xref: /openbmc/linux/include/rdma/ib_verbs.h (revision a86854d0)
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38 
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41 
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
51 #include <linux/socket.h>
52 #include <linux/irq_poll.h>
53 #include <uapi/linux/if_ether.h>
54 #include <net/ipv6.h>
55 #include <net/ip.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/netdevice.h>
59 
60 #include <linux/if_link.h>
61 #include <linux/atomic.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/uaccess.h>
64 #include <linux/cgroup_rdma.h>
65 #include <uapi/rdma/ib_user_verbs.h>
66 #include <rdma/restrack.h>
67 #include <uapi/rdma/rdma_user_ioctl.h>
68 #include <uapi/rdma/ib_user_ioctl_verbs.h>
69 
70 #define IB_FW_VERSION_NAME_MAX	ETHTOOL_FWVERS_LEN
71 
72 extern struct workqueue_struct *ib_wq;
73 extern struct workqueue_struct *ib_comp_wq;
74 
75 union ib_gid {
76 	u8	raw[16];
77 	struct {
78 		__be64	subnet_prefix;
79 		__be64	interface_id;
80 	} global;
81 };
82 
83 extern union ib_gid zgid;
84 
85 enum ib_gid_type {
86 	/* If link layer is Ethernet, this is RoCE V1 */
87 	IB_GID_TYPE_IB        = 0,
88 	IB_GID_TYPE_ROCE      = 0,
89 	IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
90 	IB_GID_TYPE_SIZE
91 };
92 
93 #define ROCE_V2_UDP_DPORT      4791
94 struct ib_gid_attr {
95 	struct net_device	*ndev;
96 	struct ib_device	*device;
97 	enum ib_gid_type	gid_type;
98 	u16			index;
99 	u8			port_num;
100 };
101 
102 enum rdma_node_type {
103 	/* IB values map to NodeInfo:NodeType. */
104 	RDMA_NODE_IB_CA 	= 1,
105 	RDMA_NODE_IB_SWITCH,
106 	RDMA_NODE_IB_ROUTER,
107 	RDMA_NODE_RNIC,
108 	RDMA_NODE_USNIC,
109 	RDMA_NODE_USNIC_UDP,
110 };
111 
112 enum {
113 	/* set the local administered indication */
114 	IB_SA_WELL_KNOWN_GUID	= BIT_ULL(57) | 2,
115 };
116 
117 enum rdma_transport_type {
118 	RDMA_TRANSPORT_IB,
119 	RDMA_TRANSPORT_IWARP,
120 	RDMA_TRANSPORT_USNIC,
121 	RDMA_TRANSPORT_USNIC_UDP
122 };
123 
124 enum rdma_protocol_type {
125 	RDMA_PROTOCOL_IB,
126 	RDMA_PROTOCOL_IBOE,
127 	RDMA_PROTOCOL_IWARP,
128 	RDMA_PROTOCOL_USNIC_UDP
129 };
130 
131 __attribute_const__ enum rdma_transport_type
132 rdma_node_get_transport(enum rdma_node_type node_type);
133 
134 enum rdma_network_type {
135 	RDMA_NETWORK_IB,
136 	RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
137 	RDMA_NETWORK_IPV4,
138 	RDMA_NETWORK_IPV6
139 };
140 
141 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
142 {
143 	if (network_type == RDMA_NETWORK_IPV4 ||
144 	    network_type == RDMA_NETWORK_IPV6)
145 		return IB_GID_TYPE_ROCE_UDP_ENCAP;
146 
147 	/* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
148 	return IB_GID_TYPE_IB;
149 }
150 
151 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
152 							    union ib_gid *gid)
153 {
154 	if (gid_type == IB_GID_TYPE_IB)
155 		return RDMA_NETWORK_IB;
156 
157 	if (ipv6_addr_v4mapped((struct in6_addr *)gid))
158 		return RDMA_NETWORK_IPV4;
159 	else
160 		return RDMA_NETWORK_IPV6;
161 }
162 
163 enum rdma_link_layer {
164 	IB_LINK_LAYER_UNSPECIFIED,
165 	IB_LINK_LAYER_INFINIBAND,
166 	IB_LINK_LAYER_ETHERNET,
167 };
168 
169 enum ib_device_cap_flags {
170 	IB_DEVICE_RESIZE_MAX_WR			= (1 << 0),
171 	IB_DEVICE_BAD_PKEY_CNTR			= (1 << 1),
172 	IB_DEVICE_BAD_QKEY_CNTR			= (1 << 2),
173 	IB_DEVICE_RAW_MULTI			= (1 << 3),
174 	IB_DEVICE_AUTO_PATH_MIG			= (1 << 4),
175 	IB_DEVICE_CHANGE_PHY_PORT		= (1 << 5),
176 	IB_DEVICE_UD_AV_PORT_ENFORCE		= (1 << 6),
177 	IB_DEVICE_CURR_QP_STATE_MOD		= (1 << 7),
178 	IB_DEVICE_SHUTDOWN_PORT			= (1 << 8),
179 	/* Not in use, former INIT_TYPE		= (1 << 9),*/
180 	IB_DEVICE_PORT_ACTIVE_EVENT		= (1 << 10),
181 	IB_DEVICE_SYS_IMAGE_GUID		= (1 << 11),
182 	IB_DEVICE_RC_RNR_NAK_GEN		= (1 << 12),
183 	IB_DEVICE_SRQ_RESIZE			= (1 << 13),
184 	IB_DEVICE_N_NOTIFY_CQ			= (1 << 14),
185 
186 	/*
187 	 * This device supports a per-device lkey or stag that can be
188 	 * used without performing a memory registration for the local
189 	 * memory.  Note that ULPs should never check this flag, but
190 	 * instead of use the local_dma_lkey flag in the ib_pd structure,
191 	 * which will always contain a usable lkey.
192 	 */
193 	IB_DEVICE_LOCAL_DMA_LKEY		= (1 << 15),
194 	/* Reserved, old SEND_W_INV		= (1 << 16),*/
195 	IB_DEVICE_MEM_WINDOW			= (1 << 17),
196 	/*
197 	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
198 	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
199 	 * messages and can verify the validity of checksum for
200 	 * incoming messages.  Setting this flag implies that the
201 	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
202 	 */
203 	IB_DEVICE_UD_IP_CSUM			= (1 << 18),
204 	IB_DEVICE_UD_TSO			= (1 << 19),
205 	IB_DEVICE_XRC				= (1 << 20),
206 
207 	/*
208 	 * This device supports the IB "base memory management extension",
209 	 * which includes support for fast registrations (IB_WR_REG_MR,
210 	 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs).  This flag should
211 	 * also be set by any iWarp device which must support FRs to comply
212 	 * to the iWarp verbs spec.  iWarp devices also support the
213 	 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
214 	 * stag.
215 	 */
216 	IB_DEVICE_MEM_MGT_EXTENSIONS		= (1 << 21),
217 	IB_DEVICE_BLOCK_MULTICAST_LOOPBACK	= (1 << 22),
218 	IB_DEVICE_MEM_WINDOW_TYPE_2A		= (1 << 23),
219 	IB_DEVICE_MEM_WINDOW_TYPE_2B		= (1 << 24),
220 	IB_DEVICE_RC_IP_CSUM			= (1 << 25),
221 	/* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
222 	IB_DEVICE_RAW_IP_CSUM			= (1 << 26),
223 	/*
224 	 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
225 	 * support execution of WQEs that involve synchronization
226 	 * of I/O operations with single completion queue managed
227 	 * by hardware.
228 	 */
229 	IB_DEVICE_CROSS_CHANNEL			= (1 << 27),
230 	IB_DEVICE_MANAGED_FLOW_STEERING		= (1 << 29),
231 	IB_DEVICE_SIGNATURE_HANDOVER		= (1 << 30),
232 	IB_DEVICE_ON_DEMAND_PAGING		= (1ULL << 31),
233 	IB_DEVICE_SG_GAPS_REG			= (1ULL << 32),
234 	IB_DEVICE_VIRTUAL_FUNCTION		= (1ULL << 33),
235 	/* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
236 	IB_DEVICE_RAW_SCATTER_FCS		= (1ULL << 34),
237 	IB_DEVICE_RDMA_NETDEV_OPA_VNIC		= (1ULL << 35),
238 	/* The device supports padding incoming writes to cacheline. */
239 	IB_DEVICE_PCI_WRITE_END_PADDING		= (1ULL << 36),
240 };
241 
242 enum ib_signature_prot_cap {
243 	IB_PROT_T10DIF_TYPE_1 = 1,
244 	IB_PROT_T10DIF_TYPE_2 = 1 << 1,
245 	IB_PROT_T10DIF_TYPE_3 = 1 << 2,
246 };
247 
248 enum ib_signature_guard_cap {
249 	IB_GUARD_T10DIF_CRC	= 1,
250 	IB_GUARD_T10DIF_CSUM	= 1 << 1,
251 };
252 
253 enum ib_atomic_cap {
254 	IB_ATOMIC_NONE,
255 	IB_ATOMIC_HCA,
256 	IB_ATOMIC_GLOB
257 };
258 
259 enum ib_odp_general_cap_bits {
260 	IB_ODP_SUPPORT		= 1 << 0,
261 	IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
262 };
263 
264 enum ib_odp_transport_cap_bits {
265 	IB_ODP_SUPPORT_SEND	= 1 << 0,
266 	IB_ODP_SUPPORT_RECV	= 1 << 1,
267 	IB_ODP_SUPPORT_WRITE	= 1 << 2,
268 	IB_ODP_SUPPORT_READ	= 1 << 3,
269 	IB_ODP_SUPPORT_ATOMIC	= 1 << 4,
270 };
271 
272 struct ib_odp_caps {
273 	uint64_t general_caps;
274 	struct {
275 		uint32_t  rc_odp_caps;
276 		uint32_t  uc_odp_caps;
277 		uint32_t  ud_odp_caps;
278 	} per_transport_caps;
279 };
280 
281 struct ib_rss_caps {
282 	/* Corresponding bit will be set if qp type from
283 	 * 'enum ib_qp_type' is supported, e.g.
284 	 * supported_qpts |= 1 << IB_QPT_UD
285 	 */
286 	u32 supported_qpts;
287 	u32 max_rwq_indirection_tables;
288 	u32 max_rwq_indirection_table_size;
289 };
290 
291 enum ib_tm_cap_flags {
292 	/*  Support tag matching on RC transport */
293 	IB_TM_CAP_RC		    = 1 << 0,
294 };
295 
296 struct ib_tm_caps {
297 	/* Max size of RNDV header */
298 	u32 max_rndv_hdr_size;
299 	/* Max number of entries in tag matching list */
300 	u32 max_num_tags;
301 	/* From enum ib_tm_cap_flags */
302 	u32 flags;
303 	/* Max number of outstanding list operations */
304 	u32 max_ops;
305 	/* Max number of SGE in tag matching entry */
306 	u32 max_sge;
307 };
308 
309 struct ib_cq_init_attr {
310 	unsigned int	cqe;
311 	int		comp_vector;
312 	u32		flags;
313 };
314 
315 enum ib_cq_attr_mask {
316 	IB_CQ_MODERATE = 1 << 0,
317 };
318 
319 struct ib_cq_caps {
320 	u16     max_cq_moderation_count;
321 	u16     max_cq_moderation_period;
322 };
323 
324 struct ib_dm_mr_attr {
325 	u64		length;
326 	u64		offset;
327 	u32		access_flags;
328 };
329 
330 struct ib_dm_alloc_attr {
331 	u64	length;
332 	u32	alignment;
333 	u32	flags;
334 };
335 
336 struct ib_device_attr {
337 	u64			fw_ver;
338 	__be64			sys_image_guid;
339 	u64			max_mr_size;
340 	u64			page_size_cap;
341 	u32			vendor_id;
342 	u32			vendor_part_id;
343 	u32			hw_ver;
344 	int			max_qp;
345 	int			max_qp_wr;
346 	u64			device_cap_flags;
347 	int			max_sge;
348 	int			max_sge_rd;
349 	int			max_cq;
350 	int			max_cqe;
351 	int			max_mr;
352 	int			max_pd;
353 	int			max_qp_rd_atom;
354 	int			max_ee_rd_atom;
355 	int			max_res_rd_atom;
356 	int			max_qp_init_rd_atom;
357 	int			max_ee_init_rd_atom;
358 	enum ib_atomic_cap	atomic_cap;
359 	enum ib_atomic_cap	masked_atomic_cap;
360 	int			max_ee;
361 	int			max_rdd;
362 	int			max_mw;
363 	int			max_raw_ipv6_qp;
364 	int			max_raw_ethy_qp;
365 	int			max_mcast_grp;
366 	int			max_mcast_qp_attach;
367 	int			max_total_mcast_qp_attach;
368 	int			max_ah;
369 	int			max_fmr;
370 	int			max_map_per_fmr;
371 	int			max_srq;
372 	int			max_srq_wr;
373 	int			max_srq_sge;
374 	unsigned int		max_fast_reg_page_list_len;
375 	u16			max_pkeys;
376 	u8			local_ca_ack_delay;
377 	int			sig_prot_cap;
378 	int			sig_guard_cap;
379 	struct ib_odp_caps	odp_caps;
380 	uint64_t		timestamp_mask;
381 	uint64_t		hca_core_clock; /* in KHZ */
382 	struct ib_rss_caps	rss_caps;
383 	u32			max_wq_type_rq;
384 	u32			raw_packet_caps; /* Use ib_raw_packet_caps enum */
385 	struct ib_tm_caps	tm_caps;
386 	struct ib_cq_caps       cq_caps;
387 	u64			max_dm_size;
388 };
389 
390 enum ib_mtu {
391 	IB_MTU_256  = 1,
392 	IB_MTU_512  = 2,
393 	IB_MTU_1024 = 3,
394 	IB_MTU_2048 = 4,
395 	IB_MTU_4096 = 5
396 };
397 
398 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
399 {
400 	switch (mtu) {
401 	case IB_MTU_256:  return  256;
402 	case IB_MTU_512:  return  512;
403 	case IB_MTU_1024: return 1024;
404 	case IB_MTU_2048: return 2048;
405 	case IB_MTU_4096: return 4096;
406 	default: 	  return -1;
407 	}
408 }
409 
410 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
411 {
412 	if (mtu >= 4096)
413 		return IB_MTU_4096;
414 	else if (mtu >= 2048)
415 		return IB_MTU_2048;
416 	else if (mtu >= 1024)
417 		return IB_MTU_1024;
418 	else if (mtu >= 512)
419 		return IB_MTU_512;
420 	else
421 		return IB_MTU_256;
422 }
423 
424 enum ib_port_state {
425 	IB_PORT_NOP		= 0,
426 	IB_PORT_DOWN		= 1,
427 	IB_PORT_INIT		= 2,
428 	IB_PORT_ARMED		= 3,
429 	IB_PORT_ACTIVE		= 4,
430 	IB_PORT_ACTIVE_DEFER	= 5
431 };
432 
433 enum ib_port_cap_flags {
434 	IB_PORT_SM				= 1 <<  1,
435 	IB_PORT_NOTICE_SUP			= 1 <<  2,
436 	IB_PORT_TRAP_SUP			= 1 <<  3,
437 	IB_PORT_OPT_IPD_SUP                     = 1 <<  4,
438 	IB_PORT_AUTO_MIGR_SUP			= 1 <<  5,
439 	IB_PORT_SL_MAP_SUP			= 1 <<  6,
440 	IB_PORT_MKEY_NVRAM			= 1 <<  7,
441 	IB_PORT_PKEY_NVRAM			= 1 <<  8,
442 	IB_PORT_LED_INFO_SUP			= 1 <<  9,
443 	IB_PORT_SM_DISABLED			= 1 << 10,
444 	IB_PORT_SYS_IMAGE_GUID_SUP		= 1 << 11,
445 	IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP	= 1 << 12,
446 	IB_PORT_EXTENDED_SPEEDS_SUP             = 1 << 14,
447 	IB_PORT_CM_SUP				= 1 << 16,
448 	IB_PORT_SNMP_TUNNEL_SUP			= 1 << 17,
449 	IB_PORT_REINIT_SUP			= 1 << 18,
450 	IB_PORT_DEVICE_MGMT_SUP			= 1 << 19,
451 	IB_PORT_VENDOR_CLASS_SUP		= 1 << 20,
452 	IB_PORT_DR_NOTICE_SUP			= 1 << 21,
453 	IB_PORT_CAP_MASK_NOTICE_SUP		= 1 << 22,
454 	IB_PORT_BOOT_MGMT_SUP			= 1 << 23,
455 	IB_PORT_LINK_LATENCY_SUP		= 1 << 24,
456 	IB_PORT_CLIENT_REG_SUP			= 1 << 25,
457 	IB_PORT_IP_BASED_GIDS			= 1 << 26,
458 };
459 
460 enum ib_port_width {
461 	IB_WIDTH_1X	= 1,
462 	IB_WIDTH_4X	= 2,
463 	IB_WIDTH_8X	= 4,
464 	IB_WIDTH_12X	= 8
465 };
466 
467 static inline int ib_width_enum_to_int(enum ib_port_width width)
468 {
469 	switch (width) {
470 	case IB_WIDTH_1X:  return  1;
471 	case IB_WIDTH_4X:  return  4;
472 	case IB_WIDTH_8X:  return  8;
473 	case IB_WIDTH_12X: return 12;
474 	default: 	  return -1;
475 	}
476 }
477 
478 enum ib_port_speed {
479 	IB_SPEED_SDR	= 1,
480 	IB_SPEED_DDR	= 2,
481 	IB_SPEED_QDR	= 4,
482 	IB_SPEED_FDR10	= 8,
483 	IB_SPEED_FDR	= 16,
484 	IB_SPEED_EDR	= 32,
485 	IB_SPEED_HDR	= 64
486 };
487 
488 /**
489  * struct rdma_hw_stats
490  * @lock - Mutex to protect parallel write access to lifespan and values
491  *    of counters, which are 64bits and not guaranteeed to be written
492  *    atomicaly on 32bits systems.
493  * @timestamp - Used by the core code to track when the last update was
494  * @lifespan - Used by the core code to determine how old the counters
495  *   should be before being updated again.  Stored in jiffies, defaults
496  *   to 10 milliseconds, drivers can override the default be specifying
497  *   their own value during their allocation routine.
498  * @name - Array of pointers to static names used for the counters in
499  *   directory.
500  * @num_counters - How many hardware counters there are.  If name is
501  *   shorter than this number, a kernel oops will result.  Driver authors
502  *   are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
503  *   in their code to prevent this.
504  * @value - Array of u64 counters that are accessed by the sysfs code and
505  *   filled in by the drivers get_stats routine
506  */
507 struct rdma_hw_stats {
508 	struct mutex	lock; /* Protect lifespan and values[] */
509 	unsigned long	timestamp;
510 	unsigned long	lifespan;
511 	const char * const *names;
512 	int		num_counters;
513 	u64		value[];
514 };
515 
516 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
517 /**
518  * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
519  *   for drivers.
520  * @names - Array of static const char *
521  * @num_counters - How many elements in array
522  * @lifespan - How many milliseconds between updates
523  */
524 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
525 		const char * const *names, int num_counters,
526 		unsigned long lifespan)
527 {
528 	struct rdma_hw_stats *stats;
529 
530 	stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
531 			GFP_KERNEL);
532 	if (!stats)
533 		return NULL;
534 	stats->names = names;
535 	stats->num_counters = num_counters;
536 	stats->lifespan = msecs_to_jiffies(lifespan);
537 
538 	return stats;
539 }
540 
541 
542 /* Define bits for the various functionality this port needs to be supported by
543  * the core.
544  */
545 /* Management                           0x00000FFF */
546 #define RDMA_CORE_CAP_IB_MAD            0x00000001
547 #define RDMA_CORE_CAP_IB_SMI            0x00000002
548 #define RDMA_CORE_CAP_IB_CM             0x00000004
549 #define RDMA_CORE_CAP_IW_CM             0x00000008
550 #define RDMA_CORE_CAP_IB_SA             0x00000010
551 #define RDMA_CORE_CAP_OPA_MAD           0x00000020
552 
553 /* Address format                       0x000FF000 */
554 #define RDMA_CORE_CAP_AF_IB             0x00001000
555 #define RDMA_CORE_CAP_ETH_AH            0x00002000
556 #define RDMA_CORE_CAP_OPA_AH            0x00004000
557 
558 /* Protocol                             0xFFF00000 */
559 #define RDMA_CORE_CAP_PROT_IB           0x00100000
560 #define RDMA_CORE_CAP_PROT_ROCE         0x00200000
561 #define RDMA_CORE_CAP_PROT_IWARP        0x00400000
562 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
563 #define RDMA_CORE_CAP_PROT_RAW_PACKET   0x01000000
564 #define RDMA_CORE_CAP_PROT_USNIC        0x02000000
565 
566 #define RDMA_CORE_PORT_IBA_IB          (RDMA_CORE_CAP_PROT_IB  \
567 					| RDMA_CORE_CAP_IB_MAD \
568 					| RDMA_CORE_CAP_IB_SMI \
569 					| RDMA_CORE_CAP_IB_CM  \
570 					| RDMA_CORE_CAP_IB_SA  \
571 					| RDMA_CORE_CAP_AF_IB)
572 #define RDMA_CORE_PORT_IBA_ROCE        (RDMA_CORE_CAP_PROT_ROCE \
573 					| RDMA_CORE_CAP_IB_MAD  \
574 					| RDMA_CORE_CAP_IB_CM   \
575 					| RDMA_CORE_CAP_AF_IB   \
576 					| RDMA_CORE_CAP_ETH_AH)
577 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP			\
578 					(RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
579 					| RDMA_CORE_CAP_IB_MAD  \
580 					| RDMA_CORE_CAP_IB_CM   \
581 					| RDMA_CORE_CAP_AF_IB   \
582 					| RDMA_CORE_CAP_ETH_AH)
583 #define RDMA_CORE_PORT_IWARP           (RDMA_CORE_CAP_PROT_IWARP \
584 					| RDMA_CORE_CAP_IW_CM)
585 #define RDMA_CORE_PORT_INTEL_OPA       (RDMA_CORE_PORT_IBA_IB  \
586 					| RDMA_CORE_CAP_OPA_MAD)
587 
588 #define RDMA_CORE_PORT_RAW_PACKET	(RDMA_CORE_CAP_PROT_RAW_PACKET)
589 
590 #define RDMA_CORE_PORT_USNIC		(RDMA_CORE_CAP_PROT_USNIC)
591 
592 struct ib_port_attr {
593 	u64			subnet_prefix;
594 	enum ib_port_state	state;
595 	enum ib_mtu		max_mtu;
596 	enum ib_mtu		active_mtu;
597 	int			gid_tbl_len;
598 	u32			port_cap_flags;
599 	u32			max_msg_sz;
600 	u32			bad_pkey_cntr;
601 	u32			qkey_viol_cntr;
602 	u16			pkey_tbl_len;
603 	u32			sm_lid;
604 	u32			lid;
605 	u8			lmc;
606 	u8			max_vl_num;
607 	u8			sm_sl;
608 	u8			subnet_timeout;
609 	u8			init_type_reply;
610 	u8			active_width;
611 	u8			active_speed;
612 	u8                      phys_state;
613 	bool			grh_required;
614 };
615 
616 enum ib_device_modify_flags {
617 	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
618 	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
619 };
620 
621 #define IB_DEVICE_NODE_DESC_MAX 64
622 
623 struct ib_device_modify {
624 	u64	sys_image_guid;
625 	char	node_desc[IB_DEVICE_NODE_DESC_MAX];
626 };
627 
628 enum ib_port_modify_flags {
629 	IB_PORT_SHUTDOWN		= 1,
630 	IB_PORT_INIT_TYPE		= (1<<2),
631 	IB_PORT_RESET_QKEY_CNTR		= (1<<3),
632 	IB_PORT_OPA_MASK_CHG		= (1<<4)
633 };
634 
635 struct ib_port_modify {
636 	u32	set_port_cap_mask;
637 	u32	clr_port_cap_mask;
638 	u8	init_type;
639 };
640 
641 enum ib_event_type {
642 	IB_EVENT_CQ_ERR,
643 	IB_EVENT_QP_FATAL,
644 	IB_EVENT_QP_REQ_ERR,
645 	IB_EVENT_QP_ACCESS_ERR,
646 	IB_EVENT_COMM_EST,
647 	IB_EVENT_SQ_DRAINED,
648 	IB_EVENT_PATH_MIG,
649 	IB_EVENT_PATH_MIG_ERR,
650 	IB_EVENT_DEVICE_FATAL,
651 	IB_EVENT_PORT_ACTIVE,
652 	IB_EVENT_PORT_ERR,
653 	IB_EVENT_LID_CHANGE,
654 	IB_EVENT_PKEY_CHANGE,
655 	IB_EVENT_SM_CHANGE,
656 	IB_EVENT_SRQ_ERR,
657 	IB_EVENT_SRQ_LIMIT_REACHED,
658 	IB_EVENT_QP_LAST_WQE_REACHED,
659 	IB_EVENT_CLIENT_REREGISTER,
660 	IB_EVENT_GID_CHANGE,
661 	IB_EVENT_WQ_FATAL,
662 };
663 
664 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
665 
666 struct ib_event {
667 	struct ib_device	*device;
668 	union {
669 		struct ib_cq	*cq;
670 		struct ib_qp	*qp;
671 		struct ib_srq	*srq;
672 		struct ib_wq	*wq;
673 		u8		port_num;
674 	} element;
675 	enum ib_event_type	event;
676 };
677 
678 struct ib_event_handler {
679 	struct ib_device *device;
680 	void            (*handler)(struct ib_event_handler *, struct ib_event *);
681 	struct list_head  list;
682 };
683 
684 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
685 	do {							\
686 		(_ptr)->device  = _device;			\
687 		(_ptr)->handler = _handler;			\
688 		INIT_LIST_HEAD(&(_ptr)->list);			\
689 	} while (0)
690 
691 struct ib_global_route {
692 	union ib_gid	dgid;
693 	u32		flow_label;
694 	u8		sgid_index;
695 	u8		hop_limit;
696 	u8		traffic_class;
697 };
698 
699 struct ib_grh {
700 	__be32		version_tclass_flow;
701 	__be16		paylen;
702 	u8		next_hdr;
703 	u8		hop_limit;
704 	union ib_gid	sgid;
705 	union ib_gid	dgid;
706 };
707 
708 union rdma_network_hdr {
709 	struct ib_grh ibgrh;
710 	struct {
711 		/* The IB spec states that if it's IPv4, the header
712 		 * is located in the last 20 bytes of the header.
713 		 */
714 		u8		reserved[20];
715 		struct iphdr	roce4grh;
716 	};
717 };
718 
719 #define IB_QPN_MASK		0xFFFFFF
720 
721 enum {
722 	IB_MULTICAST_QPN = 0xffffff
723 };
724 
725 #define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
726 #define IB_MULTICAST_LID_BASE	cpu_to_be16(0xC000)
727 
728 enum ib_ah_flags {
729 	IB_AH_GRH	= 1
730 };
731 
732 enum ib_rate {
733 	IB_RATE_PORT_CURRENT = 0,
734 	IB_RATE_2_5_GBPS = 2,
735 	IB_RATE_5_GBPS   = 5,
736 	IB_RATE_10_GBPS  = 3,
737 	IB_RATE_20_GBPS  = 6,
738 	IB_RATE_30_GBPS  = 4,
739 	IB_RATE_40_GBPS  = 7,
740 	IB_RATE_60_GBPS  = 8,
741 	IB_RATE_80_GBPS  = 9,
742 	IB_RATE_120_GBPS = 10,
743 	IB_RATE_14_GBPS  = 11,
744 	IB_RATE_56_GBPS  = 12,
745 	IB_RATE_112_GBPS = 13,
746 	IB_RATE_168_GBPS = 14,
747 	IB_RATE_25_GBPS  = 15,
748 	IB_RATE_100_GBPS = 16,
749 	IB_RATE_200_GBPS = 17,
750 	IB_RATE_300_GBPS = 18
751 };
752 
753 /**
754  * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
755  * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
756  * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
757  * @rate: rate to convert.
758  */
759 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
760 
761 /**
762  * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
763  * For example, IB_RATE_2_5_GBPS will be converted to 2500.
764  * @rate: rate to convert.
765  */
766 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
767 
768 
769 /**
770  * enum ib_mr_type - memory region type
771  * @IB_MR_TYPE_MEM_REG:       memory region that is used for
772  *                            normal registration
773  * @IB_MR_TYPE_SIGNATURE:     memory region that is used for
774  *                            signature operations (data-integrity
775  *                            capable regions)
776  * @IB_MR_TYPE_SG_GAPS:       memory region that is capable to
777  *                            register any arbitrary sg lists (without
778  *                            the normal mr constraints - see
779  *                            ib_map_mr_sg)
780  */
781 enum ib_mr_type {
782 	IB_MR_TYPE_MEM_REG,
783 	IB_MR_TYPE_SIGNATURE,
784 	IB_MR_TYPE_SG_GAPS,
785 };
786 
787 /**
788  * Signature types
789  * IB_SIG_TYPE_NONE: Unprotected.
790  * IB_SIG_TYPE_T10_DIF: Type T10-DIF
791  */
792 enum ib_signature_type {
793 	IB_SIG_TYPE_NONE,
794 	IB_SIG_TYPE_T10_DIF,
795 };
796 
797 /**
798  * Signature T10-DIF block-guard types
799  * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
800  * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
801  */
802 enum ib_t10_dif_bg_type {
803 	IB_T10DIF_CRC,
804 	IB_T10DIF_CSUM
805 };
806 
807 /**
808  * struct ib_t10_dif_domain - Parameters specific for T10-DIF
809  *     domain.
810  * @bg_type: T10-DIF block guard type (CRC|CSUM)
811  * @pi_interval: protection information interval.
812  * @bg: seed of guard computation.
813  * @app_tag: application tag of guard block
814  * @ref_tag: initial guard block reference tag.
815  * @ref_remap: Indicate wethear the reftag increments each block
816  * @app_escape: Indicate to skip block check if apptag=0xffff
817  * @ref_escape: Indicate to skip block check if reftag=0xffffffff
818  * @apptag_check_mask: check bitmask of application tag.
819  */
820 struct ib_t10_dif_domain {
821 	enum ib_t10_dif_bg_type bg_type;
822 	u16			pi_interval;
823 	u16			bg;
824 	u16			app_tag;
825 	u32			ref_tag;
826 	bool			ref_remap;
827 	bool			app_escape;
828 	bool			ref_escape;
829 	u16			apptag_check_mask;
830 };
831 
832 /**
833  * struct ib_sig_domain - Parameters for signature domain
834  * @sig_type: specific signauture type
835  * @sig: union of all signature domain attributes that may
836  *     be used to set domain layout.
837  */
838 struct ib_sig_domain {
839 	enum ib_signature_type sig_type;
840 	union {
841 		struct ib_t10_dif_domain dif;
842 	} sig;
843 };
844 
845 /**
846  * struct ib_sig_attrs - Parameters for signature handover operation
847  * @check_mask: bitmask for signature byte check (8 bytes)
848  * @mem: memory domain layout desciptor.
849  * @wire: wire domain layout desciptor.
850  */
851 struct ib_sig_attrs {
852 	u8			check_mask;
853 	struct ib_sig_domain	mem;
854 	struct ib_sig_domain	wire;
855 };
856 
857 enum ib_sig_err_type {
858 	IB_SIG_BAD_GUARD,
859 	IB_SIG_BAD_REFTAG,
860 	IB_SIG_BAD_APPTAG,
861 };
862 
863 /**
864  * Signature check masks (8 bytes in total) according to the T10-PI standard:
865  *  -------- -------- ------------
866  * | GUARD  | APPTAG |   REFTAG   |
867  * |  2B    |  2B    |    4B      |
868  *  -------- -------- ------------
869  */
870 enum {
871 	IB_SIG_CHECK_GUARD	= 0xc0,
872 	IB_SIG_CHECK_APPTAG	= 0x30,
873 	IB_SIG_CHECK_REFTAG	= 0x0f,
874 };
875 
876 /**
877  * struct ib_sig_err - signature error descriptor
878  */
879 struct ib_sig_err {
880 	enum ib_sig_err_type	err_type;
881 	u32			expected;
882 	u32			actual;
883 	u64			sig_err_offset;
884 	u32			key;
885 };
886 
887 enum ib_mr_status_check {
888 	IB_MR_CHECK_SIG_STATUS = 1,
889 };
890 
891 /**
892  * struct ib_mr_status - Memory region status container
893  *
894  * @fail_status: Bitmask of MR checks status. For each
895  *     failed check a corresponding status bit is set.
896  * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
897  *     failure.
898  */
899 struct ib_mr_status {
900 	u32		    fail_status;
901 	struct ib_sig_err   sig_err;
902 };
903 
904 /**
905  * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
906  * enum.
907  * @mult: multiple to convert.
908  */
909 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
910 
911 enum rdma_ah_attr_type {
912 	RDMA_AH_ATTR_TYPE_UNDEFINED,
913 	RDMA_AH_ATTR_TYPE_IB,
914 	RDMA_AH_ATTR_TYPE_ROCE,
915 	RDMA_AH_ATTR_TYPE_OPA,
916 };
917 
918 struct ib_ah_attr {
919 	u16			dlid;
920 	u8			src_path_bits;
921 };
922 
923 struct roce_ah_attr {
924 	u8			dmac[ETH_ALEN];
925 };
926 
927 struct opa_ah_attr {
928 	u32			dlid;
929 	u8			src_path_bits;
930 	bool			make_grd;
931 };
932 
933 struct rdma_ah_attr {
934 	struct ib_global_route	grh;
935 	u8			sl;
936 	u8			static_rate;
937 	u8			port_num;
938 	u8			ah_flags;
939 	enum rdma_ah_attr_type type;
940 	union {
941 		struct ib_ah_attr ib;
942 		struct roce_ah_attr roce;
943 		struct opa_ah_attr opa;
944 	};
945 };
946 
947 enum ib_wc_status {
948 	IB_WC_SUCCESS,
949 	IB_WC_LOC_LEN_ERR,
950 	IB_WC_LOC_QP_OP_ERR,
951 	IB_WC_LOC_EEC_OP_ERR,
952 	IB_WC_LOC_PROT_ERR,
953 	IB_WC_WR_FLUSH_ERR,
954 	IB_WC_MW_BIND_ERR,
955 	IB_WC_BAD_RESP_ERR,
956 	IB_WC_LOC_ACCESS_ERR,
957 	IB_WC_REM_INV_REQ_ERR,
958 	IB_WC_REM_ACCESS_ERR,
959 	IB_WC_REM_OP_ERR,
960 	IB_WC_RETRY_EXC_ERR,
961 	IB_WC_RNR_RETRY_EXC_ERR,
962 	IB_WC_LOC_RDD_VIOL_ERR,
963 	IB_WC_REM_INV_RD_REQ_ERR,
964 	IB_WC_REM_ABORT_ERR,
965 	IB_WC_INV_EECN_ERR,
966 	IB_WC_INV_EEC_STATE_ERR,
967 	IB_WC_FATAL_ERR,
968 	IB_WC_RESP_TIMEOUT_ERR,
969 	IB_WC_GENERAL_ERR
970 };
971 
972 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
973 
974 enum ib_wc_opcode {
975 	IB_WC_SEND,
976 	IB_WC_RDMA_WRITE,
977 	IB_WC_RDMA_READ,
978 	IB_WC_COMP_SWAP,
979 	IB_WC_FETCH_ADD,
980 	IB_WC_LSO,
981 	IB_WC_LOCAL_INV,
982 	IB_WC_REG_MR,
983 	IB_WC_MASKED_COMP_SWAP,
984 	IB_WC_MASKED_FETCH_ADD,
985 /*
986  * Set value of IB_WC_RECV so consumers can test if a completion is a
987  * receive by testing (opcode & IB_WC_RECV).
988  */
989 	IB_WC_RECV			= 1 << 7,
990 	IB_WC_RECV_RDMA_WITH_IMM
991 };
992 
993 enum ib_wc_flags {
994 	IB_WC_GRH		= 1,
995 	IB_WC_WITH_IMM		= (1<<1),
996 	IB_WC_WITH_INVALIDATE	= (1<<2),
997 	IB_WC_IP_CSUM_OK	= (1<<3),
998 	IB_WC_WITH_SMAC		= (1<<4),
999 	IB_WC_WITH_VLAN		= (1<<5),
1000 	IB_WC_WITH_NETWORK_HDR_TYPE	= (1<<6),
1001 };
1002 
1003 struct ib_wc {
1004 	union {
1005 		u64		wr_id;
1006 		struct ib_cqe	*wr_cqe;
1007 	};
1008 	enum ib_wc_status	status;
1009 	enum ib_wc_opcode	opcode;
1010 	u32			vendor_err;
1011 	u32			byte_len;
1012 	struct ib_qp	       *qp;
1013 	union {
1014 		__be32		imm_data;
1015 		u32		invalidate_rkey;
1016 	} ex;
1017 	u32			src_qp;
1018 	u32			slid;
1019 	int			wc_flags;
1020 	u16			pkey_index;
1021 	u8			sl;
1022 	u8			dlid_path_bits;
1023 	u8			port_num;	/* valid only for DR SMPs on switches */
1024 	u8			smac[ETH_ALEN];
1025 	u16			vlan_id;
1026 	u8			network_hdr_type;
1027 };
1028 
1029 enum ib_cq_notify_flags {
1030 	IB_CQ_SOLICITED			= 1 << 0,
1031 	IB_CQ_NEXT_COMP			= 1 << 1,
1032 	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1033 	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
1034 };
1035 
1036 enum ib_srq_type {
1037 	IB_SRQT_BASIC,
1038 	IB_SRQT_XRC,
1039 	IB_SRQT_TM,
1040 };
1041 
1042 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1043 {
1044 	return srq_type == IB_SRQT_XRC ||
1045 	       srq_type == IB_SRQT_TM;
1046 }
1047 
1048 enum ib_srq_attr_mask {
1049 	IB_SRQ_MAX_WR	= 1 << 0,
1050 	IB_SRQ_LIMIT	= 1 << 1,
1051 };
1052 
1053 struct ib_srq_attr {
1054 	u32	max_wr;
1055 	u32	max_sge;
1056 	u32	srq_limit;
1057 };
1058 
1059 struct ib_srq_init_attr {
1060 	void		      (*event_handler)(struct ib_event *, void *);
1061 	void		       *srq_context;
1062 	struct ib_srq_attr	attr;
1063 	enum ib_srq_type	srq_type;
1064 
1065 	struct {
1066 		struct ib_cq   *cq;
1067 		union {
1068 			struct {
1069 				struct ib_xrcd *xrcd;
1070 			} xrc;
1071 
1072 			struct {
1073 				u32		max_num_tags;
1074 			} tag_matching;
1075 		};
1076 	} ext;
1077 };
1078 
1079 struct ib_qp_cap {
1080 	u32	max_send_wr;
1081 	u32	max_recv_wr;
1082 	u32	max_send_sge;
1083 	u32	max_recv_sge;
1084 	u32	max_inline_data;
1085 
1086 	/*
1087 	 * Maximum number of rdma_rw_ctx structures in flight at a time.
1088 	 * ib_create_qp() will calculate the right amount of neededed WRs
1089 	 * and MRs based on this.
1090 	 */
1091 	u32	max_rdma_ctxs;
1092 };
1093 
1094 enum ib_sig_type {
1095 	IB_SIGNAL_ALL_WR,
1096 	IB_SIGNAL_REQ_WR
1097 };
1098 
1099 enum ib_qp_type {
1100 	/*
1101 	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1102 	 * here (and in that order) since the MAD layer uses them as
1103 	 * indices into a 2-entry table.
1104 	 */
1105 	IB_QPT_SMI,
1106 	IB_QPT_GSI,
1107 
1108 	IB_QPT_RC,
1109 	IB_QPT_UC,
1110 	IB_QPT_UD,
1111 	IB_QPT_RAW_IPV6,
1112 	IB_QPT_RAW_ETHERTYPE,
1113 	IB_QPT_RAW_PACKET = 8,
1114 	IB_QPT_XRC_INI = 9,
1115 	IB_QPT_XRC_TGT,
1116 	IB_QPT_MAX,
1117 	IB_QPT_DRIVER = 0xFF,
1118 	/* Reserve a range for qp types internal to the low level driver.
1119 	 * These qp types will not be visible at the IB core layer, so the
1120 	 * IB_QPT_MAX usages should not be affected in the core layer
1121 	 */
1122 	IB_QPT_RESERVED1 = 0x1000,
1123 	IB_QPT_RESERVED2,
1124 	IB_QPT_RESERVED3,
1125 	IB_QPT_RESERVED4,
1126 	IB_QPT_RESERVED5,
1127 	IB_QPT_RESERVED6,
1128 	IB_QPT_RESERVED7,
1129 	IB_QPT_RESERVED8,
1130 	IB_QPT_RESERVED9,
1131 	IB_QPT_RESERVED10,
1132 };
1133 
1134 enum ib_qp_create_flags {
1135 	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
1136 	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	= 1 << 1,
1137 	IB_QP_CREATE_CROSS_CHANNEL              = 1 << 2,
1138 	IB_QP_CREATE_MANAGED_SEND               = 1 << 3,
1139 	IB_QP_CREATE_MANAGED_RECV               = 1 << 4,
1140 	IB_QP_CREATE_NETIF_QP			= 1 << 5,
1141 	IB_QP_CREATE_SIGNATURE_EN		= 1 << 6,
1142 	/* FREE					= 1 << 7, */
1143 	IB_QP_CREATE_SCATTER_FCS		= 1 << 8,
1144 	IB_QP_CREATE_CVLAN_STRIPPING		= 1 << 9,
1145 	IB_QP_CREATE_SOURCE_QPN			= 1 << 10,
1146 	IB_QP_CREATE_PCI_WRITE_END_PADDING	= 1 << 11,
1147 	/* reserve bits 26-31 for low level drivers' internal use */
1148 	IB_QP_CREATE_RESERVED_START		= 1 << 26,
1149 	IB_QP_CREATE_RESERVED_END		= 1 << 31,
1150 };
1151 
1152 /*
1153  * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1154  * callback to destroy the passed in QP.
1155  */
1156 
1157 struct ib_qp_init_attr {
1158 	void                  (*event_handler)(struct ib_event *, void *);
1159 	void		       *qp_context;
1160 	struct ib_cq	       *send_cq;
1161 	struct ib_cq	       *recv_cq;
1162 	struct ib_srq	       *srq;
1163 	struct ib_xrcd	       *xrcd;     /* XRC TGT QPs only */
1164 	struct ib_qp_cap	cap;
1165 	enum ib_sig_type	sq_sig_type;
1166 	enum ib_qp_type		qp_type;
1167 	enum ib_qp_create_flags	create_flags;
1168 
1169 	/*
1170 	 * Only needed for special QP types, or when using the RW API.
1171 	 */
1172 	u8			port_num;
1173 	struct ib_rwq_ind_table *rwq_ind_tbl;
1174 	u32			source_qpn;
1175 };
1176 
1177 struct ib_qp_open_attr {
1178 	void                  (*event_handler)(struct ib_event *, void *);
1179 	void		       *qp_context;
1180 	u32			qp_num;
1181 	enum ib_qp_type		qp_type;
1182 };
1183 
1184 enum ib_rnr_timeout {
1185 	IB_RNR_TIMER_655_36 =  0,
1186 	IB_RNR_TIMER_000_01 =  1,
1187 	IB_RNR_TIMER_000_02 =  2,
1188 	IB_RNR_TIMER_000_03 =  3,
1189 	IB_RNR_TIMER_000_04 =  4,
1190 	IB_RNR_TIMER_000_06 =  5,
1191 	IB_RNR_TIMER_000_08 =  6,
1192 	IB_RNR_TIMER_000_12 =  7,
1193 	IB_RNR_TIMER_000_16 =  8,
1194 	IB_RNR_TIMER_000_24 =  9,
1195 	IB_RNR_TIMER_000_32 = 10,
1196 	IB_RNR_TIMER_000_48 = 11,
1197 	IB_RNR_TIMER_000_64 = 12,
1198 	IB_RNR_TIMER_000_96 = 13,
1199 	IB_RNR_TIMER_001_28 = 14,
1200 	IB_RNR_TIMER_001_92 = 15,
1201 	IB_RNR_TIMER_002_56 = 16,
1202 	IB_RNR_TIMER_003_84 = 17,
1203 	IB_RNR_TIMER_005_12 = 18,
1204 	IB_RNR_TIMER_007_68 = 19,
1205 	IB_RNR_TIMER_010_24 = 20,
1206 	IB_RNR_TIMER_015_36 = 21,
1207 	IB_RNR_TIMER_020_48 = 22,
1208 	IB_RNR_TIMER_030_72 = 23,
1209 	IB_RNR_TIMER_040_96 = 24,
1210 	IB_RNR_TIMER_061_44 = 25,
1211 	IB_RNR_TIMER_081_92 = 26,
1212 	IB_RNR_TIMER_122_88 = 27,
1213 	IB_RNR_TIMER_163_84 = 28,
1214 	IB_RNR_TIMER_245_76 = 29,
1215 	IB_RNR_TIMER_327_68 = 30,
1216 	IB_RNR_TIMER_491_52 = 31
1217 };
1218 
1219 enum ib_qp_attr_mask {
1220 	IB_QP_STATE			= 1,
1221 	IB_QP_CUR_STATE			= (1<<1),
1222 	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
1223 	IB_QP_ACCESS_FLAGS		= (1<<3),
1224 	IB_QP_PKEY_INDEX		= (1<<4),
1225 	IB_QP_PORT			= (1<<5),
1226 	IB_QP_QKEY			= (1<<6),
1227 	IB_QP_AV			= (1<<7),
1228 	IB_QP_PATH_MTU			= (1<<8),
1229 	IB_QP_TIMEOUT			= (1<<9),
1230 	IB_QP_RETRY_CNT			= (1<<10),
1231 	IB_QP_RNR_RETRY			= (1<<11),
1232 	IB_QP_RQ_PSN			= (1<<12),
1233 	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
1234 	IB_QP_ALT_PATH			= (1<<14),
1235 	IB_QP_MIN_RNR_TIMER		= (1<<15),
1236 	IB_QP_SQ_PSN			= (1<<16),
1237 	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
1238 	IB_QP_PATH_MIG_STATE		= (1<<18),
1239 	IB_QP_CAP			= (1<<19),
1240 	IB_QP_DEST_QPN			= (1<<20),
1241 	IB_QP_RESERVED1			= (1<<21),
1242 	IB_QP_RESERVED2			= (1<<22),
1243 	IB_QP_RESERVED3			= (1<<23),
1244 	IB_QP_RESERVED4			= (1<<24),
1245 	IB_QP_RATE_LIMIT		= (1<<25),
1246 };
1247 
1248 enum ib_qp_state {
1249 	IB_QPS_RESET,
1250 	IB_QPS_INIT,
1251 	IB_QPS_RTR,
1252 	IB_QPS_RTS,
1253 	IB_QPS_SQD,
1254 	IB_QPS_SQE,
1255 	IB_QPS_ERR
1256 };
1257 
1258 enum ib_mig_state {
1259 	IB_MIG_MIGRATED,
1260 	IB_MIG_REARM,
1261 	IB_MIG_ARMED
1262 };
1263 
1264 enum ib_mw_type {
1265 	IB_MW_TYPE_1 = 1,
1266 	IB_MW_TYPE_2 = 2
1267 };
1268 
1269 struct ib_qp_attr {
1270 	enum ib_qp_state	qp_state;
1271 	enum ib_qp_state	cur_qp_state;
1272 	enum ib_mtu		path_mtu;
1273 	enum ib_mig_state	path_mig_state;
1274 	u32			qkey;
1275 	u32			rq_psn;
1276 	u32			sq_psn;
1277 	u32			dest_qp_num;
1278 	int			qp_access_flags;
1279 	struct ib_qp_cap	cap;
1280 	struct rdma_ah_attr	ah_attr;
1281 	struct rdma_ah_attr	alt_ah_attr;
1282 	u16			pkey_index;
1283 	u16			alt_pkey_index;
1284 	u8			en_sqd_async_notify;
1285 	u8			sq_draining;
1286 	u8			max_rd_atomic;
1287 	u8			max_dest_rd_atomic;
1288 	u8			min_rnr_timer;
1289 	u8			port_num;
1290 	u8			timeout;
1291 	u8			retry_cnt;
1292 	u8			rnr_retry;
1293 	u8			alt_port_num;
1294 	u8			alt_timeout;
1295 	u32			rate_limit;
1296 };
1297 
1298 enum ib_wr_opcode {
1299 	IB_WR_RDMA_WRITE,
1300 	IB_WR_RDMA_WRITE_WITH_IMM,
1301 	IB_WR_SEND,
1302 	IB_WR_SEND_WITH_IMM,
1303 	IB_WR_RDMA_READ,
1304 	IB_WR_ATOMIC_CMP_AND_SWP,
1305 	IB_WR_ATOMIC_FETCH_AND_ADD,
1306 	IB_WR_LSO,
1307 	IB_WR_SEND_WITH_INV,
1308 	IB_WR_RDMA_READ_WITH_INV,
1309 	IB_WR_LOCAL_INV,
1310 	IB_WR_REG_MR,
1311 	IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1312 	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1313 	IB_WR_REG_SIG_MR,
1314 	/* reserve values for low level drivers' internal use.
1315 	 * These values will not be used at all in the ib core layer.
1316 	 */
1317 	IB_WR_RESERVED1 = 0xf0,
1318 	IB_WR_RESERVED2,
1319 	IB_WR_RESERVED3,
1320 	IB_WR_RESERVED4,
1321 	IB_WR_RESERVED5,
1322 	IB_WR_RESERVED6,
1323 	IB_WR_RESERVED7,
1324 	IB_WR_RESERVED8,
1325 	IB_WR_RESERVED9,
1326 	IB_WR_RESERVED10,
1327 };
1328 
1329 enum ib_send_flags {
1330 	IB_SEND_FENCE		= 1,
1331 	IB_SEND_SIGNALED	= (1<<1),
1332 	IB_SEND_SOLICITED	= (1<<2),
1333 	IB_SEND_INLINE		= (1<<3),
1334 	IB_SEND_IP_CSUM		= (1<<4),
1335 
1336 	/* reserve bits 26-31 for low level drivers' internal use */
1337 	IB_SEND_RESERVED_START	= (1 << 26),
1338 	IB_SEND_RESERVED_END	= (1 << 31),
1339 };
1340 
1341 struct ib_sge {
1342 	u64	addr;
1343 	u32	length;
1344 	u32	lkey;
1345 };
1346 
1347 struct ib_cqe {
1348 	void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1349 };
1350 
1351 struct ib_send_wr {
1352 	struct ib_send_wr      *next;
1353 	union {
1354 		u64		wr_id;
1355 		struct ib_cqe	*wr_cqe;
1356 	};
1357 	struct ib_sge	       *sg_list;
1358 	int			num_sge;
1359 	enum ib_wr_opcode	opcode;
1360 	int			send_flags;
1361 	union {
1362 		__be32		imm_data;
1363 		u32		invalidate_rkey;
1364 	} ex;
1365 };
1366 
1367 struct ib_rdma_wr {
1368 	struct ib_send_wr	wr;
1369 	u64			remote_addr;
1370 	u32			rkey;
1371 };
1372 
1373 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1374 {
1375 	return container_of(wr, struct ib_rdma_wr, wr);
1376 }
1377 
1378 struct ib_atomic_wr {
1379 	struct ib_send_wr	wr;
1380 	u64			remote_addr;
1381 	u64			compare_add;
1382 	u64			swap;
1383 	u64			compare_add_mask;
1384 	u64			swap_mask;
1385 	u32			rkey;
1386 };
1387 
1388 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1389 {
1390 	return container_of(wr, struct ib_atomic_wr, wr);
1391 }
1392 
1393 struct ib_ud_wr {
1394 	struct ib_send_wr	wr;
1395 	struct ib_ah		*ah;
1396 	void			*header;
1397 	int			hlen;
1398 	int			mss;
1399 	u32			remote_qpn;
1400 	u32			remote_qkey;
1401 	u16			pkey_index; /* valid for GSI only */
1402 	u8			port_num;   /* valid for DR SMPs on switch only */
1403 };
1404 
1405 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1406 {
1407 	return container_of(wr, struct ib_ud_wr, wr);
1408 }
1409 
1410 struct ib_reg_wr {
1411 	struct ib_send_wr	wr;
1412 	struct ib_mr		*mr;
1413 	u32			key;
1414 	int			access;
1415 };
1416 
1417 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1418 {
1419 	return container_of(wr, struct ib_reg_wr, wr);
1420 }
1421 
1422 struct ib_sig_handover_wr {
1423 	struct ib_send_wr	wr;
1424 	struct ib_sig_attrs    *sig_attrs;
1425 	struct ib_mr	       *sig_mr;
1426 	int			access_flags;
1427 	struct ib_sge	       *prot;
1428 };
1429 
1430 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1431 {
1432 	return container_of(wr, struct ib_sig_handover_wr, wr);
1433 }
1434 
1435 struct ib_recv_wr {
1436 	struct ib_recv_wr      *next;
1437 	union {
1438 		u64		wr_id;
1439 		struct ib_cqe	*wr_cqe;
1440 	};
1441 	struct ib_sge	       *sg_list;
1442 	int			num_sge;
1443 };
1444 
1445 enum ib_access_flags {
1446 	IB_ACCESS_LOCAL_WRITE	= 1,
1447 	IB_ACCESS_REMOTE_WRITE	= (1<<1),
1448 	IB_ACCESS_REMOTE_READ	= (1<<2),
1449 	IB_ACCESS_REMOTE_ATOMIC	= (1<<3),
1450 	IB_ACCESS_MW_BIND	= (1<<4),
1451 	IB_ZERO_BASED		= (1<<5),
1452 	IB_ACCESS_ON_DEMAND     = (1<<6),
1453 	IB_ACCESS_HUGETLB	= (1<<7),
1454 };
1455 
1456 /*
1457  * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1458  * are hidden here instead of a uapi header!
1459  */
1460 enum ib_mr_rereg_flags {
1461 	IB_MR_REREG_TRANS	= 1,
1462 	IB_MR_REREG_PD		= (1<<1),
1463 	IB_MR_REREG_ACCESS	= (1<<2),
1464 	IB_MR_REREG_SUPPORTED	= ((IB_MR_REREG_ACCESS << 1) - 1)
1465 };
1466 
1467 struct ib_fmr_attr {
1468 	int	max_pages;
1469 	int	max_maps;
1470 	u8	page_shift;
1471 };
1472 
1473 struct ib_umem;
1474 
1475 enum rdma_remove_reason {
1476 	/* Userspace requested uobject deletion. Call could fail */
1477 	RDMA_REMOVE_DESTROY,
1478 	/* Context deletion. This call should delete the actual object itself */
1479 	RDMA_REMOVE_CLOSE,
1480 	/* Driver is being hot-unplugged. This call should delete the actual object itself */
1481 	RDMA_REMOVE_DRIVER_REMOVE,
1482 	/* Context is being cleaned-up, but commit was just completed */
1483 	RDMA_REMOVE_DURING_CLEANUP,
1484 };
1485 
1486 struct ib_rdmacg_object {
1487 #ifdef CONFIG_CGROUP_RDMA
1488 	struct rdma_cgroup	*cg;		/* owner rdma cgroup */
1489 #endif
1490 };
1491 
1492 struct ib_ucontext {
1493 	struct ib_device       *device;
1494 	struct ib_uverbs_file  *ufile;
1495 	int			closing;
1496 
1497 	/* locking the uobjects_list */
1498 	struct mutex		uobjects_lock;
1499 	struct list_head	uobjects;
1500 	/* protects cleanup process from other actions */
1501 	struct rw_semaphore	cleanup_rwsem;
1502 	enum rdma_remove_reason cleanup_reason;
1503 
1504 	struct pid             *tgid;
1505 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1506 	struct rb_root_cached   umem_tree;
1507 	/*
1508 	 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1509 	 * mmu notifiers registration.
1510 	 */
1511 	struct rw_semaphore	umem_rwsem;
1512 	void (*invalidate_range)(struct ib_umem *umem,
1513 				 unsigned long start, unsigned long end);
1514 
1515 	struct mmu_notifier	mn;
1516 	atomic_t		notifier_count;
1517 	/* A list of umems that don't have private mmu notifier counters yet. */
1518 	struct list_head	no_private_counters;
1519 	int                     odp_mrs_count;
1520 #endif
1521 
1522 	struct ib_rdmacg_object	cg_obj;
1523 };
1524 
1525 struct ib_uobject {
1526 	u64			user_handle;	/* handle given to us by userspace */
1527 	struct ib_ucontext     *context;	/* associated user context */
1528 	void		       *object;		/* containing object */
1529 	struct list_head	list;		/* link to context's list */
1530 	struct ib_rdmacg_object	cg_obj;		/* rdmacg object */
1531 	int			id;		/* index into kernel idr */
1532 	struct kref		ref;
1533 	atomic_t		usecnt;		/* protects exclusive access */
1534 	struct rcu_head		rcu;		/* kfree_rcu() overhead */
1535 
1536 	const struct uverbs_obj_type *type;
1537 };
1538 
1539 struct ib_uobject_file {
1540 	struct ib_uobject	uobj;
1541 	/* ufile contains the lock between context release and file close */
1542 	struct ib_uverbs_file	*ufile;
1543 };
1544 
1545 struct ib_udata {
1546 	const void __user *inbuf;
1547 	void __user *outbuf;
1548 	size_t       inlen;
1549 	size_t       outlen;
1550 };
1551 
1552 struct ib_pd {
1553 	u32			local_dma_lkey;
1554 	u32			flags;
1555 	struct ib_device       *device;
1556 	struct ib_uobject      *uobject;
1557 	atomic_t          	usecnt; /* count all resources */
1558 
1559 	u32			unsafe_global_rkey;
1560 
1561 	/*
1562 	 * Implementation details of the RDMA core, don't use in drivers:
1563 	 */
1564 	struct ib_mr	       *__internal_mr;
1565 	struct rdma_restrack_entry res;
1566 };
1567 
1568 struct ib_xrcd {
1569 	struct ib_device       *device;
1570 	atomic_t		usecnt; /* count all exposed resources */
1571 	struct inode	       *inode;
1572 
1573 	struct mutex		tgt_qp_mutex;
1574 	struct list_head	tgt_qp_list;
1575 };
1576 
1577 struct ib_ah {
1578 	struct ib_device	*device;
1579 	struct ib_pd		*pd;
1580 	struct ib_uobject	*uobject;
1581 	enum rdma_ah_attr_type	type;
1582 };
1583 
1584 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1585 
1586 enum ib_poll_context {
1587 	IB_POLL_DIRECT,		/* caller context, no hw completions */
1588 	IB_POLL_SOFTIRQ,	/* poll from softirq context */
1589 	IB_POLL_WORKQUEUE,	/* poll from workqueue */
1590 };
1591 
1592 struct ib_cq {
1593 	struct ib_device       *device;
1594 	struct ib_uobject      *uobject;
1595 	ib_comp_handler   	comp_handler;
1596 	void                  (*event_handler)(struct ib_event *, void *);
1597 	void                   *cq_context;
1598 	int               	cqe;
1599 	atomic_t          	usecnt; /* count number of work queues */
1600 	enum ib_poll_context	poll_ctx;
1601 	struct ib_wc		*wc;
1602 	union {
1603 		struct irq_poll		iop;
1604 		struct work_struct	work;
1605 	};
1606 	/*
1607 	 * Implementation details of the RDMA core, don't use in drivers:
1608 	 */
1609 	struct rdma_restrack_entry res;
1610 };
1611 
1612 struct ib_srq {
1613 	struct ib_device       *device;
1614 	struct ib_pd	       *pd;
1615 	struct ib_uobject      *uobject;
1616 	void		      (*event_handler)(struct ib_event *, void *);
1617 	void		       *srq_context;
1618 	enum ib_srq_type	srq_type;
1619 	atomic_t		usecnt;
1620 
1621 	struct {
1622 		struct ib_cq   *cq;
1623 		union {
1624 			struct {
1625 				struct ib_xrcd *xrcd;
1626 				u32		srq_num;
1627 			} xrc;
1628 		};
1629 	} ext;
1630 };
1631 
1632 enum ib_raw_packet_caps {
1633 	/* Strip cvlan from incoming packet and report it in the matching work
1634 	 * completion is supported.
1635 	 */
1636 	IB_RAW_PACKET_CAP_CVLAN_STRIPPING	= (1 << 0),
1637 	/* Scatter FCS field of an incoming packet to host memory is supported.
1638 	 */
1639 	IB_RAW_PACKET_CAP_SCATTER_FCS		= (1 << 1),
1640 	/* Checksum offloads are supported (for both send and receive). */
1641 	IB_RAW_PACKET_CAP_IP_CSUM		= (1 << 2),
1642 	/* When a packet is received for an RQ with no receive WQEs, the
1643 	 * packet processing is delayed.
1644 	 */
1645 	IB_RAW_PACKET_CAP_DELAY_DROP		= (1 << 3),
1646 };
1647 
1648 enum ib_wq_type {
1649 	IB_WQT_RQ
1650 };
1651 
1652 enum ib_wq_state {
1653 	IB_WQS_RESET,
1654 	IB_WQS_RDY,
1655 	IB_WQS_ERR
1656 };
1657 
1658 struct ib_wq {
1659 	struct ib_device       *device;
1660 	struct ib_uobject      *uobject;
1661 	void		    *wq_context;
1662 	void		    (*event_handler)(struct ib_event *, void *);
1663 	struct ib_pd	       *pd;
1664 	struct ib_cq	       *cq;
1665 	u32		wq_num;
1666 	enum ib_wq_state       state;
1667 	enum ib_wq_type	wq_type;
1668 	atomic_t		usecnt;
1669 };
1670 
1671 enum ib_wq_flags {
1672 	IB_WQ_FLAGS_CVLAN_STRIPPING	= 1 << 0,
1673 	IB_WQ_FLAGS_SCATTER_FCS		= 1 << 1,
1674 	IB_WQ_FLAGS_DELAY_DROP		= 1 << 2,
1675 	IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3,
1676 };
1677 
1678 struct ib_wq_init_attr {
1679 	void		       *wq_context;
1680 	enum ib_wq_type	wq_type;
1681 	u32		max_wr;
1682 	u32		max_sge;
1683 	struct	ib_cq	       *cq;
1684 	void		    (*event_handler)(struct ib_event *, void *);
1685 	u32		create_flags; /* Use enum ib_wq_flags */
1686 };
1687 
1688 enum ib_wq_attr_mask {
1689 	IB_WQ_STATE		= 1 << 0,
1690 	IB_WQ_CUR_STATE		= 1 << 1,
1691 	IB_WQ_FLAGS		= 1 << 2,
1692 };
1693 
1694 struct ib_wq_attr {
1695 	enum	ib_wq_state	wq_state;
1696 	enum	ib_wq_state	curr_wq_state;
1697 	u32			flags; /* Use enum ib_wq_flags */
1698 	u32			flags_mask; /* Use enum ib_wq_flags */
1699 };
1700 
1701 struct ib_rwq_ind_table {
1702 	struct ib_device	*device;
1703 	struct ib_uobject      *uobject;
1704 	atomic_t		usecnt;
1705 	u32		ind_tbl_num;
1706 	u32		log_ind_tbl_size;
1707 	struct ib_wq	**ind_tbl;
1708 };
1709 
1710 struct ib_rwq_ind_table_init_attr {
1711 	u32		log_ind_tbl_size;
1712 	/* Each entry is a pointer to Receive Work Queue */
1713 	struct ib_wq	**ind_tbl;
1714 };
1715 
1716 enum port_pkey_state {
1717 	IB_PORT_PKEY_NOT_VALID = 0,
1718 	IB_PORT_PKEY_VALID = 1,
1719 	IB_PORT_PKEY_LISTED = 2,
1720 };
1721 
1722 struct ib_qp_security;
1723 
1724 struct ib_port_pkey {
1725 	enum port_pkey_state	state;
1726 	u16			pkey_index;
1727 	u8			port_num;
1728 	struct list_head	qp_list;
1729 	struct list_head	to_error_list;
1730 	struct ib_qp_security  *sec;
1731 };
1732 
1733 struct ib_ports_pkeys {
1734 	struct ib_port_pkey	main;
1735 	struct ib_port_pkey	alt;
1736 };
1737 
1738 struct ib_qp_security {
1739 	struct ib_qp	       *qp;
1740 	struct ib_device       *dev;
1741 	/* Hold this mutex when changing port and pkey settings. */
1742 	struct mutex		mutex;
1743 	struct ib_ports_pkeys  *ports_pkeys;
1744 	/* A list of all open shared QP handles.  Required to enforce security
1745 	 * properly for all users of a shared QP.
1746 	 */
1747 	struct list_head        shared_qp_list;
1748 	void                   *security;
1749 	bool			destroying;
1750 	atomic_t		error_list_count;
1751 	struct completion	error_complete;
1752 	int			error_comps_pending;
1753 };
1754 
1755 /*
1756  * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1757  * @max_read_sge:  Maximum SGE elements per RDMA READ request.
1758  */
1759 struct ib_qp {
1760 	struct ib_device       *device;
1761 	struct ib_pd	       *pd;
1762 	struct ib_cq	       *send_cq;
1763 	struct ib_cq	       *recv_cq;
1764 	spinlock_t		mr_lock;
1765 	int			mrs_used;
1766 	struct list_head	rdma_mrs;
1767 	struct list_head	sig_mrs;
1768 	struct ib_srq	       *srq;
1769 	struct ib_xrcd	       *xrcd; /* XRC TGT QPs only */
1770 	struct list_head	xrcd_list;
1771 
1772 	/* count times opened, mcast attaches, flow attaches */
1773 	atomic_t		usecnt;
1774 	struct list_head	open_list;
1775 	struct ib_qp           *real_qp;
1776 	struct ib_uobject      *uobject;
1777 	void                  (*event_handler)(struct ib_event *, void *);
1778 	void		       *qp_context;
1779 	u32			qp_num;
1780 	u32			max_write_sge;
1781 	u32			max_read_sge;
1782 	enum ib_qp_type		qp_type;
1783 	struct ib_rwq_ind_table *rwq_ind_tbl;
1784 	struct ib_qp_security  *qp_sec;
1785 	u8			port;
1786 
1787 	/*
1788 	 * Implementation details of the RDMA core, don't use in drivers:
1789 	 */
1790 	struct rdma_restrack_entry     res;
1791 };
1792 
1793 struct ib_dm {
1794 	struct ib_device  *device;
1795 	u32		   length;
1796 	u32		   flags;
1797 	struct ib_uobject *uobject;
1798 	atomic_t	   usecnt;
1799 };
1800 
1801 struct ib_mr {
1802 	struct ib_device  *device;
1803 	struct ib_pd	  *pd;
1804 	u32		   lkey;
1805 	u32		   rkey;
1806 	u64		   iova;
1807 	u64		   length;
1808 	unsigned int	   page_size;
1809 	bool		   need_inval;
1810 	union {
1811 		struct ib_uobject	*uobject;	/* user */
1812 		struct list_head	qp_entry;	/* FR */
1813 	};
1814 
1815 	struct ib_dm      *dm;
1816 
1817 	/*
1818 	 * Implementation details of the RDMA core, don't use in drivers:
1819 	 */
1820 	struct rdma_restrack_entry res;
1821 };
1822 
1823 struct ib_mw {
1824 	struct ib_device	*device;
1825 	struct ib_pd		*pd;
1826 	struct ib_uobject	*uobject;
1827 	u32			rkey;
1828 	enum ib_mw_type         type;
1829 };
1830 
1831 struct ib_fmr {
1832 	struct ib_device	*device;
1833 	struct ib_pd		*pd;
1834 	struct list_head	list;
1835 	u32			lkey;
1836 	u32			rkey;
1837 };
1838 
1839 /* Supported steering options */
1840 enum ib_flow_attr_type {
1841 	/* steering according to rule specifications */
1842 	IB_FLOW_ATTR_NORMAL		= 0x0,
1843 	/* default unicast and multicast rule -
1844 	 * receive all Eth traffic which isn't steered to any QP
1845 	 */
1846 	IB_FLOW_ATTR_ALL_DEFAULT	= 0x1,
1847 	/* default multicast rule -
1848 	 * receive all Eth multicast traffic which isn't steered to any QP
1849 	 */
1850 	IB_FLOW_ATTR_MC_DEFAULT		= 0x2,
1851 	/* sniffer rule - receive all port traffic */
1852 	IB_FLOW_ATTR_SNIFFER		= 0x3
1853 };
1854 
1855 /* Supported steering header types */
1856 enum ib_flow_spec_type {
1857 	/* L2 headers*/
1858 	IB_FLOW_SPEC_ETH		= 0x20,
1859 	IB_FLOW_SPEC_IB			= 0x22,
1860 	/* L3 header*/
1861 	IB_FLOW_SPEC_IPV4		= 0x30,
1862 	IB_FLOW_SPEC_IPV6		= 0x31,
1863 	IB_FLOW_SPEC_ESP                = 0x34,
1864 	/* L4 headers*/
1865 	IB_FLOW_SPEC_TCP		= 0x40,
1866 	IB_FLOW_SPEC_UDP		= 0x41,
1867 	IB_FLOW_SPEC_VXLAN_TUNNEL	= 0x50,
1868 	IB_FLOW_SPEC_GRE		= 0x51,
1869 	IB_FLOW_SPEC_MPLS		= 0x60,
1870 	IB_FLOW_SPEC_INNER		= 0x100,
1871 	/* Actions */
1872 	IB_FLOW_SPEC_ACTION_TAG         = 0x1000,
1873 	IB_FLOW_SPEC_ACTION_DROP        = 0x1001,
1874 	IB_FLOW_SPEC_ACTION_HANDLE	= 0x1002,
1875 	IB_FLOW_SPEC_ACTION_COUNT       = 0x1003,
1876 };
1877 #define IB_FLOW_SPEC_LAYER_MASK	0xF0
1878 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1879 
1880 /* Flow steering rule priority is set according to it's domain.
1881  * Lower domain value means higher priority.
1882  */
1883 enum ib_flow_domain {
1884 	IB_FLOW_DOMAIN_USER,
1885 	IB_FLOW_DOMAIN_ETHTOOL,
1886 	IB_FLOW_DOMAIN_RFS,
1887 	IB_FLOW_DOMAIN_NIC,
1888 	IB_FLOW_DOMAIN_NUM /* Must be last */
1889 };
1890 
1891 enum ib_flow_flags {
1892 	IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1893 	IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1894 	IB_FLOW_ATTR_FLAGS_RESERVED  = 1UL << 3  /* Must be last */
1895 };
1896 
1897 struct ib_flow_eth_filter {
1898 	u8	dst_mac[6];
1899 	u8	src_mac[6];
1900 	__be16	ether_type;
1901 	__be16	vlan_tag;
1902 	/* Must be last */
1903 	u8	real_sz[0];
1904 };
1905 
1906 struct ib_flow_spec_eth {
1907 	u32			  type;
1908 	u16			  size;
1909 	struct ib_flow_eth_filter val;
1910 	struct ib_flow_eth_filter mask;
1911 };
1912 
1913 struct ib_flow_ib_filter {
1914 	__be16 dlid;
1915 	__u8   sl;
1916 	/* Must be last */
1917 	u8	real_sz[0];
1918 };
1919 
1920 struct ib_flow_spec_ib {
1921 	u32			 type;
1922 	u16			 size;
1923 	struct ib_flow_ib_filter val;
1924 	struct ib_flow_ib_filter mask;
1925 };
1926 
1927 /* IPv4 header flags */
1928 enum ib_ipv4_flags {
1929 	IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1930 	IB_IPV4_MORE_FRAG = 0X4  /* For All fragmented packets except the
1931 				    last have this flag set */
1932 };
1933 
1934 struct ib_flow_ipv4_filter {
1935 	__be32	src_ip;
1936 	__be32	dst_ip;
1937 	u8	proto;
1938 	u8	tos;
1939 	u8	ttl;
1940 	u8	flags;
1941 	/* Must be last */
1942 	u8	real_sz[0];
1943 };
1944 
1945 struct ib_flow_spec_ipv4 {
1946 	u32			   type;
1947 	u16			   size;
1948 	struct ib_flow_ipv4_filter val;
1949 	struct ib_flow_ipv4_filter mask;
1950 };
1951 
1952 struct ib_flow_ipv6_filter {
1953 	u8	src_ip[16];
1954 	u8	dst_ip[16];
1955 	__be32	flow_label;
1956 	u8	next_hdr;
1957 	u8	traffic_class;
1958 	u8	hop_limit;
1959 	/* Must be last */
1960 	u8	real_sz[0];
1961 };
1962 
1963 struct ib_flow_spec_ipv6 {
1964 	u32			   type;
1965 	u16			   size;
1966 	struct ib_flow_ipv6_filter val;
1967 	struct ib_flow_ipv6_filter mask;
1968 };
1969 
1970 struct ib_flow_tcp_udp_filter {
1971 	__be16	dst_port;
1972 	__be16	src_port;
1973 	/* Must be last */
1974 	u8	real_sz[0];
1975 };
1976 
1977 struct ib_flow_spec_tcp_udp {
1978 	u32			      type;
1979 	u16			      size;
1980 	struct ib_flow_tcp_udp_filter val;
1981 	struct ib_flow_tcp_udp_filter mask;
1982 };
1983 
1984 struct ib_flow_tunnel_filter {
1985 	__be32	tunnel_id;
1986 	u8	real_sz[0];
1987 };
1988 
1989 /* ib_flow_spec_tunnel describes the Vxlan tunnel
1990  * the tunnel_id from val has the vni value
1991  */
1992 struct ib_flow_spec_tunnel {
1993 	u32			      type;
1994 	u16			      size;
1995 	struct ib_flow_tunnel_filter  val;
1996 	struct ib_flow_tunnel_filter  mask;
1997 };
1998 
1999 struct ib_flow_esp_filter {
2000 	__be32	spi;
2001 	__be32  seq;
2002 	/* Must be last */
2003 	u8	real_sz[0];
2004 };
2005 
2006 struct ib_flow_spec_esp {
2007 	u32                           type;
2008 	u16			      size;
2009 	struct ib_flow_esp_filter     val;
2010 	struct ib_flow_esp_filter     mask;
2011 };
2012 
2013 struct ib_flow_gre_filter {
2014 	__be16 c_ks_res0_ver;
2015 	__be16 protocol;
2016 	__be32 key;
2017 	/* Must be last */
2018 	u8	real_sz[0];
2019 };
2020 
2021 struct ib_flow_spec_gre {
2022 	u32                           type;
2023 	u16			      size;
2024 	struct ib_flow_gre_filter     val;
2025 	struct ib_flow_gre_filter     mask;
2026 };
2027 
2028 struct ib_flow_mpls_filter {
2029 	__be32 tag;
2030 	/* Must be last */
2031 	u8	real_sz[0];
2032 };
2033 
2034 struct ib_flow_spec_mpls {
2035 	u32                           type;
2036 	u16			      size;
2037 	struct ib_flow_mpls_filter     val;
2038 	struct ib_flow_mpls_filter     mask;
2039 };
2040 
2041 struct ib_flow_spec_action_tag {
2042 	enum ib_flow_spec_type	      type;
2043 	u16			      size;
2044 	u32                           tag_id;
2045 };
2046 
2047 struct ib_flow_spec_action_drop {
2048 	enum ib_flow_spec_type	      type;
2049 	u16			      size;
2050 };
2051 
2052 struct ib_flow_spec_action_handle {
2053 	enum ib_flow_spec_type	      type;
2054 	u16			      size;
2055 	struct ib_flow_action	     *act;
2056 };
2057 
2058 enum ib_counters_description {
2059 	IB_COUNTER_PACKETS,
2060 	IB_COUNTER_BYTES,
2061 };
2062 
2063 struct ib_flow_spec_action_count {
2064 	enum ib_flow_spec_type type;
2065 	u16 size;
2066 	struct ib_counters *counters;
2067 };
2068 
2069 union ib_flow_spec {
2070 	struct {
2071 		u32			type;
2072 		u16			size;
2073 	};
2074 	struct ib_flow_spec_eth		eth;
2075 	struct ib_flow_spec_ib		ib;
2076 	struct ib_flow_spec_ipv4        ipv4;
2077 	struct ib_flow_spec_tcp_udp	tcp_udp;
2078 	struct ib_flow_spec_ipv6        ipv6;
2079 	struct ib_flow_spec_tunnel      tunnel;
2080 	struct ib_flow_spec_esp		esp;
2081 	struct ib_flow_spec_gre		gre;
2082 	struct ib_flow_spec_mpls	mpls;
2083 	struct ib_flow_spec_action_tag  flow_tag;
2084 	struct ib_flow_spec_action_drop drop;
2085 	struct ib_flow_spec_action_handle action;
2086 	struct ib_flow_spec_action_count flow_count;
2087 };
2088 
2089 struct ib_flow_attr {
2090 	enum ib_flow_attr_type type;
2091 	u16	     size;
2092 	u16	     priority;
2093 	u32	     flags;
2094 	u8	     num_of_specs;
2095 	u8	     port;
2096 	union ib_flow_spec flows[];
2097 };
2098 
2099 struct ib_flow {
2100 	struct ib_qp		*qp;
2101 	struct ib_uobject	*uobject;
2102 };
2103 
2104 enum ib_flow_action_type {
2105 	IB_FLOW_ACTION_UNSPECIFIED,
2106 	IB_FLOW_ACTION_ESP = 1,
2107 };
2108 
2109 struct ib_flow_action_attrs_esp_keymats {
2110 	enum ib_uverbs_flow_action_esp_keymat			protocol;
2111 	union {
2112 		struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2113 	} keymat;
2114 };
2115 
2116 struct ib_flow_action_attrs_esp_replays {
2117 	enum ib_uverbs_flow_action_esp_replay			protocol;
2118 	union {
2119 		struct ib_uverbs_flow_action_esp_replay_bmp	bmp;
2120 	} replay;
2121 };
2122 
2123 enum ib_flow_action_attrs_esp_flags {
2124 	/* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2125 	 * This is done in order to share the same flags between user-space and
2126 	 * kernel and spare an unnecessary translation.
2127 	 */
2128 
2129 	/* Kernel flags */
2130 	IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED	= 1ULL << 32,
2131 	IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS	= 1ULL << 33,
2132 };
2133 
2134 struct ib_flow_spec_list {
2135 	struct ib_flow_spec_list	*next;
2136 	union ib_flow_spec		spec;
2137 };
2138 
2139 struct ib_flow_action_attrs_esp {
2140 	struct ib_flow_action_attrs_esp_keymats		*keymat;
2141 	struct ib_flow_action_attrs_esp_replays		*replay;
2142 	struct ib_flow_spec_list			*encap;
2143 	/* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2144 	 * Value of 0 is a valid value.
2145 	 */
2146 	u32						esn;
2147 	u32						spi;
2148 	u32						seq;
2149 	u32						tfc_pad;
2150 	/* Use enum ib_flow_action_attrs_esp_flags */
2151 	u64						flags;
2152 	u64						hard_limit_pkts;
2153 };
2154 
2155 struct ib_flow_action {
2156 	struct ib_device		*device;
2157 	struct ib_uobject		*uobject;
2158 	enum ib_flow_action_type	type;
2159 	atomic_t			usecnt;
2160 };
2161 
2162 struct ib_mad_hdr;
2163 struct ib_grh;
2164 
2165 enum ib_process_mad_flags {
2166 	IB_MAD_IGNORE_MKEY	= 1,
2167 	IB_MAD_IGNORE_BKEY	= 2,
2168 	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2169 };
2170 
2171 enum ib_mad_result {
2172 	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
2173 	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
2174 	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
2175 	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
2176 };
2177 
2178 struct ib_port_cache {
2179 	u64		      subnet_prefix;
2180 	struct ib_pkey_cache  *pkey;
2181 	struct ib_gid_table   *gid;
2182 	u8                     lmc;
2183 	enum ib_port_state     port_state;
2184 };
2185 
2186 struct ib_cache {
2187 	rwlock_t                lock;
2188 	struct ib_event_handler event_handler;
2189 	struct ib_port_cache   *ports;
2190 };
2191 
2192 struct iw_cm_verbs;
2193 
2194 struct ib_port_immutable {
2195 	int                           pkey_tbl_len;
2196 	int                           gid_tbl_len;
2197 	u32                           core_cap_flags;
2198 	u32                           max_mad_size;
2199 };
2200 
2201 /* rdma netdev type - specifies protocol type */
2202 enum rdma_netdev_t {
2203 	RDMA_NETDEV_OPA_VNIC,
2204 	RDMA_NETDEV_IPOIB,
2205 };
2206 
2207 /**
2208  * struct rdma_netdev - rdma netdev
2209  * For cases where netstack interfacing is required.
2210  */
2211 struct rdma_netdev {
2212 	void              *clnt_priv;
2213 	struct ib_device  *hca;
2214 	u8                 port_num;
2215 
2216 	/* cleanup function must be specified */
2217 	void (*free_rdma_netdev)(struct net_device *netdev);
2218 
2219 	/* control functions */
2220 	void (*set_id)(struct net_device *netdev, int id);
2221 	/* send packet */
2222 	int (*send)(struct net_device *dev, struct sk_buff *skb,
2223 		    struct ib_ah *address, u32 dqpn);
2224 	/* multicast */
2225 	int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2226 			    union ib_gid *gid, u16 mlid,
2227 			    int set_qkey, u32 qkey);
2228 	int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2229 			    union ib_gid *gid, u16 mlid);
2230 };
2231 
2232 struct ib_port_pkey_list {
2233 	/* Lock to hold while modifying the list. */
2234 	spinlock_t                    list_lock;
2235 	struct list_head              pkey_list;
2236 };
2237 
2238 struct ib_counters {
2239 	struct ib_device	*device;
2240 	struct ib_uobject	*uobject;
2241 	/* num of objects attached */
2242 	atomic_t	usecnt;
2243 };
2244 
2245 enum ib_read_counters_flags {
2246 	/* prefer read values from driver cache */
2247 	IB_READ_COUNTERS_ATTR_PREFER_CACHED = 1 << 0,
2248 };
2249 
2250 struct ib_counters_read_attr {
2251 	u64	*counters_buff;
2252 	u32	ncounters;
2253 	u32	flags; /* use enum ib_read_counters_flags */
2254 };
2255 
2256 struct uverbs_attr_bundle;
2257 
2258 struct ib_device {
2259 	/* Do not access @dma_device directly from ULP nor from HW drivers. */
2260 	struct device                *dma_device;
2261 
2262 	char                          name[IB_DEVICE_NAME_MAX];
2263 
2264 	struct list_head              event_handler_list;
2265 	spinlock_t                    event_handler_lock;
2266 
2267 	spinlock_t                    client_data_lock;
2268 	struct list_head              core_list;
2269 	/* Access to the client_data_list is protected by the client_data_lock
2270 	 * spinlock and the lists_rwsem read-write semaphore */
2271 	struct list_head              client_data_list;
2272 
2273 	struct ib_cache               cache;
2274 	/**
2275 	 * port_immutable is indexed by port number
2276 	 */
2277 	struct ib_port_immutable     *port_immutable;
2278 
2279 	int			      num_comp_vectors;
2280 
2281 	struct ib_port_pkey_list     *port_pkey_list;
2282 
2283 	struct iw_cm_verbs	     *iwcm;
2284 
2285 	/**
2286 	 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2287 	 *   driver initialized data.  The struct is kfree()'ed by the sysfs
2288 	 *   core when the device is removed.  A lifespan of -1 in the return
2289 	 *   struct tells the core to set a default lifespan.
2290 	 */
2291 	struct rdma_hw_stats      *(*alloc_hw_stats)(struct ib_device *device,
2292 						     u8 port_num);
2293 	/**
2294 	 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2295 	 * @index - The index in the value array we wish to have updated, or
2296 	 *   num_counters if we want all stats updated
2297 	 * Return codes -
2298 	 *   < 0 - Error, no counters updated
2299 	 *   index - Updated the single counter pointed to by index
2300 	 *   num_counters - Updated all counters (will reset the timestamp
2301 	 *     and prevent further calls for lifespan milliseconds)
2302 	 * Drivers are allowed to update all counters in leiu of just the
2303 	 *   one given in index at their option
2304 	 */
2305 	int		           (*get_hw_stats)(struct ib_device *device,
2306 						   struct rdma_hw_stats *stats,
2307 						   u8 port, int index);
2308 	int		           (*query_device)(struct ib_device *device,
2309 						   struct ib_device_attr *device_attr,
2310 						   struct ib_udata *udata);
2311 	int		           (*query_port)(struct ib_device *device,
2312 						 u8 port_num,
2313 						 struct ib_port_attr *port_attr);
2314 	enum rdma_link_layer	   (*get_link_layer)(struct ib_device *device,
2315 						     u8 port_num);
2316 	/* When calling get_netdev, the HW vendor's driver should return the
2317 	 * net device of device @device at port @port_num or NULL if such
2318 	 * a net device doesn't exist. The vendor driver should call dev_hold
2319 	 * on this net device. The HW vendor's device driver must guarantee
2320 	 * that this function returns NULL before the net device has finished
2321 	 * NETDEV_UNREGISTER state.
2322 	 */
2323 	struct net_device	  *(*get_netdev)(struct ib_device *device,
2324 						 u8 port_num);
2325 	/* query_gid should be return GID value for @device, when @port_num
2326 	 * link layer is either IB or iWarp. It is no-op if @port_num port
2327 	 * is RoCE link layer.
2328 	 */
2329 	int		           (*query_gid)(struct ib_device *device,
2330 						u8 port_num, int index,
2331 						union ib_gid *gid);
2332 	/* When calling add_gid, the HW vendor's driver should add the gid
2333 	 * of device of port at gid index available at @attr. Meta-info of
2334 	 * that gid (for example, the network device related to this gid) is
2335 	 * available at @attr. @context allows the HW vendor driver to store
2336 	 * extra information together with a GID entry. The HW vendor driver may
2337 	 * allocate memory to contain this information and store it in @context
2338 	 * when a new GID entry is written to. Params are consistent until the
2339 	 * next call of add_gid or delete_gid. The function should return 0 on
2340 	 * success or error otherwise. The function could be called
2341 	 * concurrently for different ports. This function is only called when
2342 	 * roce_gid_table is used.
2343 	 */
2344 	int		           (*add_gid)(const union ib_gid *gid,
2345 					      const struct ib_gid_attr *attr,
2346 					      void **context);
2347 	/* When calling del_gid, the HW vendor's driver should delete the
2348 	 * gid of device @device at gid index gid_index of port port_num
2349 	 * available in @attr.
2350 	 * Upon the deletion of a GID entry, the HW vendor must free any
2351 	 * allocated memory. The caller will clear @context afterwards.
2352 	 * This function is only called when roce_gid_table is used.
2353 	 */
2354 	int		           (*del_gid)(const struct ib_gid_attr *attr,
2355 					      void **context);
2356 	int		           (*query_pkey)(struct ib_device *device,
2357 						 u8 port_num, u16 index, u16 *pkey);
2358 	int		           (*modify_device)(struct ib_device *device,
2359 						    int device_modify_mask,
2360 						    struct ib_device_modify *device_modify);
2361 	int		           (*modify_port)(struct ib_device *device,
2362 						  u8 port_num, int port_modify_mask,
2363 						  struct ib_port_modify *port_modify);
2364 	struct ib_ucontext *       (*alloc_ucontext)(struct ib_device *device,
2365 						     struct ib_udata *udata);
2366 	int                        (*dealloc_ucontext)(struct ib_ucontext *context);
2367 	int                        (*mmap)(struct ib_ucontext *context,
2368 					   struct vm_area_struct *vma);
2369 	struct ib_pd *             (*alloc_pd)(struct ib_device *device,
2370 					       struct ib_ucontext *context,
2371 					       struct ib_udata *udata);
2372 	int                        (*dealloc_pd)(struct ib_pd *pd);
2373 	struct ib_ah *             (*create_ah)(struct ib_pd *pd,
2374 						struct rdma_ah_attr *ah_attr,
2375 						struct ib_udata *udata);
2376 	int                        (*modify_ah)(struct ib_ah *ah,
2377 						struct rdma_ah_attr *ah_attr);
2378 	int                        (*query_ah)(struct ib_ah *ah,
2379 					       struct rdma_ah_attr *ah_attr);
2380 	int                        (*destroy_ah)(struct ib_ah *ah);
2381 	struct ib_srq *            (*create_srq)(struct ib_pd *pd,
2382 						 struct ib_srq_init_attr *srq_init_attr,
2383 						 struct ib_udata *udata);
2384 	int                        (*modify_srq)(struct ib_srq *srq,
2385 						 struct ib_srq_attr *srq_attr,
2386 						 enum ib_srq_attr_mask srq_attr_mask,
2387 						 struct ib_udata *udata);
2388 	int                        (*query_srq)(struct ib_srq *srq,
2389 						struct ib_srq_attr *srq_attr);
2390 	int                        (*destroy_srq)(struct ib_srq *srq);
2391 	int                        (*post_srq_recv)(struct ib_srq *srq,
2392 						    struct ib_recv_wr *recv_wr,
2393 						    struct ib_recv_wr **bad_recv_wr);
2394 	struct ib_qp *             (*create_qp)(struct ib_pd *pd,
2395 						struct ib_qp_init_attr *qp_init_attr,
2396 						struct ib_udata *udata);
2397 	int                        (*modify_qp)(struct ib_qp *qp,
2398 						struct ib_qp_attr *qp_attr,
2399 						int qp_attr_mask,
2400 						struct ib_udata *udata);
2401 	int                        (*query_qp)(struct ib_qp *qp,
2402 					       struct ib_qp_attr *qp_attr,
2403 					       int qp_attr_mask,
2404 					       struct ib_qp_init_attr *qp_init_attr);
2405 	int                        (*destroy_qp)(struct ib_qp *qp);
2406 	int                        (*post_send)(struct ib_qp *qp,
2407 						struct ib_send_wr *send_wr,
2408 						struct ib_send_wr **bad_send_wr);
2409 	int                        (*post_recv)(struct ib_qp *qp,
2410 						struct ib_recv_wr *recv_wr,
2411 						struct ib_recv_wr **bad_recv_wr);
2412 	struct ib_cq *             (*create_cq)(struct ib_device *device,
2413 						const struct ib_cq_init_attr *attr,
2414 						struct ib_ucontext *context,
2415 						struct ib_udata *udata);
2416 	int                        (*modify_cq)(struct ib_cq *cq, u16 cq_count,
2417 						u16 cq_period);
2418 	int                        (*destroy_cq)(struct ib_cq *cq);
2419 	int                        (*resize_cq)(struct ib_cq *cq, int cqe,
2420 						struct ib_udata *udata);
2421 	int                        (*poll_cq)(struct ib_cq *cq, int num_entries,
2422 					      struct ib_wc *wc);
2423 	int                        (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2424 	int                        (*req_notify_cq)(struct ib_cq *cq,
2425 						    enum ib_cq_notify_flags flags);
2426 	int                        (*req_ncomp_notif)(struct ib_cq *cq,
2427 						      int wc_cnt);
2428 	struct ib_mr *             (*get_dma_mr)(struct ib_pd *pd,
2429 						 int mr_access_flags);
2430 	struct ib_mr *             (*reg_user_mr)(struct ib_pd *pd,
2431 						  u64 start, u64 length,
2432 						  u64 virt_addr,
2433 						  int mr_access_flags,
2434 						  struct ib_udata *udata);
2435 	int			   (*rereg_user_mr)(struct ib_mr *mr,
2436 						    int flags,
2437 						    u64 start, u64 length,
2438 						    u64 virt_addr,
2439 						    int mr_access_flags,
2440 						    struct ib_pd *pd,
2441 						    struct ib_udata *udata);
2442 	int                        (*dereg_mr)(struct ib_mr *mr);
2443 	struct ib_mr *		   (*alloc_mr)(struct ib_pd *pd,
2444 					       enum ib_mr_type mr_type,
2445 					       u32 max_num_sg);
2446 	int                        (*map_mr_sg)(struct ib_mr *mr,
2447 						struct scatterlist *sg,
2448 						int sg_nents,
2449 						unsigned int *sg_offset);
2450 	struct ib_mw *             (*alloc_mw)(struct ib_pd *pd,
2451 					       enum ib_mw_type type,
2452 					       struct ib_udata *udata);
2453 	int                        (*dealloc_mw)(struct ib_mw *mw);
2454 	struct ib_fmr *	           (*alloc_fmr)(struct ib_pd *pd,
2455 						int mr_access_flags,
2456 						struct ib_fmr_attr *fmr_attr);
2457 	int		           (*map_phys_fmr)(struct ib_fmr *fmr,
2458 						   u64 *page_list, int list_len,
2459 						   u64 iova);
2460 	int		           (*unmap_fmr)(struct list_head *fmr_list);
2461 	int		           (*dealloc_fmr)(struct ib_fmr *fmr);
2462 	int                        (*attach_mcast)(struct ib_qp *qp,
2463 						   union ib_gid *gid,
2464 						   u16 lid);
2465 	int                        (*detach_mcast)(struct ib_qp *qp,
2466 						   union ib_gid *gid,
2467 						   u16 lid);
2468 	int                        (*process_mad)(struct ib_device *device,
2469 						  int process_mad_flags,
2470 						  u8 port_num,
2471 						  const struct ib_wc *in_wc,
2472 						  const struct ib_grh *in_grh,
2473 						  const struct ib_mad_hdr *in_mad,
2474 						  size_t in_mad_size,
2475 						  struct ib_mad_hdr *out_mad,
2476 						  size_t *out_mad_size,
2477 						  u16 *out_mad_pkey_index);
2478 	struct ib_xrcd *	   (*alloc_xrcd)(struct ib_device *device,
2479 						 struct ib_ucontext *ucontext,
2480 						 struct ib_udata *udata);
2481 	int			   (*dealloc_xrcd)(struct ib_xrcd *xrcd);
2482 	struct ib_flow *	   (*create_flow)(struct ib_qp *qp,
2483 						  struct ib_flow_attr
2484 						  *flow_attr,
2485 						  int domain,
2486 						  struct ib_udata *udata);
2487 	int			   (*destroy_flow)(struct ib_flow *flow_id);
2488 	int			   (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2489 						      struct ib_mr_status *mr_status);
2490 	void			   (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2491 	void			   (*drain_rq)(struct ib_qp *qp);
2492 	void			   (*drain_sq)(struct ib_qp *qp);
2493 	int			   (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2494 							int state);
2495 	int			   (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2496 						   struct ifla_vf_info *ivf);
2497 	int			   (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2498 						   struct ifla_vf_stats *stats);
2499 	int			   (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2500 						  int type);
2501 	struct ib_wq *		   (*create_wq)(struct ib_pd *pd,
2502 						struct ib_wq_init_attr *init_attr,
2503 						struct ib_udata *udata);
2504 	int			   (*destroy_wq)(struct ib_wq *wq);
2505 	int			   (*modify_wq)(struct ib_wq *wq,
2506 						struct ib_wq_attr *attr,
2507 						u32 wq_attr_mask,
2508 						struct ib_udata *udata);
2509 	struct ib_rwq_ind_table *  (*create_rwq_ind_table)(struct ib_device *device,
2510 							   struct ib_rwq_ind_table_init_attr *init_attr,
2511 							   struct ib_udata *udata);
2512 	int                        (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2513 	struct ib_flow_action *	   (*create_flow_action_esp)(struct ib_device *device,
2514 							     const struct ib_flow_action_attrs_esp *attr,
2515 							     struct uverbs_attr_bundle *attrs);
2516 	int			   (*destroy_flow_action)(struct ib_flow_action *action);
2517 	int			   (*modify_flow_action_esp)(struct ib_flow_action *action,
2518 							     const struct ib_flow_action_attrs_esp *attr,
2519 							     struct uverbs_attr_bundle *attrs);
2520 	struct ib_dm *             (*alloc_dm)(struct ib_device *device,
2521 					       struct ib_ucontext *context,
2522 					       struct ib_dm_alloc_attr *attr,
2523 					       struct uverbs_attr_bundle *attrs);
2524 	int                        (*dealloc_dm)(struct ib_dm *dm);
2525 	struct ib_mr *             (*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2526 						struct ib_dm_mr_attr *attr,
2527 						struct uverbs_attr_bundle *attrs);
2528 	struct ib_counters *	(*create_counters)(struct ib_device *device,
2529 						   struct uverbs_attr_bundle *attrs);
2530 	int	(*destroy_counters)(struct ib_counters	*counters);
2531 	int	(*read_counters)(struct ib_counters *counters,
2532 				 struct ib_counters_read_attr *counters_read_attr,
2533 				 struct uverbs_attr_bundle *attrs);
2534 
2535 	/**
2536 	 * rdma netdev operation
2537 	 *
2538 	 * Driver implementing alloc_rdma_netdev must return -EOPNOTSUPP if it
2539 	 * doesn't support the specified rdma netdev type.
2540 	 */
2541 	struct net_device *(*alloc_rdma_netdev)(
2542 					struct ib_device *device,
2543 					u8 port_num,
2544 					enum rdma_netdev_t type,
2545 					const char *name,
2546 					unsigned char name_assign_type,
2547 					void (*setup)(struct net_device *));
2548 
2549 	struct module               *owner;
2550 	struct device                dev;
2551 	struct kobject               *ports_parent;
2552 	struct list_head             port_list;
2553 
2554 	enum {
2555 		IB_DEV_UNINITIALIZED,
2556 		IB_DEV_REGISTERED,
2557 		IB_DEV_UNREGISTERED
2558 	}                            reg_state;
2559 
2560 	int			     uverbs_abi_ver;
2561 	u64			     uverbs_cmd_mask;
2562 	u64			     uverbs_ex_cmd_mask;
2563 
2564 	char			     node_desc[IB_DEVICE_NODE_DESC_MAX];
2565 	__be64			     node_guid;
2566 	u32			     local_dma_lkey;
2567 	u16                          is_switch:1;
2568 	u8                           node_type;
2569 	u8                           phys_port_cnt;
2570 	struct ib_device_attr        attrs;
2571 	struct attribute_group	     *hw_stats_ag;
2572 	struct rdma_hw_stats         *hw_stats;
2573 
2574 #ifdef CONFIG_CGROUP_RDMA
2575 	struct rdmacg_device         cg_device;
2576 #endif
2577 
2578 	u32                          index;
2579 	/*
2580 	 * Implementation details of the RDMA core, don't use in drivers
2581 	 */
2582 	struct rdma_restrack_root     res;
2583 
2584 	/**
2585 	 * The following mandatory functions are used only at device
2586 	 * registration.  Keep functions such as these at the end of this
2587 	 * structure to avoid cache line misses when accessing struct ib_device
2588 	 * in fast paths.
2589 	 */
2590 	int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
2591 	void (*get_dev_fw_str)(struct ib_device *, char *str);
2592 	const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2593 						     int comp_vector);
2594 
2595 	struct uverbs_root_spec		*specs_root;
2596 	enum rdma_driver_id		driver_id;
2597 };
2598 
2599 struct ib_client {
2600 	char  *name;
2601 	void (*add)   (struct ib_device *);
2602 	void (*remove)(struct ib_device *, void *client_data);
2603 
2604 	/* Returns the net_dev belonging to this ib_client and matching the
2605 	 * given parameters.
2606 	 * @dev:	 An RDMA device that the net_dev use for communication.
2607 	 * @port:	 A physical port number on the RDMA device.
2608 	 * @pkey:	 P_Key that the net_dev uses if applicable.
2609 	 * @gid:	 A GID that the net_dev uses to communicate.
2610 	 * @addr:	 An IP address the net_dev is configured with.
2611 	 * @client_data: The device's client data set by ib_set_client_data().
2612 	 *
2613 	 * An ib_client that implements a net_dev on top of RDMA devices
2614 	 * (such as IP over IB) should implement this callback, allowing the
2615 	 * rdma_cm module to find the right net_dev for a given request.
2616 	 *
2617 	 * The caller is responsible for calling dev_put on the returned
2618 	 * netdev. */
2619 	struct net_device *(*get_net_dev_by_params)(
2620 			struct ib_device *dev,
2621 			u8 port,
2622 			u16 pkey,
2623 			const union ib_gid *gid,
2624 			const struct sockaddr *addr,
2625 			void *client_data);
2626 	struct list_head list;
2627 };
2628 
2629 struct ib_device *ib_alloc_device(size_t size);
2630 void ib_dealloc_device(struct ib_device *device);
2631 
2632 void ib_get_device_fw_str(struct ib_device *device, char *str);
2633 
2634 int ib_register_device(struct ib_device *device,
2635 		       int (*port_callback)(struct ib_device *,
2636 					    u8, struct kobject *));
2637 void ib_unregister_device(struct ib_device *device);
2638 
2639 int ib_register_client   (struct ib_client *client);
2640 void ib_unregister_client(struct ib_client *client);
2641 
2642 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
2643 void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
2644 			 void *data);
2645 
2646 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2647 {
2648 	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2649 }
2650 
2651 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2652 {
2653 	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2654 }
2655 
2656 static inline bool ib_is_buffer_cleared(const void __user *p,
2657 					size_t len)
2658 {
2659 	bool ret;
2660 	u8 *buf;
2661 
2662 	if (len > USHRT_MAX)
2663 		return false;
2664 
2665 	buf = memdup_user(p, len);
2666 	if (IS_ERR(buf))
2667 		return false;
2668 
2669 	ret = !memchr_inv(buf, 0, len);
2670 	kfree(buf);
2671 	return ret;
2672 }
2673 
2674 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2675 				       size_t offset,
2676 				       size_t len)
2677 {
2678 	return ib_is_buffer_cleared(udata->inbuf + offset, len);
2679 }
2680 
2681 /**
2682  * ib_modify_qp_is_ok - Check that the supplied attribute mask
2683  * contains all required attributes and no attributes not allowed for
2684  * the given QP state transition.
2685  * @cur_state: Current QP state
2686  * @next_state: Next QP state
2687  * @type: QP type
2688  * @mask: Mask of supplied QP attributes
2689  * @ll : link layer of port
2690  *
2691  * This function is a helper function that a low-level driver's
2692  * modify_qp method can use to validate the consumer's input.  It
2693  * checks that cur_state and next_state are valid QP states, that a
2694  * transition from cur_state to next_state is allowed by the IB spec,
2695  * and that the attribute mask supplied is allowed for the transition.
2696  */
2697 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2698 			enum ib_qp_type type, enum ib_qp_attr_mask mask,
2699 			enum rdma_link_layer ll);
2700 
2701 void ib_register_event_handler(struct ib_event_handler *event_handler);
2702 void ib_unregister_event_handler(struct ib_event_handler *event_handler);
2703 void ib_dispatch_event(struct ib_event *event);
2704 
2705 int ib_query_port(struct ib_device *device,
2706 		  u8 port_num, struct ib_port_attr *port_attr);
2707 
2708 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2709 					       u8 port_num);
2710 
2711 /**
2712  * rdma_cap_ib_switch - Check if the device is IB switch
2713  * @device: Device to check
2714  *
2715  * Device driver is responsible for setting is_switch bit on
2716  * in ib_device structure at init time.
2717  *
2718  * Return: true if the device is IB switch.
2719  */
2720 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2721 {
2722 	return device->is_switch;
2723 }
2724 
2725 /**
2726  * rdma_start_port - Return the first valid port number for the device
2727  * specified
2728  *
2729  * @device: Device to be checked
2730  *
2731  * Return start port number
2732  */
2733 static inline u8 rdma_start_port(const struct ib_device *device)
2734 {
2735 	return rdma_cap_ib_switch(device) ? 0 : 1;
2736 }
2737 
2738 /**
2739  * rdma_end_port - Return the last valid port number for the device
2740  * specified
2741  *
2742  * @device: Device to be checked
2743  *
2744  * Return last port number
2745  */
2746 static inline u8 rdma_end_port(const struct ib_device *device)
2747 {
2748 	return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2749 }
2750 
2751 static inline int rdma_is_port_valid(const struct ib_device *device,
2752 				     unsigned int port)
2753 {
2754 	return (port >= rdma_start_port(device) &&
2755 		port <= rdma_end_port(device));
2756 }
2757 
2758 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
2759 {
2760 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
2761 }
2762 
2763 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
2764 {
2765 	return device->port_immutable[port_num].core_cap_flags &
2766 		(RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2767 }
2768 
2769 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2770 {
2771 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2772 }
2773 
2774 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
2775 {
2776 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
2777 }
2778 
2779 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
2780 {
2781 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
2782 }
2783 
2784 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
2785 {
2786 	return rdma_protocol_ib(device, port_num) ||
2787 		rdma_protocol_roce(device, port_num);
2788 }
2789 
2790 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
2791 {
2792 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_RAW_PACKET;
2793 }
2794 
2795 static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
2796 {
2797 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_USNIC;
2798 }
2799 
2800 /**
2801  * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
2802  * Management Datagrams.
2803  * @device: Device to check
2804  * @port_num: Port number to check
2805  *
2806  * Management Datagrams (MAD) are a required part of the InfiniBand
2807  * specification and are supported on all InfiniBand devices.  A slightly
2808  * extended version are also supported on OPA interfaces.
2809  *
2810  * Return: true if the port supports sending/receiving of MAD packets.
2811  */
2812 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
2813 {
2814 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
2815 }
2816 
2817 /**
2818  * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2819  * Management Datagrams.
2820  * @device: Device to check
2821  * @port_num: Port number to check
2822  *
2823  * Intel OmniPath devices extend and/or replace the InfiniBand Management
2824  * datagrams with their own versions.  These OPA MADs share many but not all of
2825  * the characteristics of InfiniBand MADs.
2826  *
2827  * OPA MADs differ in the following ways:
2828  *
2829  *    1) MADs are variable size up to 2K
2830  *       IBTA defined MADs remain fixed at 256 bytes
2831  *    2) OPA SMPs must carry valid PKeys
2832  *    3) OPA SMP packets are a different format
2833  *
2834  * Return: true if the port supports OPA MAD packet formats.
2835  */
2836 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2837 {
2838 	return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2839 		== RDMA_CORE_CAP_OPA_MAD;
2840 }
2841 
2842 /**
2843  * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2844  * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2845  * @device: Device to check
2846  * @port_num: Port number to check
2847  *
2848  * Each InfiniBand node is required to provide a Subnet Management Agent
2849  * that the subnet manager can access.  Prior to the fabric being fully
2850  * configured by the subnet manager, the SMA is accessed via a well known
2851  * interface called the Subnet Management Interface (SMI).  This interface
2852  * uses directed route packets to communicate with the SM to get around the
2853  * chicken and egg problem of the SM needing to know what's on the fabric
2854  * in order to configure the fabric, and needing to configure the fabric in
2855  * order to send packets to the devices on the fabric.  These directed
2856  * route packets do not need the fabric fully configured in order to reach
2857  * their destination.  The SMI is the only method allowed to send
2858  * directed route packets on an InfiniBand fabric.
2859  *
2860  * Return: true if the port provides an SMI.
2861  */
2862 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
2863 {
2864 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
2865 }
2866 
2867 /**
2868  * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2869  * Communication Manager.
2870  * @device: Device to check
2871  * @port_num: Port number to check
2872  *
2873  * The InfiniBand Communication Manager is one of many pre-defined General
2874  * Service Agents (GSA) that are accessed via the General Service
2875  * Interface (GSI).  It's role is to facilitate establishment of connections
2876  * between nodes as well as other management related tasks for established
2877  * connections.
2878  *
2879  * Return: true if the port supports an IB CM (this does not guarantee that
2880  * a CM is actually running however).
2881  */
2882 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
2883 {
2884 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
2885 }
2886 
2887 /**
2888  * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2889  * Communication Manager.
2890  * @device: Device to check
2891  * @port_num: Port number to check
2892  *
2893  * Similar to above, but specific to iWARP connections which have a different
2894  * managment protocol than InfiniBand.
2895  *
2896  * Return: true if the port supports an iWARP CM (this does not guarantee that
2897  * a CM is actually running however).
2898  */
2899 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
2900 {
2901 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
2902 }
2903 
2904 /**
2905  * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2906  * Subnet Administration.
2907  * @device: Device to check
2908  * @port_num: Port number to check
2909  *
2910  * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2911  * Service Agent (GSA) provided by the Subnet Manager (SM).  On InfiniBand
2912  * fabrics, devices should resolve routes to other hosts by contacting the
2913  * SA to query the proper route.
2914  *
2915  * Return: true if the port should act as a client to the fabric Subnet
2916  * Administration interface.  This does not imply that the SA service is
2917  * running locally.
2918  */
2919 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
2920 {
2921 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
2922 }
2923 
2924 /**
2925  * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2926  * Multicast.
2927  * @device: Device to check
2928  * @port_num: Port number to check
2929  *
2930  * InfiniBand multicast registration is more complex than normal IPv4 or
2931  * IPv6 multicast registration.  Each Host Channel Adapter must register
2932  * with the Subnet Manager when it wishes to join a multicast group.  It
2933  * should do so only once regardless of how many queue pairs it subscribes
2934  * to this group.  And it should leave the group only after all queue pairs
2935  * attached to the group have been detached.
2936  *
2937  * Return: true if the port must undertake the additional adminstrative
2938  * overhead of registering/unregistering with the SM and tracking of the
2939  * total number of queue pairs attached to the multicast group.
2940  */
2941 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
2942 {
2943 	return rdma_cap_ib_sa(device, port_num);
2944 }
2945 
2946 /**
2947  * rdma_cap_af_ib - Check if the port of device has the capability
2948  * Native Infiniband Address.
2949  * @device: Device to check
2950  * @port_num: Port number to check
2951  *
2952  * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2953  * GID.  RoCE uses a different mechanism, but still generates a GID via
2954  * a prescribed mechanism and port specific data.
2955  *
2956  * Return: true if the port uses a GID address to identify devices on the
2957  * network.
2958  */
2959 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
2960 {
2961 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
2962 }
2963 
2964 /**
2965  * rdma_cap_eth_ah - Check if the port of device has the capability
2966  * Ethernet Address Handle.
2967  * @device: Device to check
2968  * @port_num: Port number to check
2969  *
2970  * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2971  * to fabricate GIDs over Ethernet/IP specific addresses native to the
2972  * port.  Normally, packet headers are generated by the sending host
2973  * adapter, but when sending connectionless datagrams, we must manually
2974  * inject the proper headers for the fabric we are communicating over.
2975  *
2976  * Return: true if we are running as a RoCE port and must force the
2977  * addition of a Global Route Header built from our Ethernet Address
2978  * Handle into our header list for connectionless packets.
2979  */
2980 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
2981 {
2982 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
2983 }
2984 
2985 /**
2986  * rdma_cap_opa_ah - Check if the port of device supports
2987  * OPA Address handles
2988  * @device: Device to check
2989  * @port_num: Port number to check
2990  *
2991  * Return: true if we are running on an OPA device which supports
2992  * the extended OPA addressing.
2993  */
2994 static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
2995 {
2996 	return (device->port_immutable[port_num].core_cap_flags &
2997 		RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
2998 }
2999 
3000 /**
3001  * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3002  *
3003  * @device: Device
3004  * @port_num: Port number
3005  *
3006  * This MAD size includes the MAD headers and MAD payload.  No other headers
3007  * are included.
3008  *
3009  * Return the max MAD size required by the Port.  Will return 0 if the port
3010  * does not support MADs
3011  */
3012 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
3013 {
3014 	return device->port_immutable[port_num].max_mad_size;
3015 }
3016 
3017 /**
3018  * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3019  * @device: Device to check
3020  * @port_num: Port number to check
3021  *
3022  * RoCE GID table mechanism manages the various GIDs for a device.
3023  *
3024  * NOTE: if allocating the port's GID table has failed, this call will still
3025  * return true, but any RoCE GID table API will fail.
3026  *
3027  * Return: true if the port uses RoCE GID table mechanism in order to manage
3028  * its GIDs.
3029  */
3030 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3031 					   u8 port_num)
3032 {
3033 	return rdma_protocol_roce(device, port_num) &&
3034 		device->add_gid && device->del_gid;
3035 }
3036 
3037 /*
3038  * Check if the device supports READ W/ INVALIDATE.
3039  */
3040 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3041 {
3042 	/*
3043 	 * iWarp drivers must support READ W/ INVALIDATE.  No other protocol
3044 	 * has support for it yet.
3045 	 */
3046 	return rdma_protocol_iwarp(dev, port_num);
3047 }
3048 
3049 int ib_query_gid(struct ib_device *device,
3050 		 u8 port_num, int index, union ib_gid *gid,
3051 		 struct ib_gid_attr *attr);
3052 
3053 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
3054 			 int state);
3055 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
3056 		     struct ifla_vf_info *info);
3057 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
3058 		    struct ifla_vf_stats *stats);
3059 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
3060 		   int type);
3061 
3062 int ib_query_pkey(struct ib_device *device,
3063 		  u8 port_num, u16 index, u16 *pkey);
3064 
3065 int ib_modify_device(struct ib_device *device,
3066 		     int device_modify_mask,
3067 		     struct ib_device_modify *device_modify);
3068 
3069 int ib_modify_port(struct ib_device *device,
3070 		   u8 port_num, int port_modify_mask,
3071 		   struct ib_port_modify *port_modify);
3072 
3073 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3074 		u8 *port_num, u16 *index);
3075 
3076 int ib_find_pkey(struct ib_device *device,
3077 		 u8 port_num, u16 pkey, u16 *index);
3078 
3079 enum ib_pd_flags {
3080 	/*
3081 	 * Create a memory registration for all memory in the system and place
3082 	 * the rkey for it into pd->unsafe_global_rkey.  This can be used by
3083 	 * ULPs to avoid the overhead of dynamic MRs.
3084 	 *
3085 	 * This flag is generally considered unsafe and must only be used in
3086 	 * extremly trusted environments.  Every use of it will log a warning
3087 	 * in the kernel log.
3088 	 */
3089 	IB_PD_UNSAFE_GLOBAL_RKEY	= 0x01,
3090 };
3091 
3092 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3093 		const char *caller);
3094 #define ib_alloc_pd(device, flags) \
3095 	__ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3096 void ib_dealloc_pd(struct ib_pd *pd);
3097 
3098 /**
3099  * rdma_create_ah - Creates an address handle for the given address vector.
3100  * @pd: The protection domain associated with the address handle.
3101  * @ah_attr: The attributes of the address vector.
3102  *
3103  * The address handle is used to reference a local or global destination
3104  * in all UD QP post sends.
3105  */
3106 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr);
3107 
3108 /**
3109  * rdma_create_user_ah - Creates an address handle for the given address vector.
3110  * It resolves destination mac address for ah attribute of RoCE type.
3111  * @pd: The protection domain associated with the address handle.
3112  * @ah_attr: The attributes of the address vector.
3113  * @udata: pointer to user's input output buffer information need by
3114  *         provider driver.
3115  *
3116  * It returns 0 on success and returns appropriate error code on error.
3117  * The address handle is used to reference a local or global destination
3118  * in all UD QP post sends.
3119  */
3120 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3121 				  struct rdma_ah_attr *ah_attr,
3122 				  struct ib_udata *udata);
3123 /**
3124  * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3125  *   work completion.
3126  * @hdr: the L3 header to parse
3127  * @net_type: type of header to parse
3128  * @sgid: place to store source gid
3129  * @dgid: place to store destination gid
3130  */
3131 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3132 			      enum rdma_network_type net_type,
3133 			      union ib_gid *sgid, union ib_gid *dgid);
3134 
3135 /**
3136  * ib_get_rdma_header_version - Get the header version
3137  * @hdr: the L3 header to parse
3138  */
3139 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3140 
3141 /**
3142  * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3143  *   work completion.
3144  * @device: Device on which the received message arrived.
3145  * @port_num: Port on which the received message arrived.
3146  * @wc: Work completion associated with the received message.
3147  * @grh: References the received global route header.  This parameter is
3148  *   ignored unless the work completion indicates that the GRH is valid.
3149  * @ah_attr: Returned attributes that can be used when creating an address
3150  *   handle for replying to the message.
3151  */
3152 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
3153 			    const struct ib_wc *wc, const struct ib_grh *grh,
3154 			    struct rdma_ah_attr *ah_attr);
3155 
3156 /**
3157  * ib_create_ah_from_wc - Creates an address handle associated with the
3158  *   sender of the specified work completion.
3159  * @pd: The protection domain associated with the address handle.
3160  * @wc: Work completion information associated with a received message.
3161  * @grh: References the received global route header.  This parameter is
3162  *   ignored unless the work completion indicates that the GRH is valid.
3163  * @port_num: The outbound port number to associate with the address.
3164  *
3165  * The address handle is used to reference a local or global destination
3166  * in all UD QP post sends.
3167  */
3168 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3169 				   const struct ib_grh *grh, u8 port_num);
3170 
3171 /**
3172  * rdma_modify_ah - Modifies the address vector associated with an address
3173  *   handle.
3174  * @ah: The address handle to modify.
3175  * @ah_attr: The new address vector attributes to associate with the
3176  *   address handle.
3177  */
3178 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3179 
3180 /**
3181  * rdma_query_ah - Queries the address vector associated with an address
3182  *   handle.
3183  * @ah: The address handle to query.
3184  * @ah_attr: The address vector attributes associated with the address
3185  *   handle.
3186  */
3187 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3188 
3189 /**
3190  * rdma_destroy_ah - Destroys an address handle.
3191  * @ah: The address handle to destroy.
3192  */
3193 int rdma_destroy_ah(struct ib_ah *ah);
3194 
3195 /**
3196  * ib_create_srq - Creates a SRQ associated with the specified protection
3197  *   domain.
3198  * @pd: The protection domain associated with the SRQ.
3199  * @srq_init_attr: A list of initial attributes required to create the
3200  *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
3201  *   the actual capabilities of the created SRQ.
3202  *
3203  * srq_attr->max_wr and srq_attr->max_sge are read the determine the
3204  * requested size of the SRQ, and set to the actual values allocated
3205  * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
3206  * will always be at least as large as the requested values.
3207  */
3208 struct ib_srq *ib_create_srq(struct ib_pd *pd,
3209 			     struct ib_srq_init_attr *srq_init_attr);
3210 
3211 /**
3212  * ib_modify_srq - Modifies the attributes for the specified SRQ.
3213  * @srq: The SRQ to modify.
3214  * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
3215  *   the current values of selected SRQ attributes are returned.
3216  * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3217  *   are being modified.
3218  *
3219  * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3220  * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3221  * the number of receives queued drops below the limit.
3222  */
3223 int ib_modify_srq(struct ib_srq *srq,
3224 		  struct ib_srq_attr *srq_attr,
3225 		  enum ib_srq_attr_mask srq_attr_mask);
3226 
3227 /**
3228  * ib_query_srq - Returns the attribute list and current values for the
3229  *   specified SRQ.
3230  * @srq: The SRQ to query.
3231  * @srq_attr: The attributes of the specified SRQ.
3232  */
3233 int ib_query_srq(struct ib_srq *srq,
3234 		 struct ib_srq_attr *srq_attr);
3235 
3236 /**
3237  * ib_destroy_srq - Destroys the specified SRQ.
3238  * @srq: The SRQ to destroy.
3239  */
3240 int ib_destroy_srq(struct ib_srq *srq);
3241 
3242 /**
3243  * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3244  * @srq: The SRQ to post the work request on.
3245  * @recv_wr: A list of work requests to post on the receive queue.
3246  * @bad_recv_wr: On an immediate failure, this parameter will reference
3247  *   the work request that failed to be posted on the QP.
3248  */
3249 static inline int ib_post_srq_recv(struct ib_srq *srq,
3250 				   struct ib_recv_wr *recv_wr,
3251 				   struct ib_recv_wr **bad_recv_wr)
3252 {
3253 	return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
3254 }
3255 
3256 /**
3257  * ib_create_qp - Creates a QP associated with the specified protection
3258  *   domain.
3259  * @pd: The protection domain associated with the QP.
3260  * @qp_init_attr: A list of initial attributes required to create the
3261  *   QP.  If QP creation succeeds, then the attributes are updated to
3262  *   the actual capabilities of the created QP.
3263  */
3264 struct ib_qp *ib_create_qp(struct ib_pd *pd,
3265 			   struct ib_qp_init_attr *qp_init_attr);
3266 
3267 /**
3268  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3269  * @qp: The QP to modify.
3270  * @attr: On input, specifies the QP attributes to modify.  On output,
3271  *   the current values of selected QP attributes are returned.
3272  * @attr_mask: A bit-mask used to specify which attributes of the QP
3273  *   are being modified.
3274  * @udata: pointer to user's input output buffer information
3275  *   are being modified.
3276  * It returns 0 on success and returns appropriate error code on error.
3277  */
3278 int ib_modify_qp_with_udata(struct ib_qp *qp,
3279 			    struct ib_qp_attr *attr,
3280 			    int attr_mask,
3281 			    struct ib_udata *udata);
3282 
3283 /**
3284  * ib_modify_qp - Modifies the attributes for the specified QP and then
3285  *   transitions the QP to the given state.
3286  * @qp: The QP to modify.
3287  * @qp_attr: On input, specifies the QP attributes to modify.  On output,
3288  *   the current values of selected QP attributes are returned.
3289  * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3290  *   are being modified.
3291  */
3292 int ib_modify_qp(struct ib_qp *qp,
3293 		 struct ib_qp_attr *qp_attr,
3294 		 int qp_attr_mask);
3295 
3296 /**
3297  * ib_query_qp - Returns the attribute list and current values for the
3298  *   specified QP.
3299  * @qp: The QP to query.
3300  * @qp_attr: The attributes of the specified QP.
3301  * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3302  * @qp_init_attr: Additional attributes of the selected QP.
3303  *
3304  * The qp_attr_mask may be used to limit the query to gathering only the
3305  * selected attributes.
3306  */
3307 int ib_query_qp(struct ib_qp *qp,
3308 		struct ib_qp_attr *qp_attr,
3309 		int qp_attr_mask,
3310 		struct ib_qp_init_attr *qp_init_attr);
3311 
3312 /**
3313  * ib_destroy_qp - Destroys the specified QP.
3314  * @qp: The QP to destroy.
3315  */
3316 int ib_destroy_qp(struct ib_qp *qp);
3317 
3318 /**
3319  * ib_open_qp - Obtain a reference to an existing sharable QP.
3320  * @xrcd - XRC domain
3321  * @qp_open_attr: Attributes identifying the QP to open.
3322  *
3323  * Returns a reference to a sharable QP.
3324  */
3325 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3326 			 struct ib_qp_open_attr *qp_open_attr);
3327 
3328 /**
3329  * ib_close_qp - Release an external reference to a QP.
3330  * @qp: The QP handle to release
3331  *
3332  * The opened QP handle is released by the caller.  The underlying
3333  * shared QP is not destroyed until all internal references are released.
3334  */
3335 int ib_close_qp(struct ib_qp *qp);
3336 
3337 /**
3338  * ib_post_send - Posts a list of work requests to the send queue of
3339  *   the specified QP.
3340  * @qp: The QP to post the work request on.
3341  * @send_wr: A list of work requests to post on the send queue.
3342  * @bad_send_wr: On an immediate failure, this parameter will reference
3343  *   the work request that failed to be posted on the QP.
3344  *
3345  * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3346  * error is returned, the QP state shall not be affected,
3347  * ib_post_send() will return an immediate error after queueing any
3348  * earlier work requests in the list.
3349  */
3350 static inline int ib_post_send(struct ib_qp *qp,
3351 			       struct ib_send_wr *send_wr,
3352 			       struct ib_send_wr **bad_send_wr)
3353 {
3354 	return qp->device->post_send(qp, send_wr, bad_send_wr);
3355 }
3356 
3357 /**
3358  * ib_post_recv - Posts a list of work requests to the receive queue of
3359  *   the specified QP.
3360  * @qp: The QP to post the work request on.
3361  * @recv_wr: A list of work requests to post on the receive queue.
3362  * @bad_recv_wr: On an immediate failure, this parameter will reference
3363  *   the work request that failed to be posted on the QP.
3364  */
3365 static inline int ib_post_recv(struct ib_qp *qp,
3366 			       struct ib_recv_wr *recv_wr,
3367 			       struct ib_recv_wr **bad_recv_wr)
3368 {
3369 	return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
3370 }
3371 
3372 struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private,
3373 			    int nr_cqe, int comp_vector,
3374 			    enum ib_poll_context poll_ctx, const char *caller);
3375 #define ib_alloc_cq(device, priv, nr_cqe, comp_vect, poll_ctx) \
3376 	__ib_alloc_cq((device), (priv), (nr_cqe), (comp_vect), (poll_ctx), KBUILD_MODNAME)
3377 
3378 void ib_free_cq(struct ib_cq *cq);
3379 int ib_process_cq_direct(struct ib_cq *cq, int budget);
3380 
3381 /**
3382  * ib_create_cq - Creates a CQ on the specified device.
3383  * @device: The device on which to create the CQ.
3384  * @comp_handler: A user-specified callback that is invoked when a
3385  *   completion event occurs on the CQ.
3386  * @event_handler: A user-specified callback that is invoked when an
3387  *   asynchronous event not associated with a completion occurs on the CQ.
3388  * @cq_context: Context associated with the CQ returned to the user via
3389  *   the associated completion and event handlers.
3390  * @cq_attr: The attributes the CQ should be created upon.
3391  *
3392  * Users can examine the cq structure to determine the actual CQ size.
3393  */
3394 struct ib_cq *ib_create_cq(struct ib_device *device,
3395 			   ib_comp_handler comp_handler,
3396 			   void (*event_handler)(struct ib_event *, void *),
3397 			   void *cq_context,
3398 			   const struct ib_cq_init_attr *cq_attr);
3399 
3400 /**
3401  * ib_resize_cq - Modifies the capacity of the CQ.
3402  * @cq: The CQ to resize.
3403  * @cqe: The minimum size of the CQ.
3404  *
3405  * Users can examine the cq structure to determine the actual CQ size.
3406  */
3407 int ib_resize_cq(struct ib_cq *cq, int cqe);
3408 
3409 /**
3410  * rdma_set_cq_moderation - Modifies moderation params of the CQ
3411  * @cq: The CQ to modify.
3412  * @cq_count: number of CQEs that will trigger an event
3413  * @cq_period: max period of time in usec before triggering an event
3414  *
3415  */
3416 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3417 
3418 /**
3419  * ib_destroy_cq - Destroys the specified CQ.
3420  * @cq: The CQ to destroy.
3421  */
3422 int ib_destroy_cq(struct ib_cq *cq);
3423 
3424 /**
3425  * ib_poll_cq - poll a CQ for completion(s)
3426  * @cq:the CQ being polled
3427  * @num_entries:maximum number of completions to return
3428  * @wc:array of at least @num_entries &struct ib_wc where completions
3429  *   will be returned
3430  *
3431  * Poll a CQ for (possibly multiple) completions.  If the return value
3432  * is < 0, an error occurred.  If the return value is >= 0, it is the
3433  * number of completions returned.  If the return value is
3434  * non-negative and < num_entries, then the CQ was emptied.
3435  */
3436 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3437 			     struct ib_wc *wc)
3438 {
3439 	return cq->device->poll_cq(cq, num_entries, wc);
3440 }
3441 
3442 /**
3443  * ib_req_notify_cq - Request completion notification on a CQ.
3444  * @cq: The CQ to generate an event for.
3445  * @flags:
3446  *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3447  *   to request an event on the next solicited event or next work
3448  *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3449  *   may also be |ed in to request a hint about missed events, as
3450  *   described below.
3451  *
3452  * Return Value:
3453  *    < 0 means an error occurred while requesting notification
3454  *   == 0 means notification was requested successfully, and if
3455  *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3456  *        were missed and it is safe to wait for another event.  In
3457  *        this case is it guaranteed that any work completions added
3458  *        to the CQ since the last CQ poll will trigger a completion
3459  *        notification event.
3460  *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3461  *        in.  It means that the consumer must poll the CQ again to
3462  *        make sure it is empty to avoid missing an event because of a
3463  *        race between requesting notification and an entry being
3464  *        added to the CQ.  This return value means it is possible
3465  *        (but not guaranteed) that a work completion has been added
3466  *        to the CQ since the last poll without triggering a
3467  *        completion notification event.
3468  */
3469 static inline int ib_req_notify_cq(struct ib_cq *cq,
3470 				   enum ib_cq_notify_flags flags)
3471 {
3472 	return cq->device->req_notify_cq(cq, flags);
3473 }
3474 
3475 /**
3476  * ib_req_ncomp_notif - Request completion notification when there are
3477  *   at least the specified number of unreaped completions on the CQ.
3478  * @cq: The CQ to generate an event for.
3479  * @wc_cnt: The number of unreaped completions that should be on the
3480  *   CQ before an event is generated.
3481  */
3482 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
3483 {
3484 	return cq->device->req_ncomp_notif ?
3485 		cq->device->req_ncomp_notif(cq, wc_cnt) :
3486 		-ENOSYS;
3487 }
3488 
3489 /**
3490  * ib_dma_mapping_error - check a DMA addr for error
3491  * @dev: The device for which the dma_addr was created
3492  * @dma_addr: The DMA address to check
3493  */
3494 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3495 {
3496 	return dma_mapping_error(dev->dma_device, dma_addr);
3497 }
3498 
3499 /**
3500  * ib_dma_map_single - Map a kernel virtual address to DMA address
3501  * @dev: The device for which the dma_addr is to be created
3502  * @cpu_addr: The kernel virtual address
3503  * @size: The size of the region in bytes
3504  * @direction: The direction of the DMA
3505  */
3506 static inline u64 ib_dma_map_single(struct ib_device *dev,
3507 				    void *cpu_addr, size_t size,
3508 				    enum dma_data_direction direction)
3509 {
3510 	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
3511 }
3512 
3513 /**
3514  * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3515  * @dev: The device for which the DMA address was created
3516  * @addr: The DMA address
3517  * @size: The size of the region in bytes
3518  * @direction: The direction of the DMA
3519  */
3520 static inline void ib_dma_unmap_single(struct ib_device *dev,
3521 				       u64 addr, size_t size,
3522 				       enum dma_data_direction direction)
3523 {
3524 	dma_unmap_single(dev->dma_device, addr, size, direction);
3525 }
3526 
3527 /**
3528  * ib_dma_map_page - Map a physical page to DMA address
3529  * @dev: The device for which the dma_addr is to be created
3530  * @page: The page to be mapped
3531  * @offset: The offset within the page
3532  * @size: The size of the region in bytes
3533  * @direction: The direction of the DMA
3534  */
3535 static inline u64 ib_dma_map_page(struct ib_device *dev,
3536 				  struct page *page,
3537 				  unsigned long offset,
3538 				  size_t size,
3539 					 enum dma_data_direction direction)
3540 {
3541 	return dma_map_page(dev->dma_device, page, offset, size, direction);
3542 }
3543 
3544 /**
3545  * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3546  * @dev: The device for which the DMA address was created
3547  * @addr: The DMA address
3548  * @size: The size of the region in bytes
3549  * @direction: The direction of the DMA
3550  */
3551 static inline void ib_dma_unmap_page(struct ib_device *dev,
3552 				     u64 addr, size_t size,
3553 				     enum dma_data_direction direction)
3554 {
3555 	dma_unmap_page(dev->dma_device, addr, size, direction);
3556 }
3557 
3558 /**
3559  * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3560  * @dev: The device for which the DMA addresses are to be created
3561  * @sg: The array of scatter/gather entries
3562  * @nents: The number of scatter/gather entries
3563  * @direction: The direction of the DMA
3564  */
3565 static inline int ib_dma_map_sg(struct ib_device *dev,
3566 				struct scatterlist *sg, int nents,
3567 				enum dma_data_direction direction)
3568 {
3569 	return dma_map_sg(dev->dma_device, sg, nents, direction);
3570 }
3571 
3572 /**
3573  * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
3574  * @dev: The device for which the DMA addresses were created
3575  * @sg: The array of scatter/gather entries
3576  * @nents: The number of scatter/gather entries
3577  * @direction: The direction of the DMA
3578  */
3579 static inline void ib_dma_unmap_sg(struct ib_device *dev,
3580 				   struct scatterlist *sg, int nents,
3581 				   enum dma_data_direction direction)
3582 {
3583 	dma_unmap_sg(dev->dma_device, sg, nents, direction);
3584 }
3585 
3586 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
3587 				      struct scatterlist *sg, int nents,
3588 				      enum dma_data_direction direction,
3589 				      unsigned long dma_attrs)
3590 {
3591 	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
3592 				dma_attrs);
3593 }
3594 
3595 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
3596 					 struct scatterlist *sg, int nents,
3597 					 enum dma_data_direction direction,
3598 					 unsigned long dma_attrs)
3599 {
3600 	dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
3601 }
3602 /**
3603  * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
3604  * @dev: The device for which the DMA addresses were created
3605  * @sg: The scatter/gather entry
3606  *
3607  * Note: this function is obsolete. To do: change all occurrences of
3608  * ib_sg_dma_address() into sg_dma_address().
3609  */
3610 static inline u64 ib_sg_dma_address(struct ib_device *dev,
3611 				    struct scatterlist *sg)
3612 {
3613 	return sg_dma_address(sg);
3614 }
3615 
3616 /**
3617  * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
3618  * @dev: The device for which the DMA addresses were created
3619  * @sg: The scatter/gather entry
3620  *
3621  * Note: this function is obsolete. To do: change all occurrences of
3622  * ib_sg_dma_len() into sg_dma_len().
3623  */
3624 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
3625 					 struct scatterlist *sg)
3626 {
3627 	return sg_dma_len(sg);
3628 }
3629 
3630 /**
3631  * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
3632  * @dev: The device for which the DMA address was created
3633  * @addr: The DMA address
3634  * @size: The size of the region in bytes
3635  * @dir: The direction of the DMA
3636  */
3637 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
3638 					      u64 addr,
3639 					      size_t size,
3640 					      enum dma_data_direction dir)
3641 {
3642 	dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
3643 }
3644 
3645 /**
3646  * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
3647  * @dev: The device for which the DMA address was created
3648  * @addr: The DMA address
3649  * @size: The size of the region in bytes
3650  * @dir: The direction of the DMA
3651  */
3652 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
3653 						 u64 addr,
3654 						 size_t size,
3655 						 enum dma_data_direction dir)
3656 {
3657 	dma_sync_single_for_device(dev->dma_device, addr, size, dir);
3658 }
3659 
3660 /**
3661  * ib_dma_alloc_coherent - Allocate memory and map it for DMA
3662  * @dev: The device for which the DMA address is requested
3663  * @size: The size of the region to allocate in bytes
3664  * @dma_handle: A pointer for returning the DMA address of the region
3665  * @flag: memory allocator flags
3666  */
3667 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
3668 					   size_t size,
3669 					   dma_addr_t *dma_handle,
3670 					   gfp_t flag)
3671 {
3672 	return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
3673 }
3674 
3675 /**
3676  * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3677  * @dev: The device for which the DMA addresses were allocated
3678  * @size: The size of the region
3679  * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3680  * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3681  */
3682 static inline void ib_dma_free_coherent(struct ib_device *dev,
3683 					size_t size, void *cpu_addr,
3684 					dma_addr_t dma_handle)
3685 {
3686 	dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
3687 }
3688 
3689 /**
3690  * ib_dereg_mr - Deregisters a memory region and removes it from the
3691  *   HCA translation table.
3692  * @mr: The memory region to deregister.
3693  *
3694  * This function can fail, if the memory region has memory windows bound to it.
3695  */
3696 int ib_dereg_mr(struct ib_mr *mr);
3697 
3698 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3699 			  enum ib_mr_type mr_type,
3700 			  u32 max_num_sg);
3701 
3702 /**
3703  * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3704  *   R_Key and L_Key.
3705  * @mr - struct ib_mr pointer to be updated.
3706  * @newkey - new key to be used.
3707  */
3708 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3709 {
3710 	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3711 	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3712 }
3713 
3714 /**
3715  * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3716  * for calculating a new rkey for type 2 memory windows.
3717  * @rkey - the rkey to increment.
3718  */
3719 static inline u32 ib_inc_rkey(u32 rkey)
3720 {
3721 	const u32 mask = 0x000000ff;
3722 	return ((rkey + 1) & mask) | (rkey & ~mask);
3723 }
3724 
3725 /**
3726  * ib_alloc_fmr - Allocates a unmapped fast memory region.
3727  * @pd: The protection domain associated with the unmapped region.
3728  * @mr_access_flags: Specifies the memory access rights.
3729  * @fmr_attr: Attributes of the unmapped region.
3730  *
3731  * A fast memory region must be mapped before it can be used as part of
3732  * a work request.
3733  */
3734 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3735 			    int mr_access_flags,
3736 			    struct ib_fmr_attr *fmr_attr);
3737 
3738 /**
3739  * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3740  * @fmr: The fast memory region to associate with the pages.
3741  * @page_list: An array of physical pages to map to the fast memory region.
3742  * @list_len: The number of pages in page_list.
3743  * @iova: The I/O virtual address to use with the mapped region.
3744  */
3745 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3746 				  u64 *page_list, int list_len,
3747 				  u64 iova)
3748 {
3749 	return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3750 }
3751 
3752 /**
3753  * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3754  * @fmr_list: A linked list of fast memory regions to unmap.
3755  */
3756 int ib_unmap_fmr(struct list_head *fmr_list);
3757 
3758 /**
3759  * ib_dealloc_fmr - Deallocates a fast memory region.
3760  * @fmr: The fast memory region to deallocate.
3761  */
3762 int ib_dealloc_fmr(struct ib_fmr *fmr);
3763 
3764 /**
3765  * ib_attach_mcast - Attaches the specified QP to a multicast group.
3766  * @qp: QP to attach to the multicast group.  The QP must be type
3767  *   IB_QPT_UD.
3768  * @gid: Multicast group GID.
3769  * @lid: Multicast group LID in host byte order.
3770  *
3771  * In order to send and receive multicast packets, subnet
3772  * administration must have created the multicast group and configured
3773  * the fabric appropriately.  The port associated with the specified
3774  * QP must also be a member of the multicast group.
3775  */
3776 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3777 
3778 /**
3779  * ib_detach_mcast - Detaches the specified QP from a multicast group.
3780  * @qp: QP to detach from the multicast group.
3781  * @gid: Multicast group GID.
3782  * @lid: Multicast group LID in host byte order.
3783  */
3784 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3785 
3786 /**
3787  * ib_alloc_xrcd - Allocates an XRC domain.
3788  * @device: The device on which to allocate the XRC domain.
3789  * @caller: Module name for kernel consumers
3790  */
3791 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller);
3792 #define ib_alloc_xrcd(device) \
3793 	__ib_alloc_xrcd((device), KBUILD_MODNAME)
3794 
3795 /**
3796  * ib_dealloc_xrcd - Deallocates an XRC domain.
3797  * @xrcd: The XRC domain to deallocate.
3798  */
3799 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3800 
3801 struct ib_flow *ib_create_flow(struct ib_qp *qp,
3802 			       struct ib_flow_attr *flow_attr, int domain);
3803 int ib_destroy_flow(struct ib_flow *flow_id);
3804 
3805 static inline int ib_check_mr_access(int flags)
3806 {
3807 	/*
3808 	 * Local write permission is required if remote write or
3809 	 * remote atomic permission is also requested.
3810 	 */
3811 	if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3812 	    !(flags & IB_ACCESS_LOCAL_WRITE))
3813 		return -EINVAL;
3814 
3815 	return 0;
3816 }
3817 
3818 static inline bool ib_access_writable(int access_flags)
3819 {
3820 	/*
3821 	 * We have writable memory backing the MR if any of the following
3822 	 * access flags are set.  "Local write" and "remote write" obviously
3823 	 * require write access.  "Remote atomic" can do things like fetch and
3824 	 * add, which will modify memory, and "MW bind" can change permissions
3825 	 * by binding a window.
3826 	 */
3827 	return access_flags &
3828 		(IB_ACCESS_LOCAL_WRITE   | IB_ACCESS_REMOTE_WRITE |
3829 		 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
3830 }
3831 
3832 /**
3833  * ib_check_mr_status: lightweight check of MR status.
3834  *     This routine may provide status checks on a selected
3835  *     ib_mr. first use is for signature status check.
3836  *
3837  * @mr: A memory region.
3838  * @check_mask: Bitmask of which checks to perform from
3839  *     ib_mr_status_check enumeration.
3840  * @mr_status: The container of relevant status checks.
3841  *     failed checks will be indicated in the status bitmask
3842  *     and the relevant info shall be in the error item.
3843  */
3844 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3845 		       struct ib_mr_status *mr_status);
3846 
3847 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3848 					    u16 pkey, const union ib_gid *gid,
3849 					    const struct sockaddr *addr);
3850 struct ib_wq *ib_create_wq(struct ib_pd *pd,
3851 			   struct ib_wq_init_attr *init_attr);
3852 int ib_destroy_wq(struct ib_wq *wq);
3853 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
3854 		 u32 wq_attr_mask);
3855 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
3856 						 struct ib_rwq_ind_table_init_attr*
3857 						 wq_ind_table_init_attr);
3858 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
3859 
3860 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3861 		 unsigned int *sg_offset, unsigned int page_size);
3862 
3863 static inline int
3864 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3865 		  unsigned int *sg_offset, unsigned int page_size)
3866 {
3867 	int n;
3868 
3869 	n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
3870 	mr->iova = 0;
3871 
3872 	return n;
3873 }
3874 
3875 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
3876 		unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
3877 
3878 void ib_drain_rq(struct ib_qp *qp);
3879 void ib_drain_sq(struct ib_qp *qp);
3880 void ib_drain_qp(struct ib_qp *qp);
3881 
3882 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width);
3883 
3884 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
3885 {
3886 	if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
3887 		return attr->roce.dmac;
3888 	return NULL;
3889 }
3890 
3891 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
3892 {
3893 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3894 		attr->ib.dlid = (u16)dlid;
3895 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3896 		attr->opa.dlid = dlid;
3897 }
3898 
3899 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
3900 {
3901 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3902 		return attr->ib.dlid;
3903 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3904 		return attr->opa.dlid;
3905 	return 0;
3906 }
3907 
3908 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
3909 {
3910 	attr->sl = sl;
3911 }
3912 
3913 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
3914 {
3915 	return attr->sl;
3916 }
3917 
3918 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
3919 					 u8 src_path_bits)
3920 {
3921 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3922 		attr->ib.src_path_bits = src_path_bits;
3923 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3924 		attr->opa.src_path_bits = src_path_bits;
3925 }
3926 
3927 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
3928 {
3929 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3930 		return attr->ib.src_path_bits;
3931 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3932 		return attr->opa.src_path_bits;
3933 	return 0;
3934 }
3935 
3936 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
3937 					bool make_grd)
3938 {
3939 	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3940 		attr->opa.make_grd = make_grd;
3941 }
3942 
3943 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
3944 {
3945 	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3946 		return attr->opa.make_grd;
3947 	return false;
3948 }
3949 
3950 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num)
3951 {
3952 	attr->port_num = port_num;
3953 }
3954 
3955 static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
3956 {
3957 	return attr->port_num;
3958 }
3959 
3960 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
3961 					   u8 static_rate)
3962 {
3963 	attr->static_rate = static_rate;
3964 }
3965 
3966 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
3967 {
3968 	return attr->static_rate;
3969 }
3970 
3971 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
3972 					enum ib_ah_flags flag)
3973 {
3974 	attr->ah_flags = flag;
3975 }
3976 
3977 static inline enum ib_ah_flags
3978 		rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
3979 {
3980 	return attr->ah_flags;
3981 }
3982 
3983 static inline const struct ib_global_route
3984 		*rdma_ah_read_grh(const struct rdma_ah_attr *attr)
3985 {
3986 	return &attr->grh;
3987 }
3988 
3989 /*To retrieve and modify the grh */
3990 static inline struct ib_global_route
3991 		*rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
3992 {
3993 	return &attr->grh;
3994 }
3995 
3996 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
3997 {
3998 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3999 
4000 	memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4001 }
4002 
4003 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4004 					     __be64 prefix)
4005 {
4006 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4007 
4008 	grh->dgid.global.subnet_prefix = prefix;
4009 }
4010 
4011 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4012 					    __be64 if_id)
4013 {
4014 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4015 
4016 	grh->dgid.global.interface_id = if_id;
4017 }
4018 
4019 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4020 				   union ib_gid *dgid, u32 flow_label,
4021 				   u8 sgid_index, u8 hop_limit,
4022 				   u8 traffic_class)
4023 {
4024 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4025 
4026 	attr->ah_flags = IB_AH_GRH;
4027 	if (dgid)
4028 		grh->dgid = *dgid;
4029 	grh->flow_label = flow_label;
4030 	grh->sgid_index = sgid_index;
4031 	grh->hop_limit = hop_limit;
4032 	grh->traffic_class = traffic_class;
4033 }
4034 
4035 /**
4036  * rdma_ah_find_type - Return address handle type.
4037  *
4038  * @dev: Device to be checked
4039  * @port_num: Port number
4040  */
4041 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4042 						       u8 port_num)
4043 {
4044 	if (rdma_protocol_roce(dev, port_num))
4045 		return RDMA_AH_ATTR_TYPE_ROCE;
4046 	if (rdma_protocol_ib(dev, port_num)) {
4047 		if (rdma_cap_opa_ah(dev, port_num))
4048 			return RDMA_AH_ATTR_TYPE_OPA;
4049 		return RDMA_AH_ATTR_TYPE_IB;
4050 	}
4051 
4052 	return RDMA_AH_ATTR_TYPE_UNDEFINED;
4053 }
4054 
4055 /**
4056  * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4057  *     In the current implementation the only way to get
4058  *     get the 32bit lid is from other sources for OPA.
4059  *     For IB, lids will always be 16bits so cast the
4060  *     value accordingly.
4061  *
4062  * @lid: A 32bit LID
4063  */
4064 static inline u16 ib_lid_cpu16(u32 lid)
4065 {
4066 	WARN_ON_ONCE(lid & 0xFFFF0000);
4067 	return (u16)lid;
4068 }
4069 
4070 /**
4071  * ib_lid_be16 - Return lid in 16bit BE encoding.
4072  *
4073  * @lid: A 32bit LID
4074  */
4075 static inline __be16 ib_lid_be16(u32 lid)
4076 {
4077 	WARN_ON_ONCE(lid & 0xFFFF0000);
4078 	return cpu_to_be16((u16)lid);
4079 }
4080 
4081 /**
4082  * ib_get_vector_affinity - Get the affinity mappings of a given completion
4083  *   vector
4084  * @device:         the rdma device
4085  * @comp_vector:    index of completion vector
4086  *
4087  * Returns NULL on failure, otherwise a corresponding cpu map of the
4088  * completion vector (returns all-cpus map if the device driver doesn't
4089  * implement get_vector_affinity).
4090  */
4091 static inline const struct cpumask *
4092 ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4093 {
4094 	if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4095 	    !device->get_vector_affinity)
4096 		return NULL;
4097 
4098 	return device->get_vector_affinity(device, comp_vector);
4099 
4100 }
4101 
4102 /**
4103  * rdma_roce_rescan_device - Rescan all of the network devices in the system
4104  * and add their gids, as needed, to the relevant RoCE devices.
4105  *
4106  * @device:         the rdma device
4107  */
4108 void rdma_roce_rescan_device(struct ib_device *ibdev);
4109 
4110 #endif /* IB_VERBS_H */
4111