1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #if !defined(IB_VERBS_H) 40 #define IB_VERBS_H 41 42 #include <linux/types.h> 43 #include <linux/device.h> 44 #include <linux/mm.h> 45 #include <linux/dma-mapping.h> 46 #include <linux/kref.h> 47 #include <linux/list.h> 48 #include <linux/rwsem.h> 49 #include <linux/scatterlist.h> 50 #include <linux/workqueue.h> 51 #include <linux/socket.h> 52 #include <linux/irq_poll.h> 53 #include <uapi/linux/if_ether.h> 54 #include <net/ipv6.h> 55 #include <net/ip.h> 56 #include <linux/string.h> 57 #include <linux/slab.h> 58 59 #include <linux/if_link.h> 60 #include <linux/atomic.h> 61 #include <linux/mmu_notifier.h> 62 #include <asm/uaccess.h> 63 64 extern struct workqueue_struct *ib_wq; 65 extern struct workqueue_struct *ib_comp_wq; 66 67 union ib_gid { 68 u8 raw[16]; 69 struct { 70 __be64 subnet_prefix; 71 __be64 interface_id; 72 } global; 73 }; 74 75 extern union ib_gid zgid; 76 77 enum ib_gid_type { 78 /* If link layer is Ethernet, this is RoCE V1 */ 79 IB_GID_TYPE_IB = 0, 80 IB_GID_TYPE_ROCE = 0, 81 IB_GID_TYPE_ROCE_UDP_ENCAP = 1, 82 IB_GID_TYPE_SIZE 83 }; 84 85 #define ROCE_V2_UDP_DPORT 4791 86 struct ib_gid_attr { 87 enum ib_gid_type gid_type; 88 struct net_device *ndev; 89 }; 90 91 enum rdma_node_type { 92 /* IB values map to NodeInfo:NodeType. */ 93 RDMA_NODE_IB_CA = 1, 94 RDMA_NODE_IB_SWITCH, 95 RDMA_NODE_IB_ROUTER, 96 RDMA_NODE_RNIC, 97 RDMA_NODE_USNIC, 98 RDMA_NODE_USNIC_UDP, 99 }; 100 101 enum { 102 /* set the local administered indication */ 103 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2, 104 }; 105 106 enum rdma_transport_type { 107 RDMA_TRANSPORT_IB, 108 RDMA_TRANSPORT_IWARP, 109 RDMA_TRANSPORT_USNIC, 110 RDMA_TRANSPORT_USNIC_UDP 111 }; 112 113 enum rdma_protocol_type { 114 RDMA_PROTOCOL_IB, 115 RDMA_PROTOCOL_IBOE, 116 RDMA_PROTOCOL_IWARP, 117 RDMA_PROTOCOL_USNIC_UDP 118 }; 119 120 __attribute_const__ enum rdma_transport_type 121 rdma_node_get_transport(enum rdma_node_type node_type); 122 123 enum rdma_network_type { 124 RDMA_NETWORK_IB, 125 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB, 126 RDMA_NETWORK_IPV4, 127 RDMA_NETWORK_IPV6 128 }; 129 130 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) 131 { 132 if (network_type == RDMA_NETWORK_IPV4 || 133 network_type == RDMA_NETWORK_IPV6) 134 return IB_GID_TYPE_ROCE_UDP_ENCAP; 135 136 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */ 137 return IB_GID_TYPE_IB; 138 } 139 140 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type, 141 union ib_gid *gid) 142 { 143 if (gid_type == IB_GID_TYPE_IB) 144 return RDMA_NETWORK_IB; 145 146 if (ipv6_addr_v4mapped((struct in6_addr *)gid)) 147 return RDMA_NETWORK_IPV4; 148 else 149 return RDMA_NETWORK_IPV6; 150 } 151 152 enum rdma_link_layer { 153 IB_LINK_LAYER_UNSPECIFIED, 154 IB_LINK_LAYER_INFINIBAND, 155 IB_LINK_LAYER_ETHERNET, 156 }; 157 158 enum ib_device_cap_flags { 159 IB_DEVICE_RESIZE_MAX_WR = (1 << 0), 160 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1), 161 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2), 162 IB_DEVICE_RAW_MULTI = (1 << 3), 163 IB_DEVICE_AUTO_PATH_MIG = (1 << 4), 164 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5), 165 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6), 166 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7), 167 IB_DEVICE_SHUTDOWN_PORT = (1 << 8), 168 IB_DEVICE_INIT_TYPE = (1 << 9), 169 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10), 170 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11), 171 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12), 172 IB_DEVICE_SRQ_RESIZE = (1 << 13), 173 IB_DEVICE_N_NOTIFY_CQ = (1 << 14), 174 175 /* 176 * This device supports a per-device lkey or stag that can be 177 * used without performing a memory registration for the local 178 * memory. Note that ULPs should never check this flag, but 179 * instead of use the local_dma_lkey flag in the ib_pd structure, 180 * which will always contain a usable lkey. 181 */ 182 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15), 183 IB_DEVICE_RESERVED /* old SEND_W_INV */ = (1 << 16), 184 IB_DEVICE_MEM_WINDOW = (1 << 17), 185 /* 186 * Devices should set IB_DEVICE_UD_IP_SUM if they support 187 * insertion of UDP and TCP checksum on outgoing UD IPoIB 188 * messages and can verify the validity of checksum for 189 * incoming messages. Setting this flag implies that the 190 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 191 */ 192 IB_DEVICE_UD_IP_CSUM = (1 << 18), 193 IB_DEVICE_UD_TSO = (1 << 19), 194 IB_DEVICE_XRC = (1 << 20), 195 196 /* 197 * This device supports the IB "base memory management extension", 198 * which includes support for fast registrations (IB_WR_REG_MR, 199 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should 200 * also be set by any iWarp device which must support FRs to comply 201 * to the iWarp verbs spec. iWarp devices also support the 202 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the 203 * stag. 204 */ 205 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21), 206 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22), 207 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23), 208 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24), 209 IB_DEVICE_RC_IP_CSUM = (1 << 25), 210 IB_DEVICE_RAW_IP_CSUM = (1 << 26), 211 /* 212 * Devices should set IB_DEVICE_CROSS_CHANNEL if they 213 * support execution of WQEs that involve synchronization 214 * of I/O operations with single completion queue managed 215 * by hardware. 216 */ 217 IB_DEVICE_CROSS_CHANNEL = (1 << 27), 218 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29), 219 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30), 220 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31), 221 IB_DEVICE_SG_GAPS_REG = (1ULL << 32), 222 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33), 223 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34), 224 }; 225 226 enum ib_signature_prot_cap { 227 IB_PROT_T10DIF_TYPE_1 = 1, 228 IB_PROT_T10DIF_TYPE_2 = 1 << 1, 229 IB_PROT_T10DIF_TYPE_3 = 1 << 2, 230 }; 231 232 enum ib_signature_guard_cap { 233 IB_GUARD_T10DIF_CRC = 1, 234 IB_GUARD_T10DIF_CSUM = 1 << 1, 235 }; 236 237 enum ib_atomic_cap { 238 IB_ATOMIC_NONE, 239 IB_ATOMIC_HCA, 240 IB_ATOMIC_GLOB 241 }; 242 243 enum ib_odp_general_cap_bits { 244 IB_ODP_SUPPORT = 1 << 0, 245 }; 246 247 enum ib_odp_transport_cap_bits { 248 IB_ODP_SUPPORT_SEND = 1 << 0, 249 IB_ODP_SUPPORT_RECV = 1 << 1, 250 IB_ODP_SUPPORT_WRITE = 1 << 2, 251 IB_ODP_SUPPORT_READ = 1 << 3, 252 IB_ODP_SUPPORT_ATOMIC = 1 << 4, 253 }; 254 255 struct ib_odp_caps { 256 uint64_t general_caps; 257 struct { 258 uint32_t rc_odp_caps; 259 uint32_t uc_odp_caps; 260 uint32_t ud_odp_caps; 261 } per_transport_caps; 262 }; 263 264 enum ib_cq_creation_flags { 265 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0, 266 IB_CQ_FLAGS_IGNORE_OVERRUN = 1 << 1, 267 }; 268 269 struct ib_cq_init_attr { 270 unsigned int cqe; 271 int comp_vector; 272 u32 flags; 273 }; 274 275 struct ib_device_attr { 276 u64 fw_ver; 277 __be64 sys_image_guid; 278 u64 max_mr_size; 279 u64 page_size_cap; 280 u32 vendor_id; 281 u32 vendor_part_id; 282 u32 hw_ver; 283 int max_qp; 284 int max_qp_wr; 285 u64 device_cap_flags; 286 int max_sge; 287 int max_sge_rd; 288 int max_cq; 289 int max_cqe; 290 int max_mr; 291 int max_pd; 292 int max_qp_rd_atom; 293 int max_ee_rd_atom; 294 int max_res_rd_atom; 295 int max_qp_init_rd_atom; 296 int max_ee_init_rd_atom; 297 enum ib_atomic_cap atomic_cap; 298 enum ib_atomic_cap masked_atomic_cap; 299 int max_ee; 300 int max_rdd; 301 int max_mw; 302 int max_raw_ipv6_qp; 303 int max_raw_ethy_qp; 304 int max_mcast_grp; 305 int max_mcast_qp_attach; 306 int max_total_mcast_qp_attach; 307 int max_ah; 308 int max_fmr; 309 int max_map_per_fmr; 310 int max_srq; 311 int max_srq_wr; 312 int max_srq_sge; 313 unsigned int max_fast_reg_page_list_len; 314 u16 max_pkeys; 315 u8 local_ca_ack_delay; 316 int sig_prot_cap; 317 int sig_guard_cap; 318 struct ib_odp_caps odp_caps; 319 uint64_t timestamp_mask; 320 uint64_t hca_core_clock; /* in KHZ */ 321 }; 322 323 enum ib_mtu { 324 IB_MTU_256 = 1, 325 IB_MTU_512 = 2, 326 IB_MTU_1024 = 3, 327 IB_MTU_2048 = 4, 328 IB_MTU_4096 = 5 329 }; 330 331 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 332 { 333 switch (mtu) { 334 case IB_MTU_256: return 256; 335 case IB_MTU_512: return 512; 336 case IB_MTU_1024: return 1024; 337 case IB_MTU_2048: return 2048; 338 case IB_MTU_4096: return 4096; 339 default: return -1; 340 } 341 } 342 343 enum ib_port_state { 344 IB_PORT_NOP = 0, 345 IB_PORT_DOWN = 1, 346 IB_PORT_INIT = 2, 347 IB_PORT_ARMED = 3, 348 IB_PORT_ACTIVE = 4, 349 IB_PORT_ACTIVE_DEFER = 5 350 }; 351 352 enum ib_port_cap_flags { 353 IB_PORT_SM = 1 << 1, 354 IB_PORT_NOTICE_SUP = 1 << 2, 355 IB_PORT_TRAP_SUP = 1 << 3, 356 IB_PORT_OPT_IPD_SUP = 1 << 4, 357 IB_PORT_AUTO_MIGR_SUP = 1 << 5, 358 IB_PORT_SL_MAP_SUP = 1 << 6, 359 IB_PORT_MKEY_NVRAM = 1 << 7, 360 IB_PORT_PKEY_NVRAM = 1 << 8, 361 IB_PORT_LED_INFO_SUP = 1 << 9, 362 IB_PORT_SM_DISABLED = 1 << 10, 363 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11, 364 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12, 365 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14, 366 IB_PORT_CM_SUP = 1 << 16, 367 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17, 368 IB_PORT_REINIT_SUP = 1 << 18, 369 IB_PORT_DEVICE_MGMT_SUP = 1 << 19, 370 IB_PORT_VENDOR_CLASS_SUP = 1 << 20, 371 IB_PORT_DR_NOTICE_SUP = 1 << 21, 372 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22, 373 IB_PORT_BOOT_MGMT_SUP = 1 << 23, 374 IB_PORT_LINK_LATENCY_SUP = 1 << 24, 375 IB_PORT_CLIENT_REG_SUP = 1 << 25, 376 IB_PORT_IP_BASED_GIDS = 1 << 26, 377 }; 378 379 enum ib_port_width { 380 IB_WIDTH_1X = 1, 381 IB_WIDTH_4X = 2, 382 IB_WIDTH_8X = 4, 383 IB_WIDTH_12X = 8 384 }; 385 386 static inline int ib_width_enum_to_int(enum ib_port_width width) 387 { 388 switch (width) { 389 case IB_WIDTH_1X: return 1; 390 case IB_WIDTH_4X: return 4; 391 case IB_WIDTH_8X: return 8; 392 case IB_WIDTH_12X: return 12; 393 default: return -1; 394 } 395 } 396 397 enum ib_port_speed { 398 IB_SPEED_SDR = 1, 399 IB_SPEED_DDR = 2, 400 IB_SPEED_QDR = 4, 401 IB_SPEED_FDR10 = 8, 402 IB_SPEED_FDR = 16, 403 IB_SPEED_EDR = 32 404 }; 405 406 /** 407 * struct rdma_hw_stats 408 * @timestamp - Used by the core code to track when the last update was 409 * @lifespan - Used by the core code to determine how old the counters 410 * should be before being updated again. Stored in jiffies, defaults 411 * to 10 milliseconds, drivers can override the default be specifying 412 * their own value during their allocation routine. 413 * @name - Array of pointers to static names used for the counters in 414 * directory. 415 * @num_counters - How many hardware counters there are. If name is 416 * shorter than this number, a kernel oops will result. Driver authors 417 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters) 418 * in their code to prevent this. 419 * @value - Array of u64 counters that are accessed by the sysfs code and 420 * filled in by the drivers get_stats routine 421 */ 422 struct rdma_hw_stats { 423 unsigned long timestamp; 424 unsigned long lifespan; 425 const char * const *names; 426 int num_counters; 427 u64 value[]; 428 }; 429 430 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10 431 /** 432 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct 433 * for drivers. 434 * @names - Array of static const char * 435 * @num_counters - How many elements in array 436 * @lifespan - How many milliseconds between updates 437 */ 438 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 439 const char * const *names, int num_counters, 440 unsigned long lifespan) 441 { 442 struct rdma_hw_stats *stats; 443 444 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64), 445 GFP_KERNEL); 446 if (!stats) 447 return NULL; 448 stats->names = names; 449 stats->num_counters = num_counters; 450 stats->lifespan = msecs_to_jiffies(lifespan); 451 452 return stats; 453 } 454 455 456 /* Define bits for the various functionality this port needs to be supported by 457 * the core. 458 */ 459 /* Management 0x00000FFF */ 460 #define RDMA_CORE_CAP_IB_MAD 0x00000001 461 #define RDMA_CORE_CAP_IB_SMI 0x00000002 462 #define RDMA_CORE_CAP_IB_CM 0x00000004 463 #define RDMA_CORE_CAP_IW_CM 0x00000008 464 #define RDMA_CORE_CAP_IB_SA 0x00000010 465 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 466 467 /* Address format 0x000FF000 */ 468 #define RDMA_CORE_CAP_AF_IB 0x00001000 469 #define RDMA_CORE_CAP_ETH_AH 0x00002000 470 471 /* Protocol 0xFFF00000 */ 472 #define RDMA_CORE_CAP_PROT_IB 0x00100000 473 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 474 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 475 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 476 477 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 478 | RDMA_CORE_CAP_IB_MAD \ 479 | RDMA_CORE_CAP_IB_SMI \ 480 | RDMA_CORE_CAP_IB_CM \ 481 | RDMA_CORE_CAP_IB_SA \ 482 | RDMA_CORE_CAP_AF_IB) 483 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 484 | RDMA_CORE_CAP_IB_MAD \ 485 | RDMA_CORE_CAP_IB_CM \ 486 | RDMA_CORE_CAP_AF_IB \ 487 | RDMA_CORE_CAP_ETH_AH) 488 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ 489 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ 490 | RDMA_CORE_CAP_IB_MAD \ 491 | RDMA_CORE_CAP_IB_CM \ 492 | RDMA_CORE_CAP_AF_IB \ 493 | RDMA_CORE_CAP_ETH_AH) 494 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 495 | RDMA_CORE_CAP_IW_CM) 496 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 497 | RDMA_CORE_CAP_OPA_MAD) 498 499 struct ib_port_attr { 500 u64 subnet_prefix; 501 enum ib_port_state state; 502 enum ib_mtu max_mtu; 503 enum ib_mtu active_mtu; 504 int gid_tbl_len; 505 u32 port_cap_flags; 506 u32 max_msg_sz; 507 u32 bad_pkey_cntr; 508 u32 qkey_viol_cntr; 509 u16 pkey_tbl_len; 510 u16 lid; 511 u16 sm_lid; 512 u8 lmc; 513 u8 max_vl_num; 514 u8 sm_sl; 515 u8 subnet_timeout; 516 u8 init_type_reply; 517 u8 active_width; 518 u8 active_speed; 519 u8 phys_state; 520 bool grh_required; 521 }; 522 523 enum ib_device_modify_flags { 524 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 525 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 526 }; 527 528 struct ib_device_modify { 529 u64 sys_image_guid; 530 char node_desc[64]; 531 }; 532 533 enum ib_port_modify_flags { 534 IB_PORT_SHUTDOWN = 1, 535 IB_PORT_INIT_TYPE = (1<<2), 536 IB_PORT_RESET_QKEY_CNTR = (1<<3) 537 }; 538 539 struct ib_port_modify { 540 u32 set_port_cap_mask; 541 u32 clr_port_cap_mask; 542 u8 init_type; 543 }; 544 545 enum ib_event_type { 546 IB_EVENT_CQ_ERR, 547 IB_EVENT_QP_FATAL, 548 IB_EVENT_QP_REQ_ERR, 549 IB_EVENT_QP_ACCESS_ERR, 550 IB_EVENT_COMM_EST, 551 IB_EVENT_SQ_DRAINED, 552 IB_EVENT_PATH_MIG, 553 IB_EVENT_PATH_MIG_ERR, 554 IB_EVENT_DEVICE_FATAL, 555 IB_EVENT_PORT_ACTIVE, 556 IB_EVENT_PORT_ERR, 557 IB_EVENT_LID_CHANGE, 558 IB_EVENT_PKEY_CHANGE, 559 IB_EVENT_SM_CHANGE, 560 IB_EVENT_SRQ_ERR, 561 IB_EVENT_SRQ_LIMIT_REACHED, 562 IB_EVENT_QP_LAST_WQE_REACHED, 563 IB_EVENT_CLIENT_REREGISTER, 564 IB_EVENT_GID_CHANGE, 565 IB_EVENT_WQ_FATAL, 566 }; 567 568 const char *__attribute_const__ ib_event_msg(enum ib_event_type event); 569 570 struct ib_event { 571 struct ib_device *device; 572 union { 573 struct ib_cq *cq; 574 struct ib_qp *qp; 575 struct ib_srq *srq; 576 struct ib_wq *wq; 577 u8 port_num; 578 } element; 579 enum ib_event_type event; 580 }; 581 582 struct ib_event_handler { 583 struct ib_device *device; 584 void (*handler)(struct ib_event_handler *, struct ib_event *); 585 struct list_head list; 586 }; 587 588 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 589 do { \ 590 (_ptr)->device = _device; \ 591 (_ptr)->handler = _handler; \ 592 INIT_LIST_HEAD(&(_ptr)->list); \ 593 } while (0) 594 595 struct ib_global_route { 596 union ib_gid dgid; 597 u32 flow_label; 598 u8 sgid_index; 599 u8 hop_limit; 600 u8 traffic_class; 601 }; 602 603 struct ib_grh { 604 __be32 version_tclass_flow; 605 __be16 paylen; 606 u8 next_hdr; 607 u8 hop_limit; 608 union ib_gid sgid; 609 union ib_gid dgid; 610 }; 611 612 union rdma_network_hdr { 613 struct ib_grh ibgrh; 614 struct { 615 /* The IB spec states that if it's IPv4, the header 616 * is located in the last 20 bytes of the header. 617 */ 618 u8 reserved[20]; 619 struct iphdr roce4grh; 620 }; 621 }; 622 623 enum { 624 IB_MULTICAST_QPN = 0xffffff 625 }; 626 627 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 628 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000) 629 630 enum ib_ah_flags { 631 IB_AH_GRH = 1 632 }; 633 634 enum ib_rate { 635 IB_RATE_PORT_CURRENT = 0, 636 IB_RATE_2_5_GBPS = 2, 637 IB_RATE_5_GBPS = 5, 638 IB_RATE_10_GBPS = 3, 639 IB_RATE_20_GBPS = 6, 640 IB_RATE_30_GBPS = 4, 641 IB_RATE_40_GBPS = 7, 642 IB_RATE_60_GBPS = 8, 643 IB_RATE_80_GBPS = 9, 644 IB_RATE_120_GBPS = 10, 645 IB_RATE_14_GBPS = 11, 646 IB_RATE_56_GBPS = 12, 647 IB_RATE_112_GBPS = 13, 648 IB_RATE_168_GBPS = 14, 649 IB_RATE_25_GBPS = 15, 650 IB_RATE_100_GBPS = 16, 651 IB_RATE_200_GBPS = 17, 652 IB_RATE_300_GBPS = 18 653 }; 654 655 /** 656 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 657 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 658 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 659 * @rate: rate to convert. 660 */ 661 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 662 663 /** 664 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 665 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 666 * @rate: rate to convert. 667 */ 668 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 669 670 671 /** 672 * enum ib_mr_type - memory region type 673 * @IB_MR_TYPE_MEM_REG: memory region that is used for 674 * normal registration 675 * @IB_MR_TYPE_SIGNATURE: memory region that is used for 676 * signature operations (data-integrity 677 * capable regions) 678 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to 679 * register any arbitrary sg lists (without 680 * the normal mr constraints - see 681 * ib_map_mr_sg) 682 */ 683 enum ib_mr_type { 684 IB_MR_TYPE_MEM_REG, 685 IB_MR_TYPE_SIGNATURE, 686 IB_MR_TYPE_SG_GAPS, 687 }; 688 689 /** 690 * Signature types 691 * IB_SIG_TYPE_NONE: Unprotected. 692 * IB_SIG_TYPE_T10_DIF: Type T10-DIF 693 */ 694 enum ib_signature_type { 695 IB_SIG_TYPE_NONE, 696 IB_SIG_TYPE_T10_DIF, 697 }; 698 699 /** 700 * Signature T10-DIF block-guard types 701 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules. 702 * IB_T10DIF_CSUM: Corresponds to IP checksum rules. 703 */ 704 enum ib_t10_dif_bg_type { 705 IB_T10DIF_CRC, 706 IB_T10DIF_CSUM 707 }; 708 709 /** 710 * struct ib_t10_dif_domain - Parameters specific for T10-DIF 711 * domain. 712 * @bg_type: T10-DIF block guard type (CRC|CSUM) 713 * @pi_interval: protection information interval. 714 * @bg: seed of guard computation. 715 * @app_tag: application tag of guard block 716 * @ref_tag: initial guard block reference tag. 717 * @ref_remap: Indicate wethear the reftag increments each block 718 * @app_escape: Indicate to skip block check if apptag=0xffff 719 * @ref_escape: Indicate to skip block check if reftag=0xffffffff 720 * @apptag_check_mask: check bitmask of application tag. 721 */ 722 struct ib_t10_dif_domain { 723 enum ib_t10_dif_bg_type bg_type; 724 u16 pi_interval; 725 u16 bg; 726 u16 app_tag; 727 u32 ref_tag; 728 bool ref_remap; 729 bool app_escape; 730 bool ref_escape; 731 u16 apptag_check_mask; 732 }; 733 734 /** 735 * struct ib_sig_domain - Parameters for signature domain 736 * @sig_type: specific signauture type 737 * @sig: union of all signature domain attributes that may 738 * be used to set domain layout. 739 */ 740 struct ib_sig_domain { 741 enum ib_signature_type sig_type; 742 union { 743 struct ib_t10_dif_domain dif; 744 } sig; 745 }; 746 747 /** 748 * struct ib_sig_attrs - Parameters for signature handover operation 749 * @check_mask: bitmask for signature byte check (8 bytes) 750 * @mem: memory domain layout desciptor. 751 * @wire: wire domain layout desciptor. 752 */ 753 struct ib_sig_attrs { 754 u8 check_mask; 755 struct ib_sig_domain mem; 756 struct ib_sig_domain wire; 757 }; 758 759 enum ib_sig_err_type { 760 IB_SIG_BAD_GUARD, 761 IB_SIG_BAD_REFTAG, 762 IB_SIG_BAD_APPTAG, 763 }; 764 765 /** 766 * struct ib_sig_err - signature error descriptor 767 */ 768 struct ib_sig_err { 769 enum ib_sig_err_type err_type; 770 u32 expected; 771 u32 actual; 772 u64 sig_err_offset; 773 u32 key; 774 }; 775 776 enum ib_mr_status_check { 777 IB_MR_CHECK_SIG_STATUS = 1, 778 }; 779 780 /** 781 * struct ib_mr_status - Memory region status container 782 * 783 * @fail_status: Bitmask of MR checks status. For each 784 * failed check a corresponding status bit is set. 785 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 786 * failure. 787 */ 788 struct ib_mr_status { 789 u32 fail_status; 790 struct ib_sig_err sig_err; 791 }; 792 793 /** 794 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 795 * enum. 796 * @mult: multiple to convert. 797 */ 798 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 799 800 struct ib_ah_attr { 801 struct ib_global_route grh; 802 u16 dlid; 803 u8 sl; 804 u8 src_path_bits; 805 u8 static_rate; 806 u8 ah_flags; 807 u8 port_num; 808 u8 dmac[ETH_ALEN]; 809 }; 810 811 enum ib_wc_status { 812 IB_WC_SUCCESS, 813 IB_WC_LOC_LEN_ERR, 814 IB_WC_LOC_QP_OP_ERR, 815 IB_WC_LOC_EEC_OP_ERR, 816 IB_WC_LOC_PROT_ERR, 817 IB_WC_WR_FLUSH_ERR, 818 IB_WC_MW_BIND_ERR, 819 IB_WC_BAD_RESP_ERR, 820 IB_WC_LOC_ACCESS_ERR, 821 IB_WC_REM_INV_REQ_ERR, 822 IB_WC_REM_ACCESS_ERR, 823 IB_WC_REM_OP_ERR, 824 IB_WC_RETRY_EXC_ERR, 825 IB_WC_RNR_RETRY_EXC_ERR, 826 IB_WC_LOC_RDD_VIOL_ERR, 827 IB_WC_REM_INV_RD_REQ_ERR, 828 IB_WC_REM_ABORT_ERR, 829 IB_WC_INV_EECN_ERR, 830 IB_WC_INV_EEC_STATE_ERR, 831 IB_WC_FATAL_ERR, 832 IB_WC_RESP_TIMEOUT_ERR, 833 IB_WC_GENERAL_ERR 834 }; 835 836 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); 837 838 enum ib_wc_opcode { 839 IB_WC_SEND, 840 IB_WC_RDMA_WRITE, 841 IB_WC_RDMA_READ, 842 IB_WC_COMP_SWAP, 843 IB_WC_FETCH_ADD, 844 IB_WC_LSO, 845 IB_WC_LOCAL_INV, 846 IB_WC_REG_MR, 847 IB_WC_MASKED_COMP_SWAP, 848 IB_WC_MASKED_FETCH_ADD, 849 /* 850 * Set value of IB_WC_RECV so consumers can test if a completion is a 851 * receive by testing (opcode & IB_WC_RECV). 852 */ 853 IB_WC_RECV = 1 << 7, 854 IB_WC_RECV_RDMA_WITH_IMM 855 }; 856 857 enum ib_wc_flags { 858 IB_WC_GRH = 1, 859 IB_WC_WITH_IMM = (1<<1), 860 IB_WC_WITH_INVALIDATE = (1<<2), 861 IB_WC_IP_CSUM_OK = (1<<3), 862 IB_WC_WITH_SMAC = (1<<4), 863 IB_WC_WITH_VLAN = (1<<5), 864 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), 865 }; 866 867 struct ib_wc { 868 union { 869 u64 wr_id; 870 struct ib_cqe *wr_cqe; 871 }; 872 enum ib_wc_status status; 873 enum ib_wc_opcode opcode; 874 u32 vendor_err; 875 u32 byte_len; 876 struct ib_qp *qp; 877 union { 878 __be32 imm_data; 879 u32 invalidate_rkey; 880 } ex; 881 u32 src_qp; 882 int wc_flags; 883 u16 pkey_index; 884 u16 slid; 885 u8 sl; 886 u8 dlid_path_bits; 887 u8 port_num; /* valid only for DR SMPs on switches */ 888 u8 smac[ETH_ALEN]; 889 u16 vlan_id; 890 u8 network_hdr_type; 891 }; 892 893 enum ib_cq_notify_flags { 894 IB_CQ_SOLICITED = 1 << 0, 895 IB_CQ_NEXT_COMP = 1 << 1, 896 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 897 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 898 }; 899 900 enum ib_srq_type { 901 IB_SRQT_BASIC, 902 IB_SRQT_XRC 903 }; 904 905 enum ib_srq_attr_mask { 906 IB_SRQ_MAX_WR = 1 << 0, 907 IB_SRQ_LIMIT = 1 << 1, 908 }; 909 910 struct ib_srq_attr { 911 u32 max_wr; 912 u32 max_sge; 913 u32 srq_limit; 914 }; 915 916 struct ib_srq_init_attr { 917 void (*event_handler)(struct ib_event *, void *); 918 void *srq_context; 919 struct ib_srq_attr attr; 920 enum ib_srq_type srq_type; 921 922 union { 923 struct { 924 struct ib_xrcd *xrcd; 925 struct ib_cq *cq; 926 } xrc; 927 } ext; 928 }; 929 930 struct ib_qp_cap { 931 u32 max_send_wr; 932 u32 max_recv_wr; 933 u32 max_send_sge; 934 u32 max_recv_sge; 935 u32 max_inline_data; 936 937 /* 938 * Maximum number of rdma_rw_ctx structures in flight at a time. 939 * ib_create_qp() will calculate the right amount of neededed WRs 940 * and MRs based on this. 941 */ 942 u32 max_rdma_ctxs; 943 }; 944 945 enum ib_sig_type { 946 IB_SIGNAL_ALL_WR, 947 IB_SIGNAL_REQ_WR 948 }; 949 950 enum ib_qp_type { 951 /* 952 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 953 * here (and in that order) since the MAD layer uses them as 954 * indices into a 2-entry table. 955 */ 956 IB_QPT_SMI, 957 IB_QPT_GSI, 958 959 IB_QPT_RC, 960 IB_QPT_UC, 961 IB_QPT_UD, 962 IB_QPT_RAW_IPV6, 963 IB_QPT_RAW_ETHERTYPE, 964 IB_QPT_RAW_PACKET = 8, 965 IB_QPT_XRC_INI = 9, 966 IB_QPT_XRC_TGT, 967 IB_QPT_MAX, 968 /* Reserve a range for qp types internal to the low level driver. 969 * These qp types will not be visible at the IB core layer, so the 970 * IB_QPT_MAX usages should not be affected in the core layer 971 */ 972 IB_QPT_RESERVED1 = 0x1000, 973 IB_QPT_RESERVED2, 974 IB_QPT_RESERVED3, 975 IB_QPT_RESERVED4, 976 IB_QPT_RESERVED5, 977 IB_QPT_RESERVED6, 978 IB_QPT_RESERVED7, 979 IB_QPT_RESERVED8, 980 IB_QPT_RESERVED9, 981 IB_QPT_RESERVED10, 982 }; 983 984 enum ib_qp_create_flags { 985 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 986 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1, 987 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 988 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 989 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 990 IB_QP_CREATE_NETIF_QP = 1 << 5, 991 IB_QP_CREATE_SIGNATURE_EN = 1 << 6, 992 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7, 993 IB_QP_CREATE_SCATTER_FCS = 1 << 8, 994 /* reserve bits 26-31 for low level drivers' internal use */ 995 IB_QP_CREATE_RESERVED_START = 1 << 26, 996 IB_QP_CREATE_RESERVED_END = 1 << 31, 997 }; 998 999 /* 1000 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 1001 * callback to destroy the passed in QP. 1002 */ 1003 1004 struct ib_qp_init_attr { 1005 void (*event_handler)(struct ib_event *, void *); 1006 void *qp_context; 1007 struct ib_cq *send_cq; 1008 struct ib_cq *recv_cq; 1009 struct ib_srq *srq; 1010 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1011 struct ib_qp_cap cap; 1012 enum ib_sig_type sq_sig_type; 1013 enum ib_qp_type qp_type; 1014 enum ib_qp_create_flags create_flags; 1015 1016 /* 1017 * Only needed for special QP types, or when using the RW API. 1018 */ 1019 u8 port_num; 1020 struct ib_rwq_ind_table *rwq_ind_tbl; 1021 }; 1022 1023 struct ib_qp_open_attr { 1024 void (*event_handler)(struct ib_event *, void *); 1025 void *qp_context; 1026 u32 qp_num; 1027 enum ib_qp_type qp_type; 1028 }; 1029 1030 enum ib_rnr_timeout { 1031 IB_RNR_TIMER_655_36 = 0, 1032 IB_RNR_TIMER_000_01 = 1, 1033 IB_RNR_TIMER_000_02 = 2, 1034 IB_RNR_TIMER_000_03 = 3, 1035 IB_RNR_TIMER_000_04 = 4, 1036 IB_RNR_TIMER_000_06 = 5, 1037 IB_RNR_TIMER_000_08 = 6, 1038 IB_RNR_TIMER_000_12 = 7, 1039 IB_RNR_TIMER_000_16 = 8, 1040 IB_RNR_TIMER_000_24 = 9, 1041 IB_RNR_TIMER_000_32 = 10, 1042 IB_RNR_TIMER_000_48 = 11, 1043 IB_RNR_TIMER_000_64 = 12, 1044 IB_RNR_TIMER_000_96 = 13, 1045 IB_RNR_TIMER_001_28 = 14, 1046 IB_RNR_TIMER_001_92 = 15, 1047 IB_RNR_TIMER_002_56 = 16, 1048 IB_RNR_TIMER_003_84 = 17, 1049 IB_RNR_TIMER_005_12 = 18, 1050 IB_RNR_TIMER_007_68 = 19, 1051 IB_RNR_TIMER_010_24 = 20, 1052 IB_RNR_TIMER_015_36 = 21, 1053 IB_RNR_TIMER_020_48 = 22, 1054 IB_RNR_TIMER_030_72 = 23, 1055 IB_RNR_TIMER_040_96 = 24, 1056 IB_RNR_TIMER_061_44 = 25, 1057 IB_RNR_TIMER_081_92 = 26, 1058 IB_RNR_TIMER_122_88 = 27, 1059 IB_RNR_TIMER_163_84 = 28, 1060 IB_RNR_TIMER_245_76 = 29, 1061 IB_RNR_TIMER_327_68 = 30, 1062 IB_RNR_TIMER_491_52 = 31 1063 }; 1064 1065 enum ib_qp_attr_mask { 1066 IB_QP_STATE = 1, 1067 IB_QP_CUR_STATE = (1<<1), 1068 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 1069 IB_QP_ACCESS_FLAGS = (1<<3), 1070 IB_QP_PKEY_INDEX = (1<<4), 1071 IB_QP_PORT = (1<<5), 1072 IB_QP_QKEY = (1<<6), 1073 IB_QP_AV = (1<<7), 1074 IB_QP_PATH_MTU = (1<<8), 1075 IB_QP_TIMEOUT = (1<<9), 1076 IB_QP_RETRY_CNT = (1<<10), 1077 IB_QP_RNR_RETRY = (1<<11), 1078 IB_QP_RQ_PSN = (1<<12), 1079 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 1080 IB_QP_ALT_PATH = (1<<14), 1081 IB_QP_MIN_RNR_TIMER = (1<<15), 1082 IB_QP_SQ_PSN = (1<<16), 1083 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 1084 IB_QP_PATH_MIG_STATE = (1<<18), 1085 IB_QP_CAP = (1<<19), 1086 IB_QP_DEST_QPN = (1<<20), 1087 IB_QP_RESERVED1 = (1<<21), 1088 IB_QP_RESERVED2 = (1<<22), 1089 IB_QP_RESERVED3 = (1<<23), 1090 IB_QP_RESERVED4 = (1<<24), 1091 }; 1092 1093 enum ib_qp_state { 1094 IB_QPS_RESET, 1095 IB_QPS_INIT, 1096 IB_QPS_RTR, 1097 IB_QPS_RTS, 1098 IB_QPS_SQD, 1099 IB_QPS_SQE, 1100 IB_QPS_ERR 1101 }; 1102 1103 enum ib_mig_state { 1104 IB_MIG_MIGRATED, 1105 IB_MIG_REARM, 1106 IB_MIG_ARMED 1107 }; 1108 1109 enum ib_mw_type { 1110 IB_MW_TYPE_1 = 1, 1111 IB_MW_TYPE_2 = 2 1112 }; 1113 1114 struct ib_qp_attr { 1115 enum ib_qp_state qp_state; 1116 enum ib_qp_state cur_qp_state; 1117 enum ib_mtu path_mtu; 1118 enum ib_mig_state path_mig_state; 1119 u32 qkey; 1120 u32 rq_psn; 1121 u32 sq_psn; 1122 u32 dest_qp_num; 1123 int qp_access_flags; 1124 struct ib_qp_cap cap; 1125 struct ib_ah_attr ah_attr; 1126 struct ib_ah_attr alt_ah_attr; 1127 u16 pkey_index; 1128 u16 alt_pkey_index; 1129 u8 en_sqd_async_notify; 1130 u8 sq_draining; 1131 u8 max_rd_atomic; 1132 u8 max_dest_rd_atomic; 1133 u8 min_rnr_timer; 1134 u8 port_num; 1135 u8 timeout; 1136 u8 retry_cnt; 1137 u8 rnr_retry; 1138 u8 alt_port_num; 1139 u8 alt_timeout; 1140 }; 1141 1142 enum ib_wr_opcode { 1143 IB_WR_RDMA_WRITE, 1144 IB_WR_RDMA_WRITE_WITH_IMM, 1145 IB_WR_SEND, 1146 IB_WR_SEND_WITH_IMM, 1147 IB_WR_RDMA_READ, 1148 IB_WR_ATOMIC_CMP_AND_SWP, 1149 IB_WR_ATOMIC_FETCH_AND_ADD, 1150 IB_WR_LSO, 1151 IB_WR_SEND_WITH_INV, 1152 IB_WR_RDMA_READ_WITH_INV, 1153 IB_WR_LOCAL_INV, 1154 IB_WR_REG_MR, 1155 IB_WR_MASKED_ATOMIC_CMP_AND_SWP, 1156 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1157 IB_WR_REG_SIG_MR, 1158 /* reserve values for low level drivers' internal use. 1159 * These values will not be used at all in the ib core layer. 1160 */ 1161 IB_WR_RESERVED1 = 0xf0, 1162 IB_WR_RESERVED2, 1163 IB_WR_RESERVED3, 1164 IB_WR_RESERVED4, 1165 IB_WR_RESERVED5, 1166 IB_WR_RESERVED6, 1167 IB_WR_RESERVED7, 1168 IB_WR_RESERVED8, 1169 IB_WR_RESERVED9, 1170 IB_WR_RESERVED10, 1171 }; 1172 1173 enum ib_send_flags { 1174 IB_SEND_FENCE = 1, 1175 IB_SEND_SIGNALED = (1<<1), 1176 IB_SEND_SOLICITED = (1<<2), 1177 IB_SEND_INLINE = (1<<3), 1178 IB_SEND_IP_CSUM = (1<<4), 1179 1180 /* reserve bits 26-31 for low level drivers' internal use */ 1181 IB_SEND_RESERVED_START = (1 << 26), 1182 IB_SEND_RESERVED_END = (1 << 31), 1183 }; 1184 1185 struct ib_sge { 1186 u64 addr; 1187 u32 length; 1188 u32 lkey; 1189 }; 1190 1191 struct ib_cqe { 1192 void (*done)(struct ib_cq *cq, struct ib_wc *wc); 1193 }; 1194 1195 struct ib_send_wr { 1196 struct ib_send_wr *next; 1197 union { 1198 u64 wr_id; 1199 struct ib_cqe *wr_cqe; 1200 }; 1201 struct ib_sge *sg_list; 1202 int num_sge; 1203 enum ib_wr_opcode opcode; 1204 int send_flags; 1205 union { 1206 __be32 imm_data; 1207 u32 invalidate_rkey; 1208 } ex; 1209 }; 1210 1211 struct ib_rdma_wr { 1212 struct ib_send_wr wr; 1213 u64 remote_addr; 1214 u32 rkey; 1215 }; 1216 1217 static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr) 1218 { 1219 return container_of(wr, struct ib_rdma_wr, wr); 1220 } 1221 1222 struct ib_atomic_wr { 1223 struct ib_send_wr wr; 1224 u64 remote_addr; 1225 u64 compare_add; 1226 u64 swap; 1227 u64 compare_add_mask; 1228 u64 swap_mask; 1229 u32 rkey; 1230 }; 1231 1232 static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr) 1233 { 1234 return container_of(wr, struct ib_atomic_wr, wr); 1235 } 1236 1237 struct ib_ud_wr { 1238 struct ib_send_wr wr; 1239 struct ib_ah *ah; 1240 void *header; 1241 int hlen; 1242 int mss; 1243 u32 remote_qpn; 1244 u32 remote_qkey; 1245 u16 pkey_index; /* valid for GSI only */ 1246 u8 port_num; /* valid for DR SMPs on switch only */ 1247 }; 1248 1249 static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr) 1250 { 1251 return container_of(wr, struct ib_ud_wr, wr); 1252 } 1253 1254 struct ib_reg_wr { 1255 struct ib_send_wr wr; 1256 struct ib_mr *mr; 1257 u32 key; 1258 int access; 1259 }; 1260 1261 static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr) 1262 { 1263 return container_of(wr, struct ib_reg_wr, wr); 1264 } 1265 1266 struct ib_sig_handover_wr { 1267 struct ib_send_wr wr; 1268 struct ib_sig_attrs *sig_attrs; 1269 struct ib_mr *sig_mr; 1270 int access_flags; 1271 struct ib_sge *prot; 1272 }; 1273 1274 static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr) 1275 { 1276 return container_of(wr, struct ib_sig_handover_wr, wr); 1277 } 1278 1279 struct ib_recv_wr { 1280 struct ib_recv_wr *next; 1281 union { 1282 u64 wr_id; 1283 struct ib_cqe *wr_cqe; 1284 }; 1285 struct ib_sge *sg_list; 1286 int num_sge; 1287 }; 1288 1289 enum ib_access_flags { 1290 IB_ACCESS_LOCAL_WRITE = 1, 1291 IB_ACCESS_REMOTE_WRITE = (1<<1), 1292 IB_ACCESS_REMOTE_READ = (1<<2), 1293 IB_ACCESS_REMOTE_ATOMIC = (1<<3), 1294 IB_ACCESS_MW_BIND = (1<<4), 1295 IB_ZERO_BASED = (1<<5), 1296 IB_ACCESS_ON_DEMAND = (1<<6), 1297 }; 1298 1299 /* 1300 * XXX: these are apparently used for ->rereg_user_mr, no idea why they 1301 * are hidden here instead of a uapi header! 1302 */ 1303 enum ib_mr_rereg_flags { 1304 IB_MR_REREG_TRANS = 1, 1305 IB_MR_REREG_PD = (1<<1), 1306 IB_MR_REREG_ACCESS = (1<<2), 1307 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1308 }; 1309 1310 struct ib_fmr_attr { 1311 int max_pages; 1312 int max_maps; 1313 u8 page_shift; 1314 }; 1315 1316 struct ib_umem; 1317 1318 struct ib_ucontext { 1319 struct ib_device *device; 1320 struct list_head pd_list; 1321 struct list_head mr_list; 1322 struct list_head mw_list; 1323 struct list_head cq_list; 1324 struct list_head qp_list; 1325 struct list_head srq_list; 1326 struct list_head ah_list; 1327 struct list_head xrcd_list; 1328 struct list_head rule_list; 1329 struct list_head wq_list; 1330 struct list_head rwq_ind_tbl_list; 1331 int closing; 1332 1333 struct pid *tgid; 1334 #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING 1335 struct rb_root umem_tree; 1336 /* 1337 * Protects .umem_rbroot and tree, as well as odp_mrs_count and 1338 * mmu notifiers registration. 1339 */ 1340 struct rw_semaphore umem_rwsem; 1341 void (*invalidate_range)(struct ib_umem *umem, 1342 unsigned long start, unsigned long end); 1343 1344 struct mmu_notifier mn; 1345 atomic_t notifier_count; 1346 /* A list of umems that don't have private mmu notifier counters yet. */ 1347 struct list_head no_private_counters; 1348 int odp_mrs_count; 1349 #endif 1350 }; 1351 1352 struct ib_uobject { 1353 u64 user_handle; /* handle given to us by userspace */ 1354 struct ib_ucontext *context; /* associated user context */ 1355 void *object; /* containing object */ 1356 struct list_head list; /* link to context's list */ 1357 int id; /* index into kernel idr */ 1358 struct kref ref; 1359 struct rw_semaphore mutex; /* protects .live */ 1360 struct rcu_head rcu; /* kfree_rcu() overhead */ 1361 int live; 1362 }; 1363 1364 struct ib_udata { 1365 const void __user *inbuf; 1366 void __user *outbuf; 1367 size_t inlen; 1368 size_t outlen; 1369 }; 1370 1371 struct ib_pd { 1372 u32 local_dma_lkey; 1373 struct ib_device *device; 1374 struct ib_uobject *uobject; 1375 atomic_t usecnt; /* count all resources */ 1376 struct ib_mr *local_mr; 1377 }; 1378 1379 struct ib_xrcd { 1380 struct ib_device *device; 1381 atomic_t usecnt; /* count all exposed resources */ 1382 struct inode *inode; 1383 1384 struct mutex tgt_qp_mutex; 1385 struct list_head tgt_qp_list; 1386 }; 1387 1388 struct ib_ah { 1389 struct ib_device *device; 1390 struct ib_pd *pd; 1391 struct ib_uobject *uobject; 1392 }; 1393 1394 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1395 1396 enum ib_poll_context { 1397 IB_POLL_DIRECT, /* caller context, no hw completions */ 1398 IB_POLL_SOFTIRQ, /* poll from softirq context */ 1399 IB_POLL_WORKQUEUE, /* poll from workqueue */ 1400 }; 1401 1402 struct ib_cq { 1403 struct ib_device *device; 1404 struct ib_uobject *uobject; 1405 ib_comp_handler comp_handler; 1406 void (*event_handler)(struct ib_event *, void *); 1407 void *cq_context; 1408 int cqe; 1409 atomic_t usecnt; /* count number of work queues */ 1410 enum ib_poll_context poll_ctx; 1411 struct ib_wc *wc; 1412 union { 1413 struct irq_poll iop; 1414 struct work_struct work; 1415 }; 1416 }; 1417 1418 struct ib_srq { 1419 struct ib_device *device; 1420 struct ib_pd *pd; 1421 struct ib_uobject *uobject; 1422 void (*event_handler)(struct ib_event *, void *); 1423 void *srq_context; 1424 enum ib_srq_type srq_type; 1425 atomic_t usecnt; 1426 1427 union { 1428 struct { 1429 struct ib_xrcd *xrcd; 1430 struct ib_cq *cq; 1431 u32 srq_num; 1432 } xrc; 1433 } ext; 1434 }; 1435 1436 enum ib_wq_type { 1437 IB_WQT_RQ 1438 }; 1439 1440 enum ib_wq_state { 1441 IB_WQS_RESET, 1442 IB_WQS_RDY, 1443 IB_WQS_ERR 1444 }; 1445 1446 struct ib_wq { 1447 struct ib_device *device; 1448 struct ib_uobject *uobject; 1449 void *wq_context; 1450 void (*event_handler)(struct ib_event *, void *); 1451 struct ib_pd *pd; 1452 struct ib_cq *cq; 1453 u32 wq_num; 1454 enum ib_wq_state state; 1455 enum ib_wq_type wq_type; 1456 atomic_t usecnt; 1457 }; 1458 1459 struct ib_wq_init_attr { 1460 void *wq_context; 1461 enum ib_wq_type wq_type; 1462 u32 max_wr; 1463 u32 max_sge; 1464 struct ib_cq *cq; 1465 void (*event_handler)(struct ib_event *, void *); 1466 }; 1467 1468 enum ib_wq_attr_mask { 1469 IB_WQ_STATE = 1 << 0, 1470 IB_WQ_CUR_STATE = 1 << 1, 1471 }; 1472 1473 struct ib_wq_attr { 1474 enum ib_wq_state wq_state; 1475 enum ib_wq_state curr_wq_state; 1476 }; 1477 1478 struct ib_rwq_ind_table { 1479 struct ib_device *device; 1480 struct ib_uobject *uobject; 1481 atomic_t usecnt; 1482 u32 ind_tbl_num; 1483 u32 log_ind_tbl_size; 1484 struct ib_wq **ind_tbl; 1485 }; 1486 1487 struct ib_rwq_ind_table_init_attr { 1488 u32 log_ind_tbl_size; 1489 /* Each entry is a pointer to Receive Work Queue */ 1490 struct ib_wq **ind_tbl; 1491 }; 1492 1493 /* 1494 * @max_write_sge: Maximum SGE elements per RDMA WRITE request. 1495 * @max_read_sge: Maximum SGE elements per RDMA READ request. 1496 */ 1497 struct ib_qp { 1498 struct ib_device *device; 1499 struct ib_pd *pd; 1500 struct ib_cq *send_cq; 1501 struct ib_cq *recv_cq; 1502 spinlock_t mr_lock; 1503 int mrs_used; 1504 struct list_head rdma_mrs; 1505 struct list_head sig_mrs; 1506 struct ib_srq *srq; 1507 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1508 struct list_head xrcd_list; 1509 1510 /* count times opened, mcast attaches, flow attaches */ 1511 atomic_t usecnt; 1512 struct list_head open_list; 1513 struct ib_qp *real_qp; 1514 struct ib_uobject *uobject; 1515 void (*event_handler)(struct ib_event *, void *); 1516 void *qp_context; 1517 u32 qp_num; 1518 u32 max_write_sge; 1519 u32 max_read_sge; 1520 enum ib_qp_type qp_type; 1521 struct ib_rwq_ind_table *rwq_ind_tbl; 1522 }; 1523 1524 struct ib_mr { 1525 struct ib_device *device; 1526 struct ib_pd *pd; 1527 u32 lkey; 1528 u32 rkey; 1529 u64 iova; 1530 u32 length; 1531 unsigned int page_size; 1532 bool need_inval; 1533 union { 1534 struct ib_uobject *uobject; /* user */ 1535 struct list_head qp_entry; /* FR */ 1536 }; 1537 }; 1538 1539 struct ib_mw { 1540 struct ib_device *device; 1541 struct ib_pd *pd; 1542 struct ib_uobject *uobject; 1543 u32 rkey; 1544 enum ib_mw_type type; 1545 }; 1546 1547 struct ib_fmr { 1548 struct ib_device *device; 1549 struct ib_pd *pd; 1550 struct list_head list; 1551 u32 lkey; 1552 u32 rkey; 1553 }; 1554 1555 /* Supported steering options */ 1556 enum ib_flow_attr_type { 1557 /* steering according to rule specifications */ 1558 IB_FLOW_ATTR_NORMAL = 0x0, 1559 /* default unicast and multicast rule - 1560 * receive all Eth traffic which isn't steered to any QP 1561 */ 1562 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1563 /* default multicast rule - 1564 * receive all Eth multicast traffic which isn't steered to any QP 1565 */ 1566 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1567 /* sniffer rule - receive all port traffic */ 1568 IB_FLOW_ATTR_SNIFFER = 0x3 1569 }; 1570 1571 /* Supported steering header types */ 1572 enum ib_flow_spec_type { 1573 /* L2 headers*/ 1574 IB_FLOW_SPEC_ETH = 0x20, 1575 IB_FLOW_SPEC_IB = 0x22, 1576 /* L3 header*/ 1577 IB_FLOW_SPEC_IPV4 = 0x30, 1578 IB_FLOW_SPEC_IPV6 = 0x31, 1579 /* L4 headers*/ 1580 IB_FLOW_SPEC_TCP = 0x40, 1581 IB_FLOW_SPEC_UDP = 0x41 1582 }; 1583 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1584 #define IB_FLOW_SPEC_SUPPORT_LAYERS 4 1585 1586 /* Flow steering rule priority is set according to it's domain. 1587 * Lower domain value means higher priority. 1588 */ 1589 enum ib_flow_domain { 1590 IB_FLOW_DOMAIN_USER, 1591 IB_FLOW_DOMAIN_ETHTOOL, 1592 IB_FLOW_DOMAIN_RFS, 1593 IB_FLOW_DOMAIN_NIC, 1594 IB_FLOW_DOMAIN_NUM /* Must be last */ 1595 }; 1596 1597 enum ib_flow_flags { 1598 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */ 1599 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */ 1600 }; 1601 1602 struct ib_flow_eth_filter { 1603 u8 dst_mac[6]; 1604 u8 src_mac[6]; 1605 __be16 ether_type; 1606 __be16 vlan_tag; 1607 }; 1608 1609 struct ib_flow_spec_eth { 1610 enum ib_flow_spec_type type; 1611 u16 size; 1612 struct ib_flow_eth_filter val; 1613 struct ib_flow_eth_filter mask; 1614 }; 1615 1616 struct ib_flow_ib_filter { 1617 __be16 dlid; 1618 __u8 sl; 1619 }; 1620 1621 struct ib_flow_spec_ib { 1622 enum ib_flow_spec_type type; 1623 u16 size; 1624 struct ib_flow_ib_filter val; 1625 struct ib_flow_ib_filter mask; 1626 }; 1627 1628 struct ib_flow_ipv4_filter { 1629 __be32 src_ip; 1630 __be32 dst_ip; 1631 }; 1632 1633 struct ib_flow_spec_ipv4 { 1634 enum ib_flow_spec_type type; 1635 u16 size; 1636 struct ib_flow_ipv4_filter val; 1637 struct ib_flow_ipv4_filter mask; 1638 }; 1639 1640 struct ib_flow_ipv6_filter { 1641 u8 src_ip[16]; 1642 u8 dst_ip[16]; 1643 }; 1644 1645 struct ib_flow_spec_ipv6 { 1646 enum ib_flow_spec_type type; 1647 u16 size; 1648 struct ib_flow_ipv6_filter val; 1649 struct ib_flow_ipv6_filter mask; 1650 }; 1651 1652 struct ib_flow_tcp_udp_filter { 1653 __be16 dst_port; 1654 __be16 src_port; 1655 }; 1656 1657 struct ib_flow_spec_tcp_udp { 1658 enum ib_flow_spec_type type; 1659 u16 size; 1660 struct ib_flow_tcp_udp_filter val; 1661 struct ib_flow_tcp_udp_filter mask; 1662 }; 1663 1664 union ib_flow_spec { 1665 struct { 1666 enum ib_flow_spec_type type; 1667 u16 size; 1668 }; 1669 struct ib_flow_spec_eth eth; 1670 struct ib_flow_spec_ib ib; 1671 struct ib_flow_spec_ipv4 ipv4; 1672 struct ib_flow_spec_tcp_udp tcp_udp; 1673 struct ib_flow_spec_ipv6 ipv6; 1674 }; 1675 1676 struct ib_flow_attr { 1677 enum ib_flow_attr_type type; 1678 u16 size; 1679 u16 priority; 1680 u32 flags; 1681 u8 num_of_specs; 1682 u8 port; 1683 /* Following are the optional layers according to user request 1684 * struct ib_flow_spec_xxx 1685 * struct ib_flow_spec_yyy 1686 */ 1687 }; 1688 1689 struct ib_flow { 1690 struct ib_qp *qp; 1691 struct ib_uobject *uobject; 1692 }; 1693 1694 struct ib_mad_hdr; 1695 struct ib_grh; 1696 1697 enum ib_process_mad_flags { 1698 IB_MAD_IGNORE_MKEY = 1, 1699 IB_MAD_IGNORE_BKEY = 2, 1700 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 1701 }; 1702 1703 enum ib_mad_result { 1704 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 1705 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 1706 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 1707 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 1708 }; 1709 1710 #define IB_DEVICE_NAME_MAX 64 1711 1712 struct ib_cache { 1713 rwlock_t lock; 1714 struct ib_event_handler event_handler; 1715 struct ib_pkey_cache **pkey_cache; 1716 struct ib_gid_table **gid_cache; 1717 u8 *lmc_cache; 1718 }; 1719 1720 struct ib_dma_mapping_ops { 1721 int (*mapping_error)(struct ib_device *dev, 1722 u64 dma_addr); 1723 u64 (*map_single)(struct ib_device *dev, 1724 void *ptr, size_t size, 1725 enum dma_data_direction direction); 1726 void (*unmap_single)(struct ib_device *dev, 1727 u64 addr, size_t size, 1728 enum dma_data_direction direction); 1729 u64 (*map_page)(struct ib_device *dev, 1730 struct page *page, unsigned long offset, 1731 size_t size, 1732 enum dma_data_direction direction); 1733 void (*unmap_page)(struct ib_device *dev, 1734 u64 addr, size_t size, 1735 enum dma_data_direction direction); 1736 int (*map_sg)(struct ib_device *dev, 1737 struct scatterlist *sg, int nents, 1738 enum dma_data_direction direction); 1739 void (*unmap_sg)(struct ib_device *dev, 1740 struct scatterlist *sg, int nents, 1741 enum dma_data_direction direction); 1742 void (*sync_single_for_cpu)(struct ib_device *dev, 1743 u64 dma_handle, 1744 size_t size, 1745 enum dma_data_direction dir); 1746 void (*sync_single_for_device)(struct ib_device *dev, 1747 u64 dma_handle, 1748 size_t size, 1749 enum dma_data_direction dir); 1750 void *(*alloc_coherent)(struct ib_device *dev, 1751 size_t size, 1752 u64 *dma_handle, 1753 gfp_t flag); 1754 void (*free_coherent)(struct ib_device *dev, 1755 size_t size, void *cpu_addr, 1756 u64 dma_handle); 1757 }; 1758 1759 struct iw_cm_verbs; 1760 1761 struct ib_port_immutable { 1762 int pkey_tbl_len; 1763 int gid_tbl_len; 1764 u32 core_cap_flags; 1765 u32 max_mad_size; 1766 }; 1767 1768 struct ib_device { 1769 struct device *dma_device; 1770 1771 char name[IB_DEVICE_NAME_MAX]; 1772 1773 struct list_head event_handler_list; 1774 spinlock_t event_handler_lock; 1775 1776 spinlock_t client_data_lock; 1777 struct list_head core_list; 1778 /* Access to the client_data_list is protected by the client_data_lock 1779 * spinlock and the lists_rwsem read-write semaphore */ 1780 struct list_head client_data_list; 1781 1782 struct ib_cache cache; 1783 /** 1784 * port_immutable is indexed by port number 1785 */ 1786 struct ib_port_immutable *port_immutable; 1787 1788 int num_comp_vectors; 1789 1790 struct iw_cm_verbs *iwcm; 1791 1792 /** 1793 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the 1794 * driver initialized data. The struct is kfree()'ed by the sysfs 1795 * core when the device is removed. A lifespan of -1 in the return 1796 * struct tells the core to set a default lifespan. 1797 */ 1798 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device, 1799 u8 port_num); 1800 /** 1801 * get_hw_stats - Fill in the counter value(s) in the stats struct. 1802 * @index - The index in the value array we wish to have updated, or 1803 * num_counters if we want all stats updated 1804 * Return codes - 1805 * < 0 - Error, no counters updated 1806 * index - Updated the single counter pointed to by index 1807 * num_counters - Updated all counters (will reset the timestamp 1808 * and prevent further calls for lifespan milliseconds) 1809 * Drivers are allowed to update all counters in leiu of just the 1810 * one given in index at their option 1811 */ 1812 int (*get_hw_stats)(struct ib_device *device, 1813 struct rdma_hw_stats *stats, 1814 u8 port, int index); 1815 int (*query_device)(struct ib_device *device, 1816 struct ib_device_attr *device_attr, 1817 struct ib_udata *udata); 1818 int (*query_port)(struct ib_device *device, 1819 u8 port_num, 1820 struct ib_port_attr *port_attr); 1821 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 1822 u8 port_num); 1823 /* When calling get_netdev, the HW vendor's driver should return the 1824 * net device of device @device at port @port_num or NULL if such 1825 * a net device doesn't exist. The vendor driver should call dev_hold 1826 * on this net device. The HW vendor's device driver must guarantee 1827 * that this function returns NULL before the net device reaches 1828 * NETDEV_UNREGISTER_FINAL state. 1829 */ 1830 struct net_device *(*get_netdev)(struct ib_device *device, 1831 u8 port_num); 1832 int (*query_gid)(struct ib_device *device, 1833 u8 port_num, int index, 1834 union ib_gid *gid); 1835 /* When calling add_gid, the HW vendor's driver should 1836 * add the gid of device @device at gid index @index of 1837 * port @port_num to be @gid. Meta-info of that gid (for example, 1838 * the network device related to this gid is available 1839 * at @attr. @context allows the HW vendor driver to store extra 1840 * information together with a GID entry. The HW vendor may allocate 1841 * memory to contain this information and store it in @context when a 1842 * new GID entry is written to. Params are consistent until the next 1843 * call of add_gid or delete_gid. The function should return 0 on 1844 * success or error otherwise. The function could be called 1845 * concurrently for different ports. This function is only called 1846 * when roce_gid_table is used. 1847 */ 1848 int (*add_gid)(struct ib_device *device, 1849 u8 port_num, 1850 unsigned int index, 1851 const union ib_gid *gid, 1852 const struct ib_gid_attr *attr, 1853 void **context); 1854 /* When calling del_gid, the HW vendor's driver should delete the 1855 * gid of device @device at gid index @index of port @port_num. 1856 * Upon the deletion of a GID entry, the HW vendor must free any 1857 * allocated memory. The caller will clear @context afterwards. 1858 * This function is only called when roce_gid_table is used. 1859 */ 1860 int (*del_gid)(struct ib_device *device, 1861 u8 port_num, 1862 unsigned int index, 1863 void **context); 1864 int (*query_pkey)(struct ib_device *device, 1865 u8 port_num, u16 index, u16 *pkey); 1866 int (*modify_device)(struct ib_device *device, 1867 int device_modify_mask, 1868 struct ib_device_modify *device_modify); 1869 int (*modify_port)(struct ib_device *device, 1870 u8 port_num, int port_modify_mask, 1871 struct ib_port_modify *port_modify); 1872 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device, 1873 struct ib_udata *udata); 1874 int (*dealloc_ucontext)(struct ib_ucontext *context); 1875 int (*mmap)(struct ib_ucontext *context, 1876 struct vm_area_struct *vma); 1877 struct ib_pd * (*alloc_pd)(struct ib_device *device, 1878 struct ib_ucontext *context, 1879 struct ib_udata *udata); 1880 int (*dealloc_pd)(struct ib_pd *pd); 1881 struct ib_ah * (*create_ah)(struct ib_pd *pd, 1882 struct ib_ah_attr *ah_attr); 1883 int (*modify_ah)(struct ib_ah *ah, 1884 struct ib_ah_attr *ah_attr); 1885 int (*query_ah)(struct ib_ah *ah, 1886 struct ib_ah_attr *ah_attr); 1887 int (*destroy_ah)(struct ib_ah *ah); 1888 struct ib_srq * (*create_srq)(struct ib_pd *pd, 1889 struct ib_srq_init_attr *srq_init_attr, 1890 struct ib_udata *udata); 1891 int (*modify_srq)(struct ib_srq *srq, 1892 struct ib_srq_attr *srq_attr, 1893 enum ib_srq_attr_mask srq_attr_mask, 1894 struct ib_udata *udata); 1895 int (*query_srq)(struct ib_srq *srq, 1896 struct ib_srq_attr *srq_attr); 1897 int (*destroy_srq)(struct ib_srq *srq); 1898 int (*post_srq_recv)(struct ib_srq *srq, 1899 struct ib_recv_wr *recv_wr, 1900 struct ib_recv_wr **bad_recv_wr); 1901 struct ib_qp * (*create_qp)(struct ib_pd *pd, 1902 struct ib_qp_init_attr *qp_init_attr, 1903 struct ib_udata *udata); 1904 int (*modify_qp)(struct ib_qp *qp, 1905 struct ib_qp_attr *qp_attr, 1906 int qp_attr_mask, 1907 struct ib_udata *udata); 1908 int (*query_qp)(struct ib_qp *qp, 1909 struct ib_qp_attr *qp_attr, 1910 int qp_attr_mask, 1911 struct ib_qp_init_attr *qp_init_attr); 1912 int (*destroy_qp)(struct ib_qp *qp); 1913 int (*post_send)(struct ib_qp *qp, 1914 struct ib_send_wr *send_wr, 1915 struct ib_send_wr **bad_send_wr); 1916 int (*post_recv)(struct ib_qp *qp, 1917 struct ib_recv_wr *recv_wr, 1918 struct ib_recv_wr **bad_recv_wr); 1919 struct ib_cq * (*create_cq)(struct ib_device *device, 1920 const struct ib_cq_init_attr *attr, 1921 struct ib_ucontext *context, 1922 struct ib_udata *udata); 1923 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, 1924 u16 cq_period); 1925 int (*destroy_cq)(struct ib_cq *cq); 1926 int (*resize_cq)(struct ib_cq *cq, int cqe, 1927 struct ib_udata *udata); 1928 int (*poll_cq)(struct ib_cq *cq, int num_entries, 1929 struct ib_wc *wc); 1930 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 1931 int (*req_notify_cq)(struct ib_cq *cq, 1932 enum ib_cq_notify_flags flags); 1933 int (*req_ncomp_notif)(struct ib_cq *cq, 1934 int wc_cnt); 1935 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, 1936 int mr_access_flags); 1937 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, 1938 u64 start, u64 length, 1939 u64 virt_addr, 1940 int mr_access_flags, 1941 struct ib_udata *udata); 1942 int (*rereg_user_mr)(struct ib_mr *mr, 1943 int flags, 1944 u64 start, u64 length, 1945 u64 virt_addr, 1946 int mr_access_flags, 1947 struct ib_pd *pd, 1948 struct ib_udata *udata); 1949 int (*dereg_mr)(struct ib_mr *mr); 1950 struct ib_mr * (*alloc_mr)(struct ib_pd *pd, 1951 enum ib_mr_type mr_type, 1952 u32 max_num_sg); 1953 int (*map_mr_sg)(struct ib_mr *mr, 1954 struct scatterlist *sg, 1955 int sg_nents, 1956 unsigned int *sg_offset); 1957 struct ib_mw * (*alloc_mw)(struct ib_pd *pd, 1958 enum ib_mw_type type, 1959 struct ib_udata *udata); 1960 int (*dealloc_mw)(struct ib_mw *mw); 1961 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, 1962 int mr_access_flags, 1963 struct ib_fmr_attr *fmr_attr); 1964 int (*map_phys_fmr)(struct ib_fmr *fmr, 1965 u64 *page_list, int list_len, 1966 u64 iova); 1967 int (*unmap_fmr)(struct list_head *fmr_list); 1968 int (*dealloc_fmr)(struct ib_fmr *fmr); 1969 int (*attach_mcast)(struct ib_qp *qp, 1970 union ib_gid *gid, 1971 u16 lid); 1972 int (*detach_mcast)(struct ib_qp *qp, 1973 union ib_gid *gid, 1974 u16 lid); 1975 int (*process_mad)(struct ib_device *device, 1976 int process_mad_flags, 1977 u8 port_num, 1978 const struct ib_wc *in_wc, 1979 const struct ib_grh *in_grh, 1980 const struct ib_mad_hdr *in_mad, 1981 size_t in_mad_size, 1982 struct ib_mad_hdr *out_mad, 1983 size_t *out_mad_size, 1984 u16 *out_mad_pkey_index); 1985 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device, 1986 struct ib_ucontext *ucontext, 1987 struct ib_udata *udata); 1988 int (*dealloc_xrcd)(struct ib_xrcd *xrcd); 1989 struct ib_flow * (*create_flow)(struct ib_qp *qp, 1990 struct ib_flow_attr 1991 *flow_attr, 1992 int domain); 1993 int (*destroy_flow)(struct ib_flow *flow_id); 1994 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 1995 struct ib_mr_status *mr_status); 1996 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 1997 void (*drain_rq)(struct ib_qp *qp); 1998 void (*drain_sq)(struct ib_qp *qp); 1999 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port, 2000 int state); 2001 int (*get_vf_config)(struct ib_device *device, int vf, u8 port, 2002 struct ifla_vf_info *ivf); 2003 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port, 2004 struct ifla_vf_stats *stats); 2005 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid, 2006 int type); 2007 struct ib_wq * (*create_wq)(struct ib_pd *pd, 2008 struct ib_wq_init_attr *init_attr, 2009 struct ib_udata *udata); 2010 int (*destroy_wq)(struct ib_wq *wq); 2011 int (*modify_wq)(struct ib_wq *wq, 2012 struct ib_wq_attr *attr, 2013 u32 wq_attr_mask, 2014 struct ib_udata *udata); 2015 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device, 2016 struct ib_rwq_ind_table_init_attr *init_attr, 2017 struct ib_udata *udata); 2018 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table); 2019 struct ib_dma_mapping_ops *dma_ops; 2020 2021 struct module *owner; 2022 struct device dev; 2023 struct kobject *ports_parent; 2024 struct list_head port_list; 2025 2026 enum { 2027 IB_DEV_UNINITIALIZED, 2028 IB_DEV_REGISTERED, 2029 IB_DEV_UNREGISTERED 2030 } reg_state; 2031 2032 int uverbs_abi_ver; 2033 u64 uverbs_cmd_mask; 2034 u64 uverbs_ex_cmd_mask; 2035 2036 char node_desc[64]; 2037 __be64 node_guid; 2038 u32 local_dma_lkey; 2039 u16 is_switch:1; 2040 u8 node_type; 2041 u8 phys_port_cnt; 2042 struct ib_device_attr attrs; 2043 struct attribute_group *hw_stats_ag; 2044 struct rdma_hw_stats *hw_stats; 2045 2046 /** 2047 * The following mandatory functions are used only at device 2048 * registration. Keep functions such as these at the end of this 2049 * structure to avoid cache line misses when accessing struct ib_device 2050 * in fast paths. 2051 */ 2052 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *); 2053 void (*get_dev_fw_str)(struct ib_device *, char *str, size_t str_len); 2054 }; 2055 2056 struct ib_client { 2057 char *name; 2058 void (*add) (struct ib_device *); 2059 void (*remove)(struct ib_device *, void *client_data); 2060 2061 /* Returns the net_dev belonging to this ib_client and matching the 2062 * given parameters. 2063 * @dev: An RDMA device that the net_dev use for communication. 2064 * @port: A physical port number on the RDMA device. 2065 * @pkey: P_Key that the net_dev uses if applicable. 2066 * @gid: A GID that the net_dev uses to communicate. 2067 * @addr: An IP address the net_dev is configured with. 2068 * @client_data: The device's client data set by ib_set_client_data(). 2069 * 2070 * An ib_client that implements a net_dev on top of RDMA devices 2071 * (such as IP over IB) should implement this callback, allowing the 2072 * rdma_cm module to find the right net_dev for a given request. 2073 * 2074 * The caller is responsible for calling dev_put on the returned 2075 * netdev. */ 2076 struct net_device *(*get_net_dev_by_params)( 2077 struct ib_device *dev, 2078 u8 port, 2079 u16 pkey, 2080 const union ib_gid *gid, 2081 const struct sockaddr *addr, 2082 void *client_data); 2083 struct list_head list; 2084 }; 2085 2086 struct ib_device *ib_alloc_device(size_t size); 2087 void ib_dealloc_device(struct ib_device *device); 2088 2089 void ib_get_device_fw_str(struct ib_device *device, char *str, size_t str_len); 2090 2091 int ib_register_device(struct ib_device *device, 2092 int (*port_callback)(struct ib_device *, 2093 u8, struct kobject *)); 2094 void ib_unregister_device(struct ib_device *device); 2095 2096 int ib_register_client (struct ib_client *client); 2097 void ib_unregister_client(struct ib_client *client); 2098 2099 void *ib_get_client_data(struct ib_device *device, struct ib_client *client); 2100 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 2101 void *data); 2102 2103 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 2104 { 2105 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 2106 } 2107 2108 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 2109 { 2110 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 2111 } 2112 2113 static inline bool ib_is_udata_cleared(struct ib_udata *udata, 2114 size_t offset, 2115 size_t len) 2116 { 2117 const void __user *p = udata->inbuf + offset; 2118 bool ret = false; 2119 u8 *buf; 2120 2121 if (len > USHRT_MAX) 2122 return false; 2123 2124 buf = kmalloc(len, GFP_KERNEL); 2125 if (!buf) 2126 return false; 2127 2128 if (copy_from_user(buf, p, len)) 2129 goto free; 2130 2131 ret = !memchr_inv(buf, 0, len); 2132 2133 free: 2134 kfree(buf); 2135 return ret; 2136 } 2137 2138 /** 2139 * ib_modify_qp_is_ok - Check that the supplied attribute mask 2140 * contains all required attributes and no attributes not allowed for 2141 * the given QP state transition. 2142 * @cur_state: Current QP state 2143 * @next_state: Next QP state 2144 * @type: QP type 2145 * @mask: Mask of supplied QP attributes 2146 * @ll : link layer of port 2147 * 2148 * This function is a helper function that a low-level driver's 2149 * modify_qp method can use to validate the consumer's input. It 2150 * checks that cur_state and next_state are valid QP states, that a 2151 * transition from cur_state to next_state is allowed by the IB spec, 2152 * and that the attribute mask supplied is allowed for the transition. 2153 */ 2154 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 2155 enum ib_qp_type type, enum ib_qp_attr_mask mask, 2156 enum rdma_link_layer ll); 2157 2158 int ib_register_event_handler (struct ib_event_handler *event_handler); 2159 int ib_unregister_event_handler(struct ib_event_handler *event_handler); 2160 void ib_dispatch_event(struct ib_event *event); 2161 2162 int ib_query_port(struct ib_device *device, 2163 u8 port_num, struct ib_port_attr *port_attr); 2164 2165 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 2166 u8 port_num); 2167 2168 /** 2169 * rdma_cap_ib_switch - Check if the device is IB switch 2170 * @device: Device to check 2171 * 2172 * Device driver is responsible for setting is_switch bit on 2173 * in ib_device structure at init time. 2174 * 2175 * Return: true if the device is IB switch. 2176 */ 2177 static inline bool rdma_cap_ib_switch(const struct ib_device *device) 2178 { 2179 return device->is_switch; 2180 } 2181 2182 /** 2183 * rdma_start_port - Return the first valid port number for the device 2184 * specified 2185 * 2186 * @device: Device to be checked 2187 * 2188 * Return start port number 2189 */ 2190 static inline u8 rdma_start_port(const struct ib_device *device) 2191 { 2192 return rdma_cap_ib_switch(device) ? 0 : 1; 2193 } 2194 2195 /** 2196 * rdma_end_port - Return the last valid port number for the device 2197 * specified 2198 * 2199 * @device: Device to be checked 2200 * 2201 * Return last port number 2202 */ 2203 static inline u8 rdma_end_port(const struct ib_device *device) 2204 { 2205 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 2206 } 2207 2208 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num) 2209 { 2210 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB; 2211 } 2212 2213 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num) 2214 { 2215 return device->port_immutable[port_num].core_cap_flags & 2216 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); 2217 } 2218 2219 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num) 2220 { 2221 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; 2222 } 2223 2224 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num) 2225 { 2226 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE; 2227 } 2228 2229 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num) 2230 { 2231 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP; 2232 } 2233 2234 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num) 2235 { 2236 return rdma_protocol_ib(device, port_num) || 2237 rdma_protocol_roce(device, port_num); 2238 } 2239 2240 /** 2241 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 2242 * Management Datagrams. 2243 * @device: Device to check 2244 * @port_num: Port number to check 2245 * 2246 * Management Datagrams (MAD) are a required part of the InfiniBand 2247 * specification and are supported on all InfiniBand devices. A slightly 2248 * extended version are also supported on OPA interfaces. 2249 * 2250 * Return: true if the port supports sending/receiving of MAD packets. 2251 */ 2252 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num) 2253 { 2254 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD; 2255 } 2256 2257 /** 2258 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 2259 * Management Datagrams. 2260 * @device: Device to check 2261 * @port_num: Port number to check 2262 * 2263 * Intel OmniPath devices extend and/or replace the InfiniBand Management 2264 * datagrams with their own versions. These OPA MADs share many but not all of 2265 * the characteristics of InfiniBand MADs. 2266 * 2267 * OPA MADs differ in the following ways: 2268 * 2269 * 1) MADs are variable size up to 2K 2270 * IBTA defined MADs remain fixed at 256 bytes 2271 * 2) OPA SMPs must carry valid PKeys 2272 * 3) OPA SMP packets are a different format 2273 * 2274 * Return: true if the port supports OPA MAD packet formats. 2275 */ 2276 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num) 2277 { 2278 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD) 2279 == RDMA_CORE_CAP_OPA_MAD; 2280 } 2281 2282 /** 2283 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 2284 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 2285 * @device: Device to check 2286 * @port_num: Port number to check 2287 * 2288 * Each InfiniBand node is required to provide a Subnet Management Agent 2289 * that the subnet manager can access. Prior to the fabric being fully 2290 * configured by the subnet manager, the SMA is accessed via a well known 2291 * interface called the Subnet Management Interface (SMI). This interface 2292 * uses directed route packets to communicate with the SM to get around the 2293 * chicken and egg problem of the SM needing to know what's on the fabric 2294 * in order to configure the fabric, and needing to configure the fabric in 2295 * order to send packets to the devices on the fabric. These directed 2296 * route packets do not need the fabric fully configured in order to reach 2297 * their destination. The SMI is the only method allowed to send 2298 * directed route packets on an InfiniBand fabric. 2299 * 2300 * Return: true if the port provides an SMI. 2301 */ 2302 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num) 2303 { 2304 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI; 2305 } 2306 2307 /** 2308 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 2309 * Communication Manager. 2310 * @device: Device to check 2311 * @port_num: Port number to check 2312 * 2313 * The InfiniBand Communication Manager is one of many pre-defined General 2314 * Service Agents (GSA) that are accessed via the General Service 2315 * Interface (GSI). It's role is to facilitate establishment of connections 2316 * between nodes as well as other management related tasks for established 2317 * connections. 2318 * 2319 * Return: true if the port supports an IB CM (this does not guarantee that 2320 * a CM is actually running however). 2321 */ 2322 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num) 2323 { 2324 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM; 2325 } 2326 2327 /** 2328 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 2329 * Communication Manager. 2330 * @device: Device to check 2331 * @port_num: Port number to check 2332 * 2333 * Similar to above, but specific to iWARP connections which have a different 2334 * managment protocol than InfiniBand. 2335 * 2336 * Return: true if the port supports an iWARP CM (this does not guarantee that 2337 * a CM is actually running however). 2338 */ 2339 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num) 2340 { 2341 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM; 2342 } 2343 2344 /** 2345 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 2346 * Subnet Administration. 2347 * @device: Device to check 2348 * @port_num: Port number to check 2349 * 2350 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 2351 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 2352 * fabrics, devices should resolve routes to other hosts by contacting the 2353 * SA to query the proper route. 2354 * 2355 * Return: true if the port should act as a client to the fabric Subnet 2356 * Administration interface. This does not imply that the SA service is 2357 * running locally. 2358 */ 2359 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num) 2360 { 2361 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA; 2362 } 2363 2364 /** 2365 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 2366 * Multicast. 2367 * @device: Device to check 2368 * @port_num: Port number to check 2369 * 2370 * InfiniBand multicast registration is more complex than normal IPv4 or 2371 * IPv6 multicast registration. Each Host Channel Adapter must register 2372 * with the Subnet Manager when it wishes to join a multicast group. It 2373 * should do so only once regardless of how many queue pairs it subscribes 2374 * to this group. And it should leave the group only after all queue pairs 2375 * attached to the group have been detached. 2376 * 2377 * Return: true if the port must undertake the additional adminstrative 2378 * overhead of registering/unregistering with the SM and tracking of the 2379 * total number of queue pairs attached to the multicast group. 2380 */ 2381 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num) 2382 { 2383 return rdma_cap_ib_sa(device, port_num); 2384 } 2385 2386 /** 2387 * rdma_cap_af_ib - Check if the port of device has the capability 2388 * Native Infiniband Address. 2389 * @device: Device to check 2390 * @port_num: Port number to check 2391 * 2392 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 2393 * GID. RoCE uses a different mechanism, but still generates a GID via 2394 * a prescribed mechanism and port specific data. 2395 * 2396 * Return: true if the port uses a GID address to identify devices on the 2397 * network. 2398 */ 2399 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num) 2400 { 2401 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB; 2402 } 2403 2404 /** 2405 * rdma_cap_eth_ah - Check if the port of device has the capability 2406 * Ethernet Address Handle. 2407 * @device: Device to check 2408 * @port_num: Port number to check 2409 * 2410 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 2411 * to fabricate GIDs over Ethernet/IP specific addresses native to the 2412 * port. Normally, packet headers are generated by the sending host 2413 * adapter, but when sending connectionless datagrams, we must manually 2414 * inject the proper headers for the fabric we are communicating over. 2415 * 2416 * Return: true if we are running as a RoCE port and must force the 2417 * addition of a Global Route Header built from our Ethernet Address 2418 * Handle into our header list for connectionless packets. 2419 */ 2420 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num) 2421 { 2422 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH; 2423 } 2424 2425 /** 2426 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 2427 * 2428 * @device: Device 2429 * @port_num: Port number 2430 * 2431 * This MAD size includes the MAD headers and MAD payload. No other headers 2432 * are included. 2433 * 2434 * Return the max MAD size required by the Port. Will return 0 if the port 2435 * does not support MADs 2436 */ 2437 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num) 2438 { 2439 return device->port_immutable[port_num].max_mad_size; 2440 } 2441 2442 /** 2443 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 2444 * @device: Device to check 2445 * @port_num: Port number to check 2446 * 2447 * RoCE GID table mechanism manages the various GIDs for a device. 2448 * 2449 * NOTE: if allocating the port's GID table has failed, this call will still 2450 * return true, but any RoCE GID table API will fail. 2451 * 2452 * Return: true if the port uses RoCE GID table mechanism in order to manage 2453 * its GIDs. 2454 */ 2455 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 2456 u8 port_num) 2457 { 2458 return rdma_protocol_roce(device, port_num) && 2459 device->add_gid && device->del_gid; 2460 } 2461 2462 /* 2463 * Check if the device supports READ W/ INVALIDATE. 2464 */ 2465 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num) 2466 { 2467 /* 2468 * iWarp drivers must support READ W/ INVALIDATE. No other protocol 2469 * has support for it yet. 2470 */ 2471 return rdma_protocol_iwarp(dev, port_num); 2472 } 2473 2474 int ib_query_gid(struct ib_device *device, 2475 u8 port_num, int index, union ib_gid *gid, 2476 struct ib_gid_attr *attr); 2477 2478 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 2479 int state); 2480 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 2481 struct ifla_vf_info *info); 2482 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 2483 struct ifla_vf_stats *stats); 2484 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 2485 int type); 2486 2487 int ib_query_pkey(struct ib_device *device, 2488 u8 port_num, u16 index, u16 *pkey); 2489 2490 int ib_modify_device(struct ib_device *device, 2491 int device_modify_mask, 2492 struct ib_device_modify *device_modify); 2493 2494 int ib_modify_port(struct ib_device *device, 2495 u8 port_num, int port_modify_mask, 2496 struct ib_port_modify *port_modify); 2497 2498 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 2499 enum ib_gid_type gid_type, struct net_device *ndev, 2500 u8 *port_num, u16 *index); 2501 2502 int ib_find_pkey(struct ib_device *device, 2503 u8 port_num, u16 pkey, u16 *index); 2504 2505 struct ib_pd *ib_alloc_pd(struct ib_device *device); 2506 2507 void ib_dealloc_pd(struct ib_pd *pd); 2508 2509 /** 2510 * ib_create_ah - Creates an address handle for the given address vector. 2511 * @pd: The protection domain associated with the address handle. 2512 * @ah_attr: The attributes of the address vector. 2513 * 2514 * The address handle is used to reference a local or global destination 2515 * in all UD QP post sends. 2516 */ 2517 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr); 2518 2519 /** 2520 * ib_init_ah_from_wc - Initializes address handle attributes from a 2521 * work completion. 2522 * @device: Device on which the received message arrived. 2523 * @port_num: Port on which the received message arrived. 2524 * @wc: Work completion associated with the received message. 2525 * @grh: References the received global route header. This parameter is 2526 * ignored unless the work completion indicates that the GRH is valid. 2527 * @ah_attr: Returned attributes that can be used when creating an address 2528 * handle for replying to the message. 2529 */ 2530 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, 2531 const struct ib_wc *wc, const struct ib_grh *grh, 2532 struct ib_ah_attr *ah_attr); 2533 2534 /** 2535 * ib_create_ah_from_wc - Creates an address handle associated with the 2536 * sender of the specified work completion. 2537 * @pd: The protection domain associated with the address handle. 2538 * @wc: Work completion information associated with a received message. 2539 * @grh: References the received global route header. This parameter is 2540 * ignored unless the work completion indicates that the GRH is valid. 2541 * @port_num: The outbound port number to associate with the address. 2542 * 2543 * The address handle is used to reference a local or global destination 2544 * in all UD QP post sends. 2545 */ 2546 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 2547 const struct ib_grh *grh, u8 port_num); 2548 2549 /** 2550 * ib_modify_ah - Modifies the address vector associated with an address 2551 * handle. 2552 * @ah: The address handle to modify. 2553 * @ah_attr: The new address vector attributes to associate with the 2554 * address handle. 2555 */ 2556 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 2557 2558 /** 2559 * ib_query_ah - Queries the address vector associated with an address 2560 * handle. 2561 * @ah: The address handle to query. 2562 * @ah_attr: The address vector attributes associated with the address 2563 * handle. 2564 */ 2565 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 2566 2567 /** 2568 * ib_destroy_ah - Destroys an address handle. 2569 * @ah: The address handle to destroy. 2570 */ 2571 int ib_destroy_ah(struct ib_ah *ah); 2572 2573 /** 2574 * ib_create_srq - Creates a SRQ associated with the specified protection 2575 * domain. 2576 * @pd: The protection domain associated with the SRQ. 2577 * @srq_init_attr: A list of initial attributes required to create the 2578 * SRQ. If SRQ creation succeeds, then the attributes are updated to 2579 * the actual capabilities of the created SRQ. 2580 * 2581 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 2582 * requested size of the SRQ, and set to the actual values allocated 2583 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 2584 * will always be at least as large as the requested values. 2585 */ 2586 struct ib_srq *ib_create_srq(struct ib_pd *pd, 2587 struct ib_srq_init_attr *srq_init_attr); 2588 2589 /** 2590 * ib_modify_srq - Modifies the attributes for the specified SRQ. 2591 * @srq: The SRQ to modify. 2592 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 2593 * the current values of selected SRQ attributes are returned. 2594 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 2595 * are being modified. 2596 * 2597 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 2598 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 2599 * the number of receives queued drops below the limit. 2600 */ 2601 int ib_modify_srq(struct ib_srq *srq, 2602 struct ib_srq_attr *srq_attr, 2603 enum ib_srq_attr_mask srq_attr_mask); 2604 2605 /** 2606 * ib_query_srq - Returns the attribute list and current values for the 2607 * specified SRQ. 2608 * @srq: The SRQ to query. 2609 * @srq_attr: The attributes of the specified SRQ. 2610 */ 2611 int ib_query_srq(struct ib_srq *srq, 2612 struct ib_srq_attr *srq_attr); 2613 2614 /** 2615 * ib_destroy_srq - Destroys the specified SRQ. 2616 * @srq: The SRQ to destroy. 2617 */ 2618 int ib_destroy_srq(struct ib_srq *srq); 2619 2620 /** 2621 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 2622 * @srq: The SRQ to post the work request on. 2623 * @recv_wr: A list of work requests to post on the receive queue. 2624 * @bad_recv_wr: On an immediate failure, this parameter will reference 2625 * the work request that failed to be posted on the QP. 2626 */ 2627 static inline int ib_post_srq_recv(struct ib_srq *srq, 2628 struct ib_recv_wr *recv_wr, 2629 struct ib_recv_wr **bad_recv_wr) 2630 { 2631 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr); 2632 } 2633 2634 /** 2635 * ib_create_qp - Creates a QP associated with the specified protection 2636 * domain. 2637 * @pd: The protection domain associated with the QP. 2638 * @qp_init_attr: A list of initial attributes required to create the 2639 * QP. If QP creation succeeds, then the attributes are updated to 2640 * the actual capabilities of the created QP. 2641 */ 2642 struct ib_qp *ib_create_qp(struct ib_pd *pd, 2643 struct ib_qp_init_attr *qp_init_attr); 2644 2645 /** 2646 * ib_modify_qp - Modifies the attributes for the specified QP and then 2647 * transitions the QP to the given state. 2648 * @qp: The QP to modify. 2649 * @qp_attr: On input, specifies the QP attributes to modify. On output, 2650 * the current values of selected QP attributes are returned. 2651 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 2652 * are being modified. 2653 */ 2654 int ib_modify_qp(struct ib_qp *qp, 2655 struct ib_qp_attr *qp_attr, 2656 int qp_attr_mask); 2657 2658 /** 2659 * ib_query_qp - Returns the attribute list and current values for the 2660 * specified QP. 2661 * @qp: The QP to query. 2662 * @qp_attr: The attributes of the specified QP. 2663 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 2664 * @qp_init_attr: Additional attributes of the selected QP. 2665 * 2666 * The qp_attr_mask may be used to limit the query to gathering only the 2667 * selected attributes. 2668 */ 2669 int ib_query_qp(struct ib_qp *qp, 2670 struct ib_qp_attr *qp_attr, 2671 int qp_attr_mask, 2672 struct ib_qp_init_attr *qp_init_attr); 2673 2674 /** 2675 * ib_destroy_qp - Destroys the specified QP. 2676 * @qp: The QP to destroy. 2677 */ 2678 int ib_destroy_qp(struct ib_qp *qp); 2679 2680 /** 2681 * ib_open_qp - Obtain a reference to an existing sharable QP. 2682 * @xrcd - XRC domain 2683 * @qp_open_attr: Attributes identifying the QP to open. 2684 * 2685 * Returns a reference to a sharable QP. 2686 */ 2687 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 2688 struct ib_qp_open_attr *qp_open_attr); 2689 2690 /** 2691 * ib_close_qp - Release an external reference to a QP. 2692 * @qp: The QP handle to release 2693 * 2694 * The opened QP handle is released by the caller. The underlying 2695 * shared QP is not destroyed until all internal references are released. 2696 */ 2697 int ib_close_qp(struct ib_qp *qp); 2698 2699 /** 2700 * ib_post_send - Posts a list of work requests to the send queue of 2701 * the specified QP. 2702 * @qp: The QP to post the work request on. 2703 * @send_wr: A list of work requests to post on the send queue. 2704 * @bad_send_wr: On an immediate failure, this parameter will reference 2705 * the work request that failed to be posted on the QP. 2706 * 2707 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 2708 * error is returned, the QP state shall not be affected, 2709 * ib_post_send() will return an immediate error after queueing any 2710 * earlier work requests in the list. 2711 */ 2712 static inline int ib_post_send(struct ib_qp *qp, 2713 struct ib_send_wr *send_wr, 2714 struct ib_send_wr **bad_send_wr) 2715 { 2716 return qp->device->post_send(qp, send_wr, bad_send_wr); 2717 } 2718 2719 /** 2720 * ib_post_recv - Posts a list of work requests to the receive queue of 2721 * the specified QP. 2722 * @qp: The QP to post the work request on. 2723 * @recv_wr: A list of work requests to post on the receive queue. 2724 * @bad_recv_wr: On an immediate failure, this parameter will reference 2725 * the work request that failed to be posted on the QP. 2726 */ 2727 static inline int ib_post_recv(struct ib_qp *qp, 2728 struct ib_recv_wr *recv_wr, 2729 struct ib_recv_wr **bad_recv_wr) 2730 { 2731 return qp->device->post_recv(qp, recv_wr, bad_recv_wr); 2732 } 2733 2734 struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private, 2735 int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx); 2736 void ib_free_cq(struct ib_cq *cq); 2737 int ib_process_cq_direct(struct ib_cq *cq, int budget); 2738 2739 /** 2740 * ib_create_cq - Creates a CQ on the specified device. 2741 * @device: The device on which to create the CQ. 2742 * @comp_handler: A user-specified callback that is invoked when a 2743 * completion event occurs on the CQ. 2744 * @event_handler: A user-specified callback that is invoked when an 2745 * asynchronous event not associated with a completion occurs on the CQ. 2746 * @cq_context: Context associated with the CQ returned to the user via 2747 * the associated completion and event handlers. 2748 * @cq_attr: The attributes the CQ should be created upon. 2749 * 2750 * Users can examine the cq structure to determine the actual CQ size. 2751 */ 2752 struct ib_cq *ib_create_cq(struct ib_device *device, 2753 ib_comp_handler comp_handler, 2754 void (*event_handler)(struct ib_event *, void *), 2755 void *cq_context, 2756 const struct ib_cq_init_attr *cq_attr); 2757 2758 /** 2759 * ib_resize_cq - Modifies the capacity of the CQ. 2760 * @cq: The CQ to resize. 2761 * @cqe: The minimum size of the CQ. 2762 * 2763 * Users can examine the cq structure to determine the actual CQ size. 2764 */ 2765 int ib_resize_cq(struct ib_cq *cq, int cqe); 2766 2767 /** 2768 * ib_modify_cq - Modifies moderation params of the CQ 2769 * @cq: The CQ to modify. 2770 * @cq_count: number of CQEs that will trigger an event 2771 * @cq_period: max period of time in usec before triggering an event 2772 * 2773 */ 2774 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period); 2775 2776 /** 2777 * ib_destroy_cq - Destroys the specified CQ. 2778 * @cq: The CQ to destroy. 2779 */ 2780 int ib_destroy_cq(struct ib_cq *cq); 2781 2782 /** 2783 * ib_poll_cq - poll a CQ for completion(s) 2784 * @cq:the CQ being polled 2785 * @num_entries:maximum number of completions to return 2786 * @wc:array of at least @num_entries &struct ib_wc where completions 2787 * will be returned 2788 * 2789 * Poll a CQ for (possibly multiple) completions. If the return value 2790 * is < 0, an error occurred. If the return value is >= 0, it is the 2791 * number of completions returned. If the return value is 2792 * non-negative and < num_entries, then the CQ was emptied. 2793 */ 2794 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 2795 struct ib_wc *wc) 2796 { 2797 return cq->device->poll_cq(cq, num_entries, wc); 2798 } 2799 2800 /** 2801 * ib_peek_cq - Returns the number of unreaped completions currently 2802 * on the specified CQ. 2803 * @cq: The CQ to peek. 2804 * @wc_cnt: A minimum number of unreaped completions to check for. 2805 * 2806 * If the number of unreaped completions is greater than or equal to wc_cnt, 2807 * this function returns wc_cnt, otherwise, it returns the actual number of 2808 * unreaped completions. 2809 */ 2810 int ib_peek_cq(struct ib_cq *cq, int wc_cnt); 2811 2812 /** 2813 * ib_req_notify_cq - Request completion notification on a CQ. 2814 * @cq: The CQ to generate an event for. 2815 * @flags: 2816 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 2817 * to request an event on the next solicited event or next work 2818 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 2819 * may also be |ed in to request a hint about missed events, as 2820 * described below. 2821 * 2822 * Return Value: 2823 * < 0 means an error occurred while requesting notification 2824 * == 0 means notification was requested successfully, and if 2825 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 2826 * were missed and it is safe to wait for another event. In 2827 * this case is it guaranteed that any work completions added 2828 * to the CQ since the last CQ poll will trigger a completion 2829 * notification event. 2830 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 2831 * in. It means that the consumer must poll the CQ again to 2832 * make sure it is empty to avoid missing an event because of a 2833 * race between requesting notification and an entry being 2834 * added to the CQ. This return value means it is possible 2835 * (but not guaranteed) that a work completion has been added 2836 * to the CQ since the last poll without triggering a 2837 * completion notification event. 2838 */ 2839 static inline int ib_req_notify_cq(struct ib_cq *cq, 2840 enum ib_cq_notify_flags flags) 2841 { 2842 return cq->device->req_notify_cq(cq, flags); 2843 } 2844 2845 /** 2846 * ib_req_ncomp_notif - Request completion notification when there are 2847 * at least the specified number of unreaped completions on the CQ. 2848 * @cq: The CQ to generate an event for. 2849 * @wc_cnt: The number of unreaped completions that should be on the 2850 * CQ before an event is generated. 2851 */ 2852 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 2853 { 2854 return cq->device->req_ncomp_notif ? 2855 cq->device->req_ncomp_notif(cq, wc_cnt) : 2856 -ENOSYS; 2857 } 2858 2859 /** 2860 * ib_get_dma_mr - Returns a memory region for system memory that is 2861 * usable for DMA. 2862 * @pd: The protection domain associated with the memory region. 2863 * @mr_access_flags: Specifies the memory access rights. 2864 * 2865 * Note that the ib_dma_*() functions defined below must be used 2866 * to create/destroy addresses used with the Lkey or Rkey returned 2867 * by ib_get_dma_mr(). 2868 */ 2869 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags); 2870 2871 /** 2872 * ib_dma_mapping_error - check a DMA addr for error 2873 * @dev: The device for which the dma_addr was created 2874 * @dma_addr: The DMA address to check 2875 */ 2876 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 2877 { 2878 if (dev->dma_ops) 2879 return dev->dma_ops->mapping_error(dev, dma_addr); 2880 return dma_mapping_error(dev->dma_device, dma_addr); 2881 } 2882 2883 /** 2884 * ib_dma_map_single - Map a kernel virtual address to DMA address 2885 * @dev: The device for which the dma_addr is to be created 2886 * @cpu_addr: The kernel virtual address 2887 * @size: The size of the region in bytes 2888 * @direction: The direction of the DMA 2889 */ 2890 static inline u64 ib_dma_map_single(struct ib_device *dev, 2891 void *cpu_addr, size_t size, 2892 enum dma_data_direction direction) 2893 { 2894 if (dev->dma_ops) 2895 return dev->dma_ops->map_single(dev, cpu_addr, size, direction); 2896 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 2897 } 2898 2899 /** 2900 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 2901 * @dev: The device for which the DMA address was created 2902 * @addr: The DMA address 2903 * @size: The size of the region in bytes 2904 * @direction: The direction of the DMA 2905 */ 2906 static inline void ib_dma_unmap_single(struct ib_device *dev, 2907 u64 addr, size_t size, 2908 enum dma_data_direction direction) 2909 { 2910 if (dev->dma_ops) 2911 dev->dma_ops->unmap_single(dev, addr, size, direction); 2912 else 2913 dma_unmap_single(dev->dma_device, addr, size, direction); 2914 } 2915 2916 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev, 2917 void *cpu_addr, size_t size, 2918 enum dma_data_direction direction, 2919 unsigned long dma_attrs) 2920 { 2921 return dma_map_single_attrs(dev->dma_device, cpu_addr, size, 2922 direction, dma_attrs); 2923 } 2924 2925 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev, 2926 u64 addr, size_t size, 2927 enum dma_data_direction direction, 2928 unsigned long dma_attrs) 2929 { 2930 return dma_unmap_single_attrs(dev->dma_device, addr, size, 2931 direction, dma_attrs); 2932 } 2933 2934 /** 2935 * ib_dma_map_page - Map a physical page to DMA address 2936 * @dev: The device for which the dma_addr is to be created 2937 * @page: The page to be mapped 2938 * @offset: The offset within the page 2939 * @size: The size of the region in bytes 2940 * @direction: The direction of the DMA 2941 */ 2942 static inline u64 ib_dma_map_page(struct ib_device *dev, 2943 struct page *page, 2944 unsigned long offset, 2945 size_t size, 2946 enum dma_data_direction direction) 2947 { 2948 if (dev->dma_ops) 2949 return dev->dma_ops->map_page(dev, page, offset, size, direction); 2950 return dma_map_page(dev->dma_device, page, offset, size, direction); 2951 } 2952 2953 /** 2954 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 2955 * @dev: The device for which the DMA address was created 2956 * @addr: The DMA address 2957 * @size: The size of the region in bytes 2958 * @direction: The direction of the DMA 2959 */ 2960 static inline void ib_dma_unmap_page(struct ib_device *dev, 2961 u64 addr, size_t size, 2962 enum dma_data_direction direction) 2963 { 2964 if (dev->dma_ops) 2965 dev->dma_ops->unmap_page(dev, addr, size, direction); 2966 else 2967 dma_unmap_page(dev->dma_device, addr, size, direction); 2968 } 2969 2970 /** 2971 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 2972 * @dev: The device for which the DMA addresses are to be created 2973 * @sg: The array of scatter/gather entries 2974 * @nents: The number of scatter/gather entries 2975 * @direction: The direction of the DMA 2976 */ 2977 static inline int ib_dma_map_sg(struct ib_device *dev, 2978 struct scatterlist *sg, int nents, 2979 enum dma_data_direction direction) 2980 { 2981 if (dev->dma_ops) 2982 return dev->dma_ops->map_sg(dev, sg, nents, direction); 2983 return dma_map_sg(dev->dma_device, sg, nents, direction); 2984 } 2985 2986 /** 2987 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 2988 * @dev: The device for which the DMA addresses were created 2989 * @sg: The array of scatter/gather entries 2990 * @nents: The number of scatter/gather entries 2991 * @direction: The direction of the DMA 2992 */ 2993 static inline void ib_dma_unmap_sg(struct ib_device *dev, 2994 struct scatterlist *sg, int nents, 2995 enum dma_data_direction direction) 2996 { 2997 if (dev->dma_ops) 2998 dev->dma_ops->unmap_sg(dev, sg, nents, direction); 2999 else 3000 dma_unmap_sg(dev->dma_device, sg, nents, direction); 3001 } 3002 3003 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 3004 struct scatterlist *sg, int nents, 3005 enum dma_data_direction direction, 3006 unsigned long dma_attrs) 3007 { 3008 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, 3009 dma_attrs); 3010 } 3011 3012 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 3013 struct scatterlist *sg, int nents, 3014 enum dma_data_direction direction, 3015 unsigned long dma_attrs) 3016 { 3017 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs); 3018 } 3019 /** 3020 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry 3021 * @dev: The device for which the DMA addresses were created 3022 * @sg: The scatter/gather entry 3023 * 3024 * Note: this function is obsolete. To do: change all occurrences of 3025 * ib_sg_dma_address() into sg_dma_address(). 3026 */ 3027 static inline u64 ib_sg_dma_address(struct ib_device *dev, 3028 struct scatterlist *sg) 3029 { 3030 return sg_dma_address(sg); 3031 } 3032 3033 /** 3034 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry 3035 * @dev: The device for which the DMA addresses were created 3036 * @sg: The scatter/gather entry 3037 * 3038 * Note: this function is obsolete. To do: change all occurrences of 3039 * ib_sg_dma_len() into sg_dma_len(). 3040 */ 3041 static inline unsigned int ib_sg_dma_len(struct ib_device *dev, 3042 struct scatterlist *sg) 3043 { 3044 return sg_dma_len(sg); 3045 } 3046 3047 /** 3048 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 3049 * @dev: The device for which the DMA address was created 3050 * @addr: The DMA address 3051 * @size: The size of the region in bytes 3052 * @dir: The direction of the DMA 3053 */ 3054 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 3055 u64 addr, 3056 size_t size, 3057 enum dma_data_direction dir) 3058 { 3059 if (dev->dma_ops) 3060 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir); 3061 else 3062 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 3063 } 3064 3065 /** 3066 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 3067 * @dev: The device for which the DMA address was created 3068 * @addr: The DMA address 3069 * @size: The size of the region in bytes 3070 * @dir: The direction of the DMA 3071 */ 3072 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 3073 u64 addr, 3074 size_t size, 3075 enum dma_data_direction dir) 3076 { 3077 if (dev->dma_ops) 3078 dev->dma_ops->sync_single_for_device(dev, addr, size, dir); 3079 else 3080 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 3081 } 3082 3083 /** 3084 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 3085 * @dev: The device for which the DMA address is requested 3086 * @size: The size of the region to allocate in bytes 3087 * @dma_handle: A pointer for returning the DMA address of the region 3088 * @flag: memory allocator flags 3089 */ 3090 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 3091 size_t size, 3092 u64 *dma_handle, 3093 gfp_t flag) 3094 { 3095 if (dev->dma_ops) 3096 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag); 3097 else { 3098 dma_addr_t handle; 3099 void *ret; 3100 3101 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag); 3102 *dma_handle = handle; 3103 return ret; 3104 } 3105 } 3106 3107 /** 3108 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 3109 * @dev: The device for which the DMA addresses were allocated 3110 * @size: The size of the region 3111 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 3112 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 3113 */ 3114 static inline void ib_dma_free_coherent(struct ib_device *dev, 3115 size_t size, void *cpu_addr, 3116 u64 dma_handle) 3117 { 3118 if (dev->dma_ops) 3119 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle); 3120 else 3121 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 3122 } 3123 3124 /** 3125 * ib_dereg_mr - Deregisters a memory region and removes it from the 3126 * HCA translation table. 3127 * @mr: The memory region to deregister. 3128 * 3129 * This function can fail, if the memory region has memory windows bound to it. 3130 */ 3131 int ib_dereg_mr(struct ib_mr *mr); 3132 3133 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, 3134 enum ib_mr_type mr_type, 3135 u32 max_num_sg); 3136 3137 /** 3138 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 3139 * R_Key and L_Key. 3140 * @mr - struct ib_mr pointer to be updated. 3141 * @newkey - new key to be used. 3142 */ 3143 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 3144 { 3145 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 3146 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 3147 } 3148 3149 /** 3150 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 3151 * for calculating a new rkey for type 2 memory windows. 3152 * @rkey - the rkey to increment. 3153 */ 3154 static inline u32 ib_inc_rkey(u32 rkey) 3155 { 3156 const u32 mask = 0x000000ff; 3157 return ((rkey + 1) & mask) | (rkey & ~mask); 3158 } 3159 3160 /** 3161 * ib_alloc_fmr - Allocates a unmapped fast memory region. 3162 * @pd: The protection domain associated with the unmapped region. 3163 * @mr_access_flags: Specifies the memory access rights. 3164 * @fmr_attr: Attributes of the unmapped region. 3165 * 3166 * A fast memory region must be mapped before it can be used as part of 3167 * a work request. 3168 */ 3169 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 3170 int mr_access_flags, 3171 struct ib_fmr_attr *fmr_attr); 3172 3173 /** 3174 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 3175 * @fmr: The fast memory region to associate with the pages. 3176 * @page_list: An array of physical pages to map to the fast memory region. 3177 * @list_len: The number of pages in page_list. 3178 * @iova: The I/O virtual address to use with the mapped region. 3179 */ 3180 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 3181 u64 *page_list, int list_len, 3182 u64 iova) 3183 { 3184 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); 3185 } 3186 3187 /** 3188 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 3189 * @fmr_list: A linked list of fast memory regions to unmap. 3190 */ 3191 int ib_unmap_fmr(struct list_head *fmr_list); 3192 3193 /** 3194 * ib_dealloc_fmr - Deallocates a fast memory region. 3195 * @fmr: The fast memory region to deallocate. 3196 */ 3197 int ib_dealloc_fmr(struct ib_fmr *fmr); 3198 3199 /** 3200 * ib_attach_mcast - Attaches the specified QP to a multicast group. 3201 * @qp: QP to attach to the multicast group. The QP must be type 3202 * IB_QPT_UD. 3203 * @gid: Multicast group GID. 3204 * @lid: Multicast group LID in host byte order. 3205 * 3206 * In order to send and receive multicast packets, subnet 3207 * administration must have created the multicast group and configured 3208 * the fabric appropriately. The port associated with the specified 3209 * QP must also be a member of the multicast group. 3210 */ 3211 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3212 3213 /** 3214 * ib_detach_mcast - Detaches the specified QP from a multicast group. 3215 * @qp: QP to detach from the multicast group. 3216 * @gid: Multicast group GID. 3217 * @lid: Multicast group LID in host byte order. 3218 */ 3219 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3220 3221 /** 3222 * ib_alloc_xrcd - Allocates an XRC domain. 3223 * @device: The device on which to allocate the XRC domain. 3224 */ 3225 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device); 3226 3227 /** 3228 * ib_dealloc_xrcd - Deallocates an XRC domain. 3229 * @xrcd: The XRC domain to deallocate. 3230 */ 3231 int ib_dealloc_xrcd(struct ib_xrcd *xrcd); 3232 3233 struct ib_flow *ib_create_flow(struct ib_qp *qp, 3234 struct ib_flow_attr *flow_attr, int domain); 3235 int ib_destroy_flow(struct ib_flow *flow_id); 3236 3237 static inline int ib_check_mr_access(int flags) 3238 { 3239 /* 3240 * Local write permission is required if remote write or 3241 * remote atomic permission is also requested. 3242 */ 3243 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 3244 !(flags & IB_ACCESS_LOCAL_WRITE)) 3245 return -EINVAL; 3246 3247 return 0; 3248 } 3249 3250 /** 3251 * ib_check_mr_status: lightweight check of MR status. 3252 * This routine may provide status checks on a selected 3253 * ib_mr. first use is for signature status check. 3254 * 3255 * @mr: A memory region. 3256 * @check_mask: Bitmask of which checks to perform from 3257 * ib_mr_status_check enumeration. 3258 * @mr_status: The container of relevant status checks. 3259 * failed checks will be indicated in the status bitmask 3260 * and the relevant info shall be in the error item. 3261 */ 3262 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 3263 struct ib_mr_status *mr_status); 3264 3265 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port, 3266 u16 pkey, const union ib_gid *gid, 3267 const struct sockaddr *addr); 3268 struct ib_wq *ib_create_wq(struct ib_pd *pd, 3269 struct ib_wq_init_attr *init_attr); 3270 int ib_destroy_wq(struct ib_wq *wq); 3271 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr, 3272 u32 wq_attr_mask); 3273 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device, 3274 struct ib_rwq_ind_table_init_attr* 3275 wq_ind_table_init_attr); 3276 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table); 3277 3278 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3279 unsigned int *sg_offset, unsigned int page_size); 3280 3281 static inline int 3282 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3283 unsigned int *sg_offset, unsigned int page_size) 3284 { 3285 int n; 3286 3287 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size); 3288 mr->iova = 0; 3289 3290 return n; 3291 } 3292 3293 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 3294 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64)); 3295 3296 void ib_drain_rq(struct ib_qp *qp); 3297 void ib_drain_sq(struct ib_qp *qp); 3298 void ib_drain_qp(struct ib_qp *qp); 3299 #endif /* IB_VERBS_H */ 3300