xref: /openbmc/linux/include/rdma/ib_verbs.h (revision 83268fa6)
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38 
39 #if !defined(IB_VERBS_H)
40 #define IB_VERBS_H
41 
42 #include <linux/types.h>
43 #include <linux/device.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/kref.h>
47 #include <linux/list.h>
48 #include <linux/rwsem.h>
49 #include <linux/scatterlist.h>
50 #include <linux/workqueue.h>
51 #include <linux/socket.h>
52 #include <linux/irq_poll.h>
53 #include <uapi/linux/if_ether.h>
54 #include <net/ipv6.h>
55 #include <net/ip.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/netdevice.h>
59 
60 #include <linux/if_link.h>
61 #include <linux/atomic.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/uaccess.h>
64 #include <linux/cgroup_rdma.h>
65 #include <uapi/rdma/ib_user_verbs.h>
66 #include <rdma/restrack.h>
67 #include <uapi/rdma/rdma_user_ioctl.h>
68 #include <uapi/rdma/ib_user_ioctl_verbs.h>
69 
70 #define IB_FW_VERSION_NAME_MAX	ETHTOOL_FWVERS_LEN
71 
72 struct ib_umem_odp;
73 
74 extern struct workqueue_struct *ib_wq;
75 extern struct workqueue_struct *ib_comp_wq;
76 extern struct workqueue_struct *ib_comp_unbound_wq;
77 
78 union ib_gid {
79 	u8	raw[16];
80 	struct {
81 		__be64	subnet_prefix;
82 		__be64	interface_id;
83 	} global;
84 };
85 
86 extern union ib_gid zgid;
87 
88 enum ib_gid_type {
89 	/* If link layer is Ethernet, this is RoCE V1 */
90 	IB_GID_TYPE_IB        = 0,
91 	IB_GID_TYPE_ROCE      = 0,
92 	IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
93 	IB_GID_TYPE_SIZE
94 };
95 
96 #define ROCE_V2_UDP_DPORT      4791
97 struct ib_gid_attr {
98 	struct net_device	*ndev;
99 	struct ib_device	*device;
100 	union ib_gid		gid;
101 	enum ib_gid_type	gid_type;
102 	u16			index;
103 	u8			port_num;
104 };
105 
106 enum rdma_node_type {
107 	/* IB values map to NodeInfo:NodeType. */
108 	RDMA_NODE_IB_CA 	= 1,
109 	RDMA_NODE_IB_SWITCH,
110 	RDMA_NODE_IB_ROUTER,
111 	RDMA_NODE_RNIC,
112 	RDMA_NODE_USNIC,
113 	RDMA_NODE_USNIC_UDP,
114 };
115 
116 enum {
117 	/* set the local administered indication */
118 	IB_SA_WELL_KNOWN_GUID	= BIT_ULL(57) | 2,
119 };
120 
121 enum rdma_transport_type {
122 	RDMA_TRANSPORT_IB,
123 	RDMA_TRANSPORT_IWARP,
124 	RDMA_TRANSPORT_USNIC,
125 	RDMA_TRANSPORT_USNIC_UDP
126 };
127 
128 enum rdma_protocol_type {
129 	RDMA_PROTOCOL_IB,
130 	RDMA_PROTOCOL_IBOE,
131 	RDMA_PROTOCOL_IWARP,
132 	RDMA_PROTOCOL_USNIC_UDP
133 };
134 
135 __attribute_const__ enum rdma_transport_type
136 rdma_node_get_transport(enum rdma_node_type node_type);
137 
138 enum rdma_network_type {
139 	RDMA_NETWORK_IB,
140 	RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
141 	RDMA_NETWORK_IPV4,
142 	RDMA_NETWORK_IPV6
143 };
144 
145 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
146 {
147 	if (network_type == RDMA_NETWORK_IPV4 ||
148 	    network_type == RDMA_NETWORK_IPV6)
149 		return IB_GID_TYPE_ROCE_UDP_ENCAP;
150 
151 	/* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
152 	return IB_GID_TYPE_IB;
153 }
154 
155 static inline enum rdma_network_type
156 rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
157 {
158 	if (attr->gid_type == IB_GID_TYPE_IB)
159 		return RDMA_NETWORK_IB;
160 
161 	if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
162 		return RDMA_NETWORK_IPV4;
163 	else
164 		return RDMA_NETWORK_IPV6;
165 }
166 
167 enum rdma_link_layer {
168 	IB_LINK_LAYER_UNSPECIFIED,
169 	IB_LINK_LAYER_INFINIBAND,
170 	IB_LINK_LAYER_ETHERNET,
171 };
172 
173 enum ib_device_cap_flags {
174 	IB_DEVICE_RESIZE_MAX_WR			= (1 << 0),
175 	IB_DEVICE_BAD_PKEY_CNTR			= (1 << 1),
176 	IB_DEVICE_BAD_QKEY_CNTR			= (1 << 2),
177 	IB_DEVICE_RAW_MULTI			= (1 << 3),
178 	IB_DEVICE_AUTO_PATH_MIG			= (1 << 4),
179 	IB_DEVICE_CHANGE_PHY_PORT		= (1 << 5),
180 	IB_DEVICE_UD_AV_PORT_ENFORCE		= (1 << 6),
181 	IB_DEVICE_CURR_QP_STATE_MOD		= (1 << 7),
182 	IB_DEVICE_SHUTDOWN_PORT			= (1 << 8),
183 	/* Not in use, former INIT_TYPE		= (1 << 9),*/
184 	IB_DEVICE_PORT_ACTIVE_EVENT		= (1 << 10),
185 	IB_DEVICE_SYS_IMAGE_GUID		= (1 << 11),
186 	IB_DEVICE_RC_RNR_NAK_GEN		= (1 << 12),
187 	IB_DEVICE_SRQ_RESIZE			= (1 << 13),
188 	IB_DEVICE_N_NOTIFY_CQ			= (1 << 14),
189 
190 	/*
191 	 * This device supports a per-device lkey or stag that can be
192 	 * used without performing a memory registration for the local
193 	 * memory.  Note that ULPs should never check this flag, but
194 	 * instead of use the local_dma_lkey flag in the ib_pd structure,
195 	 * which will always contain a usable lkey.
196 	 */
197 	IB_DEVICE_LOCAL_DMA_LKEY		= (1 << 15),
198 	/* Reserved, old SEND_W_INV		= (1 << 16),*/
199 	IB_DEVICE_MEM_WINDOW			= (1 << 17),
200 	/*
201 	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
202 	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
203 	 * messages and can verify the validity of checksum for
204 	 * incoming messages.  Setting this flag implies that the
205 	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
206 	 */
207 	IB_DEVICE_UD_IP_CSUM			= (1 << 18),
208 	IB_DEVICE_UD_TSO			= (1 << 19),
209 	IB_DEVICE_XRC				= (1 << 20),
210 
211 	/*
212 	 * This device supports the IB "base memory management extension",
213 	 * which includes support for fast registrations (IB_WR_REG_MR,
214 	 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs).  This flag should
215 	 * also be set by any iWarp device which must support FRs to comply
216 	 * to the iWarp verbs spec.  iWarp devices also support the
217 	 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
218 	 * stag.
219 	 */
220 	IB_DEVICE_MEM_MGT_EXTENSIONS		= (1 << 21),
221 	IB_DEVICE_BLOCK_MULTICAST_LOOPBACK	= (1 << 22),
222 	IB_DEVICE_MEM_WINDOW_TYPE_2A		= (1 << 23),
223 	IB_DEVICE_MEM_WINDOW_TYPE_2B		= (1 << 24),
224 	IB_DEVICE_RC_IP_CSUM			= (1 << 25),
225 	/* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
226 	IB_DEVICE_RAW_IP_CSUM			= (1 << 26),
227 	/*
228 	 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
229 	 * support execution of WQEs that involve synchronization
230 	 * of I/O operations with single completion queue managed
231 	 * by hardware.
232 	 */
233 	IB_DEVICE_CROSS_CHANNEL			= (1 << 27),
234 	IB_DEVICE_MANAGED_FLOW_STEERING		= (1 << 29),
235 	IB_DEVICE_SIGNATURE_HANDOVER		= (1 << 30),
236 	IB_DEVICE_ON_DEMAND_PAGING		= (1ULL << 31),
237 	IB_DEVICE_SG_GAPS_REG			= (1ULL << 32),
238 	IB_DEVICE_VIRTUAL_FUNCTION		= (1ULL << 33),
239 	/* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
240 	IB_DEVICE_RAW_SCATTER_FCS		= (1ULL << 34),
241 	IB_DEVICE_RDMA_NETDEV_OPA_VNIC		= (1ULL << 35),
242 	/* The device supports padding incoming writes to cacheline. */
243 	IB_DEVICE_PCI_WRITE_END_PADDING		= (1ULL << 36),
244 };
245 
246 enum ib_signature_prot_cap {
247 	IB_PROT_T10DIF_TYPE_1 = 1,
248 	IB_PROT_T10DIF_TYPE_2 = 1 << 1,
249 	IB_PROT_T10DIF_TYPE_3 = 1 << 2,
250 };
251 
252 enum ib_signature_guard_cap {
253 	IB_GUARD_T10DIF_CRC	= 1,
254 	IB_GUARD_T10DIF_CSUM	= 1 << 1,
255 };
256 
257 enum ib_atomic_cap {
258 	IB_ATOMIC_NONE,
259 	IB_ATOMIC_HCA,
260 	IB_ATOMIC_GLOB
261 };
262 
263 enum ib_odp_general_cap_bits {
264 	IB_ODP_SUPPORT		= 1 << 0,
265 	IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
266 };
267 
268 enum ib_odp_transport_cap_bits {
269 	IB_ODP_SUPPORT_SEND	= 1 << 0,
270 	IB_ODP_SUPPORT_RECV	= 1 << 1,
271 	IB_ODP_SUPPORT_WRITE	= 1 << 2,
272 	IB_ODP_SUPPORT_READ	= 1 << 3,
273 	IB_ODP_SUPPORT_ATOMIC	= 1 << 4,
274 };
275 
276 struct ib_odp_caps {
277 	uint64_t general_caps;
278 	struct {
279 		uint32_t  rc_odp_caps;
280 		uint32_t  uc_odp_caps;
281 		uint32_t  ud_odp_caps;
282 	} per_transport_caps;
283 };
284 
285 struct ib_rss_caps {
286 	/* Corresponding bit will be set if qp type from
287 	 * 'enum ib_qp_type' is supported, e.g.
288 	 * supported_qpts |= 1 << IB_QPT_UD
289 	 */
290 	u32 supported_qpts;
291 	u32 max_rwq_indirection_tables;
292 	u32 max_rwq_indirection_table_size;
293 };
294 
295 enum ib_tm_cap_flags {
296 	/*  Support tag matching on RC transport */
297 	IB_TM_CAP_RC		    = 1 << 0,
298 };
299 
300 struct ib_tm_caps {
301 	/* Max size of RNDV header */
302 	u32 max_rndv_hdr_size;
303 	/* Max number of entries in tag matching list */
304 	u32 max_num_tags;
305 	/* From enum ib_tm_cap_flags */
306 	u32 flags;
307 	/* Max number of outstanding list operations */
308 	u32 max_ops;
309 	/* Max number of SGE in tag matching entry */
310 	u32 max_sge;
311 };
312 
313 struct ib_cq_init_attr {
314 	unsigned int	cqe;
315 	int		comp_vector;
316 	u32		flags;
317 };
318 
319 enum ib_cq_attr_mask {
320 	IB_CQ_MODERATE = 1 << 0,
321 };
322 
323 struct ib_cq_caps {
324 	u16     max_cq_moderation_count;
325 	u16     max_cq_moderation_period;
326 };
327 
328 struct ib_dm_mr_attr {
329 	u64		length;
330 	u64		offset;
331 	u32		access_flags;
332 };
333 
334 struct ib_dm_alloc_attr {
335 	u64	length;
336 	u32	alignment;
337 	u32	flags;
338 };
339 
340 struct ib_device_attr {
341 	u64			fw_ver;
342 	__be64			sys_image_guid;
343 	u64			max_mr_size;
344 	u64			page_size_cap;
345 	u32			vendor_id;
346 	u32			vendor_part_id;
347 	u32			hw_ver;
348 	int			max_qp;
349 	int			max_qp_wr;
350 	u64			device_cap_flags;
351 	int			max_send_sge;
352 	int			max_recv_sge;
353 	int			max_sge_rd;
354 	int			max_cq;
355 	int			max_cqe;
356 	int			max_mr;
357 	int			max_pd;
358 	int			max_qp_rd_atom;
359 	int			max_ee_rd_atom;
360 	int			max_res_rd_atom;
361 	int			max_qp_init_rd_atom;
362 	int			max_ee_init_rd_atom;
363 	enum ib_atomic_cap	atomic_cap;
364 	enum ib_atomic_cap	masked_atomic_cap;
365 	int			max_ee;
366 	int			max_rdd;
367 	int			max_mw;
368 	int			max_raw_ipv6_qp;
369 	int			max_raw_ethy_qp;
370 	int			max_mcast_grp;
371 	int			max_mcast_qp_attach;
372 	int			max_total_mcast_qp_attach;
373 	int			max_ah;
374 	int			max_fmr;
375 	int			max_map_per_fmr;
376 	int			max_srq;
377 	int			max_srq_wr;
378 	int			max_srq_sge;
379 	unsigned int		max_fast_reg_page_list_len;
380 	u16			max_pkeys;
381 	u8			local_ca_ack_delay;
382 	int			sig_prot_cap;
383 	int			sig_guard_cap;
384 	struct ib_odp_caps	odp_caps;
385 	uint64_t		timestamp_mask;
386 	uint64_t		hca_core_clock; /* in KHZ */
387 	struct ib_rss_caps	rss_caps;
388 	u32			max_wq_type_rq;
389 	u32			raw_packet_caps; /* Use ib_raw_packet_caps enum */
390 	struct ib_tm_caps	tm_caps;
391 	struct ib_cq_caps       cq_caps;
392 	u64			max_dm_size;
393 };
394 
395 enum ib_mtu {
396 	IB_MTU_256  = 1,
397 	IB_MTU_512  = 2,
398 	IB_MTU_1024 = 3,
399 	IB_MTU_2048 = 4,
400 	IB_MTU_4096 = 5
401 };
402 
403 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
404 {
405 	switch (mtu) {
406 	case IB_MTU_256:  return  256;
407 	case IB_MTU_512:  return  512;
408 	case IB_MTU_1024: return 1024;
409 	case IB_MTU_2048: return 2048;
410 	case IB_MTU_4096: return 4096;
411 	default: 	  return -1;
412 	}
413 }
414 
415 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
416 {
417 	if (mtu >= 4096)
418 		return IB_MTU_4096;
419 	else if (mtu >= 2048)
420 		return IB_MTU_2048;
421 	else if (mtu >= 1024)
422 		return IB_MTU_1024;
423 	else if (mtu >= 512)
424 		return IB_MTU_512;
425 	else
426 		return IB_MTU_256;
427 }
428 
429 enum ib_port_state {
430 	IB_PORT_NOP		= 0,
431 	IB_PORT_DOWN		= 1,
432 	IB_PORT_INIT		= 2,
433 	IB_PORT_ARMED		= 3,
434 	IB_PORT_ACTIVE		= 4,
435 	IB_PORT_ACTIVE_DEFER	= 5
436 };
437 
438 enum ib_port_width {
439 	IB_WIDTH_1X	= 1,
440 	IB_WIDTH_4X	= 2,
441 	IB_WIDTH_8X	= 4,
442 	IB_WIDTH_12X	= 8
443 };
444 
445 static inline int ib_width_enum_to_int(enum ib_port_width width)
446 {
447 	switch (width) {
448 	case IB_WIDTH_1X:  return  1;
449 	case IB_WIDTH_4X:  return  4;
450 	case IB_WIDTH_8X:  return  8;
451 	case IB_WIDTH_12X: return 12;
452 	default: 	  return -1;
453 	}
454 }
455 
456 enum ib_port_speed {
457 	IB_SPEED_SDR	= 1,
458 	IB_SPEED_DDR	= 2,
459 	IB_SPEED_QDR	= 4,
460 	IB_SPEED_FDR10	= 8,
461 	IB_SPEED_FDR	= 16,
462 	IB_SPEED_EDR	= 32,
463 	IB_SPEED_HDR	= 64
464 };
465 
466 /**
467  * struct rdma_hw_stats
468  * @lock - Mutex to protect parallel write access to lifespan and values
469  *    of counters, which are 64bits and not guaranteeed to be written
470  *    atomicaly on 32bits systems.
471  * @timestamp - Used by the core code to track when the last update was
472  * @lifespan - Used by the core code to determine how old the counters
473  *   should be before being updated again.  Stored in jiffies, defaults
474  *   to 10 milliseconds, drivers can override the default be specifying
475  *   their own value during their allocation routine.
476  * @name - Array of pointers to static names used for the counters in
477  *   directory.
478  * @num_counters - How many hardware counters there are.  If name is
479  *   shorter than this number, a kernel oops will result.  Driver authors
480  *   are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
481  *   in their code to prevent this.
482  * @value - Array of u64 counters that are accessed by the sysfs code and
483  *   filled in by the drivers get_stats routine
484  */
485 struct rdma_hw_stats {
486 	struct mutex	lock; /* Protect lifespan and values[] */
487 	unsigned long	timestamp;
488 	unsigned long	lifespan;
489 	const char * const *names;
490 	int		num_counters;
491 	u64		value[];
492 };
493 
494 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
495 /**
496  * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
497  *   for drivers.
498  * @names - Array of static const char *
499  * @num_counters - How many elements in array
500  * @lifespan - How many milliseconds between updates
501  */
502 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
503 		const char * const *names, int num_counters,
504 		unsigned long lifespan)
505 {
506 	struct rdma_hw_stats *stats;
507 
508 	stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
509 			GFP_KERNEL);
510 	if (!stats)
511 		return NULL;
512 	stats->names = names;
513 	stats->num_counters = num_counters;
514 	stats->lifespan = msecs_to_jiffies(lifespan);
515 
516 	return stats;
517 }
518 
519 
520 /* Define bits for the various functionality this port needs to be supported by
521  * the core.
522  */
523 /* Management                           0x00000FFF */
524 #define RDMA_CORE_CAP_IB_MAD            0x00000001
525 #define RDMA_CORE_CAP_IB_SMI            0x00000002
526 #define RDMA_CORE_CAP_IB_CM             0x00000004
527 #define RDMA_CORE_CAP_IW_CM             0x00000008
528 #define RDMA_CORE_CAP_IB_SA             0x00000010
529 #define RDMA_CORE_CAP_OPA_MAD           0x00000020
530 
531 /* Address format                       0x000FF000 */
532 #define RDMA_CORE_CAP_AF_IB             0x00001000
533 #define RDMA_CORE_CAP_ETH_AH            0x00002000
534 #define RDMA_CORE_CAP_OPA_AH            0x00004000
535 #define RDMA_CORE_CAP_IB_GRH_REQUIRED   0x00008000
536 
537 /* Protocol                             0xFFF00000 */
538 #define RDMA_CORE_CAP_PROT_IB           0x00100000
539 #define RDMA_CORE_CAP_PROT_ROCE         0x00200000
540 #define RDMA_CORE_CAP_PROT_IWARP        0x00400000
541 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
542 #define RDMA_CORE_CAP_PROT_RAW_PACKET   0x01000000
543 #define RDMA_CORE_CAP_PROT_USNIC        0x02000000
544 
545 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
546 					| RDMA_CORE_CAP_PROT_ROCE     \
547 					| RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
548 
549 #define RDMA_CORE_PORT_IBA_IB          (RDMA_CORE_CAP_PROT_IB  \
550 					| RDMA_CORE_CAP_IB_MAD \
551 					| RDMA_CORE_CAP_IB_SMI \
552 					| RDMA_CORE_CAP_IB_CM  \
553 					| RDMA_CORE_CAP_IB_SA  \
554 					| RDMA_CORE_CAP_AF_IB)
555 #define RDMA_CORE_PORT_IBA_ROCE        (RDMA_CORE_CAP_PROT_ROCE \
556 					| RDMA_CORE_CAP_IB_MAD  \
557 					| RDMA_CORE_CAP_IB_CM   \
558 					| RDMA_CORE_CAP_AF_IB   \
559 					| RDMA_CORE_CAP_ETH_AH)
560 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP			\
561 					(RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
562 					| RDMA_CORE_CAP_IB_MAD  \
563 					| RDMA_CORE_CAP_IB_CM   \
564 					| RDMA_CORE_CAP_AF_IB   \
565 					| RDMA_CORE_CAP_ETH_AH)
566 #define RDMA_CORE_PORT_IWARP           (RDMA_CORE_CAP_PROT_IWARP \
567 					| RDMA_CORE_CAP_IW_CM)
568 #define RDMA_CORE_PORT_INTEL_OPA       (RDMA_CORE_PORT_IBA_IB  \
569 					| RDMA_CORE_CAP_OPA_MAD)
570 
571 #define RDMA_CORE_PORT_RAW_PACKET	(RDMA_CORE_CAP_PROT_RAW_PACKET)
572 
573 #define RDMA_CORE_PORT_USNIC		(RDMA_CORE_CAP_PROT_USNIC)
574 
575 struct ib_port_attr {
576 	u64			subnet_prefix;
577 	enum ib_port_state	state;
578 	enum ib_mtu		max_mtu;
579 	enum ib_mtu		active_mtu;
580 	int			gid_tbl_len;
581 	unsigned int		ip_gids:1;
582 	/* This is the value from PortInfo CapabilityMask, defined by IBA */
583 	u32			port_cap_flags;
584 	u32			max_msg_sz;
585 	u32			bad_pkey_cntr;
586 	u32			qkey_viol_cntr;
587 	u16			pkey_tbl_len;
588 	u32			sm_lid;
589 	u32			lid;
590 	u8			lmc;
591 	u8			max_vl_num;
592 	u8			sm_sl;
593 	u8			subnet_timeout;
594 	u8			init_type_reply;
595 	u8			active_width;
596 	u8			active_speed;
597 	u8                      phys_state;
598 };
599 
600 enum ib_device_modify_flags {
601 	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
602 	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
603 };
604 
605 #define IB_DEVICE_NODE_DESC_MAX 64
606 
607 struct ib_device_modify {
608 	u64	sys_image_guid;
609 	char	node_desc[IB_DEVICE_NODE_DESC_MAX];
610 };
611 
612 enum ib_port_modify_flags {
613 	IB_PORT_SHUTDOWN		= 1,
614 	IB_PORT_INIT_TYPE		= (1<<2),
615 	IB_PORT_RESET_QKEY_CNTR		= (1<<3),
616 	IB_PORT_OPA_MASK_CHG		= (1<<4)
617 };
618 
619 struct ib_port_modify {
620 	u32	set_port_cap_mask;
621 	u32	clr_port_cap_mask;
622 	u8	init_type;
623 };
624 
625 enum ib_event_type {
626 	IB_EVENT_CQ_ERR,
627 	IB_EVENT_QP_FATAL,
628 	IB_EVENT_QP_REQ_ERR,
629 	IB_EVENT_QP_ACCESS_ERR,
630 	IB_EVENT_COMM_EST,
631 	IB_EVENT_SQ_DRAINED,
632 	IB_EVENT_PATH_MIG,
633 	IB_EVENT_PATH_MIG_ERR,
634 	IB_EVENT_DEVICE_FATAL,
635 	IB_EVENT_PORT_ACTIVE,
636 	IB_EVENT_PORT_ERR,
637 	IB_EVENT_LID_CHANGE,
638 	IB_EVENT_PKEY_CHANGE,
639 	IB_EVENT_SM_CHANGE,
640 	IB_EVENT_SRQ_ERR,
641 	IB_EVENT_SRQ_LIMIT_REACHED,
642 	IB_EVENT_QP_LAST_WQE_REACHED,
643 	IB_EVENT_CLIENT_REREGISTER,
644 	IB_EVENT_GID_CHANGE,
645 	IB_EVENT_WQ_FATAL,
646 };
647 
648 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
649 
650 struct ib_event {
651 	struct ib_device	*device;
652 	union {
653 		struct ib_cq	*cq;
654 		struct ib_qp	*qp;
655 		struct ib_srq	*srq;
656 		struct ib_wq	*wq;
657 		u8		port_num;
658 	} element;
659 	enum ib_event_type	event;
660 };
661 
662 struct ib_event_handler {
663 	struct ib_device *device;
664 	void            (*handler)(struct ib_event_handler *, struct ib_event *);
665 	struct list_head  list;
666 };
667 
668 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
669 	do {							\
670 		(_ptr)->device  = _device;			\
671 		(_ptr)->handler = _handler;			\
672 		INIT_LIST_HEAD(&(_ptr)->list);			\
673 	} while (0)
674 
675 struct ib_global_route {
676 	const struct ib_gid_attr *sgid_attr;
677 	union ib_gid	dgid;
678 	u32		flow_label;
679 	u8		sgid_index;
680 	u8		hop_limit;
681 	u8		traffic_class;
682 };
683 
684 struct ib_grh {
685 	__be32		version_tclass_flow;
686 	__be16		paylen;
687 	u8		next_hdr;
688 	u8		hop_limit;
689 	union ib_gid	sgid;
690 	union ib_gid	dgid;
691 };
692 
693 union rdma_network_hdr {
694 	struct ib_grh ibgrh;
695 	struct {
696 		/* The IB spec states that if it's IPv4, the header
697 		 * is located in the last 20 bytes of the header.
698 		 */
699 		u8		reserved[20];
700 		struct iphdr	roce4grh;
701 	};
702 };
703 
704 #define IB_QPN_MASK		0xFFFFFF
705 
706 enum {
707 	IB_MULTICAST_QPN = 0xffffff
708 };
709 
710 #define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
711 #define IB_MULTICAST_LID_BASE	cpu_to_be16(0xC000)
712 
713 enum ib_ah_flags {
714 	IB_AH_GRH	= 1
715 };
716 
717 enum ib_rate {
718 	IB_RATE_PORT_CURRENT = 0,
719 	IB_RATE_2_5_GBPS = 2,
720 	IB_RATE_5_GBPS   = 5,
721 	IB_RATE_10_GBPS  = 3,
722 	IB_RATE_20_GBPS  = 6,
723 	IB_RATE_30_GBPS  = 4,
724 	IB_RATE_40_GBPS  = 7,
725 	IB_RATE_60_GBPS  = 8,
726 	IB_RATE_80_GBPS  = 9,
727 	IB_RATE_120_GBPS = 10,
728 	IB_RATE_14_GBPS  = 11,
729 	IB_RATE_56_GBPS  = 12,
730 	IB_RATE_112_GBPS = 13,
731 	IB_RATE_168_GBPS = 14,
732 	IB_RATE_25_GBPS  = 15,
733 	IB_RATE_100_GBPS = 16,
734 	IB_RATE_200_GBPS = 17,
735 	IB_RATE_300_GBPS = 18
736 };
737 
738 /**
739  * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
740  * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
741  * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
742  * @rate: rate to convert.
743  */
744 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
745 
746 /**
747  * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
748  * For example, IB_RATE_2_5_GBPS will be converted to 2500.
749  * @rate: rate to convert.
750  */
751 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
752 
753 
754 /**
755  * enum ib_mr_type - memory region type
756  * @IB_MR_TYPE_MEM_REG:       memory region that is used for
757  *                            normal registration
758  * @IB_MR_TYPE_SIGNATURE:     memory region that is used for
759  *                            signature operations (data-integrity
760  *                            capable regions)
761  * @IB_MR_TYPE_SG_GAPS:       memory region that is capable to
762  *                            register any arbitrary sg lists (without
763  *                            the normal mr constraints - see
764  *                            ib_map_mr_sg)
765  */
766 enum ib_mr_type {
767 	IB_MR_TYPE_MEM_REG,
768 	IB_MR_TYPE_SIGNATURE,
769 	IB_MR_TYPE_SG_GAPS,
770 };
771 
772 /**
773  * Signature types
774  * IB_SIG_TYPE_NONE: Unprotected.
775  * IB_SIG_TYPE_T10_DIF: Type T10-DIF
776  */
777 enum ib_signature_type {
778 	IB_SIG_TYPE_NONE,
779 	IB_SIG_TYPE_T10_DIF,
780 };
781 
782 /**
783  * Signature T10-DIF block-guard types
784  * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
785  * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
786  */
787 enum ib_t10_dif_bg_type {
788 	IB_T10DIF_CRC,
789 	IB_T10DIF_CSUM
790 };
791 
792 /**
793  * struct ib_t10_dif_domain - Parameters specific for T10-DIF
794  *     domain.
795  * @bg_type: T10-DIF block guard type (CRC|CSUM)
796  * @pi_interval: protection information interval.
797  * @bg: seed of guard computation.
798  * @app_tag: application tag of guard block
799  * @ref_tag: initial guard block reference tag.
800  * @ref_remap: Indicate wethear the reftag increments each block
801  * @app_escape: Indicate to skip block check if apptag=0xffff
802  * @ref_escape: Indicate to skip block check if reftag=0xffffffff
803  * @apptag_check_mask: check bitmask of application tag.
804  */
805 struct ib_t10_dif_domain {
806 	enum ib_t10_dif_bg_type bg_type;
807 	u16			pi_interval;
808 	u16			bg;
809 	u16			app_tag;
810 	u32			ref_tag;
811 	bool			ref_remap;
812 	bool			app_escape;
813 	bool			ref_escape;
814 	u16			apptag_check_mask;
815 };
816 
817 /**
818  * struct ib_sig_domain - Parameters for signature domain
819  * @sig_type: specific signauture type
820  * @sig: union of all signature domain attributes that may
821  *     be used to set domain layout.
822  */
823 struct ib_sig_domain {
824 	enum ib_signature_type sig_type;
825 	union {
826 		struct ib_t10_dif_domain dif;
827 	} sig;
828 };
829 
830 /**
831  * struct ib_sig_attrs - Parameters for signature handover operation
832  * @check_mask: bitmask for signature byte check (8 bytes)
833  * @mem: memory domain layout desciptor.
834  * @wire: wire domain layout desciptor.
835  */
836 struct ib_sig_attrs {
837 	u8			check_mask;
838 	struct ib_sig_domain	mem;
839 	struct ib_sig_domain	wire;
840 };
841 
842 enum ib_sig_err_type {
843 	IB_SIG_BAD_GUARD,
844 	IB_SIG_BAD_REFTAG,
845 	IB_SIG_BAD_APPTAG,
846 };
847 
848 /**
849  * Signature check masks (8 bytes in total) according to the T10-PI standard:
850  *  -------- -------- ------------
851  * | GUARD  | APPTAG |   REFTAG   |
852  * |  2B    |  2B    |    4B      |
853  *  -------- -------- ------------
854  */
855 enum {
856 	IB_SIG_CHECK_GUARD	= 0xc0,
857 	IB_SIG_CHECK_APPTAG	= 0x30,
858 	IB_SIG_CHECK_REFTAG	= 0x0f,
859 };
860 
861 /**
862  * struct ib_sig_err - signature error descriptor
863  */
864 struct ib_sig_err {
865 	enum ib_sig_err_type	err_type;
866 	u32			expected;
867 	u32			actual;
868 	u64			sig_err_offset;
869 	u32			key;
870 };
871 
872 enum ib_mr_status_check {
873 	IB_MR_CHECK_SIG_STATUS = 1,
874 };
875 
876 /**
877  * struct ib_mr_status - Memory region status container
878  *
879  * @fail_status: Bitmask of MR checks status. For each
880  *     failed check a corresponding status bit is set.
881  * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
882  *     failure.
883  */
884 struct ib_mr_status {
885 	u32		    fail_status;
886 	struct ib_sig_err   sig_err;
887 };
888 
889 /**
890  * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
891  * enum.
892  * @mult: multiple to convert.
893  */
894 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
895 
896 enum rdma_ah_attr_type {
897 	RDMA_AH_ATTR_TYPE_UNDEFINED,
898 	RDMA_AH_ATTR_TYPE_IB,
899 	RDMA_AH_ATTR_TYPE_ROCE,
900 	RDMA_AH_ATTR_TYPE_OPA,
901 };
902 
903 struct ib_ah_attr {
904 	u16			dlid;
905 	u8			src_path_bits;
906 };
907 
908 struct roce_ah_attr {
909 	u8			dmac[ETH_ALEN];
910 };
911 
912 struct opa_ah_attr {
913 	u32			dlid;
914 	u8			src_path_bits;
915 	bool			make_grd;
916 };
917 
918 struct rdma_ah_attr {
919 	struct ib_global_route	grh;
920 	u8			sl;
921 	u8			static_rate;
922 	u8			port_num;
923 	u8			ah_flags;
924 	enum rdma_ah_attr_type type;
925 	union {
926 		struct ib_ah_attr ib;
927 		struct roce_ah_attr roce;
928 		struct opa_ah_attr opa;
929 	};
930 };
931 
932 enum ib_wc_status {
933 	IB_WC_SUCCESS,
934 	IB_WC_LOC_LEN_ERR,
935 	IB_WC_LOC_QP_OP_ERR,
936 	IB_WC_LOC_EEC_OP_ERR,
937 	IB_WC_LOC_PROT_ERR,
938 	IB_WC_WR_FLUSH_ERR,
939 	IB_WC_MW_BIND_ERR,
940 	IB_WC_BAD_RESP_ERR,
941 	IB_WC_LOC_ACCESS_ERR,
942 	IB_WC_REM_INV_REQ_ERR,
943 	IB_WC_REM_ACCESS_ERR,
944 	IB_WC_REM_OP_ERR,
945 	IB_WC_RETRY_EXC_ERR,
946 	IB_WC_RNR_RETRY_EXC_ERR,
947 	IB_WC_LOC_RDD_VIOL_ERR,
948 	IB_WC_REM_INV_RD_REQ_ERR,
949 	IB_WC_REM_ABORT_ERR,
950 	IB_WC_INV_EECN_ERR,
951 	IB_WC_INV_EEC_STATE_ERR,
952 	IB_WC_FATAL_ERR,
953 	IB_WC_RESP_TIMEOUT_ERR,
954 	IB_WC_GENERAL_ERR
955 };
956 
957 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
958 
959 enum ib_wc_opcode {
960 	IB_WC_SEND,
961 	IB_WC_RDMA_WRITE,
962 	IB_WC_RDMA_READ,
963 	IB_WC_COMP_SWAP,
964 	IB_WC_FETCH_ADD,
965 	IB_WC_LSO,
966 	IB_WC_LOCAL_INV,
967 	IB_WC_REG_MR,
968 	IB_WC_MASKED_COMP_SWAP,
969 	IB_WC_MASKED_FETCH_ADD,
970 /*
971  * Set value of IB_WC_RECV so consumers can test if a completion is a
972  * receive by testing (opcode & IB_WC_RECV).
973  */
974 	IB_WC_RECV			= 1 << 7,
975 	IB_WC_RECV_RDMA_WITH_IMM
976 };
977 
978 enum ib_wc_flags {
979 	IB_WC_GRH		= 1,
980 	IB_WC_WITH_IMM		= (1<<1),
981 	IB_WC_WITH_INVALIDATE	= (1<<2),
982 	IB_WC_IP_CSUM_OK	= (1<<3),
983 	IB_WC_WITH_SMAC		= (1<<4),
984 	IB_WC_WITH_VLAN		= (1<<5),
985 	IB_WC_WITH_NETWORK_HDR_TYPE	= (1<<6),
986 };
987 
988 struct ib_wc {
989 	union {
990 		u64		wr_id;
991 		struct ib_cqe	*wr_cqe;
992 	};
993 	enum ib_wc_status	status;
994 	enum ib_wc_opcode	opcode;
995 	u32			vendor_err;
996 	u32			byte_len;
997 	struct ib_qp	       *qp;
998 	union {
999 		__be32		imm_data;
1000 		u32		invalidate_rkey;
1001 	} ex;
1002 	u32			src_qp;
1003 	u32			slid;
1004 	int			wc_flags;
1005 	u16			pkey_index;
1006 	u8			sl;
1007 	u8			dlid_path_bits;
1008 	u8			port_num;	/* valid only for DR SMPs on switches */
1009 	u8			smac[ETH_ALEN];
1010 	u16			vlan_id;
1011 	u8			network_hdr_type;
1012 };
1013 
1014 enum ib_cq_notify_flags {
1015 	IB_CQ_SOLICITED			= 1 << 0,
1016 	IB_CQ_NEXT_COMP			= 1 << 1,
1017 	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1018 	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
1019 };
1020 
1021 enum ib_srq_type {
1022 	IB_SRQT_BASIC,
1023 	IB_SRQT_XRC,
1024 	IB_SRQT_TM,
1025 };
1026 
1027 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1028 {
1029 	return srq_type == IB_SRQT_XRC ||
1030 	       srq_type == IB_SRQT_TM;
1031 }
1032 
1033 enum ib_srq_attr_mask {
1034 	IB_SRQ_MAX_WR	= 1 << 0,
1035 	IB_SRQ_LIMIT	= 1 << 1,
1036 };
1037 
1038 struct ib_srq_attr {
1039 	u32	max_wr;
1040 	u32	max_sge;
1041 	u32	srq_limit;
1042 };
1043 
1044 struct ib_srq_init_attr {
1045 	void		      (*event_handler)(struct ib_event *, void *);
1046 	void		       *srq_context;
1047 	struct ib_srq_attr	attr;
1048 	enum ib_srq_type	srq_type;
1049 
1050 	struct {
1051 		struct ib_cq   *cq;
1052 		union {
1053 			struct {
1054 				struct ib_xrcd *xrcd;
1055 			} xrc;
1056 
1057 			struct {
1058 				u32		max_num_tags;
1059 			} tag_matching;
1060 		};
1061 	} ext;
1062 };
1063 
1064 struct ib_qp_cap {
1065 	u32	max_send_wr;
1066 	u32	max_recv_wr;
1067 	u32	max_send_sge;
1068 	u32	max_recv_sge;
1069 	u32	max_inline_data;
1070 
1071 	/*
1072 	 * Maximum number of rdma_rw_ctx structures in flight at a time.
1073 	 * ib_create_qp() will calculate the right amount of neededed WRs
1074 	 * and MRs based on this.
1075 	 */
1076 	u32	max_rdma_ctxs;
1077 };
1078 
1079 enum ib_sig_type {
1080 	IB_SIGNAL_ALL_WR,
1081 	IB_SIGNAL_REQ_WR
1082 };
1083 
1084 enum ib_qp_type {
1085 	/*
1086 	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1087 	 * here (and in that order) since the MAD layer uses them as
1088 	 * indices into a 2-entry table.
1089 	 */
1090 	IB_QPT_SMI,
1091 	IB_QPT_GSI,
1092 
1093 	IB_QPT_RC,
1094 	IB_QPT_UC,
1095 	IB_QPT_UD,
1096 	IB_QPT_RAW_IPV6,
1097 	IB_QPT_RAW_ETHERTYPE,
1098 	IB_QPT_RAW_PACKET = 8,
1099 	IB_QPT_XRC_INI = 9,
1100 	IB_QPT_XRC_TGT,
1101 	IB_QPT_MAX,
1102 	IB_QPT_DRIVER = 0xFF,
1103 	/* Reserve a range for qp types internal to the low level driver.
1104 	 * These qp types will not be visible at the IB core layer, so the
1105 	 * IB_QPT_MAX usages should not be affected in the core layer
1106 	 */
1107 	IB_QPT_RESERVED1 = 0x1000,
1108 	IB_QPT_RESERVED2,
1109 	IB_QPT_RESERVED3,
1110 	IB_QPT_RESERVED4,
1111 	IB_QPT_RESERVED5,
1112 	IB_QPT_RESERVED6,
1113 	IB_QPT_RESERVED7,
1114 	IB_QPT_RESERVED8,
1115 	IB_QPT_RESERVED9,
1116 	IB_QPT_RESERVED10,
1117 };
1118 
1119 enum ib_qp_create_flags {
1120 	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
1121 	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	= 1 << 1,
1122 	IB_QP_CREATE_CROSS_CHANNEL              = 1 << 2,
1123 	IB_QP_CREATE_MANAGED_SEND               = 1 << 3,
1124 	IB_QP_CREATE_MANAGED_RECV               = 1 << 4,
1125 	IB_QP_CREATE_NETIF_QP			= 1 << 5,
1126 	IB_QP_CREATE_SIGNATURE_EN		= 1 << 6,
1127 	/* FREE					= 1 << 7, */
1128 	IB_QP_CREATE_SCATTER_FCS		= 1 << 8,
1129 	IB_QP_CREATE_CVLAN_STRIPPING		= 1 << 9,
1130 	IB_QP_CREATE_SOURCE_QPN			= 1 << 10,
1131 	IB_QP_CREATE_PCI_WRITE_END_PADDING	= 1 << 11,
1132 	/* reserve bits 26-31 for low level drivers' internal use */
1133 	IB_QP_CREATE_RESERVED_START		= 1 << 26,
1134 	IB_QP_CREATE_RESERVED_END		= 1 << 31,
1135 };
1136 
1137 /*
1138  * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1139  * callback to destroy the passed in QP.
1140  */
1141 
1142 struct ib_qp_init_attr {
1143 	/* Consumer's event_handler callback must not block */
1144 	void                  (*event_handler)(struct ib_event *, void *);
1145 
1146 	void		       *qp_context;
1147 	struct ib_cq	       *send_cq;
1148 	struct ib_cq	       *recv_cq;
1149 	struct ib_srq	       *srq;
1150 	struct ib_xrcd	       *xrcd;     /* XRC TGT QPs only */
1151 	struct ib_qp_cap	cap;
1152 	enum ib_sig_type	sq_sig_type;
1153 	enum ib_qp_type		qp_type;
1154 	u32			create_flags;
1155 
1156 	/*
1157 	 * Only needed for special QP types, or when using the RW API.
1158 	 */
1159 	u8			port_num;
1160 	struct ib_rwq_ind_table *rwq_ind_tbl;
1161 	u32			source_qpn;
1162 };
1163 
1164 struct ib_qp_open_attr {
1165 	void                  (*event_handler)(struct ib_event *, void *);
1166 	void		       *qp_context;
1167 	u32			qp_num;
1168 	enum ib_qp_type		qp_type;
1169 };
1170 
1171 enum ib_rnr_timeout {
1172 	IB_RNR_TIMER_655_36 =  0,
1173 	IB_RNR_TIMER_000_01 =  1,
1174 	IB_RNR_TIMER_000_02 =  2,
1175 	IB_RNR_TIMER_000_03 =  3,
1176 	IB_RNR_TIMER_000_04 =  4,
1177 	IB_RNR_TIMER_000_06 =  5,
1178 	IB_RNR_TIMER_000_08 =  6,
1179 	IB_RNR_TIMER_000_12 =  7,
1180 	IB_RNR_TIMER_000_16 =  8,
1181 	IB_RNR_TIMER_000_24 =  9,
1182 	IB_RNR_TIMER_000_32 = 10,
1183 	IB_RNR_TIMER_000_48 = 11,
1184 	IB_RNR_TIMER_000_64 = 12,
1185 	IB_RNR_TIMER_000_96 = 13,
1186 	IB_RNR_TIMER_001_28 = 14,
1187 	IB_RNR_TIMER_001_92 = 15,
1188 	IB_RNR_TIMER_002_56 = 16,
1189 	IB_RNR_TIMER_003_84 = 17,
1190 	IB_RNR_TIMER_005_12 = 18,
1191 	IB_RNR_TIMER_007_68 = 19,
1192 	IB_RNR_TIMER_010_24 = 20,
1193 	IB_RNR_TIMER_015_36 = 21,
1194 	IB_RNR_TIMER_020_48 = 22,
1195 	IB_RNR_TIMER_030_72 = 23,
1196 	IB_RNR_TIMER_040_96 = 24,
1197 	IB_RNR_TIMER_061_44 = 25,
1198 	IB_RNR_TIMER_081_92 = 26,
1199 	IB_RNR_TIMER_122_88 = 27,
1200 	IB_RNR_TIMER_163_84 = 28,
1201 	IB_RNR_TIMER_245_76 = 29,
1202 	IB_RNR_TIMER_327_68 = 30,
1203 	IB_RNR_TIMER_491_52 = 31
1204 };
1205 
1206 enum ib_qp_attr_mask {
1207 	IB_QP_STATE			= 1,
1208 	IB_QP_CUR_STATE			= (1<<1),
1209 	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
1210 	IB_QP_ACCESS_FLAGS		= (1<<3),
1211 	IB_QP_PKEY_INDEX		= (1<<4),
1212 	IB_QP_PORT			= (1<<5),
1213 	IB_QP_QKEY			= (1<<6),
1214 	IB_QP_AV			= (1<<7),
1215 	IB_QP_PATH_MTU			= (1<<8),
1216 	IB_QP_TIMEOUT			= (1<<9),
1217 	IB_QP_RETRY_CNT			= (1<<10),
1218 	IB_QP_RNR_RETRY			= (1<<11),
1219 	IB_QP_RQ_PSN			= (1<<12),
1220 	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
1221 	IB_QP_ALT_PATH			= (1<<14),
1222 	IB_QP_MIN_RNR_TIMER		= (1<<15),
1223 	IB_QP_SQ_PSN			= (1<<16),
1224 	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
1225 	IB_QP_PATH_MIG_STATE		= (1<<18),
1226 	IB_QP_CAP			= (1<<19),
1227 	IB_QP_DEST_QPN			= (1<<20),
1228 	IB_QP_RESERVED1			= (1<<21),
1229 	IB_QP_RESERVED2			= (1<<22),
1230 	IB_QP_RESERVED3			= (1<<23),
1231 	IB_QP_RESERVED4			= (1<<24),
1232 	IB_QP_RATE_LIMIT		= (1<<25),
1233 };
1234 
1235 enum ib_qp_state {
1236 	IB_QPS_RESET,
1237 	IB_QPS_INIT,
1238 	IB_QPS_RTR,
1239 	IB_QPS_RTS,
1240 	IB_QPS_SQD,
1241 	IB_QPS_SQE,
1242 	IB_QPS_ERR
1243 };
1244 
1245 enum ib_mig_state {
1246 	IB_MIG_MIGRATED,
1247 	IB_MIG_REARM,
1248 	IB_MIG_ARMED
1249 };
1250 
1251 enum ib_mw_type {
1252 	IB_MW_TYPE_1 = 1,
1253 	IB_MW_TYPE_2 = 2
1254 };
1255 
1256 struct ib_qp_attr {
1257 	enum ib_qp_state	qp_state;
1258 	enum ib_qp_state	cur_qp_state;
1259 	enum ib_mtu		path_mtu;
1260 	enum ib_mig_state	path_mig_state;
1261 	u32			qkey;
1262 	u32			rq_psn;
1263 	u32			sq_psn;
1264 	u32			dest_qp_num;
1265 	int			qp_access_flags;
1266 	struct ib_qp_cap	cap;
1267 	struct rdma_ah_attr	ah_attr;
1268 	struct rdma_ah_attr	alt_ah_attr;
1269 	u16			pkey_index;
1270 	u16			alt_pkey_index;
1271 	u8			en_sqd_async_notify;
1272 	u8			sq_draining;
1273 	u8			max_rd_atomic;
1274 	u8			max_dest_rd_atomic;
1275 	u8			min_rnr_timer;
1276 	u8			port_num;
1277 	u8			timeout;
1278 	u8			retry_cnt;
1279 	u8			rnr_retry;
1280 	u8			alt_port_num;
1281 	u8			alt_timeout;
1282 	u32			rate_limit;
1283 };
1284 
1285 enum ib_wr_opcode {
1286 	/* These are shared with userspace */
1287 	IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1288 	IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1289 	IB_WR_SEND = IB_UVERBS_WR_SEND,
1290 	IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1291 	IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1292 	IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1293 	IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1294 	IB_WR_LSO = IB_UVERBS_WR_TSO,
1295 	IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1296 	IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1297 	IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1298 	IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1299 		IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1300 	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1301 		IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1302 
1303 	/* These are kernel only and can not be issued by userspace */
1304 	IB_WR_REG_MR = 0x20,
1305 	IB_WR_REG_SIG_MR,
1306 
1307 	/* reserve values for low level drivers' internal use.
1308 	 * These values will not be used at all in the ib core layer.
1309 	 */
1310 	IB_WR_RESERVED1 = 0xf0,
1311 	IB_WR_RESERVED2,
1312 	IB_WR_RESERVED3,
1313 	IB_WR_RESERVED4,
1314 	IB_WR_RESERVED5,
1315 	IB_WR_RESERVED6,
1316 	IB_WR_RESERVED7,
1317 	IB_WR_RESERVED8,
1318 	IB_WR_RESERVED9,
1319 	IB_WR_RESERVED10,
1320 };
1321 
1322 enum ib_send_flags {
1323 	IB_SEND_FENCE		= 1,
1324 	IB_SEND_SIGNALED	= (1<<1),
1325 	IB_SEND_SOLICITED	= (1<<2),
1326 	IB_SEND_INLINE		= (1<<3),
1327 	IB_SEND_IP_CSUM		= (1<<4),
1328 
1329 	/* reserve bits 26-31 for low level drivers' internal use */
1330 	IB_SEND_RESERVED_START	= (1 << 26),
1331 	IB_SEND_RESERVED_END	= (1 << 31),
1332 };
1333 
1334 struct ib_sge {
1335 	u64	addr;
1336 	u32	length;
1337 	u32	lkey;
1338 };
1339 
1340 struct ib_cqe {
1341 	void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1342 };
1343 
1344 struct ib_send_wr {
1345 	struct ib_send_wr      *next;
1346 	union {
1347 		u64		wr_id;
1348 		struct ib_cqe	*wr_cqe;
1349 	};
1350 	struct ib_sge	       *sg_list;
1351 	int			num_sge;
1352 	enum ib_wr_opcode	opcode;
1353 	int			send_flags;
1354 	union {
1355 		__be32		imm_data;
1356 		u32		invalidate_rkey;
1357 	} ex;
1358 };
1359 
1360 struct ib_rdma_wr {
1361 	struct ib_send_wr	wr;
1362 	u64			remote_addr;
1363 	u32			rkey;
1364 };
1365 
1366 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1367 {
1368 	return container_of(wr, struct ib_rdma_wr, wr);
1369 }
1370 
1371 struct ib_atomic_wr {
1372 	struct ib_send_wr	wr;
1373 	u64			remote_addr;
1374 	u64			compare_add;
1375 	u64			swap;
1376 	u64			compare_add_mask;
1377 	u64			swap_mask;
1378 	u32			rkey;
1379 };
1380 
1381 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1382 {
1383 	return container_of(wr, struct ib_atomic_wr, wr);
1384 }
1385 
1386 struct ib_ud_wr {
1387 	struct ib_send_wr	wr;
1388 	struct ib_ah		*ah;
1389 	void			*header;
1390 	int			hlen;
1391 	int			mss;
1392 	u32			remote_qpn;
1393 	u32			remote_qkey;
1394 	u16			pkey_index; /* valid for GSI only */
1395 	u8			port_num;   /* valid for DR SMPs on switch only */
1396 };
1397 
1398 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1399 {
1400 	return container_of(wr, struct ib_ud_wr, wr);
1401 }
1402 
1403 struct ib_reg_wr {
1404 	struct ib_send_wr	wr;
1405 	struct ib_mr		*mr;
1406 	u32			key;
1407 	int			access;
1408 };
1409 
1410 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1411 {
1412 	return container_of(wr, struct ib_reg_wr, wr);
1413 }
1414 
1415 struct ib_sig_handover_wr {
1416 	struct ib_send_wr	wr;
1417 	struct ib_sig_attrs    *sig_attrs;
1418 	struct ib_mr	       *sig_mr;
1419 	int			access_flags;
1420 	struct ib_sge	       *prot;
1421 };
1422 
1423 static inline const struct ib_sig_handover_wr *
1424 sig_handover_wr(const struct ib_send_wr *wr)
1425 {
1426 	return container_of(wr, struct ib_sig_handover_wr, wr);
1427 }
1428 
1429 struct ib_recv_wr {
1430 	struct ib_recv_wr      *next;
1431 	union {
1432 		u64		wr_id;
1433 		struct ib_cqe	*wr_cqe;
1434 	};
1435 	struct ib_sge	       *sg_list;
1436 	int			num_sge;
1437 };
1438 
1439 enum ib_access_flags {
1440 	IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1441 	IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1442 	IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1443 	IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1444 	IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1445 	IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1446 	IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1447 	IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1448 
1449 	IB_ACCESS_SUPPORTED = ((IB_ACCESS_HUGETLB << 1) - 1)
1450 };
1451 
1452 /*
1453  * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1454  * are hidden here instead of a uapi header!
1455  */
1456 enum ib_mr_rereg_flags {
1457 	IB_MR_REREG_TRANS	= 1,
1458 	IB_MR_REREG_PD		= (1<<1),
1459 	IB_MR_REREG_ACCESS	= (1<<2),
1460 	IB_MR_REREG_SUPPORTED	= ((IB_MR_REREG_ACCESS << 1) - 1)
1461 };
1462 
1463 struct ib_fmr_attr {
1464 	int	max_pages;
1465 	int	max_maps;
1466 	u8	page_shift;
1467 };
1468 
1469 struct ib_umem;
1470 
1471 enum rdma_remove_reason {
1472 	/*
1473 	 * Userspace requested uobject deletion or initial try
1474 	 * to remove uobject via cleanup. Call could fail
1475 	 */
1476 	RDMA_REMOVE_DESTROY,
1477 	/* Context deletion. This call should delete the actual object itself */
1478 	RDMA_REMOVE_CLOSE,
1479 	/* Driver is being hot-unplugged. This call should delete the actual object itself */
1480 	RDMA_REMOVE_DRIVER_REMOVE,
1481 	/* uobj is being cleaned-up before being committed */
1482 	RDMA_REMOVE_ABORT,
1483 };
1484 
1485 struct ib_rdmacg_object {
1486 #ifdef CONFIG_CGROUP_RDMA
1487 	struct rdma_cgroup	*cg;		/* owner rdma cgroup */
1488 #endif
1489 };
1490 
1491 struct ib_ucontext {
1492 	struct ib_device       *device;
1493 	struct ib_uverbs_file  *ufile;
1494 	/*
1495 	 * 'closing' can be read by the driver only during a destroy callback,
1496 	 * it is set when we are closing the file descriptor and indicates
1497 	 * that mm_sem may be locked.
1498 	 */
1499 	bool closing;
1500 
1501 	bool cleanup_retryable;
1502 
1503 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1504 	void (*invalidate_range)(struct ib_umem_odp *umem_odp,
1505 				 unsigned long start, unsigned long end);
1506 	struct mutex per_mm_list_lock;
1507 	struct list_head per_mm_list;
1508 #endif
1509 
1510 	struct ib_rdmacg_object	cg_obj;
1511 };
1512 
1513 struct ib_uobject {
1514 	u64			user_handle;	/* handle given to us by userspace */
1515 	/* ufile & ucontext owning this object */
1516 	struct ib_uverbs_file  *ufile;
1517 	/* FIXME, save memory: ufile->context == context */
1518 	struct ib_ucontext     *context;	/* associated user context */
1519 	void		       *object;		/* containing object */
1520 	struct list_head	list;		/* link to context's list */
1521 	struct ib_rdmacg_object	cg_obj;		/* rdmacg object */
1522 	int			id;		/* index into kernel idr */
1523 	struct kref		ref;
1524 	atomic_t		usecnt;		/* protects exclusive access */
1525 	struct rcu_head		rcu;		/* kfree_rcu() overhead */
1526 
1527 	const struct uverbs_api_object *uapi_object;
1528 };
1529 
1530 struct ib_udata {
1531 	const void __user *inbuf;
1532 	void __user *outbuf;
1533 	size_t       inlen;
1534 	size_t       outlen;
1535 };
1536 
1537 struct ib_pd {
1538 	u32			local_dma_lkey;
1539 	u32			flags;
1540 	struct ib_device       *device;
1541 	struct ib_uobject      *uobject;
1542 	atomic_t          	usecnt; /* count all resources */
1543 
1544 	u32			unsafe_global_rkey;
1545 
1546 	/*
1547 	 * Implementation details of the RDMA core, don't use in drivers:
1548 	 */
1549 	struct ib_mr	       *__internal_mr;
1550 	struct rdma_restrack_entry res;
1551 };
1552 
1553 struct ib_xrcd {
1554 	struct ib_device       *device;
1555 	atomic_t		usecnt; /* count all exposed resources */
1556 	struct inode	       *inode;
1557 
1558 	struct mutex		tgt_qp_mutex;
1559 	struct list_head	tgt_qp_list;
1560 };
1561 
1562 struct ib_ah {
1563 	struct ib_device	*device;
1564 	struct ib_pd		*pd;
1565 	struct ib_uobject	*uobject;
1566 	const struct ib_gid_attr *sgid_attr;
1567 	enum rdma_ah_attr_type	type;
1568 };
1569 
1570 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1571 
1572 enum ib_poll_context {
1573 	IB_POLL_DIRECT,		   /* caller context, no hw completions */
1574 	IB_POLL_SOFTIRQ,	   /* poll from softirq context */
1575 	IB_POLL_WORKQUEUE,	   /* poll from workqueue */
1576 	IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1577 };
1578 
1579 struct ib_cq {
1580 	struct ib_device       *device;
1581 	struct ib_uobject      *uobject;
1582 	ib_comp_handler   	comp_handler;
1583 	void                  (*event_handler)(struct ib_event *, void *);
1584 	void                   *cq_context;
1585 	int               	cqe;
1586 	atomic_t          	usecnt; /* count number of work queues */
1587 	enum ib_poll_context	poll_ctx;
1588 	struct ib_wc		*wc;
1589 	union {
1590 		struct irq_poll		iop;
1591 		struct work_struct	work;
1592 	};
1593 	struct workqueue_struct *comp_wq;
1594 	/*
1595 	 * Implementation details of the RDMA core, don't use in drivers:
1596 	 */
1597 	struct rdma_restrack_entry res;
1598 };
1599 
1600 struct ib_srq {
1601 	struct ib_device       *device;
1602 	struct ib_pd	       *pd;
1603 	struct ib_uobject      *uobject;
1604 	void		      (*event_handler)(struct ib_event *, void *);
1605 	void		       *srq_context;
1606 	enum ib_srq_type	srq_type;
1607 	atomic_t		usecnt;
1608 
1609 	struct {
1610 		struct ib_cq   *cq;
1611 		union {
1612 			struct {
1613 				struct ib_xrcd *xrcd;
1614 				u32		srq_num;
1615 			} xrc;
1616 		};
1617 	} ext;
1618 };
1619 
1620 enum ib_raw_packet_caps {
1621 	/* Strip cvlan from incoming packet and report it in the matching work
1622 	 * completion is supported.
1623 	 */
1624 	IB_RAW_PACKET_CAP_CVLAN_STRIPPING	= (1 << 0),
1625 	/* Scatter FCS field of an incoming packet to host memory is supported.
1626 	 */
1627 	IB_RAW_PACKET_CAP_SCATTER_FCS		= (1 << 1),
1628 	/* Checksum offloads are supported (for both send and receive). */
1629 	IB_RAW_PACKET_CAP_IP_CSUM		= (1 << 2),
1630 	/* When a packet is received for an RQ with no receive WQEs, the
1631 	 * packet processing is delayed.
1632 	 */
1633 	IB_RAW_PACKET_CAP_DELAY_DROP		= (1 << 3),
1634 };
1635 
1636 enum ib_wq_type {
1637 	IB_WQT_RQ
1638 };
1639 
1640 enum ib_wq_state {
1641 	IB_WQS_RESET,
1642 	IB_WQS_RDY,
1643 	IB_WQS_ERR
1644 };
1645 
1646 struct ib_wq {
1647 	struct ib_device       *device;
1648 	struct ib_uobject      *uobject;
1649 	void		    *wq_context;
1650 	void		    (*event_handler)(struct ib_event *, void *);
1651 	struct ib_pd	       *pd;
1652 	struct ib_cq	       *cq;
1653 	u32		wq_num;
1654 	enum ib_wq_state       state;
1655 	enum ib_wq_type	wq_type;
1656 	atomic_t		usecnt;
1657 };
1658 
1659 enum ib_wq_flags {
1660 	IB_WQ_FLAGS_CVLAN_STRIPPING	= 1 << 0,
1661 	IB_WQ_FLAGS_SCATTER_FCS		= 1 << 1,
1662 	IB_WQ_FLAGS_DELAY_DROP		= 1 << 2,
1663 	IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3,
1664 };
1665 
1666 struct ib_wq_init_attr {
1667 	void		       *wq_context;
1668 	enum ib_wq_type	wq_type;
1669 	u32		max_wr;
1670 	u32		max_sge;
1671 	struct	ib_cq	       *cq;
1672 	void		    (*event_handler)(struct ib_event *, void *);
1673 	u32		create_flags; /* Use enum ib_wq_flags */
1674 };
1675 
1676 enum ib_wq_attr_mask {
1677 	IB_WQ_STATE		= 1 << 0,
1678 	IB_WQ_CUR_STATE		= 1 << 1,
1679 	IB_WQ_FLAGS		= 1 << 2,
1680 };
1681 
1682 struct ib_wq_attr {
1683 	enum	ib_wq_state	wq_state;
1684 	enum	ib_wq_state	curr_wq_state;
1685 	u32			flags; /* Use enum ib_wq_flags */
1686 	u32			flags_mask; /* Use enum ib_wq_flags */
1687 };
1688 
1689 struct ib_rwq_ind_table {
1690 	struct ib_device	*device;
1691 	struct ib_uobject      *uobject;
1692 	atomic_t		usecnt;
1693 	u32		ind_tbl_num;
1694 	u32		log_ind_tbl_size;
1695 	struct ib_wq	**ind_tbl;
1696 };
1697 
1698 struct ib_rwq_ind_table_init_attr {
1699 	u32		log_ind_tbl_size;
1700 	/* Each entry is a pointer to Receive Work Queue */
1701 	struct ib_wq	**ind_tbl;
1702 };
1703 
1704 enum port_pkey_state {
1705 	IB_PORT_PKEY_NOT_VALID = 0,
1706 	IB_PORT_PKEY_VALID = 1,
1707 	IB_PORT_PKEY_LISTED = 2,
1708 };
1709 
1710 struct ib_qp_security;
1711 
1712 struct ib_port_pkey {
1713 	enum port_pkey_state	state;
1714 	u16			pkey_index;
1715 	u8			port_num;
1716 	struct list_head	qp_list;
1717 	struct list_head	to_error_list;
1718 	struct ib_qp_security  *sec;
1719 };
1720 
1721 struct ib_ports_pkeys {
1722 	struct ib_port_pkey	main;
1723 	struct ib_port_pkey	alt;
1724 };
1725 
1726 struct ib_qp_security {
1727 	struct ib_qp	       *qp;
1728 	struct ib_device       *dev;
1729 	/* Hold this mutex when changing port and pkey settings. */
1730 	struct mutex		mutex;
1731 	struct ib_ports_pkeys  *ports_pkeys;
1732 	/* A list of all open shared QP handles.  Required to enforce security
1733 	 * properly for all users of a shared QP.
1734 	 */
1735 	struct list_head        shared_qp_list;
1736 	void                   *security;
1737 	bool			destroying;
1738 	atomic_t		error_list_count;
1739 	struct completion	error_complete;
1740 	int			error_comps_pending;
1741 };
1742 
1743 /*
1744  * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1745  * @max_read_sge:  Maximum SGE elements per RDMA READ request.
1746  */
1747 struct ib_qp {
1748 	struct ib_device       *device;
1749 	struct ib_pd	       *pd;
1750 	struct ib_cq	       *send_cq;
1751 	struct ib_cq	       *recv_cq;
1752 	spinlock_t		mr_lock;
1753 	int			mrs_used;
1754 	struct list_head	rdma_mrs;
1755 	struct list_head	sig_mrs;
1756 	struct ib_srq	       *srq;
1757 	struct ib_xrcd	       *xrcd; /* XRC TGT QPs only */
1758 	struct list_head	xrcd_list;
1759 
1760 	/* count times opened, mcast attaches, flow attaches */
1761 	atomic_t		usecnt;
1762 	struct list_head	open_list;
1763 	struct ib_qp           *real_qp;
1764 	struct ib_uobject      *uobject;
1765 	void                  (*event_handler)(struct ib_event *, void *);
1766 	void		       *qp_context;
1767 	/* sgid_attrs associated with the AV's */
1768 	const struct ib_gid_attr *av_sgid_attr;
1769 	const struct ib_gid_attr *alt_path_sgid_attr;
1770 	u32			qp_num;
1771 	u32			max_write_sge;
1772 	u32			max_read_sge;
1773 	enum ib_qp_type		qp_type;
1774 	struct ib_rwq_ind_table *rwq_ind_tbl;
1775 	struct ib_qp_security  *qp_sec;
1776 	u8			port;
1777 
1778 	/*
1779 	 * Implementation details of the RDMA core, don't use in drivers:
1780 	 */
1781 	struct rdma_restrack_entry     res;
1782 };
1783 
1784 struct ib_dm {
1785 	struct ib_device  *device;
1786 	u32		   length;
1787 	u32		   flags;
1788 	struct ib_uobject *uobject;
1789 	atomic_t	   usecnt;
1790 };
1791 
1792 struct ib_mr {
1793 	struct ib_device  *device;
1794 	struct ib_pd	  *pd;
1795 	u32		   lkey;
1796 	u32		   rkey;
1797 	u64		   iova;
1798 	u64		   length;
1799 	unsigned int	   page_size;
1800 	bool		   need_inval;
1801 	union {
1802 		struct ib_uobject	*uobject;	/* user */
1803 		struct list_head	qp_entry;	/* FR */
1804 	};
1805 
1806 	struct ib_dm      *dm;
1807 
1808 	/*
1809 	 * Implementation details of the RDMA core, don't use in drivers:
1810 	 */
1811 	struct rdma_restrack_entry res;
1812 };
1813 
1814 struct ib_mw {
1815 	struct ib_device	*device;
1816 	struct ib_pd		*pd;
1817 	struct ib_uobject	*uobject;
1818 	u32			rkey;
1819 	enum ib_mw_type         type;
1820 };
1821 
1822 struct ib_fmr {
1823 	struct ib_device	*device;
1824 	struct ib_pd		*pd;
1825 	struct list_head	list;
1826 	u32			lkey;
1827 	u32			rkey;
1828 };
1829 
1830 /* Supported steering options */
1831 enum ib_flow_attr_type {
1832 	/* steering according to rule specifications */
1833 	IB_FLOW_ATTR_NORMAL		= 0x0,
1834 	/* default unicast and multicast rule -
1835 	 * receive all Eth traffic which isn't steered to any QP
1836 	 */
1837 	IB_FLOW_ATTR_ALL_DEFAULT	= 0x1,
1838 	/* default multicast rule -
1839 	 * receive all Eth multicast traffic which isn't steered to any QP
1840 	 */
1841 	IB_FLOW_ATTR_MC_DEFAULT		= 0x2,
1842 	/* sniffer rule - receive all port traffic */
1843 	IB_FLOW_ATTR_SNIFFER		= 0x3
1844 };
1845 
1846 /* Supported steering header types */
1847 enum ib_flow_spec_type {
1848 	/* L2 headers*/
1849 	IB_FLOW_SPEC_ETH		= 0x20,
1850 	IB_FLOW_SPEC_IB			= 0x22,
1851 	/* L3 header*/
1852 	IB_FLOW_SPEC_IPV4		= 0x30,
1853 	IB_FLOW_SPEC_IPV6		= 0x31,
1854 	IB_FLOW_SPEC_ESP                = 0x34,
1855 	/* L4 headers*/
1856 	IB_FLOW_SPEC_TCP		= 0x40,
1857 	IB_FLOW_SPEC_UDP		= 0x41,
1858 	IB_FLOW_SPEC_VXLAN_TUNNEL	= 0x50,
1859 	IB_FLOW_SPEC_GRE		= 0x51,
1860 	IB_FLOW_SPEC_MPLS		= 0x60,
1861 	IB_FLOW_SPEC_INNER		= 0x100,
1862 	/* Actions */
1863 	IB_FLOW_SPEC_ACTION_TAG         = 0x1000,
1864 	IB_FLOW_SPEC_ACTION_DROP        = 0x1001,
1865 	IB_FLOW_SPEC_ACTION_HANDLE	= 0x1002,
1866 	IB_FLOW_SPEC_ACTION_COUNT       = 0x1003,
1867 };
1868 #define IB_FLOW_SPEC_LAYER_MASK	0xF0
1869 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1870 
1871 /* Flow steering rule priority is set according to it's domain.
1872  * Lower domain value means higher priority.
1873  */
1874 enum ib_flow_domain {
1875 	IB_FLOW_DOMAIN_USER,
1876 	IB_FLOW_DOMAIN_ETHTOOL,
1877 	IB_FLOW_DOMAIN_RFS,
1878 	IB_FLOW_DOMAIN_NIC,
1879 	IB_FLOW_DOMAIN_NUM /* Must be last */
1880 };
1881 
1882 enum ib_flow_flags {
1883 	IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1884 	IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1885 	IB_FLOW_ATTR_FLAGS_RESERVED  = 1UL << 3  /* Must be last */
1886 };
1887 
1888 struct ib_flow_eth_filter {
1889 	u8	dst_mac[6];
1890 	u8	src_mac[6];
1891 	__be16	ether_type;
1892 	__be16	vlan_tag;
1893 	/* Must be last */
1894 	u8	real_sz[0];
1895 };
1896 
1897 struct ib_flow_spec_eth {
1898 	u32			  type;
1899 	u16			  size;
1900 	struct ib_flow_eth_filter val;
1901 	struct ib_flow_eth_filter mask;
1902 };
1903 
1904 struct ib_flow_ib_filter {
1905 	__be16 dlid;
1906 	__u8   sl;
1907 	/* Must be last */
1908 	u8	real_sz[0];
1909 };
1910 
1911 struct ib_flow_spec_ib {
1912 	u32			 type;
1913 	u16			 size;
1914 	struct ib_flow_ib_filter val;
1915 	struct ib_flow_ib_filter mask;
1916 };
1917 
1918 /* IPv4 header flags */
1919 enum ib_ipv4_flags {
1920 	IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1921 	IB_IPV4_MORE_FRAG = 0X4  /* For All fragmented packets except the
1922 				    last have this flag set */
1923 };
1924 
1925 struct ib_flow_ipv4_filter {
1926 	__be32	src_ip;
1927 	__be32	dst_ip;
1928 	u8	proto;
1929 	u8	tos;
1930 	u8	ttl;
1931 	u8	flags;
1932 	/* Must be last */
1933 	u8	real_sz[0];
1934 };
1935 
1936 struct ib_flow_spec_ipv4 {
1937 	u32			   type;
1938 	u16			   size;
1939 	struct ib_flow_ipv4_filter val;
1940 	struct ib_flow_ipv4_filter mask;
1941 };
1942 
1943 struct ib_flow_ipv6_filter {
1944 	u8	src_ip[16];
1945 	u8	dst_ip[16];
1946 	__be32	flow_label;
1947 	u8	next_hdr;
1948 	u8	traffic_class;
1949 	u8	hop_limit;
1950 	/* Must be last */
1951 	u8	real_sz[0];
1952 };
1953 
1954 struct ib_flow_spec_ipv6 {
1955 	u32			   type;
1956 	u16			   size;
1957 	struct ib_flow_ipv6_filter val;
1958 	struct ib_flow_ipv6_filter mask;
1959 };
1960 
1961 struct ib_flow_tcp_udp_filter {
1962 	__be16	dst_port;
1963 	__be16	src_port;
1964 	/* Must be last */
1965 	u8	real_sz[0];
1966 };
1967 
1968 struct ib_flow_spec_tcp_udp {
1969 	u32			      type;
1970 	u16			      size;
1971 	struct ib_flow_tcp_udp_filter val;
1972 	struct ib_flow_tcp_udp_filter mask;
1973 };
1974 
1975 struct ib_flow_tunnel_filter {
1976 	__be32	tunnel_id;
1977 	u8	real_sz[0];
1978 };
1979 
1980 /* ib_flow_spec_tunnel describes the Vxlan tunnel
1981  * the tunnel_id from val has the vni value
1982  */
1983 struct ib_flow_spec_tunnel {
1984 	u32			      type;
1985 	u16			      size;
1986 	struct ib_flow_tunnel_filter  val;
1987 	struct ib_flow_tunnel_filter  mask;
1988 };
1989 
1990 struct ib_flow_esp_filter {
1991 	__be32	spi;
1992 	__be32  seq;
1993 	/* Must be last */
1994 	u8	real_sz[0];
1995 };
1996 
1997 struct ib_flow_spec_esp {
1998 	u32                           type;
1999 	u16			      size;
2000 	struct ib_flow_esp_filter     val;
2001 	struct ib_flow_esp_filter     mask;
2002 };
2003 
2004 struct ib_flow_gre_filter {
2005 	__be16 c_ks_res0_ver;
2006 	__be16 protocol;
2007 	__be32 key;
2008 	/* Must be last */
2009 	u8	real_sz[0];
2010 };
2011 
2012 struct ib_flow_spec_gre {
2013 	u32                           type;
2014 	u16			      size;
2015 	struct ib_flow_gre_filter     val;
2016 	struct ib_flow_gre_filter     mask;
2017 };
2018 
2019 struct ib_flow_mpls_filter {
2020 	__be32 tag;
2021 	/* Must be last */
2022 	u8	real_sz[0];
2023 };
2024 
2025 struct ib_flow_spec_mpls {
2026 	u32                           type;
2027 	u16			      size;
2028 	struct ib_flow_mpls_filter     val;
2029 	struct ib_flow_mpls_filter     mask;
2030 };
2031 
2032 struct ib_flow_spec_action_tag {
2033 	enum ib_flow_spec_type	      type;
2034 	u16			      size;
2035 	u32                           tag_id;
2036 };
2037 
2038 struct ib_flow_spec_action_drop {
2039 	enum ib_flow_spec_type	      type;
2040 	u16			      size;
2041 };
2042 
2043 struct ib_flow_spec_action_handle {
2044 	enum ib_flow_spec_type	      type;
2045 	u16			      size;
2046 	struct ib_flow_action	     *act;
2047 };
2048 
2049 enum ib_counters_description {
2050 	IB_COUNTER_PACKETS,
2051 	IB_COUNTER_BYTES,
2052 };
2053 
2054 struct ib_flow_spec_action_count {
2055 	enum ib_flow_spec_type type;
2056 	u16 size;
2057 	struct ib_counters *counters;
2058 };
2059 
2060 union ib_flow_spec {
2061 	struct {
2062 		u32			type;
2063 		u16			size;
2064 	};
2065 	struct ib_flow_spec_eth		eth;
2066 	struct ib_flow_spec_ib		ib;
2067 	struct ib_flow_spec_ipv4        ipv4;
2068 	struct ib_flow_spec_tcp_udp	tcp_udp;
2069 	struct ib_flow_spec_ipv6        ipv6;
2070 	struct ib_flow_spec_tunnel      tunnel;
2071 	struct ib_flow_spec_esp		esp;
2072 	struct ib_flow_spec_gre		gre;
2073 	struct ib_flow_spec_mpls	mpls;
2074 	struct ib_flow_spec_action_tag  flow_tag;
2075 	struct ib_flow_spec_action_drop drop;
2076 	struct ib_flow_spec_action_handle action;
2077 	struct ib_flow_spec_action_count flow_count;
2078 };
2079 
2080 struct ib_flow_attr {
2081 	enum ib_flow_attr_type type;
2082 	u16	     size;
2083 	u16	     priority;
2084 	u32	     flags;
2085 	u8	     num_of_specs;
2086 	u8	     port;
2087 	union ib_flow_spec flows[];
2088 };
2089 
2090 struct ib_flow {
2091 	struct ib_qp		*qp;
2092 	struct ib_device	*device;
2093 	struct ib_uobject	*uobject;
2094 };
2095 
2096 enum ib_flow_action_type {
2097 	IB_FLOW_ACTION_UNSPECIFIED,
2098 	IB_FLOW_ACTION_ESP = 1,
2099 };
2100 
2101 struct ib_flow_action_attrs_esp_keymats {
2102 	enum ib_uverbs_flow_action_esp_keymat			protocol;
2103 	union {
2104 		struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2105 	} keymat;
2106 };
2107 
2108 struct ib_flow_action_attrs_esp_replays {
2109 	enum ib_uverbs_flow_action_esp_replay			protocol;
2110 	union {
2111 		struct ib_uverbs_flow_action_esp_replay_bmp	bmp;
2112 	} replay;
2113 };
2114 
2115 enum ib_flow_action_attrs_esp_flags {
2116 	/* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2117 	 * This is done in order to share the same flags between user-space and
2118 	 * kernel and spare an unnecessary translation.
2119 	 */
2120 
2121 	/* Kernel flags */
2122 	IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED	= 1ULL << 32,
2123 	IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS	= 1ULL << 33,
2124 };
2125 
2126 struct ib_flow_spec_list {
2127 	struct ib_flow_spec_list	*next;
2128 	union ib_flow_spec		spec;
2129 };
2130 
2131 struct ib_flow_action_attrs_esp {
2132 	struct ib_flow_action_attrs_esp_keymats		*keymat;
2133 	struct ib_flow_action_attrs_esp_replays		*replay;
2134 	struct ib_flow_spec_list			*encap;
2135 	/* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2136 	 * Value of 0 is a valid value.
2137 	 */
2138 	u32						esn;
2139 	u32						spi;
2140 	u32						seq;
2141 	u32						tfc_pad;
2142 	/* Use enum ib_flow_action_attrs_esp_flags */
2143 	u64						flags;
2144 	u64						hard_limit_pkts;
2145 };
2146 
2147 struct ib_flow_action {
2148 	struct ib_device		*device;
2149 	struct ib_uobject		*uobject;
2150 	enum ib_flow_action_type	type;
2151 	atomic_t			usecnt;
2152 };
2153 
2154 struct ib_mad_hdr;
2155 struct ib_grh;
2156 
2157 enum ib_process_mad_flags {
2158 	IB_MAD_IGNORE_MKEY	= 1,
2159 	IB_MAD_IGNORE_BKEY	= 2,
2160 	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2161 };
2162 
2163 enum ib_mad_result {
2164 	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
2165 	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
2166 	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
2167 	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
2168 };
2169 
2170 struct ib_port_cache {
2171 	u64		      subnet_prefix;
2172 	struct ib_pkey_cache  *pkey;
2173 	struct ib_gid_table   *gid;
2174 	u8                     lmc;
2175 	enum ib_port_state     port_state;
2176 };
2177 
2178 struct ib_cache {
2179 	rwlock_t                lock;
2180 	struct ib_event_handler event_handler;
2181 	struct ib_port_cache   *ports;
2182 };
2183 
2184 struct iw_cm_verbs;
2185 
2186 struct ib_port_immutable {
2187 	int                           pkey_tbl_len;
2188 	int                           gid_tbl_len;
2189 	u32                           core_cap_flags;
2190 	u32                           max_mad_size;
2191 };
2192 
2193 /* rdma netdev type - specifies protocol type */
2194 enum rdma_netdev_t {
2195 	RDMA_NETDEV_OPA_VNIC,
2196 	RDMA_NETDEV_IPOIB,
2197 };
2198 
2199 /**
2200  * struct rdma_netdev - rdma netdev
2201  * For cases where netstack interfacing is required.
2202  */
2203 struct rdma_netdev {
2204 	void              *clnt_priv;
2205 	struct ib_device  *hca;
2206 	u8                 port_num;
2207 
2208 	/*
2209 	 * cleanup function must be specified.
2210 	 * FIXME: This is only used for OPA_VNIC and that usage should be
2211 	 * removed too.
2212 	 */
2213 	void (*free_rdma_netdev)(struct net_device *netdev);
2214 
2215 	/* control functions */
2216 	void (*set_id)(struct net_device *netdev, int id);
2217 	/* send packet */
2218 	int (*send)(struct net_device *dev, struct sk_buff *skb,
2219 		    struct ib_ah *address, u32 dqpn);
2220 	/* multicast */
2221 	int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2222 			    union ib_gid *gid, u16 mlid,
2223 			    int set_qkey, u32 qkey);
2224 	int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2225 			    union ib_gid *gid, u16 mlid);
2226 };
2227 
2228 struct rdma_netdev_alloc_params {
2229 	size_t sizeof_priv;
2230 	unsigned int txqs;
2231 	unsigned int rxqs;
2232 	void *param;
2233 
2234 	int (*initialize_rdma_netdev)(struct ib_device *device, u8 port_num,
2235 				      struct net_device *netdev, void *param);
2236 };
2237 
2238 struct ib_port_pkey_list {
2239 	/* Lock to hold while modifying the list. */
2240 	spinlock_t                    list_lock;
2241 	struct list_head              pkey_list;
2242 };
2243 
2244 struct ib_counters {
2245 	struct ib_device	*device;
2246 	struct ib_uobject	*uobject;
2247 	/* num of objects attached */
2248 	atomic_t	usecnt;
2249 };
2250 
2251 struct ib_counters_read_attr {
2252 	u64	*counters_buff;
2253 	u32	ncounters;
2254 	u32	flags; /* use enum ib_read_counters_flags */
2255 };
2256 
2257 struct uverbs_attr_bundle;
2258 
2259 struct ib_device {
2260 	/* Do not access @dma_device directly from ULP nor from HW drivers. */
2261 	struct device                *dma_device;
2262 
2263 	char                          name[IB_DEVICE_NAME_MAX];
2264 
2265 	struct list_head              event_handler_list;
2266 	spinlock_t                    event_handler_lock;
2267 
2268 	rwlock_t			client_data_lock;
2269 	struct list_head              core_list;
2270 	/* Access to the client_data_list is protected by the client_data_lock
2271 	 * rwlock and the lists_rwsem read-write semaphore
2272 	 */
2273 	struct list_head              client_data_list;
2274 
2275 	struct ib_cache               cache;
2276 	/**
2277 	 * port_immutable is indexed by port number
2278 	 */
2279 	struct ib_port_immutable     *port_immutable;
2280 
2281 	int			      num_comp_vectors;
2282 
2283 	struct ib_port_pkey_list     *port_pkey_list;
2284 
2285 	struct iw_cm_verbs	     *iwcm;
2286 
2287 	/**
2288 	 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2289 	 *   driver initialized data.  The struct is kfree()'ed by the sysfs
2290 	 *   core when the device is removed.  A lifespan of -1 in the return
2291 	 *   struct tells the core to set a default lifespan.
2292 	 */
2293 	struct rdma_hw_stats      *(*alloc_hw_stats)(struct ib_device *device,
2294 						     u8 port_num);
2295 	/**
2296 	 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2297 	 * @index - The index in the value array we wish to have updated, or
2298 	 *   num_counters if we want all stats updated
2299 	 * Return codes -
2300 	 *   < 0 - Error, no counters updated
2301 	 *   index - Updated the single counter pointed to by index
2302 	 *   num_counters - Updated all counters (will reset the timestamp
2303 	 *     and prevent further calls for lifespan milliseconds)
2304 	 * Drivers are allowed to update all counters in leiu of just the
2305 	 *   one given in index at their option
2306 	 */
2307 	int		           (*get_hw_stats)(struct ib_device *device,
2308 						   struct rdma_hw_stats *stats,
2309 						   u8 port, int index);
2310 	int		           (*query_device)(struct ib_device *device,
2311 						   struct ib_device_attr *device_attr,
2312 						   struct ib_udata *udata);
2313 	int		           (*query_port)(struct ib_device *device,
2314 						 u8 port_num,
2315 						 struct ib_port_attr *port_attr);
2316 	enum rdma_link_layer	   (*get_link_layer)(struct ib_device *device,
2317 						     u8 port_num);
2318 	/* When calling get_netdev, the HW vendor's driver should return the
2319 	 * net device of device @device at port @port_num or NULL if such
2320 	 * a net device doesn't exist. The vendor driver should call dev_hold
2321 	 * on this net device. The HW vendor's device driver must guarantee
2322 	 * that this function returns NULL before the net device has finished
2323 	 * NETDEV_UNREGISTER state.
2324 	 */
2325 	struct net_device	  *(*get_netdev)(struct ib_device *device,
2326 						 u8 port_num);
2327 	/* query_gid should be return GID value for @device, when @port_num
2328 	 * link layer is either IB or iWarp. It is no-op if @port_num port
2329 	 * is RoCE link layer.
2330 	 */
2331 	int		           (*query_gid)(struct ib_device *device,
2332 						u8 port_num, int index,
2333 						union ib_gid *gid);
2334 	/* When calling add_gid, the HW vendor's driver should add the gid
2335 	 * of device of port at gid index available at @attr. Meta-info of
2336 	 * that gid (for example, the network device related to this gid) is
2337 	 * available at @attr. @context allows the HW vendor driver to store
2338 	 * extra information together with a GID entry. The HW vendor driver may
2339 	 * allocate memory to contain this information and store it in @context
2340 	 * when a new GID entry is written to. Params are consistent until the
2341 	 * next call of add_gid or delete_gid. The function should return 0 on
2342 	 * success or error otherwise. The function could be called
2343 	 * concurrently for different ports. This function is only called when
2344 	 * roce_gid_table is used.
2345 	 */
2346 	int		           (*add_gid)(const struct ib_gid_attr *attr,
2347 					      void **context);
2348 	/* When calling del_gid, the HW vendor's driver should delete the
2349 	 * gid of device @device at gid index gid_index of port port_num
2350 	 * available in @attr.
2351 	 * Upon the deletion of a GID entry, the HW vendor must free any
2352 	 * allocated memory. The caller will clear @context afterwards.
2353 	 * This function is only called when roce_gid_table is used.
2354 	 */
2355 	int		           (*del_gid)(const struct ib_gid_attr *attr,
2356 					      void **context);
2357 	int		           (*query_pkey)(struct ib_device *device,
2358 						 u8 port_num, u16 index, u16 *pkey);
2359 	int		           (*modify_device)(struct ib_device *device,
2360 						    int device_modify_mask,
2361 						    struct ib_device_modify *device_modify);
2362 	int		           (*modify_port)(struct ib_device *device,
2363 						  u8 port_num, int port_modify_mask,
2364 						  struct ib_port_modify *port_modify);
2365 	struct ib_ucontext *       (*alloc_ucontext)(struct ib_device *device,
2366 						     struct ib_udata *udata);
2367 	int                        (*dealloc_ucontext)(struct ib_ucontext *context);
2368 	int                        (*mmap)(struct ib_ucontext *context,
2369 					   struct vm_area_struct *vma);
2370 	struct ib_pd *             (*alloc_pd)(struct ib_device *device,
2371 					       struct ib_ucontext *context,
2372 					       struct ib_udata *udata);
2373 	int                        (*dealloc_pd)(struct ib_pd *pd);
2374 	struct ib_ah *             (*create_ah)(struct ib_pd *pd,
2375 						struct rdma_ah_attr *ah_attr,
2376 						struct ib_udata *udata);
2377 	int                        (*modify_ah)(struct ib_ah *ah,
2378 						struct rdma_ah_attr *ah_attr);
2379 	int                        (*query_ah)(struct ib_ah *ah,
2380 					       struct rdma_ah_attr *ah_attr);
2381 	int                        (*destroy_ah)(struct ib_ah *ah);
2382 	struct ib_srq *            (*create_srq)(struct ib_pd *pd,
2383 						 struct ib_srq_init_attr *srq_init_attr,
2384 						 struct ib_udata *udata);
2385 	int                        (*modify_srq)(struct ib_srq *srq,
2386 						 struct ib_srq_attr *srq_attr,
2387 						 enum ib_srq_attr_mask srq_attr_mask,
2388 						 struct ib_udata *udata);
2389 	int                        (*query_srq)(struct ib_srq *srq,
2390 						struct ib_srq_attr *srq_attr);
2391 	int                        (*destroy_srq)(struct ib_srq *srq);
2392 	int                        (*post_srq_recv)(struct ib_srq *srq,
2393 						    const struct ib_recv_wr *recv_wr,
2394 						    const struct ib_recv_wr **bad_recv_wr);
2395 	struct ib_qp *             (*create_qp)(struct ib_pd *pd,
2396 						struct ib_qp_init_attr *qp_init_attr,
2397 						struct ib_udata *udata);
2398 	int                        (*modify_qp)(struct ib_qp *qp,
2399 						struct ib_qp_attr *qp_attr,
2400 						int qp_attr_mask,
2401 						struct ib_udata *udata);
2402 	int                        (*query_qp)(struct ib_qp *qp,
2403 					       struct ib_qp_attr *qp_attr,
2404 					       int qp_attr_mask,
2405 					       struct ib_qp_init_attr *qp_init_attr);
2406 	int                        (*destroy_qp)(struct ib_qp *qp);
2407 	int                        (*post_send)(struct ib_qp *qp,
2408 						const struct ib_send_wr *send_wr,
2409 						const struct ib_send_wr **bad_send_wr);
2410 	int                        (*post_recv)(struct ib_qp *qp,
2411 						const struct ib_recv_wr *recv_wr,
2412 						const struct ib_recv_wr **bad_recv_wr);
2413 	struct ib_cq *             (*create_cq)(struct ib_device *device,
2414 						const struct ib_cq_init_attr *attr,
2415 						struct ib_ucontext *context,
2416 						struct ib_udata *udata);
2417 	int                        (*modify_cq)(struct ib_cq *cq, u16 cq_count,
2418 						u16 cq_period);
2419 	int                        (*destroy_cq)(struct ib_cq *cq);
2420 	int                        (*resize_cq)(struct ib_cq *cq, int cqe,
2421 						struct ib_udata *udata);
2422 	int                        (*poll_cq)(struct ib_cq *cq, int num_entries,
2423 					      struct ib_wc *wc);
2424 	int                        (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2425 	int                        (*req_notify_cq)(struct ib_cq *cq,
2426 						    enum ib_cq_notify_flags flags);
2427 	int                        (*req_ncomp_notif)(struct ib_cq *cq,
2428 						      int wc_cnt);
2429 	struct ib_mr *             (*get_dma_mr)(struct ib_pd *pd,
2430 						 int mr_access_flags);
2431 	struct ib_mr *             (*reg_user_mr)(struct ib_pd *pd,
2432 						  u64 start, u64 length,
2433 						  u64 virt_addr,
2434 						  int mr_access_flags,
2435 						  struct ib_udata *udata);
2436 	int			   (*rereg_user_mr)(struct ib_mr *mr,
2437 						    int flags,
2438 						    u64 start, u64 length,
2439 						    u64 virt_addr,
2440 						    int mr_access_flags,
2441 						    struct ib_pd *pd,
2442 						    struct ib_udata *udata);
2443 	int                        (*dereg_mr)(struct ib_mr *mr);
2444 	struct ib_mr *		   (*alloc_mr)(struct ib_pd *pd,
2445 					       enum ib_mr_type mr_type,
2446 					       u32 max_num_sg);
2447 	int                        (*map_mr_sg)(struct ib_mr *mr,
2448 						struct scatterlist *sg,
2449 						int sg_nents,
2450 						unsigned int *sg_offset);
2451 	struct ib_mw *             (*alloc_mw)(struct ib_pd *pd,
2452 					       enum ib_mw_type type,
2453 					       struct ib_udata *udata);
2454 	int                        (*dealloc_mw)(struct ib_mw *mw);
2455 	struct ib_fmr *	           (*alloc_fmr)(struct ib_pd *pd,
2456 						int mr_access_flags,
2457 						struct ib_fmr_attr *fmr_attr);
2458 	int		           (*map_phys_fmr)(struct ib_fmr *fmr,
2459 						   u64 *page_list, int list_len,
2460 						   u64 iova);
2461 	int		           (*unmap_fmr)(struct list_head *fmr_list);
2462 	int		           (*dealloc_fmr)(struct ib_fmr *fmr);
2463 	int                        (*attach_mcast)(struct ib_qp *qp,
2464 						   union ib_gid *gid,
2465 						   u16 lid);
2466 	int                        (*detach_mcast)(struct ib_qp *qp,
2467 						   union ib_gid *gid,
2468 						   u16 lid);
2469 	int                        (*process_mad)(struct ib_device *device,
2470 						  int process_mad_flags,
2471 						  u8 port_num,
2472 						  const struct ib_wc *in_wc,
2473 						  const struct ib_grh *in_grh,
2474 						  const struct ib_mad_hdr *in_mad,
2475 						  size_t in_mad_size,
2476 						  struct ib_mad_hdr *out_mad,
2477 						  size_t *out_mad_size,
2478 						  u16 *out_mad_pkey_index);
2479 	struct ib_xrcd *	   (*alloc_xrcd)(struct ib_device *device,
2480 						 struct ib_ucontext *ucontext,
2481 						 struct ib_udata *udata);
2482 	int			   (*dealloc_xrcd)(struct ib_xrcd *xrcd);
2483 	struct ib_flow *	   (*create_flow)(struct ib_qp *qp,
2484 						  struct ib_flow_attr
2485 						  *flow_attr,
2486 						  int domain,
2487 						  struct ib_udata *udata);
2488 	int			   (*destroy_flow)(struct ib_flow *flow_id);
2489 	int			   (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2490 						      struct ib_mr_status *mr_status);
2491 	void			   (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2492 	void			   (*drain_rq)(struct ib_qp *qp);
2493 	void			   (*drain_sq)(struct ib_qp *qp);
2494 	int			   (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2495 							int state);
2496 	int			   (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2497 						   struct ifla_vf_info *ivf);
2498 	int			   (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2499 						   struct ifla_vf_stats *stats);
2500 	int			   (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2501 						  int type);
2502 	struct ib_wq *		   (*create_wq)(struct ib_pd *pd,
2503 						struct ib_wq_init_attr *init_attr,
2504 						struct ib_udata *udata);
2505 	int			   (*destroy_wq)(struct ib_wq *wq);
2506 	int			   (*modify_wq)(struct ib_wq *wq,
2507 						struct ib_wq_attr *attr,
2508 						u32 wq_attr_mask,
2509 						struct ib_udata *udata);
2510 	struct ib_rwq_ind_table *  (*create_rwq_ind_table)(struct ib_device *device,
2511 							   struct ib_rwq_ind_table_init_attr *init_attr,
2512 							   struct ib_udata *udata);
2513 	int                        (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2514 	struct ib_flow_action *	   (*create_flow_action_esp)(struct ib_device *device,
2515 							     const struct ib_flow_action_attrs_esp *attr,
2516 							     struct uverbs_attr_bundle *attrs);
2517 	int			   (*destroy_flow_action)(struct ib_flow_action *action);
2518 	int			   (*modify_flow_action_esp)(struct ib_flow_action *action,
2519 							     const struct ib_flow_action_attrs_esp *attr,
2520 							     struct uverbs_attr_bundle *attrs);
2521 	struct ib_dm *             (*alloc_dm)(struct ib_device *device,
2522 					       struct ib_ucontext *context,
2523 					       struct ib_dm_alloc_attr *attr,
2524 					       struct uverbs_attr_bundle *attrs);
2525 	int                        (*dealloc_dm)(struct ib_dm *dm);
2526 	struct ib_mr *             (*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2527 						struct ib_dm_mr_attr *attr,
2528 						struct uverbs_attr_bundle *attrs);
2529 	struct ib_counters *	(*create_counters)(struct ib_device *device,
2530 						   struct uverbs_attr_bundle *attrs);
2531 	int	(*destroy_counters)(struct ib_counters	*counters);
2532 	int	(*read_counters)(struct ib_counters *counters,
2533 				 struct ib_counters_read_attr *counters_read_attr,
2534 				 struct uverbs_attr_bundle *attrs);
2535 
2536 	/**
2537 	 * rdma netdev operation
2538 	 *
2539 	 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2540 	 * must return -EOPNOTSUPP if it doesn't support the specified type.
2541 	 */
2542 	struct net_device *(*alloc_rdma_netdev)(
2543 					struct ib_device *device,
2544 					u8 port_num,
2545 					enum rdma_netdev_t type,
2546 					const char *name,
2547 					unsigned char name_assign_type,
2548 					void (*setup)(struct net_device *));
2549 
2550 	int (*rdma_netdev_get_params)(struct ib_device *device, u8 port_num,
2551 				      enum rdma_netdev_t type,
2552 				      struct rdma_netdev_alloc_params *params);
2553 
2554 	struct module               *owner;
2555 	struct device                dev;
2556 	/* First group for device attributes,
2557 	 * Second group for driver provided attributes (optional).
2558 	 * It is NULL terminated array.
2559 	 */
2560 	const struct attribute_group	*groups[3];
2561 
2562 	struct kobject			*ports_kobj;
2563 	struct list_head             port_list;
2564 
2565 	enum {
2566 		IB_DEV_UNINITIALIZED,
2567 		IB_DEV_REGISTERED,
2568 		IB_DEV_UNREGISTERED
2569 	}                            reg_state;
2570 
2571 	int			     uverbs_abi_ver;
2572 	u64			     uverbs_cmd_mask;
2573 	u64			     uverbs_ex_cmd_mask;
2574 
2575 	char			     node_desc[IB_DEVICE_NODE_DESC_MAX];
2576 	__be64			     node_guid;
2577 	u32			     local_dma_lkey;
2578 	u16                          is_switch:1;
2579 	u8                           node_type;
2580 	u8                           phys_port_cnt;
2581 	struct ib_device_attr        attrs;
2582 	struct attribute_group	     *hw_stats_ag;
2583 	struct rdma_hw_stats         *hw_stats;
2584 
2585 #ifdef CONFIG_CGROUP_RDMA
2586 	struct rdmacg_device         cg_device;
2587 #endif
2588 
2589 	u32                          index;
2590 	/*
2591 	 * Implementation details of the RDMA core, don't use in drivers
2592 	 */
2593 	struct rdma_restrack_root     res;
2594 
2595 	/**
2596 	 * The following mandatory functions are used only at device
2597 	 * registration.  Keep functions such as these at the end of this
2598 	 * structure to avoid cache line misses when accessing struct ib_device
2599 	 * in fast paths.
2600 	 */
2601 	int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
2602 	void (*get_dev_fw_str)(struct ib_device *, char *str);
2603 	const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2604 						     int comp_vector);
2605 
2606 	const struct uverbs_object_tree_def *const *driver_specs;
2607 	enum rdma_driver_id		driver_id;
2608 };
2609 
2610 struct ib_client {
2611 	char  *name;
2612 	void (*add)   (struct ib_device *);
2613 	void (*remove)(struct ib_device *, void *client_data);
2614 
2615 	/* Returns the net_dev belonging to this ib_client and matching the
2616 	 * given parameters.
2617 	 * @dev:	 An RDMA device that the net_dev use for communication.
2618 	 * @port:	 A physical port number on the RDMA device.
2619 	 * @pkey:	 P_Key that the net_dev uses if applicable.
2620 	 * @gid:	 A GID that the net_dev uses to communicate.
2621 	 * @addr:	 An IP address the net_dev is configured with.
2622 	 * @client_data: The device's client data set by ib_set_client_data().
2623 	 *
2624 	 * An ib_client that implements a net_dev on top of RDMA devices
2625 	 * (such as IP over IB) should implement this callback, allowing the
2626 	 * rdma_cm module to find the right net_dev for a given request.
2627 	 *
2628 	 * The caller is responsible for calling dev_put on the returned
2629 	 * netdev. */
2630 	struct net_device *(*get_net_dev_by_params)(
2631 			struct ib_device *dev,
2632 			u8 port,
2633 			u16 pkey,
2634 			const union ib_gid *gid,
2635 			const struct sockaddr *addr,
2636 			void *client_data);
2637 	struct list_head list;
2638 };
2639 
2640 struct ib_device *ib_alloc_device(size_t size);
2641 void ib_dealloc_device(struct ib_device *device);
2642 
2643 void ib_get_device_fw_str(struct ib_device *device, char *str);
2644 
2645 int ib_register_device(struct ib_device *device, const char *name,
2646 		       int (*port_callback)(struct ib_device *, u8,
2647 					    struct kobject *));
2648 void ib_unregister_device(struct ib_device *device);
2649 
2650 int ib_register_client   (struct ib_client *client);
2651 void ib_unregister_client(struct ib_client *client);
2652 
2653 void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
2654 void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
2655 			 void *data);
2656 
2657 #if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS)
2658 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2659 		      unsigned long pfn, unsigned long size, pgprot_t prot);
2660 int rdma_user_mmap_page(struct ib_ucontext *ucontext,
2661 			struct vm_area_struct *vma, struct page *page,
2662 			unsigned long size);
2663 #else
2664 static inline int rdma_user_mmap_io(struct ib_ucontext *ucontext,
2665 				    struct vm_area_struct *vma,
2666 				    unsigned long pfn, unsigned long size,
2667 				    pgprot_t prot)
2668 {
2669 	return -EINVAL;
2670 }
2671 static inline int rdma_user_mmap_page(struct ib_ucontext *ucontext,
2672 				struct vm_area_struct *vma, struct page *page,
2673 				unsigned long size)
2674 {
2675 	return -EINVAL;
2676 }
2677 #endif
2678 
2679 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2680 {
2681 	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2682 }
2683 
2684 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2685 {
2686 	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2687 }
2688 
2689 static inline bool ib_is_buffer_cleared(const void __user *p,
2690 					size_t len)
2691 {
2692 	bool ret;
2693 	u8 *buf;
2694 
2695 	if (len > USHRT_MAX)
2696 		return false;
2697 
2698 	buf = memdup_user(p, len);
2699 	if (IS_ERR(buf))
2700 		return false;
2701 
2702 	ret = !memchr_inv(buf, 0, len);
2703 	kfree(buf);
2704 	return ret;
2705 }
2706 
2707 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2708 				       size_t offset,
2709 				       size_t len)
2710 {
2711 	return ib_is_buffer_cleared(udata->inbuf + offset, len);
2712 }
2713 
2714 /**
2715  * ib_is_destroy_retryable - Check whether the uobject destruction
2716  * is retryable.
2717  * @ret: The initial destruction return code
2718  * @why: remove reason
2719  * @uobj: The uobject that is destroyed
2720  *
2721  * This function is a helper function that IB layer and low-level drivers
2722  * can use to consider whether the destruction of the given uobject is
2723  * retry-able.
2724  * It checks the original return code, if it wasn't success the destruction
2725  * is retryable according to the ucontext state (i.e. cleanup_retryable) and
2726  * the remove reason. (i.e. why).
2727  * Must be called with the object locked for destroy.
2728  */
2729 static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why,
2730 					   struct ib_uobject *uobj)
2731 {
2732 	return ret && (why == RDMA_REMOVE_DESTROY ||
2733 		       uobj->context->cleanup_retryable);
2734 }
2735 
2736 /**
2737  * ib_destroy_usecnt - Called during destruction to check the usecnt
2738  * @usecnt: The usecnt atomic
2739  * @why: remove reason
2740  * @uobj: The uobject that is destroyed
2741  *
2742  * Non-zero usecnts will block destruction unless destruction was triggered by
2743  * a ucontext cleanup.
2744  */
2745 static inline int ib_destroy_usecnt(atomic_t *usecnt,
2746 				    enum rdma_remove_reason why,
2747 				    struct ib_uobject *uobj)
2748 {
2749 	if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj))
2750 		return -EBUSY;
2751 	return 0;
2752 }
2753 
2754 /**
2755  * ib_modify_qp_is_ok - Check that the supplied attribute mask
2756  * contains all required attributes and no attributes not allowed for
2757  * the given QP state transition.
2758  * @cur_state: Current QP state
2759  * @next_state: Next QP state
2760  * @type: QP type
2761  * @mask: Mask of supplied QP attributes
2762  *
2763  * This function is a helper function that a low-level driver's
2764  * modify_qp method can use to validate the consumer's input.  It
2765  * checks that cur_state and next_state are valid QP states, that a
2766  * transition from cur_state to next_state is allowed by the IB spec,
2767  * and that the attribute mask supplied is allowed for the transition.
2768  */
2769 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2770 			enum ib_qp_type type, enum ib_qp_attr_mask mask);
2771 
2772 void ib_register_event_handler(struct ib_event_handler *event_handler);
2773 void ib_unregister_event_handler(struct ib_event_handler *event_handler);
2774 void ib_dispatch_event(struct ib_event *event);
2775 
2776 int ib_query_port(struct ib_device *device,
2777 		  u8 port_num, struct ib_port_attr *port_attr);
2778 
2779 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2780 					       u8 port_num);
2781 
2782 /**
2783  * rdma_cap_ib_switch - Check if the device is IB switch
2784  * @device: Device to check
2785  *
2786  * Device driver is responsible for setting is_switch bit on
2787  * in ib_device structure at init time.
2788  *
2789  * Return: true if the device is IB switch.
2790  */
2791 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2792 {
2793 	return device->is_switch;
2794 }
2795 
2796 /**
2797  * rdma_start_port - Return the first valid port number for the device
2798  * specified
2799  *
2800  * @device: Device to be checked
2801  *
2802  * Return start port number
2803  */
2804 static inline u8 rdma_start_port(const struct ib_device *device)
2805 {
2806 	return rdma_cap_ib_switch(device) ? 0 : 1;
2807 }
2808 
2809 /**
2810  * rdma_end_port - Return the last valid port number for the device
2811  * specified
2812  *
2813  * @device: Device to be checked
2814  *
2815  * Return last port number
2816  */
2817 static inline u8 rdma_end_port(const struct ib_device *device)
2818 {
2819 	return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2820 }
2821 
2822 static inline int rdma_is_port_valid(const struct ib_device *device,
2823 				     unsigned int port)
2824 {
2825 	return (port >= rdma_start_port(device) &&
2826 		port <= rdma_end_port(device));
2827 }
2828 
2829 static inline bool rdma_is_grh_required(const struct ib_device *device,
2830 					u8 port_num)
2831 {
2832 	return device->port_immutable[port_num].core_cap_flags &
2833 		RDMA_CORE_PORT_IB_GRH_REQUIRED;
2834 }
2835 
2836 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
2837 {
2838 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
2839 }
2840 
2841 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
2842 {
2843 	return device->port_immutable[port_num].core_cap_flags &
2844 		(RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2845 }
2846 
2847 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2848 {
2849 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2850 }
2851 
2852 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
2853 {
2854 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
2855 }
2856 
2857 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
2858 {
2859 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
2860 }
2861 
2862 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
2863 {
2864 	return rdma_protocol_ib(device, port_num) ||
2865 		rdma_protocol_roce(device, port_num);
2866 }
2867 
2868 static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
2869 {
2870 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_RAW_PACKET;
2871 }
2872 
2873 static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
2874 {
2875 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_USNIC;
2876 }
2877 
2878 /**
2879  * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
2880  * Management Datagrams.
2881  * @device: Device to check
2882  * @port_num: Port number to check
2883  *
2884  * Management Datagrams (MAD) are a required part of the InfiniBand
2885  * specification and are supported on all InfiniBand devices.  A slightly
2886  * extended version are also supported on OPA interfaces.
2887  *
2888  * Return: true if the port supports sending/receiving of MAD packets.
2889  */
2890 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
2891 {
2892 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
2893 }
2894 
2895 /**
2896  * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2897  * Management Datagrams.
2898  * @device: Device to check
2899  * @port_num: Port number to check
2900  *
2901  * Intel OmniPath devices extend and/or replace the InfiniBand Management
2902  * datagrams with their own versions.  These OPA MADs share many but not all of
2903  * the characteristics of InfiniBand MADs.
2904  *
2905  * OPA MADs differ in the following ways:
2906  *
2907  *    1) MADs are variable size up to 2K
2908  *       IBTA defined MADs remain fixed at 256 bytes
2909  *    2) OPA SMPs must carry valid PKeys
2910  *    3) OPA SMP packets are a different format
2911  *
2912  * Return: true if the port supports OPA MAD packet formats.
2913  */
2914 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2915 {
2916 	return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2917 		== RDMA_CORE_CAP_OPA_MAD;
2918 }
2919 
2920 /**
2921  * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2922  * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2923  * @device: Device to check
2924  * @port_num: Port number to check
2925  *
2926  * Each InfiniBand node is required to provide a Subnet Management Agent
2927  * that the subnet manager can access.  Prior to the fabric being fully
2928  * configured by the subnet manager, the SMA is accessed via a well known
2929  * interface called the Subnet Management Interface (SMI).  This interface
2930  * uses directed route packets to communicate with the SM to get around the
2931  * chicken and egg problem of the SM needing to know what's on the fabric
2932  * in order to configure the fabric, and needing to configure the fabric in
2933  * order to send packets to the devices on the fabric.  These directed
2934  * route packets do not need the fabric fully configured in order to reach
2935  * their destination.  The SMI is the only method allowed to send
2936  * directed route packets on an InfiniBand fabric.
2937  *
2938  * Return: true if the port provides an SMI.
2939  */
2940 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
2941 {
2942 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
2943 }
2944 
2945 /**
2946  * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2947  * Communication Manager.
2948  * @device: Device to check
2949  * @port_num: Port number to check
2950  *
2951  * The InfiniBand Communication Manager is one of many pre-defined General
2952  * Service Agents (GSA) that are accessed via the General Service
2953  * Interface (GSI).  It's role is to facilitate establishment of connections
2954  * between nodes as well as other management related tasks for established
2955  * connections.
2956  *
2957  * Return: true if the port supports an IB CM (this does not guarantee that
2958  * a CM is actually running however).
2959  */
2960 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
2961 {
2962 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
2963 }
2964 
2965 /**
2966  * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2967  * Communication Manager.
2968  * @device: Device to check
2969  * @port_num: Port number to check
2970  *
2971  * Similar to above, but specific to iWARP connections which have a different
2972  * managment protocol than InfiniBand.
2973  *
2974  * Return: true if the port supports an iWARP CM (this does not guarantee that
2975  * a CM is actually running however).
2976  */
2977 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
2978 {
2979 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
2980 }
2981 
2982 /**
2983  * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2984  * Subnet Administration.
2985  * @device: Device to check
2986  * @port_num: Port number to check
2987  *
2988  * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2989  * Service Agent (GSA) provided by the Subnet Manager (SM).  On InfiniBand
2990  * fabrics, devices should resolve routes to other hosts by contacting the
2991  * SA to query the proper route.
2992  *
2993  * Return: true if the port should act as a client to the fabric Subnet
2994  * Administration interface.  This does not imply that the SA service is
2995  * running locally.
2996  */
2997 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
2998 {
2999 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
3000 }
3001 
3002 /**
3003  * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3004  * Multicast.
3005  * @device: Device to check
3006  * @port_num: Port number to check
3007  *
3008  * InfiniBand multicast registration is more complex than normal IPv4 or
3009  * IPv6 multicast registration.  Each Host Channel Adapter must register
3010  * with the Subnet Manager when it wishes to join a multicast group.  It
3011  * should do so only once regardless of how many queue pairs it subscribes
3012  * to this group.  And it should leave the group only after all queue pairs
3013  * attached to the group have been detached.
3014  *
3015  * Return: true if the port must undertake the additional adminstrative
3016  * overhead of registering/unregistering with the SM and tracking of the
3017  * total number of queue pairs attached to the multicast group.
3018  */
3019 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
3020 {
3021 	return rdma_cap_ib_sa(device, port_num);
3022 }
3023 
3024 /**
3025  * rdma_cap_af_ib - Check if the port of device has the capability
3026  * Native Infiniband Address.
3027  * @device: Device to check
3028  * @port_num: Port number to check
3029  *
3030  * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3031  * GID.  RoCE uses a different mechanism, but still generates a GID via
3032  * a prescribed mechanism and port specific data.
3033  *
3034  * Return: true if the port uses a GID address to identify devices on the
3035  * network.
3036  */
3037 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
3038 {
3039 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
3040 }
3041 
3042 /**
3043  * rdma_cap_eth_ah - Check if the port of device has the capability
3044  * Ethernet Address Handle.
3045  * @device: Device to check
3046  * @port_num: Port number to check
3047  *
3048  * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3049  * to fabricate GIDs over Ethernet/IP specific addresses native to the
3050  * port.  Normally, packet headers are generated by the sending host
3051  * adapter, but when sending connectionless datagrams, we must manually
3052  * inject the proper headers for the fabric we are communicating over.
3053  *
3054  * Return: true if we are running as a RoCE port and must force the
3055  * addition of a Global Route Header built from our Ethernet Address
3056  * Handle into our header list for connectionless packets.
3057  */
3058 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
3059 {
3060 	return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
3061 }
3062 
3063 /**
3064  * rdma_cap_opa_ah - Check if the port of device supports
3065  * OPA Address handles
3066  * @device: Device to check
3067  * @port_num: Port number to check
3068  *
3069  * Return: true if we are running on an OPA device which supports
3070  * the extended OPA addressing.
3071  */
3072 static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
3073 {
3074 	return (device->port_immutable[port_num].core_cap_flags &
3075 		RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3076 }
3077 
3078 /**
3079  * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3080  *
3081  * @device: Device
3082  * @port_num: Port number
3083  *
3084  * This MAD size includes the MAD headers and MAD payload.  No other headers
3085  * are included.
3086  *
3087  * Return the max MAD size required by the Port.  Will return 0 if the port
3088  * does not support MADs
3089  */
3090 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
3091 {
3092 	return device->port_immutable[port_num].max_mad_size;
3093 }
3094 
3095 /**
3096  * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3097  * @device: Device to check
3098  * @port_num: Port number to check
3099  *
3100  * RoCE GID table mechanism manages the various GIDs for a device.
3101  *
3102  * NOTE: if allocating the port's GID table has failed, this call will still
3103  * return true, but any RoCE GID table API will fail.
3104  *
3105  * Return: true if the port uses RoCE GID table mechanism in order to manage
3106  * its GIDs.
3107  */
3108 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3109 					   u8 port_num)
3110 {
3111 	return rdma_protocol_roce(device, port_num) &&
3112 		device->add_gid && device->del_gid;
3113 }
3114 
3115 /*
3116  * Check if the device supports READ W/ INVALIDATE.
3117  */
3118 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3119 {
3120 	/*
3121 	 * iWarp drivers must support READ W/ INVALIDATE.  No other protocol
3122 	 * has support for it yet.
3123 	 */
3124 	return rdma_protocol_iwarp(dev, port_num);
3125 }
3126 
3127 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
3128 			 int state);
3129 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
3130 		     struct ifla_vf_info *info);
3131 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
3132 		    struct ifla_vf_stats *stats);
3133 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
3134 		   int type);
3135 
3136 int ib_query_pkey(struct ib_device *device,
3137 		  u8 port_num, u16 index, u16 *pkey);
3138 
3139 int ib_modify_device(struct ib_device *device,
3140 		     int device_modify_mask,
3141 		     struct ib_device_modify *device_modify);
3142 
3143 int ib_modify_port(struct ib_device *device,
3144 		   u8 port_num, int port_modify_mask,
3145 		   struct ib_port_modify *port_modify);
3146 
3147 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3148 		u8 *port_num, u16 *index);
3149 
3150 int ib_find_pkey(struct ib_device *device,
3151 		 u8 port_num, u16 pkey, u16 *index);
3152 
3153 enum ib_pd_flags {
3154 	/*
3155 	 * Create a memory registration for all memory in the system and place
3156 	 * the rkey for it into pd->unsafe_global_rkey.  This can be used by
3157 	 * ULPs to avoid the overhead of dynamic MRs.
3158 	 *
3159 	 * This flag is generally considered unsafe and must only be used in
3160 	 * extremly trusted environments.  Every use of it will log a warning
3161 	 * in the kernel log.
3162 	 */
3163 	IB_PD_UNSAFE_GLOBAL_RKEY	= 0x01,
3164 };
3165 
3166 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3167 		const char *caller);
3168 #define ib_alloc_pd(device, flags) \
3169 	__ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3170 void ib_dealloc_pd(struct ib_pd *pd);
3171 
3172 /**
3173  * rdma_create_ah - Creates an address handle for the given address vector.
3174  * @pd: The protection domain associated with the address handle.
3175  * @ah_attr: The attributes of the address vector.
3176  *
3177  * The address handle is used to reference a local or global destination
3178  * in all UD QP post sends.
3179  */
3180 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr);
3181 
3182 /**
3183  * rdma_create_user_ah - Creates an address handle for the given address vector.
3184  * It resolves destination mac address for ah attribute of RoCE type.
3185  * @pd: The protection domain associated with the address handle.
3186  * @ah_attr: The attributes of the address vector.
3187  * @udata: pointer to user's input output buffer information need by
3188  *         provider driver.
3189  *
3190  * It returns 0 on success and returns appropriate error code on error.
3191  * The address handle is used to reference a local or global destination
3192  * in all UD QP post sends.
3193  */
3194 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3195 				  struct rdma_ah_attr *ah_attr,
3196 				  struct ib_udata *udata);
3197 /**
3198  * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3199  *   work completion.
3200  * @hdr: the L3 header to parse
3201  * @net_type: type of header to parse
3202  * @sgid: place to store source gid
3203  * @dgid: place to store destination gid
3204  */
3205 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3206 			      enum rdma_network_type net_type,
3207 			      union ib_gid *sgid, union ib_gid *dgid);
3208 
3209 /**
3210  * ib_get_rdma_header_version - Get the header version
3211  * @hdr: the L3 header to parse
3212  */
3213 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3214 
3215 /**
3216  * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3217  *   work completion.
3218  * @device: Device on which the received message arrived.
3219  * @port_num: Port on which the received message arrived.
3220  * @wc: Work completion associated with the received message.
3221  * @grh: References the received global route header.  This parameter is
3222  *   ignored unless the work completion indicates that the GRH is valid.
3223  * @ah_attr: Returned attributes that can be used when creating an address
3224  *   handle for replying to the message.
3225  * When ib_init_ah_attr_from_wc() returns success,
3226  * (a) for IB link layer it optionally contains a reference to SGID attribute
3227  * when GRH is present for IB link layer.
3228  * (b) for RoCE link layer it contains a reference to SGID attribute.
3229  * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3230  * attributes which are initialized using ib_init_ah_attr_from_wc().
3231  *
3232  */
3233 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
3234 			    const struct ib_wc *wc, const struct ib_grh *grh,
3235 			    struct rdma_ah_attr *ah_attr);
3236 
3237 /**
3238  * ib_create_ah_from_wc - Creates an address handle associated with the
3239  *   sender of the specified work completion.
3240  * @pd: The protection domain associated with the address handle.
3241  * @wc: Work completion information associated with a received message.
3242  * @grh: References the received global route header.  This parameter is
3243  *   ignored unless the work completion indicates that the GRH is valid.
3244  * @port_num: The outbound port number to associate with the address.
3245  *
3246  * The address handle is used to reference a local or global destination
3247  * in all UD QP post sends.
3248  */
3249 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3250 				   const struct ib_grh *grh, u8 port_num);
3251 
3252 /**
3253  * rdma_modify_ah - Modifies the address vector associated with an address
3254  *   handle.
3255  * @ah: The address handle to modify.
3256  * @ah_attr: The new address vector attributes to associate with the
3257  *   address handle.
3258  */
3259 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3260 
3261 /**
3262  * rdma_query_ah - Queries the address vector associated with an address
3263  *   handle.
3264  * @ah: The address handle to query.
3265  * @ah_attr: The address vector attributes associated with the address
3266  *   handle.
3267  */
3268 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3269 
3270 /**
3271  * rdma_destroy_ah - Destroys an address handle.
3272  * @ah: The address handle to destroy.
3273  */
3274 int rdma_destroy_ah(struct ib_ah *ah);
3275 
3276 /**
3277  * ib_create_srq - Creates a SRQ associated with the specified protection
3278  *   domain.
3279  * @pd: The protection domain associated with the SRQ.
3280  * @srq_init_attr: A list of initial attributes required to create the
3281  *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
3282  *   the actual capabilities of the created SRQ.
3283  *
3284  * srq_attr->max_wr and srq_attr->max_sge are read the determine the
3285  * requested size of the SRQ, and set to the actual values allocated
3286  * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
3287  * will always be at least as large as the requested values.
3288  */
3289 struct ib_srq *ib_create_srq(struct ib_pd *pd,
3290 			     struct ib_srq_init_attr *srq_init_attr);
3291 
3292 /**
3293  * ib_modify_srq - Modifies the attributes for the specified SRQ.
3294  * @srq: The SRQ to modify.
3295  * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
3296  *   the current values of selected SRQ attributes are returned.
3297  * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3298  *   are being modified.
3299  *
3300  * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3301  * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3302  * the number of receives queued drops below the limit.
3303  */
3304 int ib_modify_srq(struct ib_srq *srq,
3305 		  struct ib_srq_attr *srq_attr,
3306 		  enum ib_srq_attr_mask srq_attr_mask);
3307 
3308 /**
3309  * ib_query_srq - Returns the attribute list and current values for the
3310  *   specified SRQ.
3311  * @srq: The SRQ to query.
3312  * @srq_attr: The attributes of the specified SRQ.
3313  */
3314 int ib_query_srq(struct ib_srq *srq,
3315 		 struct ib_srq_attr *srq_attr);
3316 
3317 /**
3318  * ib_destroy_srq - Destroys the specified SRQ.
3319  * @srq: The SRQ to destroy.
3320  */
3321 int ib_destroy_srq(struct ib_srq *srq);
3322 
3323 /**
3324  * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3325  * @srq: The SRQ to post the work request on.
3326  * @recv_wr: A list of work requests to post on the receive queue.
3327  * @bad_recv_wr: On an immediate failure, this parameter will reference
3328  *   the work request that failed to be posted on the QP.
3329  */
3330 static inline int ib_post_srq_recv(struct ib_srq *srq,
3331 				   const struct ib_recv_wr *recv_wr,
3332 				   const struct ib_recv_wr **bad_recv_wr)
3333 {
3334 	const struct ib_recv_wr *dummy;
3335 
3336 	return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr ? : &dummy);
3337 }
3338 
3339 /**
3340  * ib_create_qp - Creates a QP associated with the specified protection
3341  *   domain.
3342  * @pd: The protection domain associated with the QP.
3343  * @qp_init_attr: A list of initial attributes required to create the
3344  *   QP.  If QP creation succeeds, then the attributes are updated to
3345  *   the actual capabilities of the created QP.
3346  */
3347 struct ib_qp *ib_create_qp(struct ib_pd *pd,
3348 			   struct ib_qp_init_attr *qp_init_attr);
3349 
3350 /**
3351  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3352  * @qp: The QP to modify.
3353  * @attr: On input, specifies the QP attributes to modify.  On output,
3354  *   the current values of selected QP attributes are returned.
3355  * @attr_mask: A bit-mask used to specify which attributes of the QP
3356  *   are being modified.
3357  * @udata: pointer to user's input output buffer information
3358  *   are being modified.
3359  * It returns 0 on success and returns appropriate error code on error.
3360  */
3361 int ib_modify_qp_with_udata(struct ib_qp *qp,
3362 			    struct ib_qp_attr *attr,
3363 			    int attr_mask,
3364 			    struct ib_udata *udata);
3365 
3366 /**
3367  * ib_modify_qp - Modifies the attributes for the specified QP and then
3368  *   transitions the QP to the given state.
3369  * @qp: The QP to modify.
3370  * @qp_attr: On input, specifies the QP attributes to modify.  On output,
3371  *   the current values of selected QP attributes are returned.
3372  * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3373  *   are being modified.
3374  */
3375 int ib_modify_qp(struct ib_qp *qp,
3376 		 struct ib_qp_attr *qp_attr,
3377 		 int qp_attr_mask);
3378 
3379 /**
3380  * ib_query_qp - Returns the attribute list and current values for the
3381  *   specified QP.
3382  * @qp: The QP to query.
3383  * @qp_attr: The attributes of the specified QP.
3384  * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3385  * @qp_init_attr: Additional attributes of the selected QP.
3386  *
3387  * The qp_attr_mask may be used to limit the query to gathering only the
3388  * selected attributes.
3389  */
3390 int ib_query_qp(struct ib_qp *qp,
3391 		struct ib_qp_attr *qp_attr,
3392 		int qp_attr_mask,
3393 		struct ib_qp_init_attr *qp_init_attr);
3394 
3395 /**
3396  * ib_destroy_qp - Destroys the specified QP.
3397  * @qp: The QP to destroy.
3398  */
3399 int ib_destroy_qp(struct ib_qp *qp);
3400 
3401 /**
3402  * ib_open_qp - Obtain a reference to an existing sharable QP.
3403  * @xrcd - XRC domain
3404  * @qp_open_attr: Attributes identifying the QP to open.
3405  *
3406  * Returns a reference to a sharable QP.
3407  */
3408 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3409 			 struct ib_qp_open_attr *qp_open_attr);
3410 
3411 /**
3412  * ib_close_qp - Release an external reference to a QP.
3413  * @qp: The QP handle to release
3414  *
3415  * The opened QP handle is released by the caller.  The underlying
3416  * shared QP is not destroyed until all internal references are released.
3417  */
3418 int ib_close_qp(struct ib_qp *qp);
3419 
3420 /**
3421  * ib_post_send - Posts a list of work requests to the send queue of
3422  *   the specified QP.
3423  * @qp: The QP to post the work request on.
3424  * @send_wr: A list of work requests to post on the send queue.
3425  * @bad_send_wr: On an immediate failure, this parameter will reference
3426  *   the work request that failed to be posted on the QP.
3427  *
3428  * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3429  * error is returned, the QP state shall not be affected,
3430  * ib_post_send() will return an immediate error after queueing any
3431  * earlier work requests in the list.
3432  */
3433 static inline int ib_post_send(struct ib_qp *qp,
3434 			       const struct ib_send_wr *send_wr,
3435 			       const struct ib_send_wr **bad_send_wr)
3436 {
3437 	const struct ib_send_wr *dummy;
3438 
3439 	return qp->device->post_send(qp, send_wr, bad_send_wr ? : &dummy);
3440 }
3441 
3442 /**
3443  * ib_post_recv - Posts a list of work requests to the receive queue of
3444  *   the specified QP.
3445  * @qp: The QP to post the work request on.
3446  * @recv_wr: A list of work requests to post on the receive queue.
3447  * @bad_recv_wr: On an immediate failure, this parameter will reference
3448  *   the work request that failed to be posted on the QP.
3449  */
3450 static inline int ib_post_recv(struct ib_qp *qp,
3451 			       const struct ib_recv_wr *recv_wr,
3452 			       const struct ib_recv_wr **bad_recv_wr)
3453 {
3454 	const struct ib_recv_wr *dummy;
3455 
3456 	return qp->device->post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3457 }
3458 
3459 struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private,
3460 			    int nr_cqe, int comp_vector,
3461 			    enum ib_poll_context poll_ctx, const char *caller);
3462 #define ib_alloc_cq(device, priv, nr_cqe, comp_vect, poll_ctx) \
3463 	__ib_alloc_cq((device), (priv), (nr_cqe), (comp_vect), (poll_ctx), KBUILD_MODNAME)
3464 
3465 void ib_free_cq(struct ib_cq *cq);
3466 int ib_process_cq_direct(struct ib_cq *cq, int budget);
3467 
3468 /**
3469  * ib_create_cq - Creates a CQ on the specified device.
3470  * @device: The device on which to create the CQ.
3471  * @comp_handler: A user-specified callback that is invoked when a
3472  *   completion event occurs on the CQ.
3473  * @event_handler: A user-specified callback that is invoked when an
3474  *   asynchronous event not associated with a completion occurs on the CQ.
3475  * @cq_context: Context associated with the CQ returned to the user via
3476  *   the associated completion and event handlers.
3477  * @cq_attr: The attributes the CQ should be created upon.
3478  *
3479  * Users can examine the cq structure to determine the actual CQ size.
3480  */
3481 struct ib_cq *__ib_create_cq(struct ib_device *device,
3482 			     ib_comp_handler comp_handler,
3483 			     void (*event_handler)(struct ib_event *, void *),
3484 			     void *cq_context,
3485 			     const struct ib_cq_init_attr *cq_attr,
3486 			     const char *caller);
3487 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3488 	__ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
3489 
3490 /**
3491  * ib_resize_cq - Modifies the capacity of the CQ.
3492  * @cq: The CQ to resize.
3493  * @cqe: The minimum size of the CQ.
3494  *
3495  * Users can examine the cq structure to determine the actual CQ size.
3496  */
3497 int ib_resize_cq(struct ib_cq *cq, int cqe);
3498 
3499 /**
3500  * rdma_set_cq_moderation - Modifies moderation params of the CQ
3501  * @cq: The CQ to modify.
3502  * @cq_count: number of CQEs that will trigger an event
3503  * @cq_period: max period of time in usec before triggering an event
3504  *
3505  */
3506 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3507 
3508 /**
3509  * ib_destroy_cq - Destroys the specified CQ.
3510  * @cq: The CQ to destroy.
3511  */
3512 int ib_destroy_cq(struct ib_cq *cq);
3513 
3514 /**
3515  * ib_poll_cq - poll a CQ for completion(s)
3516  * @cq:the CQ being polled
3517  * @num_entries:maximum number of completions to return
3518  * @wc:array of at least @num_entries &struct ib_wc where completions
3519  *   will be returned
3520  *
3521  * Poll a CQ for (possibly multiple) completions.  If the return value
3522  * is < 0, an error occurred.  If the return value is >= 0, it is the
3523  * number of completions returned.  If the return value is
3524  * non-negative and < num_entries, then the CQ was emptied.
3525  */
3526 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3527 			     struct ib_wc *wc)
3528 {
3529 	return cq->device->poll_cq(cq, num_entries, wc);
3530 }
3531 
3532 /**
3533  * ib_req_notify_cq - Request completion notification on a CQ.
3534  * @cq: The CQ to generate an event for.
3535  * @flags:
3536  *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3537  *   to request an event on the next solicited event or next work
3538  *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3539  *   may also be |ed in to request a hint about missed events, as
3540  *   described below.
3541  *
3542  * Return Value:
3543  *    < 0 means an error occurred while requesting notification
3544  *   == 0 means notification was requested successfully, and if
3545  *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3546  *        were missed and it is safe to wait for another event.  In
3547  *        this case is it guaranteed that any work completions added
3548  *        to the CQ since the last CQ poll will trigger a completion
3549  *        notification event.
3550  *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3551  *        in.  It means that the consumer must poll the CQ again to
3552  *        make sure it is empty to avoid missing an event because of a
3553  *        race between requesting notification and an entry being
3554  *        added to the CQ.  This return value means it is possible
3555  *        (but not guaranteed) that a work completion has been added
3556  *        to the CQ since the last poll without triggering a
3557  *        completion notification event.
3558  */
3559 static inline int ib_req_notify_cq(struct ib_cq *cq,
3560 				   enum ib_cq_notify_flags flags)
3561 {
3562 	return cq->device->req_notify_cq(cq, flags);
3563 }
3564 
3565 /**
3566  * ib_req_ncomp_notif - Request completion notification when there are
3567  *   at least the specified number of unreaped completions on the CQ.
3568  * @cq: The CQ to generate an event for.
3569  * @wc_cnt: The number of unreaped completions that should be on the
3570  *   CQ before an event is generated.
3571  */
3572 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
3573 {
3574 	return cq->device->req_ncomp_notif ?
3575 		cq->device->req_ncomp_notif(cq, wc_cnt) :
3576 		-ENOSYS;
3577 }
3578 
3579 /**
3580  * ib_dma_mapping_error - check a DMA addr for error
3581  * @dev: The device for which the dma_addr was created
3582  * @dma_addr: The DMA address to check
3583  */
3584 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3585 {
3586 	return dma_mapping_error(dev->dma_device, dma_addr);
3587 }
3588 
3589 /**
3590  * ib_dma_map_single - Map a kernel virtual address to DMA address
3591  * @dev: The device for which the dma_addr is to be created
3592  * @cpu_addr: The kernel virtual address
3593  * @size: The size of the region in bytes
3594  * @direction: The direction of the DMA
3595  */
3596 static inline u64 ib_dma_map_single(struct ib_device *dev,
3597 				    void *cpu_addr, size_t size,
3598 				    enum dma_data_direction direction)
3599 {
3600 	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
3601 }
3602 
3603 /**
3604  * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3605  * @dev: The device for which the DMA address was created
3606  * @addr: The DMA address
3607  * @size: The size of the region in bytes
3608  * @direction: The direction of the DMA
3609  */
3610 static inline void ib_dma_unmap_single(struct ib_device *dev,
3611 				       u64 addr, size_t size,
3612 				       enum dma_data_direction direction)
3613 {
3614 	dma_unmap_single(dev->dma_device, addr, size, direction);
3615 }
3616 
3617 /**
3618  * ib_dma_map_page - Map a physical page to DMA address
3619  * @dev: The device for which the dma_addr is to be created
3620  * @page: The page to be mapped
3621  * @offset: The offset within the page
3622  * @size: The size of the region in bytes
3623  * @direction: The direction of the DMA
3624  */
3625 static inline u64 ib_dma_map_page(struct ib_device *dev,
3626 				  struct page *page,
3627 				  unsigned long offset,
3628 				  size_t size,
3629 					 enum dma_data_direction direction)
3630 {
3631 	return dma_map_page(dev->dma_device, page, offset, size, direction);
3632 }
3633 
3634 /**
3635  * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3636  * @dev: The device for which the DMA address was created
3637  * @addr: The DMA address
3638  * @size: The size of the region in bytes
3639  * @direction: The direction of the DMA
3640  */
3641 static inline void ib_dma_unmap_page(struct ib_device *dev,
3642 				     u64 addr, size_t size,
3643 				     enum dma_data_direction direction)
3644 {
3645 	dma_unmap_page(dev->dma_device, addr, size, direction);
3646 }
3647 
3648 /**
3649  * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3650  * @dev: The device for which the DMA addresses are to be created
3651  * @sg: The array of scatter/gather entries
3652  * @nents: The number of scatter/gather entries
3653  * @direction: The direction of the DMA
3654  */
3655 static inline int ib_dma_map_sg(struct ib_device *dev,
3656 				struct scatterlist *sg, int nents,
3657 				enum dma_data_direction direction)
3658 {
3659 	return dma_map_sg(dev->dma_device, sg, nents, direction);
3660 }
3661 
3662 /**
3663  * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
3664  * @dev: The device for which the DMA addresses were created
3665  * @sg: The array of scatter/gather entries
3666  * @nents: The number of scatter/gather entries
3667  * @direction: The direction of the DMA
3668  */
3669 static inline void ib_dma_unmap_sg(struct ib_device *dev,
3670 				   struct scatterlist *sg, int nents,
3671 				   enum dma_data_direction direction)
3672 {
3673 	dma_unmap_sg(dev->dma_device, sg, nents, direction);
3674 }
3675 
3676 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
3677 				      struct scatterlist *sg, int nents,
3678 				      enum dma_data_direction direction,
3679 				      unsigned long dma_attrs)
3680 {
3681 	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
3682 				dma_attrs);
3683 }
3684 
3685 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
3686 					 struct scatterlist *sg, int nents,
3687 					 enum dma_data_direction direction,
3688 					 unsigned long dma_attrs)
3689 {
3690 	dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
3691 }
3692 /**
3693  * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
3694  * @dev: The device for which the DMA addresses were created
3695  * @sg: The scatter/gather entry
3696  *
3697  * Note: this function is obsolete. To do: change all occurrences of
3698  * ib_sg_dma_address() into sg_dma_address().
3699  */
3700 static inline u64 ib_sg_dma_address(struct ib_device *dev,
3701 				    struct scatterlist *sg)
3702 {
3703 	return sg_dma_address(sg);
3704 }
3705 
3706 /**
3707  * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
3708  * @dev: The device for which the DMA addresses were created
3709  * @sg: The scatter/gather entry
3710  *
3711  * Note: this function is obsolete. To do: change all occurrences of
3712  * ib_sg_dma_len() into sg_dma_len().
3713  */
3714 static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
3715 					 struct scatterlist *sg)
3716 {
3717 	return sg_dma_len(sg);
3718 }
3719 
3720 /**
3721  * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
3722  * @dev: The device for which the DMA address was created
3723  * @addr: The DMA address
3724  * @size: The size of the region in bytes
3725  * @dir: The direction of the DMA
3726  */
3727 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
3728 					      u64 addr,
3729 					      size_t size,
3730 					      enum dma_data_direction dir)
3731 {
3732 	dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
3733 }
3734 
3735 /**
3736  * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
3737  * @dev: The device for which the DMA address was created
3738  * @addr: The DMA address
3739  * @size: The size of the region in bytes
3740  * @dir: The direction of the DMA
3741  */
3742 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
3743 						 u64 addr,
3744 						 size_t size,
3745 						 enum dma_data_direction dir)
3746 {
3747 	dma_sync_single_for_device(dev->dma_device, addr, size, dir);
3748 }
3749 
3750 /**
3751  * ib_dma_alloc_coherent - Allocate memory and map it for DMA
3752  * @dev: The device for which the DMA address is requested
3753  * @size: The size of the region to allocate in bytes
3754  * @dma_handle: A pointer for returning the DMA address of the region
3755  * @flag: memory allocator flags
3756  */
3757 static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
3758 					   size_t size,
3759 					   dma_addr_t *dma_handle,
3760 					   gfp_t flag)
3761 {
3762 	return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
3763 }
3764 
3765 /**
3766  * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3767  * @dev: The device for which the DMA addresses were allocated
3768  * @size: The size of the region
3769  * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3770  * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3771  */
3772 static inline void ib_dma_free_coherent(struct ib_device *dev,
3773 					size_t size, void *cpu_addr,
3774 					dma_addr_t dma_handle)
3775 {
3776 	dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
3777 }
3778 
3779 /**
3780  * ib_dereg_mr - Deregisters a memory region and removes it from the
3781  *   HCA translation table.
3782  * @mr: The memory region to deregister.
3783  *
3784  * This function can fail, if the memory region has memory windows bound to it.
3785  */
3786 int ib_dereg_mr(struct ib_mr *mr);
3787 
3788 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3789 			  enum ib_mr_type mr_type,
3790 			  u32 max_num_sg);
3791 
3792 /**
3793  * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3794  *   R_Key and L_Key.
3795  * @mr - struct ib_mr pointer to be updated.
3796  * @newkey - new key to be used.
3797  */
3798 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3799 {
3800 	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3801 	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3802 }
3803 
3804 /**
3805  * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3806  * for calculating a new rkey for type 2 memory windows.
3807  * @rkey - the rkey to increment.
3808  */
3809 static inline u32 ib_inc_rkey(u32 rkey)
3810 {
3811 	const u32 mask = 0x000000ff;
3812 	return ((rkey + 1) & mask) | (rkey & ~mask);
3813 }
3814 
3815 /**
3816  * ib_alloc_fmr - Allocates a unmapped fast memory region.
3817  * @pd: The protection domain associated with the unmapped region.
3818  * @mr_access_flags: Specifies the memory access rights.
3819  * @fmr_attr: Attributes of the unmapped region.
3820  *
3821  * A fast memory region must be mapped before it can be used as part of
3822  * a work request.
3823  */
3824 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3825 			    int mr_access_flags,
3826 			    struct ib_fmr_attr *fmr_attr);
3827 
3828 /**
3829  * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3830  * @fmr: The fast memory region to associate with the pages.
3831  * @page_list: An array of physical pages to map to the fast memory region.
3832  * @list_len: The number of pages in page_list.
3833  * @iova: The I/O virtual address to use with the mapped region.
3834  */
3835 static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3836 				  u64 *page_list, int list_len,
3837 				  u64 iova)
3838 {
3839 	return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3840 }
3841 
3842 /**
3843  * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3844  * @fmr_list: A linked list of fast memory regions to unmap.
3845  */
3846 int ib_unmap_fmr(struct list_head *fmr_list);
3847 
3848 /**
3849  * ib_dealloc_fmr - Deallocates a fast memory region.
3850  * @fmr: The fast memory region to deallocate.
3851  */
3852 int ib_dealloc_fmr(struct ib_fmr *fmr);
3853 
3854 /**
3855  * ib_attach_mcast - Attaches the specified QP to a multicast group.
3856  * @qp: QP to attach to the multicast group.  The QP must be type
3857  *   IB_QPT_UD.
3858  * @gid: Multicast group GID.
3859  * @lid: Multicast group LID in host byte order.
3860  *
3861  * In order to send and receive multicast packets, subnet
3862  * administration must have created the multicast group and configured
3863  * the fabric appropriately.  The port associated with the specified
3864  * QP must also be a member of the multicast group.
3865  */
3866 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3867 
3868 /**
3869  * ib_detach_mcast - Detaches the specified QP from a multicast group.
3870  * @qp: QP to detach from the multicast group.
3871  * @gid: Multicast group GID.
3872  * @lid: Multicast group LID in host byte order.
3873  */
3874 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3875 
3876 /**
3877  * ib_alloc_xrcd - Allocates an XRC domain.
3878  * @device: The device on which to allocate the XRC domain.
3879  * @caller: Module name for kernel consumers
3880  */
3881 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller);
3882 #define ib_alloc_xrcd(device) \
3883 	__ib_alloc_xrcd((device), KBUILD_MODNAME)
3884 
3885 /**
3886  * ib_dealloc_xrcd - Deallocates an XRC domain.
3887  * @xrcd: The XRC domain to deallocate.
3888  */
3889 int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3890 
3891 static inline int ib_check_mr_access(int flags)
3892 {
3893 	/*
3894 	 * Local write permission is required if remote write or
3895 	 * remote atomic permission is also requested.
3896 	 */
3897 	if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3898 	    !(flags & IB_ACCESS_LOCAL_WRITE))
3899 		return -EINVAL;
3900 
3901 	return 0;
3902 }
3903 
3904 static inline bool ib_access_writable(int access_flags)
3905 {
3906 	/*
3907 	 * We have writable memory backing the MR if any of the following
3908 	 * access flags are set.  "Local write" and "remote write" obviously
3909 	 * require write access.  "Remote atomic" can do things like fetch and
3910 	 * add, which will modify memory, and "MW bind" can change permissions
3911 	 * by binding a window.
3912 	 */
3913 	return access_flags &
3914 		(IB_ACCESS_LOCAL_WRITE   | IB_ACCESS_REMOTE_WRITE |
3915 		 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
3916 }
3917 
3918 /**
3919  * ib_check_mr_status: lightweight check of MR status.
3920  *     This routine may provide status checks on a selected
3921  *     ib_mr. first use is for signature status check.
3922  *
3923  * @mr: A memory region.
3924  * @check_mask: Bitmask of which checks to perform from
3925  *     ib_mr_status_check enumeration.
3926  * @mr_status: The container of relevant status checks.
3927  *     failed checks will be indicated in the status bitmask
3928  *     and the relevant info shall be in the error item.
3929  */
3930 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3931 		       struct ib_mr_status *mr_status);
3932 
3933 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3934 					    u16 pkey, const union ib_gid *gid,
3935 					    const struct sockaddr *addr);
3936 struct ib_wq *ib_create_wq(struct ib_pd *pd,
3937 			   struct ib_wq_init_attr *init_attr);
3938 int ib_destroy_wq(struct ib_wq *wq);
3939 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
3940 		 u32 wq_attr_mask);
3941 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
3942 						 struct ib_rwq_ind_table_init_attr*
3943 						 wq_ind_table_init_attr);
3944 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
3945 
3946 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3947 		 unsigned int *sg_offset, unsigned int page_size);
3948 
3949 static inline int
3950 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3951 		  unsigned int *sg_offset, unsigned int page_size)
3952 {
3953 	int n;
3954 
3955 	n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
3956 	mr->iova = 0;
3957 
3958 	return n;
3959 }
3960 
3961 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
3962 		unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
3963 
3964 void ib_drain_rq(struct ib_qp *qp);
3965 void ib_drain_sq(struct ib_qp *qp);
3966 void ib_drain_qp(struct ib_qp *qp);
3967 
3968 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width);
3969 
3970 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
3971 {
3972 	if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
3973 		return attr->roce.dmac;
3974 	return NULL;
3975 }
3976 
3977 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
3978 {
3979 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3980 		attr->ib.dlid = (u16)dlid;
3981 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3982 		attr->opa.dlid = dlid;
3983 }
3984 
3985 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
3986 {
3987 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3988 		return attr->ib.dlid;
3989 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3990 		return attr->opa.dlid;
3991 	return 0;
3992 }
3993 
3994 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
3995 {
3996 	attr->sl = sl;
3997 }
3998 
3999 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4000 {
4001 	return attr->sl;
4002 }
4003 
4004 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4005 					 u8 src_path_bits)
4006 {
4007 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4008 		attr->ib.src_path_bits = src_path_bits;
4009 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4010 		attr->opa.src_path_bits = src_path_bits;
4011 }
4012 
4013 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4014 {
4015 	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4016 		return attr->ib.src_path_bits;
4017 	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4018 		return attr->opa.src_path_bits;
4019 	return 0;
4020 }
4021 
4022 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4023 					bool make_grd)
4024 {
4025 	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4026 		attr->opa.make_grd = make_grd;
4027 }
4028 
4029 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4030 {
4031 	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4032 		return attr->opa.make_grd;
4033 	return false;
4034 }
4035 
4036 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num)
4037 {
4038 	attr->port_num = port_num;
4039 }
4040 
4041 static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4042 {
4043 	return attr->port_num;
4044 }
4045 
4046 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4047 					   u8 static_rate)
4048 {
4049 	attr->static_rate = static_rate;
4050 }
4051 
4052 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4053 {
4054 	return attr->static_rate;
4055 }
4056 
4057 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4058 					enum ib_ah_flags flag)
4059 {
4060 	attr->ah_flags = flag;
4061 }
4062 
4063 static inline enum ib_ah_flags
4064 		rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4065 {
4066 	return attr->ah_flags;
4067 }
4068 
4069 static inline const struct ib_global_route
4070 		*rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4071 {
4072 	return &attr->grh;
4073 }
4074 
4075 /*To retrieve and modify the grh */
4076 static inline struct ib_global_route
4077 		*rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4078 {
4079 	return &attr->grh;
4080 }
4081 
4082 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4083 {
4084 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4085 
4086 	memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4087 }
4088 
4089 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4090 					     __be64 prefix)
4091 {
4092 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4093 
4094 	grh->dgid.global.subnet_prefix = prefix;
4095 }
4096 
4097 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4098 					    __be64 if_id)
4099 {
4100 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4101 
4102 	grh->dgid.global.interface_id = if_id;
4103 }
4104 
4105 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4106 				   union ib_gid *dgid, u32 flow_label,
4107 				   u8 sgid_index, u8 hop_limit,
4108 				   u8 traffic_class)
4109 {
4110 	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4111 
4112 	attr->ah_flags = IB_AH_GRH;
4113 	if (dgid)
4114 		grh->dgid = *dgid;
4115 	grh->flow_label = flow_label;
4116 	grh->sgid_index = sgid_index;
4117 	grh->hop_limit = hop_limit;
4118 	grh->traffic_class = traffic_class;
4119 	grh->sgid_attr = NULL;
4120 }
4121 
4122 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4123 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4124 			     u32 flow_label, u8 hop_limit, u8 traffic_class,
4125 			     const struct ib_gid_attr *sgid_attr);
4126 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4127 		       const struct rdma_ah_attr *src);
4128 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4129 			  const struct rdma_ah_attr *new);
4130 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4131 
4132 /**
4133  * rdma_ah_find_type - Return address handle type.
4134  *
4135  * @dev: Device to be checked
4136  * @port_num: Port number
4137  */
4138 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4139 						       u8 port_num)
4140 {
4141 	if (rdma_protocol_roce(dev, port_num))
4142 		return RDMA_AH_ATTR_TYPE_ROCE;
4143 	if (rdma_protocol_ib(dev, port_num)) {
4144 		if (rdma_cap_opa_ah(dev, port_num))
4145 			return RDMA_AH_ATTR_TYPE_OPA;
4146 		return RDMA_AH_ATTR_TYPE_IB;
4147 	}
4148 
4149 	return RDMA_AH_ATTR_TYPE_UNDEFINED;
4150 }
4151 
4152 /**
4153  * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4154  *     In the current implementation the only way to get
4155  *     get the 32bit lid is from other sources for OPA.
4156  *     For IB, lids will always be 16bits so cast the
4157  *     value accordingly.
4158  *
4159  * @lid: A 32bit LID
4160  */
4161 static inline u16 ib_lid_cpu16(u32 lid)
4162 {
4163 	WARN_ON_ONCE(lid & 0xFFFF0000);
4164 	return (u16)lid;
4165 }
4166 
4167 /**
4168  * ib_lid_be16 - Return lid in 16bit BE encoding.
4169  *
4170  * @lid: A 32bit LID
4171  */
4172 static inline __be16 ib_lid_be16(u32 lid)
4173 {
4174 	WARN_ON_ONCE(lid & 0xFFFF0000);
4175 	return cpu_to_be16((u16)lid);
4176 }
4177 
4178 /**
4179  * ib_get_vector_affinity - Get the affinity mappings of a given completion
4180  *   vector
4181  * @device:         the rdma device
4182  * @comp_vector:    index of completion vector
4183  *
4184  * Returns NULL on failure, otherwise a corresponding cpu map of the
4185  * completion vector (returns all-cpus map if the device driver doesn't
4186  * implement get_vector_affinity).
4187  */
4188 static inline const struct cpumask *
4189 ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4190 {
4191 	if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4192 	    !device->get_vector_affinity)
4193 		return NULL;
4194 
4195 	return device->get_vector_affinity(device, comp_vector);
4196 
4197 }
4198 
4199 /**
4200  * rdma_roce_rescan_device - Rescan all of the network devices in the system
4201  * and add their gids, as needed, to the relevant RoCE devices.
4202  *
4203  * @device:         the rdma device
4204  */
4205 void rdma_roce_rescan_device(struct ib_device *ibdev);
4206 
4207 struct ib_ucontext *ib_uverbs_get_ucontext(struct ib_uverbs_file *ufile);
4208 
4209 int uverbs_destroy_def_handler(struct ib_uverbs_file *file,
4210 			       struct uverbs_attr_bundle *attrs);
4211 
4212 struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
4213 				     enum rdma_netdev_t type, const char *name,
4214 				     unsigned char name_assign_type,
4215 				     void (*setup)(struct net_device *));
4216 
4217 int rdma_init_netdev(struct ib_device *device, u8 port_num,
4218 		     enum rdma_netdev_t type, const char *name,
4219 		     unsigned char name_assign_type,
4220 		     void (*setup)(struct net_device *),
4221 		     struct net_device *netdev);
4222 
4223 /**
4224  * rdma_set_device_sysfs_group - Set device attributes group to have
4225  *				 driver specific sysfs entries at
4226  *				 for infiniband class.
4227  *
4228  * @device:	device pointer for which attributes to be created
4229  * @group:	Pointer to group which should be added when device
4230  *		is registered with sysfs.
4231  * rdma_set_device_sysfs_group() allows existing drivers to expose one
4232  * group per device to have sysfs attributes.
4233  *
4234  * NOTE: New drivers should not make use of this API; instead new device
4235  * parameter should be exposed via netlink command. This API and mechanism
4236  * exist only for existing drivers.
4237  */
4238 static inline void
4239 rdma_set_device_sysfs_group(struct ib_device *dev,
4240 			    const struct attribute_group *group)
4241 {
4242 	dev->groups[1] = group;
4243 }
4244 
4245 #endif /* IB_VERBS_H */
4246