1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #if !defined(IB_VERBS_H) 40 #define IB_VERBS_H 41 42 #include <linux/types.h> 43 #include <linux/device.h> 44 #include <linux/dma-mapping.h> 45 #include <linux/kref.h> 46 #include <linux/list.h> 47 #include <linux/rwsem.h> 48 #include <linux/workqueue.h> 49 #include <linux/irq_poll.h> 50 #include <uapi/linux/if_ether.h> 51 #include <net/ipv6.h> 52 #include <net/ip.h> 53 #include <linux/string.h> 54 #include <linux/slab.h> 55 #include <linux/netdevice.h> 56 #include <linux/refcount.h> 57 #include <linux/if_link.h> 58 #include <linux/atomic.h> 59 #include <linux/mmu_notifier.h> 60 #include <linux/uaccess.h> 61 #include <linux/cgroup_rdma.h> 62 #include <linux/irqflags.h> 63 #include <linux/preempt.h> 64 #include <linux/dim.h> 65 #include <uapi/rdma/ib_user_verbs.h> 66 #include <rdma/rdma_counter.h> 67 #include <rdma/restrack.h> 68 #include <rdma/signature.h> 69 #include <uapi/rdma/rdma_user_ioctl.h> 70 #include <uapi/rdma/ib_user_ioctl_verbs.h> 71 72 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN 73 74 struct ib_umem_odp; 75 76 extern struct workqueue_struct *ib_wq; 77 extern struct workqueue_struct *ib_comp_wq; 78 extern struct workqueue_struct *ib_comp_unbound_wq; 79 80 __printf(3, 4) __cold 81 void ibdev_printk(const char *level, const struct ib_device *ibdev, 82 const char *format, ...); 83 __printf(2, 3) __cold 84 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...); 85 __printf(2, 3) __cold 86 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...); 87 __printf(2, 3) __cold 88 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...); 89 __printf(2, 3) __cold 90 void ibdev_err(const struct ib_device *ibdev, const char *format, ...); 91 __printf(2, 3) __cold 92 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...); 93 __printf(2, 3) __cold 94 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...); 95 __printf(2, 3) __cold 96 void ibdev_info(const struct ib_device *ibdev, const char *format, ...); 97 98 #if defined(CONFIG_DYNAMIC_DEBUG) 99 #define ibdev_dbg(__dev, format, args...) \ 100 dynamic_ibdev_dbg(__dev, format, ##args) 101 #else 102 __printf(2, 3) __cold 103 static inline 104 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {} 105 #endif 106 107 #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...) \ 108 do { \ 109 static DEFINE_RATELIMIT_STATE(_rs, \ 110 DEFAULT_RATELIMIT_INTERVAL, \ 111 DEFAULT_RATELIMIT_BURST); \ 112 if (__ratelimit(&_rs)) \ 113 ibdev_level(ibdev, fmt, ##__VA_ARGS__); \ 114 } while (0) 115 116 #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \ 117 ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__) 118 #define ibdev_alert_ratelimited(ibdev, fmt, ...) \ 119 ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__) 120 #define ibdev_crit_ratelimited(ibdev, fmt, ...) \ 121 ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__) 122 #define ibdev_err_ratelimited(ibdev, fmt, ...) \ 123 ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__) 124 #define ibdev_warn_ratelimited(ibdev, fmt, ...) \ 125 ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__) 126 #define ibdev_notice_ratelimited(ibdev, fmt, ...) \ 127 ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__) 128 #define ibdev_info_ratelimited(ibdev, fmt, ...) \ 129 ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__) 130 131 #if defined(CONFIG_DYNAMIC_DEBUG) 132 /* descriptor check is first to prevent flooding with "callbacks suppressed" */ 133 #define ibdev_dbg_ratelimited(ibdev, fmt, ...) \ 134 do { \ 135 static DEFINE_RATELIMIT_STATE(_rs, \ 136 DEFAULT_RATELIMIT_INTERVAL, \ 137 DEFAULT_RATELIMIT_BURST); \ 138 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \ 139 if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs)) \ 140 __dynamic_ibdev_dbg(&descriptor, ibdev, fmt, \ 141 ##__VA_ARGS__); \ 142 } while (0) 143 #else 144 __printf(2, 3) __cold 145 static inline 146 void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {} 147 #endif 148 149 union ib_gid { 150 u8 raw[16]; 151 struct { 152 __be64 subnet_prefix; 153 __be64 interface_id; 154 } global; 155 }; 156 157 extern union ib_gid zgid; 158 159 enum ib_gid_type { 160 /* If link layer is Ethernet, this is RoCE V1 */ 161 IB_GID_TYPE_IB = 0, 162 IB_GID_TYPE_ROCE = 0, 163 IB_GID_TYPE_ROCE_UDP_ENCAP = 1, 164 IB_GID_TYPE_SIZE 165 }; 166 167 #define ROCE_V2_UDP_DPORT 4791 168 struct ib_gid_attr { 169 struct net_device __rcu *ndev; 170 struct ib_device *device; 171 union ib_gid gid; 172 enum ib_gid_type gid_type; 173 u16 index; 174 u8 port_num; 175 }; 176 177 enum { 178 /* set the local administered indication */ 179 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2, 180 }; 181 182 enum rdma_transport_type { 183 RDMA_TRANSPORT_IB, 184 RDMA_TRANSPORT_IWARP, 185 RDMA_TRANSPORT_USNIC, 186 RDMA_TRANSPORT_USNIC_UDP, 187 RDMA_TRANSPORT_UNSPECIFIED, 188 }; 189 190 enum rdma_protocol_type { 191 RDMA_PROTOCOL_IB, 192 RDMA_PROTOCOL_IBOE, 193 RDMA_PROTOCOL_IWARP, 194 RDMA_PROTOCOL_USNIC_UDP 195 }; 196 197 __attribute_const__ enum rdma_transport_type 198 rdma_node_get_transport(unsigned int node_type); 199 200 enum rdma_network_type { 201 RDMA_NETWORK_IB, 202 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB, 203 RDMA_NETWORK_IPV4, 204 RDMA_NETWORK_IPV6 205 }; 206 207 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) 208 { 209 if (network_type == RDMA_NETWORK_IPV4 || 210 network_type == RDMA_NETWORK_IPV6) 211 return IB_GID_TYPE_ROCE_UDP_ENCAP; 212 213 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */ 214 return IB_GID_TYPE_IB; 215 } 216 217 static inline enum rdma_network_type 218 rdma_gid_attr_network_type(const struct ib_gid_attr *attr) 219 { 220 if (attr->gid_type == IB_GID_TYPE_IB) 221 return RDMA_NETWORK_IB; 222 223 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid)) 224 return RDMA_NETWORK_IPV4; 225 else 226 return RDMA_NETWORK_IPV6; 227 } 228 229 enum rdma_link_layer { 230 IB_LINK_LAYER_UNSPECIFIED, 231 IB_LINK_LAYER_INFINIBAND, 232 IB_LINK_LAYER_ETHERNET, 233 }; 234 235 enum ib_device_cap_flags { 236 IB_DEVICE_RESIZE_MAX_WR = (1 << 0), 237 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1), 238 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2), 239 IB_DEVICE_RAW_MULTI = (1 << 3), 240 IB_DEVICE_AUTO_PATH_MIG = (1 << 4), 241 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5), 242 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6), 243 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7), 244 IB_DEVICE_SHUTDOWN_PORT = (1 << 8), 245 /* Not in use, former INIT_TYPE = (1 << 9),*/ 246 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10), 247 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11), 248 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12), 249 IB_DEVICE_SRQ_RESIZE = (1 << 13), 250 IB_DEVICE_N_NOTIFY_CQ = (1 << 14), 251 252 /* 253 * This device supports a per-device lkey or stag that can be 254 * used without performing a memory registration for the local 255 * memory. Note that ULPs should never check this flag, but 256 * instead of use the local_dma_lkey flag in the ib_pd structure, 257 * which will always contain a usable lkey. 258 */ 259 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15), 260 /* Reserved, old SEND_W_INV = (1 << 16),*/ 261 IB_DEVICE_MEM_WINDOW = (1 << 17), 262 /* 263 * Devices should set IB_DEVICE_UD_IP_SUM if they support 264 * insertion of UDP and TCP checksum on outgoing UD IPoIB 265 * messages and can verify the validity of checksum for 266 * incoming messages. Setting this flag implies that the 267 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 268 */ 269 IB_DEVICE_UD_IP_CSUM = (1 << 18), 270 IB_DEVICE_UD_TSO = (1 << 19), 271 IB_DEVICE_XRC = (1 << 20), 272 273 /* 274 * This device supports the IB "base memory management extension", 275 * which includes support for fast registrations (IB_WR_REG_MR, 276 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should 277 * also be set by any iWarp device which must support FRs to comply 278 * to the iWarp verbs spec. iWarp devices also support the 279 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the 280 * stag. 281 */ 282 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21), 283 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22), 284 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23), 285 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24), 286 IB_DEVICE_RC_IP_CSUM = (1 << 25), 287 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */ 288 IB_DEVICE_RAW_IP_CSUM = (1 << 26), 289 /* 290 * Devices should set IB_DEVICE_CROSS_CHANNEL if they 291 * support execution of WQEs that involve synchronization 292 * of I/O operations with single completion queue managed 293 * by hardware. 294 */ 295 IB_DEVICE_CROSS_CHANNEL = (1 << 27), 296 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29), 297 IB_DEVICE_INTEGRITY_HANDOVER = (1 << 30), 298 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31), 299 IB_DEVICE_SG_GAPS_REG = (1ULL << 32), 300 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33), 301 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */ 302 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34), 303 IB_DEVICE_RDMA_NETDEV_OPA_VNIC = (1ULL << 35), 304 /* The device supports padding incoming writes to cacheline. */ 305 IB_DEVICE_PCI_WRITE_END_PADDING = (1ULL << 36), 306 IB_DEVICE_ALLOW_USER_UNREG = (1ULL << 37), 307 }; 308 309 enum ib_atomic_cap { 310 IB_ATOMIC_NONE, 311 IB_ATOMIC_HCA, 312 IB_ATOMIC_GLOB 313 }; 314 315 enum ib_odp_general_cap_bits { 316 IB_ODP_SUPPORT = 1 << 0, 317 IB_ODP_SUPPORT_IMPLICIT = 1 << 1, 318 }; 319 320 enum ib_odp_transport_cap_bits { 321 IB_ODP_SUPPORT_SEND = 1 << 0, 322 IB_ODP_SUPPORT_RECV = 1 << 1, 323 IB_ODP_SUPPORT_WRITE = 1 << 2, 324 IB_ODP_SUPPORT_READ = 1 << 3, 325 IB_ODP_SUPPORT_ATOMIC = 1 << 4, 326 IB_ODP_SUPPORT_SRQ_RECV = 1 << 5, 327 }; 328 329 struct ib_odp_caps { 330 uint64_t general_caps; 331 struct { 332 uint32_t rc_odp_caps; 333 uint32_t uc_odp_caps; 334 uint32_t ud_odp_caps; 335 uint32_t xrc_odp_caps; 336 } per_transport_caps; 337 }; 338 339 struct ib_rss_caps { 340 /* Corresponding bit will be set if qp type from 341 * 'enum ib_qp_type' is supported, e.g. 342 * supported_qpts |= 1 << IB_QPT_UD 343 */ 344 u32 supported_qpts; 345 u32 max_rwq_indirection_tables; 346 u32 max_rwq_indirection_table_size; 347 }; 348 349 enum ib_tm_cap_flags { 350 /* Support tag matching with rendezvous offload for RC transport */ 351 IB_TM_CAP_RNDV_RC = 1 << 0, 352 }; 353 354 struct ib_tm_caps { 355 /* Max size of RNDV header */ 356 u32 max_rndv_hdr_size; 357 /* Max number of entries in tag matching list */ 358 u32 max_num_tags; 359 /* From enum ib_tm_cap_flags */ 360 u32 flags; 361 /* Max number of outstanding list operations */ 362 u32 max_ops; 363 /* Max number of SGE in tag matching entry */ 364 u32 max_sge; 365 }; 366 367 struct ib_cq_init_attr { 368 unsigned int cqe; 369 u32 comp_vector; 370 u32 flags; 371 }; 372 373 enum ib_cq_attr_mask { 374 IB_CQ_MODERATE = 1 << 0, 375 }; 376 377 struct ib_cq_caps { 378 u16 max_cq_moderation_count; 379 u16 max_cq_moderation_period; 380 }; 381 382 struct ib_dm_mr_attr { 383 u64 length; 384 u64 offset; 385 u32 access_flags; 386 }; 387 388 struct ib_dm_alloc_attr { 389 u64 length; 390 u32 alignment; 391 u32 flags; 392 }; 393 394 struct ib_device_attr { 395 u64 fw_ver; 396 __be64 sys_image_guid; 397 u64 max_mr_size; 398 u64 page_size_cap; 399 u32 vendor_id; 400 u32 vendor_part_id; 401 u32 hw_ver; 402 int max_qp; 403 int max_qp_wr; 404 u64 device_cap_flags; 405 int max_send_sge; 406 int max_recv_sge; 407 int max_sge_rd; 408 int max_cq; 409 int max_cqe; 410 int max_mr; 411 int max_pd; 412 int max_qp_rd_atom; 413 int max_ee_rd_atom; 414 int max_res_rd_atom; 415 int max_qp_init_rd_atom; 416 int max_ee_init_rd_atom; 417 enum ib_atomic_cap atomic_cap; 418 enum ib_atomic_cap masked_atomic_cap; 419 int max_ee; 420 int max_rdd; 421 int max_mw; 422 int max_raw_ipv6_qp; 423 int max_raw_ethy_qp; 424 int max_mcast_grp; 425 int max_mcast_qp_attach; 426 int max_total_mcast_qp_attach; 427 int max_ah; 428 int max_fmr; 429 int max_map_per_fmr; 430 int max_srq; 431 int max_srq_wr; 432 int max_srq_sge; 433 unsigned int max_fast_reg_page_list_len; 434 unsigned int max_pi_fast_reg_page_list_len; 435 u16 max_pkeys; 436 u8 local_ca_ack_delay; 437 int sig_prot_cap; 438 int sig_guard_cap; 439 struct ib_odp_caps odp_caps; 440 uint64_t timestamp_mask; 441 uint64_t hca_core_clock; /* in KHZ */ 442 struct ib_rss_caps rss_caps; 443 u32 max_wq_type_rq; 444 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */ 445 struct ib_tm_caps tm_caps; 446 struct ib_cq_caps cq_caps; 447 u64 max_dm_size; 448 }; 449 450 enum ib_mtu { 451 IB_MTU_256 = 1, 452 IB_MTU_512 = 2, 453 IB_MTU_1024 = 3, 454 IB_MTU_2048 = 4, 455 IB_MTU_4096 = 5 456 }; 457 458 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 459 { 460 switch (mtu) { 461 case IB_MTU_256: return 256; 462 case IB_MTU_512: return 512; 463 case IB_MTU_1024: return 1024; 464 case IB_MTU_2048: return 2048; 465 case IB_MTU_4096: return 4096; 466 default: return -1; 467 } 468 } 469 470 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu) 471 { 472 if (mtu >= 4096) 473 return IB_MTU_4096; 474 else if (mtu >= 2048) 475 return IB_MTU_2048; 476 else if (mtu >= 1024) 477 return IB_MTU_1024; 478 else if (mtu >= 512) 479 return IB_MTU_512; 480 else 481 return IB_MTU_256; 482 } 483 484 enum ib_port_state { 485 IB_PORT_NOP = 0, 486 IB_PORT_DOWN = 1, 487 IB_PORT_INIT = 2, 488 IB_PORT_ARMED = 3, 489 IB_PORT_ACTIVE = 4, 490 IB_PORT_ACTIVE_DEFER = 5 491 }; 492 493 enum ib_port_phys_state { 494 IB_PORT_PHYS_STATE_SLEEP = 1, 495 IB_PORT_PHYS_STATE_POLLING = 2, 496 IB_PORT_PHYS_STATE_DISABLED = 3, 497 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4, 498 IB_PORT_PHYS_STATE_LINK_UP = 5, 499 IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6, 500 IB_PORT_PHYS_STATE_PHY_TEST = 7, 501 }; 502 503 enum ib_port_width { 504 IB_WIDTH_1X = 1, 505 IB_WIDTH_2X = 16, 506 IB_WIDTH_4X = 2, 507 IB_WIDTH_8X = 4, 508 IB_WIDTH_12X = 8 509 }; 510 511 static inline int ib_width_enum_to_int(enum ib_port_width width) 512 { 513 switch (width) { 514 case IB_WIDTH_1X: return 1; 515 case IB_WIDTH_2X: return 2; 516 case IB_WIDTH_4X: return 4; 517 case IB_WIDTH_8X: return 8; 518 case IB_WIDTH_12X: return 12; 519 default: return -1; 520 } 521 } 522 523 enum ib_port_speed { 524 IB_SPEED_SDR = 1, 525 IB_SPEED_DDR = 2, 526 IB_SPEED_QDR = 4, 527 IB_SPEED_FDR10 = 8, 528 IB_SPEED_FDR = 16, 529 IB_SPEED_EDR = 32, 530 IB_SPEED_HDR = 64 531 }; 532 533 /** 534 * struct rdma_hw_stats 535 * @lock - Mutex to protect parallel write access to lifespan and values 536 * of counters, which are 64bits and not guaranteeed to be written 537 * atomicaly on 32bits systems. 538 * @timestamp - Used by the core code to track when the last update was 539 * @lifespan - Used by the core code to determine how old the counters 540 * should be before being updated again. Stored in jiffies, defaults 541 * to 10 milliseconds, drivers can override the default be specifying 542 * their own value during their allocation routine. 543 * @name - Array of pointers to static names used for the counters in 544 * directory. 545 * @num_counters - How many hardware counters there are. If name is 546 * shorter than this number, a kernel oops will result. Driver authors 547 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters) 548 * in their code to prevent this. 549 * @value - Array of u64 counters that are accessed by the sysfs code and 550 * filled in by the drivers get_stats routine 551 */ 552 struct rdma_hw_stats { 553 struct mutex lock; /* Protect lifespan and values[] */ 554 unsigned long timestamp; 555 unsigned long lifespan; 556 const char * const *names; 557 int num_counters; 558 u64 value[]; 559 }; 560 561 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10 562 /** 563 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct 564 * for drivers. 565 * @names - Array of static const char * 566 * @num_counters - How many elements in array 567 * @lifespan - How many milliseconds between updates 568 */ 569 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 570 const char * const *names, int num_counters, 571 unsigned long lifespan) 572 { 573 struct rdma_hw_stats *stats; 574 575 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64), 576 GFP_KERNEL); 577 if (!stats) 578 return NULL; 579 stats->names = names; 580 stats->num_counters = num_counters; 581 stats->lifespan = msecs_to_jiffies(lifespan); 582 583 return stats; 584 } 585 586 587 /* Define bits for the various functionality this port needs to be supported by 588 * the core. 589 */ 590 /* Management 0x00000FFF */ 591 #define RDMA_CORE_CAP_IB_MAD 0x00000001 592 #define RDMA_CORE_CAP_IB_SMI 0x00000002 593 #define RDMA_CORE_CAP_IB_CM 0x00000004 594 #define RDMA_CORE_CAP_IW_CM 0x00000008 595 #define RDMA_CORE_CAP_IB_SA 0x00000010 596 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 597 598 /* Address format 0x000FF000 */ 599 #define RDMA_CORE_CAP_AF_IB 0x00001000 600 #define RDMA_CORE_CAP_ETH_AH 0x00002000 601 #define RDMA_CORE_CAP_OPA_AH 0x00004000 602 #define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000 603 604 /* Protocol 0xFFF00000 */ 605 #define RDMA_CORE_CAP_PROT_IB 0x00100000 606 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 607 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 608 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 609 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000 610 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000 611 612 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \ 613 | RDMA_CORE_CAP_PROT_ROCE \ 614 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP) 615 616 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 617 | RDMA_CORE_CAP_IB_MAD \ 618 | RDMA_CORE_CAP_IB_SMI \ 619 | RDMA_CORE_CAP_IB_CM \ 620 | RDMA_CORE_CAP_IB_SA \ 621 | RDMA_CORE_CAP_AF_IB) 622 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 623 | RDMA_CORE_CAP_IB_MAD \ 624 | RDMA_CORE_CAP_IB_CM \ 625 | RDMA_CORE_CAP_AF_IB \ 626 | RDMA_CORE_CAP_ETH_AH) 627 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ 628 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ 629 | RDMA_CORE_CAP_IB_MAD \ 630 | RDMA_CORE_CAP_IB_CM \ 631 | RDMA_CORE_CAP_AF_IB \ 632 | RDMA_CORE_CAP_ETH_AH) 633 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 634 | RDMA_CORE_CAP_IW_CM) 635 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 636 | RDMA_CORE_CAP_OPA_MAD) 637 638 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET) 639 640 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC) 641 642 struct ib_port_attr { 643 u64 subnet_prefix; 644 enum ib_port_state state; 645 enum ib_mtu max_mtu; 646 enum ib_mtu active_mtu; 647 int gid_tbl_len; 648 unsigned int ip_gids:1; 649 /* This is the value from PortInfo CapabilityMask, defined by IBA */ 650 u32 port_cap_flags; 651 u32 max_msg_sz; 652 u32 bad_pkey_cntr; 653 u32 qkey_viol_cntr; 654 u16 pkey_tbl_len; 655 u32 sm_lid; 656 u32 lid; 657 u8 lmc; 658 u8 max_vl_num; 659 u8 sm_sl; 660 u8 subnet_timeout; 661 u8 init_type_reply; 662 u8 active_width; 663 u8 active_speed; 664 u8 phys_state; 665 u16 port_cap_flags2; 666 }; 667 668 enum ib_device_modify_flags { 669 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 670 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 671 }; 672 673 #define IB_DEVICE_NODE_DESC_MAX 64 674 675 struct ib_device_modify { 676 u64 sys_image_guid; 677 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 678 }; 679 680 enum ib_port_modify_flags { 681 IB_PORT_SHUTDOWN = 1, 682 IB_PORT_INIT_TYPE = (1<<2), 683 IB_PORT_RESET_QKEY_CNTR = (1<<3), 684 IB_PORT_OPA_MASK_CHG = (1<<4) 685 }; 686 687 struct ib_port_modify { 688 u32 set_port_cap_mask; 689 u32 clr_port_cap_mask; 690 u8 init_type; 691 }; 692 693 enum ib_event_type { 694 IB_EVENT_CQ_ERR, 695 IB_EVENT_QP_FATAL, 696 IB_EVENT_QP_REQ_ERR, 697 IB_EVENT_QP_ACCESS_ERR, 698 IB_EVENT_COMM_EST, 699 IB_EVENT_SQ_DRAINED, 700 IB_EVENT_PATH_MIG, 701 IB_EVENT_PATH_MIG_ERR, 702 IB_EVENT_DEVICE_FATAL, 703 IB_EVENT_PORT_ACTIVE, 704 IB_EVENT_PORT_ERR, 705 IB_EVENT_LID_CHANGE, 706 IB_EVENT_PKEY_CHANGE, 707 IB_EVENT_SM_CHANGE, 708 IB_EVENT_SRQ_ERR, 709 IB_EVENT_SRQ_LIMIT_REACHED, 710 IB_EVENT_QP_LAST_WQE_REACHED, 711 IB_EVENT_CLIENT_REREGISTER, 712 IB_EVENT_GID_CHANGE, 713 IB_EVENT_WQ_FATAL, 714 }; 715 716 const char *__attribute_const__ ib_event_msg(enum ib_event_type event); 717 718 struct ib_event { 719 struct ib_device *device; 720 union { 721 struct ib_cq *cq; 722 struct ib_qp *qp; 723 struct ib_srq *srq; 724 struct ib_wq *wq; 725 u8 port_num; 726 } element; 727 enum ib_event_type event; 728 }; 729 730 struct ib_event_handler { 731 struct ib_device *device; 732 void (*handler)(struct ib_event_handler *, struct ib_event *); 733 struct list_head list; 734 }; 735 736 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 737 do { \ 738 (_ptr)->device = _device; \ 739 (_ptr)->handler = _handler; \ 740 INIT_LIST_HEAD(&(_ptr)->list); \ 741 } while (0) 742 743 struct ib_global_route { 744 const struct ib_gid_attr *sgid_attr; 745 union ib_gid dgid; 746 u32 flow_label; 747 u8 sgid_index; 748 u8 hop_limit; 749 u8 traffic_class; 750 }; 751 752 struct ib_grh { 753 __be32 version_tclass_flow; 754 __be16 paylen; 755 u8 next_hdr; 756 u8 hop_limit; 757 union ib_gid sgid; 758 union ib_gid dgid; 759 }; 760 761 union rdma_network_hdr { 762 struct ib_grh ibgrh; 763 struct { 764 /* The IB spec states that if it's IPv4, the header 765 * is located in the last 20 bytes of the header. 766 */ 767 u8 reserved[20]; 768 struct iphdr roce4grh; 769 }; 770 }; 771 772 #define IB_QPN_MASK 0xFFFFFF 773 774 enum { 775 IB_MULTICAST_QPN = 0xffffff 776 }; 777 778 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 779 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000) 780 781 enum ib_ah_flags { 782 IB_AH_GRH = 1 783 }; 784 785 enum ib_rate { 786 IB_RATE_PORT_CURRENT = 0, 787 IB_RATE_2_5_GBPS = 2, 788 IB_RATE_5_GBPS = 5, 789 IB_RATE_10_GBPS = 3, 790 IB_RATE_20_GBPS = 6, 791 IB_RATE_30_GBPS = 4, 792 IB_RATE_40_GBPS = 7, 793 IB_RATE_60_GBPS = 8, 794 IB_RATE_80_GBPS = 9, 795 IB_RATE_120_GBPS = 10, 796 IB_RATE_14_GBPS = 11, 797 IB_RATE_56_GBPS = 12, 798 IB_RATE_112_GBPS = 13, 799 IB_RATE_168_GBPS = 14, 800 IB_RATE_25_GBPS = 15, 801 IB_RATE_100_GBPS = 16, 802 IB_RATE_200_GBPS = 17, 803 IB_RATE_300_GBPS = 18, 804 IB_RATE_28_GBPS = 19, 805 IB_RATE_50_GBPS = 20, 806 IB_RATE_400_GBPS = 21, 807 IB_RATE_600_GBPS = 22, 808 }; 809 810 /** 811 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 812 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 813 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 814 * @rate: rate to convert. 815 */ 816 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 817 818 /** 819 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 820 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 821 * @rate: rate to convert. 822 */ 823 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 824 825 826 /** 827 * enum ib_mr_type - memory region type 828 * @IB_MR_TYPE_MEM_REG: memory region that is used for 829 * normal registration 830 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to 831 * register any arbitrary sg lists (without 832 * the normal mr constraints - see 833 * ib_map_mr_sg) 834 * @IB_MR_TYPE_DM: memory region that is used for device 835 * memory registration 836 * @IB_MR_TYPE_USER: memory region that is used for the user-space 837 * application 838 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations 839 * without address translations (VA=PA) 840 * @IB_MR_TYPE_INTEGRITY: memory region that is used for 841 * data integrity operations 842 */ 843 enum ib_mr_type { 844 IB_MR_TYPE_MEM_REG, 845 IB_MR_TYPE_SG_GAPS, 846 IB_MR_TYPE_DM, 847 IB_MR_TYPE_USER, 848 IB_MR_TYPE_DMA, 849 IB_MR_TYPE_INTEGRITY, 850 }; 851 852 enum ib_mr_status_check { 853 IB_MR_CHECK_SIG_STATUS = 1, 854 }; 855 856 /** 857 * struct ib_mr_status - Memory region status container 858 * 859 * @fail_status: Bitmask of MR checks status. For each 860 * failed check a corresponding status bit is set. 861 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 862 * failure. 863 */ 864 struct ib_mr_status { 865 u32 fail_status; 866 struct ib_sig_err sig_err; 867 }; 868 869 /** 870 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 871 * enum. 872 * @mult: multiple to convert. 873 */ 874 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 875 876 enum rdma_ah_attr_type { 877 RDMA_AH_ATTR_TYPE_UNDEFINED, 878 RDMA_AH_ATTR_TYPE_IB, 879 RDMA_AH_ATTR_TYPE_ROCE, 880 RDMA_AH_ATTR_TYPE_OPA, 881 }; 882 883 struct ib_ah_attr { 884 u16 dlid; 885 u8 src_path_bits; 886 }; 887 888 struct roce_ah_attr { 889 u8 dmac[ETH_ALEN]; 890 }; 891 892 struct opa_ah_attr { 893 u32 dlid; 894 u8 src_path_bits; 895 bool make_grd; 896 }; 897 898 struct rdma_ah_attr { 899 struct ib_global_route grh; 900 u8 sl; 901 u8 static_rate; 902 u8 port_num; 903 u8 ah_flags; 904 enum rdma_ah_attr_type type; 905 union { 906 struct ib_ah_attr ib; 907 struct roce_ah_attr roce; 908 struct opa_ah_attr opa; 909 }; 910 }; 911 912 enum ib_wc_status { 913 IB_WC_SUCCESS, 914 IB_WC_LOC_LEN_ERR, 915 IB_WC_LOC_QP_OP_ERR, 916 IB_WC_LOC_EEC_OP_ERR, 917 IB_WC_LOC_PROT_ERR, 918 IB_WC_WR_FLUSH_ERR, 919 IB_WC_MW_BIND_ERR, 920 IB_WC_BAD_RESP_ERR, 921 IB_WC_LOC_ACCESS_ERR, 922 IB_WC_REM_INV_REQ_ERR, 923 IB_WC_REM_ACCESS_ERR, 924 IB_WC_REM_OP_ERR, 925 IB_WC_RETRY_EXC_ERR, 926 IB_WC_RNR_RETRY_EXC_ERR, 927 IB_WC_LOC_RDD_VIOL_ERR, 928 IB_WC_REM_INV_RD_REQ_ERR, 929 IB_WC_REM_ABORT_ERR, 930 IB_WC_INV_EECN_ERR, 931 IB_WC_INV_EEC_STATE_ERR, 932 IB_WC_FATAL_ERR, 933 IB_WC_RESP_TIMEOUT_ERR, 934 IB_WC_GENERAL_ERR 935 }; 936 937 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); 938 939 enum ib_wc_opcode { 940 IB_WC_SEND, 941 IB_WC_RDMA_WRITE, 942 IB_WC_RDMA_READ, 943 IB_WC_COMP_SWAP, 944 IB_WC_FETCH_ADD, 945 IB_WC_LSO, 946 IB_WC_LOCAL_INV, 947 IB_WC_REG_MR, 948 IB_WC_MASKED_COMP_SWAP, 949 IB_WC_MASKED_FETCH_ADD, 950 /* 951 * Set value of IB_WC_RECV so consumers can test if a completion is a 952 * receive by testing (opcode & IB_WC_RECV). 953 */ 954 IB_WC_RECV = 1 << 7, 955 IB_WC_RECV_RDMA_WITH_IMM 956 }; 957 958 enum ib_wc_flags { 959 IB_WC_GRH = 1, 960 IB_WC_WITH_IMM = (1<<1), 961 IB_WC_WITH_INVALIDATE = (1<<2), 962 IB_WC_IP_CSUM_OK = (1<<3), 963 IB_WC_WITH_SMAC = (1<<4), 964 IB_WC_WITH_VLAN = (1<<5), 965 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), 966 }; 967 968 struct ib_wc { 969 union { 970 u64 wr_id; 971 struct ib_cqe *wr_cqe; 972 }; 973 enum ib_wc_status status; 974 enum ib_wc_opcode opcode; 975 u32 vendor_err; 976 u32 byte_len; 977 struct ib_qp *qp; 978 union { 979 __be32 imm_data; 980 u32 invalidate_rkey; 981 } ex; 982 u32 src_qp; 983 u32 slid; 984 int wc_flags; 985 u16 pkey_index; 986 u8 sl; 987 u8 dlid_path_bits; 988 u8 port_num; /* valid only for DR SMPs on switches */ 989 u8 smac[ETH_ALEN]; 990 u16 vlan_id; 991 u8 network_hdr_type; 992 }; 993 994 enum ib_cq_notify_flags { 995 IB_CQ_SOLICITED = 1 << 0, 996 IB_CQ_NEXT_COMP = 1 << 1, 997 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 998 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 999 }; 1000 1001 enum ib_srq_type { 1002 IB_SRQT_BASIC, 1003 IB_SRQT_XRC, 1004 IB_SRQT_TM, 1005 }; 1006 1007 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type) 1008 { 1009 return srq_type == IB_SRQT_XRC || 1010 srq_type == IB_SRQT_TM; 1011 } 1012 1013 enum ib_srq_attr_mask { 1014 IB_SRQ_MAX_WR = 1 << 0, 1015 IB_SRQ_LIMIT = 1 << 1, 1016 }; 1017 1018 struct ib_srq_attr { 1019 u32 max_wr; 1020 u32 max_sge; 1021 u32 srq_limit; 1022 }; 1023 1024 struct ib_srq_init_attr { 1025 void (*event_handler)(struct ib_event *, void *); 1026 void *srq_context; 1027 struct ib_srq_attr attr; 1028 enum ib_srq_type srq_type; 1029 1030 struct { 1031 struct ib_cq *cq; 1032 union { 1033 struct { 1034 struct ib_xrcd *xrcd; 1035 } xrc; 1036 1037 struct { 1038 u32 max_num_tags; 1039 } tag_matching; 1040 }; 1041 } ext; 1042 }; 1043 1044 struct ib_qp_cap { 1045 u32 max_send_wr; 1046 u32 max_recv_wr; 1047 u32 max_send_sge; 1048 u32 max_recv_sge; 1049 u32 max_inline_data; 1050 1051 /* 1052 * Maximum number of rdma_rw_ctx structures in flight at a time. 1053 * ib_create_qp() will calculate the right amount of neededed WRs 1054 * and MRs based on this. 1055 */ 1056 u32 max_rdma_ctxs; 1057 }; 1058 1059 enum ib_sig_type { 1060 IB_SIGNAL_ALL_WR, 1061 IB_SIGNAL_REQ_WR 1062 }; 1063 1064 enum ib_qp_type { 1065 /* 1066 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 1067 * here (and in that order) since the MAD layer uses them as 1068 * indices into a 2-entry table. 1069 */ 1070 IB_QPT_SMI, 1071 IB_QPT_GSI, 1072 1073 IB_QPT_RC, 1074 IB_QPT_UC, 1075 IB_QPT_UD, 1076 IB_QPT_RAW_IPV6, 1077 IB_QPT_RAW_ETHERTYPE, 1078 IB_QPT_RAW_PACKET = 8, 1079 IB_QPT_XRC_INI = 9, 1080 IB_QPT_XRC_TGT, 1081 IB_QPT_MAX, 1082 IB_QPT_DRIVER = 0xFF, 1083 /* Reserve a range for qp types internal to the low level driver. 1084 * These qp types will not be visible at the IB core layer, so the 1085 * IB_QPT_MAX usages should not be affected in the core layer 1086 */ 1087 IB_QPT_RESERVED1 = 0x1000, 1088 IB_QPT_RESERVED2, 1089 IB_QPT_RESERVED3, 1090 IB_QPT_RESERVED4, 1091 IB_QPT_RESERVED5, 1092 IB_QPT_RESERVED6, 1093 IB_QPT_RESERVED7, 1094 IB_QPT_RESERVED8, 1095 IB_QPT_RESERVED9, 1096 IB_QPT_RESERVED10, 1097 }; 1098 1099 enum ib_qp_create_flags { 1100 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 1101 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1, 1102 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 1103 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 1104 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 1105 IB_QP_CREATE_NETIF_QP = 1 << 5, 1106 IB_QP_CREATE_INTEGRITY_EN = 1 << 6, 1107 /* FREE = 1 << 7, */ 1108 IB_QP_CREATE_SCATTER_FCS = 1 << 8, 1109 IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9, 1110 IB_QP_CREATE_SOURCE_QPN = 1 << 10, 1111 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1 << 11, 1112 /* reserve bits 26-31 for low level drivers' internal use */ 1113 IB_QP_CREATE_RESERVED_START = 1 << 26, 1114 IB_QP_CREATE_RESERVED_END = 1 << 31, 1115 }; 1116 1117 /* 1118 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 1119 * callback to destroy the passed in QP. 1120 */ 1121 1122 struct ib_qp_init_attr { 1123 /* Consumer's event_handler callback must not block */ 1124 void (*event_handler)(struct ib_event *, void *); 1125 1126 void *qp_context; 1127 struct ib_cq *send_cq; 1128 struct ib_cq *recv_cq; 1129 struct ib_srq *srq; 1130 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1131 struct ib_qp_cap cap; 1132 enum ib_sig_type sq_sig_type; 1133 enum ib_qp_type qp_type; 1134 u32 create_flags; 1135 1136 /* 1137 * Only needed for special QP types, or when using the RW API. 1138 */ 1139 u8 port_num; 1140 struct ib_rwq_ind_table *rwq_ind_tbl; 1141 u32 source_qpn; 1142 }; 1143 1144 struct ib_qp_open_attr { 1145 void (*event_handler)(struct ib_event *, void *); 1146 void *qp_context; 1147 u32 qp_num; 1148 enum ib_qp_type qp_type; 1149 }; 1150 1151 enum ib_rnr_timeout { 1152 IB_RNR_TIMER_655_36 = 0, 1153 IB_RNR_TIMER_000_01 = 1, 1154 IB_RNR_TIMER_000_02 = 2, 1155 IB_RNR_TIMER_000_03 = 3, 1156 IB_RNR_TIMER_000_04 = 4, 1157 IB_RNR_TIMER_000_06 = 5, 1158 IB_RNR_TIMER_000_08 = 6, 1159 IB_RNR_TIMER_000_12 = 7, 1160 IB_RNR_TIMER_000_16 = 8, 1161 IB_RNR_TIMER_000_24 = 9, 1162 IB_RNR_TIMER_000_32 = 10, 1163 IB_RNR_TIMER_000_48 = 11, 1164 IB_RNR_TIMER_000_64 = 12, 1165 IB_RNR_TIMER_000_96 = 13, 1166 IB_RNR_TIMER_001_28 = 14, 1167 IB_RNR_TIMER_001_92 = 15, 1168 IB_RNR_TIMER_002_56 = 16, 1169 IB_RNR_TIMER_003_84 = 17, 1170 IB_RNR_TIMER_005_12 = 18, 1171 IB_RNR_TIMER_007_68 = 19, 1172 IB_RNR_TIMER_010_24 = 20, 1173 IB_RNR_TIMER_015_36 = 21, 1174 IB_RNR_TIMER_020_48 = 22, 1175 IB_RNR_TIMER_030_72 = 23, 1176 IB_RNR_TIMER_040_96 = 24, 1177 IB_RNR_TIMER_061_44 = 25, 1178 IB_RNR_TIMER_081_92 = 26, 1179 IB_RNR_TIMER_122_88 = 27, 1180 IB_RNR_TIMER_163_84 = 28, 1181 IB_RNR_TIMER_245_76 = 29, 1182 IB_RNR_TIMER_327_68 = 30, 1183 IB_RNR_TIMER_491_52 = 31 1184 }; 1185 1186 enum ib_qp_attr_mask { 1187 IB_QP_STATE = 1, 1188 IB_QP_CUR_STATE = (1<<1), 1189 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 1190 IB_QP_ACCESS_FLAGS = (1<<3), 1191 IB_QP_PKEY_INDEX = (1<<4), 1192 IB_QP_PORT = (1<<5), 1193 IB_QP_QKEY = (1<<6), 1194 IB_QP_AV = (1<<7), 1195 IB_QP_PATH_MTU = (1<<8), 1196 IB_QP_TIMEOUT = (1<<9), 1197 IB_QP_RETRY_CNT = (1<<10), 1198 IB_QP_RNR_RETRY = (1<<11), 1199 IB_QP_RQ_PSN = (1<<12), 1200 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 1201 IB_QP_ALT_PATH = (1<<14), 1202 IB_QP_MIN_RNR_TIMER = (1<<15), 1203 IB_QP_SQ_PSN = (1<<16), 1204 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 1205 IB_QP_PATH_MIG_STATE = (1<<18), 1206 IB_QP_CAP = (1<<19), 1207 IB_QP_DEST_QPN = (1<<20), 1208 IB_QP_RESERVED1 = (1<<21), 1209 IB_QP_RESERVED2 = (1<<22), 1210 IB_QP_RESERVED3 = (1<<23), 1211 IB_QP_RESERVED4 = (1<<24), 1212 IB_QP_RATE_LIMIT = (1<<25), 1213 }; 1214 1215 enum ib_qp_state { 1216 IB_QPS_RESET, 1217 IB_QPS_INIT, 1218 IB_QPS_RTR, 1219 IB_QPS_RTS, 1220 IB_QPS_SQD, 1221 IB_QPS_SQE, 1222 IB_QPS_ERR 1223 }; 1224 1225 enum ib_mig_state { 1226 IB_MIG_MIGRATED, 1227 IB_MIG_REARM, 1228 IB_MIG_ARMED 1229 }; 1230 1231 enum ib_mw_type { 1232 IB_MW_TYPE_1 = 1, 1233 IB_MW_TYPE_2 = 2 1234 }; 1235 1236 struct ib_qp_attr { 1237 enum ib_qp_state qp_state; 1238 enum ib_qp_state cur_qp_state; 1239 enum ib_mtu path_mtu; 1240 enum ib_mig_state path_mig_state; 1241 u32 qkey; 1242 u32 rq_psn; 1243 u32 sq_psn; 1244 u32 dest_qp_num; 1245 int qp_access_flags; 1246 struct ib_qp_cap cap; 1247 struct rdma_ah_attr ah_attr; 1248 struct rdma_ah_attr alt_ah_attr; 1249 u16 pkey_index; 1250 u16 alt_pkey_index; 1251 u8 en_sqd_async_notify; 1252 u8 sq_draining; 1253 u8 max_rd_atomic; 1254 u8 max_dest_rd_atomic; 1255 u8 min_rnr_timer; 1256 u8 port_num; 1257 u8 timeout; 1258 u8 retry_cnt; 1259 u8 rnr_retry; 1260 u8 alt_port_num; 1261 u8 alt_timeout; 1262 u32 rate_limit; 1263 }; 1264 1265 enum ib_wr_opcode { 1266 /* These are shared with userspace */ 1267 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE, 1268 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM, 1269 IB_WR_SEND = IB_UVERBS_WR_SEND, 1270 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM, 1271 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ, 1272 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP, 1273 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD, 1274 IB_WR_LSO = IB_UVERBS_WR_TSO, 1275 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV, 1276 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV, 1277 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV, 1278 IB_WR_MASKED_ATOMIC_CMP_AND_SWP = 1279 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP, 1280 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD = 1281 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1282 1283 /* These are kernel only and can not be issued by userspace */ 1284 IB_WR_REG_MR = 0x20, 1285 IB_WR_REG_MR_INTEGRITY, 1286 1287 /* reserve values for low level drivers' internal use. 1288 * These values will not be used at all in the ib core layer. 1289 */ 1290 IB_WR_RESERVED1 = 0xf0, 1291 IB_WR_RESERVED2, 1292 IB_WR_RESERVED3, 1293 IB_WR_RESERVED4, 1294 IB_WR_RESERVED5, 1295 IB_WR_RESERVED6, 1296 IB_WR_RESERVED7, 1297 IB_WR_RESERVED8, 1298 IB_WR_RESERVED9, 1299 IB_WR_RESERVED10, 1300 }; 1301 1302 enum ib_send_flags { 1303 IB_SEND_FENCE = 1, 1304 IB_SEND_SIGNALED = (1<<1), 1305 IB_SEND_SOLICITED = (1<<2), 1306 IB_SEND_INLINE = (1<<3), 1307 IB_SEND_IP_CSUM = (1<<4), 1308 1309 /* reserve bits 26-31 for low level drivers' internal use */ 1310 IB_SEND_RESERVED_START = (1 << 26), 1311 IB_SEND_RESERVED_END = (1 << 31), 1312 }; 1313 1314 struct ib_sge { 1315 u64 addr; 1316 u32 length; 1317 u32 lkey; 1318 }; 1319 1320 struct ib_cqe { 1321 void (*done)(struct ib_cq *cq, struct ib_wc *wc); 1322 }; 1323 1324 struct ib_send_wr { 1325 struct ib_send_wr *next; 1326 union { 1327 u64 wr_id; 1328 struct ib_cqe *wr_cqe; 1329 }; 1330 struct ib_sge *sg_list; 1331 int num_sge; 1332 enum ib_wr_opcode opcode; 1333 int send_flags; 1334 union { 1335 __be32 imm_data; 1336 u32 invalidate_rkey; 1337 } ex; 1338 }; 1339 1340 struct ib_rdma_wr { 1341 struct ib_send_wr wr; 1342 u64 remote_addr; 1343 u32 rkey; 1344 }; 1345 1346 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr) 1347 { 1348 return container_of(wr, struct ib_rdma_wr, wr); 1349 } 1350 1351 struct ib_atomic_wr { 1352 struct ib_send_wr wr; 1353 u64 remote_addr; 1354 u64 compare_add; 1355 u64 swap; 1356 u64 compare_add_mask; 1357 u64 swap_mask; 1358 u32 rkey; 1359 }; 1360 1361 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr) 1362 { 1363 return container_of(wr, struct ib_atomic_wr, wr); 1364 } 1365 1366 struct ib_ud_wr { 1367 struct ib_send_wr wr; 1368 struct ib_ah *ah; 1369 void *header; 1370 int hlen; 1371 int mss; 1372 u32 remote_qpn; 1373 u32 remote_qkey; 1374 u16 pkey_index; /* valid for GSI only */ 1375 u8 port_num; /* valid for DR SMPs on switch only */ 1376 }; 1377 1378 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr) 1379 { 1380 return container_of(wr, struct ib_ud_wr, wr); 1381 } 1382 1383 struct ib_reg_wr { 1384 struct ib_send_wr wr; 1385 struct ib_mr *mr; 1386 u32 key; 1387 int access; 1388 }; 1389 1390 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr) 1391 { 1392 return container_of(wr, struct ib_reg_wr, wr); 1393 } 1394 1395 struct ib_recv_wr { 1396 struct ib_recv_wr *next; 1397 union { 1398 u64 wr_id; 1399 struct ib_cqe *wr_cqe; 1400 }; 1401 struct ib_sge *sg_list; 1402 int num_sge; 1403 }; 1404 1405 enum ib_access_flags { 1406 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE, 1407 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE, 1408 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ, 1409 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC, 1410 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND, 1411 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED, 1412 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND, 1413 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB, 1414 1415 IB_ACCESS_SUPPORTED = ((IB_ACCESS_HUGETLB << 1) - 1) 1416 }; 1417 1418 /* 1419 * XXX: these are apparently used for ->rereg_user_mr, no idea why they 1420 * are hidden here instead of a uapi header! 1421 */ 1422 enum ib_mr_rereg_flags { 1423 IB_MR_REREG_TRANS = 1, 1424 IB_MR_REREG_PD = (1<<1), 1425 IB_MR_REREG_ACCESS = (1<<2), 1426 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1427 }; 1428 1429 struct ib_fmr_attr { 1430 int max_pages; 1431 int max_maps; 1432 u8 page_shift; 1433 }; 1434 1435 struct ib_umem; 1436 1437 enum rdma_remove_reason { 1438 /* 1439 * Userspace requested uobject deletion or initial try 1440 * to remove uobject via cleanup. Call could fail 1441 */ 1442 RDMA_REMOVE_DESTROY, 1443 /* Context deletion. This call should delete the actual object itself */ 1444 RDMA_REMOVE_CLOSE, 1445 /* Driver is being hot-unplugged. This call should delete the actual object itself */ 1446 RDMA_REMOVE_DRIVER_REMOVE, 1447 /* uobj is being cleaned-up before being committed */ 1448 RDMA_REMOVE_ABORT, 1449 }; 1450 1451 struct ib_rdmacg_object { 1452 #ifdef CONFIG_CGROUP_RDMA 1453 struct rdma_cgroup *cg; /* owner rdma cgroup */ 1454 #endif 1455 }; 1456 1457 struct ib_ucontext { 1458 struct ib_device *device; 1459 struct ib_uverbs_file *ufile; 1460 /* 1461 * 'closing' can be read by the driver only during a destroy callback, 1462 * it is set when we are closing the file descriptor and indicates 1463 * that mm_sem may be locked. 1464 */ 1465 bool closing; 1466 1467 bool cleanup_retryable; 1468 1469 struct ib_rdmacg_object cg_obj; 1470 /* 1471 * Implementation details of the RDMA core, don't use in drivers: 1472 */ 1473 struct rdma_restrack_entry res; 1474 }; 1475 1476 struct ib_uobject { 1477 u64 user_handle; /* handle given to us by userspace */ 1478 /* ufile & ucontext owning this object */ 1479 struct ib_uverbs_file *ufile; 1480 /* FIXME, save memory: ufile->context == context */ 1481 struct ib_ucontext *context; /* associated user context */ 1482 void *object; /* containing object */ 1483 struct list_head list; /* link to context's list */ 1484 struct ib_rdmacg_object cg_obj; /* rdmacg object */ 1485 int id; /* index into kernel idr */ 1486 struct kref ref; 1487 atomic_t usecnt; /* protects exclusive access */ 1488 struct rcu_head rcu; /* kfree_rcu() overhead */ 1489 1490 const struct uverbs_api_object *uapi_object; 1491 }; 1492 1493 struct ib_udata { 1494 const void __user *inbuf; 1495 void __user *outbuf; 1496 size_t inlen; 1497 size_t outlen; 1498 }; 1499 1500 struct ib_pd { 1501 u32 local_dma_lkey; 1502 u32 flags; 1503 struct ib_device *device; 1504 struct ib_uobject *uobject; 1505 atomic_t usecnt; /* count all resources */ 1506 1507 u32 unsafe_global_rkey; 1508 1509 /* 1510 * Implementation details of the RDMA core, don't use in drivers: 1511 */ 1512 struct ib_mr *__internal_mr; 1513 struct rdma_restrack_entry res; 1514 }; 1515 1516 struct ib_xrcd { 1517 struct ib_device *device; 1518 atomic_t usecnt; /* count all exposed resources */ 1519 struct inode *inode; 1520 1521 struct mutex tgt_qp_mutex; 1522 struct list_head tgt_qp_list; 1523 }; 1524 1525 struct ib_ah { 1526 struct ib_device *device; 1527 struct ib_pd *pd; 1528 struct ib_uobject *uobject; 1529 const struct ib_gid_attr *sgid_attr; 1530 enum rdma_ah_attr_type type; 1531 }; 1532 1533 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1534 1535 enum ib_poll_context { 1536 IB_POLL_DIRECT, /* caller context, no hw completions */ 1537 IB_POLL_SOFTIRQ, /* poll from softirq context */ 1538 IB_POLL_WORKQUEUE, /* poll from workqueue */ 1539 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */ 1540 }; 1541 1542 struct ib_cq { 1543 struct ib_device *device; 1544 struct ib_uobject *uobject; 1545 ib_comp_handler comp_handler; 1546 void (*event_handler)(struct ib_event *, void *); 1547 void *cq_context; 1548 int cqe; 1549 atomic_t usecnt; /* count number of work queues */ 1550 enum ib_poll_context poll_ctx; 1551 struct ib_wc *wc; 1552 union { 1553 struct irq_poll iop; 1554 struct work_struct work; 1555 }; 1556 struct workqueue_struct *comp_wq; 1557 struct dim *dim; 1558 /* 1559 * Implementation details of the RDMA core, don't use in drivers: 1560 */ 1561 struct rdma_restrack_entry res; 1562 }; 1563 1564 struct ib_srq { 1565 struct ib_device *device; 1566 struct ib_pd *pd; 1567 struct ib_uobject *uobject; 1568 void (*event_handler)(struct ib_event *, void *); 1569 void *srq_context; 1570 enum ib_srq_type srq_type; 1571 atomic_t usecnt; 1572 1573 struct { 1574 struct ib_cq *cq; 1575 union { 1576 struct { 1577 struct ib_xrcd *xrcd; 1578 u32 srq_num; 1579 } xrc; 1580 }; 1581 } ext; 1582 }; 1583 1584 enum ib_raw_packet_caps { 1585 /* Strip cvlan from incoming packet and report it in the matching work 1586 * completion is supported. 1587 */ 1588 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0), 1589 /* Scatter FCS field of an incoming packet to host memory is supported. 1590 */ 1591 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1), 1592 /* Checksum offloads are supported (for both send and receive). */ 1593 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2), 1594 /* When a packet is received for an RQ with no receive WQEs, the 1595 * packet processing is delayed. 1596 */ 1597 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3), 1598 }; 1599 1600 enum ib_wq_type { 1601 IB_WQT_RQ 1602 }; 1603 1604 enum ib_wq_state { 1605 IB_WQS_RESET, 1606 IB_WQS_RDY, 1607 IB_WQS_ERR 1608 }; 1609 1610 struct ib_wq { 1611 struct ib_device *device; 1612 struct ib_uobject *uobject; 1613 void *wq_context; 1614 void (*event_handler)(struct ib_event *, void *); 1615 struct ib_pd *pd; 1616 struct ib_cq *cq; 1617 u32 wq_num; 1618 enum ib_wq_state state; 1619 enum ib_wq_type wq_type; 1620 atomic_t usecnt; 1621 }; 1622 1623 enum ib_wq_flags { 1624 IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0, 1625 IB_WQ_FLAGS_SCATTER_FCS = 1 << 1, 1626 IB_WQ_FLAGS_DELAY_DROP = 1 << 2, 1627 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3, 1628 }; 1629 1630 struct ib_wq_init_attr { 1631 void *wq_context; 1632 enum ib_wq_type wq_type; 1633 u32 max_wr; 1634 u32 max_sge; 1635 struct ib_cq *cq; 1636 void (*event_handler)(struct ib_event *, void *); 1637 u32 create_flags; /* Use enum ib_wq_flags */ 1638 }; 1639 1640 enum ib_wq_attr_mask { 1641 IB_WQ_STATE = 1 << 0, 1642 IB_WQ_CUR_STATE = 1 << 1, 1643 IB_WQ_FLAGS = 1 << 2, 1644 }; 1645 1646 struct ib_wq_attr { 1647 enum ib_wq_state wq_state; 1648 enum ib_wq_state curr_wq_state; 1649 u32 flags; /* Use enum ib_wq_flags */ 1650 u32 flags_mask; /* Use enum ib_wq_flags */ 1651 }; 1652 1653 struct ib_rwq_ind_table { 1654 struct ib_device *device; 1655 struct ib_uobject *uobject; 1656 atomic_t usecnt; 1657 u32 ind_tbl_num; 1658 u32 log_ind_tbl_size; 1659 struct ib_wq **ind_tbl; 1660 }; 1661 1662 struct ib_rwq_ind_table_init_attr { 1663 u32 log_ind_tbl_size; 1664 /* Each entry is a pointer to Receive Work Queue */ 1665 struct ib_wq **ind_tbl; 1666 }; 1667 1668 enum port_pkey_state { 1669 IB_PORT_PKEY_NOT_VALID = 0, 1670 IB_PORT_PKEY_VALID = 1, 1671 IB_PORT_PKEY_LISTED = 2, 1672 }; 1673 1674 struct ib_qp_security; 1675 1676 struct ib_port_pkey { 1677 enum port_pkey_state state; 1678 u16 pkey_index; 1679 u8 port_num; 1680 struct list_head qp_list; 1681 struct list_head to_error_list; 1682 struct ib_qp_security *sec; 1683 }; 1684 1685 struct ib_ports_pkeys { 1686 struct ib_port_pkey main; 1687 struct ib_port_pkey alt; 1688 }; 1689 1690 struct ib_qp_security { 1691 struct ib_qp *qp; 1692 struct ib_device *dev; 1693 /* Hold this mutex when changing port and pkey settings. */ 1694 struct mutex mutex; 1695 struct ib_ports_pkeys *ports_pkeys; 1696 /* A list of all open shared QP handles. Required to enforce security 1697 * properly for all users of a shared QP. 1698 */ 1699 struct list_head shared_qp_list; 1700 void *security; 1701 bool destroying; 1702 atomic_t error_list_count; 1703 struct completion error_complete; 1704 int error_comps_pending; 1705 }; 1706 1707 /* 1708 * @max_write_sge: Maximum SGE elements per RDMA WRITE request. 1709 * @max_read_sge: Maximum SGE elements per RDMA READ request. 1710 */ 1711 struct ib_qp { 1712 struct ib_device *device; 1713 struct ib_pd *pd; 1714 struct ib_cq *send_cq; 1715 struct ib_cq *recv_cq; 1716 spinlock_t mr_lock; 1717 int mrs_used; 1718 struct list_head rdma_mrs; 1719 struct list_head sig_mrs; 1720 struct ib_srq *srq; 1721 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1722 struct list_head xrcd_list; 1723 1724 /* count times opened, mcast attaches, flow attaches */ 1725 atomic_t usecnt; 1726 struct list_head open_list; 1727 struct ib_qp *real_qp; 1728 struct ib_uobject *uobject; 1729 void (*event_handler)(struct ib_event *, void *); 1730 void *qp_context; 1731 /* sgid_attrs associated with the AV's */ 1732 const struct ib_gid_attr *av_sgid_attr; 1733 const struct ib_gid_attr *alt_path_sgid_attr; 1734 u32 qp_num; 1735 u32 max_write_sge; 1736 u32 max_read_sge; 1737 enum ib_qp_type qp_type; 1738 struct ib_rwq_ind_table *rwq_ind_tbl; 1739 struct ib_qp_security *qp_sec; 1740 u8 port; 1741 1742 bool integrity_en; 1743 /* 1744 * Implementation details of the RDMA core, don't use in drivers: 1745 */ 1746 struct rdma_restrack_entry res; 1747 1748 /* The counter the qp is bind to */ 1749 struct rdma_counter *counter; 1750 }; 1751 1752 struct ib_dm { 1753 struct ib_device *device; 1754 u32 length; 1755 u32 flags; 1756 struct ib_uobject *uobject; 1757 atomic_t usecnt; 1758 }; 1759 1760 struct ib_mr { 1761 struct ib_device *device; 1762 struct ib_pd *pd; 1763 u32 lkey; 1764 u32 rkey; 1765 u64 iova; 1766 u64 length; 1767 unsigned int page_size; 1768 enum ib_mr_type type; 1769 bool need_inval; 1770 union { 1771 struct ib_uobject *uobject; /* user */ 1772 struct list_head qp_entry; /* FR */ 1773 }; 1774 1775 struct ib_dm *dm; 1776 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */ 1777 /* 1778 * Implementation details of the RDMA core, don't use in drivers: 1779 */ 1780 struct rdma_restrack_entry res; 1781 }; 1782 1783 struct ib_mw { 1784 struct ib_device *device; 1785 struct ib_pd *pd; 1786 struct ib_uobject *uobject; 1787 u32 rkey; 1788 enum ib_mw_type type; 1789 }; 1790 1791 struct ib_fmr { 1792 struct ib_device *device; 1793 struct ib_pd *pd; 1794 struct list_head list; 1795 u32 lkey; 1796 u32 rkey; 1797 }; 1798 1799 /* Supported steering options */ 1800 enum ib_flow_attr_type { 1801 /* steering according to rule specifications */ 1802 IB_FLOW_ATTR_NORMAL = 0x0, 1803 /* default unicast and multicast rule - 1804 * receive all Eth traffic which isn't steered to any QP 1805 */ 1806 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1807 /* default multicast rule - 1808 * receive all Eth multicast traffic which isn't steered to any QP 1809 */ 1810 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1811 /* sniffer rule - receive all port traffic */ 1812 IB_FLOW_ATTR_SNIFFER = 0x3 1813 }; 1814 1815 /* Supported steering header types */ 1816 enum ib_flow_spec_type { 1817 /* L2 headers*/ 1818 IB_FLOW_SPEC_ETH = 0x20, 1819 IB_FLOW_SPEC_IB = 0x22, 1820 /* L3 header*/ 1821 IB_FLOW_SPEC_IPV4 = 0x30, 1822 IB_FLOW_SPEC_IPV6 = 0x31, 1823 IB_FLOW_SPEC_ESP = 0x34, 1824 /* L4 headers*/ 1825 IB_FLOW_SPEC_TCP = 0x40, 1826 IB_FLOW_SPEC_UDP = 0x41, 1827 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50, 1828 IB_FLOW_SPEC_GRE = 0x51, 1829 IB_FLOW_SPEC_MPLS = 0x60, 1830 IB_FLOW_SPEC_INNER = 0x100, 1831 /* Actions */ 1832 IB_FLOW_SPEC_ACTION_TAG = 0x1000, 1833 IB_FLOW_SPEC_ACTION_DROP = 0x1001, 1834 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002, 1835 IB_FLOW_SPEC_ACTION_COUNT = 0x1003, 1836 }; 1837 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1838 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10 1839 1840 /* Flow steering rule priority is set according to it's domain. 1841 * Lower domain value means higher priority. 1842 */ 1843 enum ib_flow_domain { 1844 IB_FLOW_DOMAIN_USER, 1845 IB_FLOW_DOMAIN_ETHTOOL, 1846 IB_FLOW_DOMAIN_RFS, 1847 IB_FLOW_DOMAIN_NIC, 1848 IB_FLOW_DOMAIN_NUM /* Must be last */ 1849 }; 1850 1851 enum ib_flow_flags { 1852 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */ 1853 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */ 1854 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */ 1855 }; 1856 1857 struct ib_flow_eth_filter { 1858 u8 dst_mac[6]; 1859 u8 src_mac[6]; 1860 __be16 ether_type; 1861 __be16 vlan_tag; 1862 /* Must be last */ 1863 u8 real_sz[0]; 1864 }; 1865 1866 struct ib_flow_spec_eth { 1867 u32 type; 1868 u16 size; 1869 struct ib_flow_eth_filter val; 1870 struct ib_flow_eth_filter mask; 1871 }; 1872 1873 struct ib_flow_ib_filter { 1874 __be16 dlid; 1875 __u8 sl; 1876 /* Must be last */ 1877 u8 real_sz[0]; 1878 }; 1879 1880 struct ib_flow_spec_ib { 1881 u32 type; 1882 u16 size; 1883 struct ib_flow_ib_filter val; 1884 struct ib_flow_ib_filter mask; 1885 }; 1886 1887 /* IPv4 header flags */ 1888 enum ib_ipv4_flags { 1889 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */ 1890 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the 1891 last have this flag set */ 1892 }; 1893 1894 struct ib_flow_ipv4_filter { 1895 __be32 src_ip; 1896 __be32 dst_ip; 1897 u8 proto; 1898 u8 tos; 1899 u8 ttl; 1900 u8 flags; 1901 /* Must be last */ 1902 u8 real_sz[0]; 1903 }; 1904 1905 struct ib_flow_spec_ipv4 { 1906 u32 type; 1907 u16 size; 1908 struct ib_flow_ipv4_filter val; 1909 struct ib_flow_ipv4_filter mask; 1910 }; 1911 1912 struct ib_flow_ipv6_filter { 1913 u8 src_ip[16]; 1914 u8 dst_ip[16]; 1915 __be32 flow_label; 1916 u8 next_hdr; 1917 u8 traffic_class; 1918 u8 hop_limit; 1919 /* Must be last */ 1920 u8 real_sz[0]; 1921 }; 1922 1923 struct ib_flow_spec_ipv6 { 1924 u32 type; 1925 u16 size; 1926 struct ib_flow_ipv6_filter val; 1927 struct ib_flow_ipv6_filter mask; 1928 }; 1929 1930 struct ib_flow_tcp_udp_filter { 1931 __be16 dst_port; 1932 __be16 src_port; 1933 /* Must be last */ 1934 u8 real_sz[0]; 1935 }; 1936 1937 struct ib_flow_spec_tcp_udp { 1938 u32 type; 1939 u16 size; 1940 struct ib_flow_tcp_udp_filter val; 1941 struct ib_flow_tcp_udp_filter mask; 1942 }; 1943 1944 struct ib_flow_tunnel_filter { 1945 __be32 tunnel_id; 1946 u8 real_sz[0]; 1947 }; 1948 1949 /* ib_flow_spec_tunnel describes the Vxlan tunnel 1950 * the tunnel_id from val has the vni value 1951 */ 1952 struct ib_flow_spec_tunnel { 1953 u32 type; 1954 u16 size; 1955 struct ib_flow_tunnel_filter val; 1956 struct ib_flow_tunnel_filter mask; 1957 }; 1958 1959 struct ib_flow_esp_filter { 1960 __be32 spi; 1961 __be32 seq; 1962 /* Must be last */ 1963 u8 real_sz[0]; 1964 }; 1965 1966 struct ib_flow_spec_esp { 1967 u32 type; 1968 u16 size; 1969 struct ib_flow_esp_filter val; 1970 struct ib_flow_esp_filter mask; 1971 }; 1972 1973 struct ib_flow_gre_filter { 1974 __be16 c_ks_res0_ver; 1975 __be16 protocol; 1976 __be32 key; 1977 /* Must be last */ 1978 u8 real_sz[0]; 1979 }; 1980 1981 struct ib_flow_spec_gre { 1982 u32 type; 1983 u16 size; 1984 struct ib_flow_gre_filter val; 1985 struct ib_flow_gre_filter mask; 1986 }; 1987 1988 struct ib_flow_mpls_filter { 1989 __be32 tag; 1990 /* Must be last */ 1991 u8 real_sz[0]; 1992 }; 1993 1994 struct ib_flow_spec_mpls { 1995 u32 type; 1996 u16 size; 1997 struct ib_flow_mpls_filter val; 1998 struct ib_flow_mpls_filter mask; 1999 }; 2000 2001 struct ib_flow_spec_action_tag { 2002 enum ib_flow_spec_type type; 2003 u16 size; 2004 u32 tag_id; 2005 }; 2006 2007 struct ib_flow_spec_action_drop { 2008 enum ib_flow_spec_type type; 2009 u16 size; 2010 }; 2011 2012 struct ib_flow_spec_action_handle { 2013 enum ib_flow_spec_type type; 2014 u16 size; 2015 struct ib_flow_action *act; 2016 }; 2017 2018 enum ib_counters_description { 2019 IB_COUNTER_PACKETS, 2020 IB_COUNTER_BYTES, 2021 }; 2022 2023 struct ib_flow_spec_action_count { 2024 enum ib_flow_spec_type type; 2025 u16 size; 2026 struct ib_counters *counters; 2027 }; 2028 2029 union ib_flow_spec { 2030 struct { 2031 u32 type; 2032 u16 size; 2033 }; 2034 struct ib_flow_spec_eth eth; 2035 struct ib_flow_spec_ib ib; 2036 struct ib_flow_spec_ipv4 ipv4; 2037 struct ib_flow_spec_tcp_udp tcp_udp; 2038 struct ib_flow_spec_ipv6 ipv6; 2039 struct ib_flow_spec_tunnel tunnel; 2040 struct ib_flow_spec_esp esp; 2041 struct ib_flow_spec_gre gre; 2042 struct ib_flow_spec_mpls mpls; 2043 struct ib_flow_spec_action_tag flow_tag; 2044 struct ib_flow_spec_action_drop drop; 2045 struct ib_flow_spec_action_handle action; 2046 struct ib_flow_spec_action_count flow_count; 2047 }; 2048 2049 struct ib_flow_attr { 2050 enum ib_flow_attr_type type; 2051 u16 size; 2052 u16 priority; 2053 u32 flags; 2054 u8 num_of_specs; 2055 u8 port; 2056 union ib_flow_spec flows[]; 2057 }; 2058 2059 struct ib_flow { 2060 struct ib_qp *qp; 2061 struct ib_device *device; 2062 struct ib_uobject *uobject; 2063 }; 2064 2065 enum ib_flow_action_type { 2066 IB_FLOW_ACTION_UNSPECIFIED, 2067 IB_FLOW_ACTION_ESP = 1, 2068 }; 2069 2070 struct ib_flow_action_attrs_esp_keymats { 2071 enum ib_uverbs_flow_action_esp_keymat protocol; 2072 union { 2073 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm; 2074 } keymat; 2075 }; 2076 2077 struct ib_flow_action_attrs_esp_replays { 2078 enum ib_uverbs_flow_action_esp_replay protocol; 2079 union { 2080 struct ib_uverbs_flow_action_esp_replay_bmp bmp; 2081 } replay; 2082 }; 2083 2084 enum ib_flow_action_attrs_esp_flags { 2085 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags 2086 * This is done in order to share the same flags between user-space and 2087 * kernel and spare an unnecessary translation. 2088 */ 2089 2090 /* Kernel flags */ 2091 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32, 2092 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33, 2093 }; 2094 2095 struct ib_flow_spec_list { 2096 struct ib_flow_spec_list *next; 2097 union ib_flow_spec spec; 2098 }; 2099 2100 struct ib_flow_action_attrs_esp { 2101 struct ib_flow_action_attrs_esp_keymats *keymat; 2102 struct ib_flow_action_attrs_esp_replays *replay; 2103 struct ib_flow_spec_list *encap; 2104 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled. 2105 * Value of 0 is a valid value. 2106 */ 2107 u32 esn; 2108 u32 spi; 2109 u32 seq; 2110 u32 tfc_pad; 2111 /* Use enum ib_flow_action_attrs_esp_flags */ 2112 u64 flags; 2113 u64 hard_limit_pkts; 2114 }; 2115 2116 struct ib_flow_action { 2117 struct ib_device *device; 2118 struct ib_uobject *uobject; 2119 enum ib_flow_action_type type; 2120 atomic_t usecnt; 2121 }; 2122 2123 struct ib_mad_hdr; 2124 struct ib_grh; 2125 2126 enum ib_process_mad_flags { 2127 IB_MAD_IGNORE_MKEY = 1, 2128 IB_MAD_IGNORE_BKEY = 2, 2129 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 2130 }; 2131 2132 enum ib_mad_result { 2133 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 2134 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 2135 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 2136 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 2137 }; 2138 2139 struct ib_port_cache { 2140 u64 subnet_prefix; 2141 struct ib_pkey_cache *pkey; 2142 struct ib_gid_table *gid; 2143 u8 lmc; 2144 enum ib_port_state port_state; 2145 }; 2146 2147 struct ib_cache { 2148 rwlock_t lock; 2149 struct ib_event_handler event_handler; 2150 }; 2151 2152 struct ib_port_immutable { 2153 int pkey_tbl_len; 2154 int gid_tbl_len; 2155 u32 core_cap_flags; 2156 u32 max_mad_size; 2157 }; 2158 2159 struct ib_port_data { 2160 struct ib_device *ib_dev; 2161 2162 struct ib_port_immutable immutable; 2163 2164 spinlock_t pkey_list_lock; 2165 struct list_head pkey_list; 2166 2167 struct ib_port_cache cache; 2168 2169 spinlock_t netdev_lock; 2170 struct net_device __rcu *netdev; 2171 struct hlist_node ndev_hash_link; 2172 struct rdma_port_counter port_counter; 2173 struct rdma_hw_stats *hw_stats; 2174 }; 2175 2176 /* rdma netdev type - specifies protocol type */ 2177 enum rdma_netdev_t { 2178 RDMA_NETDEV_OPA_VNIC, 2179 RDMA_NETDEV_IPOIB, 2180 }; 2181 2182 /** 2183 * struct rdma_netdev - rdma netdev 2184 * For cases where netstack interfacing is required. 2185 */ 2186 struct rdma_netdev { 2187 void *clnt_priv; 2188 struct ib_device *hca; 2189 u8 port_num; 2190 2191 /* 2192 * cleanup function must be specified. 2193 * FIXME: This is only used for OPA_VNIC and that usage should be 2194 * removed too. 2195 */ 2196 void (*free_rdma_netdev)(struct net_device *netdev); 2197 2198 /* control functions */ 2199 void (*set_id)(struct net_device *netdev, int id); 2200 /* send packet */ 2201 int (*send)(struct net_device *dev, struct sk_buff *skb, 2202 struct ib_ah *address, u32 dqpn); 2203 /* multicast */ 2204 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca, 2205 union ib_gid *gid, u16 mlid, 2206 int set_qkey, u32 qkey); 2207 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca, 2208 union ib_gid *gid, u16 mlid); 2209 }; 2210 2211 struct rdma_netdev_alloc_params { 2212 size_t sizeof_priv; 2213 unsigned int txqs; 2214 unsigned int rxqs; 2215 void *param; 2216 2217 int (*initialize_rdma_netdev)(struct ib_device *device, u8 port_num, 2218 struct net_device *netdev, void *param); 2219 }; 2220 2221 struct ib_counters { 2222 struct ib_device *device; 2223 struct ib_uobject *uobject; 2224 /* num of objects attached */ 2225 atomic_t usecnt; 2226 }; 2227 2228 struct ib_counters_read_attr { 2229 u64 *counters_buff; 2230 u32 ncounters; 2231 u32 flags; /* use enum ib_read_counters_flags */ 2232 }; 2233 2234 struct uverbs_attr_bundle; 2235 struct iw_cm_id; 2236 struct iw_cm_conn_param; 2237 2238 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \ 2239 .size_##ib_struct = \ 2240 (sizeof(struct drv_struct) + \ 2241 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \ 2242 BUILD_BUG_ON_ZERO( \ 2243 !__same_type(((struct drv_struct *)NULL)->member, \ 2244 struct ib_struct))) 2245 2246 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \ 2247 ((struct ib_type *)kzalloc(ib_dev->ops.size_##ib_type, gfp)) 2248 2249 #define rdma_zalloc_drv_obj(ib_dev, ib_type) \ 2250 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL) 2251 2252 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct 2253 2254 /** 2255 * struct ib_device_ops - InfiniBand device operations 2256 * This structure defines all the InfiniBand device operations, providers will 2257 * need to define the supported operations, otherwise they will be set to null. 2258 */ 2259 struct ib_device_ops { 2260 struct module *owner; 2261 enum rdma_driver_id driver_id; 2262 u32 uverbs_abi_ver; 2263 unsigned int uverbs_no_driver_id_binding:1; 2264 2265 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr, 2266 const struct ib_send_wr **bad_send_wr); 2267 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr, 2268 const struct ib_recv_wr **bad_recv_wr); 2269 void (*drain_rq)(struct ib_qp *qp); 2270 void (*drain_sq)(struct ib_qp *qp); 2271 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc); 2272 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 2273 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags); 2274 int (*req_ncomp_notif)(struct ib_cq *cq, int wc_cnt); 2275 int (*post_srq_recv)(struct ib_srq *srq, 2276 const struct ib_recv_wr *recv_wr, 2277 const struct ib_recv_wr **bad_recv_wr); 2278 int (*process_mad)(struct ib_device *device, int process_mad_flags, 2279 u8 port_num, const struct ib_wc *in_wc, 2280 const struct ib_grh *in_grh, 2281 const struct ib_mad_hdr *in_mad, size_t in_mad_size, 2282 struct ib_mad_hdr *out_mad, size_t *out_mad_size, 2283 u16 *out_mad_pkey_index); 2284 int (*query_device)(struct ib_device *device, 2285 struct ib_device_attr *device_attr, 2286 struct ib_udata *udata); 2287 int (*modify_device)(struct ib_device *device, int device_modify_mask, 2288 struct ib_device_modify *device_modify); 2289 void (*get_dev_fw_str)(struct ib_device *device, char *str); 2290 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev, 2291 int comp_vector); 2292 int (*query_port)(struct ib_device *device, u8 port_num, 2293 struct ib_port_attr *port_attr); 2294 int (*modify_port)(struct ib_device *device, u8 port_num, 2295 int port_modify_mask, 2296 struct ib_port_modify *port_modify); 2297 /** 2298 * The following mandatory functions are used only at device 2299 * registration. Keep functions such as these at the end of this 2300 * structure to avoid cache line misses when accessing struct ib_device 2301 * in fast paths. 2302 */ 2303 int (*get_port_immutable)(struct ib_device *device, u8 port_num, 2304 struct ib_port_immutable *immutable); 2305 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 2306 u8 port_num); 2307 /** 2308 * When calling get_netdev, the HW vendor's driver should return the 2309 * net device of device @device at port @port_num or NULL if such 2310 * a net device doesn't exist. The vendor driver should call dev_hold 2311 * on this net device. The HW vendor's device driver must guarantee 2312 * that this function returns NULL before the net device has finished 2313 * NETDEV_UNREGISTER state. 2314 */ 2315 struct net_device *(*get_netdev)(struct ib_device *device, u8 port_num); 2316 /** 2317 * rdma netdev operation 2318 * 2319 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params 2320 * must return -EOPNOTSUPP if it doesn't support the specified type. 2321 */ 2322 struct net_device *(*alloc_rdma_netdev)( 2323 struct ib_device *device, u8 port_num, enum rdma_netdev_t type, 2324 const char *name, unsigned char name_assign_type, 2325 void (*setup)(struct net_device *)); 2326 2327 int (*rdma_netdev_get_params)(struct ib_device *device, u8 port_num, 2328 enum rdma_netdev_t type, 2329 struct rdma_netdev_alloc_params *params); 2330 /** 2331 * query_gid should be return GID value for @device, when @port_num 2332 * link layer is either IB or iWarp. It is no-op if @port_num port 2333 * is RoCE link layer. 2334 */ 2335 int (*query_gid)(struct ib_device *device, u8 port_num, int index, 2336 union ib_gid *gid); 2337 /** 2338 * When calling add_gid, the HW vendor's driver should add the gid 2339 * of device of port at gid index available at @attr. Meta-info of 2340 * that gid (for example, the network device related to this gid) is 2341 * available at @attr. @context allows the HW vendor driver to store 2342 * extra information together with a GID entry. The HW vendor driver may 2343 * allocate memory to contain this information and store it in @context 2344 * when a new GID entry is written to. Params are consistent until the 2345 * next call of add_gid or delete_gid. The function should return 0 on 2346 * success or error otherwise. The function could be called 2347 * concurrently for different ports. This function is only called when 2348 * roce_gid_table is used. 2349 */ 2350 int (*add_gid)(const struct ib_gid_attr *attr, void **context); 2351 /** 2352 * When calling del_gid, the HW vendor's driver should delete the 2353 * gid of device @device at gid index gid_index of port port_num 2354 * available in @attr. 2355 * Upon the deletion of a GID entry, the HW vendor must free any 2356 * allocated memory. The caller will clear @context afterwards. 2357 * This function is only called when roce_gid_table is used. 2358 */ 2359 int (*del_gid)(const struct ib_gid_attr *attr, void **context); 2360 int (*query_pkey)(struct ib_device *device, u8 port_num, u16 index, 2361 u16 *pkey); 2362 int (*alloc_ucontext)(struct ib_ucontext *context, 2363 struct ib_udata *udata); 2364 void (*dealloc_ucontext)(struct ib_ucontext *context); 2365 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma); 2366 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 2367 int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata); 2368 void (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata); 2369 int (*create_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr, 2370 u32 flags, struct ib_udata *udata); 2371 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2372 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2373 void (*destroy_ah)(struct ib_ah *ah, u32 flags); 2374 int (*create_srq)(struct ib_srq *srq, 2375 struct ib_srq_init_attr *srq_init_attr, 2376 struct ib_udata *udata); 2377 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr, 2378 enum ib_srq_attr_mask srq_attr_mask, 2379 struct ib_udata *udata); 2380 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr); 2381 void (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata); 2382 struct ib_qp *(*create_qp)(struct ib_pd *pd, 2383 struct ib_qp_init_attr *qp_init_attr, 2384 struct ib_udata *udata); 2385 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, 2386 int qp_attr_mask, struct ib_udata *udata); 2387 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, 2388 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr); 2389 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata); 2390 int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr, 2391 struct ib_udata *udata); 2392 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period); 2393 void (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata); 2394 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata); 2395 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags); 2396 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length, 2397 u64 virt_addr, int mr_access_flags, 2398 struct ib_udata *udata); 2399 int (*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start, u64 length, 2400 u64 virt_addr, int mr_access_flags, 2401 struct ib_pd *pd, struct ib_udata *udata); 2402 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata); 2403 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type, 2404 u32 max_num_sg, struct ib_udata *udata); 2405 struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd, 2406 u32 max_num_data_sg, 2407 u32 max_num_meta_sg); 2408 int (*advise_mr)(struct ib_pd *pd, 2409 enum ib_uverbs_advise_mr_advice advice, u32 flags, 2410 struct ib_sge *sg_list, u32 num_sge, 2411 struct uverbs_attr_bundle *attrs); 2412 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 2413 unsigned int *sg_offset); 2414 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 2415 struct ib_mr_status *mr_status); 2416 struct ib_mw *(*alloc_mw)(struct ib_pd *pd, enum ib_mw_type type, 2417 struct ib_udata *udata); 2418 int (*dealloc_mw)(struct ib_mw *mw); 2419 struct ib_fmr *(*alloc_fmr)(struct ib_pd *pd, int mr_access_flags, 2420 struct ib_fmr_attr *fmr_attr); 2421 int (*map_phys_fmr)(struct ib_fmr *fmr, u64 *page_list, int list_len, 2422 u64 iova); 2423 int (*unmap_fmr)(struct list_head *fmr_list); 2424 int (*dealloc_fmr)(struct ib_fmr *fmr); 2425 void (*invalidate_range)(struct ib_umem_odp *umem_odp, 2426 unsigned long start, unsigned long end); 2427 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2428 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2429 struct ib_xrcd *(*alloc_xrcd)(struct ib_device *device, 2430 struct ib_udata *udata); 2431 int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata); 2432 struct ib_flow *(*create_flow)(struct ib_qp *qp, 2433 struct ib_flow_attr *flow_attr, 2434 int domain, struct ib_udata *udata); 2435 int (*destroy_flow)(struct ib_flow *flow_id); 2436 struct ib_flow_action *(*create_flow_action_esp)( 2437 struct ib_device *device, 2438 const struct ib_flow_action_attrs_esp *attr, 2439 struct uverbs_attr_bundle *attrs); 2440 int (*destroy_flow_action)(struct ib_flow_action *action); 2441 int (*modify_flow_action_esp)( 2442 struct ib_flow_action *action, 2443 const struct ib_flow_action_attrs_esp *attr, 2444 struct uverbs_attr_bundle *attrs); 2445 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port, 2446 int state); 2447 int (*get_vf_config)(struct ib_device *device, int vf, u8 port, 2448 struct ifla_vf_info *ivf); 2449 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port, 2450 struct ifla_vf_stats *stats); 2451 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid, 2452 int type); 2453 struct ib_wq *(*create_wq)(struct ib_pd *pd, 2454 struct ib_wq_init_attr *init_attr, 2455 struct ib_udata *udata); 2456 void (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata); 2457 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr, 2458 u32 wq_attr_mask, struct ib_udata *udata); 2459 struct ib_rwq_ind_table *(*create_rwq_ind_table)( 2460 struct ib_device *device, 2461 struct ib_rwq_ind_table_init_attr *init_attr, 2462 struct ib_udata *udata); 2463 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table); 2464 struct ib_dm *(*alloc_dm)(struct ib_device *device, 2465 struct ib_ucontext *context, 2466 struct ib_dm_alloc_attr *attr, 2467 struct uverbs_attr_bundle *attrs); 2468 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs); 2469 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm, 2470 struct ib_dm_mr_attr *attr, 2471 struct uverbs_attr_bundle *attrs); 2472 struct ib_counters *(*create_counters)( 2473 struct ib_device *device, struct uverbs_attr_bundle *attrs); 2474 int (*destroy_counters)(struct ib_counters *counters); 2475 int (*read_counters)(struct ib_counters *counters, 2476 struct ib_counters_read_attr *counters_read_attr, 2477 struct uverbs_attr_bundle *attrs); 2478 int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg, 2479 int data_sg_nents, unsigned int *data_sg_offset, 2480 struct scatterlist *meta_sg, int meta_sg_nents, 2481 unsigned int *meta_sg_offset); 2482 2483 /** 2484 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the 2485 * driver initialized data. The struct is kfree()'ed by the sysfs 2486 * core when the device is removed. A lifespan of -1 in the return 2487 * struct tells the core to set a default lifespan. 2488 */ 2489 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device, 2490 u8 port_num); 2491 /** 2492 * get_hw_stats - Fill in the counter value(s) in the stats struct. 2493 * @index - The index in the value array we wish to have updated, or 2494 * num_counters if we want all stats updated 2495 * Return codes - 2496 * < 0 - Error, no counters updated 2497 * index - Updated the single counter pointed to by index 2498 * num_counters - Updated all counters (will reset the timestamp 2499 * and prevent further calls for lifespan milliseconds) 2500 * Drivers are allowed to update all counters in leiu of just the 2501 * one given in index at their option 2502 */ 2503 int (*get_hw_stats)(struct ib_device *device, 2504 struct rdma_hw_stats *stats, u8 port, int index); 2505 /* 2506 * This function is called once for each port when a ib device is 2507 * registered. 2508 */ 2509 int (*init_port)(struct ib_device *device, u8 port_num, 2510 struct kobject *port_sysfs); 2511 /** 2512 * Allows rdma drivers to add their own restrack attributes. 2513 */ 2514 int (*fill_res_entry)(struct sk_buff *msg, 2515 struct rdma_restrack_entry *entry); 2516 2517 /* Device lifecycle callbacks */ 2518 /* 2519 * Called after the device becomes registered, before clients are 2520 * attached 2521 */ 2522 int (*enable_driver)(struct ib_device *dev); 2523 /* 2524 * This is called as part of ib_dealloc_device(). 2525 */ 2526 void (*dealloc_driver)(struct ib_device *dev); 2527 2528 /* iWarp CM callbacks */ 2529 void (*iw_add_ref)(struct ib_qp *qp); 2530 void (*iw_rem_ref)(struct ib_qp *qp); 2531 struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn); 2532 int (*iw_connect)(struct iw_cm_id *cm_id, 2533 struct iw_cm_conn_param *conn_param); 2534 int (*iw_accept)(struct iw_cm_id *cm_id, 2535 struct iw_cm_conn_param *conn_param); 2536 int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata, 2537 u8 pdata_len); 2538 int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog); 2539 int (*iw_destroy_listen)(struct iw_cm_id *cm_id); 2540 /** 2541 * counter_bind_qp - Bind a QP to a counter. 2542 * @counter - The counter to be bound. If counter->id is zero then 2543 * the driver needs to allocate a new counter and set counter->id 2544 */ 2545 int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp); 2546 /** 2547 * counter_unbind_qp - Unbind the qp from the dynamically-allocated 2548 * counter and bind it onto the default one 2549 */ 2550 int (*counter_unbind_qp)(struct ib_qp *qp); 2551 /** 2552 * counter_dealloc -De-allocate the hw counter 2553 */ 2554 int (*counter_dealloc)(struct rdma_counter *counter); 2555 /** 2556 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in 2557 * the driver initialized data. 2558 */ 2559 struct rdma_hw_stats *(*counter_alloc_stats)( 2560 struct rdma_counter *counter); 2561 /** 2562 * counter_update_stats - Query the stats value of this counter 2563 */ 2564 int (*counter_update_stats)(struct rdma_counter *counter); 2565 2566 DECLARE_RDMA_OBJ_SIZE(ib_ah); 2567 DECLARE_RDMA_OBJ_SIZE(ib_cq); 2568 DECLARE_RDMA_OBJ_SIZE(ib_pd); 2569 DECLARE_RDMA_OBJ_SIZE(ib_srq); 2570 DECLARE_RDMA_OBJ_SIZE(ib_ucontext); 2571 }; 2572 2573 struct ib_core_device { 2574 /* device must be the first element in structure until, 2575 * union of ib_core_device and device exists in ib_device. 2576 */ 2577 struct device dev; 2578 possible_net_t rdma_net; 2579 struct kobject *ports_kobj; 2580 struct list_head port_list; 2581 struct ib_device *owner; /* reach back to owner ib_device */ 2582 }; 2583 2584 struct rdma_restrack_root; 2585 struct ib_device { 2586 /* Do not access @dma_device directly from ULP nor from HW drivers. */ 2587 struct device *dma_device; 2588 struct ib_device_ops ops; 2589 char name[IB_DEVICE_NAME_MAX]; 2590 struct rcu_head rcu_head; 2591 2592 struct list_head event_handler_list; 2593 spinlock_t event_handler_lock; 2594 2595 struct rw_semaphore client_data_rwsem; 2596 struct xarray client_data; 2597 struct mutex unregistration_lock; 2598 2599 struct ib_cache cache; 2600 /** 2601 * port_data is indexed by port number 2602 */ 2603 struct ib_port_data *port_data; 2604 2605 int num_comp_vectors; 2606 2607 union { 2608 struct device dev; 2609 struct ib_core_device coredev; 2610 }; 2611 2612 /* First group for device attributes, 2613 * Second group for driver provided attributes (optional). 2614 * It is NULL terminated array. 2615 */ 2616 const struct attribute_group *groups[3]; 2617 2618 u64 uverbs_cmd_mask; 2619 u64 uverbs_ex_cmd_mask; 2620 2621 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 2622 __be64 node_guid; 2623 u32 local_dma_lkey; 2624 u16 is_switch:1; 2625 /* Indicates kernel verbs support, should not be used in drivers */ 2626 u16 kverbs_provider:1; 2627 /* CQ adaptive moderation (RDMA DIM) */ 2628 u16 use_cq_dim:1; 2629 u8 node_type; 2630 u8 phys_port_cnt; 2631 struct ib_device_attr attrs; 2632 struct attribute_group *hw_stats_ag; 2633 struct rdma_hw_stats *hw_stats; 2634 2635 #ifdef CONFIG_CGROUP_RDMA 2636 struct rdmacg_device cg_device; 2637 #endif 2638 2639 u32 index; 2640 struct rdma_restrack_root *res; 2641 2642 const struct uapi_definition *driver_def; 2643 2644 /* 2645 * Positive refcount indicates that the device is currently 2646 * registered and cannot be unregistered. 2647 */ 2648 refcount_t refcount; 2649 struct completion unreg_completion; 2650 struct work_struct unregistration_work; 2651 2652 const struct rdma_link_ops *link_ops; 2653 2654 /* Protects compat_devs xarray modifications */ 2655 struct mutex compat_devs_mutex; 2656 /* Maintains compat devices for each net namespace */ 2657 struct xarray compat_devs; 2658 2659 /* Used by iWarp CM */ 2660 char iw_ifname[IFNAMSIZ]; 2661 u32 iw_driver_flags; 2662 }; 2663 2664 struct ib_client_nl_info; 2665 struct ib_client { 2666 const char *name; 2667 void (*add) (struct ib_device *); 2668 void (*remove)(struct ib_device *, void *client_data); 2669 void (*rename)(struct ib_device *dev, void *client_data); 2670 int (*get_nl_info)(struct ib_device *ibdev, void *client_data, 2671 struct ib_client_nl_info *res); 2672 int (*get_global_nl_info)(struct ib_client_nl_info *res); 2673 2674 /* Returns the net_dev belonging to this ib_client and matching the 2675 * given parameters. 2676 * @dev: An RDMA device that the net_dev use for communication. 2677 * @port: A physical port number on the RDMA device. 2678 * @pkey: P_Key that the net_dev uses if applicable. 2679 * @gid: A GID that the net_dev uses to communicate. 2680 * @addr: An IP address the net_dev is configured with. 2681 * @client_data: The device's client data set by ib_set_client_data(). 2682 * 2683 * An ib_client that implements a net_dev on top of RDMA devices 2684 * (such as IP over IB) should implement this callback, allowing the 2685 * rdma_cm module to find the right net_dev for a given request. 2686 * 2687 * The caller is responsible for calling dev_put on the returned 2688 * netdev. */ 2689 struct net_device *(*get_net_dev_by_params)( 2690 struct ib_device *dev, 2691 u8 port, 2692 u16 pkey, 2693 const union ib_gid *gid, 2694 const struct sockaddr *addr, 2695 void *client_data); 2696 2697 refcount_t uses; 2698 struct completion uses_zero; 2699 u32 client_id; 2700 2701 /* kverbs are not required by the client */ 2702 u8 no_kverbs_req:1; 2703 }; 2704 2705 /* 2706 * IB block DMA iterator 2707 * 2708 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned 2709 * to a HW supported page size. 2710 */ 2711 struct ib_block_iter { 2712 /* internal states */ 2713 struct scatterlist *__sg; /* sg holding the current aligned block */ 2714 dma_addr_t __dma_addr; /* unaligned DMA address of this block */ 2715 unsigned int __sg_nents; /* number of SG entries */ 2716 unsigned int __sg_advance; /* number of bytes to advance in sg in next step */ 2717 unsigned int __pg_bit; /* alignment of current block */ 2718 }; 2719 2720 struct ib_device *_ib_alloc_device(size_t size); 2721 #define ib_alloc_device(drv_struct, member) \ 2722 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \ 2723 BUILD_BUG_ON_ZERO(offsetof( \ 2724 struct drv_struct, member))), \ 2725 struct drv_struct, member) 2726 2727 void ib_dealloc_device(struct ib_device *device); 2728 2729 void ib_get_device_fw_str(struct ib_device *device, char *str); 2730 2731 int ib_register_device(struct ib_device *device, const char *name); 2732 void ib_unregister_device(struct ib_device *device); 2733 void ib_unregister_driver(enum rdma_driver_id driver_id); 2734 void ib_unregister_device_and_put(struct ib_device *device); 2735 void ib_unregister_device_queued(struct ib_device *ib_dev); 2736 2737 int ib_register_client (struct ib_client *client); 2738 void ib_unregister_client(struct ib_client *client); 2739 2740 void __rdma_block_iter_start(struct ib_block_iter *biter, 2741 struct scatterlist *sglist, 2742 unsigned int nents, 2743 unsigned long pgsz); 2744 bool __rdma_block_iter_next(struct ib_block_iter *biter); 2745 2746 /** 2747 * rdma_block_iter_dma_address - get the aligned dma address of the current 2748 * block held by the block iterator. 2749 * @biter: block iterator holding the memory block 2750 */ 2751 static inline dma_addr_t 2752 rdma_block_iter_dma_address(struct ib_block_iter *biter) 2753 { 2754 return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1); 2755 } 2756 2757 /** 2758 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list 2759 * @sglist: sglist to iterate over 2760 * @biter: block iterator holding the memory block 2761 * @nents: maximum number of sg entries to iterate over 2762 * @pgsz: best HW supported page size to use 2763 * 2764 * Callers may use rdma_block_iter_dma_address() to get each 2765 * blocks aligned DMA address. 2766 */ 2767 #define rdma_for_each_block(sglist, biter, nents, pgsz) \ 2768 for (__rdma_block_iter_start(biter, sglist, nents, \ 2769 pgsz); \ 2770 __rdma_block_iter_next(biter);) 2771 2772 /** 2773 * ib_get_client_data - Get IB client context 2774 * @device:Device to get context for 2775 * @client:Client to get context for 2776 * 2777 * ib_get_client_data() returns the client context data set with 2778 * ib_set_client_data(). This can only be called while the client is 2779 * registered to the device, once the ib_client remove() callback returns this 2780 * cannot be called. 2781 */ 2782 static inline void *ib_get_client_data(struct ib_device *device, 2783 struct ib_client *client) 2784 { 2785 return xa_load(&device->client_data, client->client_id); 2786 } 2787 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 2788 void *data); 2789 void ib_set_device_ops(struct ib_device *device, 2790 const struct ib_device_ops *ops); 2791 2792 #if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS) 2793 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma, 2794 unsigned long pfn, unsigned long size, pgprot_t prot); 2795 #else 2796 static inline int rdma_user_mmap_io(struct ib_ucontext *ucontext, 2797 struct vm_area_struct *vma, 2798 unsigned long pfn, unsigned long size, 2799 pgprot_t prot) 2800 { 2801 return -EINVAL; 2802 } 2803 #endif 2804 2805 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 2806 { 2807 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 2808 } 2809 2810 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 2811 { 2812 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 2813 } 2814 2815 static inline bool ib_is_buffer_cleared(const void __user *p, 2816 size_t len) 2817 { 2818 bool ret; 2819 u8 *buf; 2820 2821 if (len > USHRT_MAX) 2822 return false; 2823 2824 buf = memdup_user(p, len); 2825 if (IS_ERR(buf)) 2826 return false; 2827 2828 ret = !memchr_inv(buf, 0, len); 2829 kfree(buf); 2830 return ret; 2831 } 2832 2833 static inline bool ib_is_udata_cleared(struct ib_udata *udata, 2834 size_t offset, 2835 size_t len) 2836 { 2837 return ib_is_buffer_cleared(udata->inbuf + offset, len); 2838 } 2839 2840 /** 2841 * ib_is_destroy_retryable - Check whether the uobject destruction 2842 * is retryable. 2843 * @ret: The initial destruction return code 2844 * @why: remove reason 2845 * @uobj: The uobject that is destroyed 2846 * 2847 * This function is a helper function that IB layer and low-level drivers 2848 * can use to consider whether the destruction of the given uobject is 2849 * retry-able. 2850 * It checks the original return code, if it wasn't success the destruction 2851 * is retryable according to the ucontext state (i.e. cleanup_retryable) and 2852 * the remove reason. (i.e. why). 2853 * Must be called with the object locked for destroy. 2854 */ 2855 static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why, 2856 struct ib_uobject *uobj) 2857 { 2858 return ret && (why == RDMA_REMOVE_DESTROY || 2859 uobj->context->cleanup_retryable); 2860 } 2861 2862 /** 2863 * ib_destroy_usecnt - Called during destruction to check the usecnt 2864 * @usecnt: The usecnt atomic 2865 * @why: remove reason 2866 * @uobj: The uobject that is destroyed 2867 * 2868 * Non-zero usecnts will block destruction unless destruction was triggered by 2869 * a ucontext cleanup. 2870 */ 2871 static inline int ib_destroy_usecnt(atomic_t *usecnt, 2872 enum rdma_remove_reason why, 2873 struct ib_uobject *uobj) 2874 { 2875 if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj)) 2876 return -EBUSY; 2877 return 0; 2878 } 2879 2880 /** 2881 * ib_modify_qp_is_ok - Check that the supplied attribute mask 2882 * contains all required attributes and no attributes not allowed for 2883 * the given QP state transition. 2884 * @cur_state: Current QP state 2885 * @next_state: Next QP state 2886 * @type: QP type 2887 * @mask: Mask of supplied QP attributes 2888 * 2889 * This function is a helper function that a low-level driver's 2890 * modify_qp method can use to validate the consumer's input. It 2891 * checks that cur_state and next_state are valid QP states, that a 2892 * transition from cur_state to next_state is allowed by the IB spec, 2893 * and that the attribute mask supplied is allowed for the transition. 2894 */ 2895 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 2896 enum ib_qp_type type, enum ib_qp_attr_mask mask); 2897 2898 void ib_register_event_handler(struct ib_event_handler *event_handler); 2899 void ib_unregister_event_handler(struct ib_event_handler *event_handler); 2900 void ib_dispatch_event(struct ib_event *event); 2901 2902 int ib_query_port(struct ib_device *device, 2903 u8 port_num, struct ib_port_attr *port_attr); 2904 2905 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 2906 u8 port_num); 2907 2908 /** 2909 * rdma_cap_ib_switch - Check if the device is IB switch 2910 * @device: Device to check 2911 * 2912 * Device driver is responsible for setting is_switch bit on 2913 * in ib_device structure at init time. 2914 * 2915 * Return: true if the device is IB switch. 2916 */ 2917 static inline bool rdma_cap_ib_switch(const struct ib_device *device) 2918 { 2919 return device->is_switch; 2920 } 2921 2922 /** 2923 * rdma_start_port - Return the first valid port number for the device 2924 * specified 2925 * 2926 * @device: Device to be checked 2927 * 2928 * Return start port number 2929 */ 2930 static inline u8 rdma_start_port(const struct ib_device *device) 2931 { 2932 return rdma_cap_ib_switch(device) ? 0 : 1; 2933 } 2934 2935 /** 2936 * rdma_for_each_port - Iterate over all valid port numbers of the IB device 2937 * @device - The struct ib_device * to iterate over 2938 * @iter - The unsigned int to store the port number 2939 */ 2940 #define rdma_for_each_port(device, iter) \ 2941 for (iter = rdma_start_port(device + BUILD_BUG_ON_ZERO(!__same_type( \ 2942 unsigned int, iter))); \ 2943 iter <= rdma_end_port(device); (iter)++) 2944 2945 /** 2946 * rdma_end_port - Return the last valid port number for the device 2947 * specified 2948 * 2949 * @device: Device to be checked 2950 * 2951 * Return last port number 2952 */ 2953 static inline u8 rdma_end_port(const struct ib_device *device) 2954 { 2955 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 2956 } 2957 2958 static inline int rdma_is_port_valid(const struct ib_device *device, 2959 unsigned int port) 2960 { 2961 return (port >= rdma_start_port(device) && 2962 port <= rdma_end_port(device)); 2963 } 2964 2965 static inline bool rdma_is_grh_required(const struct ib_device *device, 2966 u8 port_num) 2967 { 2968 return device->port_data[port_num].immutable.core_cap_flags & 2969 RDMA_CORE_PORT_IB_GRH_REQUIRED; 2970 } 2971 2972 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num) 2973 { 2974 return device->port_data[port_num].immutable.core_cap_flags & 2975 RDMA_CORE_CAP_PROT_IB; 2976 } 2977 2978 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num) 2979 { 2980 return device->port_data[port_num].immutable.core_cap_flags & 2981 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); 2982 } 2983 2984 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num) 2985 { 2986 return device->port_data[port_num].immutable.core_cap_flags & 2987 RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; 2988 } 2989 2990 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num) 2991 { 2992 return device->port_data[port_num].immutable.core_cap_flags & 2993 RDMA_CORE_CAP_PROT_ROCE; 2994 } 2995 2996 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num) 2997 { 2998 return device->port_data[port_num].immutable.core_cap_flags & 2999 RDMA_CORE_CAP_PROT_IWARP; 3000 } 3001 3002 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num) 3003 { 3004 return rdma_protocol_ib(device, port_num) || 3005 rdma_protocol_roce(device, port_num); 3006 } 3007 3008 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num) 3009 { 3010 return device->port_data[port_num].immutable.core_cap_flags & 3011 RDMA_CORE_CAP_PROT_RAW_PACKET; 3012 } 3013 3014 static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num) 3015 { 3016 return device->port_data[port_num].immutable.core_cap_flags & 3017 RDMA_CORE_CAP_PROT_USNIC; 3018 } 3019 3020 /** 3021 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 3022 * Management Datagrams. 3023 * @device: Device to check 3024 * @port_num: Port number to check 3025 * 3026 * Management Datagrams (MAD) are a required part of the InfiniBand 3027 * specification and are supported on all InfiniBand devices. A slightly 3028 * extended version are also supported on OPA interfaces. 3029 * 3030 * Return: true if the port supports sending/receiving of MAD packets. 3031 */ 3032 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num) 3033 { 3034 return device->port_data[port_num].immutable.core_cap_flags & 3035 RDMA_CORE_CAP_IB_MAD; 3036 } 3037 3038 /** 3039 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 3040 * Management Datagrams. 3041 * @device: Device to check 3042 * @port_num: Port number to check 3043 * 3044 * Intel OmniPath devices extend and/or replace the InfiniBand Management 3045 * datagrams with their own versions. These OPA MADs share many but not all of 3046 * the characteristics of InfiniBand MADs. 3047 * 3048 * OPA MADs differ in the following ways: 3049 * 3050 * 1) MADs are variable size up to 2K 3051 * IBTA defined MADs remain fixed at 256 bytes 3052 * 2) OPA SMPs must carry valid PKeys 3053 * 3) OPA SMP packets are a different format 3054 * 3055 * Return: true if the port supports OPA MAD packet formats. 3056 */ 3057 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num) 3058 { 3059 return device->port_data[port_num].immutable.core_cap_flags & 3060 RDMA_CORE_CAP_OPA_MAD; 3061 } 3062 3063 /** 3064 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 3065 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 3066 * @device: Device to check 3067 * @port_num: Port number to check 3068 * 3069 * Each InfiniBand node is required to provide a Subnet Management Agent 3070 * that the subnet manager can access. Prior to the fabric being fully 3071 * configured by the subnet manager, the SMA is accessed via a well known 3072 * interface called the Subnet Management Interface (SMI). This interface 3073 * uses directed route packets to communicate with the SM to get around the 3074 * chicken and egg problem of the SM needing to know what's on the fabric 3075 * in order to configure the fabric, and needing to configure the fabric in 3076 * order to send packets to the devices on the fabric. These directed 3077 * route packets do not need the fabric fully configured in order to reach 3078 * their destination. The SMI is the only method allowed to send 3079 * directed route packets on an InfiniBand fabric. 3080 * 3081 * Return: true if the port provides an SMI. 3082 */ 3083 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num) 3084 { 3085 return device->port_data[port_num].immutable.core_cap_flags & 3086 RDMA_CORE_CAP_IB_SMI; 3087 } 3088 3089 /** 3090 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 3091 * Communication Manager. 3092 * @device: Device to check 3093 * @port_num: Port number to check 3094 * 3095 * The InfiniBand Communication Manager is one of many pre-defined General 3096 * Service Agents (GSA) that are accessed via the General Service 3097 * Interface (GSI). It's role is to facilitate establishment of connections 3098 * between nodes as well as other management related tasks for established 3099 * connections. 3100 * 3101 * Return: true if the port supports an IB CM (this does not guarantee that 3102 * a CM is actually running however). 3103 */ 3104 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num) 3105 { 3106 return device->port_data[port_num].immutable.core_cap_flags & 3107 RDMA_CORE_CAP_IB_CM; 3108 } 3109 3110 /** 3111 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 3112 * Communication Manager. 3113 * @device: Device to check 3114 * @port_num: Port number to check 3115 * 3116 * Similar to above, but specific to iWARP connections which have a different 3117 * managment protocol than InfiniBand. 3118 * 3119 * Return: true if the port supports an iWARP CM (this does not guarantee that 3120 * a CM is actually running however). 3121 */ 3122 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num) 3123 { 3124 return device->port_data[port_num].immutable.core_cap_flags & 3125 RDMA_CORE_CAP_IW_CM; 3126 } 3127 3128 /** 3129 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 3130 * Subnet Administration. 3131 * @device: Device to check 3132 * @port_num: Port number to check 3133 * 3134 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 3135 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 3136 * fabrics, devices should resolve routes to other hosts by contacting the 3137 * SA to query the proper route. 3138 * 3139 * Return: true if the port should act as a client to the fabric Subnet 3140 * Administration interface. This does not imply that the SA service is 3141 * running locally. 3142 */ 3143 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num) 3144 { 3145 return device->port_data[port_num].immutable.core_cap_flags & 3146 RDMA_CORE_CAP_IB_SA; 3147 } 3148 3149 /** 3150 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 3151 * Multicast. 3152 * @device: Device to check 3153 * @port_num: Port number to check 3154 * 3155 * InfiniBand multicast registration is more complex than normal IPv4 or 3156 * IPv6 multicast registration. Each Host Channel Adapter must register 3157 * with the Subnet Manager when it wishes to join a multicast group. It 3158 * should do so only once regardless of how many queue pairs it subscribes 3159 * to this group. And it should leave the group only after all queue pairs 3160 * attached to the group have been detached. 3161 * 3162 * Return: true if the port must undertake the additional adminstrative 3163 * overhead of registering/unregistering with the SM and tracking of the 3164 * total number of queue pairs attached to the multicast group. 3165 */ 3166 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num) 3167 { 3168 return rdma_cap_ib_sa(device, port_num); 3169 } 3170 3171 /** 3172 * rdma_cap_af_ib - Check if the port of device has the capability 3173 * Native Infiniband Address. 3174 * @device: Device to check 3175 * @port_num: Port number to check 3176 * 3177 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 3178 * GID. RoCE uses a different mechanism, but still generates a GID via 3179 * a prescribed mechanism and port specific data. 3180 * 3181 * Return: true if the port uses a GID address to identify devices on the 3182 * network. 3183 */ 3184 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num) 3185 { 3186 return device->port_data[port_num].immutable.core_cap_flags & 3187 RDMA_CORE_CAP_AF_IB; 3188 } 3189 3190 /** 3191 * rdma_cap_eth_ah - Check if the port of device has the capability 3192 * Ethernet Address Handle. 3193 * @device: Device to check 3194 * @port_num: Port number to check 3195 * 3196 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 3197 * to fabricate GIDs over Ethernet/IP specific addresses native to the 3198 * port. Normally, packet headers are generated by the sending host 3199 * adapter, but when sending connectionless datagrams, we must manually 3200 * inject the proper headers for the fabric we are communicating over. 3201 * 3202 * Return: true if we are running as a RoCE port and must force the 3203 * addition of a Global Route Header built from our Ethernet Address 3204 * Handle into our header list for connectionless packets. 3205 */ 3206 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num) 3207 { 3208 return device->port_data[port_num].immutable.core_cap_flags & 3209 RDMA_CORE_CAP_ETH_AH; 3210 } 3211 3212 /** 3213 * rdma_cap_opa_ah - Check if the port of device supports 3214 * OPA Address handles 3215 * @device: Device to check 3216 * @port_num: Port number to check 3217 * 3218 * Return: true if we are running on an OPA device which supports 3219 * the extended OPA addressing. 3220 */ 3221 static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num) 3222 { 3223 return (device->port_data[port_num].immutable.core_cap_flags & 3224 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH; 3225 } 3226 3227 /** 3228 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 3229 * 3230 * @device: Device 3231 * @port_num: Port number 3232 * 3233 * This MAD size includes the MAD headers and MAD payload. No other headers 3234 * are included. 3235 * 3236 * Return the max MAD size required by the Port. Will return 0 if the port 3237 * does not support MADs 3238 */ 3239 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num) 3240 { 3241 return device->port_data[port_num].immutable.max_mad_size; 3242 } 3243 3244 /** 3245 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 3246 * @device: Device to check 3247 * @port_num: Port number to check 3248 * 3249 * RoCE GID table mechanism manages the various GIDs for a device. 3250 * 3251 * NOTE: if allocating the port's GID table has failed, this call will still 3252 * return true, but any RoCE GID table API will fail. 3253 * 3254 * Return: true if the port uses RoCE GID table mechanism in order to manage 3255 * its GIDs. 3256 */ 3257 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 3258 u8 port_num) 3259 { 3260 return rdma_protocol_roce(device, port_num) && 3261 device->ops.add_gid && device->ops.del_gid; 3262 } 3263 3264 /* 3265 * Check if the device supports READ W/ INVALIDATE. 3266 */ 3267 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num) 3268 { 3269 /* 3270 * iWarp drivers must support READ W/ INVALIDATE. No other protocol 3271 * has support for it yet. 3272 */ 3273 return rdma_protocol_iwarp(dev, port_num); 3274 } 3275 3276 /** 3277 * rdma_find_pg_bit - Find page bit given address and HW supported page sizes 3278 * 3279 * @addr: address 3280 * @pgsz_bitmap: bitmap of HW supported page sizes 3281 */ 3282 static inline unsigned int rdma_find_pg_bit(unsigned long addr, 3283 unsigned long pgsz_bitmap) 3284 { 3285 unsigned long align; 3286 unsigned long pgsz; 3287 3288 align = addr & -addr; 3289 3290 /* Find page bit such that addr is aligned to the highest supported 3291 * HW page size 3292 */ 3293 pgsz = pgsz_bitmap & ~(-align << 1); 3294 if (!pgsz) 3295 return __ffs(pgsz_bitmap); 3296 3297 return __fls(pgsz); 3298 } 3299 3300 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 3301 int state); 3302 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 3303 struct ifla_vf_info *info); 3304 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 3305 struct ifla_vf_stats *stats); 3306 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 3307 int type); 3308 3309 int ib_query_pkey(struct ib_device *device, 3310 u8 port_num, u16 index, u16 *pkey); 3311 3312 int ib_modify_device(struct ib_device *device, 3313 int device_modify_mask, 3314 struct ib_device_modify *device_modify); 3315 3316 int ib_modify_port(struct ib_device *device, 3317 u8 port_num, int port_modify_mask, 3318 struct ib_port_modify *port_modify); 3319 3320 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 3321 u8 *port_num, u16 *index); 3322 3323 int ib_find_pkey(struct ib_device *device, 3324 u8 port_num, u16 pkey, u16 *index); 3325 3326 enum ib_pd_flags { 3327 /* 3328 * Create a memory registration for all memory in the system and place 3329 * the rkey for it into pd->unsafe_global_rkey. This can be used by 3330 * ULPs to avoid the overhead of dynamic MRs. 3331 * 3332 * This flag is generally considered unsafe and must only be used in 3333 * extremly trusted environments. Every use of it will log a warning 3334 * in the kernel log. 3335 */ 3336 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01, 3337 }; 3338 3339 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 3340 const char *caller); 3341 3342 #define ib_alloc_pd(device, flags) \ 3343 __ib_alloc_pd((device), (flags), KBUILD_MODNAME) 3344 3345 /** 3346 * ib_dealloc_pd_user - Deallocate kernel/user PD 3347 * @pd: The protection domain 3348 * @udata: Valid user data or NULL for kernel objects 3349 */ 3350 void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata); 3351 3352 /** 3353 * ib_dealloc_pd - Deallocate kernel PD 3354 * @pd: The protection domain 3355 * 3356 * NOTE: for user PD use ib_dealloc_pd_user with valid udata! 3357 */ 3358 static inline void ib_dealloc_pd(struct ib_pd *pd) 3359 { 3360 ib_dealloc_pd_user(pd, NULL); 3361 } 3362 3363 enum rdma_create_ah_flags { 3364 /* In a sleepable context */ 3365 RDMA_CREATE_AH_SLEEPABLE = BIT(0), 3366 }; 3367 3368 /** 3369 * rdma_create_ah - Creates an address handle for the given address vector. 3370 * @pd: The protection domain associated with the address handle. 3371 * @ah_attr: The attributes of the address vector. 3372 * @flags: Create address handle flags (see enum rdma_create_ah_flags). 3373 * 3374 * The address handle is used to reference a local or global destination 3375 * in all UD QP post sends. 3376 */ 3377 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr, 3378 u32 flags); 3379 3380 /** 3381 * rdma_create_user_ah - Creates an address handle for the given address vector. 3382 * It resolves destination mac address for ah attribute of RoCE type. 3383 * @pd: The protection domain associated with the address handle. 3384 * @ah_attr: The attributes of the address vector. 3385 * @udata: pointer to user's input output buffer information need by 3386 * provider driver. 3387 * 3388 * It returns 0 on success and returns appropriate error code on error. 3389 * The address handle is used to reference a local or global destination 3390 * in all UD QP post sends. 3391 */ 3392 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd, 3393 struct rdma_ah_attr *ah_attr, 3394 struct ib_udata *udata); 3395 /** 3396 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header 3397 * work completion. 3398 * @hdr: the L3 header to parse 3399 * @net_type: type of header to parse 3400 * @sgid: place to store source gid 3401 * @dgid: place to store destination gid 3402 */ 3403 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 3404 enum rdma_network_type net_type, 3405 union ib_gid *sgid, union ib_gid *dgid); 3406 3407 /** 3408 * ib_get_rdma_header_version - Get the header version 3409 * @hdr: the L3 header to parse 3410 */ 3411 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr); 3412 3413 /** 3414 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a 3415 * work completion. 3416 * @device: Device on which the received message arrived. 3417 * @port_num: Port on which the received message arrived. 3418 * @wc: Work completion associated with the received message. 3419 * @grh: References the received global route header. This parameter is 3420 * ignored unless the work completion indicates that the GRH is valid. 3421 * @ah_attr: Returned attributes that can be used when creating an address 3422 * handle for replying to the message. 3423 * When ib_init_ah_attr_from_wc() returns success, 3424 * (a) for IB link layer it optionally contains a reference to SGID attribute 3425 * when GRH is present for IB link layer. 3426 * (b) for RoCE link layer it contains a reference to SGID attribute. 3427 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID 3428 * attributes which are initialized using ib_init_ah_attr_from_wc(). 3429 * 3430 */ 3431 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num, 3432 const struct ib_wc *wc, const struct ib_grh *grh, 3433 struct rdma_ah_attr *ah_attr); 3434 3435 /** 3436 * ib_create_ah_from_wc - Creates an address handle associated with the 3437 * sender of the specified work completion. 3438 * @pd: The protection domain associated with the address handle. 3439 * @wc: Work completion information associated with a received message. 3440 * @grh: References the received global route header. This parameter is 3441 * ignored unless the work completion indicates that the GRH is valid. 3442 * @port_num: The outbound port number to associate with the address. 3443 * 3444 * The address handle is used to reference a local or global destination 3445 * in all UD QP post sends. 3446 */ 3447 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 3448 const struct ib_grh *grh, u8 port_num); 3449 3450 /** 3451 * rdma_modify_ah - Modifies the address vector associated with an address 3452 * handle. 3453 * @ah: The address handle to modify. 3454 * @ah_attr: The new address vector attributes to associate with the 3455 * address handle. 3456 */ 3457 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3458 3459 /** 3460 * rdma_query_ah - Queries the address vector associated with an address 3461 * handle. 3462 * @ah: The address handle to query. 3463 * @ah_attr: The address vector attributes associated with the address 3464 * handle. 3465 */ 3466 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3467 3468 enum rdma_destroy_ah_flags { 3469 /* In a sleepable context */ 3470 RDMA_DESTROY_AH_SLEEPABLE = BIT(0), 3471 }; 3472 3473 /** 3474 * rdma_destroy_ah_user - Destroys an address handle. 3475 * @ah: The address handle to destroy. 3476 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3477 * @udata: Valid user data or NULL for kernel objects 3478 */ 3479 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata); 3480 3481 /** 3482 * rdma_destroy_ah - Destroys an kernel address handle. 3483 * @ah: The address handle to destroy. 3484 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3485 * 3486 * NOTE: for user ah use rdma_destroy_ah_user with valid udata! 3487 */ 3488 static inline int rdma_destroy_ah(struct ib_ah *ah, u32 flags) 3489 { 3490 return rdma_destroy_ah_user(ah, flags, NULL); 3491 } 3492 3493 /** 3494 * ib_create_srq - Creates a SRQ associated with the specified protection 3495 * domain. 3496 * @pd: The protection domain associated with the SRQ. 3497 * @srq_init_attr: A list of initial attributes required to create the 3498 * SRQ. If SRQ creation succeeds, then the attributes are updated to 3499 * the actual capabilities of the created SRQ. 3500 * 3501 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 3502 * requested size of the SRQ, and set to the actual values allocated 3503 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 3504 * will always be at least as large as the requested values. 3505 */ 3506 struct ib_srq *ib_create_srq(struct ib_pd *pd, 3507 struct ib_srq_init_attr *srq_init_attr); 3508 3509 /** 3510 * ib_modify_srq - Modifies the attributes for the specified SRQ. 3511 * @srq: The SRQ to modify. 3512 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 3513 * the current values of selected SRQ attributes are returned. 3514 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 3515 * are being modified. 3516 * 3517 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 3518 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 3519 * the number of receives queued drops below the limit. 3520 */ 3521 int ib_modify_srq(struct ib_srq *srq, 3522 struct ib_srq_attr *srq_attr, 3523 enum ib_srq_attr_mask srq_attr_mask); 3524 3525 /** 3526 * ib_query_srq - Returns the attribute list and current values for the 3527 * specified SRQ. 3528 * @srq: The SRQ to query. 3529 * @srq_attr: The attributes of the specified SRQ. 3530 */ 3531 int ib_query_srq(struct ib_srq *srq, 3532 struct ib_srq_attr *srq_attr); 3533 3534 /** 3535 * ib_destroy_srq_user - Destroys the specified SRQ. 3536 * @srq: The SRQ to destroy. 3537 * @udata: Valid user data or NULL for kernel objects 3538 */ 3539 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata); 3540 3541 /** 3542 * ib_destroy_srq - Destroys the specified kernel SRQ. 3543 * @srq: The SRQ to destroy. 3544 * 3545 * NOTE: for user srq use ib_destroy_srq_user with valid udata! 3546 */ 3547 static inline int ib_destroy_srq(struct ib_srq *srq) 3548 { 3549 return ib_destroy_srq_user(srq, NULL); 3550 } 3551 3552 /** 3553 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 3554 * @srq: The SRQ to post the work request on. 3555 * @recv_wr: A list of work requests to post on the receive queue. 3556 * @bad_recv_wr: On an immediate failure, this parameter will reference 3557 * the work request that failed to be posted on the QP. 3558 */ 3559 static inline int ib_post_srq_recv(struct ib_srq *srq, 3560 const struct ib_recv_wr *recv_wr, 3561 const struct ib_recv_wr **bad_recv_wr) 3562 { 3563 const struct ib_recv_wr *dummy; 3564 3565 return srq->device->ops.post_srq_recv(srq, recv_wr, 3566 bad_recv_wr ? : &dummy); 3567 } 3568 3569 /** 3570 * ib_create_qp_user - Creates a QP associated with the specified protection 3571 * domain. 3572 * @pd: The protection domain associated with the QP. 3573 * @qp_init_attr: A list of initial attributes required to create the 3574 * QP. If QP creation succeeds, then the attributes are updated to 3575 * the actual capabilities of the created QP. 3576 * @udata: Valid user data or NULL for kernel objects 3577 */ 3578 struct ib_qp *ib_create_qp_user(struct ib_pd *pd, 3579 struct ib_qp_init_attr *qp_init_attr, 3580 struct ib_udata *udata); 3581 3582 /** 3583 * ib_create_qp - Creates a kernel QP associated with the specified protection 3584 * domain. 3585 * @pd: The protection domain associated with the QP. 3586 * @qp_init_attr: A list of initial attributes required to create the 3587 * QP. If QP creation succeeds, then the attributes are updated to 3588 * the actual capabilities of the created QP. 3589 * @udata: Valid user data or NULL for kernel objects 3590 * 3591 * NOTE: for user qp use ib_create_qp_user with valid udata! 3592 */ 3593 static inline struct ib_qp *ib_create_qp(struct ib_pd *pd, 3594 struct ib_qp_init_attr *qp_init_attr) 3595 { 3596 return ib_create_qp_user(pd, qp_init_attr, NULL); 3597 } 3598 3599 /** 3600 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 3601 * @qp: The QP to modify. 3602 * @attr: On input, specifies the QP attributes to modify. On output, 3603 * the current values of selected QP attributes are returned. 3604 * @attr_mask: A bit-mask used to specify which attributes of the QP 3605 * are being modified. 3606 * @udata: pointer to user's input output buffer information 3607 * are being modified. 3608 * It returns 0 on success and returns appropriate error code on error. 3609 */ 3610 int ib_modify_qp_with_udata(struct ib_qp *qp, 3611 struct ib_qp_attr *attr, 3612 int attr_mask, 3613 struct ib_udata *udata); 3614 3615 /** 3616 * ib_modify_qp - Modifies the attributes for the specified QP and then 3617 * transitions the QP to the given state. 3618 * @qp: The QP to modify. 3619 * @qp_attr: On input, specifies the QP attributes to modify. On output, 3620 * the current values of selected QP attributes are returned. 3621 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 3622 * are being modified. 3623 */ 3624 int ib_modify_qp(struct ib_qp *qp, 3625 struct ib_qp_attr *qp_attr, 3626 int qp_attr_mask); 3627 3628 /** 3629 * ib_query_qp - Returns the attribute list and current values for the 3630 * specified QP. 3631 * @qp: The QP to query. 3632 * @qp_attr: The attributes of the specified QP. 3633 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 3634 * @qp_init_attr: Additional attributes of the selected QP. 3635 * 3636 * The qp_attr_mask may be used to limit the query to gathering only the 3637 * selected attributes. 3638 */ 3639 int ib_query_qp(struct ib_qp *qp, 3640 struct ib_qp_attr *qp_attr, 3641 int qp_attr_mask, 3642 struct ib_qp_init_attr *qp_init_attr); 3643 3644 /** 3645 * ib_destroy_qp - Destroys the specified QP. 3646 * @qp: The QP to destroy. 3647 * @udata: Valid udata or NULL for kernel objects 3648 */ 3649 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata); 3650 3651 /** 3652 * ib_destroy_qp - Destroys the specified kernel QP. 3653 * @qp: The QP to destroy. 3654 * 3655 * NOTE: for user qp use ib_destroy_qp_user with valid udata! 3656 */ 3657 static inline int ib_destroy_qp(struct ib_qp *qp) 3658 { 3659 return ib_destroy_qp_user(qp, NULL); 3660 } 3661 3662 /** 3663 * ib_open_qp - Obtain a reference to an existing sharable QP. 3664 * @xrcd - XRC domain 3665 * @qp_open_attr: Attributes identifying the QP to open. 3666 * 3667 * Returns a reference to a sharable QP. 3668 */ 3669 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 3670 struct ib_qp_open_attr *qp_open_attr); 3671 3672 /** 3673 * ib_close_qp - Release an external reference to a QP. 3674 * @qp: The QP handle to release 3675 * 3676 * The opened QP handle is released by the caller. The underlying 3677 * shared QP is not destroyed until all internal references are released. 3678 */ 3679 int ib_close_qp(struct ib_qp *qp); 3680 3681 /** 3682 * ib_post_send - Posts a list of work requests to the send queue of 3683 * the specified QP. 3684 * @qp: The QP to post the work request on. 3685 * @send_wr: A list of work requests to post on the send queue. 3686 * @bad_send_wr: On an immediate failure, this parameter will reference 3687 * the work request that failed to be posted on the QP. 3688 * 3689 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 3690 * error is returned, the QP state shall not be affected, 3691 * ib_post_send() will return an immediate error after queueing any 3692 * earlier work requests in the list. 3693 */ 3694 static inline int ib_post_send(struct ib_qp *qp, 3695 const struct ib_send_wr *send_wr, 3696 const struct ib_send_wr **bad_send_wr) 3697 { 3698 const struct ib_send_wr *dummy; 3699 3700 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy); 3701 } 3702 3703 /** 3704 * ib_post_recv - Posts a list of work requests to the receive queue of 3705 * the specified QP. 3706 * @qp: The QP to post the work request on. 3707 * @recv_wr: A list of work requests to post on the receive queue. 3708 * @bad_recv_wr: On an immediate failure, this parameter will reference 3709 * the work request that failed to be posted on the QP. 3710 */ 3711 static inline int ib_post_recv(struct ib_qp *qp, 3712 const struct ib_recv_wr *recv_wr, 3713 const struct ib_recv_wr **bad_recv_wr) 3714 { 3715 const struct ib_recv_wr *dummy; 3716 3717 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy); 3718 } 3719 3720 struct ib_cq *__ib_alloc_cq_user(struct ib_device *dev, void *private, 3721 int nr_cqe, int comp_vector, 3722 enum ib_poll_context poll_ctx, 3723 const char *caller, struct ib_udata *udata); 3724 3725 /** 3726 * ib_alloc_cq_user: Allocate kernel/user CQ 3727 * @dev: The IB device 3728 * @private: Private data attached to the CQE 3729 * @nr_cqe: Number of CQEs in the CQ 3730 * @comp_vector: Completion vector used for the IRQs 3731 * @poll_ctx: Context used for polling the CQ 3732 * @udata: Valid user data or NULL for kernel objects 3733 */ 3734 static inline struct ib_cq *ib_alloc_cq_user(struct ib_device *dev, 3735 void *private, int nr_cqe, 3736 int comp_vector, 3737 enum ib_poll_context poll_ctx, 3738 struct ib_udata *udata) 3739 { 3740 return __ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx, 3741 KBUILD_MODNAME, udata); 3742 } 3743 3744 /** 3745 * ib_alloc_cq: Allocate kernel CQ 3746 * @dev: The IB device 3747 * @private: Private data attached to the CQE 3748 * @nr_cqe: Number of CQEs in the CQ 3749 * @comp_vector: Completion vector used for the IRQs 3750 * @poll_ctx: Context used for polling the CQ 3751 * 3752 * NOTE: for user cq use ib_alloc_cq_user with valid udata! 3753 */ 3754 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private, 3755 int nr_cqe, int comp_vector, 3756 enum ib_poll_context poll_ctx) 3757 { 3758 return ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx, 3759 NULL); 3760 } 3761 3762 struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private, 3763 int nr_cqe, enum ib_poll_context poll_ctx, 3764 const char *caller); 3765 3766 /** 3767 * ib_alloc_cq_any: Allocate kernel CQ 3768 * @dev: The IB device 3769 * @private: Private data attached to the CQE 3770 * @nr_cqe: Number of CQEs in the CQ 3771 * @poll_ctx: Context used for polling the CQ 3772 */ 3773 static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev, 3774 void *private, int nr_cqe, 3775 enum ib_poll_context poll_ctx) 3776 { 3777 return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx, 3778 KBUILD_MODNAME); 3779 } 3780 3781 /** 3782 * ib_free_cq_user - Free kernel/user CQ 3783 * @cq: The CQ to free 3784 * @udata: Valid user data or NULL for kernel objects 3785 */ 3786 void ib_free_cq_user(struct ib_cq *cq, struct ib_udata *udata); 3787 3788 /** 3789 * ib_free_cq - Free kernel CQ 3790 * @cq: The CQ to free 3791 * 3792 * NOTE: for user cq use ib_free_cq_user with valid udata! 3793 */ 3794 static inline void ib_free_cq(struct ib_cq *cq) 3795 { 3796 ib_free_cq_user(cq, NULL); 3797 } 3798 3799 int ib_process_cq_direct(struct ib_cq *cq, int budget); 3800 3801 /** 3802 * ib_create_cq - Creates a CQ on the specified device. 3803 * @device: The device on which to create the CQ. 3804 * @comp_handler: A user-specified callback that is invoked when a 3805 * completion event occurs on the CQ. 3806 * @event_handler: A user-specified callback that is invoked when an 3807 * asynchronous event not associated with a completion occurs on the CQ. 3808 * @cq_context: Context associated with the CQ returned to the user via 3809 * the associated completion and event handlers. 3810 * @cq_attr: The attributes the CQ should be created upon. 3811 * 3812 * Users can examine the cq structure to determine the actual CQ size. 3813 */ 3814 struct ib_cq *__ib_create_cq(struct ib_device *device, 3815 ib_comp_handler comp_handler, 3816 void (*event_handler)(struct ib_event *, void *), 3817 void *cq_context, 3818 const struct ib_cq_init_attr *cq_attr, 3819 const char *caller); 3820 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \ 3821 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME) 3822 3823 /** 3824 * ib_resize_cq - Modifies the capacity of the CQ. 3825 * @cq: The CQ to resize. 3826 * @cqe: The minimum size of the CQ. 3827 * 3828 * Users can examine the cq structure to determine the actual CQ size. 3829 */ 3830 int ib_resize_cq(struct ib_cq *cq, int cqe); 3831 3832 /** 3833 * rdma_set_cq_moderation - Modifies moderation params of the CQ 3834 * @cq: The CQ to modify. 3835 * @cq_count: number of CQEs that will trigger an event 3836 * @cq_period: max period of time in usec before triggering an event 3837 * 3838 */ 3839 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period); 3840 3841 /** 3842 * ib_destroy_cq_user - Destroys the specified CQ. 3843 * @cq: The CQ to destroy. 3844 * @udata: Valid user data or NULL for kernel objects 3845 */ 3846 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata); 3847 3848 /** 3849 * ib_destroy_cq - Destroys the specified kernel CQ. 3850 * @cq: The CQ to destroy. 3851 * 3852 * NOTE: for user cq use ib_destroy_cq_user with valid udata! 3853 */ 3854 static inline void ib_destroy_cq(struct ib_cq *cq) 3855 { 3856 ib_destroy_cq_user(cq, NULL); 3857 } 3858 3859 /** 3860 * ib_poll_cq - poll a CQ for completion(s) 3861 * @cq:the CQ being polled 3862 * @num_entries:maximum number of completions to return 3863 * @wc:array of at least @num_entries &struct ib_wc where completions 3864 * will be returned 3865 * 3866 * Poll a CQ for (possibly multiple) completions. If the return value 3867 * is < 0, an error occurred. If the return value is >= 0, it is the 3868 * number of completions returned. If the return value is 3869 * non-negative and < num_entries, then the CQ was emptied. 3870 */ 3871 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 3872 struct ib_wc *wc) 3873 { 3874 return cq->device->ops.poll_cq(cq, num_entries, wc); 3875 } 3876 3877 /** 3878 * ib_req_notify_cq - Request completion notification on a CQ. 3879 * @cq: The CQ to generate an event for. 3880 * @flags: 3881 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 3882 * to request an event on the next solicited event or next work 3883 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 3884 * may also be |ed in to request a hint about missed events, as 3885 * described below. 3886 * 3887 * Return Value: 3888 * < 0 means an error occurred while requesting notification 3889 * == 0 means notification was requested successfully, and if 3890 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 3891 * were missed and it is safe to wait for another event. In 3892 * this case is it guaranteed that any work completions added 3893 * to the CQ since the last CQ poll will trigger a completion 3894 * notification event. 3895 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 3896 * in. It means that the consumer must poll the CQ again to 3897 * make sure it is empty to avoid missing an event because of a 3898 * race between requesting notification and an entry being 3899 * added to the CQ. This return value means it is possible 3900 * (but not guaranteed) that a work completion has been added 3901 * to the CQ since the last poll without triggering a 3902 * completion notification event. 3903 */ 3904 static inline int ib_req_notify_cq(struct ib_cq *cq, 3905 enum ib_cq_notify_flags flags) 3906 { 3907 return cq->device->ops.req_notify_cq(cq, flags); 3908 } 3909 3910 /** 3911 * ib_req_ncomp_notif - Request completion notification when there are 3912 * at least the specified number of unreaped completions on the CQ. 3913 * @cq: The CQ to generate an event for. 3914 * @wc_cnt: The number of unreaped completions that should be on the 3915 * CQ before an event is generated. 3916 */ 3917 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 3918 { 3919 return cq->device->ops.req_ncomp_notif ? 3920 cq->device->ops.req_ncomp_notif(cq, wc_cnt) : 3921 -ENOSYS; 3922 } 3923 3924 /** 3925 * ib_dma_mapping_error - check a DMA addr for error 3926 * @dev: The device for which the dma_addr was created 3927 * @dma_addr: The DMA address to check 3928 */ 3929 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 3930 { 3931 return dma_mapping_error(dev->dma_device, dma_addr); 3932 } 3933 3934 /** 3935 * ib_dma_map_single - Map a kernel virtual address to DMA address 3936 * @dev: The device for which the dma_addr is to be created 3937 * @cpu_addr: The kernel virtual address 3938 * @size: The size of the region in bytes 3939 * @direction: The direction of the DMA 3940 */ 3941 static inline u64 ib_dma_map_single(struct ib_device *dev, 3942 void *cpu_addr, size_t size, 3943 enum dma_data_direction direction) 3944 { 3945 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 3946 } 3947 3948 /** 3949 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 3950 * @dev: The device for which the DMA address was created 3951 * @addr: The DMA address 3952 * @size: The size of the region in bytes 3953 * @direction: The direction of the DMA 3954 */ 3955 static inline void ib_dma_unmap_single(struct ib_device *dev, 3956 u64 addr, size_t size, 3957 enum dma_data_direction direction) 3958 { 3959 dma_unmap_single(dev->dma_device, addr, size, direction); 3960 } 3961 3962 /** 3963 * ib_dma_map_page - Map a physical page to DMA address 3964 * @dev: The device for which the dma_addr is to be created 3965 * @page: The page to be mapped 3966 * @offset: The offset within the page 3967 * @size: The size of the region in bytes 3968 * @direction: The direction of the DMA 3969 */ 3970 static inline u64 ib_dma_map_page(struct ib_device *dev, 3971 struct page *page, 3972 unsigned long offset, 3973 size_t size, 3974 enum dma_data_direction direction) 3975 { 3976 return dma_map_page(dev->dma_device, page, offset, size, direction); 3977 } 3978 3979 /** 3980 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 3981 * @dev: The device for which the DMA address was created 3982 * @addr: The DMA address 3983 * @size: The size of the region in bytes 3984 * @direction: The direction of the DMA 3985 */ 3986 static inline void ib_dma_unmap_page(struct ib_device *dev, 3987 u64 addr, size_t size, 3988 enum dma_data_direction direction) 3989 { 3990 dma_unmap_page(dev->dma_device, addr, size, direction); 3991 } 3992 3993 /** 3994 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 3995 * @dev: The device for which the DMA addresses are to be created 3996 * @sg: The array of scatter/gather entries 3997 * @nents: The number of scatter/gather entries 3998 * @direction: The direction of the DMA 3999 */ 4000 static inline int ib_dma_map_sg(struct ib_device *dev, 4001 struct scatterlist *sg, int nents, 4002 enum dma_data_direction direction) 4003 { 4004 return dma_map_sg(dev->dma_device, sg, nents, direction); 4005 } 4006 4007 /** 4008 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 4009 * @dev: The device for which the DMA addresses were created 4010 * @sg: The array of scatter/gather entries 4011 * @nents: The number of scatter/gather entries 4012 * @direction: The direction of the DMA 4013 */ 4014 static inline void ib_dma_unmap_sg(struct ib_device *dev, 4015 struct scatterlist *sg, int nents, 4016 enum dma_data_direction direction) 4017 { 4018 dma_unmap_sg(dev->dma_device, sg, nents, direction); 4019 } 4020 4021 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 4022 struct scatterlist *sg, int nents, 4023 enum dma_data_direction direction, 4024 unsigned long dma_attrs) 4025 { 4026 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, 4027 dma_attrs); 4028 } 4029 4030 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 4031 struct scatterlist *sg, int nents, 4032 enum dma_data_direction direction, 4033 unsigned long dma_attrs) 4034 { 4035 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs); 4036 } 4037 4038 /** 4039 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer 4040 * @dev: The device to query 4041 * 4042 * The returned value represents a size in bytes. 4043 */ 4044 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev) 4045 { 4046 struct device_dma_parameters *p = dev->dma_device->dma_parms; 4047 4048 return p ? p->max_segment_size : UINT_MAX; 4049 } 4050 4051 /** 4052 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 4053 * @dev: The device for which the DMA address was created 4054 * @addr: The DMA address 4055 * @size: The size of the region in bytes 4056 * @dir: The direction of the DMA 4057 */ 4058 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 4059 u64 addr, 4060 size_t size, 4061 enum dma_data_direction dir) 4062 { 4063 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 4064 } 4065 4066 /** 4067 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 4068 * @dev: The device for which the DMA address was created 4069 * @addr: The DMA address 4070 * @size: The size of the region in bytes 4071 * @dir: The direction of the DMA 4072 */ 4073 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 4074 u64 addr, 4075 size_t size, 4076 enum dma_data_direction dir) 4077 { 4078 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 4079 } 4080 4081 /** 4082 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 4083 * @dev: The device for which the DMA address is requested 4084 * @size: The size of the region to allocate in bytes 4085 * @dma_handle: A pointer for returning the DMA address of the region 4086 * @flag: memory allocator flags 4087 */ 4088 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 4089 size_t size, 4090 dma_addr_t *dma_handle, 4091 gfp_t flag) 4092 { 4093 return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag); 4094 } 4095 4096 /** 4097 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 4098 * @dev: The device for which the DMA addresses were allocated 4099 * @size: The size of the region 4100 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 4101 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 4102 */ 4103 static inline void ib_dma_free_coherent(struct ib_device *dev, 4104 size_t size, void *cpu_addr, 4105 dma_addr_t dma_handle) 4106 { 4107 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 4108 } 4109 4110 /** 4111 * ib_dereg_mr_user - Deregisters a memory region and removes it from the 4112 * HCA translation table. 4113 * @mr: The memory region to deregister. 4114 * @udata: Valid user data or NULL for kernel object 4115 * 4116 * This function can fail, if the memory region has memory windows bound to it. 4117 */ 4118 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata); 4119 4120 /** 4121 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the 4122 * HCA translation table. 4123 * @mr: The memory region to deregister. 4124 * 4125 * This function can fail, if the memory region has memory windows bound to it. 4126 * 4127 * NOTE: for user mr use ib_dereg_mr_user with valid udata! 4128 */ 4129 static inline int ib_dereg_mr(struct ib_mr *mr) 4130 { 4131 return ib_dereg_mr_user(mr, NULL); 4132 } 4133 4134 struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type, 4135 u32 max_num_sg, struct ib_udata *udata); 4136 4137 static inline struct ib_mr *ib_alloc_mr(struct ib_pd *pd, 4138 enum ib_mr_type mr_type, u32 max_num_sg) 4139 { 4140 return ib_alloc_mr_user(pd, mr_type, max_num_sg, NULL); 4141 } 4142 4143 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd, 4144 u32 max_num_data_sg, 4145 u32 max_num_meta_sg); 4146 4147 /** 4148 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 4149 * R_Key and L_Key. 4150 * @mr - struct ib_mr pointer to be updated. 4151 * @newkey - new key to be used. 4152 */ 4153 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 4154 { 4155 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 4156 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 4157 } 4158 4159 /** 4160 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 4161 * for calculating a new rkey for type 2 memory windows. 4162 * @rkey - the rkey to increment. 4163 */ 4164 static inline u32 ib_inc_rkey(u32 rkey) 4165 { 4166 const u32 mask = 0x000000ff; 4167 return ((rkey + 1) & mask) | (rkey & ~mask); 4168 } 4169 4170 /** 4171 * ib_alloc_fmr - Allocates a unmapped fast memory region. 4172 * @pd: The protection domain associated with the unmapped region. 4173 * @mr_access_flags: Specifies the memory access rights. 4174 * @fmr_attr: Attributes of the unmapped region. 4175 * 4176 * A fast memory region must be mapped before it can be used as part of 4177 * a work request. 4178 */ 4179 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 4180 int mr_access_flags, 4181 struct ib_fmr_attr *fmr_attr); 4182 4183 /** 4184 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 4185 * @fmr: The fast memory region to associate with the pages. 4186 * @page_list: An array of physical pages to map to the fast memory region. 4187 * @list_len: The number of pages in page_list. 4188 * @iova: The I/O virtual address to use with the mapped region. 4189 */ 4190 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 4191 u64 *page_list, int list_len, 4192 u64 iova) 4193 { 4194 return fmr->device->ops.map_phys_fmr(fmr, page_list, list_len, iova); 4195 } 4196 4197 /** 4198 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 4199 * @fmr_list: A linked list of fast memory regions to unmap. 4200 */ 4201 int ib_unmap_fmr(struct list_head *fmr_list); 4202 4203 /** 4204 * ib_dealloc_fmr - Deallocates a fast memory region. 4205 * @fmr: The fast memory region to deallocate. 4206 */ 4207 int ib_dealloc_fmr(struct ib_fmr *fmr); 4208 4209 /** 4210 * ib_attach_mcast - Attaches the specified QP to a multicast group. 4211 * @qp: QP to attach to the multicast group. The QP must be type 4212 * IB_QPT_UD. 4213 * @gid: Multicast group GID. 4214 * @lid: Multicast group LID in host byte order. 4215 * 4216 * In order to send and receive multicast packets, subnet 4217 * administration must have created the multicast group and configured 4218 * the fabric appropriately. The port associated with the specified 4219 * QP must also be a member of the multicast group. 4220 */ 4221 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 4222 4223 /** 4224 * ib_detach_mcast - Detaches the specified QP from a multicast group. 4225 * @qp: QP to detach from the multicast group. 4226 * @gid: Multicast group GID. 4227 * @lid: Multicast group LID in host byte order. 4228 */ 4229 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 4230 4231 /** 4232 * ib_alloc_xrcd - Allocates an XRC domain. 4233 * @device: The device on which to allocate the XRC domain. 4234 * @caller: Module name for kernel consumers 4235 */ 4236 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller); 4237 #define ib_alloc_xrcd(device) \ 4238 __ib_alloc_xrcd((device), KBUILD_MODNAME) 4239 4240 /** 4241 * ib_dealloc_xrcd - Deallocates an XRC domain. 4242 * @xrcd: The XRC domain to deallocate. 4243 * @udata: Valid user data or NULL for kernel object 4244 */ 4245 int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata); 4246 4247 static inline int ib_check_mr_access(int flags) 4248 { 4249 /* 4250 * Local write permission is required if remote write or 4251 * remote atomic permission is also requested. 4252 */ 4253 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 4254 !(flags & IB_ACCESS_LOCAL_WRITE)) 4255 return -EINVAL; 4256 4257 return 0; 4258 } 4259 4260 static inline bool ib_access_writable(int access_flags) 4261 { 4262 /* 4263 * We have writable memory backing the MR if any of the following 4264 * access flags are set. "Local write" and "remote write" obviously 4265 * require write access. "Remote atomic" can do things like fetch and 4266 * add, which will modify memory, and "MW bind" can change permissions 4267 * by binding a window. 4268 */ 4269 return access_flags & 4270 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | 4271 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND); 4272 } 4273 4274 /** 4275 * ib_check_mr_status: lightweight check of MR status. 4276 * This routine may provide status checks on a selected 4277 * ib_mr. first use is for signature status check. 4278 * 4279 * @mr: A memory region. 4280 * @check_mask: Bitmask of which checks to perform from 4281 * ib_mr_status_check enumeration. 4282 * @mr_status: The container of relevant status checks. 4283 * failed checks will be indicated in the status bitmask 4284 * and the relevant info shall be in the error item. 4285 */ 4286 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 4287 struct ib_mr_status *mr_status); 4288 4289 /** 4290 * ib_device_try_get: Hold a registration lock 4291 * device: The device to lock 4292 * 4293 * A device under an active registration lock cannot become unregistered. It 4294 * is only possible to obtain a registration lock on a device that is fully 4295 * registered, otherwise this function returns false. 4296 * 4297 * The registration lock is only necessary for actions which require the 4298 * device to still be registered. Uses that only require the device pointer to 4299 * be valid should use get_device(&ibdev->dev) to hold the memory. 4300 * 4301 */ 4302 static inline bool ib_device_try_get(struct ib_device *dev) 4303 { 4304 return refcount_inc_not_zero(&dev->refcount); 4305 } 4306 4307 void ib_device_put(struct ib_device *device); 4308 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev, 4309 enum rdma_driver_id driver_id); 4310 struct ib_device *ib_device_get_by_name(const char *name, 4311 enum rdma_driver_id driver_id); 4312 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port, 4313 u16 pkey, const union ib_gid *gid, 4314 const struct sockaddr *addr); 4315 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev, 4316 unsigned int port); 4317 struct net_device *ib_device_netdev(struct ib_device *dev, u8 port); 4318 4319 struct ib_wq *ib_create_wq(struct ib_pd *pd, 4320 struct ib_wq_init_attr *init_attr); 4321 int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata); 4322 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr, 4323 u32 wq_attr_mask); 4324 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device, 4325 struct ib_rwq_ind_table_init_attr* 4326 wq_ind_table_init_attr); 4327 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table); 4328 4329 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 4330 unsigned int *sg_offset, unsigned int page_size); 4331 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg, 4332 int data_sg_nents, unsigned int *data_sg_offset, 4333 struct scatterlist *meta_sg, int meta_sg_nents, 4334 unsigned int *meta_sg_offset, unsigned int page_size); 4335 4336 static inline int 4337 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 4338 unsigned int *sg_offset, unsigned int page_size) 4339 { 4340 int n; 4341 4342 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size); 4343 mr->iova = 0; 4344 4345 return n; 4346 } 4347 4348 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 4349 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64)); 4350 4351 void ib_drain_rq(struct ib_qp *qp); 4352 void ib_drain_sq(struct ib_qp *qp); 4353 void ib_drain_qp(struct ib_qp *qp); 4354 4355 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width); 4356 4357 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr) 4358 { 4359 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE) 4360 return attr->roce.dmac; 4361 return NULL; 4362 } 4363 4364 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid) 4365 { 4366 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4367 attr->ib.dlid = (u16)dlid; 4368 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4369 attr->opa.dlid = dlid; 4370 } 4371 4372 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr) 4373 { 4374 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4375 return attr->ib.dlid; 4376 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4377 return attr->opa.dlid; 4378 return 0; 4379 } 4380 4381 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl) 4382 { 4383 attr->sl = sl; 4384 } 4385 4386 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr) 4387 { 4388 return attr->sl; 4389 } 4390 4391 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr, 4392 u8 src_path_bits) 4393 { 4394 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4395 attr->ib.src_path_bits = src_path_bits; 4396 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4397 attr->opa.src_path_bits = src_path_bits; 4398 } 4399 4400 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr) 4401 { 4402 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4403 return attr->ib.src_path_bits; 4404 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4405 return attr->opa.src_path_bits; 4406 return 0; 4407 } 4408 4409 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr, 4410 bool make_grd) 4411 { 4412 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4413 attr->opa.make_grd = make_grd; 4414 } 4415 4416 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr) 4417 { 4418 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4419 return attr->opa.make_grd; 4420 return false; 4421 } 4422 4423 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num) 4424 { 4425 attr->port_num = port_num; 4426 } 4427 4428 static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr) 4429 { 4430 return attr->port_num; 4431 } 4432 4433 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr, 4434 u8 static_rate) 4435 { 4436 attr->static_rate = static_rate; 4437 } 4438 4439 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr) 4440 { 4441 return attr->static_rate; 4442 } 4443 4444 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr, 4445 enum ib_ah_flags flag) 4446 { 4447 attr->ah_flags = flag; 4448 } 4449 4450 static inline enum ib_ah_flags 4451 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr) 4452 { 4453 return attr->ah_flags; 4454 } 4455 4456 static inline const struct ib_global_route 4457 *rdma_ah_read_grh(const struct rdma_ah_attr *attr) 4458 { 4459 return &attr->grh; 4460 } 4461 4462 /*To retrieve and modify the grh */ 4463 static inline struct ib_global_route 4464 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr) 4465 { 4466 return &attr->grh; 4467 } 4468 4469 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid) 4470 { 4471 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4472 4473 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid)); 4474 } 4475 4476 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr, 4477 __be64 prefix) 4478 { 4479 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4480 4481 grh->dgid.global.subnet_prefix = prefix; 4482 } 4483 4484 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr, 4485 __be64 if_id) 4486 { 4487 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4488 4489 grh->dgid.global.interface_id = if_id; 4490 } 4491 4492 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr, 4493 union ib_gid *dgid, u32 flow_label, 4494 u8 sgid_index, u8 hop_limit, 4495 u8 traffic_class) 4496 { 4497 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4498 4499 attr->ah_flags = IB_AH_GRH; 4500 if (dgid) 4501 grh->dgid = *dgid; 4502 grh->flow_label = flow_label; 4503 grh->sgid_index = sgid_index; 4504 grh->hop_limit = hop_limit; 4505 grh->traffic_class = traffic_class; 4506 grh->sgid_attr = NULL; 4507 } 4508 4509 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr); 4510 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid, 4511 u32 flow_label, u8 hop_limit, u8 traffic_class, 4512 const struct ib_gid_attr *sgid_attr); 4513 void rdma_copy_ah_attr(struct rdma_ah_attr *dest, 4514 const struct rdma_ah_attr *src); 4515 void rdma_replace_ah_attr(struct rdma_ah_attr *old, 4516 const struct rdma_ah_attr *new); 4517 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src); 4518 4519 /** 4520 * rdma_ah_find_type - Return address handle type. 4521 * 4522 * @dev: Device to be checked 4523 * @port_num: Port number 4524 */ 4525 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev, 4526 u8 port_num) 4527 { 4528 if (rdma_protocol_roce(dev, port_num)) 4529 return RDMA_AH_ATTR_TYPE_ROCE; 4530 if (rdma_protocol_ib(dev, port_num)) { 4531 if (rdma_cap_opa_ah(dev, port_num)) 4532 return RDMA_AH_ATTR_TYPE_OPA; 4533 return RDMA_AH_ATTR_TYPE_IB; 4534 } 4535 4536 return RDMA_AH_ATTR_TYPE_UNDEFINED; 4537 } 4538 4539 /** 4540 * ib_lid_cpu16 - Return lid in 16bit CPU encoding. 4541 * In the current implementation the only way to get 4542 * get the 32bit lid is from other sources for OPA. 4543 * For IB, lids will always be 16bits so cast the 4544 * value accordingly. 4545 * 4546 * @lid: A 32bit LID 4547 */ 4548 static inline u16 ib_lid_cpu16(u32 lid) 4549 { 4550 WARN_ON_ONCE(lid & 0xFFFF0000); 4551 return (u16)lid; 4552 } 4553 4554 /** 4555 * ib_lid_be16 - Return lid in 16bit BE encoding. 4556 * 4557 * @lid: A 32bit LID 4558 */ 4559 static inline __be16 ib_lid_be16(u32 lid) 4560 { 4561 WARN_ON_ONCE(lid & 0xFFFF0000); 4562 return cpu_to_be16((u16)lid); 4563 } 4564 4565 /** 4566 * ib_get_vector_affinity - Get the affinity mappings of a given completion 4567 * vector 4568 * @device: the rdma device 4569 * @comp_vector: index of completion vector 4570 * 4571 * Returns NULL on failure, otherwise a corresponding cpu map of the 4572 * completion vector (returns all-cpus map if the device driver doesn't 4573 * implement get_vector_affinity). 4574 */ 4575 static inline const struct cpumask * 4576 ib_get_vector_affinity(struct ib_device *device, int comp_vector) 4577 { 4578 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors || 4579 !device->ops.get_vector_affinity) 4580 return NULL; 4581 4582 return device->ops.get_vector_affinity(device, comp_vector); 4583 4584 } 4585 4586 /** 4587 * rdma_roce_rescan_device - Rescan all of the network devices in the system 4588 * and add their gids, as needed, to the relevant RoCE devices. 4589 * 4590 * @device: the rdma device 4591 */ 4592 void rdma_roce_rescan_device(struct ib_device *ibdev); 4593 4594 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile); 4595 4596 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs); 4597 4598 struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num, 4599 enum rdma_netdev_t type, const char *name, 4600 unsigned char name_assign_type, 4601 void (*setup)(struct net_device *)); 4602 4603 int rdma_init_netdev(struct ib_device *device, u8 port_num, 4604 enum rdma_netdev_t type, const char *name, 4605 unsigned char name_assign_type, 4606 void (*setup)(struct net_device *), 4607 struct net_device *netdev); 4608 4609 /** 4610 * rdma_set_device_sysfs_group - Set device attributes group to have 4611 * driver specific sysfs entries at 4612 * for infiniband class. 4613 * 4614 * @device: device pointer for which attributes to be created 4615 * @group: Pointer to group which should be added when device 4616 * is registered with sysfs. 4617 * rdma_set_device_sysfs_group() allows existing drivers to expose one 4618 * group per device to have sysfs attributes. 4619 * 4620 * NOTE: New drivers should not make use of this API; instead new device 4621 * parameter should be exposed via netlink command. This API and mechanism 4622 * exist only for existing drivers. 4623 */ 4624 static inline void 4625 rdma_set_device_sysfs_group(struct ib_device *dev, 4626 const struct attribute_group *group) 4627 { 4628 dev->groups[1] = group; 4629 } 4630 4631 /** 4632 * rdma_device_to_ibdev - Get ib_device pointer from device pointer 4633 * 4634 * @device: device pointer for which ib_device pointer to retrieve 4635 * 4636 * rdma_device_to_ibdev() retrieves ib_device pointer from device. 4637 * 4638 */ 4639 static inline struct ib_device *rdma_device_to_ibdev(struct device *device) 4640 { 4641 struct ib_core_device *coredev = 4642 container_of(device, struct ib_core_device, dev); 4643 4644 return coredev->owner; 4645 } 4646 4647 /** 4648 * rdma_device_to_drv_device - Helper macro to reach back to driver's 4649 * ib_device holder structure from device pointer. 4650 * 4651 * NOTE: New drivers should not make use of this API; This API is only for 4652 * existing drivers who have exposed sysfs entries using 4653 * rdma_set_device_sysfs_group(). 4654 */ 4655 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \ 4656 container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member) 4657 4658 bool rdma_dev_access_netns(const struct ib_device *device, 4659 const struct net *net); 4660 #endif /* IB_VERBS_H */ 4661