xref: /openbmc/linux/include/rdma/ib_verbs.h (revision 93dc544c)
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38 
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41 
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 
51 #include <asm/atomic.h>
52 #include <asm/uaccess.h>
53 
54 union ib_gid {
55 	u8	raw[16];
56 	struct {
57 		__be64	subnet_prefix;
58 		__be64	interface_id;
59 	} global;
60 };
61 
62 enum rdma_node_type {
63 	/* IB values map to NodeInfo:NodeType. */
64 	RDMA_NODE_IB_CA 	= 1,
65 	RDMA_NODE_IB_SWITCH,
66 	RDMA_NODE_IB_ROUTER,
67 	RDMA_NODE_RNIC
68 };
69 
70 enum rdma_transport_type {
71 	RDMA_TRANSPORT_IB,
72 	RDMA_TRANSPORT_IWARP
73 };
74 
75 enum rdma_transport_type
76 rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__;
77 
78 enum ib_device_cap_flags {
79 	IB_DEVICE_RESIZE_MAX_WR		= 1,
80 	IB_DEVICE_BAD_PKEY_CNTR		= (1<<1),
81 	IB_DEVICE_BAD_QKEY_CNTR		= (1<<2),
82 	IB_DEVICE_RAW_MULTI		= (1<<3),
83 	IB_DEVICE_AUTO_PATH_MIG		= (1<<4),
84 	IB_DEVICE_CHANGE_PHY_PORT	= (1<<5),
85 	IB_DEVICE_UD_AV_PORT_ENFORCE	= (1<<6),
86 	IB_DEVICE_CURR_QP_STATE_MOD	= (1<<7),
87 	IB_DEVICE_SHUTDOWN_PORT		= (1<<8),
88 	IB_DEVICE_INIT_TYPE		= (1<<9),
89 	IB_DEVICE_PORT_ACTIVE_EVENT	= (1<<10),
90 	IB_DEVICE_SYS_IMAGE_GUID	= (1<<11),
91 	IB_DEVICE_RC_RNR_NAK_GEN	= (1<<12),
92 	IB_DEVICE_SRQ_RESIZE		= (1<<13),
93 	IB_DEVICE_N_NOTIFY_CQ		= (1<<14),
94 	IB_DEVICE_LOCAL_DMA_LKEY	= (1<<15),
95 	IB_DEVICE_RESERVED		= (1<<16), /* old SEND_W_INV */
96 	IB_DEVICE_MEM_WINDOW		= (1<<17),
97 	/*
98 	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
99 	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
100 	 * messages and can verify the validity of checksum for
101 	 * incoming messages.  Setting this flag implies that the
102 	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
103 	 */
104 	IB_DEVICE_UD_IP_CSUM		= (1<<18),
105 	IB_DEVICE_UD_TSO		= (1<<19),
106 	IB_DEVICE_MEM_MGT_EXTENSIONS	= (1<<21),
107 	IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
108 };
109 
110 enum ib_atomic_cap {
111 	IB_ATOMIC_NONE,
112 	IB_ATOMIC_HCA,
113 	IB_ATOMIC_GLOB
114 };
115 
116 struct ib_device_attr {
117 	u64			fw_ver;
118 	__be64			sys_image_guid;
119 	u64			max_mr_size;
120 	u64			page_size_cap;
121 	u32			vendor_id;
122 	u32			vendor_part_id;
123 	u32			hw_ver;
124 	int			max_qp;
125 	int			max_qp_wr;
126 	int			device_cap_flags;
127 	int			max_sge;
128 	int			max_sge_rd;
129 	int			max_cq;
130 	int			max_cqe;
131 	int			max_mr;
132 	int			max_pd;
133 	int			max_qp_rd_atom;
134 	int			max_ee_rd_atom;
135 	int			max_res_rd_atom;
136 	int			max_qp_init_rd_atom;
137 	int			max_ee_init_rd_atom;
138 	enum ib_atomic_cap	atomic_cap;
139 	int			max_ee;
140 	int			max_rdd;
141 	int			max_mw;
142 	int			max_raw_ipv6_qp;
143 	int			max_raw_ethy_qp;
144 	int			max_mcast_grp;
145 	int			max_mcast_qp_attach;
146 	int			max_total_mcast_qp_attach;
147 	int			max_ah;
148 	int			max_fmr;
149 	int			max_map_per_fmr;
150 	int			max_srq;
151 	int			max_srq_wr;
152 	int			max_srq_sge;
153 	unsigned int		max_fast_reg_page_list_len;
154 	u16			max_pkeys;
155 	u8			local_ca_ack_delay;
156 };
157 
158 enum ib_mtu {
159 	IB_MTU_256  = 1,
160 	IB_MTU_512  = 2,
161 	IB_MTU_1024 = 3,
162 	IB_MTU_2048 = 4,
163 	IB_MTU_4096 = 5
164 };
165 
166 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
167 {
168 	switch (mtu) {
169 	case IB_MTU_256:  return  256;
170 	case IB_MTU_512:  return  512;
171 	case IB_MTU_1024: return 1024;
172 	case IB_MTU_2048: return 2048;
173 	case IB_MTU_4096: return 4096;
174 	default: 	  return -1;
175 	}
176 }
177 
178 enum ib_port_state {
179 	IB_PORT_NOP		= 0,
180 	IB_PORT_DOWN		= 1,
181 	IB_PORT_INIT		= 2,
182 	IB_PORT_ARMED		= 3,
183 	IB_PORT_ACTIVE		= 4,
184 	IB_PORT_ACTIVE_DEFER	= 5
185 };
186 
187 enum ib_port_cap_flags {
188 	IB_PORT_SM				= 1 <<  1,
189 	IB_PORT_NOTICE_SUP			= 1 <<  2,
190 	IB_PORT_TRAP_SUP			= 1 <<  3,
191 	IB_PORT_OPT_IPD_SUP                     = 1 <<  4,
192 	IB_PORT_AUTO_MIGR_SUP			= 1 <<  5,
193 	IB_PORT_SL_MAP_SUP			= 1 <<  6,
194 	IB_PORT_MKEY_NVRAM			= 1 <<  7,
195 	IB_PORT_PKEY_NVRAM			= 1 <<  8,
196 	IB_PORT_LED_INFO_SUP			= 1 <<  9,
197 	IB_PORT_SM_DISABLED			= 1 << 10,
198 	IB_PORT_SYS_IMAGE_GUID_SUP		= 1 << 11,
199 	IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP	= 1 << 12,
200 	IB_PORT_CM_SUP				= 1 << 16,
201 	IB_PORT_SNMP_TUNNEL_SUP			= 1 << 17,
202 	IB_PORT_REINIT_SUP			= 1 << 18,
203 	IB_PORT_DEVICE_MGMT_SUP			= 1 << 19,
204 	IB_PORT_VENDOR_CLASS_SUP		= 1 << 20,
205 	IB_PORT_DR_NOTICE_SUP			= 1 << 21,
206 	IB_PORT_CAP_MASK_NOTICE_SUP		= 1 << 22,
207 	IB_PORT_BOOT_MGMT_SUP			= 1 << 23,
208 	IB_PORT_LINK_LATENCY_SUP		= 1 << 24,
209 	IB_PORT_CLIENT_REG_SUP			= 1 << 25
210 };
211 
212 enum ib_port_width {
213 	IB_WIDTH_1X	= 1,
214 	IB_WIDTH_4X	= 2,
215 	IB_WIDTH_8X	= 4,
216 	IB_WIDTH_12X	= 8
217 };
218 
219 static inline int ib_width_enum_to_int(enum ib_port_width width)
220 {
221 	switch (width) {
222 	case IB_WIDTH_1X:  return  1;
223 	case IB_WIDTH_4X:  return  4;
224 	case IB_WIDTH_8X:  return  8;
225 	case IB_WIDTH_12X: return 12;
226 	default: 	  return -1;
227 	}
228 }
229 
230 struct ib_protocol_stats {
231 	/* TBD... */
232 };
233 
234 struct iw_protocol_stats {
235 	u64	ipInReceives;
236 	u64	ipInHdrErrors;
237 	u64	ipInTooBigErrors;
238 	u64	ipInNoRoutes;
239 	u64	ipInAddrErrors;
240 	u64	ipInUnknownProtos;
241 	u64	ipInTruncatedPkts;
242 	u64	ipInDiscards;
243 	u64	ipInDelivers;
244 	u64	ipOutForwDatagrams;
245 	u64	ipOutRequests;
246 	u64	ipOutDiscards;
247 	u64	ipOutNoRoutes;
248 	u64	ipReasmTimeout;
249 	u64	ipReasmReqds;
250 	u64	ipReasmOKs;
251 	u64	ipReasmFails;
252 	u64	ipFragOKs;
253 	u64	ipFragFails;
254 	u64	ipFragCreates;
255 	u64	ipInMcastPkts;
256 	u64	ipOutMcastPkts;
257 	u64	ipInBcastPkts;
258 	u64	ipOutBcastPkts;
259 
260 	u64	tcpRtoAlgorithm;
261 	u64	tcpRtoMin;
262 	u64	tcpRtoMax;
263 	u64	tcpMaxConn;
264 	u64	tcpActiveOpens;
265 	u64	tcpPassiveOpens;
266 	u64	tcpAttemptFails;
267 	u64	tcpEstabResets;
268 	u64	tcpCurrEstab;
269 	u64	tcpInSegs;
270 	u64	tcpOutSegs;
271 	u64	tcpRetransSegs;
272 	u64	tcpInErrs;
273 	u64	tcpOutRsts;
274 };
275 
276 union rdma_protocol_stats {
277 	struct ib_protocol_stats	ib;
278 	struct iw_protocol_stats	iw;
279 };
280 
281 struct ib_port_attr {
282 	enum ib_port_state	state;
283 	enum ib_mtu		max_mtu;
284 	enum ib_mtu		active_mtu;
285 	int			gid_tbl_len;
286 	u32			port_cap_flags;
287 	u32			max_msg_sz;
288 	u32			bad_pkey_cntr;
289 	u32			qkey_viol_cntr;
290 	u16			pkey_tbl_len;
291 	u16			lid;
292 	u16			sm_lid;
293 	u8			lmc;
294 	u8			max_vl_num;
295 	u8			sm_sl;
296 	u8			subnet_timeout;
297 	u8			init_type_reply;
298 	u8			active_width;
299 	u8			active_speed;
300 	u8                      phys_state;
301 };
302 
303 enum ib_device_modify_flags {
304 	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
305 	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
306 };
307 
308 struct ib_device_modify {
309 	u64	sys_image_guid;
310 	char	node_desc[64];
311 };
312 
313 enum ib_port_modify_flags {
314 	IB_PORT_SHUTDOWN		= 1,
315 	IB_PORT_INIT_TYPE		= (1<<2),
316 	IB_PORT_RESET_QKEY_CNTR		= (1<<3)
317 };
318 
319 struct ib_port_modify {
320 	u32	set_port_cap_mask;
321 	u32	clr_port_cap_mask;
322 	u8	init_type;
323 };
324 
325 enum ib_event_type {
326 	IB_EVENT_CQ_ERR,
327 	IB_EVENT_QP_FATAL,
328 	IB_EVENT_QP_REQ_ERR,
329 	IB_EVENT_QP_ACCESS_ERR,
330 	IB_EVENT_COMM_EST,
331 	IB_EVENT_SQ_DRAINED,
332 	IB_EVENT_PATH_MIG,
333 	IB_EVENT_PATH_MIG_ERR,
334 	IB_EVENT_DEVICE_FATAL,
335 	IB_EVENT_PORT_ACTIVE,
336 	IB_EVENT_PORT_ERR,
337 	IB_EVENT_LID_CHANGE,
338 	IB_EVENT_PKEY_CHANGE,
339 	IB_EVENT_SM_CHANGE,
340 	IB_EVENT_SRQ_ERR,
341 	IB_EVENT_SRQ_LIMIT_REACHED,
342 	IB_EVENT_QP_LAST_WQE_REACHED,
343 	IB_EVENT_CLIENT_REREGISTER
344 };
345 
346 struct ib_event {
347 	struct ib_device	*device;
348 	union {
349 		struct ib_cq	*cq;
350 		struct ib_qp	*qp;
351 		struct ib_srq	*srq;
352 		u8		port_num;
353 	} element;
354 	enum ib_event_type	event;
355 };
356 
357 struct ib_event_handler {
358 	struct ib_device *device;
359 	void            (*handler)(struct ib_event_handler *, struct ib_event *);
360 	struct list_head  list;
361 };
362 
363 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
364 	do {							\
365 		(_ptr)->device  = _device;			\
366 		(_ptr)->handler = _handler;			\
367 		INIT_LIST_HEAD(&(_ptr)->list);			\
368 	} while (0)
369 
370 struct ib_global_route {
371 	union ib_gid	dgid;
372 	u32		flow_label;
373 	u8		sgid_index;
374 	u8		hop_limit;
375 	u8		traffic_class;
376 };
377 
378 struct ib_grh {
379 	__be32		version_tclass_flow;
380 	__be16		paylen;
381 	u8		next_hdr;
382 	u8		hop_limit;
383 	union ib_gid	sgid;
384 	union ib_gid	dgid;
385 };
386 
387 enum {
388 	IB_MULTICAST_QPN = 0xffffff
389 };
390 
391 #define IB_LID_PERMISSIVE	__constant_htons(0xFFFF)
392 
393 enum ib_ah_flags {
394 	IB_AH_GRH	= 1
395 };
396 
397 enum ib_rate {
398 	IB_RATE_PORT_CURRENT = 0,
399 	IB_RATE_2_5_GBPS = 2,
400 	IB_RATE_5_GBPS   = 5,
401 	IB_RATE_10_GBPS  = 3,
402 	IB_RATE_20_GBPS  = 6,
403 	IB_RATE_30_GBPS  = 4,
404 	IB_RATE_40_GBPS  = 7,
405 	IB_RATE_60_GBPS  = 8,
406 	IB_RATE_80_GBPS  = 9,
407 	IB_RATE_120_GBPS = 10
408 };
409 
410 /**
411  * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
412  * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
413  * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
414  * @rate: rate to convert.
415  */
416 int ib_rate_to_mult(enum ib_rate rate) __attribute_const__;
417 
418 /**
419  * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
420  * enum.
421  * @mult: multiple to convert.
422  */
423 enum ib_rate mult_to_ib_rate(int mult) __attribute_const__;
424 
425 struct ib_ah_attr {
426 	struct ib_global_route	grh;
427 	u16			dlid;
428 	u8			sl;
429 	u8			src_path_bits;
430 	u8			static_rate;
431 	u8			ah_flags;
432 	u8			port_num;
433 };
434 
435 enum ib_wc_status {
436 	IB_WC_SUCCESS,
437 	IB_WC_LOC_LEN_ERR,
438 	IB_WC_LOC_QP_OP_ERR,
439 	IB_WC_LOC_EEC_OP_ERR,
440 	IB_WC_LOC_PROT_ERR,
441 	IB_WC_WR_FLUSH_ERR,
442 	IB_WC_MW_BIND_ERR,
443 	IB_WC_BAD_RESP_ERR,
444 	IB_WC_LOC_ACCESS_ERR,
445 	IB_WC_REM_INV_REQ_ERR,
446 	IB_WC_REM_ACCESS_ERR,
447 	IB_WC_REM_OP_ERR,
448 	IB_WC_RETRY_EXC_ERR,
449 	IB_WC_RNR_RETRY_EXC_ERR,
450 	IB_WC_LOC_RDD_VIOL_ERR,
451 	IB_WC_REM_INV_RD_REQ_ERR,
452 	IB_WC_REM_ABORT_ERR,
453 	IB_WC_INV_EECN_ERR,
454 	IB_WC_INV_EEC_STATE_ERR,
455 	IB_WC_FATAL_ERR,
456 	IB_WC_RESP_TIMEOUT_ERR,
457 	IB_WC_GENERAL_ERR
458 };
459 
460 enum ib_wc_opcode {
461 	IB_WC_SEND,
462 	IB_WC_RDMA_WRITE,
463 	IB_WC_RDMA_READ,
464 	IB_WC_COMP_SWAP,
465 	IB_WC_FETCH_ADD,
466 	IB_WC_BIND_MW,
467 	IB_WC_LSO,
468 	IB_WC_LOCAL_INV,
469 	IB_WC_FAST_REG_MR,
470 /*
471  * Set value of IB_WC_RECV so consumers can test if a completion is a
472  * receive by testing (opcode & IB_WC_RECV).
473  */
474 	IB_WC_RECV			= 1 << 7,
475 	IB_WC_RECV_RDMA_WITH_IMM
476 };
477 
478 enum ib_wc_flags {
479 	IB_WC_GRH		= 1,
480 	IB_WC_WITH_IMM		= (1<<1),
481 	IB_WC_WITH_INVALIDATE	= (1<<2),
482 };
483 
484 struct ib_wc {
485 	u64			wr_id;
486 	enum ib_wc_status	status;
487 	enum ib_wc_opcode	opcode;
488 	u32			vendor_err;
489 	u32			byte_len;
490 	struct ib_qp	       *qp;
491 	union {
492 		__be32		imm_data;
493 		u32		invalidate_rkey;
494 	} ex;
495 	u32			src_qp;
496 	int			wc_flags;
497 	u16			pkey_index;
498 	u16			slid;
499 	u8			sl;
500 	u8			dlid_path_bits;
501 	u8			port_num;	/* valid only for DR SMPs on switches */
502 	int			csum_ok;
503 };
504 
505 enum ib_cq_notify_flags {
506 	IB_CQ_SOLICITED			= 1 << 0,
507 	IB_CQ_NEXT_COMP			= 1 << 1,
508 	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
509 	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
510 };
511 
512 enum ib_srq_attr_mask {
513 	IB_SRQ_MAX_WR	= 1 << 0,
514 	IB_SRQ_LIMIT	= 1 << 1,
515 };
516 
517 struct ib_srq_attr {
518 	u32	max_wr;
519 	u32	max_sge;
520 	u32	srq_limit;
521 };
522 
523 struct ib_srq_init_attr {
524 	void		      (*event_handler)(struct ib_event *, void *);
525 	void		       *srq_context;
526 	struct ib_srq_attr	attr;
527 };
528 
529 struct ib_qp_cap {
530 	u32	max_send_wr;
531 	u32	max_recv_wr;
532 	u32	max_send_sge;
533 	u32	max_recv_sge;
534 	u32	max_inline_data;
535 };
536 
537 enum ib_sig_type {
538 	IB_SIGNAL_ALL_WR,
539 	IB_SIGNAL_REQ_WR
540 };
541 
542 enum ib_qp_type {
543 	/*
544 	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
545 	 * here (and in that order) since the MAD layer uses them as
546 	 * indices into a 2-entry table.
547 	 */
548 	IB_QPT_SMI,
549 	IB_QPT_GSI,
550 
551 	IB_QPT_RC,
552 	IB_QPT_UC,
553 	IB_QPT_UD,
554 	IB_QPT_RAW_IPV6,
555 	IB_QPT_RAW_ETY
556 };
557 
558 enum ib_qp_create_flags {
559 	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
560 	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	= 1 << 1,
561 };
562 
563 struct ib_qp_init_attr {
564 	void                  (*event_handler)(struct ib_event *, void *);
565 	void		       *qp_context;
566 	struct ib_cq	       *send_cq;
567 	struct ib_cq	       *recv_cq;
568 	struct ib_srq	       *srq;
569 	struct ib_qp_cap	cap;
570 	enum ib_sig_type	sq_sig_type;
571 	enum ib_qp_type		qp_type;
572 	enum ib_qp_create_flags	create_flags;
573 	u8			port_num; /* special QP types only */
574 };
575 
576 enum ib_rnr_timeout {
577 	IB_RNR_TIMER_655_36 =  0,
578 	IB_RNR_TIMER_000_01 =  1,
579 	IB_RNR_TIMER_000_02 =  2,
580 	IB_RNR_TIMER_000_03 =  3,
581 	IB_RNR_TIMER_000_04 =  4,
582 	IB_RNR_TIMER_000_06 =  5,
583 	IB_RNR_TIMER_000_08 =  6,
584 	IB_RNR_TIMER_000_12 =  7,
585 	IB_RNR_TIMER_000_16 =  8,
586 	IB_RNR_TIMER_000_24 =  9,
587 	IB_RNR_TIMER_000_32 = 10,
588 	IB_RNR_TIMER_000_48 = 11,
589 	IB_RNR_TIMER_000_64 = 12,
590 	IB_RNR_TIMER_000_96 = 13,
591 	IB_RNR_TIMER_001_28 = 14,
592 	IB_RNR_TIMER_001_92 = 15,
593 	IB_RNR_TIMER_002_56 = 16,
594 	IB_RNR_TIMER_003_84 = 17,
595 	IB_RNR_TIMER_005_12 = 18,
596 	IB_RNR_TIMER_007_68 = 19,
597 	IB_RNR_TIMER_010_24 = 20,
598 	IB_RNR_TIMER_015_36 = 21,
599 	IB_RNR_TIMER_020_48 = 22,
600 	IB_RNR_TIMER_030_72 = 23,
601 	IB_RNR_TIMER_040_96 = 24,
602 	IB_RNR_TIMER_061_44 = 25,
603 	IB_RNR_TIMER_081_92 = 26,
604 	IB_RNR_TIMER_122_88 = 27,
605 	IB_RNR_TIMER_163_84 = 28,
606 	IB_RNR_TIMER_245_76 = 29,
607 	IB_RNR_TIMER_327_68 = 30,
608 	IB_RNR_TIMER_491_52 = 31
609 };
610 
611 enum ib_qp_attr_mask {
612 	IB_QP_STATE			= 1,
613 	IB_QP_CUR_STATE			= (1<<1),
614 	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
615 	IB_QP_ACCESS_FLAGS		= (1<<3),
616 	IB_QP_PKEY_INDEX		= (1<<4),
617 	IB_QP_PORT			= (1<<5),
618 	IB_QP_QKEY			= (1<<6),
619 	IB_QP_AV			= (1<<7),
620 	IB_QP_PATH_MTU			= (1<<8),
621 	IB_QP_TIMEOUT			= (1<<9),
622 	IB_QP_RETRY_CNT			= (1<<10),
623 	IB_QP_RNR_RETRY			= (1<<11),
624 	IB_QP_RQ_PSN			= (1<<12),
625 	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
626 	IB_QP_ALT_PATH			= (1<<14),
627 	IB_QP_MIN_RNR_TIMER		= (1<<15),
628 	IB_QP_SQ_PSN			= (1<<16),
629 	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
630 	IB_QP_PATH_MIG_STATE		= (1<<18),
631 	IB_QP_CAP			= (1<<19),
632 	IB_QP_DEST_QPN			= (1<<20)
633 };
634 
635 enum ib_qp_state {
636 	IB_QPS_RESET,
637 	IB_QPS_INIT,
638 	IB_QPS_RTR,
639 	IB_QPS_RTS,
640 	IB_QPS_SQD,
641 	IB_QPS_SQE,
642 	IB_QPS_ERR
643 };
644 
645 enum ib_mig_state {
646 	IB_MIG_MIGRATED,
647 	IB_MIG_REARM,
648 	IB_MIG_ARMED
649 };
650 
651 struct ib_qp_attr {
652 	enum ib_qp_state	qp_state;
653 	enum ib_qp_state	cur_qp_state;
654 	enum ib_mtu		path_mtu;
655 	enum ib_mig_state	path_mig_state;
656 	u32			qkey;
657 	u32			rq_psn;
658 	u32			sq_psn;
659 	u32			dest_qp_num;
660 	int			qp_access_flags;
661 	struct ib_qp_cap	cap;
662 	struct ib_ah_attr	ah_attr;
663 	struct ib_ah_attr	alt_ah_attr;
664 	u16			pkey_index;
665 	u16			alt_pkey_index;
666 	u8			en_sqd_async_notify;
667 	u8			sq_draining;
668 	u8			max_rd_atomic;
669 	u8			max_dest_rd_atomic;
670 	u8			min_rnr_timer;
671 	u8			port_num;
672 	u8			timeout;
673 	u8			retry_cnt;
674 	u8			rnr_retry;
675 	u8			alt_port_num;
676 	u8			alt_timeout;
677 };
678 
679 enum ib_wr_opcode {
680 	IB_WR_RDMA_WRITE,
681 	IB_WR_RDMA_WRITE_WITH_IMM,
682 	IB_WR_SEND,
683 	IB_WR_SEND_WITH_IMM,
684 	IB_WR_RDMA_READ,
685 	IB_WR_ATOMIC_CMP_AND_SWP,
686 	IB_WR_ATOMIC_FETCH_AND_ADD,
687 	IB_WR_LSO,
688 	IB_WR_SEND_WITH_INV,
689 	IB_WR_RDMA_READ_WITH_INV,
690 	IB_WR_LOCAL_INV,
691 	IB_WR_FAST_REG_MR,
692 };
693 
694 enum ib_send_flags {
695 	IB_SEND_FENCE		= 1,
696 	IB_SEND_SIGNALED	= (1<<1),
697 	IB_SEND_SOLICITED	= (1<<2),
698 	IB_SEND_INLINE		= (1<<3),
699 	IB_SEND_IP_CSUM		= (1<<4)
700 };
701 
702 struct ib_sge {
703 	u64	addr;
704 	u32	length;
705 	u32	lkey;
706 };
707 
708 struct ib_fast_reg_page_list {
709 	struct ib_device       *device;
710 	u64		       *page_list;
711 	unsigned int		max_page_list_len;
712 };
713 
714 struct ib_send_wr {
715 	struct ib_send_wr      *next;
716 	u64			wr_id;
717 	struct ib_sge	       *sg_list;
718 	int			num_sge;
719 	enum ib_wr_opcode	opcode;
720 	int			send_flags;
721 	union {
722 		__be32		imm_data;
723 		u32		invalidate_rkey;
724 	} ex;
725 	union {
726 		struct {
727 			u64	remote_addr;
728 			u32	rkey;
729 		} rdma;
730 		struct {
731 			u64	remote_addr;
732 			u64	compare_add;
733 			u64	swap;
734 			u32	rkey;
735 		} atomic;
736 		struct {
737 			struct ib_ah *ah;
738 			void   *header;
739 			int     hlen;
740 			int     mss;
741 			u32	remote_qpn;
742 			u32	remote_qkey;
743 			u16	pkey_index; /* valid for GSI only */
744 			u8	port_num;   /* valid for DR SMPs on switch only */
745 		} ud;
746 		struct {
747 			u64				iova_start;
748 			struct ib_fast_reg_page_list   *page_list;
749 			unsigned int			page_shift;
750 			unsigned int			page_list_len;
751 			u32				length;
752 			int				access_flags;
753 			u32				rkey;
754 		} fast_reg;
755 	} wr;
756 };
757 
758 struct ib_recv_wr {
759 	struct ib_recv_wr      *next;
760 	u64			wr_id;
761 	struct ib_sge	       *sg_list;
762 	int			num_sge;
763 };
764 
765 enum ib_access_flags {
766 	IB_ACCESS_LOCAL_WRITE	= 1,
767 	IB_ACCESS_REMOTE_WRITE	= (1<<1),
768 	IB_ACCESS_REMOTE_READ	= (1<<2),
769 	IB_ACCESS_REMOTE_ATOMIC	= (1<<3),
770 	IB_ACCESS_MW_BIND	= (1<<4)
771 };
772 
773 struct ib_phys_buf {
774 	u64      addr;
775 	u64      size;
776 };
777 
778 struct ib_mr_attr {
779 	struct ib_pd	*pd;
780 	u64		device_virt_addr;
781 	u64		size;
782 	int		mr_access_flags;
783 	u32		lkey;
784 	u32		rkey;
785 };
786 
787 enum ib_mr_rereg_flags {
788 	IB_MR_REREG_TRANS	= 1,
789 	IB_MR_REREG_PD		= (1<<1),
790 	IB_MR_REREG_ACCESS	= (1<<2)
791 };
792 
793 struct ib_mw_bind {
794 	struct ib_mr   *mr;
795 	u64		wr_id;
796 	u64		addr;
797 	u32		length;
798 	int		send_flags;
799 	int		mw_access_flags;
800 };
801 
802 struct ib_fmr_attr {
803 	int	max_pages;
804 	int	max_maps;
805 	u8	page_shift;
806 };
807 
808 struct ib_ucontext {
809 	struct ib_device       *device;
810 	struct list_head	pd_list;
811 	struct list_head	mr_list;
812 	struct list_head	mw_list;
813 	struct list_head	cq_list;
814 	struct list_head	qp_list;
815 	struct list_head	srq_list;
816 	struct list_head	ah_list;
817 	int			closing;
818 };
819 
820 struct ib_uobject {
821 	u64			user_handle;	/* handle given to us by userspace */
822 	struct ib_ucontext     *context;	/* associated user context */
823 	void		       *object;		/* containing object */
824 	struct list_head	list;		/* link to context's list */
825 	int			id;		/* index into kernel idr */
826 	struct kref		ref;
827 	struct rw_semaphore	mutex;		/* protects .live */
828 	int			live;
829 };
830 
831 struct ib_udata {
832 	void __user *inbuf;
833 	void __user *outbuf;
834 	size_t       inlen;
835 	size_t       outlen;
836 };
837 
838 struct ib_pd {
839 	struct ib_device       *device;
840 	struct ib_uobject      *uobject;
841 	atomic_t          	usecnt; /* count all resources */
842 };
843 
844 struct ib_ah {
845 	struct ib_device	*device;
846 	struct ib_pd		*pd;
847 	struct ib_uobject	*uobject;
848 };
849 
850 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
851 
852 struct ib_cq {
853 	struct ib_device       *device;
854 	struct ib_uobject      *uobject;
855 	ib_comp_handler   	comp_handler;
856 	void                  (*event_handler)(struct ib_event *, void *);
857 	void                   *cq_context;
858 	int               	cqe;
859 	atomic_t          	usecnt; /* count number of work queues */
860 };
861 
862 struct ib_srq {
863 	struct ib_device       *device;
864 	struct ib_pd	       *pd;
865 	struct ib_uobject      *uobject;
866 	void		      (*event_handler)(struct ib_event *, void *);
867 	void		       *srq_context;
868 	atomic_t		usecnt;
869 };
870 
871 struct ib_qp {
872 	struct ib_device       *device;
873 	struct ib_pd	       *pd;
874 	struct ib_cq	       *send_cq;
875 	struct ib_cq	       *recv_cq;
876 	struct ib_srq	       *srq;
877 	struct ib_uobject      *uobject;
878 	void                  (*event_handler)(struct ib_event *, void *);
879 	void		       *qp_context;
880 	u32			qp_num;
881 	enum ib_qp_type		qp_type;
882 };
883 
884 struct ib_mr {
885 	struct ib_device  *device;
886 	struct ib_pd	  *pd;
887 	struct ib_uobject *uobject;
888 	u32		   lkey;
889 	u32		   rkey;
890 	atomic_t	   usecnt; /* count number of MWs */
891 };
892 
893 struct ib_mw {
894 	struct ib_device	*device;
895 	struct ib_pd		*pd;
896 	struct ib_uobject	*uobject;
897 	u32			rkey;
898 };
899 
900 struct ib_fmr {
901 	struct ib_device	*device;
902 	struct ib_pd		*pd;
903 	struct list_head	list;
904 	u32			lkey;
905 	u32			rkey;
906 };
907 
908 struct ib_mad;
909 struct ib_grh;
910 
911 enum ib_process_mad_flags {
912 	IB_MAD_IGNORE_MKEY	= 1,
913 	IB_MAD_IGNORE_BKEY	= 2,
914 	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
915 };
916 
917 enum ib_mad_result {
918 	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
919 	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
920 	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
921 	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
922 };
923 
924 #define IB_DEVICE_NAME_MAX 64
925 
926 struct ib_cache {
927 	rwlock_t                lock;
928 	struct ib_event_handler event_handler;
929 	struct ib_pkey_cache  **pkey_cache;
930 	struct ib_gid_cache   **gid_cache;
931 	u8                     *lmc_cache;
932 };
933 
934 struct ib_dma_mapping_ops {
935 	int		(*mapping_error)(struct ib_device *dev,
936 					 u64 dma_addr);
937 	u64		(*map_single)(struct ib_device *dev,
938 				      void *ptr, size_t size,
939 				      enum dma_data_direction direction);
940 	void		(*unmap_single)(struct ib_device *dev,
941 					u64 addr, size_t size,
942 					enum dma_data_direction direction);
943 	u64		(*map_page)(struct ib_device *dev,
944 				    struct page *page, unsigned long offset,
945 				    size_t size,
946 				    enum dma_data_direction direction);
947 	void		(*unmap_page)(struct ib_device *dev,
948 				      u64 addr, size_t size,
949 				      enum dma_data_direction direction);
950 	int		(*map_sg)(struct ib_device *dev,
951 				  struct scatterlist *sg, int nents,
952 				  enum dma_data_direction direction);
953 	void		(*unmap_sg)(struct ib_device *dev,
954 				    struct scatterlist *sg, int nents,
955 				    enum dma_data_direction direction);
956 	u64		(*dma_address)(struct ib_device *dev,
957 				       struct scatterlist *sg);
958 	unsigned int	(*dma_len)(struct ib_device *dev,
959 				   struct scatterlist *sg);
960 	void		(*sync_single_for_cpu)(struct ib_device *dev,
961 					       u64 dma_handle,
962 					       size_t size,
963 					       enum dma_data_direction dir);
964 	void		(*sync_single_for_device)(struct ib_device *dev,
965 						  u64 dma_handle,
966 						  size_t size,
967 						  enum dma_data_direction dir);
968 	void		*(*alloc_coherent)(struct ib_device *dev,
969 					   size_t size,
970 					   u64 *dma_handle,
971 					   gfp_t flag);
972 	void		(*free_coherent)(struct ib_device *dev,
973 					 size_t size, void *cpu_addr,
974 					 u64 dma_handle);
975 };
976 
977 struct iw_cm_verbs;
978 
979 struct ib_device {
980 	struct device                *dma_device;
981 
982 	char                          name[IB_DEVICE_NAME_MAX];
983 
984 	struct list_head              event_handler_list;
985 	spinlock_t                    event_handler_lock;
986 
987 	struct list_head              core_list;
988 	struct list_head              client_data_list;
989 	spinlock_t                    client_data_lock;
990 
991 	struct ib_cache               cache;
992 	int                          *pkey_tbl_len;
993 	int                          *gid_tbl_len;
994 
995 	int			      num_comp_vectors;
996 
997 	struct iw_cm_verbs	     *iwcm;
998 
999 	int		           (*get_protocol_stats)(struct ib_device *device,
1000 							 union rdma_protocol_stats *stats);
1001 	int		           (*query_device)(struct ib_device *device,
1002 						   struct ib_device_attr *device_attr);
1003 	int		           (*query_port)(struct ib_device *device,
1004 						 u8 port_num,
1005 						 struct ib_port_attr *port_attr);
1006 	int		           (*query_gid)(struct ib_device *device,
1007 						u8 port_num, int index,
1008 						union ib_gid *gid);
1009 	int		           (*query_pkey)(struct ib_device *device,
1010 						 u8 port_num, u16 index, u16 *pkey);
1011 	int		           (*modify_device)(struct ib_device *device,
1012 						    int device_modify_mask,
1013 						    struct ib_device_modify *device_modify);
1014 	int		           (*modify_port)(struct ib_device *device,
1015 						  u8 port_num, int port_modify_mask,
1016 						  struct ib_port_modify *port_modify);
1017 	struct ib_ucontext *       (*alloc_ucontext)(struct ib_device *device,
1018 						     struct ib_udata *udata);
1019 	int                        (*dealloc_ucontext)(struct ib_ucontext *context);
1020 	int                        (*mmap)(struct ib_ucontext *context,
1021 					   struct vm_area_struct *vma);
1022 	struct ib_pd *             (*alloc_pd)(struct ib_device *device,
1023 					       struct ib_ucontext *context,
1024 					       struct ib_udata *udata);
1025 	int                        (*dealloc_pd)(struct ib_pd *pd);
1026 	struct ib_ah *             (*create_ah)(struct ib_pd *pd,
1027 						struct ib_ah_attr *ah_attr);
1028 	int                        (*modify_ah)(struct ib_ah *ah,
1029 						struct ib_ah_attr *ah_attr);
1030 	int                        (*query_ah)(struct ib_ah *ah,
1031 					       struct ib_ah_attr *ah_attr);
1032 	int                        (*destroy_ah)(struct ib_ah *ah);
1033 	struct ib_srq *            (*create_srq)(struct ib_pd *pd,
1034 						 struct ib_srq_init_attr *srq_init_attr,
1035 						 struct ib_udata *udata);
1036 	int                        (*modify_srq)(struct ib_srq *srq,
1037 						 struct ib_srq_attr *srq_attr,
1038 						 enum ib_srq_attr_mask srq_attr_mask,
1039 						 struct ib_udata *udata);
1040 	int                        (*query_srq)(struct ib_srq *srq,
1041 						struct ib_srq_attr *srq_attr);
1042 	int                        (*destroy_srq)(struct ib_srq *srq);
1043 	int                        (*post_srq_recv)(struct ib_srq *srq,
1044 						    struct ib_recv_wr *recv_wr,
1045 						    struct ib_recv_wr **bad_recv_wr);
1046 	struct ib_qp *             (*create_qp)(struct ib_pd *pd,
1047 						struct ib_qp_init_attr *qp_init_attr,
1048 						struct ib_udata *udata);
1049 	int                        (*modify_qp)(struct ib_qp *qp,
1050 						struct ib_qp_attr *qp_attr,
1051 						int qp_attr_mask,
1052 						struct ib_udata *udata);
1053 	int                        (*query_qp)(struct ib_qp *qp,
1054 					       struct ib_qp_attr *qp_attr,
1055 					       int qp_attr_mask,
1056 					       struct ib_qp_init_attr *qp_init_attr);
1057 	int                        (*destroy_qp)(struct ib_qp *qp);
1058 	int                        (*post_send)(struct ib_qp *qp,
1059 						struct ib_send_wr *send_wr,
1060 						struct ib_send_wr **bad_send_wr);
1061 	int                        (*post_recv)(struct ib_qp *qp,
1062 						struct ib_recv_wr *recv_wr,
1063 						struct ib_recv_wr **bad_recv_wr);
1064 	struct ib_cq *             (*create_cq)(struct ib_device *device, int cqe,
1065 						int comp_vector,
1066 						struct ib_ucontext *context,
1067 						struct ib_udata *udata);
1068 	int                        (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1069 						u16 cq_period);
1070 	int                        (*destroy_cq)(struct ib_cq *cq);
1071 	int                        (*resize_cq)(struct ib_cq *cq, int cqe,
1072 						struct ib_udata *udata);
1073 	int                        (*poll_cq)(struct ib_cq *cq, int num_entries,
1074 					      struct ib_wc *wc);
1075 	int                        (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1076 	int                        (*req_notify_cq)(struct ib_cq *cq,
1077 						    enum ib_cq_notify_flags flags);
1078 	int                        (*req_ncomp_notif)(struct ib_cq *cq,
1079 						      int wc_cnt);
1080 	struct ib_mr *             (*get_dma_mr)(struct ib_pd *pd,
1081 						 int mr_access_flags);
1082 	struct ib_mr *             (*reg_phys_mr)(struct ib_pd *pd,
1083 						  struct ib_phys_buf *phys_buf_array,
1084 						  int num_phys_buf,
1085 						  int mr_access_flags,
1086 						  u64 *iova_start);
1087 	struct ib_mr *             (*reg_user_mr)(struct ib_pd *pd,
1088 						  u64 start, u64 length,
1089 						  u64 virt_addr,
1090 						  int mr_access_flags,
1091 						  struct ib_udata *udata);
1092 	int                        (*query_mr)(struct ib_mr *mr,
1093 					       struct ib_mr_attr *mr_attr);
1094 	int                        (*dereg_mr)(struct ib_mr *mr);
1095 	struct ib_mr *		   (*alloc_fast_reg_mr)(struct ib_pd *pd,
1096 					       int max_page_list_len);
1097 	struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device,
1098 								   int page_list_len);
1099 	void			   (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list);
1100 	int                        (*rereg_phys_mr)(struct ib_mr *mr,
1101 						    int mr_rereg_mask,
1102 						    struct ib_pd *pd,
1103 						    struct ib_phys_buf *phys_buf_array,
1104 						    int num_phys_buf,
1105 						    int mr_access_flags,
1106 						    u64 *iova_start);
1107 	struct ib_mw *             (*alloc_mw)(struct ib_pd *pd);
1108 	int                        (*bind_mw)(struct ib_qp *qp,
1109 					      struct ib_mw *mw,
1110 					      struct ib_mw_bind *mw_bind);
1111 	int                        (*dealloc_mw)(struct ib_mw *mw);
1112 	struct ib_fmr *	           (*alloc_fmr)(struct ib_pd *pd,
1113 						int mr_access_flags,
1114 						struct ib_fmr_attr *fmr_attr);
1115 	int		           (*map_phys_fmr)(struct ib_fmr *fmr,
1116 						   u64 *page_list, int list_len,
1117 						   u64 iova);
1118 	int		           (*unmap_fmr)(struct list_head *fmr_list);
1119 	int		           (*dealloc_fmr)(struct ib_fmr *fmr);
1120 	int                        (*attach_mcast)(struct ib_qp *qp,
1121 						   union ib_gid *gid,
1122 						   u16 lid);
1123 	int                        (*detach_mcast)(struct ib_qp *qp,
1124 						   union ib_gid *gid,
1125 						   u16 lid);
1126 	int                        (*process_mad)(struct ib_device *device,
1127 						  int process_mad_flags,
1128 						  u8 port_num,
1129 						  struct ib_wc *in_wc,
1130 						  struct ib_grh *in_grh,
1131 						  struct ib_mad *in_mad,
1132 						  struct ib_mad *out_mad);
1133 
1134 	struct ib_dma_mapping_ops   *dma_ops;
1135 
1136 	struct module               *owner;
1137 	struct device                dev;
1138 	struct kobject               *ports_parent;
1139 	struct list_head             port_list;
1140 
1141 	enum {
1142 		IB_DEV_UNINITIALIZED,
1143 		IB_DEV_REGISTERED,
1144 		IB_DEV_UNREGISTERED
1145 	}                            reg_state;
1146 
1147 	u64			     uverbs_cmd_mask;
1148 	int			     uverbs_abi_ver;
1149 
1150 	char			     node_desc[64];
1151 	__be64			     node_guid;
1152 	u32			     local_dma_lkey;
1153 	u8                           node_type;
1154 	u8                           phys_port_cnt;
1155 };
1156 
1157 struct ib_client {
1158 	char  *name;
1159 	void (*add)   (struct ib_device *);
1160 	void (*remove)(struct ib_device *);
1161 
1162 	struct list_head list;
1163 };
1164 
1165 struct ib_device *ib_alloc_device(size_t size);
1166 void ib_dealloc_device(struct ib_device *device);
1167 
1168 int ib_register_device   (struct ib_device *device);
1169 void ib_unregister_device(struct ib_device *device);
1170 
1171 int ib_register_client   (struct ib_client *client);
1172 void ib_unregister_client(struct ib_client *client);
1173 
1174 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1175 void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
1176 			 void *data);
1177 
1178 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1179 {
1180 	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1181 }
1182 
1183 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1184 {
1185 	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
1186 }
1187 
1188 /**
1189  * ib_modify_qp_is_ok - Check that the supplied attribute mask
1190  * contains all required attributes and no attributes not allowed for
1191  * the given QP state transition.
1192  * @cur_state: Current QP state
1193  * @next_state: Next QP state
1194  * @type: QP type
1195  * @mask: Mask of supplied QP attributes
1196  *
1197  * This function is a helper function that a low-level driver's
1198  * modify_qp method can use to validate the consumer's input.  It
1199  * checks that cur_state and next_state are valid QP states, that a
1200  * transition from cur_state to next_state is allowed by the IB spec,
1201  * and that the attribute mask supplied is allowed for the transition.
1202  */
1203 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1204 		       enum ib_qp_type type, enum ib_qp_attr_mask mask);
1205 
1206 int ib_register_event_handler  (struct ib_event_handler *event_handler);
1207 int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1208 void ib_dispatch_event(struct ib_event *event);
1209 
1210 int ib_query_device(struct ib_device *device,
1211 		    struct ib_device_attr *device_attr);
1212 
1213 int ib_query_port(struct ib_device *device,
1214 		  u8 port_num, struct ib_port_attr *port_attr);
1215 
1216 int ib_query_gid(struct ib_device *device,
1217 		 u8 port_num, int index, union ib_gid *gid);
1218 
1219 int ib_query_pkey(struct ib_device *device,
1220 		  u8 port_num, u16 index, u16 *pkey);
1221 
1222 int ib_modify_device(struct ib_device *device,
1223 		     int device_modify_mask,
1224 		     struct ib_device_modify *device_modify);
1225 
1226 int ib_modify_port(struct ib_device *device,
1227 		   u8 port_num, int port_modify_mask,
1228 		   struct ib_port_modify *port_modify);
1229 
1230 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
1231 		u8 *port_num, u16 *index);
1232 
1233 int ib_find_pkey(struct ib_device *device,
1234 		 u8 port_num, u16 pkey, u16 *index);
1235 
1236 /**
1237  * ib_alloc_pd - Allocates an unused protection domain.
1238  * @device: The device on which to allocate the protection domain.
1239  *
1240  * A protection domain object provides an association between QPs, shared
1241  * receive queues, address handles, memory regions, and memory windows.
1242  */
1243 struct ib_pd *ib_alloc_pd(struct ib_device *device);
1244 
1245 /**
1246  * ib_dealloc_pd - Deallocates a protection domain.
1247  * @pd: The protection domain to deallocate.
1248  */
1249 int ib_dealloc_pd(struct ib_pd *pd);
1250 
1251 /**
1252  * ib_create_ah - Creates an address handle for the given address vector.
1253  * @pd: The protection domain associated with the address handle.
1254  * @ah_attr: The attributes of the address vector.
1255  *
1256  * The address handle is used to reference a local or global destination
1257  * in all UD QP post sends.
1258  */
1259 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
1260 
1261 /**
1262  * ib_init_ah_from_wc - Initializes address handle attributes from a
1263  *   work completion.
1264  * @device: Device on which the received message arrived.
1265  * @port_num: Port on which the received message arrived.
1266  * @wc: Work completion associated with the received message.
1267  * @grh: References the received global route header.  This parameter is
1268  *   ignored unless the work completion indicates that the GRH is valid.
1269  * @ah_attr: Returned attributes that can be used when creating an address
1270  *   handle for replying to the message.
1271  */
1272 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc,
1273 		       struct ib_grh *grh, struct ib_ah_attr *ah_attr);
1274 
1275 /**
1276  * ib_create_ah_from_wc - Creates an address handle associated with the
1277  *   sender of the specified work completion.
1278  * @pd: The protection domain associated with the address handle.
1279  * @wc: Work completion information associated with a received message.
1280  * @grh: References the received global route header.  This parameter is
1281  *   ignored unless the work completion indicates that the GRH is valid.
1282  * @port_num: The outbound port number to associate with the address.
1283  *
1284  * The address handle is used to reference a local or global destination
1285  * in all UD QP post sends.
1286  */
1287 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc,
1288 				   struct ib_grh *grh, u8 port_num);
1289 
1290 /**
1291  * ib_modify_ah - Modifies the address vector associated with an address
1292  *   handle.
1293  * @ah: The address handle to modify.
1294  * @ah_attr: The new address vector attributes to associate with the
1295  *   address handle.
1296  */
1297 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1298 
1299 /**
1300  * ib_query_ah - Queries the address vector associated with an address
1301  *   handle.
1302  * @ah: The address handle to query.
1303  * @ah_attr: The address vector attributes associated with the address
1304  *   handle.
1305  */
1306 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
1307 
1308 /**
1309  * ib_destroy_ah - Destroys an address handle.
1310  * @ah: The address handle to destroy.
1311  */
1312 int ib_destroy_ah(struct ib_ah *ah);
1313 
1314 /**
1315  * ib_create_srq - Creates a SRQ associated with the specified protection
1316  *   domain.
1317  * @pd: The protection domain associated with the SRQ.
1318  * @srq_init_attr: A list of initial attributes required to create the
1319  *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
1320  *   the actual capabilities of the created SRQ.
1321  *
1322  * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1323  * requested size of the SRQ, and set to the actual values allocated
1324  * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
1325  * will always be at least as large as the requested values.
1326  */
1327 struct ib_srq *ib_create_srq(struct ib_pd *pd,
1328 			     struct ib_srq_init_attr *srq_init_attr);
1329 
1330 /**
1331  * ib_modify_srq - Modifies the attributes for the specified SRQ.
1332  * @srq: The SRQ to modify.
1333  * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
1334  *   the current values of selected SRQ attributes are returned.
1335  * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
1336  *   are being modified.
1337  *
1338  * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
1339  * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
1340  * the number of receives queued drops below the limit.
1341  */
1342 int ib_modify_srq(struct ib_srq *srq,
1343 		  struct ib_srq_attr *srq_attr,
1344 		  enum ib_srq_attr_mask srq_attr_mask);
1345 
1346 /**
1347  * ib_query_srq - Returns the attribute list and current values for the
1348  *   specified SRQ.
1349  * @srq: The SRQ to query.
1350  * @srq_attr: The attributes of the specified SRQ.
1351  */
1352 int ib_query_srq(struct ib_srq *srq,
1353 		 struct ib_srq_attr *srq_attr);
1354 
1355 /**
1356  * ib_destroy_srq - Destroys the specified SRQ.
1357  * @srq: The SRQ to destroy.
1358  */
1359 int ib_destroy_srq(struct ib_srq *srq);
1360 
1361 /**
1362  * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
1363  * @srq: The SRQ to post the work request on.
1364  * @recv_wr: A list of work requests to post on the receive queue.
1365  * @bad_recv_wr: On an immediate failure, this parameter will reference
1366  *   the work request that failed to be posted on the QP.
1367  */
1368 static inline int ib_post_srq_recv(struct ib_srq *srq,
1369 				   struct ib_recv_wr *recv_wr,
1370 				   struct ib_recv_wr **bad_recv_wr)
1371 {
1372 	return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
1373 }
1374 
1375 /**
1376  * ib_create_qp - Creates a QP associated with the specified protection
1377  *   domain.
1378  * @pd: The protection domain associated with the QP.
1379  * @qp_init_attr: A list of initial attributes required to create the
1380  *   QP.  If QP creation succeeds, then the attributes are updated to
1381  *   the actual capabilities of the created QP.
1382  */
1383 struct ib_qp *ib_create_qp(struct ib_pd *pd,
1384 			   struct ib_qp_init_attr *qp_init_attr);
1385 
1386 /**
1387  * ib_modify_qp - Modifies the attributes for the specified QP and then
1388  *   transitions the QP to the given state.
1389  * @qp: The QP to modify.
1390  * @qp_attr: On input, specifies the QP attributes to modify.  On output,
1391  *   the current values of selected QP attributes are returned.
1392  * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
1393  *   are being modified.
1394  */
1395 int ib_modify_qp(struct ib_qp *qp,
1396 		 struct ib_qp_attr *qp_attr,
1397 		 int qp_attr_mask);
1398 
1399 /**
1400  * ib_query_qp - Returns the attribute list and current values for the
1401  *   specified QP.
1402  * @qp: The QP to query.
1403  * @qp_attr: The attributes of the specified QP.
1404  * @qp_attr_mask: A bit-mask used to select specific attributes to query.
1405  * @qp_init_attr: Additional attributes of the selected QP.
1406  *
1407  * The qp_attr_mask may be used to limit the query to gathering only the
1408  * selected attributes.
1409  */
1410 int ib_query_qp(struct ib_qp *qp,
1411 		struct ib_qp_attr *qp_attr,
1412 		int qp_attr_mask,
1413 		struct ib_qp_init_attr *qp_init_attr);
1414 
1415 /**
1416  * ib_destroy_qp - Destroys the specified QP.
1417  * @qp: The QP to destroy.
1418  */
1419 int ib_destroy_qp(struct ib_qp *qp);
1420 
1421 /**
1422  * ib_post_send - Posts a list of work requests to the send queue of
1423  *   the specified QP.
1424  * @qp: The QP to post the work request on.
1425  * @send_wr: A list of work requests to post on the send queue.
1426  * @bad_send_wr: On an immediate failure, this parameter will reference
1427  *   the work request that failed to be posted on the QP.
1428  */
1429 static inline int ib_post_send(struct ib_qp *qp,
1430 			       struct ib_send_wr *send_wr,
1431 			       struct ib_send_wr **bad_send_wr)
1432 {
1433 	return qp->device->post_send(qp, send_wr, bad_send_wr);
1434 }
1435 
1436 /**
1437  * ib_post_recv - Posts a list of work requests to the receive queue of
1438  *   the specified QP.
1439  * @qp: The QP to post the work request on.
1440  * @recv_wr: A list of work requests to post on the receive queue.
1441  * @bad_recv_wr: On an immediate failure, this parameter will reference
1442  *   the work request that failed to be posted on the QP.
1443  */
1444 static inline int ib_post_recv(struct ib_qp *qp,
1445 			       struct ib_recv_wr *recv_wr,
1446 			       struct ib_recv_wr **bad_recv_wr)
1447 {
1448 	return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
1449 }
1450 
1451 /**
1452  * ib_create_cq - Creates a CQ on the specified device.
1453  * @device: The device on which to create the CQ.
1454  * @comp_handler: A user-specified callback that is invoked when a
1455  *   completion event occurs on the CQ.
1456  * @event_handler: A user-specified callback that is invoked when an
1457  *   asynchronous event not associated with a completion occurs on the CQ.
1458  * @cq_context: Context associated with the CQ returned to the user via
1459  *   the associated completion and event handlers.
1460  * @cqe: The minimum size of the CQ.
1461  * @comp_vector - Completion vector used to signal completion events.
1462  *     Must be >= 0 and < context->num_comp_vectors.
1463  *
1464  * Users can examine the cq structure to determine the actual CQ size.
1465  */
1466 struct ib_cq *ib_create_cq(struct ib_device *device,
1467 			   ib_comp_handler comp_handler,
1468 			   void (*event_handler)(struct ib_event *, void *),
1469 			   void *cq_context, int cqe, int comp_vector);
1470 
1471 /**
1472  * ib_resize_cq - Modifies the capacity of the CQ.
1473  * @cq: The CQ to resize.
1474  * @cqe: The minimum size of the CQ.
1475  *
1476  * Users can examine the cq structure to determine the actual CQ size.
1477  */
1478 int ib_resize_cq(struct ib_cq *cq, int cqe);
1479 
1480 /**
1481  * ib_modify_cq - Modifies moderation params of the CQ
1482  * @cq: The CQ to modify.
1483  * @cq_count: number of CQEs that will trigger an event
1484  * @cq_period: max period of time in usec before triggering an event
1485  *
1486  */
1487 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
1488 
1489 /**
1490  * ib_destroy_cq - Destroys the specified CQ.
1491  * @cq: The CQ to destroy.
1492  */
1493 int ib_destroy_cq(struct ib_cq *cq);
1494 
1495 /**
1496  * ib_poll_cq - poll a CQ for completion(s)
1497  * @cq:the CQ being polled
1498  * @num_entries:maximum number of completions to return
1499  * @wc:array of at least @num_entries &struct ib_wc where completions
1500  *   will be returned
1501  *
1502  * Poll a CQ for (possibly multiple) completions.  If the return value
1503  * is < 0, an error occurred.  If the return value is >= 0, it is the
1504  * number of completions returned.  If the return value is
1505  * non-negative and < num_entries, then the CQ was emptied.
1506  */
1507 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
1508 			     struct ib_wc *wc)
1509 {
1510 	return cq->device->poll_cq(cq, num_entries, wc);
1511 }
1512 
1513 /**
1514  * ib_peek_cq - Returns the number of unreaped completions currently
1515  *   on the specified CQ.
1516  * @cq: The CQ to peek.
1517  * @wc_cnt: A minimum number of unreaped completions to check for.
1518  *
1519  * If the number of unreaped completions is greater than or equal to wc_cnt,
1520  * this function returns wc_cnt, otherwise, it returns the actual number of
1521  * unreaped completions.
1522  */
1523 int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
1524 
1525 /**
1526  * ib_req_notify_cq - Request completion notification on a CQ.
1527  * @cq: The CQ to generate an event for.
1528  * @flags:
1529  *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
1530  *   to request an event on the next solicited event or next work
1531  *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
1532  *   may also be |ed in to request a hint about missed events, as
1533  *   described below.
1534  *
1535  * Return Value:
1536  *    < 0 means an error occurred while requesting notification
1537  *   == 0 means notification was requested successfully, and if
1538  *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
1539  *        were missed and it is safe to wait for another event.  In
1540  *        this case is it guaranteed that any work completions added
1541  *        to the CQ since the last CQ poll will trigger a completion
1542  *        notification event.
1543  *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
1544  *        in.  It means that the consumer must poll the CQ again to
1545  *        make sure it is empty to avoid missing an event because of a
1546  *        race between requesting notification and an entry being
1547  *        added to the CQ.  This return value means it is possible
1548  *        (but not guaranteed) that a work completion has been added
1549  *        to the CQ since the last poll without triggering a
1550  *        completion notification event.
1551  */
1552 static inline int ib_req_notify_cq(struct ib_cq *cq,
1553 				   enum ib_cq_notify_flags flags)
1554 {
1555 	return cq->device->req_notify_cq(cq, flags);
1556 }
1557 
1558 /**
1559  * ib_req_ncomp_notif - Request completion notification when there are
1560  *   at least the specified number of unreaped completions on the CQ.
1561  * @cq: The CQ to generate an event for.
1562  * @wc_cnt: The number of unreaped completions that should be on the
1563  *   CQ before an event is generated.
1564  */
1565 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
1566 {
1567 	return cq->device->req_ncomp_notif ?
1568 		cq->device->req_ncomp_notif(cq, wc_cnt) :
1569 		-ENOSYS;
1570 }
1571 
1572 /**
1573  * ib_get_dma_mr - Returns a memory region for system memory that is
1574  *   usable for DMA.
1575  * @pd: The protection domain associated with the memory region.
1576  * @mr_access_flags: Specifies the memory access rights.
1577  *
1578  * Note that the ib_dma_*() functions defined below must be used
1579  * to create/destroy addresses used with the Lkey or Rkey returned
1580  * by ib_get_dma_mr().
1581  */
1582 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
1583 
1584 /**
1585  * ib_dma_mapping_error - check a DMA addr for error
1586  * @dev: The device for which the dma_addr was created
1587  * @dma_addr: The DMA address to check
1588  */
1589 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
1590 {
1591 	if (dev->dma_ops)
1592 		return dev->dma_ops->mapping_error(dev, dma_addr);
1593 	return dma_mapping_error(dev->dma_device, dma_addr);
1594 }
1595 
1596 /**
1597  * ib_dma_map_single - Map a kernel virtual address to DMA address
1598  * @dev: The device for which the dma_addr is to be created
1599  * @cpu_addr: The kernel virtual address
1600  * @size: The size of the region in bytes
1601  * @direction: The direction of the DMA
1602  */
1603 static inline u64 ib_dma_map_single(struct ib_device *dev,
1604 				    void *cpu_addr, size_t size,
1605 				    enum dma_data_direction direction)
1606 {
1607 	if (dev->dma_ops)
1608 		return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
1609 	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
1610 }
1611 
1612 /**
1613  * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
1614  * @dev: The device for which the DMA address was created
1615  * @addr: The DMA address
1616  * @size: The size of the region in bytes
1617  * @direction: The direction of the DMA
1618  */
1619 static inline void ib_dma_unmap_single(struct ib_device *dev,
1620 				       u64 addr, size_t size,
1621 				       enum dma_data_direction direction)
1622 {
1623 	if (dev->dma_ops)
1624 		dev->dma_ops->unmap_single(dev, addr, size, direction);
1625 	else
1626 		dma_unmap_single(dev->dma_device, addr, size, direction);
1627 }
1628 
1629 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
1630 					  void *cpu_addr, size_t size,
1631 					  enum dma_data_direction direction,
1632 					  struct dma_attrs *attrs)
1633 {
1634 	return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
1635 				    direction, attrs);
1636 }
1637 
1638 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
1639 					     u64 addr, size_t size,
1640 					     enum dma_data_direction direction,
1641 					     struct dma_attrs *attrs)
1642 {
1643 	return dma_unmap_single_attrs(dev->dma_device, addr, size,
1644 				      direction, attrs);
1645 }
1646 
1647 /**
1648  * ib_dma_map_page - Map a physical page to DMA address
1649  * @dev: The device for which the dma_addr is to be created
1650  * @page: The page to be mapped
1651  * @offset: The offset within the page
1652  * @size: The size of the region in bytes
1653  * @direction: The direction of the DMA
1654  */
1655 static inline u64 ib_dma_map_page(struct ib_device *dev,
1656 				  struct page *page,
1657 				  unsigned long offset,
1658 				  size_t size,
1659 					 enum dma_data_direction direction)
1660 {
1661 	if (dev->dma_ops)
1662 		return dev->dma_ops->map_page(dev, page, offset, size, direction);
1663 	return dma_map_page(dev->dma_device, page, offset, size, direction);
1664 }
1665 
1666 /**
1667  * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
1668  * @dev: The device for which the DMA address was created
1669  * @addr: The DMA address
1670  * @size: The size of the region in bytes
1671  * @direction: The direction of the DMA
1672  */
1673 static inline void ib_dma_unmap_page(struct ib_device *dev,
1674 				     u64 addr, size_t size,
1675 				     enum dma_data_direction direction)
1676 {
1677 	if (dev->dma_ops)
1678 		dev->dma_ops->unmap_page(dev, addr, size, direction);
1679 	else
1680 		dma_unmap_page(dev->dma_device, addr, size, direction);
1681 }
1682 
1683 /**
1684  * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
1685  * @dev: The device for which the DMA addresses are to be created
1686  * @sg: The array of scatter/gather entries
1687  * @nents: The number of scatter/gather entries
1688  * @direction: The direction of the DMA
1689  */
1690 static inline int ib_dma_map_sg(struct ib_device *dev,
1691 				struct scatterlist *sg, int nents,
1692 				enum dma_data_direction direction)
1693 {
1694 	if (dev->dma_ops)
1695 		return dev->dma_ops->map_sg(dev, sg, nents, direction);
1696 	return dma_map_sg(dev->dma_device, sg, nents, direction);
1697 }
1698 
1699 /**
1700  * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
1701  * @dev: The device for which the DMA addresses were created
1702  * @sg: The array of scatter/gather entries
1703  * @nents: The number of scatter/gather entries
1704  * @direction: The direction of the DMA
1705  */
1706 static inline void ib_dma_unmap_sg(struct ib_device *dev,
1707 				   struct scatterlist *sg, int nents,
1708 				   enum dma_data_direction direction)
1709 {
1710 	if (dev->dma_ops)
1711 		dev->dma_ops->unmap_sg(dev, sg, nents, direction);
1712 	else
1713 		dma_unmap_sg(dev->dma_device, sg, nents, direction);
1714 }
1715 
1716 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
1717 				      struct scatterlist *sg, int nents,
1718 				      enum dma_data_direction direction,
1719 				      struct dma_attrs *attrs)
1720 {
1721 	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
1722 }
1723 
1724 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
1725 					 struct scatterlist *sg, int nents,
1726 					 enum dma_data_direction direction,
1727 					 struct dma_attrs *attrs)
1728 {
1729 	dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
1730 }
1731 /**
1732  * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
1733  * @dev: The device for which the DMA addresses were created
1734  * @sg: The scatter/gather entry
1735  */
1736 static inline u64 ib_sg_dma_address(struct ib_device *dev,
1737 				    struct scatterlist *sg)
1738 {
1739 	if (dev->dma_ops)
1740 		return dev->dma_ops->dma_address(dev, sg);
1741 	return sg_dma_address(sg);
1742 }
1743 
1744 /**
1745  * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
1746  * @dev: The device for which the DMA addresses were created
1747  * @sg: The scatter/gather entry
1748  */
1749 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
1750 					 struct scatterlist *sg)
1751 {
1752 	if (dev->dma_ops)
1753 		return dev->dma_ops->dma_len(dev, sg);
1754 	return sg_dma_len(sg);
1755 }
1756 
1757 /**
1758  * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
1759  * @dev: The device for which the DMA address was created
1760  * @addr: The DMA address
1761  * @size: The size of the region in bytes
1762  * @dir: The direction of the DMA
1763  */
1764 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
1765 					      u64 addr,
1766 					      size_t size,
1767 					      enum dma_data_direction dir)
1768 {
1769 	if (dev->dma_ops)
1770 		dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
1771 	else
1772 		dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
1773 }
1774 
1775 /**
1776  * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
1777  * @dev: The device for which the DMA address was created
1778  * @addr: The DMA address
1779  * @size: The size of the region in bytes
1780  * @dir: The direction of the DMA
1781  */
1782 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
1783 						 u64 addr,
1784 						 size_t size,
1785 						 enum dma_data_direction dir)
1786 {
1787 	if (dev->dma_ops)
1788 		dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
1789 	else
1790 		dma_sync_single_for_device(dev->dma_device, addr, size, dir);
1791 }
1792 
1793 /**
1794  * ib_dma_alloc_coherent - Allocate memory and map it for DMA
1795  * @dev: The device for which the DMA address is requested
1796  * @size: The size of the region to allocate in bytes
1797  * @dma_handle: A pointer for returning the DMA address of the region
1798  * @flag: memory allocator flags
1799  */
1800 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
1801 					   size_t size,
1802 					   u64 *dma_handle,
1803 					   gfp_t flag)
1804 {
1805 	if (dev->dma_ops)
1806 		return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
1807 	else {
1808 		dma_addr_t handle;
1809 		void *ret;
1810 
1811 		ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
1812 		*dma_handle = handle;
1813 		return ret;
1814 	}
1815 }
1816 
1817 /**
1818  * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
1819  * @dev: The device for which the DMA addresses were allocated
1820  * @size: The size of the region
1821  * @cpu_addr: the address returned by ib_dma_alloc_coherent()
1822  * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
1823  */
1824 static inline void ib_dma_free_coherent(struct ib_device *dev,
1825 					size_t size, void *cpu_addr,
1826 					u64 dma_handle)
1827 {
1828 	if (dev->dma_ops)
1829 		dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
1830 	else
1831 		dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
1832 }
1833 
1834 /**
1835  * ib_reg_phys_mr - Prepares a virtually addressed memory region for use
1836  *   by an HCA.
1837  * @pd: The protection domain associated assigned to the registered region.
1838  * @phys_buf_array: Specifies a list of physical buffers to use in the
1839  *   memory region.
1840  * @num_phys_buf: Specifies the size of the phys_buf_array.
1841  * @mr_access_flags: Specifies the memory access rights.
1842  * @iova_start: The offset of the region's starting I/O virtual address.
1843  */
1844 struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
1845 			     struct ib_phys_buf *phys_buf_array,
1846 			     int num_phys_buf,
1847 			     int mr_access_flags,
1848 			     u64 *iova_start);
1849 
1850 /**
1851  * ib_rereg_phys_mr - Modifies the attributes of an existing memory region.
1852  *   Conceptually, this call performs the functions deregister memory region
1853  *   followed by register physical memory region.  Where possible,
1854  *   resources are reused instead of deallocated and reallocated.
1855  * @mr: The memory region to modify.
1856  * @mr_rereg_mask: A bit-mask used to indicate which of the following
1857  *   properties of the memory region are being modified.
1858  * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies
1859  *   the new protection domain to associated with the memory region,
1860  *   otherwise, this parameter is ignored.
1861  * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
1862  *   field specifies a list of physical buffers to use in the new
1863  *   translation, otherwise, this parameter is ignored.
1864  * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
1865  *   field specifies the size of the phys_buf_array, otherwise, this
1866  *   parameter is ignored.
1867  * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this
1868  *   field specifies the new memory access rights, otherwise, this
1869  *   parameter is ignored.
1870  * @iova_start: The offset of the region's starting I/O virtual address.
1871  */
1872 int ib_rereg_phys_mr(struct ib_mr *mr,
1873 		     int mr_rereg_mask,
1874 		     struct ib_pd *pd,
1875 		     struct ib_phys_buf *phys_buf_array,
1876 		     int num_phys_buf,
1877 		     int mr_access_flags,
1878 		     u64 *iova_start);
1879 
1880 /**
1881  * ib_query_mr - Retrieves information about a specific memory region.
1882  * @mr: The memory region to retrieve information about.
1883  * @mr_attr: The attributes of the specified memory region.
1884  */
1885 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
1886 
1887 /**
1888  * ib_dereg_mr - Deregisters a memory region and removes it from the
1889  *   HCA translation table.
1890  * @mr: The memory region to deregister.
1891  */
1892 int ib_dereg_mr(struct ib_mr *mr);
1893 
1894 /**
1895  * ib_alloc_fast_reg_mr - Allocates memory region usable with the
1896  *   IB_WR_FAST_REG_MR send work request.
1897  * @pd: The protection domain associated with the region.
1898  * @max_page_list_len: requested max physical buffer list length to be
1899  *   used with fast register work requests for this MR.
1900  */
1901 struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len);
1902 
1903 /**
1904  * ib_alloc_fast_reg_page_list - Allocates a page list array
1905  * @device - ib device pointer.
1906  * @page_list_len - size of the page list array to be allocated.
1907  *
1908  * This allocates and returns a struct ib_fast_reg_page_list * and a
1909  * page_list array that is at least page_list_len in size.  The actual
1910  * size is returned in max_page_list_len.  The caller is responsible
1911  * for initializing the contents of the page_list array before posting
1912  * a send work request with the IB_WC_FAST_REG_MR opcode.
1913  *
1914  * The page_list array entries must be translated using one of the
1915  * ib_dma_*() functions just like the addresses passed to
1916  * ib_map_phys_fmr().  Once the ib_post_send() is issued, the struct
1917  * ib_fast_reg_page_list must not be modified by the caller until the
1918  * IB_WC_FAST_REG_MR work request completes.
1919  */
1920 struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(
1921 				struct ib_device *device, int page_list_len);
1922 
1923 /**
1924  * ib_free_fast_reg_page_list - Deallocates a previously allocated
1925  *   page list array.
1926  * @page_list - struct ib_fast_reg_page_list pointer to be deallocated.
1927  */
1928 void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list);
1929 
1930 /**
1931  * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
1932  *   R_Key and L_Key.
1933  * @mr - struct ib_mr pointer to be updated.
1934  * @newkey - new key to be used.
1935  */
1936 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
1937 {
1938 	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
1939 	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
1940 }
1941 
1942 /**
1943  * ib_alloc_mw - Allocates a memory window.
1944  * @pd: The protection domain associated with the memory window.
1945  */
1946 struct ib_mw *ib_alloc_mw(struct ib_pd *pd);
1947 
1948 /**
1949  * ib_bind_mw - Posts a work request to the send queue of the specified
1950  *   QP, which binds the memory window to the given address range and
1951  *   remote access attributes.
1952  * @qp: QP to post the bind work request on.
1953  * @mw: The memory window to bind.
1954  * @mw_bind: Specifies information about the memory window, including
1955  *   its address range, remote access rights, and associated memory region.
1956  */
1957 static inline int ib_bind_mw(struct ib_qp *qp,
1958 			     struct ib_mw *mw,
1959 			     struct ib_mw_bind *mw_bind)
1960 {
1961 	/* XXX reference counting in corresponding MR? */
1962 	return mw->device->bind_mw ?
1963 		mw->device->bind_mw(qp, mw, mw_bind) :
1964 		-ENOSYS;
1965 }
1966 
1967 /**
1968  * ib_dealloc_mw - Deallocates a memory window.
1969  * @mw: The memory window to deallocate.
1970  */
1971 int ib_dealloc_mw(struct ib_mw *mw);
1972 
1973 /**
1974  * ib_alloc_fmr - Allocates a unmapped fast memory region.
1975  * @pd: The protection domain associated with the unmapped region.
1976  * @mr_access_flags: Specifies the memory access rights.
1977  * @fmr_attr: Attributes of the unmapped region.
1978  *
1979  * A fast memory region must be mapped before it can be used as part of
1980  * a work request.
1981  */
1982 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1983 			    int mr_access_flags,
1984 			    struct ib_fmr_attr *fmr_attr);
1985 
1986 /**
1987  * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
1988  * @fmr: The fast memory region to associate with the pages.
1989  * @page_list: An array of physical pages to map to the fast memory region.
1990  * @list_len: The number of pages in page_list.
1991  * @iova: The I/O virtual address to use with the mapped region.
1992  */
1993 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
1994 				  u64 *page_list, int list_len,
1995 				  u64 iova)
1996 {
1997 	return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
1998 }
1999 
2000 /**
2001  * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2002  * @fmr_list: A linked list of fast memory regions to unmap.
2003  */
2004 int ib_unmap_fmr(struct list_head *fmr_list);
2005 
2006 /**
2007  * ib_dealloc_fmr - Deallocates a fast memory region.
2008  * @fmr: The fast memory region to deallocate.
2009  */
2010 int ib_dealloc_fmr(struct ib_fmr *fmr);
2011 
2012 /**
2013  * ib_attach_mcast - Attaches the specified QP to a multicast group.
2014  * @qp: QP to attach to the multicast group.  The QP must be type
2015  *   IB_QPT_UD.
2016  * @gid: Multicast group GID.
2017  * @lid: Multicast group LID in host byte order.
2018  *
2019  * In order to send and receive multicast packets, subnet
2020  * administration must have created the multicast group and configured
2021  * the fabric appropriately.  The port associated with the specified
2022  * QP must also be a member of the multicast group.
2023  */
2024 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2025 
2026 /**
2027  * ib_detach_mcast - Detaches the specified QP from a multicast group.
2028  * @qp: QP to detach from the multicast group.
2029  * @gid: Multicast group GID.
2030  * @lid: Multicast group LID in host byte order.
2031  */
2032 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2033 
2034 #endif /* IB_VERBS_H */
2035