userspace */
1268 	struct ib_ucontext     *context;	/* associated user context */
1269 	void		       *object;		/* containing object */
1270 	struct list_head	list;		/* link to context's list */
1271 	int			id;		/* index into kernel idr */
1272 	struct kref		ref;
1273 	struct rw_semaphore	mutex;		/* protects .live */
1274 	int			live;
1275 };
1276 
1277 struct ib_udata {
1278 	const void __user *inbuf;
1279 	void __user *outbuf;
1280 	size_t       inlen;
1281 	size_t       outlen;
1282 };
1283 
1284 struct ib_pd {
1285 	u32			local_dma_lkey;
1286 	struct ib_device       *device;
1287 	struct ib_uobject      *uobject;
1288 	atomic_t          	usecnt; /* count all resources */
1289 	struct ib_mr	       *local_mr;
1290 };
1291 
1292 struct ib_xrcd {
1293 	struct ib_device       *device;
1294 	atomic_t		usecnt; /* count all exposed resources */
1295 	struct inode	       *inode;
1296 
1297 	struct mutex		tgt_qp_mutex;
1298 	struct list_head	tgt_qp_list;
1299 };
1300 
1301 struct ib_ah {
1302 	struct ib_device	*device;
1303 	struct ib_pd		*pd;
1304 	struct ib_uobject	*uobject;
1305 };
1306 
1307 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1308 
1309 struct ib_cq {
1310 	struct ib_device       *device;
1311 	struct ib_uobject      *uobject;
1312 	ib_comp_handler   	comp_handler;
1313 	void                  (*event_handler)(struct ib_event *, void *);
1314 	void                   *cq_context;
1315 	int               	cqe;
1316 	atomic_t          	usecnt; /* count number of work queues */
1317 };
1318 
1319 struct ib_srq {
1320 	struct ib_device       *device;
1321 	struct ib_pd	       *pd;
1322 	struct ib_uobject      *uobject;
1323 	void		      (*event_handler)(struct ib_event *, void *);
1324 	void		       *srq_context;
1325 	enum ib_srq_type	srq_type;
1326 	atomic_t		usecnt;
1327 
1328 	union {
1329 		struct {
1330 			struct ib_xrcd *xrcd;
1331 			struct ib_cq   *cq;
1332 			u32		srq_num;
1333 		} xrc;
1334 	} ext;
1335 };
1336 
1337 struct ib_qp {
1338 	struct ib_device       *device;
1339 	struct ib_pd	       *pd;
1340 	struct ib_cq	       *send_cq;
1341 	struct ib_cq	       *recv_cq;
1342 	struct ib_srq	       *srq;
1343 	struct ib_xrcd	       *xrcd; /* XRC TGT QPs only */
1344 	struct list_head	xrcd_list;
1345 	/* count times opened, mcast attaches, flow attaches */
1346 	atomic_t		usecnt;
1347 	struct list_head	open_list;
1348 	struct ib_qp           *real_qp;
1349 	struct ib_uobject      *uobject;
1350 	void                  (*event_handler)(struct ib_event *, void *);
1351 	void		       *qp_context;
1352 	u32			qp_num;
1353 	enum ib_qp_type		qp_type;
1354 };
1355 
1356 struct ib_mr {
1357 	struct ib_device  *device;
1358 	struct ib_pd	  *pd;
1359 	struct ib_uobject *uobject;
1360 	u32		   lkey;
1361 	u32		   rkey;
1362 	u64		   iova;
1363 	u32		   length;
1364 	unsigned int	   page_size;
1365 	atomic_t	   usecnt; /* count number of MWs */
1366 };
1367 
1368 struct ib_mw {
1369 	struct ib_device	*device;
1370 	struct ib_pd		*pd;
1371 	struct ib_uobject	*uobject;
1372 	u32			rkey;
1373 	enum ib_mw_type         type;
1374 };
1375 
1376 struct ib_fmr {
1377 	struct ib_device	*device;
1378 	struct ib_pd		*pd;
1379 	struct list_head	list;
1380 	u32			lkey;
1381 	u32			rkey;
1382 };
1383 
1384 /* Supported steering options */
1385 enum ib_flow_attr_type {
1386 	/* steering according to rule specifications */
1387 	IB_FLOW_ATTR_NORMAL		= 0x0,
1388 	/* default unicast and multicast rule -
1389 	 * receive all Eth traffic which isn't steered to any QP
1390 	 */
1391 	IB_FLOW_ATTR_ALL_DEFAULT	= 0x1,
1392 	/* default multicast rule -
1393 	 * receive all Eth multicast traffic which isn't steered to any QP
1394 	 */
1395 	IB_FLOW_ATTR_MC_DEFAULT		= 0x2,
1396 	/* sniffer rule - receive all port traffic */
1397 	IB_FLOW_ATTR_SNIFFER		= 0x3
1398 };
1399 
1400 /* Supported steering header types */
1401 enum ib_flow_spec_type {
1402 	/* L2 headers*/
1403 	IB_FLOW_SPEC_ETH	= 0x20,
1404 	IB_FLOW_SPEC_IB		= 0x22,
1405 	/* L3 header*/
1406 	IB_FLOW_SPEC_IPV4	= 0x30,
1407 	/* L4 headers*/
1408 	IB_FLOW_SPEC_TCP	= 0x40,
1409 	IB_FLOW_SPEC_UDP	= 0x41
1410 };
1411 #define IB_FLOW_SPEC_LAYER_MASK	0xF0
1412 #define IB_FLOW_SPEC_SUPPORT_LAYERS 4
1413 
1414 /* Flow steering rule priority is set according to it's domain.
1415  * Lower domain value means higher priority.
1416  */
1417 enum ib_flow_domain {
1418 	IB_FLOW_DOMAIN_USER,
1419 	IB_FLOW_DOMAIN_ETHTOOL,
1420 	IB_FLOW_DOMAIN_RFS,
1421 	IB_FLOW_DOMAIN_NIC,
1422 	IB_FLOW_DOMAIN_NUM /* Must be last */
1423 };
1424 
1425 struct ib_flow_eth_filter {
1426 	u8	dst_mac[6];
1427 	u8	src_mac[6];
1428 	__be16	ether_type;
1429 	__be16	vlan_tag;
1430 };
1431 
1432 struct ib_flow_spec_eth {
1433 	enum ib_flow_spec_type	  type;
1434 	u16			  size;
1435 	struct ib_flow_eth_filter val;
1436 	struct ib_flow_eth_filter mask;
1437 };
1438 
1439 struct ib_flow_ib_filter {
1440 	__be16 dlid;
1441 	__u8   sl;
1442 };
1443 
1444 struct ib_flow_spec_ib {
1445 	enum ib_flow_spec_type	 type;
1446 	u16			 size;
1447 	struct ib_flow_ib_filter val;
1448 	struct ib_flow_ib_filter mask;
1449 };
1450 
1451 struct ib_flow_ipv4_filter {
1452 	__be32	src_ip;
1453 	__be32	dst_ip;
1454 };
1455 
1456 struct ib_flow_spec_ipv4 {
1457 	enum ib_flow_spec_type	   type;
1458 	u16			   size;
1459 	struct ib_flow_ipv4_filter val;
1460 	struct ib_flow_ipv4_filter mask;
1461 };
1462 
1463 struct ib_flow_tcp_udp_filter {
1464 	__be16	dst_port;
1465 	__be16	src_port;
1466 };
1467 
1468 struct ib_flow_spec_tcp_udp {
1469 	enum ib_flow_spec_type	      type;
1470 	u16			      size;
1471 	struct ib_flow_tcp_udp_filter val;
1472 	struct ib_flow_tcp_udp_filter mask;
1473 };
1474 
1475 union ib_flow_spec {
1476 	struct {
1477 		enum ib_flow_spec_type	type;
1478 		u16			size;
1479 	};
1480 	struct ib_flow_spec_eth		eth;
1481 	struct ib_flow_spec_ib		ib;
1482 	struct ib_flow_spec_ipv4        ipv4;
1483 	struct ib_flow_spec_tcp_udp	tcp_udp;
1484 };
1485 
1486 struct ib_flow_attr {
1487 	enum ib_flow_attr_type type;
1488 	u16	     size;
1489 	u16	     priority;
1490 	u32	     flags;
1491 	u8	     num_of_specs;
1492 	u8	     port;
1493 	/* Following are the optional layers according to user request
1494 	 * struct ib_flow_spec_xxx
1495 	 * struct ib_flow_spec_yyy
1496 	 */
1497 };
1498 
1499 struct ib_flow {
1500 	struct ib_qp		*qp;
1501 	struct ib_uobject	*uobject;
1502 };
1503 
1504 struct ib_mad_hdr;
1505 struct ib_grh;
1506 
1507 enum ib_process_mad_flags {
1508 	IB_MAD_IGNORE_MKEY	= 1,
1509 	IB_MAD_IGNORE_BKEY	= 2,
1510 	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1511 };
1512 
1513 enum ib_mad_result {
1514 	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
1515 	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
1516 	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
1517 	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
1518 };
1519 
1520 #define IB_DEVICE_NAME_MAX 64
1521 
1522 struct ib_cache {
1523 	rwlock_t                lock;
1524 	struct ib_event_handler event_handler;
1525 	struct ib_pkey_cache  **pkey_cache;
1526 	struct ib_gid_table   **gid_cache;
1527 	u8                     *lmc_cache;
1528 };
1529 
1530 struct ib_dma_mapping_ops {
1531 	int		(*mapping_error)(struct ib_device *dev,
1532 					 u64 dma_addr);
1533 	u64		(*map_single)(struct ib_device *dev,
1534 				      void *ptr, size_t size,
1535 				      enum dma_data_direction direction);
1536 	void		(*unmap_single)(struct ib_device *dev,
1537 					u64 addr, size_t size,
1538 					enum dma_data_direction direction);
1539 	u64		(*map_page)(struct ib_device *dev,
1540 				    struct page *page, unsigned long offset,
1541 				    size_t size,
1542 				    enum dma_data_direction direction);
1543 	void		(*unmap_page)(struct ib_device *dev,
1544 				      u64 addr, size_t size,
1545 				      enum dma_data_direction direction);
1546 	int		(*map_sg)(struct ib_device *dev,
1547 				  struct scatterlist *sg, int nents,
1548 				  enum dma_data_direction direction);
1549 	void		(*unmap_sg)(struct ib_device *dev,
1550 				    struct scatterlist *sg, int nents,
1551 				    enum dma_data_direction direction);
1552 	void		(*sync_single_for_cpu)(struct ib_device *dev,
1553 					       u64 dma_handle,
1554 					       size_t size,
1555 					       enum dma_data_direction dir);
1556 	void		(*sync_single_for_device)(struct ib_device *dev,
1557 						  u64 dma_handle,
1558 						  size_t size,
1559 						  enum dma_data_direction dir);
1560 	void		*(*alloc_coherent)(struct ib_device *dev,
1561 					   size_t size,
1562 					   u64 *dma_handle,
1563 					   gfp_t flag);
1564 	void		(*free_coherent)(struct ib_device *dev,
1565 					 size_t size, void *cpu_addr,
1566 					 u64 dma_handle);
1567 };
1568 
1569 struct iw_cm_verbs;
1570 
1571 struct ib_port_immutable {
1572 	int                           pkey_tbl_len;
1573 	int                           gid_tbl_len;
1574 	u32                           core_cap_flags;
1575 	u32                           max_mad_size;
1576 };
1577 
1578 struct ib_device {
1579 	struct device                *dma_device;
1580 
1581 	char                          name[IB_DEVICE_NAME_MAX];
1582 
1583 	struct list_head              event_handler_list;
1584 	spinlock_t                    event_handler_lock;
1585 
1586 	spinlock_t                    client_data_lock;
1587 	struct list_head              core_list;
1588 	/* Access to the client_data_list is protected by the client_data_lock
1589 	 * spinlock and the lists_rwsem read-write semaphore */
1590 	struct list_head              client_data_list;
1591 
1592 	struct ib_cache               cache;
1593 	/**
1594 	 * port_immutable is indexed by port number
1595 	 */
1596 	struct ib_port_immutable     *port_immutable;
1597 
1598 	int			      num_comp_vectors;
1599 
1600 	struct iw_cm_verbs	     *iwcm;
1601 
1602 	int		           (*get_protocol_stats)(struct ib_device *device,
1603 							 union rdma_protocol_stats *stats);
1604 	int		           (*query_device)(struct ib_device *device,
1605 						   struct ib_device_attr *device_attr,
1606 						   struct ib_udata *udata);
1607 	int		           (*query_port)(struct ib_device *device,
1608 						 u8 port_num,
1609 						 struct ib_port_attr *port_attr);
1610 	enum rdma_link_layer	   (*get_link_layer)(struct ib_device *device,
1611 						     u8 port_num);
1612 	/* When calling get_netdev, the HW vendor's driver should return the
1613 	 * net device of device @device at port @port_num or NULL if such
1614 	 * a net device doesn't exist. The vendor driver should call dev_hold
1615 	 * on this net device. The HW vendor's device driver must guarantee
1616 	 * that this function returns NULL before the net device reaches
1617 	 * NETDEV_UNREGISTER_FINAL state.
1618 	 */
1619 	struct net_device	  *(*get_netdev)(struct ib_device *device,
1620 						 u8 port_num);
1621 	int		           (*query_gid)(struct ib_device *device,
1622 						u8 port_num, int index,
1623 						union ib_gid *gid);
1624 	/* When calling add_gid, the HW vendor's driver should
1625 	 * add the gid of device @device at gid index @index of
1626 	 * port @port_num to be @gid. Meta-info of that gid (for example,
1627 	 * the network device related to this gid is available
1628 	 * at @attr. @context allows the HW vendor driver to store extra
1629 	 * information together with a GID entry. The HW vendor may allocate
1630 	 * memory to contain this information and store it in @context when a
1631 	 * new GID entry is written to. Params are consistent until the next
1632 	 * call of add_gid or delete_gid. The function should return 0 on
1633 	 * success or error otherwise. The function could be called
1634 	 * concurrently for different ports. This function is only called
1635 	 * when roce_gid_table is used.
1636 	 */
1637 	int		           (*add_gid)(struct ib_device *device,
1638 					      u8 port_num,
1639 					      unsigned int index,
1640 					      const union ib_gid *gid,
1641 					      const struct ib_gid_attr *attr,
1642 					      void **context);
1643 	/* When calling del_gid, the HW vendor's driver should delete the
1644 	 * gid of device @device at gid index @index of port @port_num.
1645 	 * Upon the deletion of a GID entry, the HW vendor must free any
1646 	 * allocated memory. The caller will clear @context afterwards.
1647 	 * This function is only called when roce_gid_table is used.
1648 	 */
1649 	int		           (*del_gid)(struct ib_device *device,
1650 					      u8 port_num,
1651 					      unsigned int index,
1652 					      void **context);
1653 	int		           (*query_pkey)(struct ib_device *device,
1654 						 u8 port_num, u16 index, u16 *pkey);
1655 	int		           (*modify_device)(struct ib_device *device,
1656 						    int device_modify_mask,
1657 						    struct ib_device_modify *device_modify);
1658 	int		           (*modify_port)(struct ib_device *device,
1659 						  u8 port_num, int port_modify_mask,
1660 						  struct ib_port_modify *port_modify);
1661 	struct ib_ucontext *       (*alloc_ucontext)(struct ib_device *device,
1662 						     struct ib_udata *udata);
1663 	int                        (*dealloc_ucontext)(struct ib_ucontext *context);
1664 	int                        (*mmap)(struct ib_ucontext *context,
1665 					   struct vm_area_struct *vma);
1666 	struct ib_pd *             (*alloc_pd)(struct ib_device *device,
1667 					       struct ib_ucontext *context,
1668 					       struct ib_udata *udata);
1669 	int                        (*dealloc_pd)(struct ib_pd *pd);
1670 	struct ib_ah *             (*create_ah)(struct ib_pd *pd,
1671 						struct ib_ah_attr *ah_attr);
1672 	int                        (*modify_ah)(struct ib_ah *ah,
1673 						struct ib_ah_attr *ah_attr);
1674 	int                        (*query_ah)(struct ib_ah *ah,
1675 					       struct ib_ah_attr *ah_attr);
1676 	int                        (*destroy_ah)(struct ib_ah *ah);
1677 	struct ib_srq *            (*create_srq)(struct ib_pd *pd,
1678 						 struct ib_srq_init_attr *srq_init_attr,
1679 						 struct ib_udata *udata);
1680 	int                        (*modify_srq)(struct ib_srq *srq,
1681 						 struct ib_srq_attr *srq_attr,
1682 						 enum ib_srq_attr_mask srq_attr_mask,
1683 						 struct ib_udata *udata);
1684 	int                        (*query_srq)(struct ib_srq *srq,
1685 						struct ib_srq_attr *srq_attr);
1686 	int                        (*destroy_srq)(struct ib_srq *srq);
1687 	int                        (*post_srq_recv)(struct ib_srq *srq,
1688 						    struct ib_recv_wr *recv_wr,
1689 						    struct ib_recv_wr **bad_recv_wr);
1690 	struct ib_qp *             (*create_qp)(struct ib_pd *pd,
1691 						struct ib_qp_init_attr *qp_init_attr,
1692 						struct ib_udata *udata);
1693 	int                        (*modify_qp)(struct ib_qp *qp,
1694 						struct ib_qp_attr *qp_attr,
1695 						int qp_attr_mask,
1696 						struct ib_udata *udata);
1697 	int                        (*query_qp)(struct ib_qp *qp,
1698 					       struct ib_qp_attr *qp_attr,
1699 					       int qp_attr_mask,
1700 					       struct ib_qp_init_attr *qp_init_attr);
1701 	int                        (*destroy_qp)(struct ib_qp *qp);
1702 	int                        (*post_send)(struct ib_qp *qp,
1703 						struct ib_send_wr *send_wr,
1704 						struct ib_send_wr **bad_send_wr);
1705 	int                        (*post_recv)(struct ib_qp *qp,
1706 						struct ib_recv_wr *recv_wr,
1707 						struct ib_recv_wr **bad_recv_wr);
1708 	struct ib_cq *             (*create_cq)(struct ib_device *device,
1709 						const struct ib_cq_init_attr *attr,
1710 						struct ib_ucontext *context,
1711 						struct ib_udata *udata);
1712 	int                        (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1713 						u16 cq_period);
1714 	int                        (*destroy_cq)(struct ib_cq *cq);
1715 	int                        (*resize_cq)(struct ib_cq *cq, int cqe,
1716 						struct ib_udata *udata);
1717 	int                        (*poll_cq)(struct ib_cq *cq, int num_entries,
1718 					      struct ib_wc *wc);
1719 	int                        (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1720 	int                        (*req_notify_cq)(struct ib_cq *cq,
1721 						    enum ib_cq_notify_flags flags);
1722 	int                        (*req_ncomp_notif)(struct ib_cq *cq,
1723 						      int wc_cnt);
1724 	struct ib_mr *             (*get_dma_mr)(struct ib_pd *pd,
1725 						 int mr_access_flags);
1726 	struct ib_mr *             (*reg_phys_mr)(struct ib_pd *pd,
1727 						  struct ib_phys_buf *phys_buf_array,
1728 						  int num_phys_buf,
1729 						  int mr_access_flags,
1730 						  u64 *iova_start);
1731 	struct ib_mr *             (*reg_user_mr)(struct ib_pd *pd,
1732 						  u64 start, u64 length,
1733 						  u64 virt_addr,
1734 						  int mr_access_flags,
1735 						  struct ib_udata *udata);
1736 	int			   (*rereg_user_mr)(struct ib_mr *mr,
1737 						    int flags,
1738 						    u64 start, u64 length,
1739 						    u64 virt_addr,
1740 						    int mr_access_flags,
1741 						    struct ib_pd *pd,
1742 						    struct ib_udata *udata);
1743 	int                        (*query_mr)(struct ib_mr *mr,
1744 					       struct ib_mr_attr *mr_attr);
1745 	int                        (*dereg_mr)(struct ib_mr *mr);
1746 	struct ib_mr *		   (*alloc_mr)(struct ib_pd *pd,
1747 					       enum ib_mr_type mr_type,
1748 					       u32 max_num_sg);
1749 	int                        (*map_mr_sg)(struct ib_mr *mr,
1750 						struct scatterlist *sg,
1751 						int sg_nents);
1752 	int                        (*rereg_phys_mr)(struct ib_mr *mr,
1753 						    int mr_rereg_mask,
1754 						    struct ib_pd *pd,
1755 						    struct ib_phys_buf *phys_buf_array,
1756 						    int num_phys_buf,
1757 						    int mr_access_flags,
1758 						    u64 *iova_start);
1759 	struct ib_mw *             (*alloc_mw)(struct ib_pd *pd,
1760 					       enum ib_mw_type type);
1761 	int                        (*bind_mw)(struct ib_qp *qp,
1762 					      struct ib_mw *mw,
1763 					      struct ib_mw_bind *mw_bind);
1764 	int                        (*dealloc_mw)(struct ib_mw *mw);
1765 	struct ib_fmr *	           (*alloc_fmr)(struct ib_pd *pd,
1766 						int mr_access_flags,
1767 						struct ib_fmr_attr *fmr_attr);
1768 	int		           (*map_phys_fmr)(struct ib_fmr *fmr,
1769 						   u64 *page_list, int list_len,
1770 						   u64 iova);
1771 	int		           (*unmap_fmr)(struct list_head *fmr_list);
1772 	int		           (*dealloc_fmr)(struct ib_fmr *fmr);
1773 	int                        (*attach_mcast)(struct ib_qp *qp,
1774 						   union ib_gid *gid,
1775 						   u16 lid);
1776 	int                        (*detach_mcast)(struct ib_qp *qp,
1777 						   union ib_gid *gid,
1778 						   u16 lid);
1779 	int                        (*process_mad)(struct ib_device *device,
1780 						  int process_mad_flags,
1781 						  u8 port_num,
1782 						  const struct ib_wc *in_wc,
1783 						  const struct ib_grh *in_grh,
1784 						  const struct ib_mad_hdr *in_mad,
1785 						  size_t in_mad_size,
1786 						  struct ib_mad_hdr *out_mad,
1787 						  size_t *out_mad_size,
1788 						  u16 *out_mad_pkey_index);
1789 	struct ib_xrcd *	   (*alloc_xrcd)(struct ib_device *device,
1790 						 struct ib_ucontext *ucontext,
1791 						 struct ib_udata *udata);
1792 	int			   (*dealloc_xrcd)(struct ib_xrcd *xrcd);
1793 	struct ib_flow *	   (*create_flow)(struct ib_qp *qp,
1794 						  struct ib_flow_attr
1795 						  *flow_attr,
1796 						  int domain);
1797 	int			   (*destroy_flow)(struct ib_flow *flow_id);
1798 	int			   (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
1799 						      struct ib_mr_status *mr_status);
1800 	void			   (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
1801 
1802 	struct ib_dma_mapping_ops   *dma_ops;
1803 
1804 	struct module               *owner;
1805 	struct device                dev;
1806 	struct kobject               *ports_parent;
1807 	struct list_head             port_list;
1808 
1809 	enum {
1810 		IB_DEV_UNINITIALIZED,
1811 		IB_DEV_REGISTERED,
1812 		IB_DEV_UNREGISTERED
1813 	}                            reg_state;
1814 
1815 	int			     uverbs_abi_ver;
1816 	u64			     uverbs_cmd_mask;
1817 	u64			     uverbs_ex_cmd_mask;
1818 
1819 	char			     node_desc[64];
1820 	__be64			     node_guid;
1821 	u32			     local_dma_lkey;
1822 	u16                          is_switch:1;
1823 	u8                           node_type;
1824 	u8                           phys_port_cnt;
1825 
1826 	/**
1827 	 * The following mandatory functions are used only at device
1828 	 * registration.  Keep functions such as these at the end of this
1829 	 * structure to avoid cache line misses when accessing struct ib_device
1830 	 * in fast paths.
1831 	 */
1832 	int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
1833 };
1834 
1835 struct ib_client {
1836 	char  *name;
1837 	void (*add)   (struct ib_device *);
1838 	void (*remove)(struct ib_device *, void *client_data);
1839 
1840 	/* Returns the net_dev belonging to this ib_client and matching the
1841 	 * given parameters.
1842 	 * @dev:	 An RDMA device that the net_dev use for communication.
1843 	 * @port:	 A physical port number on the RDMA device.
1844 	 * @pkey:	 P_Key that the net_dev uses if applicable.
1845 	 * @gid:	 A GID that the net_dev uses to communicate.
1846 	 * @addr:	 An IP address the net_dev is configured with.
1847 	 * @client_data: The device's client data set by ib_set_client_data().
1848 	 *
1849 	 * An ib_client that implements a net_dev on top of RDMA devices
1850 	 * (such as IP over IB) should implement this callback, allowing the
1851 	 * rdma_cm module to find the right net_dev for a given request.
1852 	 *
1853 	 * The caller is responsible for calling dev_put on the returned
1854 	 * netdev. */
1855 	struct net_device *(*get_net_dev_by_params)(
1856 			struct ib_device *dev,
1857 			u8 port,
1858 			u16 pkey,
1859 			const union ib_gid *gid,
1860 			const struct sockaddr *addr,
1861 			void *client_data);
1862 	struct list_head list;
1863 };
1864 
1865 struct ib_device *ib_alloc_device(size_t size);
1866 void ib_dealloc_device(struct ib_device *device);
1867 
1868 int ib_register_device(struct ib_device *device,
1869 		       int (*port_callback)(struct ib_device *,
1870 					    u8, struct kobject *));
1871 void ib_unregister_device(struct ib_device *device);
1872 
1873 int ib_register_client   (struct ib_client *client);
1874 void ib_unregister_client(struct ib_client *client);
1875 
1876 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1877 void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
1878 			 void *data);
1879 
1880 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1881 {
1882 	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1883 }
1884 
1885 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1886 {
1887 	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1888 }
1889 
1890 /**
1891  * ib_modify_qp_is_ok - Check that the supplied attribute mask
1892  * contains all required attributes and no attributes not allowed for
1893  * the given QP state transition.
1894  * @cur_state: Current QP state
1895  * @next_state: Next QP state
1896  * @type: QP type
1897  * @mask: Mask of supplied QP attributes
1898  * @ll : link layer of port
1899  *
1900  * This function is a helper function that a low-level driver's
1901  * modify_qp method can use to validate the consumer's input.  It
1902  * checks that cur_state and next_state are valid QP states, that a
1903  * transition from cur_state to next_state is allowed by the IB spec,
1904  * and that the attribute mask supplied is allowed for the transition.
1905  */
1906 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1907 		       enum ib_qp_type type, enum ib_qp_attr_mask mask,
1908 		       enum rdma_link_layer ll);
1909 
1910 int ib_register_event_handler  (struct ib_event_handler *event_handler);
1911 int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1912 void ib_dispatch_event(struct ib_event *event);
1913 
1914 int ib_query_device(struct ib_device *device,
1915 		    struct ib_device_attr *device_attr);
1916 
1917 int ib_query_port(struct ib_device *device,
1918 		  u8 port_num, struct ib_port_attr *port_attr);
1919 
1920 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1921 					       u8 port_num);
1922 
1923 /**
1924  * rdma_cap_ib_switch - Check if the device is IB switch
1925  * @device: Device to check
1926  *
1927  * Device driver is responsible for setting is_switch bit on
1928  * in ib_device structure at init time.
1929  *
1930  * Return: true if the device is IB switch.
1931  */
1932 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
1933 {
1934 	return device->is_switch;
1935 }
1936 
1937 /**
1938  * rdma_start_port - Return the first valid port number for the device
1939  * specified
1940  *
1941  * @device: Device to be checked
1942  *
1943  * Return start port number
1944  */
1945 static inline u8 rdma_start_port(const struct ib_device *device)
1946 {
1947 	return rdma_cap_ib_switch(device) ? 0 : 1;
1948 }
1949 
1950 /**
1951  * rdma_end_port - Return the last valid port number for the device
1952  * specified
1953  *
1954  * @device: Device to be checked
1955  *
1956  * Return last port number
1957  */
1958 static inline u8 rdma_end_port(const struct ib_device *device)
1959 {
1960 	return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
1961 }
1962 
1963 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
1964 {
1965 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
1966 }
1967 
1968 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
1969 {
1970 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
1971 }
1972 
1973 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
1974 {
1975 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
1976 }
1977 
1978 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
1979 {
1980 	return device->port_immutable[port_num].core_cap_flags &
1981 		(RDMA_CORE_CAP_PROT_IB | RDMA_CORE_CAP_PROT_ROCE);
1982 }
1983 
1984 /**
1985  * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
1986  * Management Datagrams.
1987  * @device: Device to check
1988  * @port_num: Port number to check
1989  *
1990  * Management Datagrams (MAD) are a required part of the InfiniBand
1991  * specification and are supported on all InfiniBand devices.  A slightly
1992  * extended version are also supported on OPA interfaces.
1993  *
1994  * Return: true if the port supports sending/receiving of MAD packets.
1995  */
1996 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
1997 {
1998 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
1999 }
2000 
2001 /**
2002  * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2003  * Management Datagrams.
2004  * @device: Device to check
2005  * @port_num: Port number to check
2006  *
2007  * Intel OmniPath devices extend and/or replace the InfiniBand Management
2008  * datagrams with their own versions.  These OPA MADs share many but not all of
2009  * the characteristics of InfiniBand MADs.
2010  *
2011  * OPA MADs differ in the following ways:
2012  *
2013  *    1) MADs are variable size up to 2K
2014  *       IBTA defined MADs remain fixed at 256 bytes
2015  *    2) OPA SMPs must carry valid PKeys
2016  *    3) OPA SMP packets are a different format
2017  *
2018  * Return: true if the port supports OPA MAD packet formats.
2019  */
2020 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2021 {
2022 	return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2023 		== RDMA_CORE_CAP_OPA_MAD;
2024 }
2025 
2026 /**
2027  * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2028  * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2029  * @device: Device to check
2030  * @port_num: Port number to check
2031  *
2032  * Each InfiniBand node is required to provide a Subnet Management Agent
2033  * that the subnet manager can access.  Prior to the fabric being fully
2034  * configured by the subnet manager, the SMA is accessed via a well known
2035  * interface called the Subnet Management Interface (SMI).  This interface
2036  * uses directed route packets to communicate with the SM to get around the
2037  * chicken and egg problem of the SM needing to know what's on the fabric
2038  * in order to configure the fabric, and needing to configure the fabric in
2039  * order to send packets to the devices on the fabric.  These directed
2040  * route packets do not need the fabric fully configured in order to reach
2041  * their destination.  The SMI is the only method allowed to send
2042  * directed route packets on an InfiniBand fabric.
2043  *
2044  * Return: true if the port provides an SMI.
2045  */
2046 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
2047 {
2048 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
2049 }
2050 
2051 /**
2052  * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2053  * Communication Manager.
2054  * @device: Device to check
2055  * @port_num: Port number to check
2056  *
2057  * The InfiniBand Communication Manager is one of many pre-defined General
2058  * Service Agents (GSA) that are accessed via the General Service
2059  * Interface (GSI).  It's role is to facilitate establishment of connections
2060  * between nodes as well as other management related tasks for established
2061  * connections.
2062  *
2063  * Return: true if the port supports an IB CM (this does not guarantee that
2064  * a CM is actually running however).
2065  */
2066 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
2067 {
2068 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
2069 }
2070 
2071 /**
2072  * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2073  * Communication Manager.
2074  * @device: Device to check
2075  * @port_num: Port number to check
2076  *
2077  * Similar to above, but specific to iWARP connections which have a different
2078  * managment protocol than InfiniBand.
2079  *
2080  * Return: true if the port supports an iWARP CM (this does not guarantee that
2081  * a CM is actually running however).
2082  */
2083 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
2084 {
2085 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
2086 }
2087 
2088 /**
2089  * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2090  * Subnet Administration.
2091  * @device: Device to check
2092  * @port_num: Port number to check
2093  *
2094  * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2095  * Service Agent (GSA) provided by the Subnet Manager (SM).  On InfiniBand
2096  * fabrics, devices should resolve routes to other hosts by contacting the
2097  * SA to query the proper route.
2098  *
2099  * Return: true if the port should act as a client to the fabric Subnet
2100  * Administration interface.  This does not imply that the SA service is
2101  * running locally.
2102  */
2103 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
2104 {
2105 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
2106 }
2107 
2108 /**
2109  * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2110  * Multicast.
2111  * @device: Device to check
2112  * @port_num: Port number to check
2113  *
2114  * InfiniBand multicast registration is more complex than normal IPv4 or
2115  * IPv6 multicast registration.  Each Host Channel Adapter must register
2116  * with the Subnet Manager when it wishes to join a multicast group.  It
2117  * should do so only once regardless of how many queue pairs it subscribes
2118  * to this group.  And it should leave the group only after all queue pairs
2119  * attached to the group have been detached.
2120  *
2121  * Return: true if the port must undertake the additional adminstrative
2122  * overhead of registering/unregistering with the SM and tracking of the
2123  * total number of queue pairs attached to the multicast group.
2124  */
2125 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
2126 {
2127 	return rdma_cap_ib_sa(device, port_num);
2128 }
2129 
2130 /**
2131  * rdma_cap_af_ib - Check if the port of device has the capability
2132  * Native Infiniband Address.
2133  * @device: Device to check
2134  * @port_num: Port number to check
2135  *
2136  * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2137  * GID.  RoCE uses a different mechanism, but still generates a GID via
2138  * a prescribed mechanism and port specific data.
2139  *
2140  * Return: true if the port uses a GID address to identify devices on the
2141  * network.
2142  */
2143 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
2144 {
2145 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
2146 }
2147 
2148 /**
2149  * rdma_cap_eth_ah - Check if the port of device has the capability
2150  * Ethernet Address Handle.
2151  * @device: Device to check
2152  * @port_num: Port number to check
2153  *
2154  * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2155  * to fabricate GIDs over Ethernet/IP specific addresses native to the
2156  * port.  Normally, packet headers are generated by the sending host
2157  * adapter, but when sending connectionless datagrams, we must manually
2158  * inject the proper headers for the fabric we are communicating over.
2159  *
2160  * Return: true if we are running as a RoCE port and must force the
2161  * addition of a Global Route Header built from our Ethernet Address
2162  * Handle into our header list for connectionless packets.
2163  */
2164 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
2165 {
2166 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
2167 }
2168 
2169 /**
2170  * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2171  *
2172  * @device: Device
2173  * @port_num: Port number
2174  *
2175  * This MAD size includes the MAD headers and MAD payload.  No other headers
2176  * are included.
2177  *
2178  * Return the max MAD size required by the Port.  Will return 0 if the port
2179  * does not support MADs
2180  */
2181 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2182 {
2183 	return device->port_immutable[port_num].max_mad_size;
2184 }
2185 
2186 /**
2187  * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2188  * @device: Device to check
2189  * @port_num: Port number to check
2190  *
2191  * RoCE GID table mechanism manages the various GIDs for a device.
2192  *
2193  * NOTE: if allocating the port's GID table has failed, this call will still
2194  * return true, but any RoCE GID table API will fail.
2195  *
2196  * Return: true if the port uses RoCE GID table mechanism in order to manage
2197  * its GIDs.
2198  */
2199 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2200 					   u8 port_num)
2201 {
2202 	return rdma_protocol_roce(device, port_num) &&
2203 		device->add_gid && device->del_gid;
2204 }
2205 
2206 int ib_query_gid(struct ib_device *device,
2207 		 u8 port_num, int index, union ib_gid *gid,
2208 		 struct ib_gid_attr *attr);
2209 
2210 int ib_query_pkey(struct ib_device *device,
2211 		  u8 port_num, u16 index, u16 *pkey);
2212 
2213 int ib_modify_device(struct ib_device *device,
2214 		     int device_modify_mask,
2215 		     struct ib_device_modify *device_modify);
2216 
2217 int ib_modify_port(struct ib_device *device,
2218 		   u8 port_num, int port_modify_mask,
2219 		   struct ib_port_modify *port_modify);
2220 
2221 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2222 		struct net_device *ndev, u8 *port_num, u16 *index);
2223 
2224 int ib_find_pkey(struct ib_device *device,
2225 		 u8 port_num, u16 pkey, u16 *index);
2226 
2227 struct ib_pd *ib_alloc_pd(struct ib_device *device);
2228 
2229 void ib_dealloc_pd(struct ib_pd *pd);
2230 
2231 /**
2232  * ib_create_ah - Creates an address handle for the given address vector.
2233  * @pd: The protection domain associated with the address handle.
2234  * @ah_attr: The attributes of the address vector.
2235  *
2236  * The address handle is used to reference a local or global destination
2237  * in all UD QP post sends.
2238  */
2239 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
2240 
2241 /**
2242  * ib_init_ah_from_wc - Initializes address handle attributes from a
2243  *   work completion.
2244  * @device: Device on which the received message arrived.
2245  * @port_num: Port on which the received message arrived.
2246  * @wc: Work completion associated with the received message.
2247  * @grh: References the received global route header.  This parameter is
2248  *   ignored unless the work completion indicates that the GRH is valid.
2249  * @ah_attr: Returned attributes that can be used when creating an address
2250  *   handle for replying to the message.
2251  */
2252 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2253 		       const struct ib_wc *wc, const struct ib_grh *grh,
2254 		       struct ib_ah_attr *ah_attr);
2255 
2256 /**
2257  * ib_create_ah_from_wc - Creates an address handle associated with the
2258  *   sender of the specified work completion.
2259  * @pd: The protection domain associated with the address handle.
2260  * @wc: Work completion information associated with a received message.
2261  * @grh: References the received global route header.  This parameter is
2262  *   ignored unless the work completion indicates that the GRH is valid.
2263  * @port_num: The outbound port number to associate with the address.
2264  *
2265  * The address handle is used to reference a local or global destination
2266  * in all UD QP post sends.
2267  */
2268 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2269 				   const struct ib_grh *grh, u8 port_num);
2270 
2271 /**
2272  * ib_modify_ah - Modifies the address vector associated with an address
2273  *   handle.
2274  * @ah: The address handle to modify.
2275  * @ah_attr: The new address vector attributes to associate with the
2276  *   address handle.
2277  */
2278 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2279 
2280 /**
2281  * ib_query_ah - Queries the address vector associated with an address
2282  *   handle.
2283  * @ah: The address handle to query.
2284  * @ah_attr: The address vector attributes associated with the address
2285  *   handle.
2286  */
2287 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2288 
2289 /**
2290  * ib_destroy_ah - Destroys an address handle.
2291  * @ah: The address handle to destroy.
2292  */
2293 int ib_destroy_ah(struct ib_ah *ah);
2294 
2295 /**
2296  * ib_create_srq - Creates a SRQ associated with the specified protection
2297  *   domain.
2298  * @pd: The protection domain associated with the SRQ.
2299  * @srq_init_attr: A list of initial attributes required to create the
2300  *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
2301  *   the actual capabilities of the created SRQ.
2302  *
2303  * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2304  * requested size of the SRQ, and set to the actual values allocated
2305  * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
2306  * will always be at least as large as the requested values.
2307  */
2308 struct ib_srq *ib_create_srq(struct ib_pd *pd,
2309 			     struct ib_srq_init_attr *srq_init_attr);
2310 
2311 /**
2312  * ib_modify_srq - Modifies the attributes for the specified SRQ.
2313  * @srq: The SRQ to modify.
2314  * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
2315  *   the current values of selected SRQ attributes are returned.
2316  * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2317  *   are being modified.
2318  *
2319  * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2320  * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2321  * the number of receives queued drops below the limit.
2322  */
2323 int ib_modify_srq(struct ib_srq *srq,
2324 		  struct ib_srq_attr *srq_attr,
2325 		  enum ib_srq_attr_mask srq_attr_mask);
2326 
2327 /**
2328  * ib_query_srq - Returns the attribute list and current values for the
2329  *   specified SRQ.
2330  * @srq: The SRQ to query.
2331  * @srq_attr: The attributes of the specified SRQ.
2332  */
2333 int ib_query_srq(struct ib_srq *srq,
2334 		 struct ib_srq_attr *srq_attr);
2335 
2336 /**
2337  * ib_destroy_srq - Destroys the specified SRQ.
2338  * @srq: The SRQ to destroy.
2339  */
2340 int ib_destroy_srq(struct ib_srq *srq);
2341 
2342 /**
2343  * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
2344  * @srq: The SRQ to post the work request on.
2345  * @recv_wr: A list of work requests to post on the receive queue.
2346  * @bad_recv_wr: On an immediate failure, this parameter will reference
2347  *   the work request that failed to be posted on the QP.
2348  */
2349 static inline int ib_post_srq_recv(struct ib_srq *srq,
2350 				   struct ib_recv_wr *recv_wr,
2351 				   struct ib_recv_wr **bad_recv_wr)
2352 {
2353 	return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
2354 }
2355 
2356 /**
2357  * ib_create_qp - Creates a QP associated with the specified protection
2358  *   domain.
2359  * @pd: The protection domain associated with the QP.
2360  * @qp_init_attr: A list of initial attributes required to create the
2361  *   QP.  If QP creation succeeds, then the attributes are updated to
2362  *   the actual capabilities of the created QP.
2363  */
2364 struct ib_qp *ib_create_qp(struct ib_pd *pd,
2365 			   struct ib_qp_init_attr *qp_init_attr);
2366 
2367 /**
2368  * ib_modify_qp - Modifies the attributes for the specified QP and then
2369  *   transitions the QP to the given state.
2370  * @qp: The QP to modify.
2371  * @qp_attr: On input, specifies the QP attributes to modify.  On output,
2372  *   the current values of selected QP attributes are returned.
2373  * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
2374  *   are being modified.
2375  */
2376 int ib_modify_qp(struct ib_qp *qp,
2377 		 struct ib_qp_attr *qp_attr,
2378 		 int qp_attr_mask);
2379 
2380 /**
2381  * ib_query_qp - Returns the attribute list and current values for the
2382  *   specified QP.
2383  * @qp: The QP to query.
2384  * @qp_attr: The attributes of the specified QP.
2385  * @qp_attr_mask: A bit-mask used to select specific attributes to query.
2386  * @qp_init_attr: Additional attributes of the selected QP.
2387  *
2388  * The qp_attr_mask may be used to limit the query to gathering only the
2389  * selected attributes.
2390  */
2391 int ib_query_qp(struct ib_qp *qp,
2392 		struct ib_qp_attr *qp_attr,
2393 		int qp_attr_mask,
2394 		struct ib_qp_init_attr *qp_init_attr);
2395 
2396 /**
2397  * ib_destroy_qp - Destroys the specified QP.
2398  * @qp: The QP to destroy.
2399  */
2400 int ib_destroy_qp(struct ib_qp *qp);
2401 
2402 /**
2403  * ib_open_qp - Obtain a reference to an existing sharable QP.
2404  * @xrcd - XRC domain
2405  * @qp_open_attr: Attributes identifying the QP to open.
2406  *
2407  * Returns a reference to a sharable QP.
2408  */
2409 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
2410 			 struct ib_qp_open_attr *qp_open_attr);
2411 
2412 /**
2413  * ib_close_qp - Release an external reference to a QP.
2414  * @qp: The QP handle to release
2415  *
2416  * The opened QP handle is released by the caller.  The underlying
2417  * shared QP is not destroyed until all internal references are released.
2418  */
2419 int ib_close_qp(struct ib_qp *qp);
2420 
2421 /**
2422  * ib_post_send - Posts a list of work requests to the send queue of
2423  *   the specified QP.
2424  * @qp: The QP to post the work request on.
2425  * @send_wr: A list of work requests to post on the send queue.
2426  * @bad_send_wr: On an immediate failure, this parameter will reference
2427  *   the work request that failed to be posted on the QP.
2428  *
2429  * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
2430  * error is returned, the QP state shall not be affected,
2431  * ib_post_send() will return an immediate error after queueing any
2432  * earlier work requests in the list.
2433  */
2434 static inline int ib_post_send(struct ib_qp *qp,
2435 			       struct ib_send_wr *send_wr,
2436 			       struct ib_send_wr **bad_send_wr)
2437 {
2438 	return qp->device->post_send(qp, send_wr, bad_send_wr);
2439 }
2440 
2441 /**
2442  * ib_post_recv - Posts a list of work requests to the receive queue of
2443  *   the specified QP.
2444  * @qp: The QP to post the work request on.
2445  * @recv_wr: A list of work requests to post on the receive queue.
2446  * @bad_recv_wr: On an immediate failure, this parameter will reference
2447  *   the work request that failed to be posted on the QP.
2448  */
2449 static inline int ib_post_recv(struct ib_qp *qp,
2450 			       struct ib_recv_wr *recv_wr,
2451 			       struct ib_recv_wr **bad_recv_wr)
2452 {
2453 	return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
2454 }
2455 
2456 /**
2457  * ib_create_cq - Creates a CQ on the specified device.
2458  * @device: The device on which to create the CQ.
2459  * @comp_handler: A user-specified callback that is invoked when a
2460  *   completion event occurs on the CQ.
2461  * @event_handler: A user-specified callback that is invoked when an
2462  *   asynchronous event not associated with a completion occurs on the CQ.
2463  * @cq_context: Context associated with the CQ returned to the user via
2464  *   the associated completion and event handlers.
2465  * @cq_attr: The attributes the CQ should be created upon.
2466  *
2467  * Users can examine the cq structure to determine the actual CQ size.
2468  */
2469 struct ib_cq *ib_create_cq(struct ib_device *device,
2470 			   ib_comp_handler comp_handler,
2471 			   void (*event_handler)(struct ib_event *, void *),
2472 			   void *cq_context,
2473 			   const struct ib_cq_init_attr *cq_attr);
2474 
2475 /**
2476  * ib_resize_cq - Modifies the capacity of the CQ.
2477  * @cq: The CQ to resize.
2478  * @cqe: The minimum size of the CQ.
2479  *
2480  * Users can examine the cq structure to determine the actual CQ size.
2481  */
2482 int ib_resize_cq(struct ib_cq *cq, int cqe);
2483 
2484 /**
2485  * ib_modify_cq - Modifies moderation params of the CQ
2486  * @cq: The CQ to modify.
2487  * @cq_count: number of CQEs that will trigger an event
2488  * @cq_period: max period of time in usec before triggering an event
2489  *
2490  */
2491 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2492 
2493 /**
2494  * ib_destroy_cq - Destroys the specified CQ.
2495  * @cq: The CQ to destroy.
2496  */
2497 int ib_destroy_cq(struct ib_cq *cq);
2498 
2499 /**
2500  * ib_poll_cq - poll a CQ for completion(s)
2501  * @cq:the CQ being polled
2502  * @num_entries:maximum number of completions to return
2503  * @wc:array of at least @num_entries &struct ib_wc where completions
2504  *   will be returned
2505  *
2506  * Poll a CQ for (possibly multiple) completions.  If the return value
2507  * is < 0, an error occurred.  If the return value is >= 0, it is the
2508  * number of completions returned.  If the return value is
2509  * non-negative and < num_entries, then the CQ was emptied.
2510  */
2511 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2512 			     struct ib_wc *wc)
2513 {
2514 	return cq->device->poll_cq(cq, num_entries, wc);
2515 }
2516 
2517 /**
2518  * ib_peek_cq - Returns the number of unreaped completions currently
2519  *   on the specified CQ.
2520  * @cq: The CQ to peek.
2521  * @wc_cnt: A minimum number of unreaped completions to check for.
2522  *
2523  * If the number of unreaped completions is greater than or equal to wc_cnt,
2524  * this function returns wc_cnt, otherwise, it returns the actual number of
2525  * unreaped completions.
2526  */
2527 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2528 
2529 /**
2530  * ib_req_notify_cq - Request completion notification on a CQ.
2531  * @cq: The CQ to generate an event for.
2532  * @flags:
2533  *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2534  *   to request an event on the next solicited event or next work
2535  *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2536  *   may also be |ed in to request a hint about missed events, as
2537  *   described below.
2538  *
2539  * Return Value:
2540  *    < 0 means an error occurred while requesting notification
2541  *   == 0 means notification was requested successfully, and if
2542  *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2543  *        were missed and it is safe to wait for another event.  In
2544  *        this case is it guaranteed that any work completions added
2545  *        to the CQ since the last CQ poll will trigger a completion
2546  *        notification event.
2547  *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2548  *        in.  It means that the consumer must poll the CQ again to
2549  *        make sure it is empty to avoid missing an event because of a
2550  *        race between requesting notification and an entry being
2551  *        added to the CQ.  This return value means it is possible
2552  *        (but not guaranteed) that a work completion has been added
2553  *        to the CQ since the last poll without triggering a
2554  *        completion notification event.
2555  */
2556 static inline int ib_req_notify_cq(struct ib_cq *cq,
2557 				   enum ib_cq_notify_flags flags)
2558 {
2559 	return cq->device->req_notify_cq(cq, flags);
2560 }
2561 
2562 /**
2563  * ib_req_ncomp_notif - Request completion notification when there are
2564  *   at least the specified number of unreaped completions on the CQ.
2565  * @cq: The CQ to generate an event for.
2566  * @wc_cnt: The number of unreaped completions that should be on the
2567  *   CQ before an event is generated.
2568  */
2569 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
2570 {
2571 	return cq->device->req_ncomp_notif ?
2572 		cq->device->req_ncomp_notif(cq, wc_cnt) :
2573 		-ENOSYS;
2574 }
2575 
2576 /**
2577  * ib_get_dma_mr - Returns a memory region for system memory that is
2578  *   usable for DMA.
2579  * @pd: The protection domain associated with the memory region.
2580  * @mr_access_flags: Specifies the memory access rights.
2581  *
2582  * Note that the ib_dma_*() functions defined below must be used
2583  * to create/destroy addresses used with the Lkey or Rkey returned
2584  * by ib_get_dma_mr().
2585  */
2586 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
2587 
2588 /**
2589  * ib_dma_mapping_error - check a DMA addr for error
2590  * @dev: The device for which the dma_addr was created
2591  * @dma_addr: The DMA address to check
2592  */
2593 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
2594 {
2595 	if (dev->dma_ops)
2596 		return dev->dma_ops->mapping_error(dev, dma_addr);
2597 	return dma_mapping_error(dev->dma_device, dma_addr);
2598 }
2599 
2600 /**
2601  * ib_dma_map_single - Map a kernel virtual address to DMA address
2602  * @dev: The device for which the dma_addr is to be created
2603  * @cpu_addr: The kernel virtual address
2604  * @size: The size of the region in bytes
2605  * @direction: The direction of the DMA
2606  */
2607 static inline u64 ib_dma_map_single(struct ib_device *dev,
2608 				    void *cpu_addr, size_t size,
2609 				    enum dma_data_direction direction)
2610 {
2611 	if (dev->dma_ops)
2612 		return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
2613 	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
2614 }
2615 
2616 /**
2617  * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
2618  * @dev: The device for which the DMA address was created
2619  * @addr: The DMA address
2620  * @size: The size of the region in bytes
2621  * @direction: The direction of the DMA
2622  */
2623 static inline void ib_dma_unmap_single(struct ib_device *dev,
2624 				       u64 addr, size_t size,
2625 				       enum dma_data_direction direction)
2626 {
2627 	if (dev->dma_ops)
2628 		dev->dma_ops->unmap_single(dev, addr, size, direction);
2629 	else
2630 		dma_unmap_single(dev->dma_device, addr, size, direction);
2631 }
2632 
2633 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
2634 					  void *cpu_addr, size_t size,
2635 					  enum dma_data_direction direction,
2636 					  struct dma_attrs *attrs)
2637 {
2638 	return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
2639 				    direction, attrs);
2640 }
2641 
2642 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
2643 					     u64 addr, size_t size,
2644 					     enum dma_data_direction direction,
2645 					     struct dma_attrs *attrs)
2646 {
2647 	return dma_unmap_single_attrs(dev->dma_device, addr, size,
2648 				      direction, attrs);
2649 }
2650 
2651 /**
2652  * ib_dma_map_page - Map a physical page to DMA address
2653  * @dev: The device for which the dma_addr is to be created
2654  * @page: The page to be mapped
2655  * @offset: The offset within the page
2656  * @size: The size of the region in bytes
2657  * @direction: The direction of the DMA
2658  */
2659 static inline u64 ib_dma_map_page(struct ib_device *dev,
2660 				  struct page *page,
2661 				  unsigned long offset,
2662 				  size_t size,
2663 					 enum dma_data_direction direction)
2664 {
2665 	if (dev->dma_ops)
2666 		return dev->dma_ops->map_page(dev, page, offset, size, direction);
2667 	return dma_map_page(dev->dma_device, page, offset, size, direction);
2668 }
2669 
2670 /**
2671  * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
2672  * @dev: The device for which the DMA address was created
2673  * @addr: The DMA address
2674  * @size: The size of the region in bytes
2675  * @direction: The direction of the DMA
2676  */
2677 static inline void ib_dma_unmap_page(struct ib_device *dev,
2678 				     u64 addr, size_t size,
2679 				     enum dma_data_direction direction)
2680 {
2681 	if (dev->dma_ops)
2682 		dev->dma_ops->unmap_page(dev, addr, size, direction);
2683 	else
2684 		dma_unmap_page(dev->dma_device, addr, size, direction);
2685 }
2686 
2687 /**
2688  * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
2689  * @dev: The device for which the DMA addresses are to be created
2690  * @sg: The array of scatter/gather entries
2691  * @nents: The number of scatter/gather entries
2692  * @direction: The direction of the DMA
2693  */
2694 static inline int ib_dma_map_sg(struct ib_device *dev,
2695 				struct scatterlist *sg, int nents,
2696 				enum dma_data_direction direction)
2697 {
2698 	if (dev->dma_ops)
2699 		return dev->dma_ops->map_sg(dev, sg, nents, direction);
2700 	return dma_map_sg(dev->dma_device, sg, nents, direction);
2701 }
2702 
2703 /**
2704  * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
2705  * @dev: The device for which the DMA addresses were created
2706  * @sg: The array of scatter/gather entries
2707  * @nents: The number of scatter/gather entries
2708  * @direction: The direction of the DMA
2709  */
2710 static inline void ib_dma_unmap_sg(struct ib_device *dev,
2711 				   struct scatterlist *sg, int nents,
2712 				   enum dma_data_direction direction)
2713 {
2714 	if (dev->dma_ops)
2715 		dev->dma_ops->unmap_sg(dev, sg, nents, direction);
2716 	else
2717 		dma_unmap_sg(dev->dma_device, sg, nents, direction);
2718 }
2719 
2720 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
2721 				      struct scatterlist *sg, int nents,
2722 				      enum dma_data_direction direction,
2723 				      struct dma_attrs *attrs)
2724 {
2725 	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2726 }
2727 
2728 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
2729 					 struct scatterlist *sg, int nents,
2730 					 enum dma_data_direction direction,
2731 					 struct dma_attrs *attrs)
2732 {
2733 	dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2734 }
2735 /**
2736  * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
2737  * @dev: The device for which the DMA addresses were created
2738  * @sg: The scatter/gather entry
2739  *
2740  * Note: this function is obsolete. To do: change all occurrences of
2741  * ib_sg_dma_address() into sg_dma_address().
2742  */
2743 static inline u64 ib_sg_dma_address(struct ib_device *dev,
2744 				    struct scatterlist *sg)
2745 {
2746 	return sg_dma_address(sg);
2747 }
2748 
2749 /**
2750  * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
2751  * @dev: The device for which the DMA addresses were created
2752  * @sg: The scatter/gather entry
2753  *
2754  * Note: this function is obsolete. To do: change all occurrences of
2755  * ib_sg_dma_len() into sg_dma_len().
2756  */
2757 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
2758 					 struct scatterlist *sg)
2759 {
2760 	return sg_dma_len(sg);
2761 }
2762 
2763 /**
2764  * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
2765  * @dev: The device for which the DMA address was created
2766  * @addr: The DMA address
2767  * @size: The size of the region in bytes
2768  * @dir: The direction of the DMA
2769  */
2770 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
2771 					      u64 addr,
2772 					      size_t size,
2773 					      enum dma_data_direction dir)
2774 {
2775 	if (dev->dma_ops)
2776 		dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
2777 	else
2778 		dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
2779 }
2780 
2781 /**
2782  * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
2783  * @dev: The device for which the DMA address was created
2784  * @addr: The DMA address
2785  * @size: The size of the region in bytes
2786  * @dir: The direction of the DMA
2787  */
2788 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
2789 						 u64 addr,
2790 						 size_t size,
2791 						 enum dma_data_direction dir)
2792 {
2793 	if (dev->dma_ops)
2794 		dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
2795 	else
2796 		dma_sync_single_for_device(dev->dma_device, addr, size, dir);
2797 }
2798 
2799 /**
2800  * ib_dma_alloc_coherent - Allocate memory and map it for DMA
2801  * @dev: The device for which the DMA address is requested
2802  * @size: The size of the region to allocate in bytes
2803  * @dma_handle: A pointer for returning the DMA address of the region
2804  * @flag: memory allocator flags
2805  */
2806 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
2807 					   size_t size,
2808 					   u64 *dma_handle,
2809 					   gfp_t flag)
2810 {
2811 	if (dev->dma_ops)
2812 		return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
2813 	else {
2814 		dma_addr_t handle;
2815 		void *ret;
2816 
2817 		ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
2818 		*dma_handle = handle;
2819 		return ret;
2820 	}
2821 }
2822 
2823 /**
2824  * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
2825  * @dev: The device for which the DMA addresses were allocated
2826  * @size: The size of the region
2827  * @cpu_addr: the address returned by ib_dma_alloc_coherent()
2828  * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
2829  */
2830 static inline void ib_dma_free_coherent(struct ib_device *dev,
2831 					size_t size, void *cpu_addr,
2832 					u64 dma_handle)
2833 {
2834 	if (dev->dma_ops)
2835 		dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
2836 	else
2837 		dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
2838 }
2839 
2840 /**
2841  * ib_query_mr - Retrieves information about a specific memory region.
2842  * @mr: The memory region to retrieve information about.
2843  * @mr_attr: The attributes of the specified memory region.
2844  */
2845 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
2846 
2847 /**
2848  * ib_dereg_mr - Deregisters a memory region and removes it from the
2849  *   HCA translation table.
2850  * @mr: The memory region to deregister.
2851  *
2852  * This function can fail, if the memory region has memory windows bound to it.
2853  */
2854 int ib_dereg_mr(struct ib_mr *mr);
2855 
2856 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
2857 			  enum ib_mr_type mr_type,
2858 			  u32 max_num_sg);
2859 
2860 /**
2861  * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
2862  *   R_Key and L_Key.
2863  * @mr - struct ib_mr pointer to be updated.
2864  * @newkey - new key to be used.
2865  */
2866 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
2867 {
2868 	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
2869 	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
2870 }
2871 
2872 /**
2873  * ib_inc_rkey - increments the key portion of the given rkey. Can be used
2874  * for calculating a new rkey for type 2 memory windows.
2875  * @rkey - the rkey to increment.
2876  */
2877 static inline u32 ib_inc_rkey(u32 rkey)
2878 {
2879 	const u32 mask = 0x000000ff;
2880 	return ((rkey + 1) & mask) | (rkey & ~mask);
2881 }
2882 
2883 /**
2884  * ib_alloc_mw - Allocates a memory window.
2885  * @pd: The protection domain associated with the memory window.
2886  * @type: The type of the memory window (1 or 2).
2887  */
2888 struct ib_mw *ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type);
2889 
2890 /**
2891  * ib_bind_mw - Posts a work request to the send queue of the specified
2892  *   QP, which binds the memory window to the given address range and
2893  *   remote access attributes.
2894  * @qp: QP to post the bind work request on.
2895  * @mw: The memory window to bind.
2896  * @mw_bind: Specifies information about the memory window, including
2897  *   its address range, remote access rights, and associated memory region.
2898  *
2899  * If there is no immediate error, the function will update the rkey member
2900  * of the mw parameter to its new value. The bind operation can still fail
2901  * asynchronously.
2902  */
2903 static inline int ib_bind_mw(struct ib_qp *qp,
2904 			     struct ib_mw *mw,
2905 			     struct ib_mw_bind *mw_bind)
2906 {
2907 	/* XXX reference counting in corresponding MR? */
2908 	return mw->device->bind_mw ?
2909 		mw->device->bind_mw(qp, mw, mw_bind) :
2910 		-ENOSYS;
2911 }
2912 
2913 /**
2914  * ib_dealloc_mw - Deallocates a memory window.
2915  * @mw: The memory window to deallocate.
2916  */
2917 int ib_dealloc_mw(struct ib_mw *mw);
2918 
2919 /**
2920  * ib_alloc_fmr - Allocates a unmapped fast memory region.
2921  * @pd: The protection domain associated with the unmapped region.
2922  * @mr_access_flags: Specifies the memory access rights.
2923  * @fmr_attr: Attributes of the unmapped region.
2924  *
2925  * A fast memory region must be mapped before it can be used as part of
2926  * a work request.
2927  */
2928 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2929 			    int mr_access_flags,
2930 			    struct ib_fmr_attr *fmr_attr);
2931 
2932 /**
2933  * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2934  * @fmr: The fast memory region to associate with the pages.
2935  * @page_list: An array of physical pages to map to the fast memory region.
2936  * @list_len: The number of pages in page_list.
2937  * @iova: The I/O virtual address to use with the mapped region.
2938  */
2939 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2940 				  u64 *page_list, int list_len,
2941 				  u64 iova)
2942 {
2943 	return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
2944 }
2945 
2946 /**
2947  * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2948  * @fmr_list: A linked list of fast memory regions to unmap.
2949  */
2950 int ib_unmap_fmr(struct list_head *fmr_list);
2951 
2952 /**
2953  * ib_dealloc_fmr - Deallocates a fast memory region.
2954  * @fmr: The fast memory region to deallocate.
2955  */
2956 int ib_dealloc_fmr(struct ib_fmr *fmr);
2957 
2958 /**
2959  * ib_attach_mcast - Attaches the specified QP to a multicast group.
2960  * @qp: QP to attach to the multicast group.  The QP must be type
2961  *   IB_QPT_UD.
2962  * @gid: Multicast group GID.
2963  * @lid: Multicast group LID in host byte order.
2964  *
2965  * In order to send and receive multicast packets, subnet
2966  * administration must have created the multicast group and configured
2967  * the fabric appropriately.  The port associated with the specified
2968  * QP must also be a member of the multicast group.
2969  */
2970 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2971 
2972 /**
2973  * ib_detach_mcast - Detaches the specified QP from a multicast group.
2974  * @qp: QP to detach from the multicast group.
2975  * @gid: Multicast group GID.
2976  * @lid: Multicast group LID in host byte order.
2977  */
2978 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2979 
2980 /**
2981  * ib_alloc_xrcd - Allocates an XRC domain.
2982  * @device: The device on which to allocate the XRC domain.
2983  */
2984 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
2985 
2986 /**
2987  * ib_dealloc_xrcd - Deallocates an XRC domain.
2988  * @xrcd: The XRC domain to deallocate.
2989  */
2990 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
2991 
2992 struct ib_flow *ib_create_flow(struct ib_qp *qp,
2993 			       struct ib_flow_attr *flow_attr, int domain);
2994 int ib_destroy_flow(struct ib_flow *flow_id);
2995 
2996 static inline int ib_check_mr_access(int flags)
2997 {
2998 	/*
2999 	 * Local write permission is required if remote write or
3000 	 * remote atomic permission is also requested.
3001 	 */
3002 	if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3003 	    !(flags & IB_ACCESS_LOCAL_WRITE))
3004 		return -EINVAL;
3005 
3006 	return 0;
3007 }
3008 
3009 /**
3010  * ib_check_mr_status: lightweight check of MR status.
3011  *     This routine may provide status checks on a selected
3012  *     ib_mr. first use is for signature status check.
3013  *
3014  * @mr: A memory region.
3015  * @check_mask: Bitmask of which checks to perform from
3016  *     ib_mr_status_check enumeration.
3017  * @mr_status: The container of relevant status checks.
3018  *     failed checks will be indicated in the status bitmask
3019  *     and the relevant info shall be in the error item.
3020  */
3021 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3022 		       struct ib_mr_status *mr_status);
3023 
3024 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3025 					    u16 pkey, const union ib_gid *gid,
3026 					    const struct sockaddr *addr);
3027 
3028 int ib_map_mr_sg(struct ib_mr *mr,
3029 		 struct scatterlist *sg,
3030 		 int sg_nents,
3031 		 unsigned int page_size);
3032 
3033 static inline int
3034 ib_map_mr_sg_zbva(struct ib_mr *mr,
3035 		  struct scatterlist *sg,
3036 		  int sg_nents,
3037 		  unsigned int page_size)
3038 {
3039 	int n;
3040 
3041 	n = ib_map_mr_sg(mr, sg, sg_nents, page_size);
3042 	mr->iova = 0;
3043 
3044 	return n;
3045 }
3046 
3047 int ib_sg_to_pages(struct ib_mr *mr,
3048 		   struct scatterlist *sgl,
3049 		   int sg_nents,
3050 		   int (*set_page)(struct ib_mr *, u64));
3051 
3052 #endif /* IB_VERBS_H */
3053