1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #if !defined(IB_VERBS_H) 40 #define IB_VERBS_H 41 42 #include <linux/types.h> 43 #include <linux/device.h> 44 #include <linux/mm.h> 45 #include <linux/dma-mapping.h> 46 #include <linux/kref.h> 47 #include <linux/list.h> 48 #include <linux/rwsem.h> 49 #include <linux/scatterlist.h> 50 51 #include <asm/atomic.h> 52 #include <asm/uaccess.h> 53 54 union ib_gid { 55 u8 raw[16]; 56 struct { 57 __be64 subnet_prefix; 58 __be64 interface_id; 59 } global; 60 }; 61 62 enum rdma_node_type { 63 /* IB values map to NodeInfo:NodeType. */ 64 RDMA_NODE_IB_CA = 1, 65 RDMA_NODE_IB_SWITCH, 66 RDMA_NODE_IB_ROUTER, 67 RDMA_NODE_RNIC 68 }; 69 70 enum rdma_transport_type { 71 RDMA_TRANSPORT_IB, 72 RDMA_TRANSPORT_IWARP 73 }; 74 75 enum rdma_transport_type 76 rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__; 77 78 enum ib_device_cap_flags { 79 IB_DEVICE_RESIZE_MAX_WR = 1, 80 IB_DEVICE_BAD_PKEY_CNTR = (1<<1), 81 IB_DEVICE_BAD_QKEY_CNTR = (1<<2), 82 IB_DEVICE_RAW_MULTI = (1<<3), 83 IB_DEVICE_AUTO_PATH_MIG = (1<<4), 84 IB_DEVICE_CHANGE_PHY_PORT = (1<<5), 85 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6), 86 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7), 87 IB_DEVICE_SHUTDOWN_PORT = (1<<8), 88 IB_DEVICE_INIT_TYPE = (1<<9), 89 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10), 90 IB_DEVICE_SYS_IMAGE_GUID = (1<<11), 91 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12), 92 IB_DEVICE_SRQ_RESIZE = (1<<13), 93 IB_DEVICE_N_NOTIFY_CQ = (1<<14), 94 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15), 95 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */ 96 IB_DEVICE_MEM_WINDOW = (1<<17), 97 /* 98 * Devices should set IB_DEVICE_UD_IP_SUM if they support 99 * insertion of UDP and TCP checksum on outgoing UD IPoIB 100 * messages and can verify the validity of checksum for 101 * incoming messages. Setting this flag implies that the 102 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 103 */ 104 IB_DEVICE_UD_IP_CSUM = (1<<18), 105 IB_DEVICE_UD_TSO = (1<<19), 106 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21), 107 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22), 108 }; 109 110 enum ib_atomic_cap { 111 IB_ATOMIC_NONE, 112 IB_ATOMIC_HCA, 113 IB_ATOMIC_GLOB 114 }; 115 116 struct ib_device_attr { 117 u64 fw_ver; 118 __be64 sys_image_guid; 119 u64 max_mr_size; 120 u64 page_size_cap; 121 u32 vendor_id; 122 u32 vendor_part_id; 123 u32 hw_ver; 124 int max_qp; 125 int max_qp_wr; 126 int device_cap_flags; 127 int max_sge; 128 int max_sge_rd; 129 int max_cq; 130 int max_cqe; 131 int max_mr; 132 int max_pd; 133 int max_qp_rd_atom; 134 int max_ee_rd_atom; 135 int max_res_rd_atom; 136 int max_qp_init_rd_atom; 137 int max_ee_init_rd_atom; 138 enum ib_atomic_cap atomic_cap; 139 int max_ee; 140 int max_rdd; 141 int max_mw; 142 int max_raw_ipv6_qp; 143 int max_raw_ethy_qp; 144 int max_mcast_grp; 145 int max_mcast_qp_attach; 146 int max_total_mcast_qp_attach; 147 int max_ah; 148 int max_fmr; 149 int max_map_per_fmr; 150 int max_srq; 151 int max_srq_wr; 152 int max_srq_sge; 153 unsigned int max_fast_reg_page_list_len; 154 u16 max_pkeys; 155 u8 local_ca_ack_delay; 156 }; 157 158 enum ib_mtu { 159 IB_MTU_256 = 1, 160 IB_MTU_512 = 2, 161 IB_MTU_1024 = 3, 162 IB_MTU_2048 = 4, 163 IB_MTU_4096 = 5 164 }; 165 166 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 167 { 168 switch (mtu) { 169 case IB_MTU_256: return 256; 170 case IB_MTU_512: return 512; 171 case IB_MTU_1024: return 1024; 172 case IB_MTU_2048: return 2048; 173 case IB_MTU_4096: return 4096; 174 default: return -1; 175 } 176 } 177 178 enum ib_port_state { 179 IB_PORT_NOP = 0, 180 IB_PORT_DOWN = 1, 181 IB_PORT_INIT = 2, 182 IB_PORT_ARMED = 3, 183 IB_PORT_ACTIVE = 4, 184 IB_PORT_ACTIVE_DEFER = 5 185 }; 186 187 enum ib_port_cap_flags { 188 IB_PORT_SM = 1 << 1, 189 IB_PORT_NOTICE_SUP = 1 << 2, 190 IB_PORT_TRAP_SUP = 1 << 3, 191 IB_PORT_OPT_IPD_SUP = 1 << 4, 192 IB_PORT_AUTO_MIGR_SUP = 1 << 5, 193 IB_PORT_SL_MAP_SUP = 1 << 6, 194 IB_PORT_MKEY_NVRAM = 1 << 7, 195 IB_PORT_PKEY_NVRAM = 1 << 8, 196 IB_PORT_LED_INFO_SUP = 1 << 9, 197 IB_PORT_SM_DISABLED = 1 << 10, 198 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11, 199 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12, 200 IB_PORT_CM_SUP = 1 << 16, 201 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17, 202 IB_PORT_REINIT_SUP = 1 << 18, 203 IB_PORT_DEVICE_MGMT_SUP = 1 << 19, 204 IB_PORT_VENDOR_CLASS_SUP = 1 << 20, 205 IB_PORT_DR_NOTICE_SUP = 1 << 21, 206 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22, 207 IB_PORT_BOOT_MGMT_SUP = 1 << 23, 208 IB_PORT_LINK_LATENCY_SUP = 1 << 24, 209 IB_PORT_CLIENT_REG_SUP = 1 << 25 210 }; 211 212 enum ib_port_width { 213 IB_WIDTH_1X = 1, 214 IB_WIDTH_4X = 2, 215 IB_WIDTH_8X = 4, 216 IB_WIDTH_12X = 8 217 }; 218 219 static inline int ib_width_enum_to_int(enum ib_port_width width) 220 { 221 switch (width) { 222 case IB_WIDTH_1X: return 1; 223 case IB_WIDTH_4X: return 4; 224 case IB_WIDTH_8X: return 8; 225 case IB_WIDTH_12X: return 12; 226 default: return -1; 227 } 228 } 229 230 struct ib_protocol_stats { 231 /* TBD... */ 232 }; 233 234 struct iw_protocol_stats { 235 u64 ipInReceives; 236 u64 ipInHdrErrors; 237 u64 ipInTooBigErrors; 238 u64 ipInNoRoutes; 239 u64 ipInAddrErrors; 240 u64 ipInUnknownProtos; 241 u64 ipInTruncatedPkts; 242 u64 ipInDiscards; 243 u64 ipInDelivers; 244 u64 ipOutForwDatagrams; 245 u64 ipOutRequests; 246 u64 ipOutDiscards; 247 u64 ipOutNoRoutes; 248 u64 ipReasmTimeout; 249 u64 ipReasmReqds; 250 u64 ipReasmOKs; 251 u64 ipReasmFails; 252 u64 ipFragOKs; 253 u64 ipFragFails; 254 u64 ipFragCreates; 255 u64 ipInMcastPkts; 256 u64 ipOutMcastPkts; 257 u64 ipInBcastPkts; 258 u64 ipOutBcastPkts; 259 260 u64 tcpRtoAlgorithm; 261 u64 tcpRtoMin; 262 u64 tcpRtoMax; 263 u64 tcpMaxConn; 264 u64 tcpActiveOpens; 265 u64 tcpPassiveOpens; 266 u64 tcpAttemptFails; 267 u64 tcpEstabResets; 268 u64 tcpCurrEstab; 269 u64 tcpInSegs; 270 u64 tcpOutSegs; 271 u64 tcpRetransSegs; 272 u64 tcpInErrs; 273 u64 tcpOutRsts; 274 }; 275 276 union rdma_protocol_stats { 277 struct ib_protocol_stats ib; 278 struct iw_protocol_stats iw; 279 }; 280 281 struct ib_port_attr { 282 enum ib_port_state state; 283 enum ib_mtu max_mtu; 284 enum ib_mtu active_mtu; 285 int gid_tbl_len; 286 u32 port_cap_flags; 287 u32 max_msg_sz; 288 u32 bad_pkey_cntr; 289 u32 qkey_viol_cntr; 290 u16 pkey_tbl_len; 291 u16 lid; 292 u16 sm_lid; 293 u8 lmc; 294 u8 max_vl_num; 295 u8 sm_sl; 296 u8 subnet_timeout; 297 u8 init_type_reply; 298 u8 active_width; 299 u8 active_speed; 300 u8 phys_state; 301 }; 302 303 enum ib_device_modify_flags { 304 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 305 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 306 }; 307 308 struct ib_device_modify { 309 u64 sys_image_guid; 310 char node_desc[64]; 311 }; 312 313 enum ib_port_modify_flags { 314 IB_PORT_SHUTDOWN = 1, 315 IB_PORT_INIT_TYPE = (1<<2), 316 IB_PORT_RESET_QKEY_CNTR = (1<<3) 317 }; 318 319 struct ib_port_modify { 320 u32 set_port_cap_mask; 321 u32 clr_port_cap_mask; 322 u8 init_type; 323 }; 324 325 enum ib_event_type { 326 IB_EVENT_CQ_ERR, 327 IB_EVENT_QP_FATAL, 328 IB_EVENT_QP_REQ_ERR, 329 IB_EVENT_QP_ACCESS_ERR, 330 IB_EVENT_COMM_EST, 331 IB_EVENT_SQ_DRAINED, 332 IB_EVENT_PATH_MIG, 333 IB_EVENT_PATH_MIG_ERR, 334 IB_EVENT_DEVICE_FATAL, 335 IB_EVENT_PORT_ACTIVE, 336 IB_EVENT_PORT_ERR, 337 IB_EVENT_LID_CHANGE, 338 IB_EVENT_PKEY_CHANGE, 339 IB_EVENT_SM_CHANGE, 340 IB_EVENT_SRQ_ERR, 341 IB_EVENT_SRQ_LIMIT_REACHED, 342 IB_EVENT_QP_LAST_WQE_REACHED, 343 IB_EVENT_CLIENT_REREGISTER 344 }; 345 346 struct ib_event { 347 struct ib_device *device; 348 union { 349 struct ib_cq *cq; 350 struct ib_qp *qp; 351 struct ib_srq *srq; 352 u8 port_num; 353 } element; 354 enum ib_event_type event; 355 }; 356 357 struct ib_event_handler { 358 struct ib_device *device; 359 void (*handler)(struct ib_event_handler *, struct ib_event *); 360 struct list_head list; 361 }; 362 363 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 364 do { \ 365 (_ptr)->device = _device; \ 366 (_ptr)->handler = _handler; \ 367 INIT_LIST_HEAD(&(_ptr)->list); \ 368 } while (0) 369 370 struct ib_global_route { 371 union ib_gid dgid; 372 u32 flow_label; 373 u8 sgid_index; 374 u8 hop_limit; 375 u8 traffic_class; 376 }; 377 378 struct ib_grh { 379 __be32 version_tclass_flow; 380 __be16 paylen; 381 u8 next_hdr; 382 u8 hop_limit; 383 union ib_gid sgid; 384 union ib_gid dgid; 385 }; 386 387 enum { 388 IB_MULTICAST_QPN = 0xffffff 389 }; 390 391 #define IB_LID_PERMISSIVE __constant_htons(0xFFFF) 392 393 enum ib_ah_flags { 394 IB_AH_GRH = 1 395 }; 396 397 enum ib_rate { 398 IB_RATE_PORT_CURRENT = 0, 399 IB_RATE_2_5_GBPS = 2, 400 IB_RATE_5_GBPS = 5, 401 IB_RATE_10_GBPS = 3, 402 IB_RATE_20_GBPS = 6, 403 IB_RATE_30_GBPS = 4, 404 IB_RATE_40_GBPS = 7, 405 IB_RATE_60_GBPS = 8, 406 IB_RATE_80_GBPS = 9, 407 IB_RATE_120_GBPS = 10 408 }; 409 410 /** 411 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 412 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 413 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 414 * @rate: rate to convert. 415 */ 416 int ib_rate_to_mult(enum ib_rate rate) __attribute_const__; 417 418 /** 419 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 420 * enum. 421 * @mult: multiple to convert. 422 */ 423 enum ib_rate mult_to_ib_rate(int mult) __attribute_const__; 424 425 struct ib_ah_attr { 426 struct ib_global_route grh; 427 u16 dlid; 428 u8 sl; 429 u8 src_path_bits; 430 u8 static_rate; 431 u8 ah_flags; 432 u8 port_num; 433 }; 434 435 enum ib_wc_status { 436 IB_WC_SUCCESS, 437 IB_WC_LOC_LEN_ERR, 438 IB_WC_LOC_QP_OP_ERR, 439 IB_WC_LOC_EEC_OP_ERR, 440 IB_WC_LOC_PROT_ERR, 441 IB_WC_WR_FLUSH_ERR, 442 IB_WC_MW_BIND_ERR, 443 IB_WC_BAD_RESP_ERR, 444 IB_WC_LOC_ACCESS_ERR, 445 IB_WC_REM_INV_REQ_ERR, 446 IB_WC_REM_ACCESS_ERR, 447 IB_WC_REM_OP_ERR, 448 IB_WC_RETRY_EXC_ERR, 449 IB_WC_RNR_RETRY_EXC_ERR, 450 IB_WC_LOC_RDD_VIOL_ERR, 451 IB_WC_REM_INV_RD_REQ_ERR, 452 IB_WC_REM_ABORT_ERR, 453 IB_WC_INV_EECN_ERR, 454 IB_WC_INV_EEC_STATE_ERR, 455 IB_WC_FATAL_ERR, 456 IB_WC_RESP_TIMEOUT_ERR, 457 IB_WC_GENERAL_ERR 458 }; 459 460 enum ib_wc_opcode { 461 IB_WC_SEND, 462 IB_WC_RDMA_WRITE, 463 IB_WC_RDMA_READ, 464 IB_WC_COMP_SWAP, 465 IB_WC_FETCH_ADD, 466 IB_WC_BIND_MW, 467 IB_WC_LSO, 468 IB_WC_LOCAL_INV, 469 IB_WC_FAST_REG_MR, 470 /* 471 * Set value of IB_WC_RECV so consumers can test if a completion is a 472 * receive by testing (opcode & IB_WC_RECV). 473 */ 474 IB_WC_RECV = 1 << 7, 475 IB_WC_RECV_RDMA_WITH_IMM 476 }; 477 478 enum ib_wc_flags { 479 IB_WC_GRH = 1, 480 IB_WC_WITH_IMM = (1<<1), 481 IB_WC_WITH_INVALIDATE = (1<<2), 482 }; 483 484 struct ib_wc { 485 u64 wr_id; 486 enum ib_wc_status status; 487 enum ib_wc_opcode opcode; 488 u32 vendor_err; 489 u32 byte_len; 490 struct ib_qp *qp; 491 union { 492 __be32 imm_data; 493 u32 invalidate_rkey; 494 } ex; 495 u32 src_qp; 496 int wc_flags; 497 u16 pkey_index; 498 u16 slid; 499 u8 sl; 500 u8 dlid_path_bits; 501 u8 port_num; /* valid only for DR SMPs on switches */ 502 int csum_ok; 503 }; 504 505 enum ib_cq_notify_flags { 506 IB_CQ_SOLICITED = 1 << 0, 507 IB_CQ_NEXT_COMP = 1 << 1, 508 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 509 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 510 }; 511 512 enum ib_srq_attr_mask { 513 IB_SRQ_MAX_WR = 1 << 0, 514 IB_SRQ_LIMIT = 1 << 1, 515 }; 516 517 struct ib_srq_attr { 518 u32 max_wr; 519 u32 max_sge; 520 u32 srq_limit; 521 }; 522 523 struct ib_srq_init_attr { 524 void (*event_handler)(struct ib_event *, void *); 525 void *srq_context; 526 struct ib_srq_attr attr; 527 }; 528 529 struct ib_qp_cap { 530 u32 max_send_wr; 531 u32 max_recv_wr; 532 u32 max_send_sge; 533 u32 max_recv_sge; 534 u32 max_inline_data; 535 }; 536 537 enum ib_sig_type { 538 IB_SIGNAL_ALL_WR, 539 IB_SIGNAL_REQ_WR 540 }; 541 542 enum ib_qp_type { 543 /* 544 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 545 * here (and in that order) since the MAD layer uses them as 546 * indices into a 2-entry table. 547 */ 548 IB_QPT_SMI, 549 IB_QPT_GSI, 550 551 IB_QPT_RC, 552 IB_QPT_UC, 553 IB_QPT_UD, 554 IB_QPT_RAW_IPV6, 555 IB_QPT_RAW_ETY 556 }; 557 558 enum ib_qp_create_flags { 559 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 560 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1, 561 }; 562 563 struct ib_qp_init_attr { 564 void (*event_handler)(struct ib_event *, void *); 565 void *qp_context; 566 struct ib_cq *send_cq; 567 struct ib_cq *recv_cq; 568 struct ib_srq *srq; 569 struct ib_qp_cap cap; 570 enum ib_sig_type sq_sig_type; 571 enum ib_qp_type qp_type; 572 enum ib_qp_create_flags create_flags; 573 u8 port_num; /* special QP types only */ 574 }; 575 576 enum ib_rnr_timeout { 577 IB_RNR_TIMER_655_36 = 0, 578 IB_RNR_TIMER_000_01 = 1, 579 IB_RNR_TIMER_000_02 = 2, 580 IB_RNR_TIMER_000_03 = 3, 581 IB_RNR_TIMER_000_04 = 4, 582 IB_RNR_TIMER_000_06 = 5, 583 IB_RNR_TIMER_000_08 = 6, 584 IB_RNR_TIMER_000_12 = 7, 585 IB_RNR_TIMER_000_16 = 8, 586 IB_RNR_TIMER_000_24 = 9, 587 IB_RNR_TIMER_000_32 = 10, 588 IB_RNR_TIMER_000_48 = 11, 589 IB_RNR_TIMER_000_64 = 12, 590 IB_RNR_TIMER_000_96 = 13, 591 IB_RNR_TIMER_001_28 = 14, 592 IB_RNR_TIMER_001_92 = 15, 593 IB_RNR_TIMER_002_56 = 16, 594 IB_RNR_TIMER_003_84 = 17, 595 IB_RNR_TIMER_005_12 = 18, 596 IB_RNR_TIMER_007_68 = 19, 597 IB_RNR_TIMER_010_24 = 20, 598 IB_RNR_TIMER_015_36 = 21, 599 IB_RNR_TIMER_020_48 = 22, 600 IB_RNR_TIMER_030_72 = 23, 601 IB_RNR_TIMER_040_96 = 24, 602 IB_RNR_TIMER_061_44 = 25, 603 IB_RNR_TIMER_081_92 = 26, 604 IB_RNR_TIMER_122_88 = 27, 605 IB_RNR_TIMER_163_84 = 28, 606 IB_RNR_TIMER_245_76 = 29, 607 IB_RNR_TIMER_327_68 = 30, 608 IB_RNR_TIMER_491_52 = 31 609 }; 610 611 enum ib_qp_attr_mask { 612 IB_QP_STATE = 1, 613 IB_QP_CUR_STATE = (1<<1), 614 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 615 IB_QP_ACCESS_FLAGS = (1<<3), 616 IB_QP_PKEY_INDEX = (1<<4), 617 IB_QP_PORT = (1<<5), 618 IB_QP_QKEY = (1<<6), 619 IB_QP_AV = (1<<7), 620 IB_QP_PATH_MTU = (1<<8), 621 IB_QP_TIMEOUT = (1<<9), 622 IB_QP_RETRY_CNT = (1<<10), 623 IB_QP_RNR_RETRY = (1<<11), 624 IB_QP_RQ_PSN = (1<<12), 625 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 626 IB_QP_ALT_PATH = (1<<14), 627 IB_QP_MIN_RNR_TIMER = (1<<15), 628 IB_QP_SQ_PSN = (1<<16), 629 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 630 IB_QP_PATH_MIG_STATE = (1<<18), 631 IB_QP_CAP = (1<<19), 632 IB_QP_DEST_QPN = (1<<20) 633 }; 634 635 enum ib_qp_state { 636 IB_QPS_RESET, 637 IB_QPS_INIT, 638 IB_QPS_RTR, 639 IB_QPS_RTS, 640 IB_QPS_SQD, 641 IB_QPS_SQE, 642 IB_QPS_ERR 643 }; 644 645 enum ib_mig_state { 646 IB_MIG_MIGRATED, 647 IB_MIG_REARM, 648 IB_MIG_ARMED 649 }; 650 651 struct ib_qp_attr { 652 enum ib_qp_state qp_state; 653 enum ib_qp_state cur_qp_state; 654 enum ib_mtu path_mtu; 655 enum ib_mig_state path_mig_state; 656 u32 qkey; 657 u32 rq_psn; 658 u32 sq_psn; 659 u32 dest_qp_num; 660 int qp_access_flags; 661 struct ib_qp_cap cap; 662 struct ib_ah_attr ah_attr; 663 struct ib_ah_attr alt_ah_attr; 664 u16 pkey_index; 665 u16 alt_pkey_index; 666 u8 en_sqd_async_notify; 667 u8 sq_draining; 668 u8 max_rd_atomic; 669 u8 max_dest_rd_atomic; 670 u8 min_rnr_timer; 671 u8 port_num; 672 u8 timeout; 673 u8 retry_cnt; 674 u8 rnr_retry; 675 u8 alt_port_num; 676 u8 alt_timeout; 677 }; 678 679 enum ib_wr_opcode { 680 IB_WR_RDMA_WRITE, 681 IB_WR_RDMA_WRITE_WITH_IMM, 682 IB_WR_SEND, 683 IB_WR_SEND_WITH_IMM, 684 IB_WR_RDMA_READ, 685 IB_WR_ATOMIC_CMP_AND_SWP, 686 IB_WR_ATOMIC_FETCH_AND_ADD, 687 IB_WR_LSO, 688 IB_WR_SEND_WITH_INV, 689 IB_WR_RDMA_READ_WITH_INV, 690 IB_WR_LOCAL_INV, 691 IB_WR_FAST_REG_MR, 692 }; 693 694 enum ib_send_flags { 695 IB_SEND_FENCE = 1, 696 IB_SEND_SIGNALED = (1<<1), 697 IB_SEND_SOLICITED = (1<<2), 698 IB_SEND_INLINE = (1<<3), 699 IB_SEND_IP_CSUM = (1<<4) 700 }; 701 702 struct ib_sge { 703 u64 addr; 704 u32 length; 705 u32 lkey; 706 }; 707 708 struct ib_fast_reg_page_list { 709 struct ib_device *device; 710 u64 *page_list; 711 unsigned int max_page_list_len; 712 }; 713 714 struct ib_send_wr { 715 struct ib_send_wr *next; 716 u64 wr_id; 717 struct ib_sge *sg_list; 718 int num_sge; 719 enum ib_wr_opcode opcode; 720 int send_flags; 721 union { 722 __be32 imm_data; 723 u32 invalidate_rkey; 724 } ex; 725 union { 726 struct { 727 u64 remote_addr; 728 u32 rkey; 729 } rdma; 730 struct { 731 u64 remote_addr; 732 u64 compare_add; 733 u64 swap; 734 u32 rkey; 735 } atomic; 736 struct { 737 struct ib_ah *ah; 738 void *header; 739 int hlen; 740 int mss; 741 u32 remote_qpn; 742 u32 remote_qkey; 743 u16 pkey_index; /* valid for GSI only */ 744 u8 port_num; /* valid for DR SMPs on switch only */ 745 } ud; 746 struct { 747 u64 iova_start; 748 struct ib_fast_reg_page_list *page_list; 749 unsigned int page_shift; 750 unsigned int page_list_len; 751 u32 length; 752 int access_flags; 753 u32 rkey; 754 } fast_reg; 755 } wr; 756 }; 757 758 struct ib_recv_wr { 759 struct ib_recv_wr *next; 760 u64 wr_id; 761 struct ib_sge *sg_list; 762 int num_sge; 763 }; 764 765 enum ib_access_flags { 766 IB_ACCESS_LOCAL_WRITE = 1, 767 IB_ACCESS_REMOTE_WRITE = (1<<1), 768 IB_ACCESS_REMOTE_READ = (1<<2), 769 IB_ACCESS_REMOTE_ATOMIC = (1<<3), 770 IB_ACCESS_MW_BIND = (1<<4) 771 }; 772 773 struct ib_phys_buf { 774 u64 addr; 775 u64 size; 776 }; 777 778 struct ib_mr_attr { 779 struct ib_pd *pd; 780 u64 device_virt_addr; 781 u64 size; 782 int mr_access_flags; 783 u32 lkey; 784 u32 rkey; 785 }; 786 787 enum ib_mr_rereg_flags { 788 IB_MR_REREG_TRANS = 1, 789 IB_MR_REREG_PD = (1<<1), 790 IB_MR_REREG_ACCESS = (1<<2) 791 }; 792 793 struct ib_mw_bind { 794 struct ib_mr *mr; 795 u64 wr_id; 796 u64 addr; 797 u32 length; 798 int send_flags; 799 int mw_access_flags; 800 }; 801 802 struct ib_fmr_attr { 803 int max_pages; 804 int max_maps; 805 u8 page_shift; 806 }; 807 808 struct ib_ucontext { 809 struct ib_device *device; 810 struct list_head pd_list; 811 struct list_head mr_list; 812 struct list_head mw_list; 813 struct list_head cq_list; 814 struct list_head qp_list; 815 struct list_head srq_list; 816 struct list_head ah_list; 817 int closing; 818 }; 819 820 struct ib_uobject { 821 u64 user_handle; /* handle given to us by userspace */ 822 struct ib_ucontext *context; /* associated user context */ 823 void *object; /* containing object */ 824 struct list_head list; /* link to context's list */ 825 int id; /* index into kernel idr */ 826 struct kref ref; 827 struct rw_semaphore mutex; /* protects .live */ 828 int live; 829 }; 830 831 struct ib_udata { 832 void __user *inbuf; 833 void __user *outbuf; 834 size_t inlen; 835 size_t outlen; 836 }; 837 838 struct ib_pd { 839 struct ib_device *device; 840 struct ib_uobject *uobject; 841 atomic_t usecnt; /* count all resources */ 842 }; 843 844 struct ib_ah { 845 struct ib_device *device; 846 struct ib_pd *pd; 847 struct ib_uobject *uobject; 848 }; 849 850 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 851 852 struct ib_cq { 853 struct ib_device *device; 854 struct ib_uobject *uobject; 855 ib_comp_handler comp_handler; 856 void (*event_handler)(struct ib_event *, void *); 857 void *cq_context; 858 int cqe; 859 atomic_t usecnt; /* count number of work queues */ 860 }; 861 862 struct ib_srq { 863 struct ib_device *device; 864 struct ib_pd *pd; 865 struct ib_uobject *uobject; 866 void (*event_handler)(struct ib_event *, void *); 867 void *srq_context; 868 atomic_t usecnt; 869 }; 870 871 struct ib_qp { 872 struct ib_device *device; 873 struct ib_pd *pd; 874 struct ib_cq *send_cq; 875 struct ib_cq *recv_cq; 876 struct ib_srq *srq; 877 struct ib_uobject *uobject; 878 void (*event_handler)(struct ib_event *, void *); 879 void *qp_context; 880 u32 qp_num; 881 enum ib_qp_type qp_type; 882 }; 883 884 struct ib_mr { 885 struct ib_device *device; 886 struct ib_pd *pd; 887 struct ib_uobject *uobject; 888 u32 lkey; 889 u32 rkey; 890 atomic_t usecnt; /* count number of MWs */ 891 }; 892 893 struct ib_mw { 894 struct ib_device *device; 895 struct ib_pd *pd; 896 struct ib_uobject *uobject; 897 u32 rkey; 898 }; 899 900 struct ib_fmr { 901 struct ib_device *device; 902 struct ib_pd *pd; 903 struct list_head list; 904 u32 lkey; 905 u32 rkey; 906 }; 907 908 struct ib_mad; 909 struct ib_grh; 910 911 enum ib_process_mad_flags { 912 IB_MAD_IGNORE_MKEY = 1, 913 IB_MAD_IGNORE_BKEY = 2, 914 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 915 }; 916 917 enum ib_mad_result { 918 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 919 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 920 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 921 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 922 }; 923 924 #define IB_DEVICE_NAME_MAX 64 925 926 struct ib_cache { 927 rwlock_t lock; 928 struct ib_event_handler event_handler; 929 struct ib_pkey_cache **pkey_cache; 930 struct ib_gid_cache **gid_cache; 931 u8 *lmc_cache; 932 }; 933 934 struct ib_dma_mapping_ops { 935 int (*mapping_error)(struct ib_device *dev, 936 u64 dma_addr); 937 u64 (*map_single)(struct ib_device *dev, 938 void *ptr, size_t size, 939 enum dma_data_direction direction); 940 void (*unmap_single)(struct ib_device *dev, 941 u64 addr, size_t size, 942 enum dma_data_direction direction); 943 u64 (*map_page)(struct ib_device *dev, 944 struct page *page, unsigned long offset, 945 size_t size, 946 enum dma_data_direction direction); 947 void (*unmap_page)(struct ib_device *dev, 948 u64 addr, size_t size, 949 enum dma_data_direction direction); 950 int (*map_sg)(struct ib_device *dev, 951 struct scatterlist *sg, int nents, 952 enum dma_data_direction direction); 953 void (*unmap_sg)(struct ib_device *dev, 954 struct scatterlist *sg, int nents, 955 enum dma_data_direction direction); 956 u64 (*dma_address)(struct ib_device *dev, 957 struct scatterlist *sg); 958 unsigned int (*dma_len)(struct ib_device *dev, 959 struct scatterlist *sg); 960 void (*sync_single_for_cpu)(struct ib_device *dev, 961 u64 dma_handle, 962 size_t size, 963 enum dma_data_direction dir); 964 void (*sync_single_for_device)(struct ib_device *dev, 965 u64 dma_handle, 966 size_t size, 967 enum dma_data_direction dir); 968 void *(*alloc_coherent)(struct ib_device *dev, 969 size_t size, 970 u64 *dma_handle, 971 gfp_t flag); 972 void (*free_coherent)(struct ib_device *dev, 973 size_t size, void *cpu_addr, 974 u64 dma_handle); 975 }; 976 977 struct iw_cm_verbs; 978 979 struct ib_device { 980 struct device *dma_device; 981 982 char name[IB_DEVICE_NAME_MAX]; 983 984 struct list_head event_handler_list; 985 spinlock_t event_handler_lock; 986 987 struct list_head core_list; 988 struct list_head client_data_list; 989 spinlock_t client_data_lock; 990 991 struct ib_cache cache; 992 int *pkey_tbl_len; 993 int *gid_tbl_len; 994 995 int num_comp_vectors; 996 997 struct iw_cm_verbs *iwcm; 998 999 int (*get_protocol_stats)(struct ib_device *device, 1000 union rdma_protocol_stats *stats); 1001 int (*query_device)(struct ib_device *device, 1002 struct ib_device_attr *device_attr); 1003 int (*query_port)(struct ib_device *device, 1004 u8 port_num, 1005 struct ib_port_attr *port_attr); 1006 int (*query_gid)(struct ib_device *device, 1007 u8 port_num, int index, 1008 union ib_gid *gid); 1009 int (*query_pkey)(struct ib_device *device, 1010 u8 port_num, u16 index, u16 *pkey); 1011 int (*modify_device)(struct ib_device *device, 1012 int device_modify_mask, 1013 struct ib_device_modify *device_modify); 1014 int (*modify_port)(struct ib_device *device, 1015 u8 port_num, int port_modify_mask, 1016 struct ib_port_modify *port_modify); 1017 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device, 1018 struct ib_udata *udata); 1019 int (*dealloc_ucontext)(struct ib_ucontext *context); 1020 int (*mmap)(struct ib_ucontext *context, 1021 struct vm_area_struct *vma); 1022 struct ib_pd * (*alloc_pd)(struct ib_device *device, 1023 struct ib_ucontext *context, 1024 struct ib_udata *udata); 1025 int (*dealloc_pd)(struct ib_pd *pd); 1026 struct ib_ah * (*create_ah)(struct ib_pd *pd, 1027 struct ib_ah_attr *ah_attr); 1028 int (*modify_ah)(struct ib_ah *ah, 1029 struct ib_ah_attr *ah_attr); 1030 int (*query_ah)(struct ib_ah *ah, 1031 struct ib_ah_attr *ah_attr); 1032 int (*destroy_ah)(struct ib_ah *ah); 1033 struct ib_srq * (*create_srq)(struct ib_pd *pd, 1034 struct ib_srq_init_attr *srq_init_attr, 1035 struct ib_udata *udata); 1036 int (*modify_srq)(struct ib_srq *srq, 1037 struct ib_srq_attr *srq_attr, 1038 enum ib_srq_attr_mask srq_attr_mask, 1039 struct ib_udata *udata); 1040 int (*query_srq)(struct ib_srq *srq, 1041 struct ib_srq_attr *srq_attr); 1042 int (*destroy_srq)(struct ib_srq *srq); 1043 int (*post_srq_recv)(struct ib_srq *srq, 1044 struct ib_recv_wr *recv_wr, 1045 struct ib_recv_wr **bad_recv_wr); 1046 struct ib_qp * (*create_qp)(struct ib_pd *pd, 1047 struct ib_qp_init_attr *qp_init_attr, 1048 struct ib_udata *udata); 1049 int (*modify_qp)(struct ib_qp *qp, 1050 struct ib_qp_attr *qp_attr, 1051 int qp_attr_mask, 1052 struct ib_udata *udata); 1053 int (*query_qp)(struct ib_qp *qp, 1054 struct ib_qp_attr *qp_attr, 1055 int qp_attr_mask, 1056 struct ib_qp_init_attr *qp_init_attr); 1057 int (*destroy_qp)(struct ib_qp *qp); 1058 int (*post_send)(struct ib_qp *qp, 1059 struct ib_send_wr *send_wr, 1060 struct ib_send_wr **bad_send_wr); 1061 int (*post_recv)(struct ib_qp *qp, 1062 struct ib_recv_wr *recv_wr, 1063 struct ib_recv_wr **bad_recv_wr); 1064 struct ib_cq * (*create_cq)(struct ib_device *device, int cqe, 1065 int comp_vector, 1066 struct ib_ucontext *context, 1067 struct ib_udata *udata); 1068 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, 1069 u16 cq_period); 1070 int (*destroy_cq)(struct ib_cq *cq); 1071 int (*resize_cq)(struct ib_cq *cq, int cqe, 1072 struct ib_udata *udata); 1073 int (*poll_cq)(struct ib_cq *cq, int num_entries, 1074 struct ib_wc *wc); 1075 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 1076 int (*req_notify_cq)(struct ib_cq *cq, 1077 enum ib_cq_notify_flags flags); 1078 int (*req_ncomp_notif)(struct ib_cq *cq, 1079 int wc_cnt); 1080 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, 1081 int mr_access_flags); 1082 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd, 1083 struct ib_phys_buf *phys_buf_array, 1084 int num_phys_buf, 1085 int mr_access_flags, 1086 u64 *iova_start); 1087 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, 1088 u64 start, u64 length, 1089 u64 virt_addr, 1090 int mr_access_flags, 1091 struct ib_udata *udata); 1092 int (*query_mr)(struct ib_mr *mr, 1093 struct ib_mr_attr *mr_attr); 1094 int (*dereg_mr)(struct ib_mr *mr); 1095 struct ib_mr * (*alloc_fast_reg_mr)(struct ib_pd *pd, 1096 int max_page_list_len); 1097 struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device, 1098 int page_list_len); 1099 void (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list); 1100 int (*rereg_phys_mr)(struct ib_mr *mr, 1101 int mr_rereg_mask, 1102 struct ib_pd *pd, 1103 struct ib_phys_buf *phys_buf_array, 1104 int num_phys_buf, 1105 int mr_access_flags, 1106 u64 *iova_start); 1107 struct ib_mw * (*alloc_mw)(struct ib_pd *pd); 1108 int (*bind_mw)(struct ib_qp *qp, 1109 struct ib_mw *mw, 1110 struct ib_mw_bind *mw_bind); 1111 int (*dealloc_mw)(struct ib_mw *mw); 1112 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, 1113 int mr_access_flags, 1114 struct ib_fmr_attr *fmr_attr); 1115 int (*map_phys_fmr)(struct ib_fmr *fmr, 1116 u64 *page_list, int list_len, 1117 u64 iova); 1118 int (*unmap_fmr)(struct list_head *fmr_list); 1119 int (*dealloc_fmr)(struct ib_fmr *fmr); 1120 int (*attach_mcast)(struct ib_qp *qp, 1121 union ib_gid *gid, 1122 u16 lid); 1123 int (*detach_mcast)(struct ib_qp *qp, 1124 union ib_gid *gid, 1125 u16 lid); 1126 int (*process_mad)(struct ib_device *device, 1127 int process_mad_flags, 1128 u8 port_num, 1129 struct ib_wc *in_wc, 1130 struct ib_grh *in_grh, 1131 struct ib_mad *in_mad, 1132 struct ib_mad *out_mad); 1133 1134 struct ib_dma_mapping_ops *dma_ops; 1135 1136 struct module *owner; 1137 struct device dev; 1138 struct kobject *ports_parent; 1139 struct list_head port_list; 1140 1141 enum { 1142 IB_DEV_UNINITIALIZED, 1143 IB_DEV_REGISTERED, 1144 IB_DEV_UNREGISTERED 1145 } reg_state; 1146 1147 u64 uverbs_cmd_mask; 1148 int uverbs_abi_ver; 1149 1150 char node_desc[64]; 1151 __be64 node_guid; 1152 u32 local_dma_lkey; 1153 u8 node_type; 1154 u8 phys_port_cnt; 1155 }; 1156 1157 struct ib_client { 1158 char *name; 1159 void (*add) (struct ib_device *); 1160 void (*remove)(struct ib_device *); 1161 1162 struct list_head list; 1163 }; 1164 1165 struct ib_device *ib_alloc_device(size_t size); 1166 void ib_dealloc_device(struct ib_device *device); 1167 1168 int ib_register_device (struct ib_device *device); 1169 void ib_unregister_device(struct ib_device *device); 1170 1171 int ib_register_client (struct ib_client *client); 1172 void ib_unregister_client(struct ib_client *client); 1173 1174 void *ib_get_client_data(struct ib_device *device, struct ib_client *client); 1175 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 1176 void *data); 1177 1178 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 1179 { 1180 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 1181 } 1182 1183 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 1184 { 1185 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 1186 } 1187 1188 /** 1189 * ib_modify_qp_is_ok - Check that the supplied attribute mask 1190 * contains all required attributes and no attributes not allowed for 1191 * the given QP state transition. 1192 * @cur_state: Current QP state 1193 * @next_state: Next QP state 1194 * @type: QP type 1195 * @mask: Mask of supplied QP attributes 1196 * 1197 * This function is a helper function that a low-level driver's 1198 * modify_qp method can use to validate the consumer's input. It 1199 * checks that cur_state and next_state are valid QP states, that a 1200 * transition from cur_state to next_state is allowed by the IB spec, 1201 * and that the attribute mask supplied is allowed for the transition. 1202 */ 1203 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 1204 enum ib_qp_type type, enum ib_qp_attr_mask mask); 1205 1206 int ib_register_event_handler (struct ib_event_handler *event_handler); 1207 int ib_unregister_event_handler(struct ib_event_handler *event_handler); 1208 void ib_dispatch_event(struct ib_event *event); 1209 1210 int ib_query_device(struct ib_device *device, 1211 struct ib_device_attr *device_attr); 1212 1213 int ib_query_port(struct ib_device *device, 1214 u8 port_num, struct ib_port_attr *port_attr); 1215 1216 int ib_query_gid(struct ib_device *device, 1217 u8 port_num, int index, union ib_gid *gid); 1218 1219 int ib_query_pkey(struct ib_device *device, 1220 u8 port_num, u16 index, u16 *pkey); 1221 1222 int ib_modify_device(struct ib_device *device, 1223 int device_modify_mask, 1224 struct ib_device_modify *device_modify); 1225 1226 int ib_modify_port(struct ib_device *device, 1227 u8 port_num, int port_modify_mask, 1228 struct ib_port_modify *port_modify); 1229 1230 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 1231 u8 *port_num, u16 *index); 1232 1233 int ib_find_pkey(struct ib_device *device, 1234 u8 port_num, u16 pkey, u16 *index); 1235 1236 /** 1237 * ib_alloc_pd - Allocates an unused protection domain. 1238 * @device: The device on which to allocate the protection domain. 1239 * 1240 * A protection domain object provides an association between QPs, shared 1241 * receive queues, address handles, memory regions, and memory windows. 1242 */ 1243 struct ib_pd *ib_alloc_pd(struct ib_device *device); 1244 1245 /** 1246 * ib_dealloc_pd - Deallocates a protection domain. 1247 * @pd: The protection domain to deallocate. 1248 */ 1249 int ib_dealloc_pd(struct ib_pd *pd); 1250 1251 /** 1252 * ib_create_ah - Creates an address handle for the given address vector. 1253 * @pd: The protection domain associated with the address handle. 1254 * @ah_attr: The attributes of the address vector. 1255 * 1256 * The address handle is used to reference a local or global destination 1257 * in all UD QP post sends. 1258 */ 1259 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr); 1260 1261 /** 1262 * ib_init_ah_from_wc - Initializes address handle attributes from a 1263 * work completion. 1264 * @device: Device on which the received message arrived. 1265 * @port_num: Port on which the received message arrived. 1266 * @wc: Work completion associated with the received message. 1267 * @grh: References the received global route header. This parameter is 1268 * ignored unless the work completion indicates that the GRH is valid. 1269 * @ah_attr: Returned attributes that can be used when creating an address 1270 * handle for replying to the message. 1271 */ 1272 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc, 1273 struct ib_grh *grh, struct ib_ah_attr *ah_attr); 1274 1275 /** 1276 * ib_create_ah_from_wc - Creates an address handle associated with the 1277 * sender of the specified work completion. 1278 * @pd: The protection domain associated with the address handle. 1279 * @wc: Work completion information associated with a received message. 1280 * @grh: References the received global route header. This parameter is 1281 * ignored unless the work completion indicates that the GRH is valid. 1282 * @port_num: The outbound port number to associate with the address. 1283 * 1284 * The address handle is used to reference a local or global destination 1285 * in all UD QP post sends. 1286 */ 1287 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc, 1288 struct ib_grh *grh, u8 port_num); 1289 1290 /** 1291 * ib_modify_ah - Modifies the address vector associated with an address 1292 * handle. 1293 * @ah: The address handle to modify. 1294 * @ah_attr: The new address vector attributes to associate with the 1295 * address handle. 1296 */ 1297 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 1298 1299 /** 1300 * ib_query_ah - Queries the address vector associated with an address 1301 * handle. 1302 * @ah: The address handle to query. 1303 * @ah_attr: The address vector attributes associated with the address 1304 * handle. 1305 */ 1306 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 1307 1308 /** 1309 * ib_destroy_ah - Destroys an address handle. 1310 * @ah: The address handle to destroy. 1311 */ 1312 int ib_destroy_ah(struct ib_ah *ah); 1313 1314 /** 1315 * ib_create_srq - Creates a SRQ associated with the specified protection 1316 * domain. 1317 * @pd: The protection domain associated with the SRQ. 1318 * @srq_init_attr: A list of initial attributes required to create the 1319 * SRQ. If SRQ creation succeeds, then the attributes are updated to 1320 * the actual capabilities of the created SRQ. 1321 * 1322 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 1323 * requested size of the SRQ, and set to the actual values allocated 1324 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 1325 * will always be at least as large as the requested values. 1326 */ 1327 struct ib_srq *ib_create_srq(struct ib_pd *pd, 1328 struct ib_srq_init_attr *srq_init_attr); 1329 1330 /** 1331 * ib_modify_srq - Modifies the attributes for the specified SRQ. 1332 * @srq: The SRQ to modify. 1333 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 1334 * the current values of selected SRQ attributes are returned. 1335 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 1336 * are being modified. 1337 * 1338 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 1339 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 1340 * the number of receives queued drops below the limit. 1341 */ 1342 int ib_modify_srq(struct ib_srq *srq, 1343 struct ib_srq_attr *srq_attr, 1344 enum ib_srq_attr_mask srq_attr_mask); 1345 1346 /** 1347 * ib_query_srq - Returns the attribute list and current values for the 1348 * specified SRQ. 1349 * @srq: The SRQ to query. 1350 * @srq_attr: The attributes of the specified SRQ. 1351 */ 1352 int ib_query_srq(struct ib_srq *srq, 1353 struct ib_srq_attr *srq_attr); 1354 1355 /** 1356 * ib_destroy_srq - Destroys the specified SRQ. 1357 * @srq: The SRQ to destroy. 1358 */ 1359 int ib_destroy_srq(struct ib_srq *srq); 1360 1361 /** 1362 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 1363 * @srq: The SRQ to post the work request on. 1364 * @recv_wr: A list of work requests to post on the receive queue. 1365 * @bad_recv_wr: On an immediate failure, this parameter will reference 1366 * the work request that failed to be posted on the QP. 1367 */ 1368 static inline int ib_post_srq_recv(struct ib_srq *srq, 1369 struct ib_recv_wr *recv_wr, 1370 struct ib_recv_wr **bad_recv_wr) 1371 { 1372 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr); 1373 } 1374 1375 /** 1376 * ib_create_qp - Creates a QP associated with the specified protection 1377 * domain. 1378 * @pd: The protection domain associated with the QP. 1379 * @qp_init_attr: A list of initial attributes required to create the 1380 * QP. If QP creation succeeds, then the attributes are updated to 1381 * the actual capabilities of the created QP. 1382 */ 1383 struct ib_qp *ib_create_qp(struct ib_pd *pd, 1384 struct ib_qp_init_attr *qp_init_attr); 1385 1386 /** 1387 * ib_modify_qp - Modifies the attributes for the specified QP and then 1388 * transitions the QP to the given state. 1389 * @qp: The QP to modify. 1390 * @qp_attr: On input, specifies the QP attributes to modify. On output, 1391 * the current values of selected QP attributes are returned. 1392 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 1393 * are being modified. 1394 */ 1395 int ib_modify_qp(struct ib_qp *qp, 1396 struct ib_qp_attr *qp_attr, 1397 int qp_attr_mask); 1398 1399 /** 1400 * ib_query_qp - Returns the attribute list and current values for the 1401 * specified QP. 1402 * @qp: The QP to query. 1403 * @qp_attr: The attributes of the specified QP. 1404 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 1405 * @qp_init_attr: Additional attributes of the selected QP. 1406 * 1407 * The qp_attr_mask may be used to limit the query to gathering only the 1408 * selected attributes. 1409 */ 1410 int ib_query_qp(struct ib_qp *qp, 1411 struct ib_qp_attr *qp_attr, 1412 int qp_attr_mask, 1413 struct ib_qp_init_attr *qp_init_attr); 1414 1415 /** 1416 * ib_destroy_qp - Destroys the specified QP. 1417 * @qp: The QP to destroy. 1418 */ 1419 int ib_destroy_qp(struct ib_qp *qp); 1420 1421 /** 1422 * ib_post_send - Posts a list of work requests to the send queue of 1423 * the specified QP. 1424 * @qp: The QP to post the work request on. 1425 * @send_wr: A list of work requests to post on the send queue. 1426 * @bad_send_wr: On an immediate failure, this parameter will reference 1427 * the work request that failed to be posted on the QP. 1428 */ 1429 static inline int ib_post_send(struct ib_qp *qp, 1430 struct ib_send_wr *send_wr, 1431 struct ib_send_wr **bad_send_wr) 1432 { 1433 return qp->device->post_send(qp, send_wr, bad_send_wr); 1434 } 1435 1436 /** 1437 * ib_post_recv - Posts a list of work requests to the receive queue of 1438 * the specified QP. 1439 * @qp: The QP to post the work request on. 1440 * @recv_wr: A list of work requests to post on the receive queue. 1441 * @bad_recv_wr: On an immediate failure, this parameter will reference 1442 * the work request that failed to be posted on the QP. 1443 */ 1444 static inline int ib_post_recv(struct ib_qp *qp, 1445 struct ib_recv_wr *recv_wr, 1446 struct ib_recv_wr **bad_recv_wr) 1447 { 1448 return qp->device->post_recv(qp, recv_wr, bad_recv_wr); 1449 } 1450 1451 /** 1452 * ib_create_cq - Creates a CQ on the specified device. 1453 * @device: The device on which to create the CQ. 1454 * @comp_handler: A user-specified callback that is invoked when a 1455 * completion event occurs on the CQ. 1456 * @event_handler: A user-specified callback that is invoked when an 1457 * asynchronous event not associated with a completion occurs on the CQ. 1458 * @cq_context: Context associated with the CQ returned to the user via 1459 * the associated completion and event handlers. 1460 * @cqe: The minimum size of the CQ. 1461 * @comp_vector - Completion vector used to signal completion events. 1462 * Must be >= 0 and < context->num_comp_vectors. 1463 * 1464 * Users can examine the cq structure to determine the actual CQ size. 1465 */ 1466 struct ib_cq *ib_create_cq(struct ib_device *device, 1467 ib_comp_handler comp_handler, 1468 void (*event_handler)(struct ib_event *, void *), 1469 void *cq_context, int cqe, int comp_vector); 1470 1471 /** 1472 * ib_resize_cq - Modifies the capacity of the CQ. 1473 * @cq: The CQ to resize. 1474 * @cqe: The minimum size of the CQ. 1475 * 1476 * Users can examine the cq structure to determine the actual CQ size. 1477 */ 1478 int ib_resize_cq(struct ib_cq *cq, int cqe); 1479 1480 /** 1481 * ib_modify_cq - Modifies moderation params of the CQ 1482 * @cq: The CQ to modify. 1483 * @cq_count: number of CQEs that will trigger an event 1484 * @cq_period: max period of time in usec before triggering an event 1485 * 1486 */ 1487 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period); 1488 1489 /** 1490 * ib_destroy_cq - Destroys the specified CQ. 1491 * @cq: The CQ to destroy. 1492 */ 1493 int ib_destroy_cq(struct ib_cq *cq); 1494 1495 /** 1496 * ib_poll_cq - poll a CQ for completion(s) 1497 * @cq:the CQ being polled 1498 * @num_entries:maximum number of completions to return 1499 * @wc:array of at least @num_entries &struct ib_wc where completions 1500 * will be returned 1501 * 1502 * Poll a CQ for (possibly multiple) completions. If the return value 1503 * is < 0, an error occurred. If the return value is >= 0, it is the 1504 * number of completions returned. If the return value is 1505 * non-negative and < num_entries, then the CQ was emptied. 1506 */ 1507 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 1508 struct ib_wc *wc) 1509 { 1510 return cq->device->poll_cq(cq, num_entries, wc); 1511 } 1512 1513 /** 1514 * ib_peek_cq - Returns the number of unreaped completions currently 1515 * on the specified CQ. 1516 * @cq: The CQ to peek. 1517 * @wc_cnt: A minimum number of unreaped completions to check for. 1518 * 1519 * If the number of unreaped completions is greater than or equal to wc_cnt, 1520 * this function returns wc_cnt, otherwise, it returns the actual number of 1521 * unreaped completions. 1522 */ 1523 int ib_peek_cq(struct ib_cq *cq, int wc_cnt); 1524 1525 /** 1526 * ib_req_notify_cq - Request completion notification on a CQ. 1527 * @cq: The CQ to generate an event for. 1528 * @flags: 1529 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 1530 * to request an event on the next solicited event or next work 1531 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 1532 * may also be |ed in to request a hint about missed events, as 1533 * described below. 1534 * 1535 * Return Value: 1536 * < 0 means an error occurred while requesting notification 1537 * == 0 means notification was requested successfully, and if 1538 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 1539 * were missed and it is safe to wait for another event. In 1540 * this case is it guaranteed that any work completions added 1541 * to the CQ since the last CQ poll will trigger a completion 1542 * notification event. 1543 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 1544 * in. It means that the consumer must poll the CQ again to 1545 * make sure it is empty to avoid missing an event because of a 1546 * race between requesting notification and an entry being 1547 * added to the CQ. This return value means it is possible 1548 * (but not guaranteed) that a work completion has been added 1549 * to the CQ since the last poll without triggering a 1550 * completion notification event. 1551 */ 1552 static inline int ib_req_notify_cq(struct ib_cq *cq, 1553 enum ib_cq_notify_flags flags) 1554 { 1555 return cq->device->req_notify_cq(cq, flags); 1556 } 1557 1558 /** 1559 * ib_req_ncomp_notif - Request completion notification when there are 1560 * at least the specified number of unreaped completions on the CQ. 1561 * @cq: The CQ to generate an event for. 1562 * @wc_cnt: The number of unreaped completions that should be on the 1563 * CQ before an event is generated. 1564 */ 1565 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 1566 { 1567 return cq->device->req_ncomp_notif ? 1568 cq->device->req_ncomp_notif(cq, wc_cnt) : 1569 -ENOSYS; 1570 } 1571 1572 /** 1573 * ib_get_dma_mr - Returns a memory region for system memory that is 1574 * usable for DMA. 1575 * @pd: The protection domain associated with the memory region. 1576 * @mr_access_flags: Specifies the memory access rights. 1577 * 1578 * Note that the ib_dma_*() functions defined below must be used 1579 * to create/destroy addresses used with the Lkey or Rkey returned 1580 * by ib_get_dma_mr(). 1581 */ 1582 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags); 1583 1584 /** 1585 * ib_dma_mapping_error - check a DMA addr for error 1586 * @dev: The device for which the dma_addr was created 1587 * @dma_addr: The DMA address to check 1588 */ 1589 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 1590 { 1591 if (dev->dma_ops) 1592 return dev->dma_ops->mapping_error(dev, dma_addr); 1593 return dma_mapping_error(dev->dma_device, dma_addr); 1594 } 1595 1596 /** 1597 * ib_dma_map_single - Map a kernel virtual address to DMA address 1598 * @dev: The device for which the dma_addr is to be created 1599 * @cpu_addr: The kernel virtual address 1600 * @size: The size of the region in bytes 1601 * @direction: The direction of the DMA 1602 */ 1603 static inline u64 ib_dma_map_single(struct ib_device *dev, 1604 void *cpu_addr, size_t size, 1605 enum dma_data_direction direction) 1606 { 1607 if (dev->dma_ops) 1608 return dev->dma_ops->map_single(dev, cpu_addr, size, direction); 1609 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 1610 } 1611 1612 /** 1613 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 1614 * @dev: The device for which the DMA address was created 1615 * @addr: The DMA address 1616 * @size: The size of the region in bytes 1617 * @direction: The direction of the DMA 1618 */ 1619 static inline void ib_dma_unmap_single(struct ib_device *dev, 1620 u64 addr, size_t size, 1621 enum dma_data_direction direction) 1622 { 1623 if (dev->dma_ops) 1624 dev->dma_ops->unmap_single(dev, addr, size, direction); 1625 else 1626 dma_unmap_single(dev->dma_device, addr, size, direction); 1627 } 1628 1629 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev, 1630 void *cpu_addr, size_t size, 1631 enum dma_data_direction direction, 1632 struct dma_attrs *attrs) 1633 { 1634 return dma_map_single_attrs(dev->dma_device, cpu_addr, size, 1635 direction, attrs); 1636 } 1637 1638 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev, 1639 u64 addr, size_t size, 1640 enum dma_data_direction direction, 1641 struct dma_attrs *attrs) 1642 { 1643 return dma_unmap_single_attrs(dev->dma_device, addr, size, 1644 direction, attrs); 1645 } 1646 1647 /** 1648 * ib_dma_map_page - Map a physical page to DMA address 1649 * @dev: The device for which the dma_addr is to be created 1650 * @page: The page to be mapped 1651 * @offset: The offset within the page 1652 * @size: The size of the region in bytes 1653 * @direction: The direction of the DMA 1654 */ 1655 static inline u64 ib_dma_map_page(struct ib_device *dev, 1656 struct page *page, 1657 unsigned long offset, 1658 size_t size, 1659 enum dma_data_direction direction) 1660 { 1661 if (dev->dma_ops) 1662 return dev->dma_ops->map_page(dev, page, offset, size, direction); 1663 return dma_map_page(dev->dma_device, page, offset, size, direction); 1664 } 1665 1666 /** 1667 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 1668 * @dev: The device for which the DMA address was created 1669 * @addr: The DMA address 1670 * @size: The size of the region in bytes 1671 * @direction: The direction of the DMA 1672 */ 1673 static inline void ib_dma_unmap_page(struct ib_device *dev, 1674 u64 addr, size_t size, 1675 enum dma_data_direction direction) 1676 { 1677 if (dev->dma_ops) 1678 dev->dma_ops->unmap_page(dev, addr, size, direction); 1679 else 1680 dma_unmap_page(dev->dma_device, addr, size, direction); 1681 } 1682 1683 /** 1684 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 1685 * @dev: The device for which the DMA addresses are to be created 1686 * @sg: The array of scatter/gather entries 1687 * @nents: The number of scatter/gather entries 1688 * @direction: The direction of the DMA 1689 */ 1690 static inline int ib_dma_map_sg(struct ib_device *dev, 1691 struct scatterlist *sg, int nents, 1692 enum dma_data_direction direction) 1693 { 1694 if (dev->dma_ops) 1695 return dev->dma_ops->map_sg(dev, sg, nents, direction); 1696 return dma_map_sg(dev->dma_device, sg, nents, direction); 1697 } 1698 1699 /** 1700 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 1701 * @dev: The device for which the DMA addresses were created 1702 * @sg: The array of scatter/gather entries 1703 * @nents: The number of scatter/gather entries 1704 * @direction: The direction of the DMA 1705 */ 1706 static inline void ib_dma_unmap_sg(struct ib_device *dev, 1707 struct scatterlist *sg, int nents, 1708 enum dma_data_direction direction) 1709 { 1710 if (dev->dma_ops) 1711 dev->dma_ops->unmap_sg(dev, sg, nents, direction); 1712 else 1713 dma_unmap_sg(dev->dma_device, sg, nents, direction); 1714 } 1715 1716 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 1717 struct scatterlist *sg, int nents, 1718 enum dma_data_direction direction, 1719 struct dma_attrs *attrs) 1720 { 1721 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs); 1722 } 1723 1724 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 1725 struct scatterlist *sg, int nents, 1726 enum dma_data_direction direction, 1727 struct dma_attrs *attrs) 1728 { 1729 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs); 1730 } 1731 /** 1732 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry 1733 * @dev: The device for which the DMA addresses were created 1734 * @sg: The scatter/gather entry 1735 */ 1736 static inline u64 ib_sg_dma_address(struct ib_device *dev, 1737 struct scatterlist *sg) 1738 { 1739 if (dev->dma_ops) 1740 return dev->dma_ops->dma_address(dev, sg); 1741 return sg_dma_address(sg); 1742 } 1743 1744 /** 1745 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry 1746 * @dev: The device for which the DMA addresses were created 1747 * @sg: The scatter/gather entry 1748 */ 1749 static inline unsigned int ib_sg_dma_len(struct ib_device *dev, 1750 struct scatterlist *sg) 1751 { 1752 if (dev->dma_ops) 1753 return dev->dma_ops->dma_len(dev, sg); 1754 return sg_dma_len(sg); 1755 } 1756 1757 /** 1758 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 1759 * @dev: The device for which the DMA address was created 1760 * @addr: The DMA address 1761 * @size: The size of the region in bytes 1762 * @dir: The direction of the DMA 1763 */ 1764 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 1765 u64 addr, 1766 size_t size, 1767 enum dma_data_direction dir) 1768 { 1769 if (dev->dma_ops) 1770 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir); 1771 else 1772 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 1773 } 1774 1775 /** 1776 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 1777 * @dev: The device for which the DMA address was created 1778 * @addr: The DMA address 1779 * @size: The size of the region in bytes 1780 * @dir: The direction of the DMA 1781 */ 1782 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 1783 u64 addr, 1784 size_t size, 1785 enum dma_data_direction dir) 1786 { 1787 if (dev->dma_ops) 1788 dev->dma_ops->sync_single_for_device(dev, addr, size, dir); 1789 else 1790 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 1791 } 1792 1793 /** 1794 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 1795 * @dev: The device for which the DMA address is requested 1796 * @size: The size of the region to allocate in bytes 1797 * @dma_handle: A pointer for returning the DMA address of the region 1798 * @flag: memory allocator flags 1799 */ 1800 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 1801 size_t size, 1802 u64 *dma_handle, 1803 gfp_t flag) 1804 { 1805 if (dev->dma_ops) 1806 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag); 1807 else { 1808 dma_addr_t handle; 1809 void *ret; 1810 1811 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag); 1812 *dma_handle = handle; 1813 return ret; 1814 } 1815 } 1816 1817 /** 1818 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 1819 * @dev: The device for which the DMA addresses were allocated 1820 * @size: The size of the region 1821 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 1822 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 1823 */ 1824 static inline void ib_dma_free_coherent(struct ib_device *dev, 1825 size_t size, void *cpu_addr, 1826 u64 dma_handle) 1827 { 1828 if (dev->dma_ops) 1829 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle); 1830 else 1831 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 1832 } 1833 1834 /** 1835 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use 1836 * by an HCA. 1837 * @pd: The protection domain associated assigned to the registered region. 1838 * @phys_buf_array: Specifies a list of physical buffers to use in the 1839 * memory region. 1840 * @num_phys_buf: Specifies the size of the phys_buf_array. 1841 * @mr_access_flags: Specifies the memory access rights. 1842 * @iova_start: The offset of the region's starting I/O virtual address. 1843 */ 1844 struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd, 1845 struct ib_phys_buf *phys_buf_array, 1846 int num_phys_buf, 1847 int mr_access_flags, 1848 u64 *iova_start); 1849 1850 /** 1851 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region. 1852 * Conceptually, this call performs the functions deregister memory region 1853 * followed by register physical memory region. Where possible, 1854 * resources are reused instead of deallocated and reallocated. 1855 * @mr: The memory region to modify. 1856 * @mr_rereg_mask: A bit-mask used to indicate which of the following 1857 * properties of the memory region are being modified. 1858 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies 1859 * the new protection domain to associated with the memory region, 1860 * otherwise, this parameter is ignored. 1861 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this 1862 * field specifies a list of physical buffers to use in the new 1863 * translation, otherwise, this parameter is ignored. 1864 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this 1865 * field specifies the size of the phys_buf_array, otherwise, this 1866 * parameter is ignored. 1867 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this 1868 * field specifies the new memory access rights, otherwise, this 1869 * parameter is ignored. 1870 * @iova_start: The offset of the region's starting I/O virtual address. 1871 */ 1872 int ib_rereg_phys_mr(struct ib_mr *mr, 1873 int mr_rereg_mask, 1874 struct ib_pd *pd, 1875 struct ib_phys_buf *phys_buf_array, 1876 int num_phys_buf, 1877 int mr_access_flags, 1878 u64 *iova_start); 1879 1880 /** 1881 * ib_query_mr - Retrieves information about a specific memory region. 1882 * @mr: The memory region to retrieve information about. 1883 * @mr_attr: The attributes of the specified memory region. 1884 */ 1885 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr); 1886 1887 /** 1888 * ib_dereg_mr - Deregisters a memory region and removes it from the 1889 * HCA translation table. 1890 * @mr: The memory region to deregister. 1891 */ 1892 int ib_dereg_mr(struct ib_mr *mr); 1893 1894 /** 1895 * ib_alloc_fast_reg_mr - Allocates memory region usable with the 1896 * IB_WR_FAST_REG_MR send work request. 1897 * @pd: The protection domain associated with the region. 1898 * @max_page_list_len: requested max physical buffer list length to be 1899 * used with fast register work requests for this MR. 1900 */ 1901 struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len); 1902 1903 /** 1904 * ib_alloc_fast_reg_page_list - Allocates a page list array 1905 * @device - ib device pointer. 1906 * @page_list_len - size of the page list array to be allocated. 1907 * 1908 * This allocates and returns a struct ib_fast_reg_page_list * and a 1909 * page_list array that is at least page_list_len in size. The actual 1910 * size is returned in max_page_list_len. The caller is responsible 1911 * for initializing the contents of the page_list array before posting 1912 * a send work request with the IB_WC_FAST_REG_MR opcode. 1913 * 1914 * The page_list array entries must be translated using one of the 1915 * ib_dma_*() functions just like the addresses passed to 1916 * ib_map_phys_fmr(). Once the ib_post_send() is issued, the struct 1917 * ib_fast_reg_page_list must not be modified by the caller until the 1918 * IB_WC_FAST_REG_MR work request completes. 1919 */ 1920 struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list( 1921 struct ib_device *device, int page_list_len); 1922 1923 /** 1924 * ib_free_fast_reg_page_list - Deallocates a previously allocated 1925 * page list array. 1926 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated. 1927 */ 1928 void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list); 1929 1930 /** 1931 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 1932 * R_Key and L_Key. 1933 * @mr - struct ib_mr pointer to be updated. 1934 * @newkey - new key to be used. 1935 */ 1936 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 1937 { 1938 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 1939 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 1940 } 1941 1942 /** 1943 * ib_alloc_mw - Allocates a memory window. 1944 * @pd: The protection domain associated with the memory window. 1945 */ 1946 struct ib_mw *ib_alloc_mw(struct ib_pd *pd); 1947 1948 /** 1949 * ib_bind_mw - Posts a work request to the send queue of the specified 1950 * QP, which binds the memory window to the given address range and 1951 * remote access attributes. 1952 * @qp: QP to post the bind work request on. 1953 * @mw: The memory window to bind. 1954 * @mw_bind: Specifies information about the memory window, including 1955 * its address range, remote access rights, and associated memory region. 1956 */ 1957 static inline int ib_bind_mw(struct ib_qp *qp, 1958 struct ib_mw *mw, 1959 struct ib_mw_bind *mw_bind) 1960 { 1961 /* XXX reference counting in corresponding MR? */ 1962 return mw->device->bind_mw ? 1963 mw->device->bind_mw(qp, mw, mw_bind) : 1964 -ENOSYS; 1965 } 1966 1967 /** 1968 * ib_dealloc_mw - Deallocates a memory window. 1969 * @mw: The memory window to deallocate. 1970 */ 1971 int ib_dealloc_mw(struct ib_mw *mw); 1972 1973 /** 1974 * ib_alloc_fmr - Allocates a unmapped fast memory region. 1975 * @pd: The protection domain associated with the unmapped region. 1976 * @mr_access_flags: Specifies the memory access rights. 1977 * @fmr_attr: Attributes of the unmapped region. 1978 * 1979 * A fast memory region must be mapped before it can be used as part of 1980 * a work request. 1981 */ 1982 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 1983 int mr_access_flags, 1984 struct ib_fmr_attr *fmr_attr); 1985 1986 /** 1987 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 1988 * @fmr: The fast memory region to associate with the pages. 1989 * @page_list: An array of physical pages to map to the fast memory region. 1990 * @list_len: The number of pages in page_list. 1991 * @iova: The I/O virtual address to use with the mapped region. 1992 */ 1993 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 1994 u64 *page_list, int list_len, 1995 u64 iova) 1996 { 1997 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); 1998 } 1999 2000 /** 2001 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 2002 * @fmr_list: A linked list of fast memory regions to unmap. 2003 */ 2004 int ib_unmap_fmr(struct list_head *fmr_list); 2005 2006 /** 2007 * ib_dealloc_fmr - Deallocates a fast memory region. 2008 * @fmr: The fast memory region to deallocate. 2009 */ 2010 int ib_dealloc_fmr(struct ib_fmr *fmr); 2011 2012 /** 2013 * ib_attach_mcast - Attaches the specified QP to a multicast group. 2014 * @qp: QP to attach to the multicast group. The QP must be type 2015 * IB_QPT_UD. 2016 * @gid: Multicast group GID. 2017 * @lid: Multicast group LID in host byte order. 2018 * 2019 * In order to send and receive multicast packets, subnet 2020 * administration must have created the multicast group and configured 2021 * the fabric appropriately. The port associated with the specified 2022 * QP must also be a member of the multicast group. 2023 */ 2024 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2025 2026 /** 2027 * ib_detach_mcast - Detaches the specified QP from a multicast group. 2028 * @qp: QP to detach from the multicast group. 2029 * @gid: Multicast group GID. 2030 * @lid: Multicast group LID in host byte order. 2031 */ 2032 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2033 2034 #endif /* IB_VERBS_H */ 2035