1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #if !defined(IB_VERBS_H) 40 #define IB_VERBS_H 41 42 #include <linux/types.h> 43 #include <linux/device.h> 44 #include <linux/mm.h> 45 #include <linux/dma-mapping.h> 46 #include <linux/kref.h> 47 #include <linux/list.h> 48 #include <linux/rwsem.h> 49 #include <linux/scatterlist.h> 50 #include <linux/workqueue.h> 51 #include <uapi/linux/if_ether.h> 52 53 #include <linux/atomic.h> 54 #include <linux/mmu_notifier.h> 55 #include <asm/uaccess.h> 56 57 extern struct workqueue_struct *ib_wq; 58 59 union ib_gid { 60 u8 raw[16]; 61 struct { 62 __be64 subnet_prefix; 63 __be64 interface_id; 64 } global; 65 }; 66 67 enum rdma_node_type { 68 /* IB values map to NodeInfo:NodeType. */ 69 RDMA_NODE_IB_CA = 1, 70 RDMA_NODE_IB_SWITCH, 71 RDMA_NODE_IB_ROUTER, 72 RDMA_NODE_RNIC, 73 RDMA_NODE_USNIC, 74 RDMA_NODE_USNIC_UDP, 75 }; 76 77 enum rdma_transport_type { 78 RDMA_TRANSPORT_IB, 79 RDMA_TRANSPORT_IWARP, 80 RDMA_TRANSPORT_USNIC, 81 RDMA_TRANSPORT_USNIC_UDP 82 }; 83 84 __attribute_const__ enum rdma_transport_type 85 rdma_node_get_transport(enum rdma_node_type node_type); 86 87 enum rdma_link_layer { 88 IB_LINK_LAYER_UNSPECIFIED, 89 IB_LINK_LAYER_INFINIBAND, 90 IB_LINK_LAYER_ETHERNET, 91 }; 92 93 enum ib_device_cap_flags { 94 IB_DEVICE_RESIZE_MAX_WR = 1, 95 IB_DEVICE_BAD_PKEY_CNTR = (1<<1), 96 IB_DEVICE_BAD_QKEY_CNTR = (1<<2), 97 IB_DEVICE_RAW_MULTI = (1<<3), 98 IB_DEVICE_AUTO_PATH_MIG = (1<<4), 99 IB_DEVICE_CHANGE_PHY_PORT = (1<<5), 100 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6), 101 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7), 102 IB_DEVICE_SHUTDOWN_PORT = (1<<8), 103 IB_DEVICE_INIT_TYPE = (1<<9), 104 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10), 105 IB_DEVICE_SYS_IMAGE_GUID = (1<<11), 106 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12), 107 IB_DEVICE_SRQ_RESIZE = (1<<13), 108 IB_DEVICE_N_NOTIFY_CQ = (1<<14), 109 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15), 110 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */ 111 IB_DEVICE_MEM_WINDOW = (1<<17), 112 /* 113 * Devices should set IB_DEVICE_UD_IP_SUM if they support 114 * insertion of UDP and TCP checksum on outgoing UD IPoIB 115 * messages and can verify the validity of checksum for 116 * incoming messages. Setting this flag implies that the 117 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 118 */ 119 IB_DEVICE_UD_IP_CSUM = (1<<18), 120 IB_DEVICE_UD_TSO = (1<<19), 121 IB_DEVICE_XRC = (1<<20), 122 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21), 123 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22), 124 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1<<23), 125 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1<<24), 126 IB_DEVICE_MANAGED_FLOW_STEERING = (1<<29), 127 IB_DEVICE_SIGNATURE_HANDOVER = (1<<30), 128 IB_DEVICE_ON_DEMAND_PAGING = (1<<31), 129 }; 130 131 enum ib_signature_prot_cap { 132 IB_PROT_T10DIF_TYPE_1 = 1, 133 IB_PROT_T10DIF_TYPE_2 = 1 << 1, 134 IB_PROT_T10DIF_TYPE_3 = 1 << 2, 135 }; 136 137 enum ib_signature_guard_cap { 138 IB_GUARD_T10DIF_CRC = 1, 139 IB_GUARD_T10DIF_CSUM = 1 << 1, 140 }; 141 142 enum ib_atomic_cap { 143 IB_ATOMIC_NONE, 144 IB_ATOMIC_HCA, 145 IB_ATOMIC_GLOB 146 }; 147 148 enum ib_odp_general_cap_bits { 149 IB_ODP_SUPPORT = 1 << 0, 150 }; 151 152 enum ib_odp_transport_cap_bits { 153 IB_ODP_SUPPORT_SEND = 1 << 0, 154 IB_ODP_SUPPORT_RECV = 1 << 1, 155 IB_ODP_SUPPORT_WRITE = 1 << 2, 156 IB_ODP_SUPPORT_READ = 1 << 3, 157 IB_ODP_SUPPORT_ATOMIC = 1 << 4, 158 }; 159 160 struct ib_odp_caps { 161 uint64_t general_caps; 162 struct { 163 uint32_t rc_odp_caps; 164 uint32_t uc_odp_caps; 165 uint32_t ud_odp_caps; 166 } per_transport_caps; 167 }; 168 169 struct ib_device_attr { 170 u64 fw_ver; 171 __be64 sys_image_guid; 172 u64 max_mr_size; 173 u64 page_size_cap; 174 u32 vendor_id; 175 u32 vendor_part_id; 176 u32 hw_ver; 177 int max_qp; 178 int max_qp_wr; 179 int device_cap_flags; 180 int max_sge; 181 int max_sge_rd; 182 int max_cq; 183 int max_cqe; 184 int max_mr; 185 int max_pd; 186 int max_qp_rd_atom; 187 int max_ee_rd_atom; 188 int max_res_rd_atom; 189 int max_qp_init_rd_atom; 190 int max_ee_init_rd_atom; 191 enum ib_atomic_cap atomic_cap; 192 enum ib_atomic_cap masked_atomic_cap; 193 int max_ee; 194 int max_rdd; 195 int max_mw; 196 int max_raw_ipv6_qp; 197 int max_raw_ethy_qp; 198 int max_mcast_grp; 199 int max_mcast_qp_attach; 200 int max_total_mcast_qp_attach; 201 int max_ah; 202 int max_fmr; 203 int max_map_per_fmr; 204 int max_srq; 205 int max_srq_wr; 206 int max_srq_sge; 207 unsigned int max_fast_reg_page_list_len; 208 u16 max_pkeys; 209 u8 local_ca_ack_delay; 210 int sig_prot_cap; 211 int sig_guard_cap; 212 struct ib_odp_caps odp_caps; 213 }; 214 215 enum ib_mtu { 216 IB_MTU_256 = 1, 217 IB_MTU_512 = 2, 218 IB_MTU_1024 = 3, 219 IB_MTU_2048 = 4, 220 IB_MTU_4096 = 5 221 }; 222 223 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 224 { 225 switch (mtu) { 226 case IB_MTU_256: return 256; 227 case IB_MTU_512: return 512; 228 case IB_MTU_1024: return 1024; 229 case IB_MTU_2048: return 2048; 230 case IB_MTU_4096: return 4096; 231 default: return -1; 232 } 233 } 234 235 enum ib_port_state { 236 IB_PORT_NOP = 0, 237 IB_PORT_DOWN = 1, 238 IB_PORT_INIT = 2, 239 IB_PORT_ARMED = 3, 240 IB_PORT_ACTIVE = 4, 241 IB_PORT_ACTIVE_DEFER = 5 242 }; 243 244 enum ib_port_cap_flags { 245 IB_PORT_SM = 1 << 1, 246 IB_PORT_NOTICE_SUP = 1 << 2, 247 IB_PORT_TRAP_SUP = 1 << 3, 248 IB_PORT_OPT_IPD_SUP = 1 << 4, 249 IB_PORT_AUTO_MIGR_SUP = 1 << 5, 250 IB_PORT_SL_MAP_SUP = 1 << 6, 251 IB_PORT_MKEY_NVRAM = 1 << 7, 252 IB_PORT_PKEY_NVRAM = 1 << 8, 253 IB_PORT_LED_INFO_SUP = 1 << 9, 254 IB_PORT_SM_DISABLED = 1 << 10, 255 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11, 256 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12, 257 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14, 258 IB_PORT_CM_SUP = 1 << 16, 259 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17, 260 IB_PORT_REINIT_SUP = 1 << 18, 261 IB_PORT_DEVICE_MGMT_SUP = 1 << 19, 262 IB_PORT_VENDOR_CLASS_SUP = 1 << 20, 263 IB_PORT_DR_NOTICE_SUP = 1 << 21, 264 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22, 265 IB_PORT_BOOT_MGMT_SUP = 1 << 23, 266 IB_PORT_LINK_LATENCY_SUP = 1 << 24, 267 IB_PORT_CLIENT_REG_SUP = 1 << 25, 268 IB_PORT_IP_BASED_GIDS = 1 << 26 269 }; 270 271 enum ib_port_width { 272 IB_WIDTH_1X = 1, 273 IB_WIDTH_4X = 2, 274 IB_WIDTH_8X = 4, 275 IB_WIDTH_12X = 8 276 }; 277 278 static inline int ib_width_enum_to_int(enum ib_port_width width) 279 { 280 switch (width) { 281 case IB_WIDTH_1X: return 1; 282 case IB_WIDTH_4X: return 4; 283 case IB_WIDTH_8X: return 8; 284 case IB_WIDTH_12X: return 12; 285 default: return -1; 286 } 287 } 288 289 enum ib_port_speed { 290 IB_SPEED_SDR = 1, 291 IB_SPEED_DDR = 2, 292 IB_SPEED_QDR = 4, 293 IB_SPEED_FDR10 = 8, 294 IB_SPEED_FDR = 16, 295 IB_SPEED_EDR = 32 296 }; 297 298 struct ib_protocol_stats { 299 /* TBD... */ 300 }; 301 302 struct iw_protocol_stats { 303 u64 ipInReceives; 304 u64 ipInHdrErrors; 305 u64 ipInTooBigErrors; 306 u64 ipInNoRoutes; 307 u64 ipInAddrErrors; 308 u64 ipInUnknownProtos; 309 u64 ipInTruncatedPkts; 310 u64 ipInDiscards; 311 u64 ipInDelivers; 312 u64 ipOutForwDatagrams; 313 u64 ipOutRequests; 314 u64 ipOutDiscards; 315 u64 ipOutNoRoutes; 316 u64 ipReasmTimeout; 317 u64 ipReasmReqds; 318 u64 ipReasmOKs; 319 u64 ipReasmFails; 320 u64 ipFragOKs; 321 u64 ipFragFails; 322 u64 ipFragCreates; 323 u64 ipInMcastPkts; 324 u64 ipOutMcastPkts; 325 u64 ipInBcastPkts; 326 u64 ipOutBcastPkts; 327 328 u64 tcpRtoAlgorithm; 329 u64 tcpRtoMin; 330 u64 tcpRtoMax; 331 u64 tcpMaxConn; 332 u64 tcpActiveOpens; 333 u64 tcpPassiveOpens; 334 u64 tcpAttemptFails; 335 u64 tcpEstabResets; 336 u64 tcpCurrEstab; 337 u64 tcpInSegs; 338 u64 tcpOutSegs; 339 u64 tcpRetransSegs; 340 u64 tcpInErrs; 341 u64 tcpOutRsts; 342 }; 343 344 union rdma_protocol_stats { 345 struct ib_protocol_stats ib; 346 struct iw_protocol_stats iw; 347 }; 348 349 struct ib_port_attr { 350 enum ib_port_state state; 351 enum ib_mtu max_mtu; 352 enum ib_mtu active_mtu; 353 int gid_tbl_len; 354 u32 port_cap_flags; 355 u32 max_msg_sz; 356 u32 bad_pkey_cntr; 357 u32 qkey_viol_cntr; 358 u16 pkey_tbl_len; 359 u16 lid; 360 u16 sm_lid; 361 u8 lmc; 362 u8 max_vl_num; 363 u8 sm_sl; 364 u8 subnet_timeout; 365 u8 init_type_reply; 366 u8 active_width; 367 u8 active_speed; 368 u8 phys_state; 369 }; 370 371 enum ib_device_modify_flags { 372 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 373 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 374 }; 375 376 struct ib_device_modify { 377 u64 sys_image_guid; 378 char node_desc[64]; 379 }; 380 381 enum ib_port_modify_flags { 382 IB_PORT_SHUTDOWN = 1, 383 IB_PORT_INIT_TYPE = (1<<2), 384 IB_PORT_RESET_QKEY_CNTR = (1<<3) 385 }; 386 387 struct ib_port_modify { 388 u32 set_port_cap_mask; 389 u32 clr_port_cap_mask; 390 u8 init_type; 391 }; 392 393 enum ib_event_type { 394 IB_EVENT_CQ_ERR, 395 IB_EVENT_QP_FATAL, 396 IB_EVENT_QP_REQ_ERR, 397 IB_EVENT_QP_ACCESS_ERR, 398 IB_EVENT_COMM_EST, 399 IB_EVENT_SQ_DRAINED, 400 IB_EVENT_PATH_MIG, 401 IB_EVENT_PATH_MIG_ERR, 402 IB_EVENT_DEVICE_FATAL, 403 IB_EVENT_PORT_ACTIVE, 404 IB_EVENT_PORT_ERR, 405 IB_EVENT_LID_CHANGE, 406 IB_EVENT_PKEY_CHANGE, 407 IB_EVENT_SM_CHANGE, 408 IB_EVENT_SRQ_ERR, 409 IB_EVENT_SRQ_LIMIT_REACHED, 410 IB_EVENT_QP_LAST_WQE_REACHED, 411 IB_EVENT_CLIENT_REREGISTER, 412 IB_EVENT_GID_CHANGE, 413 }; 414 415 struct ib_event { 416 struct ib_device *device; 417 union { 418 struct ib_cq *cq; 419 struct ib_qp *qp; 420 struct ib_srq *srq; 421 u8 port_num; 422 } element; 423 enum ib_event_type event; 424 }; 425 426 struct ib_event_handler { 427 struct ib_device *device; 428 void (*handler)(struct ib_event_handler *, struct ib_event *); 429 struct list_head list; 430 }; 431 432 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 433 do { \ 434 (_ptr)->device = _device; \ 435 (_ptr)->handler = _handler; \ 436 INIT_LIST_HEAD(&(_ptr)->list); \ 437 } while (0) 438 439 struct ib_global_route { 440 union ib_gid dgid; 441 u32 flow_label; 442 u8 sgid_index; 443 u8 hop_limit; 444 u8 traffic_class; 445 }; 446 447 struct ib_grh { 448 __be32 version_tclass_flow; 449 __be16 paylen; 450 u8 next_hdr; 451 u8 hop_limit; 452 union ib_gid sgid; 453 union ib_gid dgid; 454 }; 455 456 enum { 457 IB_MULTICAST_QPN = 0xffffff 458 }; 459 460 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 461 462 enum ib_ah_flags { 463 IB_AH_GRH = 1 464 }; 465 466 enum ib_rate { 467 IB_RATE_PORT_CURRENT = 0, 468 IB_RATE_2_5_GBPS = 2, 469 IB_RATE_5_GBPS = 5, 470 IB_RATE_10_GBPS = 3, 471 IB_RATE_20_GBPS = 6, 472 IB_RATE_30_GBPS = 4, 473 IB_RATE_40_GBPS = 7, 474 IB_RATE_60_GBPS = 8, 475 IB_RATE_80_GBPS = 9, 476 IB_RATE_120_GBPS = 10, 477 IB_RATE_14_GBPS = 11, 478 IB_RATE_56_GBPS = 12, 479 IB_RATE_112_GBPS = 13, 480 IB_RATE_168_GBPS = 14, 481 IB_RATE_25_GBPS = 15, 482 IB_RATE_100_GBPS = 16, 483 IB_RATE_200_GBPS = 17, 484 IB_RATE_300_GBPS = 18 485 }; 486 487 /** 488 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 489 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 490 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 491 * @rate: rate to convert. 492 */ 493 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 494 495 /** 496 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 497 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 498 * @rate: rate to convert. 499 */ 500 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 501 502 enum ib_mr_create_flags { 503 IB_MR_SIGNATURE_EN = 1, 504 }; 505 506 /** 507 * ib_mr_init_attr - Memory region init attributes passed to routine 508 * ib_create_mr. 509 * @max_reg_descriptors: max number of registration descriptors that 510 * may be used with registration work requests. 511 * @flags: MR creation flags bit mask. 512 */ 513 struct ib_mr_init_attr { 514 int max_reg_descriptors; 515 u32 flags; 516 }; 517 518 /** 519 * Signature types 520 * IB_SIG_TYPE_NONE: Unprotected. 521 * IB_SIG_TYPE_T10_DIF: Type T10-DIF 522 */ 523 enum ib_signature_type { 524 IB_SIG_TYPE_NONE, 525 IB_SIG_TYPE_T10_DIF, 526 }; 527 528 /** 529 * Signature T10-DIF block-guard types 530 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules. 531 * IB_T10DIF_CSUM: Corresponds to IP checksum rules. 532 */ 533 enum ib_t10_dif_bg_type { 534 IB_T10DIF_CRC, 535 IB_T10DIF_CSUM 536 }; 537 538 /** 539 * struct ib_t10_dif_domain - Parameters specific for T10-DIF 540 * domain. 541 * @bg_type: T10-DIF block guard type (CRC|CSUM) 542 * @pi_interval: protection information interval. 543 * @bg: seed of guard computation. 544 * @app_tag: application tag of guard block 545 * @ref_tag: initial guard block reference tag. 546 * @ref_remap: Indicate wethear the reftag increments each block 547 * @app_escape: Indicate to skip block check if apptag=0xffff 548 * @ref_escape: Indicate to skip block check if reftag=0xffffffff 549 * @apptag_check_mask: check bitmask of application tag. 550 */ 551 struct ib_t10_dif_domain { 552 enum ib_t10_dif_bg_type bg_type; 553 u16 pi_interval; 554 u16 bg; 555 u16 app_tag; 556 u32 ref_tag; 557 bool ref_remap; 558 bool app_escape; 559 bool ref_escape; 560 u16 apptag_check_mask; 561 }; 562 563 /** 564 * struct ib_sig_domain - Parameters for signature domain 565 * @sig_type: specific signauture type 566 * @sig: union of all signature domain attributes that may 567 * be used to set domain layout. 568 */ 569 struct ib_sig_domain { 570 enum ib_signature_type sig_type; 571 union { 572 struct ib_t10_dif_domain dif; 573 } sig; 574 }; 575 576 /** 577 * struct ib_sig_attrs - Parameters for signature handover operation 578 * @check_mask: bitmask for signature byte check (8 bytes) 579 * @mem: memory domain layout desciptor. 580 * @wire: wire domain layout desciptor. 581 */ 582 struct ib_sig_attrs { 583 u8 check_mask; 584 struct ib_sig_domain mem; 585 struct ib_sig_domain wire; 586 }; 587 588 enum ib_sig_err_type { 589 IB_SIG_BAD_GUARD, 590 IB_SIG_BAD_REFTAG, 591 IB_SIG_BAD_APPTAG, 592 }; 593 594 /** 595 * struct ib_sig_err - signature error descriptor 596 */ 597 struct ib_sig_err { 598 enum ib_sig_err_type err_type; 599 u32 expected; 600 u32 actual; 601 u64 sig_err_offset; 602 u32 key; 603 }; 604 605 enum ib_mr_status_check { 606 IB_MR_CHECK_SIG_STATUS = 1, 607 }; 608 609 /** 610 * struct ib_mr_status - Memory region status container 611 * 612 * @fail_status: Bitmask of MR checks status. For each 613 * failed check a corresponding status bit is set. 614 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 615 * failure. 616 */ 617 struct ib_mr_status { 618 u32 fail_status; 619 struct ib_sig_err sig_err; 620 }; 621 622 /** 623 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 624 * enum. 625 * @mult: multiple to convert. 626 */ 627 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 628 629 struct ib_ah_attr { 630 struct ib_global_route grh; 631 u16 dlid; 632 u8 sl; 633 u8 src_path_bits; 634 u8 static_rate; 635 u8 ah_flags; 636 u8 port_num; 637 u8 dmac[ETH_ALEN]; 638 u16 vlan_id; 639 }; 640 641 enum ib_wc_status { 642 IB_WC_SUCCESS, 643 IB_WC_LOC_LEN_ERR, 644 IB_WC_LOC_QP_OP_ERR, 645 IB_WC_LOC_EEC_OP_ERR, 646 IB_WC_LOC_PROT_ERR, 647 IB_WC_WR_FLUSH_ERR, 648 IB_WC_MW_BIND_ERR, 649 IB_WC_BAD_RESP_ERR, 650 IB_WC_LOC_ACCESS_ERR, 651 IB_WC_REM_INV_REQ_ERR, 652 IB_WC_REM_ACCESS_ERR, 653 IB_WC_REM_OP_ERR, 654 IB_WC_RETRY_EXC_ERR, 655 IB_WC_RNR_RETRY_EXC_ERR, 656 IB_WC_LOC_RDD_VIOL_ERR, 657 IB_WC_REM_INV_RD_REQ_ERR, 658 IB_WC_REM_ABORT_ERR, 659 IB_WC_INV_EECN_ERR, 660 IB_WC_INV_EEC_STATE_ERR, 661 IB_WC_FATAL_ERR, 662 IB_WC_RESP_TIMEOUT_ERR, 663 IB_WC_GENERAL_ERR 664 }; 665 666 enum ib_wc_opcode { 667 IB_WC_SEND, 668 IB_WC_RDMA_WRITE, 669 IB_WC_RDMA_READ, 670 IB_WC_COMP_SWAP, 671 IB_WC_FETCH_ADD, 672 IB_WC_BIND_MW, 673 IB_WC_LSO, 674 IB_WC_LOCAL_INV, 675 IB_WC_FAST_REG_MR, 676 IB_WC_MASKED_COMP_SWAP, 677 IB_WC_MASKED_FETCH_ADD, 678 /* 679 * Set value of IB_WC_RECV so consumers can test if a completion is a 680 * receive by testing (opcode & IB_WC_RECV). 681 */ 682 IB_WC_RECV = 1 << 7, 683 IB_WC_RECV_RDMA_WITH_IMM 684 }; 685 686 enum ib_wc_flags { 687 IB_WC_GRH = 1, 688 IB_WC_WITH_IMM = (1<<1), 689 IB_WC_WITH_INVALIDATE = (1<<2), 690 IB_WC_IP_CSUM_OK = (1<<3), 691 IB_WC_WITH_SMAC = (1<<4), 692 IB_WC_WITH_VLAN = (1<<5), 693 }; 694 695 struct ib_wc { 696 u64 wr_id; 697 enum ib_wc_status status; 698 enum ib_wc_opcode opcode; 699 u32 vendor_err; 700 u32 byte_len; 701 struct ib_qp *qp; 702 union { 703 __be32 imm_data; 704 u32 invalidate_rkey; 705 } ex; 706 u32 src_qp; 707 int wc_flags; 708 u16 pkey_index; 709 u16 slid; 710 u8 sl; 711 u8 dlid_path_bits; 712 u8 port_num; /* valid only for DR SMPs on switches */ 713 u8 smac[ETH_ALEN]; 714 u16 vlan_id; 715 }; 716 717 enum ib_cq_notify_flags { 718 IB_CQ_SOLICITED = 1 << 0, 719 IB_CQ_NEXT_COMP = 1 << 1, 720 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 721 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 722 }; 723 724 enum ib_srq_type { 725 IB_SRQT_BASIC, 726 IB_SRQT_XRC 727 }; 728 729 enum ib_srq_attr_mask { 730 IB_SRQ_MAX_WR = 1 << 0, 731 IB_SRQ_LIMIT = 1 << 1, 732 }; 733 734 struct ib_srq_attr { 735 u32 max_wr; 736 u32 max_sge; 737 u32 srq_limit; 738 }; 739 740 struct ib_srq_init_attr { 741 void (*event_handler)(struct ib_event *, void *); 742 void *srq_context; 743 struct ib_srq_attr attr; 744 enum ib_srq_type srq_type; 745 746 union { 747 struct { 748 struct ib_xrcd *xrcd; 749 struct ib_cq *cq; 750 } xrc; 751 } ext; 752 }; 753 754 struct ib_qp_cap { 755 u32 max_send_wr; 756 u32 max_recv_wr; 757 u32 max_send_sge; 758 u32 max_recv_sge; 759 u32 max_inline_data; 760 }; 761 762 enum ib_sig_type { 763 IB_SIGNAL_ALL_WR, 764 IB_SIGNAL_REQ_WR 765 }; 766 767 enum ib_qp_type { 768 /* 769 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 770 * here (and in that order) since the MAD layer uses them as 771 * indices into a 2-entry table. 772 */ 773 IB_QPT_SMI, 774 IB_QPT_GSI, 775 776 IB_QPT_RC, 777 IB_QPT_UC, 778 IB_QPT_UD, 779 IB_QPT_RAW_IPV6, 780 IB_QPT_RAW_ETHERTYPE, 781 IB_QPT_RAW_PACKET = 8, 782 IB_QPT_XRC_INI = 9, 783 IB_QPT_XRC_TGT, 784 IB_QPT_MAX, 785 /* Reserve a range for qp types internal to the low level driver. 786 * These qp types will not be visible at the IB core layer, so the 787 * IB_QPT_MAX usages should not be affected in the core layer 788 */ 789 IB_QPT_RESERVED1 = 0x1000, 790 IB_QPT_RESERVED2, 791 IB_QPT_RESERVED3, 792 IB_QPT_RESERVED4, 793 IB_QPT_RESERVED5, 794 IB_QPT_RESERVED6, 795 IB_QPT_RESERVED7, 796 IB_QPT_RESERVED8, 797 IB_QPT_RESERVED9, 798 IB_QPT_RESERVED10, 799 }; 800 801 enum ib_qp_create_flags { 802 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 803 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1, 804 IB_QP_CREATE_NETIF_QP = 1 << 5, 805 IB_QP_CREATE_SIGNATURE_EN = 1 << 6, 806 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7, 807 /* reserve bits 26-31 for low level drivers' internal use */ 808 IB_QP_CREATE_RESERVED_START = 1 << 26, 809 IB_QP_CREATE_RESERVED_END = 1 << 31, 810 }; 811 812 813 /* 814 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 815 * callback to destroy the passed in QP. 816 */ 817 818 struct ib_qp_init_attr { 819 void (*event_handler)(struct ib_event *, void *); 820 void *qp_context; 821 struct ib_cq *send_cq; 822 struct ib_cq *recv_cq; 823 struct ib_srq *srq; 824 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 825 struct ib_qp_cap cap; 826 enum ib_sig_type sq_sig_type; 827 enum ib_qp_type qp_type; 828 enum ib_qp_create_flags create_flags; 829 u8 port_num; /* special QP types only */ 830 }; 831 832 struct ib_qp_open_attr { 833 void (*event_handler)(struct ib_event *, void *); 834 void *qp_context; 835 u32 qp_num; 836 enum ib_qp_type qp_type; 837 }; 838 839 enum ib_rnr_timeout { 840 IB_RNR_TIMER_655_36 = 0, 841 IB_RNR_TIMER_000_01 = 1, 842 IB_RNR_TIMER_000_02 = 2, 843 IB_RNR_TIMER_000_03 = 3, 844 IB_RNR_TIMER_000_04 = 4, 845 IB_RNR_TIMER_000_06 = 5, 846 IB_RNR_TIMER_000_08 = 6, 847 IB_RNR_TIMER_000_12 = 7, 848 IB_RNR_TIMER_000_16 = 8, 849 IB_RNR_TIMER_000_24 = 9, 850 IB_RNR_TIMER_000_32 = 10, 851 IB_RNR_TIMER_000_48 = 11, 852 IB_RNR_TIMER_000_64 = 12, 853 IB_RNR_TIMER_000_96 = 13, 854 IB_RNR_TIMER_001_28 = 14, 855 IB_RNR_TIMER_001_92 = 15, 856 IB_RNR_TIMER_002_56 = 16, 857 IB_RNR_TIMER_003_84 = 17, 858 IB_RNR_TIMER_005_12 = 18, 859 IB_RNR_TIMER_007_68 = 19, 860 IB_RNR_TIMER_010_24 = 20, 861 IB_RNR_TIMER_015_36 = 21, 862 IB_RNR_TIMER_020_48 = 22, 863 IB_RNR_TIMER_030_72 = 23, 864 IB_RNR_TIMER_040_96 = 24, 865 IB_RNR_TIMER_061_44 = 25, 866 IB_RNR_TIMER_081_92 = 26, 867 IB_RNR_TIMER_122_88 = 27, 868 IB_RNR_TIMER_163_84 = 28, 869 IB_RNR_TIMER_245_76 = 29, 870 IB_RNR_TIMER_327_68 = 30, 871 IB_RNR_TIMER_491_52 = 31 872 }; 873 874 enum ib_qp_attr_mask { 875 IB_QP_STATE = 1, 876 IB_QP_CUR_STATE = (1<<1), 877 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 878 IB_QP_ACCESS_FLAGS = (1<<3), 879 IB_QP_PKEY_INDEX = (1<<4), 880 IB_QP_PORT = (1<<5), 881 IB_QP_QKEY = (1<<6), 882 IB_QP_AV = (1<<7), 883 IB_QP_PATH_MTU = (1<<8), 884 IB_QP_TIMEOUT = (1<<9), 885 IB_QP_RETRY_CNT = (1<<10), 886 IB_QP_RNR_RETRY = (1<<11), 887 IB_QP_RQ_PSN = (1<<12), 888 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 889 IB_QP_ALT_PATH = (1<<14), 890 IB_QP_MIN_RNR_TIMER = (1<<15), 891 IB_QP_SQ_PSN = (1<<16), 892 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 893 IB_QP_PATH_MIG_STATE = (1<<18), 894 IB_QP_CAP = (1<<19), 895 IB_QP_DEST_QPN = (1<<20), 896 IB_QP_SMAC = (1<<21), 897 IB_QP_ALT_SMAC = (1<<22), 898 IB_QP_VID = (1<<23), 899 IB_QP_ALT_VID = (1<<24), 900 }; 901 902 enum ib_qp_state { 903 IB_QPS_RESET, 904 IB_QPS_INIT, 905 IB_QPS_RTR, 906 IB_QPS_RTS, 907 IB_QPS_SQD, 908 IB_QPS_SQE, 909 IB_QPS_ERR 910 }; 911 912 enum ib_mig_state { 913 IB_MIG_MIGRATED, 914 IB_MIG_REARM, 915 IB_MIG_ARMED 916 }; 917 918 enum ib_mw_type { 919 IB_MW_TYPE_1 = 1, 920 IB_MW_TYPE_2 = 2 921 }; 922 923 struct ib_qp_attr { 924 enum ib_qp_state qp_state; 925 enum ib_qp_state cur_qp_state; 926 enum ib_mtu path_mtu; 927 enum ib_mig_state path_mig_state; 928 u32 qkey; 929 u32 rq_psn; 930 u32 sq_psn; 931 u32 dest_qp_num; 932 int qp_access_flags; 933 struct ib_qp_cap cap; 934 struct ib_ah_attr ah_attr; 935 struct ib_ah_attr alt_ah_attr; 936 u16 pkey_index; 937 u16 alt_pkey_index; 938 u8 en_sqd_async_notify; 939 u8 sq_draining; 940 u8 max_rd_atomic; 941 u8 max_dest_rd_atomic; 942 u8 min_rnr_timer; 943 u8 port_num; 944 u8 timeout; 945 u8 retry_cnt; 946 u8 rnr_retry; 947 u8 alt_port_num; 948 u8 alt_timeout; 949 u8 smac[ETH_ALEN]; 950 u8 alt_smac[ETH_ALEN]; 951 u16 vlan_id; 952 u16 alt_vlan_id; 953 }; 954 955 enum ib_wr_opcode { 956 IB_WR_RDMA_WRITE, 957 IB_WR_RDMA_WRITE_WITH_IMM, 958 IB_WR_SEND, 959 IB_WR_SEND_WITH_IMM, 960 IB_WR_RDMA_READ, 961 IB_WR_ATOMIC_CMP_AND_SWP, 962 IB_WR_ATOMIC_FETCH_AND_ADD, 963 IB_WR_LSO, 964 IB_WR_SEND_WITH_INV, 965 IB_WR_RDMA_READ_WITH_INV, 966 IB_WR_LOCAL_INV, 967 IB_WR_FAST_REG_MR, 968 IB_WR_MASKED_ATOMIC_CMP_AND_SWP, 969 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD, 970 IB_WR_BIND_MW, 971 IB_WR_REG_SIG_MR, 972 /* reserve values for low level drivers' internal use. 973 * These values will not be used at all in the ib core layer. 974 */ 975 IB_WR_RESERVED1 = 0xf0, 976 IB_WR_RESERVED2, 977 IB_WR_RESERVED3, 978 IB_WR_RESERVED4, 979 IB_WR_RESERVED5, 980 IB_WR_RESERVED6, 981 IB_WR_RESERVED7, 982 IB_WR_RESERVED8, 983 IB_WR_RESERVED9, 984 IB_WR_RESERVED10, 985 }; 986 987 enum ib_send_flags { 988 IB_SEND_FENCE = 1, 989 IB_SEND_SIGNALED = (1<<1), 990 IB_SEND_SOLICITED = (1<<2), 991 IB_SEND_INLINE = (1<<3), 992 IB_SEND_IP_CSUM = (1<<4), 993 994 /* reserve bits 26-31 for low level drivers' internal use */ 995 IB_SEND_RESERVED_START = (1 << 26), 996 IB_SEND_RESERVED_END = (1 << 31), 997 }; 998 999 struct ib_sge { 1000 u64 addr; 1001 u32 length; 1002 u32 lkey; 1003 }; 1004 1005 struct ib_fast_reg_page_list { 1006 struct ib_device *device; 1007 u64 *page_list; 1008 unsigned int max_page_list_len; 1009 }; 1010 1011 /** 1012 * struct ib_mw_bind_info - Parameters for a memory window bind operation. 1013 * @mr: A memory region to bind the memory window to. 1014 * @addr: The address where the memory window should begin. 1015 * @length: The length of the memory window, in bytes. 1016 * @mw_access_flags: Access flags from enum ib_access_flags for the window. 1017 * 1018 * This struct contains the shared parameters for type 1 and type 2 1019 * memory window bind operations. 1020 */ 1021 struct ib_mw_bind_info { 1022 struct ib_mr *mr; 1023 u64 addr; 1024 u64 length; 1025 int mw_access_flags; 1026 }; 1027 1028 struct ib_send_wr { 1029 struct ib_send_wr *next; 1030 u64 wr_id; 1031 struct ib_sge *sg_list; 1032 int num_sge; 1033 enum ib_wr_opcode opcode; 1034 int send_flags; 1035 union { 1036 __be32 imm_data; 1037 u32 invalidate_rkey; 1038 } ex; 1039 union { 1040 struct { 1041 u64 remote_addr; 1042 u32 rkey; 1043 } rdma; 1044 struct { 1045 u64 remote_addr; 1046 u64 compare_add; 1047 u64 swap; 1048 u64 compare_add_mask; 1049 u64 swap_mask; 1050 u32 rkey; 1051 } atomic; 1052 struct { 1053 struct ib_ah *ah; 1054 void *header; 1055 int hlen; 1056 int mss; 1057 u32 remote_qpn; 1058 u32 remote_qkey; 1059 u16 pkey_index; /* valid for GSI only */ 1060 u8 port_num; /* valid for DR SMPs on switch only */ 1061 } ud; 1062 struct { 1063 u64 iova_start; 1064 struct ib_fast_reg_page_list *page_list; 1065 unsigned int page_shift; 1066 unsigned int page_list_len; 1067 u32 length; 1068 int access_flags; 1069 u32 rkey; 1070 } fast_reg; 1071 struct { 1072 struct ib_mw *mw; 1073 /* The new rkey for the memory window. */ 1074 u32 rkey; 1075 struct ib_mw_bind_info bind_info; 1076 } bind_mw; 1077 struct { 1078 struct ib_sig_attrs *sig_attrs; 1079 struct ib_mr *sig_mr; 1080 int access_flags; 1081 struct ib_sge *prot; 1082 } sig_handover; 1083 } wr; 1084 u32 xrc_remote_srq_num; /* XRC TGT QPs only */ 1085 }; 1086 1087 struct ib_recv_wr { 1088 struct ib_recv_wr *next; 1089 u64 wr_id; 1090 struct ib_sge *sg_list; 1091 int num_sge; 1092 }; 1093 1094 enum ib_access_flags { 1095 IB_ACCESS_LOCAL_WRITE = 1, 1096 IB_ACCESS_REMOTE_WRITE = (1<<1), 1097 IB_ACCESS_REMOTE_READ = (1<<2), 1098 IB_ACCESS_REMOTE_ATOMIC = (1<<3), 1099 IB_ACCESS_MW_BIND = (1<<4), 1100 IB_ZERO_BASED = (1<<5), 1101 IB_ACCESS_ON_DEMAND = (1<<6), 1102 }; 1103 1104 struct ib_phys_buf { 1105 u64 addr; 1106 u64 size; 1107 }; 1108 1109 struct ib_mr_attr { 1110 struct ib_pd *pd; 1111 u64 device_virt_addr; 1112 u64 size; 1113 int mr_access_flags; 1114 u32 lkey; 1115 u32 rkey; 1116 }; 1117 1118 enum ib_mr_rereg_flags { 1119 IB_MR_REREG_TRANS = 1, 1120 IB_MR_REREG_PD = (1<<1), 1121 IB_MR_REREG_ACCESS = (1<<2), 1122 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1123 }; 1124 1125 /** 1126 * struct ib_mw_bind - Parameters for a type 1 memory window bind operation. 1127 * @wr_id: Work request id. 1128 * @send_flags: Flags from ib_send_flags enum. 1129 * @bind_info: More parameters of the bind operation. 1130 */ 1131 struct ib_mw_bind { 1132 u64 wr_id; 1133 int send_flags; 1134 struct ib_mw_bind_info bind_info; 1135 }; 1136 1137 struct ib_fmr_attr { 1138 int max_pages; 1139 int max_maps; 1140 u8 page_shift; 1141 }; 1142 1143 struct ib_umem; 1144 1145 struct ib_ucontext { 1146 struct ib_device *device; 1147 struct list_head pd_list; 1148 struct list_head mr_list; 1149 struct list_head mw_list; 1150 struct list_head cq_list; 1151 struct list_head qp_list; 1152 struct list_head srq_list; 1153 struct list_head ah_list; 1154 struct list_head xrcd_list; 1155 struct list_head rule_list; 1156 int closing; 1157 1158 struct pid *tgid; 1159 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING 1160 struct rb_root umem_tree; 1161 /* 1162 * Protects .umem_rbroot and tree, as well as odp_mrs_count and 1163 * mmu notifiers registration. 1164 */ 1165 struct rw_semaphore umem_rwsem; 1166 void (*invalidate_range)(struct ib_umem *umem, 1167 unsigned long start, unsigned long end); 1168 1169 struct mmu_notifier mn; 1170 atomic_t notifier_count; 1171 /* A list of umems that don't have private mmu notifier counters yet. */ 1172 struct list_head no_private_counters; 1173 int odp_mrs_count; 1174 #endif 1175 }; 1176 1177 struct ib_uobject { 1178 u64 user_handle; /* handle given to us by userspace */ 1179 struct ib_ucontext *context; /* associated user context */ 1180 void *object; /* containing object */ 1181 struct list_head list; /* link to context's list */ 1182 int id; /* index into kernel idr */ 1183 struct kref ref; 1184 struct rw_semaphore mutex; /* protects .live */ 1185 int live; 1186 }; 1187 1188 struct ib_udata { 1189 const void __user *inbuf; 1190 void __user *outbuf; 1191 size_t inlen; 1192 size_t outlen; 1193 }; 1194 1195 struct ib_pd { 1196 struct ib_device *device; 1197 struct ib_uobject *uobject; 1198 atomic_t usecnt; /* count all resources */ 1199 }; 1200 1201 struct ib_xrcd { 1202 struct ib_device *device; 1203 atomic_t usecnt; /* count all exposed resources */ 1204 struct inode *inode; 1205 1206 struct mutex tgt_qp_mutex; 1207 struct list_head tgt_qp_list; 1208 }; 1209 1210 struct ib_ah { 1211 struct ib_device *device; 1212 struct ib_pd *pd; 1213 struct ib_uobject *uobject; 1214 }; 1215 1216 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1217 1218 struct ib_cq { 1219 struct ib_device *device; 1220 struct ib_uobject *uobject; 1221 ib_comp_handler comp_handler; 1222 void (*event_handler)(struct ib_event *, void *); 1223 void *cq_context; 1224 int cqe; 1225 atomic_t usecnt; /* count number of work queues */ 1226 }; 1227 1228 struct ib_srq { 1229 struct ib_device *device; 1230 struct ib_pd *pd; 1231 struct ib_uobject *uobject; 1232 void (*event_handler)(struct ib_event *, void *); 1233 void *srq_context; 1234 enum ib_srq_type srq_type; 1235 atomic_t usecnt; 1236 1237 union { 1238 struct { 1239 struct ib_xrcd *xrcd; 1240 struct ib_cq *cq; 1241 u32 srq_num; 1242 } xrc; 1243 } ext; 1244 }; 1245 1246 struct ib_qp { 1247 struct ib_device *device; 1248 struct ib_pd *pd; 1249 struct ib_cq *send_cq; 1250 struct ib_cq *recv_cq; 1251 struct ib_srq *srq; 1252 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1253 struct list_head xrcd_list; 1254 /* count times opened, mcast attaches, flow attaches */ 1255 atomic_t usecnt; 1256 struct list_head open_list; 1257 struct ib_qp *real_qp; 1258 struct ib_uobject *uobject; 1259 void (*event_handler)(struct ib_event *, void *); 1260 void *qp_context; 1261 u32 qp_num; 1262 enum ib_qp_type qp_type; 1263 }; 1264 1265 struct ib_mr { 1266 struct ib_device *device; 1267 struct ib_pd *pd; 1268 struct ib_uobject *uobject; 1269 u32 lkey; 1270 u32 rkey; 1271 atomic_t usecnt; /* count number of MWs */ 1272 }; 1273 1274 struct ib_mw { 1275 struct ib_device *device; 1276 struct ib_pd *pd; 1277 struct ib_uobject *uobject; 1278 u32 rkey; 1279 enum ib_mw_type type; 1280 }; 1281 1282 struct ib_fmr { 1283 struct ib_device *device; 1284 struct ib_pd *pd; 1285 struct list_head list; 1286 u32 lkey; 1287 u32 rkey; 1288 }; 1289 1290 /* Supported steering options */ 1291 enum ib_flow_attr_type { 1292 /* steering according to rule specifications */ 1293 IB_FLOW_ATTR_NORMAL = 0x0, 1294 /* default unicast and multicast rule - 1295 * receive all Eth traffic which isn't steered to any QP 1296 */ 1297 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1298 /* default multicast rule - 1299 * receive all Eth multicast traffic which isn't steered to any QP 1300 */ 1301 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1302 /* sniffer rule - receive all port traffic */ 1303 IB_FLOW_ATTR_SNIFFER = 0x3 1304 }; 1305 1306 /* Supported steering header types */ 1307 enum ib_flow_spec_type { 1308 /* L2 headers*/ 1309 IB_FLOW_SPEC_ETH = 0x20, 1310 IB_FLOW_SPEC_IB = 0x22, 1311 /* L3 header*/ 1312 IB_FLOW_SPEC_IPV4 = 0x30, 1313 /* L4 headers*/ 1314 IB_FLOW_SPEC_TCP = 0x40, 1315 IB_FLOW_SPEC_UDP = 0x41 1316 }; 1317 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1318 #define IB_FLOW_SPEC_SUPPORT_LAYERS 4 1319 1320 /* Flow steering rule priority is set according to it's domain. 1321 * Lower domain value means higher priority. 1322 */ 1323 enum ib_flow_domain { 1324 IB_FLOW_DOMAIN_USER, 1325 IB_FLOW_DOMAIN_ETHTOOL, 1326 IB_FLOW_DOMAIN_RFS, 1327 IB_FLOW_DOMAIN_NIC, 1328 IB_FLOW_DOMAIN_NUM /* Must be last */ 1329 }; 1330 1331 struct ib_flow_eth_filter { 1332 u8 dst_mac[6]; 1333 u8 src_mac[6]; 1334 __be16 ether_type; 1335 __be16 vlan_tag; 1336 }; 1337 1338 struct ib_flow_spec_eth { 1339 enum ib_flow_spec_type type; 1340 u16 size; 1341 struct ib_flow_eth_filter val; 1342 struct ib_flow_eth_filter mask; 1343 }; 1344 1345 struct ib_flow_ib_filter { 1346 __be16 dlid; 1347 __u8 sl; 1348 }; 1349 1350 struct ib_flow_spec_ib { 1351 enum ib_flow_spec_type type; 1352 u16 size; 1353 struct ib_flow_ib_filter val; 1354 struct ib_flow_ib_filter mask; 1355 }; 1356 1357 struct ib_flow_ipv4_filter { 1358 __be32 src_ip; 1359 __be32 dst_ip; 1360 }; 1361 1362 struct ib_flow_spec_ipv4 { 1363 enum ib_flow_spec_type type; 1364 u16 size; 1365 struct ib_flow_ipv4_filter val; 1366 struct ib_flow_ipv4_filter mask; 1367 }; 1368 1369 struct ib_flow_tcp_udp_filter { 1370 __be16 dst_port; 1371 __be16 src_port; 1372 }; 1373 1374 struct ib_flow_spec_tcp_udp { 1375 enum ib_flow_spec_type type; 1376 u16 size; 1377 struct ib_flow_tcp_udp_filter val; 1378 struct ib_flow_tcp_udp_filter mask; 1379 }; 1380 1381 union ib_flow_spec { 1382 struct { 1383 enum ib_flow_spec_type type; 1384 u16 size; 1385 }; 1386 struct ib_flow_spec_eth eth; 1387 struct ib_flow_spec_ib ib; 1388 struct ib_flow_spec_ipv4 ipv4; 1389 struct ib_flow_spec_tcp_udp tcp_udp; 1390 }; 1391 1392 struct ib_flow_attr { 1393 enum ib_flow_attr_type type; 1394 u16 size; 1395 u16 priority; 1396 u32 flags; 1397 u8 num_of_specs; 1398 u8 port; 1399 /* Following are the optional layers according to user request 1400 * struct ib_flow_spec_xxx 1401 * struct ib_flow_spec_yyy 1402 */ 1403 }; 1404 1405 struct ib_flow { 1406 struct ib_qp *qp; 1407 struct ib_uobject *uobject; 1408 }; 1409 1410 struct ib_mad; 1411 struct ib_grh; 1412 1413 enum ib_process_mad_flags { 1414 IB_MAD_IGNORE_MKEY = 1, 1415 IB_MAD_IGNORE_BKEY = 2, 1416 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 1417 }; 1418 1419 enum ib_mad_result { 1420 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 1421 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 1422 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 1423 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 1424 }; 1425 1426 #define IB_DEVICE_NAME_MAX 64 1427 1428 struct ib_cache { 1429 rwlock_t lock; 1430 struct ib_event_handler event_handler; 1431 struct ib_pkey_cache **pkey_cache; 1432 struct ib_gid_cache **gid_cache; 1433 u8 *lmc_cache; 1434 }; 1435 1436 struct ib_dma_mapping_ops { 1437 int (*mapping_error)(struct ib_device *dev, 1438 u64 dma_addr); 1439 u64 (*map_single)(struct ib_device *dev, 1440 void *ptr, size_t size, 1441 enum dma_data_direction direction); 1442 void (*unmap_single)(struct ib_device *dev, 1443 u64 addr, size_t size, 1444 enum dma_data_direction direction); 1445 u64 (*map_page)(struct ib_device *dev, 1446 struct page *page, unsigned long offset, 1447 size_t size, 1448 enum dma_data_direction direction); 1449 void (*unmap_page)(struct ib_device *dev, 1450 u64 addr, size_t size, 1451 enum dma_data_direction direction); 1452 int (*map_sg)(struct ib_device *dev, 1453 struct scatterlist *sg, int nents, 1454 enum dma_data_direction direction); 1455 void (*unmap_sg)(struct ib_device *dev, 1456 struct scatterlist *sg, int nents, 1457 enum dma_data_direction direction); 1458 void (*sync_single_for_cpu)(struct ib_device *dev, 1459 u64 dma_handle, 1460 size_t size, 1461 enum dma_data_direction dir); 1462 void (*sync_single_for_device)(struct ib_device *dev, 1463 u64 dma_handle, 1464 size_t size, 1465 enum dma_data_direction dir); 1466 void *(*alloc_coherent)(struct ib_device *dev, 1467 size_t size, 1468 u64 *dma_handle, 1469 gfp_t flag); 1470 void (*free_coherent)(struct ib_device *dev, 1471 size_t size, void *cpu_addr, 1472 u64 dma_handle); 1473 }; 1474 1475 struct iw_cm_verbs; 1476 1477 struct ib_device { 1478 struct device *dma_device; 1479 1480 char name[IB_DEVICE_NAME_MAX]; 1481 1482 struct list_head event_handler_list; 1483 spinlock_t event_handler_lock; 1484 1485 spinlock_t client_data_lock; 1486 struct list_head core_list; 1487 struct list_head client_data_list; 1488 1489 struct ib_cache cache; 1490 int *pkey_tbl_len; 1491 int *gid_tbl_len; 1492 1493 int num_comp_vectors; 1494 1495 struct iw_cm_verbs *iwcm; 1496 1497 int (*get_protocol_stats)(struct ib_device *device, 1498 union rdma_protocol_stats *stats); 1499 int (*query_device)(struct ib_device *device, 1500 struct ib_device_attr *device_attr); 1501 int (*query_port)(struct ib_device *device, 1502 u8 port_num, 1503 struct ib_port_attr *port_attr); 1504 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 1505 u8 port_num); 1506 int (*query_gid)(struct ib_device *device, 1507 u8 port_num, int index, 1508 union ib_gid *gid); 1509 int (*query_pkey)(struct ib_device *device, 1510 u8 port_num, u16 index, u16 *pkey); 1511 int (*modify_device)(struct ib_device *device, 1512 int device_modify_mask, 1513 struct ib_device_modify *device_modify); 1514 int (*modify_port)(struct ib_device *device, 1515 u8 port_num, int port_modify_mask, 1516 struct ib_port_modify *port_modify); 1517 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device, 1518 struct ib_udata *udata); 1519 int (*dealloc_ucontext)(struct ib_ucontext *context); 1520 int (*mmap)(struct ib_ucontext *context, 1521 struct vm_area_struct *vma); 1522 struct ib_pd * (*alloc_pd)(struct ib_device *device, 1523 struct ib_ucontext *context, 1524 struct ib_udata *udata); 1525 int (*dealloc_pd)(struct ib_pd *pd); 1526 struct ib_ah * (*create_ah)(struct ib_pd *pd, 1527 struct ib_ah_attr *ah_attr); 1528 int (*modify_ah)(struct ib_ah *ah, 1529 struct ib_ah_attr *ah_attr); 1530 int (*query_ah)(struct ib_ah *ah, 1531 struct ib_ah_attr *ah_attr); 1532 int (*destroy_ah)(struct ib_ah *ah); 1533 struct ib_srq * (*create_srq)(struct ib_pd *pd, 1534 struct ib_srq_init_attr *srq_init_attr, 1535 struct ib_udata *udata); 1536 int (*modify_srq)(struct ib_srq *srq, 1537 struct ib_srq_attr *srq_attr, 1538 enum ib_srq_attr_mask srq_attr_mask, 1539 struct ib_udata *udata); 1540 int (*query_srq)(struct ib_srq *srq, 1541 struct ib_srq_attr *srq_attr); 1542 int (*destroy_srq)(struct ib_srq *srq); 1543 int (*post_srq_recv)(struct ib_srq *srq, 1544 struct ib_recv_wr *recv_wr, 1545 struct ib_recv_wr **bad_recv_wr); 1546 struct ib_qp * (*create_qp)(struct ib_pd *pd, 1547 struct ib_qp_init_attr *qp_init_attr, 1548 struct ib_udata *udata); 1549 int (*modify_qp)(struct ib_qp *qp, 1550 struct ib_qp_attr *qp_attr, 1551 int qp_attr_mask, 1552 struct ib_udata *udata); 1553 int (*query_qp)(struct ib_qp *qp, 1554 struct ib_qp_attr *qp_attr, 1555 int qp_attr_mask, 1556 struct ib_qp_init_attr *qp_init_attr); 1557 int (*destroy_qp)(struct ib_qp *qp); 1558 int (*post_send)(struct ib_qp *qp, 1559 struct ib_send_wr *send_wr, 1560 struct ib_send_wr **bad_send_wr); 1561 int (*post_recv)(struct ib_qp *qp, 1562 struct ib_recv_wr *recv_wr, 1563 struct ib_recv_wr **bad_recv_wr); 1564 struct ib_cq * (*create_cq)(struct ib_device *device, int cqe, 1565 int comp_vector, 1566 struct ib_ucontext *context, 1567 struct ib_udata *udata); 1568 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, 1569 u16 cq_period); 1570 int (*destroy_cq)(struct ib_cq *cq); 1571 int (*resize_cq)(struct ib_cq *cq, int cqe, 1572 struct ib_udata *udata); 1573 int (*poll_cq)(struct ib_cq *cq, int num_entries, 1574 struct ib_wc *wc); 1575 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 1576 int (*req_notify_cq)(struct ib_cq *cq, 1577 enum ib_cq_notify_flags flags); 1578 int (*req_ncomp_notif)(struct ib_cq *cq, 1579 int wc_cnt); 1580 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, 1581 int mr_access_flags); 1582 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd, 1583 struct ib_phys_buf *phys_buf_array, 1584 int num_phys_buf, 1585 int mr_access_flags, 1586 u64 *iova_start); 1587 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, 1588 u64 start, u64 length, 1589 u64 virt_addr, 1590 int mr_access_flags, 1591 struct ib_udata *udata); 1592 int (*rereg_user_mr)(struct ib_mr *mr, 1593 int flags, 1594 u64 start, u64 length, 1595 u64 virt_addr, 1596 int mr_access_flags, 1597 struct ib_pd *pd, 1598 struct ib_udata *udata); 1599 int (*query_mr)(struct ib_mr *mr, 1600 struct ib_mr_attr *mr_attr); 1601 int (*dereg_mr)(struct ib_mr *mr); 1602 int (*destroy_mr)(struct ib_mr *mr); 1603 struct ib_mr * (*create_mr)(struct ib_pd *pd, 1604 struct ib_mr_init_attr *mr_init_attr); 1605 struct ib_mr * (*alloc_fast_reg_mr)(struct ib_pd *pd, 1606 int max_page_list_len); 1607 struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device, 1608 int page_list_len); 1609 void (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list); 1610 int (*rereg_phys_mr)(struct ib_mr *mr, 1611 int mr_rereg_mask, 1612 struct ib_pd *pd, 1613 struct ib_phys_buf *phys_buf_array, 1614 int num_phys_buf, 1615 int mr_access_flags, 1616 u64 *iova_start); 1617 struct ib_mw * (*alloc_mw)(struct ib_pd *pd, 1618 enum ib_mw_type type); 1619 int (*bind_mw)(struct ib_qp *qp, 1620 struct ib_mw *mw, 1621 struct ib_mw_bind *mw_bind); 1622 int (*dealloc_mw)(struct ib_mw *mw); 1623 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, 1624 int mr_access_flags, 1625 struct ib_fmr_attr *fmr_attr); 1626 int (*map_phys_fmr)(struct ib_fmr *fmr, 1627 u64 *page_list, int list_len, 1628 u64 iova); 1629 int (*unmap_fmr)(struct list_head *fmr_list); 1630 int (*dealloc_fmr)(struct ib_fmr *fmr); 1631 int (*attach_mcast)(struct ib_qp *qp, 1632 union ib_gid *gid, 1633 u16 lid); 1634 int (*detach_mcast)(struct ib_qp *qp, 1635 union ib_gid *gid, 1636 u16 lid); 1637 int (*process_mad)(struct ib_device *device, 1638 int process_mad_flags, 1639 u8 port_num, 1640 struct ib_wc *in_wc, 1641 struct ib_grh *in_grh, 1642 struct ib_mad *in_mad, 1643 struct ib_mad *out_mad); 1644 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device, 1645 struct ib_ucontext *ucontext, 1646 struct ib_udata *udata); 1647 int (*dealloc_xrcd)(struct ib_xrcd *xrcd); 1648 struct ib_flow * (*create_flow)(struct ib_qp *qp, 1649 struct ib_flow_attr 1650 *flow_attr, 1651 int domain); 1652 int (*destroy_flow)(struct ib_flow *flow_id); 1653 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 1654 struct ib_mr_status *mr_status); 1655 1656 struct ib_dma_mapping_ops *dma_ops; 1657 1658 struct module *owner; 1659 struct device dev; 1660 struct kobject *ports_parent; 1661 struct list_head port_list; 1662 1663 enum { 1664 IB_DEV_UNINITIALIZED, 1665 IB_DEV_REGISTERED, 1666 IB_DEV_UNREGISTERED 1667 } reg_state; 1668 1669 int uverbs_abi_ver; 1670 u64 uverbs_cmd_mask; 1671 u64 uverbs_ex_cmd_mask; 1672 1673 char node_desc[64]; 1674 __be64 node_guid; 1675 u32 local_dma_lkey; 1676 u8 node_type; 1677 u8 phys_port_cnt; 1678 }; 1679 1680 struct ib_client { 1681 char *name; 1682 void (*add) (struct ib_device *); 1683 void (*remove)(struct ib_device *); 1684 1685 struct list_head list; 1686 }; 1687 1688 struct ib_device *ib_alloc_device(size_t size); 1689 void ib_dealloc_device(struct ib_device *device); 1690 1691 int ib_register_device(struct ib_device *device, 1692 int (*port_callback)(struct ib_device *, 1693 u8, struct kobject *)); 1694 void ib_unregister_device(struct ib_device *device); 1695 1696 int ib_register_client (struct ib_client *client); 1697 void ib_unregister_client(struct ib_client *client); 1698 1699 void *ib_get_client_data(struct ib_device *device, struct ib_client *client); 1700 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 1701 void *data); 1702 1703 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 1704 { 1705 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 1706 } 1707 1708 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 1709 { 1710 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 1711 } 1712 1713 /** 1714 * ib_modify_qp_is_ok - Check that the supplied attribute mask 1715 * contains all required attributes and no attributes not allowed for 1716 * the given QP state transition. 1717 * @cur_state: Current QP state 1718 * @next_state: Next QP state 1719 * @type: QP type 1720 * @mask: Mask of supplied QP attributes 1721 * @ll : link layer of port 1722 * 1723 * This function is a helper function that a low-level driver's 1724 * modify_qp method can use to validate the consumer's input. It 1725 * checks that cur_state and next_state are valid QP states, that a 1726 * transition from cur_state to next_state is allowed by the IB spec, 1727 * and that the attribute mask supplied is allowed for the transition. 1728 */ 1729 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 1730 enum ib_qp_type type, enum ib_qp_attr_mask mask, 1731 enum rdma_link_layer ll); 1732 1733 int ib_register_event_handler (struct ib_event_handler *event_handler); 1734 int ib_unregister_event_handler(struct ib_event_handler *event_handler); 1735 void ib_dispatch_event(struct ib_event *event); 1736 1737 int ib_query_device(struct ib_device *device, 1738 struct ib_device_attr *device_attr); 1739 1740 int ib_query_port(struct ib_device *device, 1741 u8 port_num, struct ib_port_attr *port_attr); 1742 1743 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 1744 u8 port_num); 1745 1746 int ib_query_gid(struct ib_device *device, 1747 u8 port_num, int index, union ib_gid *gid); 1748 1749 int ib_query_pkey(struct ib_device *device, 1750 u8 port_num, u16 index, u16 *pkey); 1751 1752 int ib_modify_device(struct ib_device *device, 1753 int device_modify_mask, 1754 struct ib_device_modify *device_modify); 1755 1756 int ib_modify_port(struct ib_device *device, 1757 u8 port_num, int port_modify_mask, 1758 struct ib_port_modify *port_modify); 1759 1760 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 1761 u8 *port_num, u16 *index); 1762 1763 int ib_find_pkey(struct ib_device *device, 1764 u8 port_num, u16 pkey, u16 *index); 1765 1766 /** 1767 * ib_alloc_pd - Allocates an unused protection domain. 1768 * @device: The device on which to allocate the protection domain. 1769 * 1770 * A protection domain object provides an association between QPs, shared 1771 * receive queues, address handles, memory regions, and memory windows. 1772 */ 1773 struct ib_pd *ib_alloc_pd(struct ib_device *device); 1774 1775 /** 1776 * ib_dealloc_pd - Deallocates a protection domain. 1777 * @pd: The protection domain to deallocate. 1778 */ 1779 int ib_dealloc_pd(struct ib_pd *pd); 1780 1781 /** 1782 * ib_create_ah - Creates an address handle for the given address vector. 1783 * @pd: The protection domain associated with the address handle. 1784 * @ah_attr: The attributes of the address vector. 1785 * 1786 * The address handle is used to reference a local or global destination 1787 * in all UD QP post sends. 1788 */ 1789 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr); 1790 1791 /** 1792 * ib_init_ah_from_wc - Initializes address handle attributes from a 1793 * work completion. 1794 * @device: Device on which the received message arrived. 1795 * @port_num: Port on which the received message arrived. 1796 * @wc: Work completion associated with the received message. 1797 * @grh: References the received global route header. This parameter is 1798 * ignored unless the work completion indicates that the GRH is valid. 1799 * @ah_attr: Returned attributes that can be used when creating an address 1800 * handle for replying to the message. 1801 */ 1802 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc, 1803 struct ib_grh *grh, struct ib_ah_attr *ah_attr); 1804 1805 /** 1806 * ib_create_ah_from_wc - Creates an address handle associated with the 1807 * sender of the specified work completion. 1808 * @pd: The protection domain associated with the address handle. 1809 * @wc: Work completion information associated with a received message. 1810 * @grh: References the received global route header. This parameter is 1811 * ignored unless the work completion indicates that the GRH is valid. 1812 * @port_num: The outbound port number to associate with the address. 1813 * 1814 * The address handle is used to reference a local or global destination 1815 * in all UD QP post sends. 1816 */ 1817 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc, 1818 struct ib_grh *grh, u8 port_num); 1819 1820 /** 1821 * ib_modify_ah - Modifies the address vector associated with an address 1822 * handle. 1823 * @ah: The address handle to modify. 1824 * @ah_attr: The new address vector attributes to associate with the 1825 * address handle. 1826 */ 1827 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 1828 1829 /** 1830 * ib_query_ah - Queries the address vector associated with an address 1831 * handle. 1832 * @ah: The address handle to query. 1833 * @ah_attr: The address vector attributes associated with the address 1834 * handle. 1835 */ 1836 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 1837 1838 /** 1839 * ib_destroy_ah - Destroys an address handle. 1840 * @ah: The address handle to destroy. 1841 */ 1842 int ib_destroy_ah(struct ib_ah *ah); 1843 1844 /** 1845 * ib_create_srq - Creates a SRQ associated with the specified protection 1846 * domain. 1847 * @pd: The protection domain associated with the SRQ. 1848 * @srq_init_attr: A list of initial attributes required to create the 1849 * SRQ. If SRQ creation succeeds, then the attributes are updated to 1850 * the actual capabilities of the created SRQ. 1851 * 1852 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 1853 * requested size of the SRQ, and set to the actual values allocated 1854 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 1855 * will always be at least as large as the requested values. 1856 */ 1857 struct ib_srq *ib_create_srq(struct ib_pd *pd, 1858 struct ib_srq_init_attr *srq_init_attr); 1859 1860 /** 1861 * ib_modify_srq - Modifies the attributes for the specified SRQ. 1862 * @srq: The SRQ to modify. 1863 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 1864 * the current values of selected SRQ attributes are returned. 1865 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 1866 * are being modified. 1867 * 1868 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 1869 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 1870 * the number of receives queued drops below the limit. 1871 */ 1872 int ib_modify_srq(struct ib_srq *srq, 1873 struct ib_srq_attr *srq_attr, 1874 enum ib_srq_attr_mask srq_attr_mask); 1875 1876 /** 1877 * ib_query_srq - Returns the attribute list and current values for the 1878 * specified SRQ. 1879 * @srq: The SRQ to query. 1880 * @srq_attr: The attributes of the specified SRQ. 1881 */ 1882 int ib_query_srq(struct ib_srq *srq, 1883 struct ib_srq_attr *srq_attr); 1884 1885 /** 1886 * ib_destroy_srq - Destroys the specified SRQ. 1887 * @srq: The SRQ to destroy. 1888 */ 1889 int ib_destroy_srq(struct ib_srq *srq); 1890 1891 /** 1892 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 1893 * @srq: The SRQ to post the work request on. 1894 * @recv_wr: A list of work requests to post on the receive queue. 1895 * @bad_recv_wr: On an immediate failure, this parameter will reference 1896 * the work request that failed to be posted on the QP. 1897 */ 1898 static inline int ib_post_srq_recv(struct ib_srq *srq, 1899 struct ib_recv_wr *recv_wr, 1900 struct ib_recv_wr **bad_recv_wr) 1901 { 1902 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr); 1903 } 1904 1905 /** 1906 * ib_create_qp - Creates a QP associated with the specified protection 1907 * domain. 1908 * @pd: The protection domain associated with the QP. 1909 * @qp_init_attr: A list of initial attributes required to create the 1910 * QP. If QP creation succeeds, then the attributes are updated to 1911 * the actual capabilities of the created QP. 1912 */ 1913 struct ib_qp *ib_create_qp(struct ib_pd *pd, 1914 struct ib_qp_init_attr *qp_init_attr); 1915 1916 /** 1917 * ib_modify_qp - Modifies the attributes for the specified QP and then 1918 * transitions the QP to the given state. 1919 * @qp: The QP to modify. 1920 * @qp_attr: On input, specifies the QP attributes to modify. On output, 1921 * the current values of selected QP attributes are returned. 1922 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 1923 * are being modified. 1924 */ 1925 int ib_modify_qp(struct ib_qp *qp, 1926 struct ib_qp_attr *qp_attr, 1927 int qp_attr_mask); 1928 1929 /** 1930 * ib_query_qp - Returns the attribute list and current values for the 1931 * specified QP. 1932 * @qp: The QP to query. 1933 * @qp_attr: The attributes of the specified QP. 1934 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 1935 * @qp_init_attr: Additional attributes of the selected QP. 1936 * 1937 * The qp_attr_mask may be used to limit the query to gathering only the 1938 * selected attributes. 1939 */ 1940 int ib_query_qp(struct ib_qp *qp, 1941 struct ib_qp_attr *qp_attr, 1942 int qp_attr_mask, 1943 struct ib_qp_init_attr *qp_init_attr); 1944 1945 /** 1946 * ib_destroy_qp - Destroys the specified QP. 1947 * @qp: The QP to destroy. 1948 */ 1949 int ib_destroy_qp(struct ib_qp *qp); 1950 1951 /** 1952 * ib_open_qp - Obtain a reference to an existing sharable QP. 1953 * @xrcd - XRC domain 1954 * @qp_open_attr: Attributes identifying the QP to open. 1955 * 1956 * Returns a reference to a sharable QP. 1957 */ 1958 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 1959 struct ib_qp_open_attr *qp_open_attr); 1960 1961 /** 1962 * ib_close_qp - Release an external reference to a QP. 1963 * @qp: The QP handle to release 1964 * 1965 * The opened QP handle is released by the caller. The underlying 1966 * shared QP is not destroyed until all internal references are released. 1967 */ 1968 int ib_close_qp(struct ib_qp *qp); 1969 1970 /** 1971 * ib_post_send - Posts a list of work requests to the send queue of 1972 * the specified QP. 1973 * @qp: The QP to post the work request on. 1974 * @send_wr: A list of work requests to post on the send queue. 1975 * @bad_send_wr: On an immediate failure, this parameter will reference 1976 * the work request that failed to be posted on the QP. 1977 * 1978 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 1979 * error is returned, the QP state shall not be affected, 1980 * ib_post_send() will return an immediate error after queueing any 1981 * earlier work requests in the list. 1982 */ 1983 static inline int ib_post_send(struct ib_qp *qp, 1984 struct ib_send_wr *send_wr, 1985 struct ib_send_wr **bad_send_wr) 1986 { 1987 return qp->device->post_send(qp, send_wr, bad_send_wr); 1988 } 1989 1990 /** 1991 * ib_post_recv - Posts a list of work requests to the receive queue of 1992 * the specified QP. 1993 * @qp: The QP to post the work request on. 1994 * @recv_wr: A list of work requests to post on the receive queue. 1995 * @bad_recv_wr: On an immediate failure, this parameter will reference 1996 * the work request that failed to be posted on the QP. 1997 */ 1998 static inline int ib_post_recv(struct ib_qp *qp, 1999 struct ib_recv_wr *recv_wr, 2000 struct ib_recv_wr **bad_recv_wr) 2001 { 2002 return qp->device->post_recv(qp, recv_wr, bad_recv_wr); 2003 } 2004 2005 /** 2006 * ib_create_cq - Creates a CQ on the specified device. 2007 * @device: The device on which to create the CQ. 2008 * @comp_handler: A user-specified callback that is invoked when a 2009 * completion event occurs on the CQ. 2010 * @event_handler: A user-specified callback that is invoked when an 2011 * asynchronous event not associated with a completion occurs on the CQ. 2012 * @cq_context: Context associated with the CQ returned to the user via 2013 * the associated completion and event handlers. 2014 * @cqe: The minimum size of the CQ. 2015 * @comp_vector - Completion vector used to signal completion events. 2016 * Must be >= 0 and < context->num_comp_vectors. 2017 * 2018 * Users can examine the cq structure to determine the actual CQ size. 2019 */ 2020 struct ib_cq *ib_create_cq(struct ib_device *device, 2021 ib_comp_handler comp_handler, 2022 void (*event_handler)(struct ib_event *, void *), 2023 void *cq_context, int cqe, int comp_vector); 2024 2025 /** 2026 * ib_resize_cq - Modifies the capacity of the CQ. 2027 * @cq: The CQ to resize. 2028 * @cqe: The minimum size of the CQ. 2029 * 2030 * Users can examine the cq structure to determine the actual CQ size. 2031 */ 2032 int ib_resize_cq(struct ib_cq *cq, int cqe); 2033 2034 /** 2035 * ib_modify_cq - Modifies moderation params of the CQ 2036 * @cq: The CQ to modify. 2037 * @cq_count: number of CQEs that will trigger an event 2038 * @cq_period: max period of time in usec before triggering an event 2039 * 2040 */ 2041 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period); 2042 2043 /** 2044 * ib_destroy_cq - Destroys the specified CQ. 2045 * @cq: The CQ to destroy. 2046 */ 2047 int ib_destroy_cq(struct ib_cq *cq); 2048 2049 /** 2050 * ib_poll_cq - poll a CQ for completion(s) 2051 * @cq:the CQ being polled 2052 * @num_entries:maximum number of completions to return 2053 * @wc:array of at least @num_entries &struct ib_wc where completions 2054 * will be returned 2055 * 2056 * Poll a CQ for (possibly multiple) completions. If the return value 2057 * is < 0, an error occurred. If the return value is >= 0, it is the 2058 * number of completions returned. If the return value is 2059 * non-negative and < num_entries, then the CQ was emptied. 2060 */ 2061 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 2062 struct ib_wc *wc) 2063 { 2064 return cq->device->poll_cq(cq, num_entries, wc); 2065 } 2066 2067 /** 2068 * ib_peek_cq - Returns the number of unreaped completions currently 2069 * on the specified CQ. 2070 * @cq: The CQ to peek. 2071 * @wc_cnt: A minimum number of unreaped completions to check for. 2072 * 2073 * If the number of unreaped completions is greater than or equal to wc_cnt, 2074 * this function returns wc_cnt, otherwise, it returns the actual number of 2075 * unreaped completions. 2076 */ 2077 int ib_peek_cq(struct ib_cq *cq, int wc_cnt); 2078 2079 /** 2080 * ib_req_notify_cq - Request completion notification on a CQ. 2081 * @cq: The CQ to generate an event for. 2082 * @flags: 2083 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 2084 * to request an event on the next solicited event or next work 2085 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 2086 * may also be |ed in to request a hint about missed events, as 2087 * described below. 2088 * 2089 * Return Value: 2090 * < 0 means an error occurred while requesting notification 2091 * == 0 means notification was requested successfully, and if 2092 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 2093 * were missed and it is safe to wait for another event. In 2094 * this case is it guaranteed that any work completions added 2095 * to the CQ since the last CQ poll will trigger a completion 2096 * notification event. 2097 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 2098 * in. It means that the consumer must poll the CQ again to 2099 * make sure it is empty to avoid missing an event because of a 2100 * race between requesting notification and an entry being 2101 * added to the CQ. This return value means it is possible 2102 * (but not guaranteed) that a work completion has been added 2103 * to the CQ since the last poll without triggering a 2104 * completion notification event. 2105 */ 2106 static inline int ib_req_notify_cq(struct ib_cq *cq, 2107 enum ib_cq_notify_flags flags) 2108 { 2109 return cq->device->req_notify_cq(cq, flags); 2110 } 2111 2112 /** 2113 * ib_req_ncomp_notif - Request completion notification when there are 2114 * at least the specified number of unreaped completions on the CQ. 2115 * @cq: The CQ to generate an event for. 2116 * @wc_cnt: The number of unreaped completions that should be on the 2117 * CQ before an event is generated. 2118 */ 2119 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 2120 { 2121 return cq->device->req_ncomp_notif ? 2122 cq->device->req_ncomp_notif(cq, wc_cnt) : 2123 -ENOSYS; 2124 } 2125 2126 /** 2127 * ib_get_dma_mr - Returns a memory region for system memory that is 2128 * usable for DMA. 2129 * @pd: The protection domain associated with the memory region. 2130 * @mr_access_flags: Specifies the memory access rights. 2131 * 2132 * Note that the ib_dma_*() functions defined below must be used 2133 * to create/destroy addresses used with the Lkey or Rkey returned 2134 * by ib_get_dma_mr(). 2135 */ 2136 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags); 2137 2138 /** 2139 * ib_dma_mapping_error - check a DMA addr for error 2140 * @dev: The device for which the dma_addr was created 2141 * @dma_addr: The DMA address to check 2142 */ 2143 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 2144 { 2145 if (dev->dma_ops) 2146 return dev->dma_ops->mapping_error(dev, dma_addr); 2147 return dma_mapping_error(dev->dma_device, dma_addr); 2148 } 2149 2150 /** 2151 * ib_dma_map_single - Map a kernel virtual address to DMA address 2152 * @dev: The device for which the dma_addr is to be created 2153 * @cpu_addr: The kernel virtual address 2154 * @size: The size of the region in bytes 2155 * @direction: The direction of the DMA 2156 */ 2157 static inline u64 ib_dma_map_single(struct ib_device *dev, 2158 void *cpu_addr, size_t size, 2159 enum dma_data_direction direction) 2160 { 2161 if (dev->dma_ops) 2162 return dev->dma_ops->map_single(dev, cpu_addr, size, direction); 2163 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 2164 } 2165 2166 /** 2167 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 2168 * @dev: The device for which the DMA address was created 2169 * @addr: The DMA address 2170 * @size: The size of the region in bytes 2171 * @direction: The direction of the DMA 2172 */ 2173 static inline void ib_dma_unmap_single(struct ib_device *dev, 2174 u64 addr, size_t size, 2175 enum dma_data_direction direction) 2176 { 2177 if (dev->dma_ops) 2178 dev->dma_ops->unmap_single(dev, addr, size, direction); 2179 else 2180 dma_unmap_single(dev->dma_device, addr, size, direction); 2181 } 2182 2183 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev, 2184 void *cpu_addr, size_t size, 2185 enum dma_data_direction direction, 2186 struct dma_attrs *attrs) 2187 { 2188 return dma_map_single_attrs(dev->dma_device, cpu_addr, size, 2189 direction, attrs); 2190 } 2191 2192 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev, 2193 u64 addr, size_t size, 2194 enum dma_data_direction direction, 2195 struct dma_attrs *attrs) 2196 { 2197 return dma_unmap_single_attrs(dev->dma_device, addr, size, 2198 direction, attrs); 2199 } 2200 2201 /** 2202 * ib_dma_map_page - Map a physical page to DMA address 2203 * @dev: The device for which the dma_addr is to be created 2204 * @page: The page to be mapped 2205 * @offset: The offset within the page 2206 * @size: The size of the region in bytes 2207 * @direction: The direction of the DMA 2208 */ 2209 static inline u64 ib_dma_map_page(struct ib_device *dev, 2210 struct page *page, 2211 unsigned long offset, 2212 size_t size, 2213 enum dma_data_direction direction) 2214 { 2215 if (dev->dma_ops) 2216 return dev->dma_ops->map_page(dev, page, offset, size, direction); 2217 return dma_map_page(dev->dma_device, page, offset, size, direction); 2218 } 2219 2220 /** 2221 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 2222 * @dev: The device for which the DMA address was created 2223 * @addr: The DMA address 2224 * @size: The size of the region in bytes 2225 * @direction: The direction of the DMA 2226 */ 2227 static inline void ib_dma_unmap_page(struct ib_device *dev, 2228 u64 addr, size_t size, 2229 enum dma_data_direction direction) 2230 { 2231 if (dev->dma_ops) 2232 dev->dma_ops->unmap_page(dev, addr, size, direction); 2233 else 2234 dma_unmap_page(dev->dma_device, addr, size, direction); 2235 } 2236 2237 /** 2238 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 2239 * @dev: The device for which the DMA addresses are to be created 2240 * @sg: The array of scatter/gather entries 2241 * @nents: The number of scatter/gather entries 2242 * @direction: The direction of the DMA 2243 */ 2244 static inline int ib_dma_map_sg(struct ib_device *dev, 2245 struct scatterlist *sg, int nents, 2246 enum dma_data_direction direction) 2247 { 2248 if (dev->dma_ops) 2249 return dev->dma_ops->map_sg(dev, sg, nents, direction); 2250 return dma_map_sg(dev->dma_device, sg, nents, direction); 2251 } 2252 2253 /** 2254 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 2255 * @dev: The device for which the DMA addresses were created 2256 * @sg: The array of scatter/gather entries 2257 * @nents: The number of scatter/gather entries 2258 * @direction: The direction of the DMA 2259 */ 2260 static inline void ib_dma_unmap_sg(struct ib_device *dev, 2261 struct scatterlist *sg, int nents, 2262 enum dma_data_direction direction) 2263 { 2264 if (dev->dma_ops) 2265 dev->dma_ops->unmap_sg(dev, sg, nents, direction); 2266 else 2267 dma_unmap_sg(dev->dma_device, sg, nents, direction); 2268 } 2269 2270 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 2271 struct scatterlist *sg, int nents, 2272 enum dma_data_direction direction, 2273 struct dma_attrs *attrs) 2274 { 2275 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs); 2276 } 2277 2278 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 2279 struct scatterlist *sg, int nents, 2280 enum dma_data_direction direction, 2281 struct dma_attrs *attrs) 2282 { 2283 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs); 2284 } 2285 /** 2286 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry 2287 * @dev: The device for which the DMA addresses were created 2288 * @sg: The scatter/gather entry 2289 * 2290 * Note: this function is obsolete. To do: change all occurrences of 2291 * ib_sg_dma_address() into sg_dma_address(). 2292 */ 2293 static inline u64 ib_sg_dma_address(struct ib_device *dev, 2294 struct scatterlist *sg) 2295 { 2296 return sg_dma_address(sg); 2297 } 2298 2299 /** 2300 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry 2301 * @dev: The device for which the DMA addresses were created 2302 * @sg: The scatter/gather entry 2303 * 2304 * Note: this function is obsolete. To do: change all occurrences of 2305 * ib_sg_dma_len() into sg_dma_len(). 2306 */ 2307 static inline unsigned int ib_sg_dma_len(struct ib_device *dev, 2308 struct scatterlist *sg) 2309 { 2310 return sg_dma_len(sg); 2311 } 2312 2313 /** 2314 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 2315 * @dev: The device for which the DMA address was created 2316 * @addr: The DMA address 2317 * @size: The size of the region in bytes 2318 * @dir: The direction of the DMA 2319 */ 2320 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 2321 u64 addr, 2322 size_t size, 2323 enum dma_data_direction dir) 2324 { 2325 if (dev->dma_ops) 2326 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir); 2327 else 2328 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 2329 } 2330 2331 /** 2332 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 2333 * @dev: The device for which the DMA address was created 2334 * @addr: The DMA address 2335 * @size: The size of the region in bytes 2336 * @dir: The direction of the DMA 2337 */ 2338 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 2339 u64 addr, 2340 size_t size, 2341 enum dma_data_direction dir) 2342 { 2343 if (dev->dma_ops) 2344 dev->dma_ops->sync_single_for_device(dev, addr, size, dir); 2345 else 2346 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 2347 } 2348 2349 /** 2350 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 2351 * @dev: The device for which the DMA address is requested 2352 * @size: The size of the region to allocate in bytes 2353 * @dma_handle: A pointer for returning the DMA address of the region 2354 * @flag: memory allocator flags 2355 */ 2356 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 2357 size_t size, 2358 u64 *dma_handle, 2359 gfp_t flag) 2360 { 2361 if (dev->dma_ops) 2362 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag); 2363 else { 2364 dma_addr_t handle; 2365 void *ret; 2366 2367 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag); 2368 *dma_handle = handle; 2369 return ret; 2370 } 2371 } 2372 2373 /** 2374 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 2375 * @dev: The device for which the DMA addresses were allocated 2376 * @size: The size of the region 2377 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 2378 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 2379 */ 2380 static inline void ib_dma_free_coherent(struct ib_device *dev, 2381 size_t size, void *cpu_addr, 2382 u64 dma_handle) 2383 { 2384 if (dev->dma_ops) 2385 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle); 2386 else 2387 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 2388 } 2389 2390 /** 2391 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use 2392 * by an HCA. 2393 * @pd: The protection domain associated assigned to the registered region. 2394 * @phys_buf_array: Specifies a list of physical buffers to use in the 2395 * memory region. 2396 * @num_phys_buf: Specifies the size of the phys_buf_array. 2397 * @mr_access_flags: Specifies the memory access rights. 2398 * @iova_start: The offset of the region's starting I/O virtual address. 2399 */ 2400 struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd, 2401 struct ib_phys_buf *phys_buf_array, 2402 int num_phys_buf, 2403 int mr_access_flags, 2404 u64 *iova_start); 2405 2406 /** 2407 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region. 2408 * Conceptually, this call performs the functions deregister memory region 2409 * followed by register physical memory region. Where possible, 2410 * resources are reused instead of deallocated and reallocated. 2411 * @mr: The memory region to modify. 2412 * @mr_rereg_mask: A bit-mask used to indicate which of the following 2413 * properties of the memory region are being modified. 2414 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies 2415 * the new protection domain to associated with the memory region, 2416 * otherwise, this parameter is ignored. 2417 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this 2418 * field specifies a list of physical buffers to use in the new 2419 * translation, otherwise, this parameter is ignored. 2420 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this 2421 * field specifies the size of the phys_buf_array, otherwise, this 2422 * parameter is ignored. 2423 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this 2424 * field specifies the new memory access rights, otherwise, this 2425 * parameter is ignored. 2426 * @iova_start: The offset of the region's starting I/O virtual address. 2427 */ 2428 int ib_rereg_phys_mr(struct ib_mr *mr, 2429 int mr_rereg_mask, 2430 struct ib_pd *pd, 2431 struct ib_phys_buf *phys_buf_array, 2432 int num_phys_buf, 2433 int mr_access_flags, 2434 u64 *iova_start); 2435 2436 /** 2437 * ib_query_mr - Retrieves information about a specific memory region. 2438 * @mr: The memory region to retrieve information about. 2439 * @mr_attr: The attributes of the specified memory region. 2440 */ 2441 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr); 2442 2443 /** 2444 * ib_dereg_mr - Deregisters a memory region and removes it from the 2445 * HCA translation table. 2446 * @mr: The memory region to deregister. 2447 * 2448 * This function can fail, if the memory region has memory windows bound to it. 2449 */ 2450 int ib_dereg_mr(struct ib_mr *mr); 2451 2452 2453 /** 2454 * ib_create_mr - Allocates a memory region that may be used for 2455 * signature handover operations. 2456 * @pd: The protection domain associated with the region. 2457 * @mr_init_attr: memory region init attributes. 2458 */ 2459 struct ib_mr *ib_create_mr(struct ib_pd *pd, 2460 struct ib_mr_init_attr *mr_init_attr); 2461 2462 /** 2463 * ib_destroy_mr - Destroys a memory region that was created using 2464 * ib_create_mr and removes it from HW translation tables. 2465 * @mr: The memory region to destroy. 2466 * 2467 * This function can fail, if the memory region has memory windows bound to it. 2468 */ 2469 int ib_destroy_mr(struct ib_mr *mr); 2470 2471 /** 2472 * ib_alloc_fast_reg_mr - Allocates memory region usable with the 2473 * IB_WR_FAST_REG_MR send work request. 2474 * @pd: The protection domain associated with the region. 2475 * @max_page_list_len: requested max physical buffer list length to be 2476 * used with fast register work requests for this MR. 2477 */ 2478 struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len); 2479 2480 /** 2481 * ib_alloc_fast_reg_page_list - Allocates a page list array 2482 * @device - ib device pointer. 2483 * @page_list_len - size of the page list array to be allocated. 2484 * 2485 * This allocates and returns a struct ib_fast_reg_page_list * and a 2486 * page_list array that is at least page_list_len in size. The actual 2487 * size is returned in max_page_list_len. The caller is responsible 2488 * for initializing the contents of the page_list array before posting 2489 * a send work request with the IB_WC_FAST_REG_MR opcode. 2490 * 2491 * The page_list array entries must be translated using one of the 2492 * ib_dma_*() functions just like the addresses passed to 2493 * ib_map_phys_fmr(). Once the ib_post_send() is issued, the struct 2494 * ib_fast_reg_page_list must not be modified by the caller until the 2495 * IB_WC_FAST_REG_MR work request completes. 2496 */ 2497 struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list( 2498 struct ib_device *device, int page_list_len); 2499 2500 /** 2501 * ib_free_fast_reg_page_list - Deallocates a previously allocated 2502 * page list array. 2503 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated. 2504 */ 2505 void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list); 2506 2507 /** 2508 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 2509 * R_Key and L_Key. 2510 * @mr - struct ib_mr pointer to be updated. 2511 * @newkey - new key to be used. 2512 */ 2513 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 2514 { 2515 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 2516 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 2517 } 2518 2519 /** 2520 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 2521 * for calculating a new rkey for type 2 memory windows. 2522 * @rkey - the rkey to increment. 2523 */ 2524 static inline u32 ib_inc_rkey(u32 rkey) 2525 { 2526 const u32 mask = 0x000000ff; 2527 return ((rkey + 1) & mask) | (rkey & ~mask); 2528 } 2529 2530 /** 2531 * ib_alloc_mw - Allocates a memory window. 2532 * @pd: The protection domain associated with the memory window. 2533 * @type: The type of the memory window (1 or 2). 2534 */ 2535 struct ib_mw *ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type); 2536 2537 /** 2538 * ib_bind_mw - Posts a work request to the send queue of the specified 2539 * QP, which binds the memory window to the given address range and 2540 * remote access attributes. 2541 * @qp: QP to post the bind work request on. 2542 * @mw: The memory window to bind. 2543 * @mw_bind: Specifies information about the memory window, including 2544 * its address range, remote access rights, and associated memory region. 2545 * 2546 * If there is no immediate error, the function will update the rkey member 2547 * of the mw parameter to its new value. The bind operation can still fail 2548 * asynchronously. 2549 */ 2550 static inline int ib_bind_mw(struct ib_qp *qp, 2551 struct ib_mw *mw, 2552 struct ib_mw_bind *mw_bind) 2553 { 2554 /* XXX reference counting in corresponding MR? */ 2555 return mw->device->bind_mw ? 2556 mw->device->bind_mw(qp, mw, mw_bind) : 2557 -ENOSYS; 2558 } 2559 2560 /** 2561 * ib_dealloc_mw - Deallocates a memory window. 2562 * @mw: The memory window to deallocate. 2563 */ 2564 int ib_dealloc_mw(struct ib_mw *mw); 2565 2566 /** 2567 * ib_alloc_fmr - Allocates a unmapped fast memory region. 2568 * @pd: The protection domain associated with the unmapped region. 2569 * @mr_access_flags: Specifies the memory access rights. 2570 * @fmr_attr: Attributes of the unmapped region. 2571 * 2572 * A fast memory region must be mapped before it can be used as part of 2573 * a work request. 2574 */ 2575 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 2576 int mr_access_flags, 2577 struct ib_fmr_attr *fmr_attr); 2578 2579 /** 2580 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 2581 * @fmr: The fast memory region to associate with the pages. 2582 * @page_list: An array of physical pages to map to the fast memory region. 2583 * @list_len: The number of pages in page_list. 2584 * @iova: The I/O virtual address to use with the mapped region. 2585 */ 2586 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 2587 u64 *page_list, int list_len, 2588 u64 iova) 2589 { 2590 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); 2591 } 2592 2593 /** 2594 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 2595 * @fmr_list: A linked list of fast memory regions to unmap. 2596 */ 2597 int ib_unmap_fmr(struct list_head *fmr_list); 2598 2599 /** 2600 * ib_dealloc_fmr - Deallocates a fast memory region. 2601 * @fmr: The fast memory region to deallocate. 2602 */ 2603 int ib_dealloc_fmr(struct ib_fmr *fmr); 2604 2605 /** 2606 * ib_attach_mcast - Attaches the specified QP to a multicast group. 2607 * @qp: QP to attach to the multicast group. The QP must be type 2608 * IB_QPT_UD. 2609 * @gid: Multicast group GID. 2610 * @lid: Multicast group LID in host byte order. 2611 * 2612 * In order to send and receive multicast packets, subnet 2613 * administration must have created the multicast group and configured 2614 * the fabric appropriately. The port associated with the specified 2615 * QP must also be a member of the multicast group. 2616 */ 2617 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2618 2619 /** 2620 * ib_detach_mcast - Detaches the specified QP from a multicast group. 2621 * @qp: QP to detach from the multicast group. 2622 * @gid: Multicast group GID. 2623 * @lid: Multicast group LID in host byte order. 2624 */ 2625 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2626 2627 /** 2628 * ib_alloc_xrcd - Allocates an XRC domain. 2629 * @device: The device on which to allocate the XRC domain. 2630 */ 2631 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device); 2632 2633 /** 2634 * ib_dealloc_xrcd - Deallocates an XRC domain. 2635 * @xrcd: The XRC domain to deallocate. 2636 */ 2637 int ib_dealloc_xrcd(struct ib_xrcd *xrcd); 2638 2639 struct ib_flow *ib_create_flow(struct ib_qp *qp, 2640 struct ib_flow_attr *flow_attr, int domain); 2641 int ib_destroy_flow(struct ib_flow *flow_id); 2642 2643 static inline int ib_check_mr_access(int flags) 2644 { 2645 /* 2646 * Local write permission is required if remote write or 2647 * remote atomic permission is also requested. 2648 */ 2649 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 2650 !(flags & IB_ACCESS_LOCAL_WRITE)) 2651 return -EINVAL; 2652 2653 return 0; 2654 } 2655 2656 /** 2657 * ib_check_mr_status: lightweight check of MR status. 2658 * This routine may provide status checks on a selected 2659 * ib_mr. first use is for signature status check. 2660 * 2661 * @mr: A memory region. 2662 * @check_mask: Bitmask of which checks to perform from 2663 * ib_mr_status_check enumeration. 2664 * @mr_status: The container of relevant status checks. 2665 * failed checks will be indicated in the status bitmask 2666 * and the relevant info shall be in the error item. 2667 */ 2668 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 2669 struct ib_mr_status *mr_status); 2670 2671 #endif /* IB_VERBS_H */ 2672