1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #if !defined(IB_VERBS_H) 40 #define IB_VERBS_H 41 42 #include <linux/types.h> 43 #include <linux/device.h> 44 #include <linux/mm.h> 45 #include <linux/dma-mapping.h> 46 #include <linux/kref.h> 47 #include <linux/list.h> 48 #include <linux/rwsem.h> 49 #include <linux/scatterlist.h> 50 #include <linux/workqueue.h> 51 52 #include <linux/atomic.h> 53 #include <asm/uaccess.h> 54 55 extern struct workqueue_struct *ib_wq; 56 57 union ib_gid { 58 u8 raw[16]; 59 struct { 60 __be64 subnet_prefix; 61 __be64 interface_id; 62 } global; 63 }; 64 65 enum rdma_node_type { 66 /* IB values map to NodeInfo:NodeType. */ 67 RDMA_NODE_IB_CA = 1, 68 RDMA_NODE_IB_SWITCH, 69 RDMA_NODE_IB_ROUTER, 70 RDMA_NODE_RNIC 71 }; 72 73 enum rdma_transport_type { 74 RDMA_TRANSPORT_IB, 75 RDMA_TRANSPORT_IWARP 76 }; 77 78 enum rdma_transport_type 79 rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__; 80 81 enum rdma_link_layer { 82 IB_LINK_LAYER_UNSPECIFIED, 83 IB_LINK_LAYER_INFINIBAND, 84 IB_LINK_LAYER_ETHERNET, 85 }; 86 87 enum ib_device_cap_flags { 88 IB_DEVICE_RESIZE_MAX_WR = 1, 89 IB_DEVICE_BAD_PKEY_CNTR = (1<<1), 90 IB_DEVICE_BAD_QKEY_CNTR = (1<<2), 91 IB_DEVICE_RAW_MULTI = (1<<3), 92 IB_DEVICE_AUTO_PATH_MIG = (1<<4), 93 IB_DEVICE_CHANGE_PHY_PORT = (1<<5), 94 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6), 95 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7), 96 IB_DEVICE_SHUTDOWN_PORT = (1<<8), 97 IB_DEVICE_INIT_TYPE = (1<<9), 98 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10), 99 IB_DEVICE_SYS_IMAGE_GUID = (1<<11), 100 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12), 101 IB_DEVICE_SRQ_RESIZE = (1<<13), 102 IB_DEVICE_N_NOTIFY_CQ = (1<<14), 103 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15), 104 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */ 105 IB_DEVICE_MEM_WINDOW = (1<<17), 106 /* 107 * Devices should set IB_DEVICE_UD_IP_SUM if they support 108 * insertion of UDP and TCP checksum on outgoing UD IPoIB 109 * messages and can verify the validity of checksum for 110 * incoming messages. Setting this flag implies that the 111 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 112 */ 113 IB_DEVICE_UD_IP_CSUM = (1<<18), 114 IB_DEVICE_UD_TSO = (1<<19), 115 IB_DEVICE_XRC = (1<<20), 116 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21), 117 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22), 118 }; 119 120 enum ib_atomic_cap { 121 IB_ATOMIC_NONE, 122 IB_ATOMIC_HCA, 123 IB_ATOMIC_GLOB 124 }; 125 126 struct ib_device_attr { 127 u64 fw_ver; 128 __be64 sys_image_guid; 129 u64 max_mr_size; 130 u64 page_size_cap; 131 u32 vendor_id; 132 u32 vendor_part_id; 133 u32 hw_ver; 134 int max_qp; 135 int max_qp_wr; 136 int device_cap_flags; 137 int max_sge; 138 int max_sge_rd; 139 int max_cq; 140 int max_cqe; 141 int max_mr; 142 int max_pd; 143 int max_qp_rd_atom; 144 int max_ee_rd_atom; 145 int max_res_rd_atom; 146 int max_qp_init_rd_atom; 147 int max_ee_init_rd_atom; 148 enum ib_atomic_cap atomic_cap; 149 enum ib_atomic_cap masked_atomic_cap; 150 int max_ee; 151 int max_rdd; 152 int max_mw; 153 int max_raw_ipv6_qp; 154 int max_raw_ethy_qp; 155 int max_mcast_grp; 156 int max_mcast_qp_attach; 157 int max_total_mcast_qp_attach; 158 int max_ah; 159 int max_fmr; 160 int max_map_per_fmr; 161 int max_srq; 162 int max_srq_wr; 163 int max_srq_sge; 164 unsigned int max_fast_reg_page_list_len; 165 u16 max_pkeys; 166 u8 local_ca_ack_delay; 167 }; 168 169 enum ib_mtu { 170 IB_MTU_256 = 1, 171 IB_MTU_512 = 2, 172 IB_MTU_1024 = 3, 173 IB_MTU_2048 = 4, 174 IB_MTU_4096 = 5 175 }; 176 177 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 178 { 179 switch (mtu) { 180 case IB_MTU_256: return 256; 181 case IB_MTU_512: return 512; 182 case IB_MTU_1024: return 1024; 183 case IB_MTU_2048: return 2048; 184 case IB_MTU_4096: return 4096; 185 default: return -1; 186 } 187 } 188 189 enum ib_port_state { 190 IB_PORT_NOP = 0, 191 IB_PORT_DOWN = 1, 192 IB_PORT_INIT = 2, 193 IB_PORT_ARMED = 3, 194 IB_PORT_ACTIVE = 4, 195 IB_PORT_ACTIVE_DEFER = 5 196 }; 197 198 enum ib_port_cap_flags { 199 IB_PORT_SM = 1 << 1, 200 IB_PORT_NOTICE_SUP = 1 << 2, 201 IB_PORT_TRAP_SUP = 1 << 3, 202 IB_PORT_OPT_IPD_SUP = 1 << 4, 203 IB_PORT_AUTO_MIGR_SUP = 1 << 5, 204 IB_PORT_SL_MAP_SUP = 1 << 6, 205 IB_PORT_MKEY_NVRAM = 1 << 7, 206 IB_PORT_PKEY_NVRAM = 1 << 8, 207 IB_PORT_LED_INFO_SUP = 1 << 9, 208 IB_PORT_SM_DISABLED = 1 << 10, 209 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11, 210 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12, 211 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14, 212 IB_PORT_CM_SUP = 1 << 16, 213 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17, 214 IB_PORT_REINIT_SUP = 1 << 18, 215 IB_PORT_DEVICE_MGMT_SUP = 1 << 19, 216 IB_PORT_VENDOR_CLASS_SUP = 1 << 20, 217 IB_PORT_DR_NOTICE_SUP = 1 << 21, 218 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22, 219 IB_PORT_BOOT_MGMT_SUP = 1 << 23, 220 IB_PORT_LINK_LATENCY_SUP = 1 << 24, 221 IB_PORT_CLIENT_REG_SUP = 1 << 25 222 }; 223 224 enum ib_port_width { 225 IB_WIDTH_1X = 1, 226 IB_WIDTH_4X = 2, 227 IB_WIDTH_8X = 4, 228 IB_WIDTH_12X = 8 229 }; 230 231 static inline int ib_width_enum_to_int(enum ib_port_width width) 232 { 233 switch (width) { 234 case IB_WIDTH_1X: return 1; 235 case IB_WIDTH_4X: return 4; 236 case IB_WIDTH_8X: return 8; 237 case IB_WIDTH_12X: return 12; 238 default: return -1; 239 } 240 } 241 242 enum ib_port_speed { 243 IB_SPEED_SDR = 1, 244 IB_SPEED_DDR = 2, 245 IB_SPEED_QDR = 4, 246 IB_SPEED_FDR10 = 8, 247 IB_SPEED_FDR = 16, 248 IB_SPEED_EDR = 32 249 }; 250 251 struct ib_protocol_stats { 252 /* TBD... */ 253 }; 254 255 struct iw_protocol_stats { 256 u64 ipInReceives; 257 u64 ipInHdrErrors; 258 u64 ipInTooBigErrors; 259 u64 ipInNoRoutes; 260 u64 ipInAddrErrors; 261 u64 ipInUnknownProtos; 262 u64 ipInTruncatedPkts; 263 u64 ipInDiscards; 264 u64 ipInDelivers; 265 u64 ipOutForwDatagrams; 266 u64 ipOutRequests; 267 u64 ipOutDiscards; 268 u64 ipOutNoRoutes; 269 u64 ipReasmTimeout; 270 u64 ipReasmReqds; 271 u64 ipReasmOKs; 272 u64 ipReasmFails; 273 u64 ipFragOKs; 274 u64 ipFragFails; 275 u64 ipFragCreates; 276 u64 ipInMcastPkts; 277 u64 ipOutMcastPkts; 278 u64 ipInBcastPkts; 279 u64 ipOutBcastPkts; 280 281 u64 tcpRtoAlgorithm; 282 u64 tcpRtoMin; 283 u64 tcpRtoMax; 284 u64 tcpMaxConn; 285 u64 tcpActiveOpens; 286 u64 tcpPassiveOpens; 287 u64 tcpAttemptFails; 288 u64 tcpEstabResets; 289 u64 tcpCurrEstab; 290 u64 tcpInSegs; 291 u64 tcpOutSegs; 292 u64 tcpRetransSegs; 293 u64 tcpInErrs; 294 u64 tcpOutRsts; 295 }; 296 297 union rdma_protocol_stats { 298 struct ib_protocol_stats ib; 299 struct iw_protocol_stats iw; 300 }; 301 302 struct ib_port_attr { 303 enum ib_port_state state; 304 enum ib_mtu max_mtu; 305 enum ib_mtu active_mtu; 306 int gid_tbl_len; 307 u32 port_cap_flags; 308 u32 max_msg_sz; 309 u32 bad_pkey_cntr; 310 u32 qkey_viol_cntr; 311 u16 pkey_tbl_len; 312 u16 lid; 313 u16 sm_lid; 314 u8 lmc; 315 u8 max_vl_num; 316 u8 sm_sl; 317 u8 subnet_timeout; 318 u8 init_type_reply; 319 u8 active_width; 320 u8 active_speed; 321 u8 phys_state; 322 }; 323 324 enum ib_device_modify_flags { 325 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 326 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 327 }; 328 329 struct ib_device_modify { 330 u64 sys_image_guid; 331 char node_desc[64]; 332 }; 333 334 enum ib_port_modify_flags { 335 IB_PORT_SHUTDOWN = 1, 336 IB_PORT_INIT_TYPE = (1<<2), 337 IB_PORT_RESET_QKEY_CNTR = (1<<3) 338 }; 339 340 struct ib_port_modify { 341 u32 set_port_cap_mask; 342 u32 clr_port_cap_mask; 343 u8 init_type; 344 }; 345 346 enum ib_event_type { 347 IB_EVENT_CQ_ERR, 348 IB_EVENT_QP_FATAL, 349 IB_EVENT_QP_REQ_ERR, 350 IB_EVENT_QP_ACCESS_ERR, 351 IB_EVENT_COMM_EST, 352 IB_EVENT_SQ_DRAINED, 353 IB_EVENT_PATH_MIG, 354 IB_EVENT_PATH_MIG_ERR, 355 IB_EVENT_DEVICE_FATAL, 356 IB_EVENT_PORT_ACTIVE, 357 IB_EVENT_PORT_ERR, 358 IB_EVENT_LID_CHANGE, 359 IB_EVENT_PKEY_CHANGE, 360 IB_EVENT_SM_CHANGE, 361 IB_EVENT_SRQ_ERR, 362 IB_EVENT_SRQ_LIMIT_REACHED, 363 IB_EVENT_QP_LAST_WQE_REACHED, 364 IB_EVENT_CLIENT_REREGISTER, 365 IB_EVENT_GID_CHANGE, 366 }; 367 368 struct ib_event { 369 struct ib_device *device; 370 union { 371 struct ib_cq *cq; 372 struct ib_qp *qp; 373 struct ib_srq *srq; 374 u8 port_num; 375 } element; 376 enum ib_event_type event; 377 }; 378 379 struct ib_event_handler { 380 struct ib_device *device; 381 void (*handler)(struct ib_event_handler *, struct ib_event *); 382 struct list_head list; 383 }; 384 385 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 386 do { \ 387 (_ptr)->device = _device; \ 388 (_ptr)->handler = _handler; \ 389 INIT_LIST_HEAD(&(_ptr)->list); \ 390 } while (0) 391 392 struct ib_global_route { 393 union ib_gid dgid; 394 u32 flow_label; 395 u8 sgid_index; 396 u8 hop_limit; 397 u8 traffic_class; 398 }; 399 400 struct ib_grh { 401 __be32 version_tclass_flow; 402 __be16 paylen; 403 u8 next_hdr; 404 u8 hop_limit; 405 union ib_gid sgid; 406 union ib_gid dgid; 407 }; 408 409 enum { 410 IB_MULTICAST_QPN = 0xffffff 411 }; 412 413 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 414 415 enum ib_ah_flags { 416 IB_AH_GRH = 1 417 }; 418 419 enum ib_rate { 420 IB_RATE_PORT_CURRENT = 0, 421 IB_RATE_2_5_GBPS = 2, 422 IB_RATE_5_GBPS = 5, 423 IB_RATE_10_GBPS = 3, 424 IB_RATE_20_GBPS = 6, 425 IB_RATE_30_GBPS = 4, 426 IB_RATE_40_GBPS = 7, 427 IB_RATE_60_GBPS = 8, 428 IB_RATE_80_GBPS = 9, 429 IB_RATE_120_GBPS = 10, 430 IB_RATE_14_GBPS = 11, 431 IB_RATE_56_GBPS = 12, 432 IB_RATE_112_GBPS = 13, 433 IB_RATE_168_GBPS = 14, 434 IB_RATE_25_GBPS = 15, 435 IB_RATE_100_GBPS = 16, 436 IB_RATE_200_GBPS = 17, 437 IB_RATE_300_GBPS = 18 438 }; 439 440 /** 441 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 442 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 443 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 444 * @rate: rate to convert. 445 */ 446 int ib_rate_to_mult(enum ib_rate rate) __attribute_const__; 447 448 /** 449 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 450 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 451 * @rate: rate to convert. 452 */ 453 int ib_rate_to_mbps(enum ib_rate rate) __attribute_const__; 454 455 /** 456 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 457 * enum. 458 * @mult: multiple to convert. 459 */ 460 enum ib_rate mult_to_ib_rate(int mult) __attribute_const__; 461 462 struct ib_ah_attr { 463 struct ib_global_route grh; 464 u16 dlid; 465 u8 sl; 466 u8 src_path_bits; 467 u8 static_rate; 468 u8 ah_flags; 469 u8 port_num; 470 }; 471 472 enum ib_wc_status { 473 IB_WC_SUCCESS, 474 IB_WC_LOC_LEN_ERR, 475 IB_WC_LOC_QP_OP_ERR, 476 IB_WC_LOC_EEC_OP_ERR, 477 IB_WC_LOC_PROT_ERR, 478 IB_WC_WR_FLUSH_ERR, 479 IB_WC_MW_BIND_ERR, 480 IB_WC_BAD_RESP_ERR, 481 IB_WC_LOC_ACCESS_ERR, 482 IB_WC_REM_INV_REQ_ERR, 483 IB_WC_REM_ACCESS_ERR, 484 IB_WC_REM_OP_ERR, 485 IB_WC_RETRY_EXC_ERR, 486 IB_WC_RNR_RETRY_EXC_ERR, 487 IB_WC_LOC_RDD_VIOL_ERR, 488 IB_WC_REM_INV_RD_REQ_ERR, 489 IB_WC_REM_ABORT_ERR, 490 IB_WC_INV_EECN_ERR, 491 IB_WC_INV_EEC_STATE_ERR, 492 IB_WC_FATAL_ERR, 493 IB_WC_RESP_TIMEOUT_ERR, 494 IB_WC_GENERAL_ERR 495 }; 496 497 enum ib_wc_opcode { 498 IB_WC_SEND, 499 IB_WC_RDMA_WRITE, 500 IB_WC_RDMA_READ, 501 IB_WC_COMP_SWAP, 502 IB_WC_FETCH_ADD, 503 IB_WC_BIND_MW, 504 IB_WC_LSO, 505 IB_WC_LOCAL_INV, 506 IB_WC_FAST_REG_MR, 507 IB_WC_MASKED_COMP_SWAP, 508 IB_WC_MASKED_FETCH_ADD, 509 /* 510 * Set value of IB_WC_RECV so consumers can test if a completion is a 511 * receive by testing (opcode & IB_WC_RECV). 512 */ 513 IB_WC_RECV = 1 << 7, 514 IB_WC_RECV_RDMA_WITH_IMM 515 }; 516 517 enum ib_wc_flags { 518 IB_WC_GRH = 1, 519 IB_WC_WITH_IMM = (1<<1), 520 IB_WC_WITH_INVALIDATE = (1<<2), 521 IB_WC_IP_CSUM_OK = (1<<3), 522 }; 523 524 struct ib_wc { 525 u64 wr_id; 526 enum ib_wc_status status; 527 enum ib_wc_opcode opcode; 528 u32 vendor_err; 529 u32 byte_len; 530 struct ib_qp *qp; 531 union { 532 __be32 imm_data; 533 u32 invalidate_rkey; 534 } ex; 535 u32 src_qp; 536 int wc_flags; 537 u16 pkey_index; 538 u16 slid; 539 u8 sl; 540 u8 dlid_path_bits; 541 u8 port_num; /* valid only for DR SMPs on switches */ 542 }; 543 544 enum ib_cq_notify_flags { 545 IB_CQ_SOLICITED = 1 << 0, 546 IB_CQ_NEXT_COMP = 1 << 1, 547 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 548 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 549 }; 550 551 enum ib_srq_type { 552 IB_SRQT_BASIC, 553 IB_SRQT_XRC 554 }; 555 556 enum ib_srq_attr_mask { 557 IB_SRQ_MAX_WR = 1 << 0, 558 IB_SRQ_LIMIT = 1 << 1, 559 }; 560 561 struct ib_srq_attr { 562 u32 max_wr; 563 u32 max_sge; 564 u32 srq_limit; 565 }; 566 567 struct ib_srq_init_attr { 568 void (*event_handler)(struct ib_event *, void *); 569 void *srq_context; 570 struct ib_srq_attr attr; 571 enum ib_srq_type srq_type; 572 573 union { 574 struct { 575 struct ib_xrcd *xrcd; 576 struct ib_cq *cq; 577 } xrc; 578 } ext; 579 }; 580 581 struct ib_qp_cap { 582 u32 max_send_wr; 583 u32 max_recv_wr; 584 u32 max_send_sge; 585 u32 max_recv_sge; 586 u32 max_inline_data; 587 }; 588 589 enum ib_sig_type { 590 IB_SIGNAL_ALL_WR, 591 IB_SIGNAL_REQ_WR 592 }; 593 594 enum ib_qp_type { 595 /* 596 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 597 * here (and in that order) since the MAD layer uses them as 598 * indices into a 2-entry table. 599 */ 600 IB_QPT_SMI, 601 IB_QPT_GSI, 602 603 IB_QPT_RC, 604 IB_QPT_UC, 605 IB_QPT_UD, 606 IB_QPT_RAW_IPV6, 607 IB_QPT_RAW_ETHERTYPE, 608 IB_QPT_RAW_PACKET = 8, 609 IB_QPT_XRC_INI = 9, 610 IB_QPT_XRC_TGT, 611 IB_QPT_MAX 612 }; 613 614 enum ib_qp_create_flags { 615 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 616 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1, 617 }; 618 619 struct ib_qp_init_attr { 620 void (*event_handler)(struct ib_event *, void *); 621 void *qp_context; 622 struct ib_cq *send_cq; 623 struct ib_cq *recv_cq; 624 struct ib_srq *srq; 625 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 626 struct ib_qp_cap cap; 627 enum ib_sig_type sq_sig_type; 628 enum ib_qp_type qp_type; 629 enum ib_qp_create_flags create_flags; 630 u8 port_num; /* special QP types only */ 631 }; 632 633 struct ib_qp_open_attr { 634 void (*event_handler)(struct ib_event *, void *); 635 void *qp_context; 636 u32 qp_num; 637 enum ib_qp_type qp_type; 638 }; 639 640 enum ib_rnr_timeout { 641 IB_RNR_TIMER_655_36 = 0, 642 IB_RNR_TIMER_000_01 = 1, 643 IB_RNR_TIMER_000_02 = 2, 644 IB_RNR_TIMER_000_03 = 3, 645 IB_RNR_TIMER_000_04 = 4, 646 IB_RNR_TIMER_000_06 = 5, 647 IB_RNR_TIMER_000_08 = 6, 648 IB_RNR_TIMER_000_12 = 7, 649 IB_RNR_TIMER_000_16 = 8, 650 IB_RNR_TIMER_000_24 = 9, 651 IB_RNR_TIMER_000_32 = 10, 652 IB_RNR_TIMER_000_48 = 11, 653 IB_RNR_TIMER_000_64 = 12, 654 IB_RNR_TIMER_000_96 = 13, 655 IB_RNR_TIMER_001_28 = 14, 656 IB_RNR_TIMER_001_92 = 15, 657 IB_RNR_TIMER_002_56 = 16, 658 IB_RNR_TIMER_003_84 = 17, 659 IB_RNR_TIMER_005_12 = 18, 660 IB_RNR_TIMER_007_68 = 19, 661 IB_RNR_TIMER_010_24 = 20, 662 IB_RNR_TIMER_015_36 = 21, 663 IB_RNR_TIMER_020_48 = 22, 664 IB_RNR_TIMER_030_72 = 23, 665 IB_RNR_TIMER_040_96 = 24, 666 IB_RNR_TIMER_061_44 = 25, 667 IB_RNR_TIMER_081_92 = 26, 668 IB_RNR_TIMER_122_88 = 27, 669 IB_RNR_TIMER_163_84 = 28, 670 IB_RNR_TIMER_245_76 = 29, 671 IB_RNR_TIMER_327_68 = 30, 672 IB_RNR_TIMER_491_52 = 31 673 }; 674 675 enum ib_qp_attr_mask { 676 IB_QP_STATE = 1, 677 IB_QP_CUR_STATE = (1<<1), 678 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 679 IB_QP_ACCESS_FLAGS = (1<<3), 680 IB_QP_PKEY_INDEX = (1<<4), 681 IB_QP_PORT = (1<<5), 682 IB_QP_QKEY = (1<<6), 683 IB_QP_AV = (1<<7), 684 IB_QP_PATH_MTU = (1<<8), 685 IB_QP_TIMEOUT = (1<<9), 686 IB_QP_RETRY_CNT = (1<<10), 687 IB_QP_RNR_RETRY = (1<<11), 688 IB_QP_RQ_PSN = (1<<12), 689 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 690 IB_QP_ALT_PATH = (1<<14), 691 IB_QP_MIN_RNR_TIMER = (1<<15), 692 IB_QP_SQ_PSN = (1<<16), 693 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 694 IB_QP_PATH_MIG_STATE = (1<<18), 695 IB_QP_CAP = (1<<19), 696 IB_QP_DEST_QPN = (1<<20) 697 }; 698 699 enum ib_qp_state { 700 IB_QPS_RESET, 701 IB_QPS_INIT, 702 IB_QPS_RTR, 703 IB_QPS_RTS, 704 IB_QPS_SQD, 705 IB_QPS_SQE, 706 IB_QPS_ERR 707 }; 708 709 enum ib_mig_state { 710 IB_MIG_MIGRATED, 711 IB_MIG_REARM, 712 IB_MIG_ARMED 713 }; 714 715 struct ib_qp_attr { 716 enum ib_qp_state qp_state; 717 enum ib_qp_state cur_qp_state; 718 enum ib_mtu path_mtu; 719 enum ib_mig_state path_mig_state; 720 u32 qkey; 721 u32 rq_psn; 722 u32 sq_psn; 723 u32 dest_qp_num; 724 int qp_access_flags; 725 struct ib_qp_cap cap; 726 struct ib_ah_attr ah_attr; 727 struct ib_ah_attr alt_ah_attr; 728 u16 pkey_index; 729 u16 alt_pkey_index; 730 u8 en_sqd_async_notify; 731 u8 sq_draining; 732 u8 max_rd_atomic; 733 u8 max_dest_rd_atomic; 734 u8 min_rnr_timer; 735 u8 port_num; 736 u8 timeout; 737 u8 retry_cnt; 738 u8 rnr_retry; 739 u8 alt_port_num; 740 u8 alt_timeout; 741 }; 742 743 enum ib_wr_opcode { 744 IB_WR_RDMA_WRITE, 745 IB_WR_RDMA_WRITE_WITH_IMM, 746 IB_WR_SEND, 747 IB_WR_SEND_WITH_IMM, 748 IB_WR_RDMA_READ, 749 IB_WR_ATOMIC_CMP_AND_SWP, 750 IB_WR_ATOMIC_FETCH_AND_ADD, 751 IB_WR_LSO, 752 IB_WR_SEND_WITH_INV, 753 IB_WR_RDMA_READ_WITH_INV, 754 IB_WR_LOCAL_INV, 755 IB_WR_FAST_REG_MR, 756 IB_WR_MASKED_ATOMIC_CMP_AND_SWP, 757 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD, 758 }; 759 760 enum ib_send_flags { 761 IB_SEND_FENCE = 1, 762 IB_SEND_SIGNALED = (1<<1), 763 IB_SEND_SOLICITED = (1<<2), 764 IB_SEND_INLINE = (1<<3), 765 IB_SEND_IP_CSUM = (1<<4) 766 }; 767 768 struct ib_sge { 769 u64 addr; 770 u32 length; 771 u32 lkey; 772 }; 773 774 struct ib_fast_reg_page_list { 775 struct ib_device *device; 776 u64 *page_list; 777 unsigned int max_page_list_len; 778 }; 779 780 struct ib_send_wr { 781 struct ib_send_wr *next; 782 u64 wr_id; 783 struct ib_sge *sg_list; 784 int num_sge; 785 enum ib_wr_opcode opcode; 786 int send_flags; 787 union { 788 __be32 imm_data; 789 u32 invalidate_rkey; 790 } ex; 791 union { 792 struct { 793 u64 remote_addr; 794 u32 rkey; 795 } rdma; 796 struct { 797 u64 remote_addr; 798 u64 compare_add; 799 u64 swap; 800 u64 compare_add_mask; 801 u64 swap_mask; 802 u32 rkey; 803 } atomic; 804 struct { 805 struct ib_ah *ah; 806 void *header; 807 int hlen; 808 int mss; 809 u32 remote_qpn; 810 u32 remote_qkey; 811 u16 pkey_index; /* valid for GSI only */ 812 u8 port_num; /* valid for DR SMPs on switch only */ 813 } ud; 814 struct { 815 u64 iova_start; 816 struct ib_fast_reg_page_list *page_list; 817 unsigned int page_shift; 818 unsigned int page_list_len; 819 u32 length; 820 int access_flags; 821 u32 rkey; 822 } fast_reg; 823 } wr; 824 u32 xrc_remote_srq_num; /* XRC TGT QPs only */ 825 }; 826 827 struct ib_recv_wr { 828 struct ib_recv_wr *next; 829 u64 wr_id; 830 struct ib_sge *sg_list; 831 int num_sge; 832 }; 833 834 enum ib_access_flags { 835 IB_ACCESS_LOCAL_WRITE = 1, 836 IB_ACCESS_REMOTE_WRITE = (1<<1), 837 IB_ACCESS_REMOTE_READ = (1<<2), 838 IB_ACCESS_REMOTE_ATOMIC = (1<<3), 839 IB_ACCESS_MW_BIND = (1<<4) 840 }; 841 842 struct ib_phys_buf { 843 u64 addr; 844 u64 size; 845 }; 846 847 struct ib_mr_attr { 848 struct ib_pd *pd; 849 u64 device_virt_addr; 850 u64 size; 851 int mr_access_flags; 852 u32 lkey; 853 u32 rkey; 854 }; 855 856 enum ib_mr_rereg_flags { 857 IB_MR_REREG_TRANS = 1, 858 IB_MR_REREG_PD = (1<<1), 859 IB_MR_REREG_ACCESS = (1<<2) 860 }; 861 862 struct ib_mw_bind { 863 struct ib_mr *mr; 864 u64 wr_id; 865 u64 addr; 866 u32 length; 867 int send_flags; 868 int mw_access_flags; 869 }; 870 871 struct ib_fmr_attr { 872 int max_pages; 873 int max_maps; 874 u8 page_shift; 875 }; 876 877 struct ib_ucontext { 878 struct ib_device *device; 879 struct list_head pd_list; 880 struct list_head mr_list; 881 struct list_head mw_list; 882 struct list_head cq_list; 883 struct list_head qp_list; 884 struct list_head srq_list; 885 struct list_head ah_list; 886 struct list_head xrcd_list; 887 int closing; 888 }; 889 890 struct ib_uobject { 891 u64 user_handle; /* handle given to us by userspace */ 892 struct ib_ucontext *context; /* associated user context */ 893 void *object; /* containing object */ 894 struct list_head list; /* link to context's list */ 895 int id; /* index into kernel idr */ 896 struct kref ref; 897 struct rw_semaphore mutex; /* protects .live */ 898 int live; 899 }; 900 901 struct ib_udata { 902 void __user *inbuf; 903 void __user *outbuf; 904 size_t inlen; 905 size_t outlen; 906 }; 907 908 struct ib_pd { 909 struct ib_device *device; 910 struct ib_uobject *uobject; 911 atomic_t usecnt; /* count all resources */ 912 }; 913 914 struct ib_xrcd { 915 struct ib_device *device; 916 atomic_t usecnt; /* count all exposed resources */ 917 struct inode *inode; 918 919 struct mutex tgt_qp_mutex; 920 struct list_head tgt_qp_list; 921 }; 922 923 struct ib_ah { 924 struct ib_device *device; 925 struct ib_pd *pd; 926 struct ib_uobject *uobject; 927 }; 928 929 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 930 931 struct ib_cq { 932 struct ib_device *device; 933 struct ib_uobject *uobject; 934 ib_comp_handler comp_handler; 935 void (*event_handler)(struct ib_event *, void *); 936 void *cq_context; 937 int cqe; 938 atomic_t usecnt; /* count number of work queues */ 939 }; 940 941 struct ib_srq { 942 struct ib_device *device; 943 struct ib_pd *pd; 944 struct ib_uobject *uobject; 945 void (*event_handler)(struct ib_event *, void *); 946 void *srq_context; 947 enum ib_srq_type srq_type; 948 atomic_t usecnt; 949 950 union { 951 struct { 952 struct ib_xrcd *xrcd; 953 struct ib_cq *cq; 954 u32 srq_num; 955 } xrc; 956 } ext; 957 }; 958 959 struct ib_qp { 960 struct ib_device *device; 961 struct ib_pd *pd; 962 struct ib_cq *send_cq; 963 struct ib_cq *recv_cq; 964 struct ib_srq *srq; 965 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 966 struct list_head xrcd_list; 967 atomic_t usecnt; /* count times opened, mcast attaches */ 968 struct list_head open_list; 969 struct ib_qp *real_qp; 970 struct ib_uobject *uobject; 971 void (*event_handler)(struct ib_event *, void *); 972 void *qp_context; 973 u32 qp_num; 974 enum ib_qp_type qp_type; 975 }; 976 977 struct ib_mr { 978 struct ib_device *device; 979 struct ib_pd *pd; 980 struct ib_uobject *uobject; 981 u32 lkey; 982 u32 rkey; 983 atomic_t usecnt; /* count number of MWs */ 984 }; 985 986 struct ib_mw { 987 struct ib_device *device; 988 struct ib_pd *pd; 989 struct ib_uobject *uobject; 990 u32 rkey; 991 }; 992 993 struct ib_fmr { 994 struct ib_device *device; 995 struct ib_pd *pd; 996 struct list_head list; 997 u32 lkey; 998 u32 rkey; 999 }; 1000 1001 struct ib_mad; 1002 struct ib_grh; 1003 1004 enum ib_process_mad_flags { 1005 IB_MAD_IGNORE_MKEY = 1, 1006 IB_MAD_IGNORE_BKEY = 2, 1007 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 1008 }; 1009 1010 enum ib_mad_result { 1011 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 1012 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 1013 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 1014 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 1015 }; 1016 1017 #define IB_DEVICE_NAME_MAX 64 1018 1019 struct ib_cache { 1020 rwlock_t lock; 1021 struct ib_event_handler event_handler; 1022 struct ib_pkey_cache **pkey_cache; 1023 struct ib_gid_cache **gid_cache; 1024 u8 *lmc_cache; 1025 }; 1026 1027 struct ib_dma_mapping_ops { 1028 int (*mapping_error)(struct ib_device *dev, 1029 u64 dma_addr); 1030 u64 (*map_single)(struct ib_device *dev, 1031 void *ptr, size_t size, 1032 enum dma_data_direction direction); 1033 void (*unmap_single)(struct ib_device *dev, 1034 u64 addr, size_t size, 1035 enum dma_data_direction direction); 1036 u64 (*map_page)(struct ib_device *dev, 1037 struct page *page, unsigned long offset, 1038 size_t size, 1039 enum dma_data_direction direction); 1040 void (*unmap_page)(struct ib_device *dev, 1041 u64 addr, size_t size, 1042 enum dma_data_direction direction); 1043 int (*map_sg)(struct ib_device *dev, 1044 struct scatterlist *sg, int nents, 1045 enum dma_data_direction direction); 1046 void (*unmap_sg)(struct ib_device *dev, 1047 struct scatterlist *sg, int nents, 1048 enum dma_data_direction direction); 1049 u64 (*dma_address)(struct ib_device *dev, 1050 struct scatterlist *sg); 1051 unsigned int (*dma_len)(struct ib_device *dev, 1052 struct scatterlist *sg); 1053 void (*sync_single_for_cpu)(struct ib_device *dev, 1054 u64 dma_handle, 1055 size_t size, 1056 enum dma_data_direction dir); 1057 void (*sync_single_for_device)(struct ib_device *dev, 1058 u64 dma_handle, 1059 size_t size, 1060 enum dma_data_direction dir); 1061 void *(*alloc_coherent)(struct ib_device *dev, 1062 size_t size, 1063 u64 *dma_handle, 1064 gfp_t flag); 1065 void (*free_coherent)(struct ib_device *dev, 1066 size_t size, void *cpu_addr, 1067 u64 dma_handle); 1068 }; 1069 1070 struct iw_cm_verbs; 1071 1072 struct ib_device { 1073 struct device *dma_device; 1074 1075 char name[IB_DEVICE_NAME_MAX]; 1076 1077 struct list_head event_handler_list; 1078 spinlock_t event_handler_lock; 1079 1080 spinlock_t client_data_lock; 1081 struct list_head core_list; 1082 struct list_head client_data_list; 1083 1084 struct ib_cache cache; 1085 int *pkey_tbl_len; 1086 int *gid_tbl_len; 1087 1088 int num_comp_vectors; 1089 1090 struct iw_cm_verbs *iwcm; 1091 1092 int (*get_protocol_stats)(struct ib_device *device, 1093 union rdma_protocol_stats *stats); 1094 int (*query_device)(struct ib_device *device, 1095 struct ib_device_attr *device_attr); 1096 int (*query_port)(struct ib_device *device, 1097 u8 port_num, 1098 struct ib_port_attr *port_attr); 1099 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 1100 u8 port_num); 1101 int (*query_gid)(struct ib_device *device, 1102 u8 port_num, int index, 1103 union ib_gid *gid); 1104 int (*query_pkey)(struct ib_device *device, 1105 u8 port_num, u16 index, u16 *pkey); 1106 int (*modify_device)(struct ib_device *device, 1107 int device_modify_mask, 1108 struct ib_device_modify *device_modify); 1109 int (*modify_port)(struct ib_device *device, 1110 u8 port_num, int port_modify_mask, 1111 struct ib_port_modify *port_modify); 1112 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device, 1113 struct ib_udata *udata); 1114 int (*dealloc_ucontext)(struct ib_ucontext *context); 1115 int (*mmap)(struct ib_ucontext *context, 1116 struct vm_area_struct *vma); 1117 struct ib_pd * (*alloc_pd)(struct ib_device *device, 1118 struct ib_ucontext *context, 1119 struct ib_udata *udata); 1120 int (*dealloc_pd)(struct ib_pd *pd); 1121 struct ib_ah * (*create_ah)(struct ib_pd *pd, 1122 struct ib_ah_attr *ah_attr); 1123 int (*modify_ah)(struct ib_ah *ah, 1124 struct ib_ah_attr *ah_attr); 1125 int (*query_ah)(struct ib_ah *ah, 1126 struct ib_ah_attr *ah_attr); 1127 int (*destroy_ah)(struct ib_ah *ah); 1128 struct ib_srq * (*create_srq)(struct ib_pd *pd, 1129 struct ib_srq_init_attr *srq_init_attr, 1130 struct ib_udata *udata); 1131 int (*modify_srq)(struct ib_srq *srq, 1132 struct ib_srq_attr *srq_attr, 1133 enum ib_srq_attr_mask srq_attr_mask, 1134 struct ib_udata *udata); 1135 int (*query_srq)(struct ib_srq *srq, 1136 struct ib_srq_attr *srq_attr); 1137 int (*destroy_srq)(struct ib_srq *srq); 1138 int (*post_srq_recv)(struct ib_srq *srq, 1139 struct ib_recv_wr *recv_wr, 1140 struct ib_recv_wr **bad_recv_wr); 1141 struct ib_qp * (*create_qp)(struct ib_pd *pd, 1142 struct ib_qp_init_attr *qp_init_attr, 1143 struct ib_udata *udata); 1144 int (*modify_qp)(struct ib_qp *qp, 1145 struct ib_qp_attr *qp_attr, 1146 int qp_attr_mask, 1147 struct ib_udata *udata); 1148 int (*query_qp)(struct ib_qp *qp, 1149 struct ib_qp_attr *qp_attr, 1150 int qp_attr_mask, 1151 struct ib_qp_init_attr *qp_init_attr); 1152 int (*destroy_qp)(struct ib_qp *qp); 1153 int (*post_send)(struct ib_qp *qp, 1154 struct ib_send_wr *send_wr, 1155 struct ib_send_wr **bad_send_wr); 1156 int (*post_recv)(struct ib_qp *qp, 1157 struct ib_recv_wr *recv_wr, 1158 struct ib_recv_wr **bad_recv_wr); 1159 struct ib_cq * (*create_cq)(struct ib_device *device, int cqe, 1160 int comp_vector, 1161 struct ib_ucontext *context, 1162 struct ib_udata *udata); 1163 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, 1164 u16 cq_period); 1165 int (*destroy_cq)(struct ib_cq *cq); 1166 int (*resize_cq)(struct ib_cq *cq, int cqe, 1167 struct ib_udata *udata); 1168 int (*poll_cq)(struct ib_cq *cq, int num_entries, 1169 struct ib_wc *wc); 1170 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 1171 int (*req_notify_cq)(struct ib_cq *cq, 1172 enum ib_cq_notify_flags flags); 1173 int (*req_ncomp_notif)(struct ib_cq *cq, 1174 int wc_cnt); 1175 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, 1176 int mr_access_flags); 1177 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd, 1178 struct ib_phys_buf *phys_buf_array, 1179 int num_phys_buf, 1180 int mr_access_flags, 1181 u64 *iova_start); 1182 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, 1183 u64 start, u64 length, 1184 u64 virt_addr, 1185 int mr_access_flags, 1186 struct ib_udata *udata); 1187 int (*query_mr)(struct ib_mr *mr, 1188 struct ib_mr_attr *mr_attr); 1189 int (*dereg_mr)(struct ib_mr *mr); 1190 struct ib_mr * (*alloc_fast_reg_mr)(struct ib_pd *pd, 1191 int max_page_list_len); 1192 struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device, 1193 int page_list_len); 1194 void (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list); 1195 int (*rereg_phys_mr)(struct ib_mr *mr, 1196 int mr_rereg_mask, 1197 struct ib_pd *pd, 1198 struct ib_phys_buf *phys_buf_array, 1199 int num_phys_buf, 1200 int mr_access_flags, 1201 u64 *iova_start); 1202 struct ib_mw * (*alloc_mw)(struct ib_pd *pd); 1203 int (*bind_mw)(struct ib_qp *qp, 1204 struct ib_mw *mw, 1205 struct ib_mw_bind *mw_bind); 1206 int (*dealloc_mw)(struct ib_mw *mw); 1207 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, 1208 int mr_access_flags, 1209 struct ib_fmr_attr *fmr_attr); 1210 int (*map_phys_fmr)(struct ib_fmr *fmr, 1211 u64 *page_list, int list_len, 1212 u64 iova); 1213 int (*unmap_fmr)(struct list_head *fmr_list); 1214 int (*dealloc_fmr)(struct ib_fmr *fmr); 1215 int (*attach_mcast)(struct ib_qp *qp, 1216 union ib_gid *gid, 1217 u16 lid); 1218 int (*detach_mcast)(struct ib_qp *qp, 1219 union ib_gid *gid, 1220 u16 lid); 1221 int (*process_mad)(struct ib_device *device, 1222 int process_mad_flags, 1223 u8 port_num, 1224 struct ib_wc *in_wc, 1225 struct ib_grh *in_grh, 1226 struct ib_mad *in_mad, 1227 struct ib_mad *out_mad); 1228 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device, 1229 struct ib_ucontext *ucontext, 1230 struct ib_udata *udata); 1231 int (*dealloc_xrcd)(struct ib_xrcd *xrcd); 1232 1233 struct ib_dma_mapping_ops *dma_ops; 1234 1235 struct module *owner; 1236 struct device dev; 1237 struct kobject *ports_parent; 1238 struct list_head port_list; 1239 1240 enum { 1241 IB_DEV_UNINITIALIZED, 1242 IB_DEV_REGISTERED, 1243 IB_DEV_UNREGISTERED 1244 } reg_state; 1245 1246 int uverbs_abi_ver; 1247 u64 uverbs_cmd_mask; 1248 1249 char node_desc[64]; 1250 __be64 node_guid; 1251 u32 local_dma_lkey; 1252 u8 node_type; 1253 u8 phys_port_cnt; 1254 }; 1255 1256 struct ib_client { 1257 char *name; 1258 void (*add) (struct ib_device *); 1259 void (*remove)(struct ib_device *); 1260 1261 struct list_head list; 1262 }; 1263 1264 struct ib_device *ib_alloc_device(size_t size); 1265 void ib_dealloc_device(struct ib_device *device); 1266 1267 int ib_register_device(struct ib_device *device, 1268 int (*port_callback)(struct ib_device *, 1269 u8, struct kobject *)); 1270 void ib_unregister_device(struct ib_device *device); 1271 1272 int ib_register_client (struct ib_client *client); 1273 void ib_unregister_client(struct ib_client *client); 1274 1275 void *ib_get_client_data(struct ib_device *device, struct ib_client *client); 1276 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 1277 void *data); 1278 1279 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 1280 { 1281 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 1282 } 1283 1284 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 1285 { 1286 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 1287 } 1288 1289 /** 1290 * ib_modify_qp_is_ok - Check that the supplied attribute mask 1291 * contains all required attributes and no attributes not allowed for 1292 * the given QP state transition. 1293 * @cur_state: Current QP state 1294 * @next_state: Next QP state 1295 * @type: QP type 1296 * @mask: Mask of supplied QP attributes 1297 * 1298 * This function is a helper function that a low-level driver's 1299 * modify_qp method can use to validate the consumer's input. It 1300 * checks that cur_state and next_state are valid QP states, that a 1301 * transition from cur_state to next_state is allowed by the IB spec, 1302 * and that the attribute mask supplied is allowed for the transition. 1303 */ 1304 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 1305 enum ib_qp_type type, enum ib_qp_attr_mask mask); 1306 1307 int ib_register_event_handler (struct ib_event_handler *event_handler); 1308 int ib_unregister_event_handler(struct ib_event_handler *event_handler); 1309 void ib_dispatch_event(struct ib_event *event); 1310 1311 int ib_query_device(struct ib_device *device, 1312 struct ib_device_attr *device_attr); 1313 1314 int ib_query_port(struct ib_device *device, 1315 u8 port_num, struct ib_port_attr *port_attr); 1316 1317 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 1318 u8 port_num); 1319 1320 int ib_query_gid(struct ib_device *device, 1321 u8 port_num, int index, union ib_gid *gid); 1322 1323 int ib_query_pkey(struct ib_device *device, 1324 u8 port_num, u16 index, u16 *pkey); 1325 1326 int ib_modify_device(struct ib_device *device, 1327 int device_modify_mask, 1328 struct ib_device_modify *device_modify); 1329 1330 int ib_modify_port(struct ib_device *device, 1331 u8 port_num, int port_modify_mask, 1332 struct ib_port_modify *port_modify); 1333 1334 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 1335 u8 *port_num, u16 *index); 1336 1337 int ib_find_pkey(struct ib_device *device, 1338 u8 port_num, u16 pkey, u16 *index); 1339 1340 /** 1341 * ib_alloc_pd - Allocates an unused protection domain. 1342 * @device: The device on which to allocate the protection domain. 1343 * 1344 * A protection domain object provides an association between QPs, shared 1345 * receive queues, address handles, memory regions, and memory windows. 1346 */ 1347 struct ib_pd *ib_alloc_pd(struct ib_device *device); 1348 1349 /** 1350 * ib_dealloc_pd - Deallocates a protection domain. 1351 * @pd: The protection domain to deallocate. 1352 */ 1353 int ib_dealloc_pd(struct ib_pd *pd); 1354 1355 /** 1356 * ib_create_ah - Creates an address handle for the given address vector. 1357 * @pd: The protection domain associated with the address handle. 1358 * @ah_attr: The attributes of the address vector. 1359 * 1360 * The address handle is used to reference a local or global destination 1361 * in all UD QP post sends. 1362 */ 1363 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr); 1364 1365 /** 1366 * ib_init_ah_from_wc - Initializes address handle attributes from a 1367 * work completion. 1368 * @device: Device on which the received message arrived. 1369 * @port_num: Port on which the received message arrived. 1370 * @wc: Work completion associated with the received message. 1371 * @grh: References the received global route header. This parameter is 1372 * ignored unless the work completion indicates that the GRH is valid. 1373 * @ah_attr: Returned attributes that can be used when creating an address 1374 * handle for replying to the message. 1375 */ 1376 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc, 1377 struct ib_grh *grh, struct ib_ah_attr *ah_attr); 1378 1379 /** 1380 * ib_create_ah_from_wc - Creates an address handle associated with the 1381 * sender of the specified work completion. 1382 * @pd: The protection domain associated with the address handle. 1383 * @wc: Work completion information associated with a received message. 1384 * @grh: References the received global route header. This parameter is 1385 * ignored unless the work completion indicates that the GRH is valid. 1386 * @port_num: The outbound port number to associate with the address. 1387 * 1388 * The address handle is used to reference a local or global destination 1389 * in all UD QP post sends. 1390 */ 1391 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc, 1392 struct ib_grh *grh, u8 port_num); 1393 1394 /** 1395 * ib_modify_ah - Modifies the address vector associated with an address 1396 * handle. 1397 * @ah: The address handle to modify. 1398 * @ah_attr: The new address vector attributes to associate with the 1399 * address handle. 1400 */ 1401 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 1402 1403 /** 1404 * ib_query_ah - Queries the address vector associated with an address 1405 * handle. 1406 * @ah: The address handle to query. 1407 * @ah_attr: The address vector attributes associated with the address 1408 * handle. 1409 */ 1410 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 1411 1412 /** 1413 * ib_destroy_ah - Destroys an address handle. 1414 * @ah: The address handle to destroy. 1415 */ 1416 int ib_destroy_ah(struct ib_ah *ah); 1417 1418 /** 1419 * ib_create_srq - Creates a SRQ associated with the specified protection 1420 * domain. 1421 * @pd: The protection domain associated with the SRQ. 1422 * @srq_init_attr: A list of initial attributes required to create the 1423 * SRQ. If SRQ creation succeeds, then the attributes are updated to 1424 * the actual capabilities of the created SRQ. 1425 * 1426 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 1427 * requested size of the SRQ, and set to the actual values allocated 1428 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 1429 * will always be at least as large as the requested values. 1430 */ 1431 struct ib_srq *ib_create_srq(struct ib_pd *pd, 1432 struct ib_srq_init_attr *srq_init_attr); 1433 1434 /** 1435 * ib_modify_srq - Modifies the attributes for the specified SRQ. 1436 * @srq: The SRQ to modify. 1437 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 1438 * the current values of selected SRQ attributes are returned. 1439 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 1440 * are being modified. 1441 * 1442 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 1443 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 1444 * the number of receives queued drops below the limit. 1445 */ 1446 int ib_modify_srq(struct ib_srq *srq, 1447 struct ib_srq_attr *srq_attr, 1448 enum ib_srq_attr_mask srq_attr_mask); 1449 1450 /** 1451 * ib_query_srq - Returns the attribute list and current values for the 1452 * specified SRQ. 1453 * @srq: The SRQ to query. 1454 * @srq_attr: The attributes of the specified SRQ. 1455 */ 1456 int ib_query_srq(struct ib_srq *srq, 1457 struct ib_srq_attr *srq_attr); 1458 1459 /** 1460 * ib_destroy_srq - Destroys the specified SRQ. 1461 * @srq: The SRQ to destroy. 1462 */ 1463 int ib_destroy_srq(struct ib_srq *srq); 1464 1465 /** 1466 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 1467 * @srq: The SRQ to post the work request on. 1468 * @recv_wr: A list of work requests to post on the receive queue. 1469 * @bad_recv_wr: On an immediate failure, this parameter will reference 1470 * the work request that failed to be posted on the QP. 1471 */ 1472 static inline int ib_post_srq_recv(struct ib_srq *srq, 1473 struct ib_recv_wr *recv_wr, 1474 struct ib_recv_wr **bad_recv_wr) 1475 { 1476 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr); 1477 } 1478 1479 /** 1480 * ib_create_qp - Creates a QP associated with the specified protection 1481 * domain. 1482 * @pd: The protection domain associated with the QP. 1483 * @qp_init_attr: A list of initial attributes required to create the 1484 * QP. If QP creation succeeds, then the attributes are updated to 1485 * the actual capabilities of the created QP. 1486 */ 1487 struct ib_qp *ib_create_qp(struct ib_pd *pd, 1488 struct ib_qp_init_attr *qp_init_attr); 1489 1490 /** 1491 * ib_modify_qp - Modifies the attributes for the specified QP and then 1492 * transitions the QP to the given state. 1493 * @qp: The QP to modify. 1494 * @qp_attr: On input, specifies the QP attributes to modify. On output, 1495 * the current values of selected QP attributes are returned. 1496 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 1497 * are being modified. 1498 */ 1499 int ib_modify_qp(struct ib_qp *qp, 1500 struct ib_qp_attr *qp_attr, 1501 int qp_attr_mask); 1502 1503 /** 1504 * ib_query_qp - Returns the attribute list and current values for the 1505 * specified QP. 1506 * @qp: The QP to query. 1507 * @qp_attr: The attributes of the specified QP. 1508 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 1509 * @qp_init_attr: Additional attributes of the selected QP. 1510 * 1511 * The qp_attr_mask may be used to limit the query to gathering only the 1512 * selected attributes. 1513 */ 1514 int ib_query_qp(struct ib_qp *qp, 1515 struct ib_qp_attr *qp_attr, 1516 int qp_attr_mask, 1517 struct ib_qp_init_attr *qp_init_attr); 1518 1519 /** 1520 * ib_destroy_qp - Destroys the specified QP. 1521 * @qp: The QP to destroy. 1522 */ 1523 int ib_destroy_qp(struct ib_qp *qp); 1524 1525 /** 1526 * ib_open_qp - Obtain a reference to an existing sharable QP. 1527 * @xrcd - XRC domain 1528 * @qp_open_attr: Attributes identifying the QP to open. 1529 * 1530 * Returns a reference to a sharable QP. 1531 */ 1532 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 1533 struct ib_qp_open_attr *qp_open_attr); 1534 1535 /** 1536 * ib_close_qp - Release an external reference to a QP. 1537 * @qp: The QP handle to release 1538 * 1539 * The opened QP handle is released by the caller. The underlying 1540 * shared QP is not destroyed until all internal references are released. 1541 */ 1542 int ib_close_qp(struct ib_qp *qp); 1543 1544 /** 1545 * ib_post_send - Posts a list of work requests to the send queue of 1546 * the specified QP. 1547 * @qp: The QP to post the work request on. 1548 * @send_wr: A list of work requests to post on the send queue. 1549 * @bad_send_wr: On an immediate failure, this parameter will reference 1550 * the work request that failed to be posted on the QP. 1551 * 1552 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 1553 * error is returned, the QP state shall not be affected, 1554 * ib_post_send() will return an immediate error after queueing any 1555 * earlier work requests in the list. 1556 */ 1557 static inline int ib_post_send(struct ib_qp *qp, 1558 struct ib_send_wr *send_wr, 1559 struct ib_send_wr **bad_send_wr) 1560 { 1561 return qp->device->post_send(qp, send_wr, bad_send_wr); 1562 } 1563 1564 /** 1565 * ib_post_recv - Posts a list of work requests to the receive queue of 1566 * the specified QP. 1567 * @qp: The QP to post the work request on. 1568 * @recv_wr: A list of work requests to post on the receive queue. 1569 * @bad_recv_wr: On an immediate failure, this parameter will reference 1570 * the work request that failed to be posted on the QP. 1571 */ 1572 static inline int ib_post_recv(struct ib_qp *qp, 1573 struct ib_recv_wr *recv_wr, 1574 struct ib_recv_wr **bad_recv_wr) 1575 { 1576 return qp->device->post_recv(qp, recv_wr, bad_recv_wr); 1577 } 1578 1579 /** 1580 * ib_create_cq - Creates a CQ on the specified device. 1581 * @device: The device on which to create the CQ. 1582 * @comp_handler: A user-specified callback that is invoked when a 1583 * completion event occurs on the CQ. 1584 * @event_handler: A user-specified callback that is invoked when an 1585 * asynchronous event not associated with a completion occurs on the CQ. 1586 * @cq_context: Context associated with the CQ returned to the user via 1587 * the associated completion and event handlers. 1588 * @cqe: The minimum size of the CQ. 1589 * @comp_vector - Completion vector used to signal completion events. 1590 * Must be >= 0 and < context->num_comp_vectors. 1591 * 1592 * Users can examine the cq structure to determine the actual CQ size. 1593 */ 1594 struct ib_cq *ib_create_cq(struct ib_device *device, 1595 ib_comp_handler comp_handler, 1596 void (*event_handler)(struct ib_event *, void *), 1597 void *cq_context, int cqe, int comp_vector); 1598 1599 /** 1600 * ib_resize_cq - Modifies the capacity of the CQ. 1601 * @cq: The CQ to resize. 1602 * @cqe: The minimum size of the CQ. 1603 * 1604 * Users can examine the cq structure to determine the actual CQ size. 1605 */ 1606 int ib_resize_cq(struct ib_cq *cq, int cqe); 1607 1608 /** 1609 * ib_modify_cq - Modifies moderation params of the CQ 1610 * @cq: The CQ to modify. 1611 * @cq_count: number of CQEs that will trigger an event 1612 * @cq_period: max period of time in usec before triggering an event 1613 * 1614 */ 1615 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period); 1616 1617 /** 1618 * ib_destroy_cq - Destroys the specified CQ. 1619 * @cq: The CQ to destroy. 1620 */ 1621 int ib_destroy_cq(struct ib_cq *cq); 1622 1623 /** 1624 * ib_poll_cq - poll a CQ for completion(s) 1625 * @cq:the CQ being polled 1626 * @num_entries:maximum number of completions to return 1627 * @wc:array of at least @num_entries &struct ib_wc where completions 1628 * will be returned 1629 * 1630 * Poll a CQ for (possibly multiple) completions. If the return value 1631 * is < 0, an error occurred. If the return value is >= 0, it is the 1632 * number of completions returned. If the return value is 1633 * non-negative and < num_entries, then the CQ was emptied. 1634 */ 1635 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 1636 struct ib_wc *wc) 1637 { 1638 return cq->device->poll_cq(cq, num_entries, wc); 1639 } 1640 1641 /** 1642 * ib_peek_cq - Returns the number of unreaped completions currently 1643 * on the specified CQ. 1644 * @cq: The CQ to peek. 1645 * @wc_cnt: A minimum number of unreaped completions to check for. 1646 * 1647 * If the number of unreaped completions is greater than or equal to wc_cnt, 1648 * this function returns wc_cnt, otherwise, it returns the actual number of 1649 * unreaped completions. 1650 */ 1651 int ib_peek_cq(struct ib_cq *cq, int wc_cnt); 1652 1653 /** 1654 * ib_req_notify_cq - Request completion notification on a CQ. 1655 * @cq: The CQ to generate an event for. 1656 * @flags: 1657 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 1658 * to request an event on the next solicited event or next work 1659 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 1660 * may also be |ed in to request a hint about missed events, as 1661 * described below. 1662 * 1663 * Return Value: 1664 * < 0 means an error occurred while requesting notification 1665 * == 0 means notification was requested successfully, and if 1666 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 1667 * were missed and it is safe to wait for another event. In 1668 * this case is it guaranteed that any work completions added 1669 * to the CQ since the last CQ poll will trigger a completion 1670 * notification event. 1671 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 1672 * in. It means that the consumer must poll the CQ again to 1673 * make sure it is empty to avoid missing an event because of a 1674 * race between requesting notification and an entry being 1675 * added to the CQ. This return value means it is possible 1676 * (but not guaranteed) that a work completion has been added 1677 * to the CQ since the last poll without triggering a 1678 * completion notification event. 1679 */ 1680 static inline int ib_req_notify_cq(struct ib_cq *cq, 1681 enum ib_cq_notify_flags flags) 1682 { 1683 return cq->device->req_notify_cq(cq, flags); 1684 } 1685 1686 /** 1687 * ib_req_ncomp_notif - Request completion notification when there are 1688 * at least the specified number of unreaped completions on the CQ. 1689 * @cq: The CQ to generate an event for. 1690 * @wc_cnt: The number of unreaped completions that should be on the 1691 * CQ before an event is generated. 1692 */ 1693 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 1694 { 1695 return cq->device->req_ncomp_notif ? 1696 cq->device->req_ncomp_notif(cq, wc_cnt) : 1697 -ENOSYS; 1698 } 1699 1700 /** 1701 * ib_get_dma_mr - Returns a memory region for system memory that is 1702 * usable for DMA. 1703 * @pd: The protection domain associated with the memory region. 1704 * @mr_access_flags: Specifies the memory access rights. 1705 * 1706 * Note that the ib_dma_*() functions defined below must be used 1707 * to create/destroy addresses used with the Lkey or Rkey returned 1708 * by ib_get_dma_mr(). 1709 */ 1710 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags); 1711 1712 /** 1713 * ib_dma_mapping_error - check a DMA addr for error 1714 * @dev: The device for which the dma_addr was created 1715 * @dma_addr: The DMA address to check 1716 */ 1717 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 1718 { 1719 if (dev->dma_ops) 1720 return dev->dma_ops->mapping_error(dev, dma_addr); 1721 return dma_mapping_error(dev->dma_device, dma_addr); 1722 } 1723 1724 /** 1725 * ib_dma_map_single - Map a kernel virtual address to DMA address 1726 * @dev: The device for which the dma_addr is to be created 1727 * @cpu_addr: The kernel virtual address 1728 * @size: The size of the region in bytes 1729 * @direction: The direction of the DMA 1730 */ 1731 static inline u64 ib_dma_map_single(struct ib_device *dev, 1732 void *cpu_addr, size_t size, 1733 enum dma_data_direction direction) 1734 { 1735 if (dev->dma_ops) 1736 return dev->dma_ops->map_single(dev, cpu_addr, size, direction); 1737 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 1738 } 1739 1740 /** 1741 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 1742 * @dev: The device for which the DMA address was created 1743 * @addr: The DMA address 1744 * @size: The size of the region in bytes 1745 * @direction: The direction of the DMA 1746 */ 1747 static inline void ib_dma_unmap_single(struct ib_device *dev, 1748 u64 addr, size_t size, 1749 enum dma_data_direction direction) 1750 { 1751 if (dev->dma_ops) 1752 dev->dma_ops->unmap_single(dev, addr, size, direction); 1753 else 1754 dma_unmap_single(dev->dma_device, addr, size, direction); 1755 } 1756 1757 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev, 1758 void *cpu_addr, size_t size, 1759 enum dma_data_direction direction, 1760 struct dma_attrs *attrs) 1761 { 1762 return dma_map_single_attrs(dev->dma_device, cpu_addr, size, 1763 direction, attrs); 1764 } 1765 1766 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev, 1767 u64 addr, size_t size, 1768 enum dma_data_direction direction, 1769 struct dma_attrs *attrs) 1770 { 1771 return dma_unmap_single_attrs(dev->dma_device, addr, size, 1772 direction, attrs); 1773 } 1774 1775 /** 1776 * ib_dma_map_page - Map a physical page to DMA address 1777 * @dev: The device for which the dma_addr is to be created 1778 * @page: The page to be mapped 1779 * @offset: The offset within the page 1780 * @size: The size of the region in bytes 1781 * @direction: The direction of the DMA 1782 */ 1783 static inline u64 ib_dma_map_page(struct ib_device *dev, 1784 struct page *page, 1785 unsigned long offset, 1786 size_t size, 1787 enum dma_data_direction direction) 1788 { 1789 if (dev->dma_ops) 1790 return dev->dma_ops->map_page(dev, page, offset, size, direction); 1791 return dma_map_page(dev->dma_device, page, offset, size, direction); 1792 } 1793 1794 /** 1795 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 1796 * @dev: The device for which the DMA address was created 1797 * @addr: The DMA address 1798 * @size: The size of the region in bytes 1799 * @direction: The direction of the DMA 1800 */ 1801 static inline void ib_dma_unmap_page(struct ib_device *dev, 1802 u64 addr, size_t size, 1803 enum dma_data_direction direction) 1804 { 1805 if (dev->dma_ops) 1806 dev->dma_ops->unmap_page(dev, addr, size, direction); 1807 else 1808 dma_unmap_page(dev->dma_device, addr, size, direction); 1809 } 1810 1811 /** 1812 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 1813 * @dev: The device for which the DMA addresses are to be created 1814 * @sg: The array of scatter/gather entries 1815 * @nents: The number of scatter/gather entries 1816 * @direction: The direction of the DMA 1817 */ 1818 static inline int ib_dma_map_sg(struct ib_device *dev, 1819 struct scatterlist *sg, int nents, 1820 enum dma_data_direction direction) 1821 { 1822 if (dev->dma_ops) 1823 return dev->dma_ops->map_sg(dev, sg, nents, direction); 1824 return dma_map_sg(dev->dma_device, sg, nents, direction); 1825 } 1826 1827 /** 1828 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 1829 * @dev: The device for which the DMA addresses were created 1830 * @sg: The array of scatter/gather entries 1831 * @nents: The number of scatter/gather entries 1832 * @direction: The direction of the DMA 1833 */ 1834 static inline void ib_dma_unmap_sg(struct ib_device *dev, 1835 struct scatterlist *sg, int nents, 1836 enum dma_data_direction direction) 1837 { 1838 if (dev->dma_ops) 1839 dev->dma_ops->unmap_sg(dev, sg, nents, direction); 1840 else 1841 dma_unmap_sg(dev->dma_device, sg, nents, direction); 1842 } 1843 1844 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 1845 struct scatterlist *sg, int nents, 1846 enum dma_data_direction direction, 1847 struct dma_attrs *attrs) 1848 { 1849 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs); 1850 } 1851 1852 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 1853 struct scatterlist *sg, int nents, 1854 enum dma_data_direction direction, 1855 struct dma_attrs *attrs) 1856 { 1857 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs); 1858 } 1859 /** 1860 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry 1861 * @dev: The device for which the DMA addresses were created 1862 * @sg: The scatter/gather entry 1863 */ 1864 static inline u64 ib_sg_dma_address(struct ib_device *dev, 1865 struct scatterlist *sg) 1866 { 1867 if (dev->dma_ops) 1868 return dev->dma_ops->dma_address(dev, sg); 1869 return sg_dma_address(sg); 1870 } 1871 1872 /** 1873 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry 1874 * @dev: The device for which the DMA addresses were created 1875 * @sg: The scatter/gather entry 1876 */ 1877 static inline unsigned int ib_sg_dma_len(struct ib_device *dev, 1878 struct scatterlist *sg) 1879 { 1880 if (dev->dma_ops) 1881 return dev->dma_ops->dma_len(dev, sg); 1882 return sg_dma_len(sg); 1883 } 1884 1885 /** 1886 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 1887 * @dev: The device for which the DMA address was created 1888 * @addr: The DMA address 1889 * @size: The size of the region in bytes 1890 * @dir: The direction of the DMA 1891 */ 1892 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 1893 u64 addr, 1894 size_t size, 1895 enum dma_data_direction dir) 1896 { 1897 if (dev->dma_ops) 1898 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir); 1899 else 1900 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 1901 } 1902 1903 /** 1904 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 1905 * @dev: The device for which the DMA address was created 1906 * @addr: The DMA address 1907 * @size: The size of the region in bytes 1908 * @dir: The direction of the DMA 1909 */ 1910 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 1911 u64 addr, 1912 size_t size, 1913 enum dma_data_direction dir) 1914 { 1915 if (dev->dma_ops) 1916 dev->dma_ops->sync_single_for_device(dev, addr, size, dir); 1917 else 1918 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 1919 } 1920 1921 /** 1922 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 1923 * @dev: The device for which the DMA address is requested 1924 * @size: The size of the region to allocate in bytes 1925 * @dma_handle: A pointer for returning the DMA address of the region 1926 * @flag: memory allocator flags 1927 */ 1928 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 1929 size_t size, 1930 u64 *dma_handle, 1931 gfp_t flag) 1932 { 1933 if (dev->dma_ops) 1934 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag); 1935 else { 1936 dma_addr_t handle; 1937 void *ret; 1938 1939 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag); 1940 *dma_handle = handle; 1941 return ret; 1942 } 1943 } 1944 1945 /** 1946 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 1947 * @dev: The device for which the DMA addresses were allocated 1948 * @size: The size of the region 1949 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 1950 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 1951 */ 1952 static inline void ib_dma_free_coherent(struct ib_device *dev, 1953 size_t size, void *cpu_addr, 1954 u64 dma_handle) 1955 { 1956 if (dev->dma_ops) 1957 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle); 1958 else 1959 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 1960 } 1961 1962 /** 1963 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use 1964 * by an HCA. 1965 * @pd: The protection domain associated assigned to the registered region. 1966 * @phys_buf_array: Specifies a list of physical buffers to use in the 1967 * memory region. 1968 * @num_phys_buf: Specifies the size of the phys_buf_array. 1969 * @mr_access_flags: Specifies the memory access rights. 1970 * @iova_start: The offset of the region's starting I/O virtual address. 1971 */ 1972 struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd, 1973 struct ib_phys_buf *phys_buf_array, 1974 int num_phys_buf, 1975 int mr_access_flags, 1976 u64 *iova_start); 1977 1978 /** 1979 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region. 1980 * Conceptually, this call performs the functions deregister memory region 1981 * followed by register physical memory region. Where possible, 1982 * resources are reused instead of deallocated and reallocated. 1983 * @mr: The memory region to modify. 1984 * @mr_rereg_mask: A bit-mask used to indicate which of the following 1985 * properties of the memory region are being modified. 1986 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies 1987 * the new protection domain to associated with the memory region, 1988 * otherwise, this parameter is ignored. 1989 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this 1990 * field specifies a list of physical buffers to use in the new 1991 * translation, otherwise, this parameter is ignored. 1992 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this 1993 * field specifies the size of the phys_buf_array, otherwise, this 1994 * parameter is ignored. 1995 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this 1996 * field specifies the new memory access rights, otherwise, this 1997 * parameter is ignored. 1998 * @iova_start: The offset of the region's starting I/O virtual address. 1999 */ 2000 int ib_rereg_phys_mr(struct ib_mr *mr, 2001 int mr_rereg_mask, 2002 struct ib_pd *pd, 2003 struct ib_phys_buf *phys_buf_array, 2004 int num_phys_buf, 2005 int mr_access_flags, 2006 u64 *iova_start); 2007 2008 /** 2009 * ib_query_mr - Retrieves information about a specific memory region. 2010 * @mr: The memory region to retrieve information about. 2011 * @mr_attr: The attributes of the specified memory region. 2012 */ 2013 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr); 2014 2015 /** 2016 * ib_dereg_mr - Deregisters a memory region and removes it from the 2017 * HCA translation table. 2018 * @mr: The memory region to deregister. 2019 */ 2020 int ib_dereg_mr(struct ib_mr *mr); 2021 2022 /** 2023 * ib_alloc_fast_reg_mr - Allocates memory region usable with the 2024 * IB_WR_FAST_REG_MR send work request. 2025 * @pd: The protection domain associated with the region. 2026 * @max_page_list_len: requested max physical buffer list length to be 2027 * used with fast register work requests for this MR. 2028 */ 2029 struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len); 2030 2031 /** 2032 * ib_alloc_fast_reg_page_list - Allocates a page list array 2033 * @device - ib device pointer. 2034 * @page_list_len - size of the page list array to be allocated. 2035 * 2036 * This allocates and returns a struct ib_fast_reg_page_list * and a 2037 * page_list array that is at least page_list_len in size. The actual 2038 * size is returned in max_page_list_len. The caller is responsible 2039 * for initializing the contents of the page_list array before posting 2040 * a send work request with the IB_WC_FAST_REG_MR opcode. 2041 * 2042 * The page_list array entries must be translated using one of the 2043 * ib_dma_*() functions just like the addresses passed to 2044 * ib_map_phys_fmr(). Once the ib_post_send() is issued, the struct 2045 * ib_fast_reg_page_list must not be modified by the caller until the 2046 * IB_WC_FAST_REG_MR work request completes. 2047 */ 2048 struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list( 2049 struct ib_device *device, int page_list_len); 2050 2051 /** 2052 * ib_free_fast_reg_page_list - Deallocates a previously allocated 2053 * page list array. 2054 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated. 2055 */ 2056 void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list); 2057 2058 /** 2059 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 2060 * R_Key and L_Key. 2061 * @mr - struct ib_mr pointer to be updated. 2062 * @newkey - new key to be used. 2063 */ 2064 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 2065 { 2066 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 2067 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 2068 } 2069 2070 /** 2071 * ib_alloc_mw - Allocates a memory window. 2072 * @pd: The protection domain associated with the memory window. 2073 */ 2074 struct ib_mw *ib_alloc_mw(struct ib_pd *pd); 2075 2076 /** 2077 * ib_bind_mw - Posts a work request to the send queue of the specified 2078 * QP, which binds the memory window to the given address range and 2079 * remote access attributes. 2080 * @qp: QP to post the bind work request on. 2081 * @mw: The memory window to bind. 2082 * @mw_bind: Specifies information about the memory window, including 2083 * its address range, remote access rights, and associated memory region. 2084 */ 2085 static inline int ib_bind_mw(struct ib_qp *qp, 2086 struct ib_mw *mw, 2087 struct ib_mw_bind *mw_bind) 2088 { 2089 /* XXX reference counting in corresponding MR? */ 2090 return mw->device->bind_mw ? 2091 mw->device->bind_mw(qp, mw, mw_bind) : 2092 -ENOSYS; 2093 } 2094 2095 /** 2096 * ib_dealloc_mw - Deallocates a memory window. 2097 * @mw: The memory window to deallocate. 2098 */ 2099 int ib_dealloc_mw(struct ib_mw *mw); 2100 2101 /** 2102 * ib_alloc_fmr - Allocates a unmapped fast memory region. 2103 * @pd: The protection domain associated with the unmapped region. 2104 * @mr_access_flags: Specifies the memory access rights. 2105 * @fmr_attr: Attributes of the unmapped region. 2106 * 2107 * A fast memory region must be mapped before it can be used as part of 2108 * a work request. 2109 */ 2110 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 2111 int mr_access_flags, 2112 struct ib_fmr_attr *fmr_attr); 2113 2114 /** 2115 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 2116 * @fmr: The fast memory region to associate with the pages. 2117 * @page_list: An array of physical pages to map to the fast memory region. 2118 * @list_len: The number of pages in page_list. 2119 * @iova: The I/O virtual address to use with the mapped region. 2120 */ 2121 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 2122 u64 *page_list, int list_len, 2123 u64 iova) 2124 { 2125 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); 2126 } 2127 2128 /** 2129 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 2130 * @fmr_list: A linked list of fast memory regions to unmap. 2131 */ 2132 int ib_unmap_fmr(struct list_head *fmr_list); 2133 2134 /** 2135 * ib_dealloc_fmr - Deallocates a fast memory region. 2136 * @fmr: The fast memory region to deallocate. 2137 */ 2138 int ib_dealloc_fmr(struct ib_fmr *fmr); 2139 2140 /** 2141 * ib_attach_mcast - Attaches the specified QP to a multicast group. 2142 * @qp: QP to attach to the multicast group. The QP must be type 2143 * IB_QPT_UD. 2144 * @gid: Multicast group GID. 2145 * @lid: Multicast group LID in host byte order. 2146 * 2147 * In order to send and receive multicast packets, subnet 2148 * administration must have created the multicast group and configured 2149 * the fabric appropriately. The port associated with the specified 2150 * QP must also be a member of the multicast group. 2151 */ 2152 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2153 2154 /** 2155 * ib_detach_mcast - Detaches the specified QP from a multicast group. 2156 * @qp: QP to detach from the multicast group. 2157 * @gid: Multicast group GID. 2158 * @lid: Multicast group LID in host byte order. 2159 */ 2160 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2161 2162 /** 2163 * ib_alloc_xrcd - Allocates an XRC domain. 2164 * @device: The device on which to allocate the XRC domain. 2165 */ 2166 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device); 2167 2168 /** 2169 * ib_dealloc_xrcd - Deallocates an XRC domain. 2170 * @xrcd: The XRC domain to deallocate. 2171 */ 2172 int ib_dealloc_xrcd(struct ib_xrcd *xrcd); 2173 2174 #endif /* IB_VERBS_H */ 2175